乘法公式能力提高题
乘法分配公式100道
乘法分配公式100道本文档将提供100道乘法分配公式的练题,旨在帮助读者熟悉和掌握这一数学概念。
乘法分配公式是数学中非常重要的基础知识之一,它可以帮助我们在计算中更方便地进行乘法运算。
练题:1. 2 × (3 + 4) = ____ + ____2. (5 + 6) × 7 = ____ + ____3. 4 × (6 - 2) = ____ + ____4. (8 - 3) × 9 = ____ + ____5. 3 × (2 × 5) = ____ + ____6. (6 × 4) × 7 = ____ + ____7. 9 × (3 - 1) = ____ + ____8. (7 - 2) × 8 = ____ + ____9. 2 × (9 + 5) = ____ + ____10. (6 + 1) × 2 = ____ + ____11. ...请根据上述练题,完成剩余的乘法分配公式练。
每道题目将提供一个乘法分配公式的表达式,需要找出空格中的值,使得等式成立。
答案:1. 2 × (3 + 4) = 2 × 3 + 2 × 42. (5 + 6) × 7 = 5 × 7 + 6 × 73. 4 × (6 - 2) = 4 × 6 - 4 × 24. (8 - 3) × 9 = 8 × 9 - 3 × 95. 3 × (2 × 5) = 3 × 2 × 56. (6 × 4) × 7 = 6 × 4 × 77. 9 × (3 - 1) = 9 × 3 - 9 × 18. (7 - 2) × 8 = 7 × 8 - 2 × 89. 2 × (9 + 5) = 2 × 9 + 2 × 510. (6 + 1) × 2 = 6 × 2 + 1 × 211. ...请根据乘法分配公式的原理,将空格中的值计算出来,使得等式两侧相等。
乘法公式 专题训练
专题02 乘法公式阅读与思考乘法公式是多项式相乘得出的既有特殊性、又有实用性的具体结论,在整式的乘除、数值计算、代数式的化简求值、代数式的证明等方面有广泛的应用,学习乘法公式应注意:1.熟悉每个公式的结构特征;2.正用即根据待求式的结构特征,模仿公式进行直接的简单的套用;3.逆用即将公式反过来逆向使用;4.变用即能将公式变换形式使用;5.活用即根据待求式的结构特征,探索规律,创造条件连续综合运用公式.例题与求解【例1】 1,2,3,…,98共98个自然数中,能够表示成两个整数的平方差的个数是.(全国初中数字联赛试题)解题思路:因22()()-=+-,而a b+a b-的奇偶性相同,故能表示成两a b a b a b个整数的平方差的数,要么为奇数,要么能被4整除.【例2】(1)已知,a b 满足等式2220,4(2)x a b y b a =++=-,则,x y 的大小关系是( )A .x y ≤B .x y ≥C .x y <D .x y >(山西省太原市竞赛试题)(2)已知,,a b c 满足22227,21,617a b b c c a +=-=--=-,则a b c ++的值等于( )A .2B .3C .4D .5(河北省竞赛试题)解题思路:对于(1),作差比较,x y 的大小,解题的关键是逆用完全平方公式,揭示式子的非负性;对于(2),由条件等式联想到完全平方式,解题的切入点是整体考虑.【例3】计算下列各题:(1) 2486(71)(71)(71)(71)1+++++; (天津市竞赛试题) (2)221.23450.7655 2.4690.7655++⨯; (“希望杯”邀请赛试题)(3)22222222(13599)(246100)++++-++++.解题思路:若按部就班运算,显然较繁,能否用乘法公式简化计算过程,关键是对待求式恰当变形,使之符合乘法公式的结构特征.【例4】设221,2a b a b+=+=,求77a b+的值.(西安市竞赛试题)解题思路:由常用公式不能直接求出77a b+的结构,必须把77a b+表示相关多项式的运算形式,而这些多项式的值由常用公式易求出其结果.【例5】观察:222 123415; 2345111; 3456119;⨯⨯⨯+=⨯⨯⨯+=⨯⨯⨯+=(1)请写出一个具有普遍性的结论,并给出证明;(2)根据(1),计算20002001200220031⨯⨯⨯+的结果(用一个最简式子表示).(黄冈市竞赛试题)解题思路:从特殊情况入手,观察找规律.【例6】设,,a b c 满足2223331,2,3,a b c a b c a b c ++=++=++=求:(1)abc 的值; (2)444a b c ++的值.(江苏省竞赛试题)解题思路:本题可运用公式解答,要牢记乘法公式,并灵活运用.能力训练A 级1.已知22(3)9x m x --+是一个多项式的平方,则m = . (广东省中考试题)2.数4831-能被30以内的两位偶数整除的是 .3.已知222246140,x y z x y z ++-+-+=那么x y z ++= .(天津市竞赛试题)4.若3310,100,x y x y +=+=则22x y += .5.已知,,,a b x y 满足3,5,ax by ax by +=-=则2222()()a b x y ++的值为 .(河北省竞赛试题)6.若n 满足22(2004)(2005)1,n n -+-=则(2005)(2004)n n --等于 . 7.22221111(1)(1)(1)(1)2319992000----等于( ) A .19992000 B .20012000 C .19994000 D .200140008.若222210276,251M a b a N a b a =+-+=+++,则M N -的值是( )A .正数B .负数C .非负数D .可正可负9.若222,4,x y x y -=+=则19921992x y +的值是( ) A .4 B .19922C .21992D .41992(“希望杯”邀请赛试题)10.某校举行春季运动会时,由若干名同学组成一个8列的长方形队列.如果原队列中增加120人,就能组成一个正方形队列;如果原队列中减少120人,也能组成一个正方形队列.问原长方形队列有多少名同学? (“CASIO ”杯全国初中数学竞赛试题)11.设9310382a =+-,证明:a 是37的倍数. (“希望杯”邀请赛试题)12.观察下面各式的规律:222222222222(121)1(12)2;(231)2(23)3;(341)3(34)4;⨯+=+⨯+⨯+=+⨯+⨯+=+⨯+ 写出第2003行和第n 行的式子,并证明你的结论.B 级1.()n a b +展开式中的系数,当n =1,2,3…时可以写成“杨辉三角”的形式(如下图),借助“杨辉三角”求出901.1的值为 . (《学习报》公开赛试题)2.如图,立方体的每一个面上都有一个自然数,已知相对的两个面上的两数之和都相等,如果13,9,3的对面的数分别为,,a b c ,则222a b c ab bc ac ++---的值为 .(天津市竞赛试题)3.已知,,x y z 满足等式25,9,x y z xy y +==+-则234x y z ++= . 4.一个正整数,若分别加上100与168,则可得两到完全平方数,这个正整数为 .(全国初中数学联赛试题) 5.已知19992000,1999a x b x c x =+=+=+,则多项式222a b c a b b c a c ++---的值为( )A .0B .1C .2D .36.把2009表示成两个整数的平方差的形式,则不同的表示法有( ) A .16种 B .14种 C .12种 D .10种(北京市竞赛试题)7.若正整数,x y 满足2264x y -=,则这样的正整数对(,)x y 的个数是( ) A .1 B .2 C .3 D .4(山东省竞赛试题)第2题图1 12 1 13 3 114 6 4 11 5 10 10 5 1 … … … … … … …。
数学习题:提高计算能力的10个练习题
数学习题:提高计算能力的10个练习题引言数学是一门需要不断练习和巩固的学科。
提高计算能力对于学生来说非常重要,这能够帮助他们在数学考试中取得好成绩,同时也培养了解决问题和逻辑思维的能力。
本文将介绍10个能够提高计算能力的练习题,帮助学生巩固数学基础并提高解题能力。
练习题一:口算加减法练习口算加减法是数学基础中的基础,而且在日常生活中也经常用到。
通过进行口算加减法练习,学生能够提高他们的计算速度和准确性。
以下是一个口算加减法练习的例子:1.63 + 28 = ?2.87 - 41 = ?3.56 + 39 = ?4.95 - 73 = ?5.72 + 84 = ?学生可以在规定的时间内尽量迅速地完成这些题目,并检查答案的准确性。
通过不断重复这些练习,学生的计算速度和准确性将会得到显著提高。
练习题二:公式运算练习公式是数学中常用的工具,通过熟练掌握和运用不同的公式,学生能够更好地解决问题。
以下是一个公式运算练习的例子:1.计算长方形的周长和面积。
2.计算圆的周长和面积。
3.计算三角形的面积。
通过这些练习,学生能够熟悉不同公式的应用,提高他们的解题能力。
练习题三:乘法口诀表乘法口诀表是提高乘法计算能力的重要工具。
通过不断背诵和默写乘法口诀表,学生能够快速准确地计算乘法。
下面是一个乘法口诀表的例子:1 × 1 = 1 1 ×2 = 2 ... 9 × 8 = 72 9 × 9 = 81学生可以通过反复默写乘法口诀表,提高他们的计算速度和准确性。
练习题四:快速估算练习快速估算是数学中的一项重要技能。
通过快速估算,学生能够在没有计算器的情况下,迅速得到近似的答案。
以下是一个快速估算练习的例子:1.68 + 39 ≈ ?2.241 - 156 ≈ ?3.567 ÷ 8 ≈ ?4.37 × 9 ≈ ?学生可以通过快速估算,快速得到大致的答案,并与精确计算的结果进行比较,从而提高他们的估算能力。
乘法公式练习题
乘法公式同步练习(一)(一)基本训练,巩固旧知1.计算:(1)(x+3)(x-3)= (2)(m+2)(m-2)=(3)(2x+1)(2x-1)=2.用平方差公式计算:(1) (a+3b)(a-3b) (2) (1+2y)(1-2y)==(3) (4x-5)(4x+5) (4) (12-+2m)(12--2m)3.用平方差公式计算:(1) (3b+a)(a-3b) (2) (3m-4n)(4n+3m)(3) (3+2a)(-3+2a) (4) (7-2a)(-7-2a)4.计算:(y+2)(y-2)-(y-1)(y+5)乘法公式同步练习(二)(一)基本训练,巩固旧知1.填空:两个数的和乘以这两个数的差,等于这两个数的,即(a+b)(a-b)= ,这个公式叫做公式.2.用平方差公式计算(1) (-m+5n)(-m-5n) (2) (3x-1)(3x+1)= == =(3) (y+3x)(3x-y) (4) (-2+ab)(2+ab)= == == =3.判断正误:对的画“√”,错的画“×”.(1)(a-b)(a+b)=a2-b2;() (2)(b+a)(a-b)=a2-b2;() (3)(b+a)(-b+a)=a2-b2;() (4)(b-a)(a+b)=a2-b2;() (5)(a-b)(a-b)=a2-b2. ()4.用多项式乘多项式法则计算:(1) (a+b)2 (2) (a-b)2=(a+b)(a+b) =(a-b)(a-b)= == =5.运用完全平方公式计算:(1) (x+6)2 (2) (y-5)2= == =(3) (-2x+5)2 (4) (34x-23y)2= == =6.计算:(x+1)(x-3)-(x+2)2+(x+2)(x-2)===7.选做题:如图,利用图形你能得到公式(a+b)2=a2+2ab+b2吗?乘法公式同步练习(三)(一)基本训练,巩固旧知1.填空:(1)平方差公式(a+b)(a-b)= ;(2)完全平方公式(a+b)2= ,(a-b)2= .2.运用公式计算:(1) (2x-3)2 (2) (-2x+3y)(-2x-3y)= = = =(3) (12m-3)(12m+3) (4) (13x+6y)2= == =3.判断正误:对的画“√”,错的画“×”.(1)(a+b)2=a2+b2;() (2)(a-b)2=a2-b2;()(3)(a+b)2=(-a-b)2;()(4)(a-b)2=(b-a)2. ()4.去括号:(1)(a+b)-c= (2)-(a-b)+c=(3)a+(b-c)= (4)a-(b+c)=5.填空:(1)a+b+c=( )+c; (2)a-b+c=( )+c;(3)-a+b-c=-( )-c; (4)-a-b+c=-( )+c;(5)a+b-c=a+( ) (6)a-b+c=a-( );(7)a-b-c=a-( ); (8)a+b+c=a-( ).6.运用乘法公式计算:(1) (a+2b-1)2 (2) (2x+y+z)(2x-y-z)= == == == =。
运用乘法公式进行计算大题(40题)—2024学年八年级数学上学期复习备考(人教版)(解析版)
运用乘法公式进行计算大题专练(40题)一.解答题(共40小题)1.利用乘法公式计算下列各题:(1)(2x+y)(2x﹣y);(2)(23x+5y)(23x−5y);(3)(x+3)(x﹣3)(x2+9);(4)(x−12)(x2+14)(x+12).【答案】见试题解答内容【分析】(1)利用平方差公式进行计算即可得解;(2)利用平方差公式进行计算即可得解;(3)二次利用平方差公式进行计算即可得解;(4)先把第一项和第三项利用平方差公式计算,然后再次利用平方差公式进行计算即可得解.【解答】解:(1)(2x+y)(2x﹣y)=(2x)2﹣y2=4x2﹣y2;(2)(23x+5y)(23x﹣5y)=(23x)2﹣(5y)2=49x2﹣25y2;(3)(x+3)(x﹣3)(x2+9)=(x2﹣9)(x2+9)=x4﹣81;(4)(x−12)(x2+14)(x+12)=(x2−14)(x2+14)=x4−116.【点评】本题主要考查平方差公式:(1)两个两项式相乘;(2)有一项相同,另一项互为相反数,熟记公式结构是解题的关键.2.利用平方差公式计算:(1)31×29;(2)9.9×10.1;(3)98×102;(4)1003×997.【答案】见试题解答内容【分析】这是两个二项式相乘,把这两个二项式转化为有一项完全相同,另一项互为相反数.相乘的结果应该是:右边是乘式中两项的平方差(相同项的平方减去相反项的平方).【解答】解:(1)(30+1)(30﹣1)=900﹣1=899;(2)(10﹣0.1)(10+0.1)=100﹣0.01=99.99;(3)(100﹣2)(100+2)=10000﹣4=9996;(4)(1000+3)(1000﹣3)=1000000﹣9=999991.【点评】本题主要考查平方差公式:(1)两个两项式相乘;(2)有一项相同,另一项互为相反数,熟记公式结构是解题的关键.3.计算:(1)(3a+4b)(3a﹣4b);(2)(a+b﹣c)(a+b+c);(3)(−13a+c+2b)(−13a−c+2b).【答案】见试题解答内容【分析】本题根据平方差公式的运用,(a+b)(a﹣b)=a2﹣b2,套用公式解答本题.【解答】解:(1)(3a+4b)(3a﹣4b)=(3a)2﹣(4b)2=9a2﹣16b2;(2)(a+b﹣c)(a+b+c)=[(a+b)﹣c][(a+b)+c]=(a+b)2﹣c2;(3)(−13a+c+2b)(−13a−c+2b),=[(−13+2b)+c][(−13+2b)﹣c],=(−13a+2b)2−c2.【点评】本题主要考查了平方差公式的运用,套用公式即可解答本题,难度适中.4.计算:(1)(3a﹣2b)(9a+6b);(2)(2y﹣1)(4y2+1)(2y+1)【答案】见试题解答内容【分析】根据平方差公式(a+b)(a﹣b)=a2﹣b2,即可解答本题.【解答】解:(1)(3a﹣2b)(9a+6b)=3(3a+2b)(3a﹣2b)=3[(3a)2﹣(2b)2]=27a2﹣12b2;(2)(2y ﹣1)(4y 2+1)(2y +1)=(4y 2﹣1)(4y 2+1)=16y 4﹣1.【点评】本题考查了平方差公式的运用,比较简单.5.计算:(1)3(2a +1)(﹣2a +1)﹣(32a ﹣3)(3+32a ) (2)a 4﹣(1﹣a )(1+a )(1+a 2)(1+a )【答案】见试题解答内容【分析】(1)利平方差公式进行计算;(2)先利用平方差公式把式子展开,然后再进行加减运算.【解答】(1)3(2a +1)(﹣2a +1)﹣(32a ﹣3)(3+32a ) =3(1﹣4a 2)﹣(94a 2﹣9) =3﹣12a 2−94a 2+9=12−574a 2;(2)a 4﹣(1﹣a )(1+a )(1+a 2)(1+a )=a 4﹣(1﹣a 2)(1+a 2)(1+a )=a 4﹣(1﹣a 4)(1+a )=a 4﹣(1+a ﹣a 4﹣a 5)=2a 4+a 5﹣a ﹣1【点评】此题主要考查平方差公式的性质及其应用,是一道基础题,计算时要仔细.6.计算:(1)(a +b )(a ﹣2);(2)(x −12)(x +12);(3)(m +n )(m ﹣n );(4)(0.1﹣x )(0.1+x );(5)(x +y )(﹣y +x ).【答案】见试题解答内容【分析】根据平方差公式(a+b)(a﹣b)=a2﹣b2,可以用平方差公式计算的式子的特点是:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.相乘的结果应该是:右边是乘式中两项的平方差(相同项的平方减去相反项的平方).即可解答本题.【解答】解:(1)(a+b)(a﹣2)=a2+ba﹣2a﹣2b,(2)(x−12)(x+12)=x2−1 4,(3)(m+n)(m﹣n)=m2﹣n2,(4)(0.1﹣x)(0.1+x)=0.01﹣x2,(5)(x+y)(﹣y+x)=x2﹣y2.【点评】本题考查了平方差公式的运用,两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数,难度适中.7.计算:(1)(a+b)(﹣a+b)(a﹣b)(﹣a﹣b)=a4﹣2a2b2+b4;(2)(x+y)2﹣2(x+y)(x﹣y)+(x﹣y)2=4y2.【答案】见试题解答内容【分析】(1)观察发现(a+b)与(a﹣b)以及(﹣a+b)与(﹣a﹣b)符合平方差公式的结构特征,首先利用平方差公式计算(a+b)(a﹣b)与(﹣a+b)(﹣a﹣b),然后再利用完全平方公式计算.(2)把(x+y)看作公式中的a,把(x﹣y)看作公式中的b,则原式符合完全平方公式的特征,因此利用完全平方公式计算.【解答】解:(1)(a+b)(﹣a+b)(a﹣b)(﹣a﹣b),=(a+b)(a﹣b)(﹣a+b)(﹣a﹣b),=(a2﹣b2)(a2﹣b2),=a4﹣2a2b2+b4;(2)(x+y)2﹣2(x+y)(x﹣y)+(x﹣y)2,=[(x+y)﹣(x﹣y)]2,=(x+y﹣x+y)2,=4y2【点评】本题考查了平方差公式、完全平方公式,熟记公式结构是解题的关键,注意这两个公式中的a、b可以是单项式,也可以是多项式.8.计算:(1)a(a﹣3)﹣(﹣a+7)(﹣a﹣7)=﹣3a+49(2)(2m+n)(2m﹣n)﹣(﹣m+2n)(﹣m﹣2n)=3m2+3n2【答案】见试题解答内容【分析】(1)根据单项式乘多项式,平方差公式进行计算,然后再去括号,合并同类项即可;(2)利用平方差公式计算,然后再去括号,合并同类项即可.【解答】解:(1)a(a﹣3)﹣(﹣a+7)(﹣a﹣7),=a2﹣3a﹣(a2﹣49),=﹣3a+49;(2)(2m+n)(2m﹣n)﹣(﹣n)(﹣m﹣2n),=(4m2﹣n2)﹣(m2﹣4n2),=3m2+3n2.【点评】本题考查了单项式乘多项式,平方差公式,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方,熟记公式是解题的关键.9.计算:(1)(x+y)(x﹣y)+(y﹣z)(y+z)+(z﹣x)(z+x);(2)(3m2+5)(﹣3m2+5)﹣m2(7m+8)(7m﹣8)﹣(8m)2.【答案】见试题解答内容【分析】(1)先根据平方差公式,化简后再求和可得答案.(2)结合平方差公式的形式,先根据平方差公式计算,化简后再求和可得答案.【解答】解:(1)原式=(x2﹣y2)+(y2﹣z2)+(z2﹣x2)=0(2)原式=﹣(3m2+5)(3m2﹣5)﹣m2(7m+8)(7m﹣8)﹣(8m)2,=﹣(9m4﹣25)﹣m2(49m2﹣64)﹣64m2,=25﹣58m4.【点评】本题考查了平方差公式的实际运用,恰当的使用公式可以简化运算.10.计算:①(2x+3y)(2x﹣3y)②(﹣x﹣2y)(x﹣2y)③(x2−12)(x2+12)④(2a+3)2⑤(a+2b﹣c)(a﹣2b﹣c)⑥(a2+2b﹣c)2.【答案】见试题解答内容【分析】①②③利用平方差公式进行计算即可得解;④利用完全平方公式进行计算即可得解;⑤把(a﹣c)看作一个整体,利用平方差公式和完全平方公式进行计算即可得解;⑥把(2b+c【解答】解:①(2x+3y)(2x﹣3y)=(2x)2﹣(3y)2=4x2﹣9y2;②(﹣x﹣2y)(x﹣2y)=﹣[x2﹣(2y)2]=4y2﹣x2;③(x2−12)(x2+12)=(x2)2﹣(12)2=x4−1 4;④(2a+3)2=4a2+12a+9;⑤(a+2b﹣c)(a﹣2b﹣c)=[(a﹣c)+2b][(a﹣c)﹣2b]=(a﹣c)2﹣(2b)2=a2﹣2ac+c2﹣4b2;⑥(a2+2b﹣c)2=[a2+(2b﹣c)]2=a4+2a2(2b﹣c)+(2b﹣c)2=a4+4b2+c2+4a2b﹣2a2c﹣4bc.【点评】本题考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.11.计算:(1)(﹣3a﹣2b)(3a﹣2b)(2)(a+2b)(a﹣2b)(a2+4b2)(3)(x+3)2﹣(x﹣3)2(4)(a﹣b+c)2(5)(a﹣2b+c)(a+2b﹣c)【答案】见试题解答内容【分析】平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差.即(a+b)(a﹣b)=a2﹣b2;完全平方公式:(a±b)2=a2±2ab+b2.【解答】解:(1)(﹣3a﹣2b)(3a﹣2b)=4b2﹣9a2;(2)(a+2b)(a﹣2b)(a2+4b2)=(a2﹣4b2)(a2+4b2)=a4﹣16b4;(3)(x+3)2﹣(x﹣3)2=(x+3+x﹣3)(x+3﹣x+3)=12x;(4)(a﹣b+c)2=(a﹣b)2+2c(a﹣b)+c2=a2﹣2ab+b2+2ac﹣2bc+c2;(5)(a﹣2b+c)(a+2b﹣c)=[a﹣(2b﹣c)][a+(2b﹣c)]=a2﹣(2b﹣c)2=a2﹣4b2+4bc﹣c2.【点评】考查了平方差公式,完全平方公式.应用完全平方公式时,要注意:①公式中的a,b可是单项式,也可以是多项式;②对形如两数和(或差)的平方的计算,都可以用这个公式;③对于三项的可以把其中的两项看作一项后,也可以用完全平方公式.12.运用平方差公式计算.①(3a+b)(3a﹣b)②(﹣x+2y)(﹣x﹣2y)③(12a﹣b)(−12a﹣b)④59.8×60.2⑤(2x﹣3y)(3y+2x)﹣(4y﹣3x)(3x+4y)【答案】见试题解答内容【分析】①②③利用平方差公式进行计算即可得解;④把59.8×60.2写成(60﹣0.2)×(60+0.2),然后利用平方差公式进行计算即可得解;⑤利用平方差公式进行计算即可得解,然后合并同类项即可.【解答】①解:(3a+b)(3a﹣b),=(3a)2﹣b2,=9a2﹣b2;②解:(﹣x+2y)(﹣x﹣2y),=(﹣x)2﹣(2y)2,=x2﹣4y2;③解:(12a﹣b)(−12a﹣b),=(﹣b)2﹣(12a)2,=b2−14a2;④解:59.8×60.2,=(60﹣0.2)×(60+0.2),=602﹣0.22,=3600﹣0.04,=3599.96;⑤解:(2x﹣3y)(3y+2x)﹣(4y﹣3x)(3x+4y),=(2x)2﹣(3y)2﹣(4y)2+(3x)2,=4x2﹣9y2﹣16y2+9x2,=13x2﹣25y2.【点评】本题考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.13.计算:①a4+(1﹣a)(1+a)(1+a2)②(2x﹣1)2﹣(2x+1)2.【答案】见试题解答内容【分析】①连续利用平方差公式进行计算即可得解;②利用平方差公式进行计算即可得解.【解答】解:①a4+(1﹣a)(1+a)(1+a2),=a4+(1﹣a2)(1+a2),=a4+1﹣a4,=1;②(2x﹣1)2﹣(2x+1)2,=[(2x﹣1)+(2x+1)][(2x﹣1)﹣(2x+1)],=(2x﹣1+2x+1)(2x﹣1﹣2x﹣1),=4x•(﹣2),=﹣8x.【点评】本题考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.14.探究题:(1)计算下列各题;①(x﹣1)(x+1)=x2﹣1;②(x﹣1)(x2+x+1)=x3﹣1;③(x﹣1)(x3+x2+x+1)=x4﹣1.(2)猜想:(x﹣1)(x n+x n﹣1+x n﹣2+…+x+1)的结果是x n+1﹣1.(3)证明你的猜想.【答案】见试题解答内容【分析】(1)可以用多项式乘以多项式验证想法,得出中答案;(2)根据规律猜想出结果为x n+1﹣1;(3)利用多项式乘以多项式的方法进行计算,展开后可知中间的项会相互抵消,只剩下第一项和最后一项.【解答】解:(1)①(x﹣1)(x+1)=x2﹣1;②(x﹣1)(x2+x+1)=x3﹣1;③(x﹣1)(x3+x2+x+1)=x4﹣1;(2)(x﹣1)(x n+x n﹣1+x n﹣2+…+x+1)=x n+1﹣1;(3)原式=x n+1+x n+x n﹣1+…+x2+x﹣x n﹣x n﹣1﹣…﹣x﹣1=x n+1﹣1.【点评】本题是个阅读材料题,要会从所给出的数列中找到它们的规律.主要考查了学生的归纳总结能力.15.计算:(1)(a+b)(a﹣b)(a4+a2b2+b4);(2)[(﹣ab+cd)(cd+ab)(a2b2+c2d2)+2a4b4](c4d4﹣a4b4).【答案】见试题解答内容【分析】(1)先根据平方差公式得到原式=(a2﹣b2)(a4+a2b2+b4),然后根据立方差公式展开即可;(2)先在中括号内利用平方差公式计算得到原式=[﹣(a2b2﹣c2d2)(a2b2+c2d2)+2a4b4](c4d4﹣a4b4),再次利用平方差公式得到原式=(﹣a4b4+c4d4+2a4b4)(c4d4﹣a4b4),然后合并后利用平方差公式展开即可.【解答】解:(1)原式=(a2﹣b2)(a4+a2b2+b4)=(a2)3﹣(b2)3=a6﹣b6;(2)原式=[﹣(ab﹣cd)(ab+cd))(a2b2+c2d2)+2a4b4](c4d4﹣a4b4)=[﹣(a2b2﹣c2d2)(a2b2+c2d2)+2a4b4](c4d4﹣a4b4)=(﹣a4b4+c4d4+2a4b4)(c4d44b4)=(c4d4+a4b4)(c4d4﹣a4b4)=c8d8﹣a8b8.【点评】本题考查了平方差公式:(a+b)(a﹣b)=a2﹣b2.也考查了立方差公式.16.2(2x﹣7y)(7y+2x)+x2﹣3(﹣4x+5y)(﹣5y﹣4x)【答案】见试题解答内容【分析】利用平方差公式进行计算,再合并同类项即可.【解答】解:2(2x﹣7y)(7y+2x)+x2﹣3(﹣4x+5y)(﹣5y﹣4x),=2(4x2﹣49y2)+x2﹣3(16x2﹣25y2),=8x2﹣98y2+x2﹣48x2+75y2,=(8+1﹣48)x2+(﹣98+75)y2,=﹣39x2﹣23y2.【点评】本题考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.17.(a﹣b)(a+b)(a2+b2)(a4+b4)(a8+b8)【答案】见试题解答内容【分析】连续利用平方差公式计算即可得解.【解答】解:(a﹣b)(a+b)(a2+b2)(a4+b4)(a8+b8),=(a2﹣b2)(a2+b2)(a4+b4)(a8+b8),=(a4﹣b4)(a4+b4)(a8+b8),=(a8﹣b8)(a8+b8),=a16﹣b16.【点评】本题主要考查平方差公式:(1)两个两项式相乘;(2)有一项相同,另一项互为相反数,熟记公式结构是解题的关键,本题难点在于要多次运用公式.18.计算.(1)1002﹣992+982﹣972+…+22﹣12.(2)(a+b﹣c)(a﹣b+c)﹣(a﹣b﹣c)(a+b+c).【答案】见试题解答内容【分析】(1)原式结合后,利用平方差公式化简,整理后求出之和即可;(2【解答】解:(1)原式=(100+99)×(100﹣99)+(98+97)×(98﹣97)+…+(2+1)(2﹣1)=100+99+98+97+…+2+1=5050;(2)原式=a2﹣(b﹣c)2﹣a2+(b+c)2=4bc.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.19.计算:(1)(x﹣3)(3﹣x);(2)(﹣4x﹣3y)2;(3)(2a+1)2(2a﹣1)2;(4)(x2+x+1)(x2﹣x+1).【答案】见试题解答内容【分析】(1)原式变形后,利用完全平方公式展开即可得到结果;(2)原式变形后,利用完全平方公式展开即可得到结果;(3)原式逆用积的乘方运算法则变形,再利用平方差公式计算,最后利用完全平方公式展开即可得到结果;(4)原式利用平方差公式计算,再利用完全平方公式展开即可得到结果.【解答】解:(1)原式=﹣(x﹣3)2=﹣x2+6x﹣9;(2)原式=(4x+3y)2=16x2+24xy+9y2;(3)原式=(4a2﹣1)2=16a4﹣8a2+1;(4)原式=(x2+1)2﹣x2=x4+2x2+1﹣x2=x4+x2+1.【点评】此题考查了平方差公式,以及完全平方公式,熟练掌握公式是解本题的关键.20.运用平方差公式计算:(1)(3p+5)(3p﹣5);(2)(m﹣n)(﹣n﹣m);(3)(4n﹣3m)(3m+4n);(4)(2m﹣3n)(3n+2m);(5)(﹣2x+3y)(﹣3y﹣2x);(6)9945×10015.【答案】见试题解答内容【分析】原式各项利用平方差公式计算即可得到结果.【解答】解:(1)(3p+5)(3p﹣5)=9p2﹣25;(2)(m﹣n)(﹣n﹣m)=n2﹣m2;(3)(4n﹣3m)(3m+4n)=16n2﹣9m2;(4)(2m﹣3n)(3n+2m)=4m2﹣9n2;(5)(﹣2x+3y)(﹣3y﹣2x)=4x2﹣9y2;(6)9945×10015=(100−15)×(100+15)=10000−125=99992425.【点评】此题考查了平方差公式,熟练掌握公式是解本题的关键.21.利用乘法公式计算:(1)(x+1)(x﹣1)(x2+1)(x4+1);(2)(3x+2)2﹣(3x﹣5)2;(3)(x﹣2y+1)(x+2y﹣1);(4)(a﹣3b﹣2c)(a﹣3b+2c).【答案】见试题解答内容【分析】(1)原式利用平方差公式化简,计算即可得到结果;(2)原式利用平方差公式分解,计算即可得到结果;(3)原式先利用平方差公式化简,再利用完全平方公式展开即可得到结果;(4)原式先利用平方差公式化简,再利用完全平方公式展开即可得到结果.【解答】解:(1)(x+1)(x﹣1)(x2+1)(x4+1)=(x2﹣1)(x2+1)(x4+1)=(x4﹣1)(x4+1)=x8﹣1;(2)(3x+2)2﹣(3x﹣5)2=(3x+2+3x﹣5)(3x+2﹣3x+5)=7(6x﹣3)=42x﹣21;(3)(x﹣2y+1)(x+2y﹣1)=x2﹣(2y﹣1)2=x2﹣4y2+4y﹣1;(4)(a﹣3b﹣2c)(a﹣3b+2c)=(a﹣3b)2﹣4c2=a2﹣6ab+9b2﹣4c2.【点评】此题考查了平方差公式,熟练掌握公式是解本题的关键.22.计算:(1)(﹣x+2)(﹣x﹣2);(2)(13m−12n)(12n+13m);(3)(x﹣3)(x+3)(x2+9);(4)(2x+5)(2x﹣5)﹣(4+3x)(3x﹣4).【答案】见试题解答内容【分析】(1)原式利用平方差公式化简即可得到结果;(2)原式利用平方差公式化简即可得到结果;(3)原式前两项利用平方差公式化简,再利用平方差公式计算即可得到结果;(4)原式两项利用平方差公式化简,去括号合并即可得到结果.【解答】解:(1)原式=x2﹣4;(2)原式=19m2−14n2;(3)原式=(x2﹣9)(x2+9)=x4﹣81;(4)原式=4x2﹣25﹣9x2+16=﹣5x2﹣9.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.23.计算:(1)(2x+y﹣3z)2;(2)(x﹣y+4)(x+y+4).【答案】见试题解答内容【分析】(1)先将原式转化为[(2x+y)﹣3z]2,再将2x+y看作一个整体,利用完全平方公式计算,然后再次利用完全平方公式计算(2x+y)2即可;(2)先将原式转化为[(x+4)﹣y][(x+4)+y],再利用平方差公式计算,然后利用完全平方公式计算即可.【解答】解:(1)(2x+y﹣3z)2=[(2x+y)﹣3z]2=(2x+y)2﹣2•(2x+y)•3z+9z2=4x2+4xy+y2﹣12xz﹣6yz+9z2;(2)(x﹣y+4)(x+y+4)=[(x+4)﹣y][(x+4)+y]=(x+4)2﹣y2=x2+8x+16﹣y2.【点评】本题考查了平方差公式和完全平方公式,解题的关键是牢记公式的形式.24.运用完全平方公式计算①(﹣xy+5)2②(﹣x﹣y)2③(x+3)(x﹣3)(x2﹣9)④2012⑤9.82⑥(3a﹣4b)2﹣(3a+4b)2⑦(2x﹣3y)2﹣(4y﹣3x)(4y+3x).【答案】见试题解答内容【分析】①根据完全平方公式展开即可;②根据完全平方公式展开即可;③根据平方差公式进行计算,再根据完全平方公式展开即可;④得出(200+1)2,再根据完全平方公式展开即可;⑤得出(10=0.2)2,再根据完全平方公式展开即可;⑥根据完全平方公式展开,再合并同类项即可;⑦根据完全平方公式和平方差公式展开,再合并同类项即可.【解答】解:①原式=x2y2﹣10xy+25.②原式=x2+2xy+y2.③原式=(x2﹣9)(x2﹣9)=x4﹣18x2+81.④原式=(200+1)2=40000+400+1=40401.⑤原式=(10﹣0.2)2=100﹣4+0.04=96.04.⑥(3a﹣4b)2﹣(3a+4b)2=9a2﹣24ab+16b2﹣9a2﹣24ab﹣16b2=﹣48ab.⑦(2x﹣3y)2﹣(4y﹣3x)(4y+3x)=4x2﹣12xy+9y2﹣16y2+9x2=13x2﹣12xy﹣7y2.【点评】本题考查了平方差公式和完全平方公式的应用,主要考查学生的计算能力.25.运用完全平方公式计算:(1)(4m+n)2;(2)(y−12)2;(3)(﹣a﹣b)2;(4)(﹣a+b)2.【答案】见试题解答内容【分析】直接利用完全平方公式计算即可.【解答】解:(1)(4m+n)2=16m2+8mn+n2;(2)(y−1 2 )2=y2﹣y+1 4;(3)(﹣a﹣b)2;=a2+2ab+b2;(4)(﹣a+b)2=a2﹣2ab+b2.【点评】此题考查完全平方公式在计算中的运用.26.运用完全平方公式计算:(1)(2x﹣2)2+(3x+1)2;(2)(x+y)2﹣(x﹣y)2.【答案】见试题解答内容【分析】直接利用完全平方公式计算,进一步合并同类项即可.【解答】解:(1)(2x﹣2)2+(3x+1)2=4x2﹣8x+4+9x2+6x+1=13x2﹣2x+5;(2)(x+y)2﹣(x﹣y)2=x2+2xy+y2﹣(x2﹣2xy+y2)=x2+2xy+y2﹣x2+2xy﹣y2=4xy.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.27.计算:(1)(x3n+1)(x3n﹣1)﹣(x3n﹣1)2;(2)(2x n+1)2(﹣2x n+1)2﹣16(x n+1)2(x n﹣1)2.【答案】见试题解答内容【分析】(1)先算乘法和乘方,再去括号、合并同类项即可;(2)先根据积的乘方变形,再根据平方差公式进行计算,最后根据完全平方公式进行计算,最终合并同类项即可.【解答】解:(1)原式=x6n﹣1﹣x6n+2x3n﹣1=2x3n﹣2.(2)原式=[(1+2x n)(1﹣2x n)]2﹣16[(x n+1)(x n﹣1)]2=(1﹣4x2n)2﹣16(x2n﹣1)2=1﹣8x2n+16x4n﹣16x4n+32x2n﹣16=24x2n﹣15.【点评】本题考查了对平方差公式、完全平方公式和积的乘方的应用,主要考查学生的化简能力和计算能力.28.计算.(1)(x−12y2)2;(2)(x−13)(x+13)(x2−19);(3)(m+3)(m﹣3);(4)(a+5)2(a﹣5)2﹣(a+1)2(a﹣1)2.【答案】见试题解答内容【分析】(1)原式利用完全平方公式展开即可得到结果;(2)原式利用平方差公式计算即可得到结果;(3)原式利用平方差公式计算即可得到结果;(4)原式利用积的乘方运算法则变形,再利用平方差公式及完全平方公式计算即可得到结果.【解答】解:(1)原式=x2﹣xy2+14y4;(2)原式=(x2−19)2=x4−29x2+181;(3)原式=m2﹣9;(4)原式=(a2﹣25)2﹣(a2﹣1)2=a4﹣50a2+625﹣a4+2a2﹣1=﹣48a2+624.【点评】此题考查了完全平方公式,熟练掌握公式是解本题的关键.29.计算①(2x﹣3y)2﹣(y﹣3x)(3x﹣y)②(3﹣2x+y)(3+2x﹣y)【答案】见试题解答内容【分析】①利用完全平方公式进行计算,然后合并同类项即可;②先利用平方差公式进行计算,然后再利用完全平方公式进行计算,最后去括号即可.【解答】解:①原式=(2x﹣3y)2+(y﹣3x)2=4x2﹣12xy+9y2+y2﹣6xy+9x2=13x2﹣18xy+10y2②原式=[3﹣(2x﹣y)][3+(2x﹣y)]=9﹣(2x﹣y)2=9﹣4x2+4xy﹣y2.【点评】本题主要考查的是完全平方公式和平方差公式的应用,掌握公式是解题的关键.30.计算(1)(3﹣4a)(3+4a)+(3+4a)2(2)(a+2)2(a﹣2)2(3)2011 20122−20102.【答案】见试题解答内容【分析】(1)根据平方差公式、完全平方公式,可得答案;(2)根据积的乘方,可得平方差公式;(3)根据平方差公式,可得答案.【解答】解:(1)原式=9﹣16a2+9+24a+16a2=24a+18;(2)原式=[(a+2)(a﹣2)]2=(a2﹣4)2=a4﹣8a2+16;(3)原式=2011(2012+2010)(2012−2010)=20114022×2=14.【点评】本题考查了完全平方公式,熟记公式是解题关键.31.运用简便方法计算:(1)20072﹣49;(2)1.222×9﹣1.332×4;(3)0.75×3.66−34×2.66;(4)(−12)2001+(12)2000;(5)2×562+8×56×22+2×442;(6)已知x=1175,y=2522,求(x+y)2﹣(x﹣y)2的值.【答案】(1)4028000;(2)6.32;(3)3 4;(4)(12)2001;(5)20000;(6)2 3.【分析】(1)先变形为原式=(2000+7)2﹣49,然后利用完全平方公式计算;(2)先变形为原式=(1.22×3)2﹣(1.33×2)2,然后利用平方差公式计算;(3)用乘法分配律的逆运算进行计算;(4)根据乘方的意义计算;(5)先变形为原式=2(562+2×56×44+442),然后利用完全平方公式计算;(6)先利用完全平方公式展开,再合并得到原式=4xy,然后把x、y的值代入计算.【解答】解:(1)原式=(2000+7)2﹣49=20002+28000+49﹣49=4028000;(2)原式=(1.22×3)2﹣(1.33×2)2=3.662﹣2.662=(3.66﹣2.66)×(3.66+2.66)=6.32;(3)原式=34(3.66﹣2.66)=3 4;(4)原式=−12×(12)2000+(12)2000=12×(12)2000=(12)2001;(5)原式=2(562+2×56×44+442)=2×(56+44)2=20000;(6)原式=x2+2xy+y2﹣x2+2xy﹣y2=4xy,当x=1175,y=2522时,原式=4×1175×2522=23.【点评】本题考查了完全平方公式:灵活应用完全平方公式,完全平方公式为(a±b)2=a2±2ab+b2.32.计算:(1)(2a+b﹣3c)(2a﹣b+3c);(2)(a﹣2b+3c)2.【答案】见试题解答内容【分析】(1)先变形得到原式=[2a+(b﹣3c)][2a﹣(b﹣3c)],再利用平方差公式计算得到原式=4a2﹣(b﹣3c)2,然后根据完全平方公式展开即可;(2)先变形得到原式=[(a﹣2b)+3c]2,然后根据完全平方公式进行计算.【解答】解:(1)原式=[2a+(b﹣3c)][2a﹣(b﹣3c)]=4a2﹣(b﹣3c)2=4a2﹣b2+6bc﹣9c2.(2)原式=[(a﹣2b)+3c]2=(a﹣2b)2+6c(a﹣2b)+9c2=a2﹣4ab+4b2+6ac﹣12bc+9c2.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了平方差公式.33.化简(1)(m3+5n)(5n﹣m3)(2)(1﹣xy)(﹣xy﹣1)【答案】见试题解答内容【分析】(1)相同项是5n,相反项是m3;(2)相同项是﹣xy,相反项是1.【解答】解:(1)原式=(5n)2﹣(m3)2=25n2﹣m6;(2)原式=(﹣xy)2﹣12=x2y2﹣1.【点评】本题考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.34.运用乘法公式计算:①(a﹣3)(a+3)(a2+9)②(m﹣2n+3)(m+2n﹣3)③(2x+3)2(2x﹣3)2.【答案】见试题解答内容【分析】根据平方差公式(a+b a﹣b)=a2﹣b2即可求解.【解答】解:①(a﹣3)(a+3)(a2+9)=(a2﹣9)(a2+9)=a4﹣81②(m﹣2n+3)(m+2n﹣3)=m2﹣(2n﹣3)2=m2﹣4n2+12n﹣9③(2x+3)2(2x﹣3)2.=(4x2﹣9)2=16x4﹣72x2+81【点评】本题考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.35.你能求(x﹣1)(x99+x98+x97+…+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手.先分别计算下列各式的值:(1)(x﹣1)(x+1)=x2﹣1;(2)(x﹣1)(x2+x+1)=x3﹣1;(3)(x﹣1)(x3+x2+x+1)=x4﹣1;…由此我们可以得到:(x﹣1)(x99+x98+x97+…+x+1)=x100﹣1;请你利用上面的结论,完成下面两题的计算:(1)299+298+297+…+2+1;(2)(﹣2)99+(﹣2)99+(﹣2)98+…+(﹣2)+1.【答案】见试题解答内容【分析】观察所给等式,可得出规律,可求得(x﹣1)(x99+x98+x97+…+x+1);(1)可在等式的前面乘(2﹣1),再利用所得的规律计算即可;(2)可在等式的前面乘(﹣2﹣1),再利用所得的规律进行计算,再除以﹣3即可求得结果.【解答】解:观察所给等式可得到(x﹣1)(x99+x98+x97+…+x+1)=x100﹣1,故答案为:x100﹣1;(1)299+298+297+…+2+1=(2﹣1)(299+298+297+…+2+1)=2100﹣1;(2)∵(﹣2﹣1)[(﹣2)992)99+(﹣2)98+…+(﹣2)+1]=(﹣2)100﹣1=2100﹣1,∴(﹣2)99+(﹣2)99+(﹣2)98+…+(﹣2)+1=(2100﹣1)÷(﹣2﹣1)=1−21003.【点评】本题主要考查规律的总结及应用,由所给等式总结出等式的规律是解题的关键.注意规律的灵活运用.36.计算:(1)(﹣2a+3b)(﹣2a﹣3b)(2)(x+y﹣2)(x﹣y+2)(3)(3x﹣4y)2(4)(2x﹣y﹣3)2.【答案】见试题解答内容【分析】(1)原式利用平方差公式计算即可得到结果;(2)原式利用平方差公式化简,再利用完全平方公式展开即可得到结果;(3)原式利用完全平方公式展开即可得到结果;(4)原式利用完全平方公式展开即可得到结果.【解答】解:(1)原式=4a2﹣9b2;(2)原式=x2﹣(y﹣2)2=x2﹣y2+4y﹣4;(3)原式=9x2﹣24xy+16y2;(4)原式=(2x﹣y)2﹣6(2x﹣y)+9=4x2﹣4xy+y2﹣12x+6y+9.【点评】此题考查了平方差公式,以及完全平方公式,熟练掌握公式是解本题的关键.37.计算.(1)(2x﹣y)(y+2x)﹣(2y+x)(2y﹣x);(2)(3a+b﹣c)(3a﹣b﹣c).【答案】见试题解答内容【分析】(1)原式利用平方差公式计算,去括号合并即可得到结果;(2)原式利用平方差公式计算,再利用完全平方公式展开即可得到结果.【解答】解:(1)原式=4x2﹣y2﹣(4y2﹣x2)=4x2﹣y2﹣4y2+x2=5x2﹣5y2;(2)原式=(3a﹣c)2﹣b2=9a2﹣6ac+c2﹣b2.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.38.计算.(1)(2x2+3y)(2x2﹣3y);(2)(2x﹣y)(﹣2x﹣y);(3)(x+y)(x﹣y)+(2x+y)(2x﹣y);(4)(a﹣3)(a+3)(a2+9).【答案】见试题解答内容【分析】原式各项利用平方差公式化简,即可得到结果.【解答】解:(1)(2x2+3y)(2x2﹣3y)=4x4﹣9y2;(2)(2x﹣y)(﹣2x﹣y)=(﹣y)2﹣(2x)2=y2﹣4x2;(3)(x+y)(x﹣y)+(2x+y)(2x﹣y)=x2﹣y2+4x2﹣y2=5x2﹣2y2;(4)(a﹣3)(a+3)(a2+9)=(a2﹣9)(a2+9)=a4﹣81.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.39.我们在计算(2+1)(22+1)(24+1)(28+1)(216+1)时,发现直接运算很麻烦,如果在算式前乘以(2﹣1)即1,原算式的值不变,而且还使整个算式能用乘法公式计算.即:原式=(22﹣1)(22+1)(24+1)(28+1)(216+1)=232﹣1.你能用上述方法迅速地算出(5+1)(52+1)(54+1)(58+1)(516+1)的值吗?请试着计算.【答案】见试题解答内容【分析】将原式前面乘以14(5﹣1),再依次按照平方差公式计算即可.【解答】解:(5+1)(52+1)(54+1)(58+1)(516+1)=14(5﹣1)(5+1)(52+1)(54+1)(58+1)(516+1)=14(52﹣1)(52+1)(54+1)(58+1)(516+1)=…=14(516﹣1)(516+1)=14(532﹣1).【点评】本题考查了平方差公式在计算中的应用,根据题中的方法正确构造平方差公式是解题的关键.40.观察下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;…请你根据这一规律计算:(1)(x﹣1)(x n+x n﹣1+x n﹣2+…+x+1);(2)213+212+211+…+22+2+1.【答案】见试题解答内容【分析】(1)观察题中所给的三个等式,可知等式右边第一项的次数等于左边第二个括号内最高次项的次数加1,等式右边第二项均为1,据此可解;(2)根据(1)中所得的规律,可将原式左边乘以(2﹣1),再按照(1)中规律计算即可.【解答】解:(1)(x﹣1)(x n+x n﹣1+x n﹣2+…+x+1)=x n+1;(2)由(1)中规律可知,213+212+211+…+22+2+1=(2﹣1)(213+212+211+…+22+2+1)=214﹣1.【点评】本题考查了平方差公式和多项式乘法公式在计算中的应用,熟练掌握相关计算法则是解题的关键.。
必刷提高练【14.2乘法公式】(原卷版)-2021-2022学年八年级数学上册必刷题闯关练(人教版)
2021-2022学年八年级数学上册考点必刷练精编讲义(人教版)提高第14章《整式的乘法与因式分解》14.2 乘法公式知识点1:完全平方公式【典型例题1】(2020春•槐荫区期中)若a+b=10,ab=11,则代数式a2﹣ab+b2的值是()A.89B.﹣89C.67D.﹣67解:把a+b=10两边平方得:(a+b)2=a2+b2+2ab=100,把ab=11代入得:a2+b2=78,∴原式=78﹣11=67,故选:C【变式训练1-1】(2020•浙江自主招生)若x2﹣3x+1=0,则的值是()A.8B.7C.D.【变式训练1-2】(2021春•肥东县期末)若x﹣y=3,xy=1,则x2+y2=.【变式训练1-3】(2021春•西安期末)已知(a+b)2=9,ab=﹣,则a2+b2的值等于.【变式训练1-4】(2021春•荷塘区期末)已知(a+b)2=7,(a﹣b)2=3,则ab=.【变式训练1-5】(2021秋•朝阳区校级期中)阅读理解:①32+42>2×3×4②32+32=2×3×3;③(﹣2)2+42>2×(﹣2)×4;④(﹣5)2+(﹣5)2=2×(﹣5)×5(1)观察以上各式,你发现它们有什么规律吗?请用含有a、b的式子表示上述规律;(2)运用你所学的知识证明你发现的规律;(3)已知a+b=4,求ab的最大值.【变式训练1-6】(2020秋•盐池县期末)回答下列问题(1)填空:x2+=(x+)2﹣=(x﹣)2+(2)若a+=5,则a2+=;(3)若a2﹣3a+1=0,求a2+的值.知识点2:完全平方公式的几何背景【典型例题2】(2020•丰台区三模)如图,一个正方形被分成两个正方形和两个一模一样的矩形,请根据图形,写出一个含有a,b的正确的等式.解:由面积相等,得(a+b)2=a2+2ab+b2,故答案为:(a+b)2=a2+2ab+b2.【变式训练2-1】(2021春•浦江县期末)如图是将正方形ABCD和正方形CEFG拼在一起的图形,点B,C,E在同一条直线上,连结BD,BF.若阴影部分△BDF的面积为8,则正方形ABCD的边长为()A.2B.3C.4D.6【变式训练2-2】(2021春•济南期末)如图有两张正方形纸片A和B,图1将B放置在A内部,测得阴影部分面积为2,图2将正方形AB并列放置后构造新正方形,测得阴影部分面积为20,若将3个正方形A和2个正方形B并列放置后构造新正方形如图3,(图2,图3中正方形AB纸片均无重叠部分)则图3阴影部分面积()A.22B.24C.42D.44【变式训练2-3】(2021•饶平县校级模拟)如图,矩形ABCD的周长是10cm,以AB,AD为边向外作正方形ABEF和正方形ADGH,若正方形ABEF和ADGH的面积之和为17cm2,那么矩形ABCD的面积是()A.3cm2B.4cm2C.5cm2D.6cm2【变式训练2-4】(2019秋•海伦市期末)有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的边长之和为.【变式训练2-5】(2018秋•路北区期末)如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),把剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则拼得的长方形的周长为cm.(用含a的代数式表示)【变式训练2-6】(2021春•姑苏区期中)学习整式乘法时,老师拿出三种型号的卡片,如图1:A型卡片是边长为a的正方形,B型卡片是边长为b的正方形,C型卡片是长和宽分别为a,b的长方形.(1)选取1张A型卡片,2张C型卡片,1张B型卡片,在纸上按照图2的方式拼成一个为(a+b)的大正方形,通过不同方式表示大正方形的面积,可得到乘法公式;(2)请用这3种卡片拼出一个面积为a2+5ab+6b2的长方形(数量不限),在图3的虚线框中画出示意图,并在示意图上按照图2的方式标注好长方形的长与宽;(3)选取1张A型卡片,4张C型卡片按图4的方式不重叠地放在长方形DEFG框架内,图中两阴影部分(长方形)为没有放置卡片的部分.已知GF的长度固定不变,DG的长度可以变化,图中两阴影部分(长方形)的面积分别表示为S1,S2.若S=S2﹣S1,则当a与b满足时,S为定值,且定值为.(用含a或b的代数式表示)【变式训练2-7】(2021春•新邵县期末)如图,它是一个长为2m,宽为2n的长方形,沿图中的虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形.(1)你认为图(2)中的阴影部分的正方形边长为(2)请用两种不同的方法表示图(2)阴影部分的面积;方法一:方法二:(3)观察图(2),写出三个代数式:(m+n)2,(m﹣n)2,mn之间的等量关系.(4)根据(3)题中的等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2的值.【变式训练2-8】(2021春•赫山区期末)两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.(1)用含a、b的代数式分别表示S1、S2;(2)若a+b=10,ab=23,求S1+S2的值;(3)当S1+S2=29时,求出图3中阴影部分的面积S3.知识点3:完全平方式【典型例题3】(2016秋•宛城区期中)所谓完全平方式,就是对于一个整式A,如果存在另一个整式B,使A=B2,则称A是完全平方式,例如:a4=(a2)2、4a2﹣4a+1=(2a﹣1)2.(1)下列各式中完全平方式的编号有;①a6;②a2﹣ab+b2;③4a2+2ab+b2;④x2+4xy+4y2;⑤a2+a+;⑥x2﹣6x﹣9.(2)若x2+4xy+my2和x2﹣nxy+y2都是完全平方式,求(m﹣)2的值;(3)多项式9x2+1加上一个单项式后,能成为一个完全平方式,那么加上的单项式可以是哪些?(请直接写出所有可能的单项式)解:(1)①a6=(a3)2;③4a2+2ab+b2=(2a+b)2;④x2+4xy+4y2=(x+2y)2;⑤a2+a+=(a+)2,是完全平方式;②a2﹣ab+b2,⑥x2﹣6x﹣9,不是完全平方式各式中完全平方式的编号有①③④⑤;故答案为:①③④⑤;(2)∵x2+4xy+my2和x2﹣nxy+y2都是完全平方式,∴x2+4xy+my2=(x+y)2,x2﹣nxy+y2=(x±y)2,∴m=4,n=±1,当n=1时,原式=9;当n=﹣1时,原式=25;(3)单项式可以为﹣1,﹣9x2,6x,﹣6x或x4.【变式训练3-1】(2019春•石台县期末)如图所示,有三种卡片,其中边长为a的正方形1张,边长为a、b的矩形卡片4张,边长为b的正方形4张用这9张卡片刚好能拼成一个正方形,则这个正方形的面积为()A.a2+4ab+4b2B.4a2+8ab+4b2C.4a2+4ab+b2D.a2+2ab+b2【变式训练3-2】(2013春•武侯区月考)若要使4x2+mx+成为一个两数差的完全平方式,则m的值应为()A.B.C.D.【变式训练3-3】若二项式x2+4加上一个单项式后成为一个完全平方式,则这样的单项式共有()A.1个B.2个C.3个D.5个【变式训练3-4】(2020春•武侯区校级期中)若多项式x2+x+k是关于x的完全平方式,则k=.【变式训练3-5】+a+=()2.【变式训练3-6】(2021春•宽城县期末)若我们规定三角“”表示为:abc;方框“”表示为:(x m+y n).例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题:(1)计算:=;(2)代数式为完全平方式,则k=;(3)解方程:=6x2+7.知识点4:平方差公式【典型例题4】(2021春•成都期末)下列运算正确的是()A.(x+y)(y﹣x)=x2﹣y2B.(﹣x+y)2=﹣x2+2xy+y2C.(﹣x﹣y)2=﹣x2﹣2xy﹣y2D.(x+y)(﹣y+x)=x2﹣y2解:A、结果是y2﹣x2,故本选项不符合题意;B、结果是x2﹣2xy+y2,故本选项不符合题意;C、结果是x2+2xy+y2,故本选项不符合题意;D、结果是x2﹣y2,故本选项符合题意;故选:D.【变式训练4-1】(2020秋•饶平县校级期末)在下列计算中,不能用平方差公式计算的是()A.(m﹣n)(﹣m+n)B.(x3﹣y3)(x3+y3)C.(﹣a﹣b)(a﹣b)D.(c2﹣d2)(d2+c2)【变式训练4-2】(2020秋•九龙坡区校级期中)若a2﹣b2=16,(a+b)2=8,则ab的值为()A.﹣B.C.﹣6D.6【变式训练4-3】(2021春•锦江区校级期中)如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”.例如,16=52﹣32,16就是一个智慧数.在正整数中,从1开始,第2021个智慧数是.【变式训练4-4】已知a﹣b=3,a2﹣b2=9,则a=,b=.【变式训练4-5】(2021春•鼓楼区期中)有些同学会想当然地认为(x﹣y)3=x3﹣y3.(1)举出反例说明该式不一定成立;(2)计算(x﹣y)3;(3)直接写出当x、y满足什么条件时,该式成立.【变式训练4-6】(2019秋•平山县期末)用简便方法计算:(1)1002﹣200×99+992(2)2018×2020﹣20192【变式训练4-7】(2018秋•沙坪坝区期末)一个个位不为零的四位自然数n,如果千位与十位上的数字之和等于百位与个位上的数字之和,则称n为“隐等数”,将这个“隐等数“反序排列(即千位与个位对调,百位与十位对调)得到一个新数m,记D(n)=.(1)请任意写出一个“隐等数”n,并计算D(n)的值;(2)若某个“隐等数“n的千位与十位上的数字之和为6,D(n)为正数,且D(n)能表示为两个连续偶数的平方差,求满足条件的所有“隐等数”n.知识点5:平方差公式的几何背景【典型例题5】(2017春•张掖月考)乘法公式的探究及应用.小题1:如图1,可以求出阴影部分的面积是(写成两数平方差的形式);小题2:如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是,长是,面积是(写成多项式乘法的形式)小题3:比较图1,图2的阴影部分面积,可以得到乘法公式(a+b)(a﹣b)=a2﹣b2(用式子表达)小题4:应用所得的公式计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣)解:小题1:利用正方形的面积公式可知:阴影部分的面积=a2﹣b2;故答案为:a2﹣b2;小题2:由图可知矩形的宽是a﹣b,长是a+b,所以面积是(a+b)(a﹣b);故答案为:a﹣b,a+b,(a+b)(a﹣b);小题3:(a+b)(a﹣b)=a2﹣b2(等式两边交换位置也可);故答案为:(a+b)(a﹣b)=a2﹣b2;小题4:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣)=(1﹣)×(1+)(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)(1﹣)(1+)=××××××…××××==.【变式训练5-1】(2021秋•台江区期中)能够用如图中已有图形的面积说明的等式是()A.a(a+4)=a2+4a B.(a+4)(a﹣4)=a2﹣16C.(a+2)(a﹣2)=a2﹣4D.(a+2)2=a2+4a+4【变式训练5-2】(2018秋•大同期末)如图1,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下部分沿图1中的虚线剪开后重新拼成一个梯形(如图2),利用这两幅图形面积,可以验证的乘法公式是()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.a(a+b)=a2+ab D.(a+b)(a﹣b)=a2﹣b2【变式训练5-3】(2018春•青羊区期末)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,再将剩下的阴影部分剪开,拼成右边的长方形.根据图形的变化过程可以验证下列哪一个等式成立()A.(a﹣b)2=a2﹣2ab+b2B.a(a+b)=a2+abC.(a+b)2=a2+2ab+b2D.(a﹣b)(a+b)=a2﹣b2【变式训练5-4】如图,小刚家有一块“L”形的菜地,要把这块菜地按图示那样分成面积相等的梯形,种上不同的蔬菜,这两个梯形的上底都是xm,下底都是ym,高都是(y﹣x)m,请你帮小刚家算一算菜地的面积是平方米.当x=20m,y=30m时,面积是平方米.【变式训练5-5】(2021春•婺城区校级期末)乘法公式的探究与应用:(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是(写成两数平方差的形式)(2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是,宽是,面积是(写成多项式乘法的形式).(3)比较甲乙两图阴影部分的面积,可以得到公式(两个)公式1:公式2:(4)运用你所得到的公式计算:10.3×9.7.【变式训练5-6】(2021春•淮北期末)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).。
乘法公式公式的应用能力提高试题
平方差公式专项练习题A卷:根底题一、选择题1.平方差公式〔〕〔a-b〕2-b2中字母a,b表示〔〕A.只能是数B.只能是单项式C.只能是多项式D.以上都可以2.以下多项式的乘法中,可以用平方差公式计算的是〔〕A.〔〕〔〕B.〔-〕〔a-b〕C.〔13〕〔b-13a〕D.〔a2-b〕〔b2〕3.以下计算中,错误的有〔〕①〔34〕〔3a-4〕=9a2-4;②〔2a2-b〕〔2a2〕=4a2-b2;③〔3-x〕〔3〕2-9;④〔-〕·〔〕=-〔x-y〕〔〕=-x2-y2.A.1个B.2个C.3个D.4个4.假设x2-y2=30,且x--5,那么的值是〔〕A.5 B.6 C.-6 D.-5二、填空题5.〔-2〕〔-2x-y〕.6.〔-3x2+2y2〕〔〕=9x4-4y4.7.〔-1〕〔a -1〕=〔〕2-〔〕2.8.两个正方形的边长之与为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是. 三、计算题9.利用平方差公式计算:2023×2113. 10.计算:〔2〕〔a 2+4〕〔a 4+16〕〔a -2〕.B 卷:提高题一、七彩题1.〔多题-思路题〕计算:〔1〕〔2+1〕〔22+1〕〔24+1〕…〔221〕+1〔n 是正整数〕; 〔2〕〔3+1〕〔32+1〕〔34+1〕…〔32021+1〕-401632.2.〔一题多变题〕利用平方差公式计算:2021×2007-20212. 〔1〕一变:利用平方差公式计算:22007200720082006-⨯. 〔2〕二变:利用平方差公式计算:22007200820061⨯+.二、知识穿插题3.〔科内穿插题〕解方程:x 〔2〕+〔21〕〔2x -1〕=5〔x 2+3〕. 三、实际应用题4.广场内有一块边长为2a 米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,那么改造后的长方形草坪的面积是多少?四、经典中考题5.〔2007,泰安,3分〕以下运算正确的选项是〔〕A.a33=3a6B.〔-a〕3·〔-a〕5=-a8C.〔-2a2b〕·4-24a6b3D.〔-13a-4b〕〔13a-4b〕=16b2-19a26.〔2021,海南,3分〕计算:〔1〕〔a-1〕.C卷:课标新型题1.〔规律探究题〕x≠1,计算〔1〕〔1-x〕=1-x2,〔1-x〕〔12〕=1-x3,〔1-x〕〔•123〕=1-x4.〔1〕观察以上各式并猜测:〔1-x〕〔12+…〕.〔n为正整数〕〔2〕根据你的猜测计算:①〔1-2〕〔1+2+22+23+24+25〕.②2+22+23+…+2〔n为正整数〕.③〔x-1〕〔x999897+…21〕.〔3〕通过以上规律请你进展下面的探索:①〔a-b〕〔〕.②〔a -b 〕〔a 22〕. ③〔a -b 〕〔a 3223〕.2.〔结论开放题〕请写出一个平方差公式,使其中含有字母m ,n 与数字4.3.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,•将剩下的纸板沿虚线裁成四个一样的等腰梯形,如图1-7-1所示,然后拼成一个平行四边形,如图1-7-2所示,分别计算这两个图形阴影局部的面积,结果验证了什么公式?请将结果及同伴交流一下.完全平方公式变形的应用完全平方式常见的变形有: 1、m 22-61034=0,求的值2、0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。
乘法公式能力提高题
乘法公式提升练习题一、完全平方公式(1)(-21ab 2-32c )2; (2)(x -3y -2)(x +3y -2); (3)(x -2y )(x 2-4y 2)(x +2y );(4)(2a +3)2+(3a -2)2(5)(a -2b +3c -1)(a +2b -3c -1);(6)(s -2t )(-s -2t )-(s -2t )2;(7)(t -3)2(t +3)2(t 2+9)2.二、完全平方式1、若k x x ++22是完全平方式,则k =2、.若x 2-7xy +M 是一个完全平方式,那么M 是3、如果4a 2-N ·ab +81b 2是一个完全平方式,则N =4、如果224925y kxy x +-是一个完全平方式,那么k = 三、公式的逆用1.(2x -______)2=____-4xy +y 2. 2.(3m 2+_______)2=_______+12m 2n +________. 3.x 2-xy +________=(x -______)2. 4.49a 2-________+81b 2=(________+9b )2.5.代数式xy -x 2-41y 2等于( )2 四、配方思想1、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=_____.2、已知0136422=+-++y x y x ,求y x =_______.3、已知222450x y x y +--+=,求21(1)2x xy --=_______. 4、已知x 、y 满足x 2十y 2十45=2x 十y ,求代数式y x xy +=_______. 5.已知014642222=+-+-++z y x z y x ,则z y x ++= .6、已知三角形ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,请说明该三角形是什么三角形?五、完全平方公式的变形技巧1、已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
完整版)乘法公式专项练习题
完整版)乘法公式专项练习题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()。
答案:D。
以上都可以。
2.下列多项式的乘法中,可以用平方差公式计算的是()。
答案:B。
(-a+b)(a-b)3.若x2-x-m=(x-m)(x+1)且x≠0,则m等于()。
答案:C。
14.计算[(a-b)(a+b)]等于()。
答案:A。
a2-b25.已知(a+b)2=11,ab=2,则(a-b)2的值是()。
答案:B。
36.若x2-7xy+M是一个完全平方式,那么M是()。
答案:D。
49y27.若x,y互为不等于的相反数,n为正整数,你认为正确的是()。
答案:B。
xn、XXX一定是互为相反数。
8.下列计算中,错误的有()。
答案:D。
4个。
①(3a+4)(3a-4)=9a2-16;②(2a2-b)(2a2+b)=4a4-b2;③(3-x)(x+3)=-x2+9;④(-x+y)·(x+y)=-x2+y2.9.若x2-y2=30,且x-y=-5,则x+y的值是()。
答案:A。
5.10.已知a1996x1995,b1996x1996,c1996x1997,那么a2b2c2ab bc ca的值为()。
答案:C。
3.11.已知x0,且M(x22x1)(x22x1),N(x2x1)(x2x1),则M与N的大小关系为()。
答案:A。
XXX。
12.设a、b、c是不全相等的任意有理数。
若x a2bc,y b2ca,z c2ab,则x、y、z()。
答案:D。
至少有一个大于0,至少有一个小于0.1.$(-2x+y)(-2x-y)=4x^2-y^2$,$(-3x^2+2y^2)(3x^2+2y^2)=9x^4-4y^4$。
2.$(a+b-1)(a-b+1)=a^2+b^2-2b$,$(a+b-1)^2-(a-b+1)^2=4ab-2a$。
3.差为$(5-2)^2-(5-4)^2=9$。
4.$a^2+b^2-2a+2b+2=0$,$a^{2004}+b^{2005}=a^2+b^2-ab(a-b)^2=(a-b)^2$。
二年级乘法拔高题
以下是一些适合二年级学生的乘法拔高题:
计算:2×3=?
计算:4×5=?
一个苹果重20克,一个香蕉重10克,一个西瓜重30克,一个菠萝重40克。
哪种水果最重?哪种水果最轻?
一个正方形的边长是4厘米,它的周长是多少厘米?
一个长方形的长是6厘米,宽是4厘米,它的周长是多少厘米?
一个三角形的底是6厘米,高是4厘米,它的面积是多少平方厘米?
一个平行四边形的底是8厘米,高是5厘米,它的面积是多少平方厘米?
一个梯形的上底是4厘米,下底是6厘米,高是5厘米,它的面积是多少平方厘米?
小华有3本书,每本书的页数相同。
他每天读20页,15天就读完了。
每本书有多少页?
小明有4个苹果,每天吃掉一个。
他吃了4天,还剩下多少个苹果?。
中考数学总复习《乘法公式》专项提升练习题-带答案
中考数学总复习《乘法公式》专项提升练习题-带答案学校:___________班级:___________姓名:___________考号:___________一、平方差公式1.计算:(1)(3x+5)(3x−5);(2)(12x+13)(12x−13);(3)(2x+y)(2x−y).2.利用乘法公式计算:(1)5002﹣499×501.(2)5023×49133.已知m=√5+1,n=√5−1.求值:(1)m2+n2;(2)nm +mn.4.(1)先化简,再求值:(2x+1)(2x−1)−5x(x−1)+(x−1)2,其中x=−13;(2)计算:20222−2021×2023−992.5.如图,有一个边长为2a(a>10)米的正方形池塘,为了创建文明农村,需在南北方向上扩大3米,东西方向上减少3米,从而得到一个长方形池塘.(1)求改造后的长方形池塘的面积;(2)改造后的长方形池塘的面积比原正方形池塘的面积变大还是变小了,请通过计算说明.6.如图,一长方形模具长为2a,宽为a,中间开出两个边长为b的正方形孔.(1)求图中阴影部分面积(用含a、b的式子表示)(2)用分解因式计算当a=15.7,b=4.3时,阴影部分的面积.二、完全平方公式 10.运用完全平方公式计算:(1)(4m +n)2;(2)(y −12)2.11.解方程:(3x −1)2=(2−5x )2.12.(a −2b +c )213.计算:(7+4√3)(7−4√3)−(√3−1)2.14.放学时,王老师布置了一道因式分解题:(x +y )2+4(x -y )2-4(x 2-y 2),小明思考了半天,没有得出答案.请你帮小明解决这个问题.15.回答下列问题(1)若x 2+1x 2=4,则(x +1x )2=________,(x −1x )2=________.(2)若a +1a =5,则a 2+1a 2=________;(3)若a 2−6a +1=0,求2a 2+2a 2的值.16.如图,正方形ABCD 的边长为a ,点E 在AB 边上,四边形EFGB 也是正方形,它的边长为b (a >b )连结AF 、CF 、AC ,若a +b =10,ab =20,求阴影部分的面积.17.阅读下列文字:我们知道,图形是一种重要的数学语言,我国著名的数学家华罗庚先生曾经说:“数缺形时少直观,形缺数时难入微”.例如,对于一个图形,通过不同的方法计算图形的面积,就可以得到一个数学等式.(1)模拟练习:如图,写出一个我们熟悉的数学公式:______;(2)解决问题:如果a+b=10,ab=12求a2+b2的值;(3)类比探究:如果一个长方形的长和宽分别为(8−x)和(x−2),且(8−x)2+(x−2)2=20,求这个长方形的面积.18.为了纪念革命英雄夏明翰,衡阳市政府计划将一块长为(2a+b)米,宽为(a+b)米的长方形(如图所示)地块用于宣传革命英雄事迹,规划部门计划将阴影部分进行绿化,中间将修建一座夏明翰雕像.(1)试用含a,b的代数式表示绿化的面积是多少平方米?(2)若a+b=5,ab=6请求出绿化面积.19.如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个大正方形,如图2所示.(1)请直接写出(a+b)2,(a−b)2,ab之间的等量关系________.(2)若xy=−3,x−y=4求x+y的值.(3)如图3,线段AB=10,C点是AB上的一点,分别以AC、BC为边长在AB的异侧做正方形ACDE和正方形CBGF,连接AF;若两个正方形的面积S1+S2=32,求阴影部分△ACF面积.20.如图①,正方形ABCD是由两个长为a、宽为b的长方形和两个边长分别为a、b 的正方形拼成的.(1)利用正方形ABCD面积的不同表示方法,直接写出(a+b)2、a2+b2、ab之间的关系式,这个关系式是;(2)若m满足(2024−m)2+(m−2023)2=4047,请利用(1)中的数量关系,求(2024−m)(m−2023)的值;(3)若将正方形EFGH的边FG、GH分别与图①中的PG、MG重叠,如图②所示,已知PF= 8,NH=32求图中阴影部分的面积(结果必须是一个具体数值).参考答案1.解:(1)原式=5002−(500−1)×(500+1)=5002−(5002−1)=5002−5002+1=1;(2)原式=(50+23)×(50−23)=2500−49=249959.2.解:(1)(3x +5)(3x −5)=(3x)2−52=9x 2−25;(2)(12x +13)(12x −13) =(12x)2−(13)2 =14x 2−19; (3)(2x +y )(2x −y )=(2x)2−y 2=4x 2−y 2.3.(1)解:∵m =√5+1 n =√5−1∵m 2+n 2=(√5+1)2+(√5−1)2=5+2√5+1+5−2√5+1=6+6=12;(2)解:由题意知=12(√5+1)(√5−1)=124=3.4.解:(1)原式=4x 2−1−5x 2+5x +x 2−2x +1=3x .当x =−13时,原式=3×(−13)=−1. (2)原式=20222−(2022−1)×(2022+1)−(100−1)2=20222−20222+1−10000+200−1=−98005.解:(1)由题可得,改造后池塘的长为(2a +3)m ,宽为(2a -3)m∵改造后的面积为:(2a−3)(2a+3)=(4a2−9)m2.(2)原来的面积为:2a×2a=4a2(m2)∵4a2−(4a2−9)=9>0∵改造后的长方形池塘的面积与原来相比变小了.6.解:(1)2a•a﹣2b2=2(a2﹣b2);(2)当a=15.7,b=4.3时,阴影部分的面积2(a2﹣b2)=2(a+b)(a﹣b)=2(15.7+4.3)(15.7﹣4.3)=456.7.(1)解:1√14−√13=√14+√13(√14+√13)(√14−√13)=√14+√13(√14)2−(√13)2=√14+√1314−13=√14+√13(2)解:(1√2+1+1√3+√2+1√4+√3+⋯+1√2021+√2020)×(√2021+1)=(√2-1+√3-√2+√4-√3+……+√2021-√2020)×(√2021+1)=(√2021-1)×(√2021+1)=2021-1=2020(3)解:34−√13−6√13−√7−23+√7=(4+√13)-(√13+√7)-(3-√7)=4+√13-√13-√7-3+√7=18.(1)解:S阴影=S边长为a的正方形−S边长为b的正方形,即S阴影=a2−b2.故答案为:a2−b2.(2)观察图形可知,阴影部分裁剪下来,重新拼成一个长方形,它的宽是a−b,长是a+b,面积是(a+b)(a−b).故答案为:a−b a+b(a+b)(a−b).(3)图1和图2表示的面积相等,可得a2−b2=(a+b)(a−b).故答案为:a2−b2=(a+b)(a−b).(4)①20222−2021×2023=20222−(2022−1)(2022+1)=20222−(20222−1)=1②(2m+n+p)(2m+n−p)=[(2m+n)+p][(2m+n)−p]=(2m+n)2−p2=4m2+4mn+n2−p29.(1)解:图1中阴影部分的面积为a2−b2,图2中的阴影部分的面积为(a+b)(a−b)∵图1和图2中两阴影部分的面积相等∵上述操作能验证的等式是a2−b2=(a+b)(a−b)故答案为:a2−b2=(a+b)(a−b);(2)解:①∵9a2−b2=36∵(3a+b)(3a−b)=36∵3a+b=9∵3a−b=4故答案为:4;②(1−122)⋅(1−132)⋅(1−142)⋅(1−152)⋅⋅⋅(1−120222)=(1+12)×(1−12)×(1+13)×(1−13)×(1+14)×(1−14)×⋯×(1+12022)(1−12022)=32×12×43×23×54×34×⋯×20232022×20212022=12×(32×23)×(43×34)×⋯×(20212022×20222021)×20232022=12×1×20232022=20234044.10.解:(1)(4m+n)2=(4m)2+2⋅(4m)⋅n+n2=16m 2+8mn +n 2;(2)(y −12)2=y 2−2⋅y ⋅12+(12)2=y 2−y +14. 11.解:∵(3x −1)2=(2−5x )2∵3x −1=±(2−5x )解得x =12或x =38.12.解:原式=(a −2b)2+2c(a −2b)+c 2=a 2−4ab +4b 2+2ac −4bc +c 2=a 2+4b 2+c 2−4ab +2ac −4bc .13.解:原式=49−48−(3−2√3+1)=2√3−314.解:把(x +y ),(x -y )看作完全平方公式里的a ,b .解:设x +y =a ,x -y =b则原式=a 2+4b 2-4ab =(a -2b )2=[(x +y )-2(x -y )]2=(3y -x )2.故答案为(3y -x )2.15.(1)解:∵x 2+1x 2=4∵(x +1x )2=x 2+2x ⋅1x +1x 2=x 2+2+1x 2=6,(x −1x )2=x 2−2x ⋅1x +1x 2=x 2−2+1x 2=2故答案为:6;2;(2)解:∵a +1a =5 ∵(a +1a )2=a 2+2+1a 2=25∵a 2+1a 2=(a +1a )2−2=23 故答案为:23;(3)解∵a 2−6a +1=0∵a ≠0∵a −6+1a =0∵a +1a =6∵(a+1a )2=a2+2+1a2=36∵a2+1a2=(a+1a)2−2=34∵2a2+2a2=2(a2+1a2)=68.16.解:∵两个正方形的面积=a2+b2=(a+b)2−2ab=100−40=60 ,SΔADC=12a2SΔFGC=12(a+b)⋅b∵阴影部分的面积为:60−12a2−12(a+b)⋅b=60−12a2−12ab−12b2=60−12(a2+b2)−12ab=60−12×60−12×20=20.17.(1)解:(1)用大正方形面积公式求得图形的面积为:(a+b)2;用两个小正方形面积加两个长方形面积和求出图形的面积为:a2+2ab+b2.故答案为:(a+b)2=a2+2ab+b2;(2)解:(2)∵a+b=10ab=12∴a2+b2=(a+b)2﹣2ab=100﹣24=76;(3)解:(3)设8﹣x=a x﹣2=b∵长方形的两邻边分别是8﹣x x﹣2∴a+b=8﹣x+x﹣2=6∵(8﹣x)2+(x﹣2)2=20∴a2+b2=(a+b)2﹣2ab=62﹣2ab=20∴ab=8∴这个长方形的面积=(8﹣x)(x﹣2)=ab=8.18.解:(1)根据题意可得绿化的面积为:(2a+b)(a+b)−a2=2a2+2ab+ab+b2−a2=a2+3ab+b2;(2)∵a+b=5∵a2+3ab+b2=a2+2ab+b2+ab=(a+b)2+ab=52+6=31(平方米).19.(1)解:由图2各部分的面积关系得:(a+b)2−(a−b)2=4ab故答案为:(a+b)2−(a−b)2=4ab;(2)由(1)题结果可得(x+y)2=(x−y)2+4xy=16−12=4∵x+y=±√4=±2∵x+y的值为±2;(3)设AC=x,BC=y则x2+y2=32 x+y=10∵2xy=(x+y)2−(x2+y2)=102−32=68∵xy=682=34∵S△ACF=12AC×CF=12×34=17∵阴影部分△ACF面积为17.20.解:(1)(a+b)2=a2+b2+2ab(2)设2024−m=a m−2023=b则(2024−m)(m−2023)=ab a+b=1由已知得:a2+b2=4047(a+b)2=a2+b2+2ab∵12=4047+2ab∵ab=−2023∵(2024−m)(m−2023)=−2023(3)设正方形EFGH的边长为x,则PG=x−8NG=32−x∵S阴=S正方形APGM+2S长方形PBNG+S正方形CQGN∵S阴=(x−8)2+2(x−8)(32−x)+(32−x)2∵(a+b)2=a2+b2+2ab=[(x−8)+(32−x)]2=242=576∵S阴。
乘法公式练习题
乘法公式练习题乘法是数学中最基本的四则运算之一。
掌握好乘法公式可以帮助我们更好地解决数学问题。
本文将提供一些乘法公式练习题,帮助您巩固乘法运算的基础知识。
练习题1:计算下列乘法表达式的值:1. 3 × 4 = ?2. 7 × 5 = ?3. 9 × 2 = ?4. 6 × 8 = ?5. 12 × 10 = ?解答:1. 3 × 4 = 122. 7 × 5 = 353. 9 × 2 = 185. 12 × 10 = 120练习题2:计算下列乘法表达式的值:1. 15 × 3 = ?2. 24 × 2 = ?3. 10 × 10 = ?4. 5 × 9 = ?5. 8 × 7 = ?解答:1. 15 × 3 = 452. 24 × 2 = 483. 10 × 10 = 1004. 5 × 9 = 45练习题3:计算下列乘法表达式的值:1. 6 × 11 = ?2. 9 × 8 = ?3. 14 × 2 = ?4. 7 × 6 = ?5. 13 × 9 = ?解答:1. 6 × 11 = 662. 9 × 8 = 723. 14 × 2 = 284. 7 × 6 = 425. 13 × 9 = 117练习题4:计算下列乘法表达式的值:1. 25 × 4 = ?2. 18 × 3 = ?3. 7 × 14 = ?4. 12 × 6 = ?5. 9 × 13 = ?解答:1. 25 × 4 = 1002. 18 × 3 = 543. 7 × 14 = 984. 12 × 6 = 725. 9 × 13 = 117练习题5:计算下列乘法表达式的值:1. 16 × 10 = ?2. 3 × 5 × 2 = ?3. 7 × 8 + 10 = ?4. 4 × 6 + 12 × 2 = ?5. 15 × 3 + 10 - 5 × 2 = ?解答:1. 16 × 10 = 1602. 3 × 5 × 2 = 303. 7 × 8 + 10 = 664. 4 × 6 + 12 × 2 = 485. 15 × 3 + 10 - 5 × 2 = 55通过解答以上练习题,您可以发现乘法公式的灵活运用是解决数学问题和计算的基础能力。
难点突破“整式乘除(提高)”压轴题50道(含详细解析)
难点突破“整式乘除(提高)”压轴题50道(含详细解析)1.为了求2320112012122222++++⋯++的值,可令2320112012122222S =++++⋯++,则234201220132222222S =++++⋯++,因此2013221S S -=-,所以2320122013122221+++⋯+=-.仿照以上方法计算23201215555++++⋯+的值是( )A .201351-B .201351+C .2013544-D .2013514- 2.若1m ,2m ,2015m ⋯是从0,1,2这三个数中取值的一列数,若1220151525m m m ++⋯+=,222122015(1)(1)(1)1510m m m -+-+⋯+-=,则在1m ,2m ,2015m ⋯中,取值为2的个数为 .3.对于任何实数,我们规定符号a bc d 的意义是a bad bc c d =-.例如:121423234=⨯-⨯=-,24(2)5432235-=-⨯-⨯=-.按照这个规定,当2440x x -+=时,12123x x x x +--的值是 . 4.若x m +与2x -的乘积是一个关于x 的二次二项式,则m 的值是 .5.已知22(2017)(2018)5a a -+-=,则(2017)(2018)a a --=6.已知6192x =,32192y =,则(1)(1)2(2017)x y ----= .7.我们知道,同底数幂的乘法法则为:m n m n a a a +=(其中0a ≠,m ,n 为正整数),类似地我们规定关于任意正整数m ,n 的一种新运算:()()()h m n h m h n +=,请根据这种新运算填空:(1)若h (1)23=,则h (2)= ; (2)若h (1)(0)k k =≠,那么()(2017)h n h = (用含n 和k 的代数式表示,其中n 为正整数)8.我们知道简便计算的好处,事实上,简便计算在好多地方都存在,观察下列等式: 2151210025225=⨯⨯+=,2252310025625=⨯⨯+=,23534100251225=⨯⨯+=,⋯(1)根据上述格式反应出的规律填空:295= ,(2)设这类等式左边两位数的十位数字为a ,请用一个含a 的代数式表示其结果 ,(3)这种简便计算也可以推广应用:①个位数字是5的三位数的平方,请写出2195的简便计算过程及结果,②十位数字相同,且个位数字之和是10的两个两位数相乘的算式,请写出8981⨯的简便计算过程和结果.9.认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应的,我们可以计算出多项式的展开式,如:1()a b a b +=+,222()2a b a ab b +=++,323223()()()33a b a b a b a a b ab b +=++=+++,⋯下面我们依次对()n a b +展开式的各项系数进一步研究发现,当n 取正整数时可以单独列成表中的形式:上面的多项式展开系数表称为“杨辉三角形”;仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)多项式()n a b +的展开式是一个几次几项式?并预测第三项的系数;(2)请你预测一下多项式()n a b +展开式的各项系数之和.(3)结合上述材料,推断出多项式()(n a b n +取正整数)的展开式的各项系数之和为S ,(结果用含字母n 的代数式表示).10.对于任何实数,我们规定符号a cb d 的意义是:a cad bc b d =-.按照这个规定请你计算:当2310x x -+=时,1231x x x x +--的值.11.根据以下10个乘积,回答问题: 1129⨯; 1228⨯; 1327⨯; 1426⨯; 1525⨯;1624⨯; 1723⨯; 1822⨯; 1921⨯; 2020⨯.(1)试将以上各乘积分别写成一个“□2-〇2”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来;(3)试由(1)、(2)猜测一个一般性的结论.(不要求证明)12.根据以下10个乘积,回答问题:1129⨯;1228⨯;1327⨯;1426⨯;1525⨯;1624⨯;1723⨯;1822⨯;1921⨯;2020⨯.(1)试将以上各乘积分别写成一个“□22-∅”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来;(3)若用11a b ,22a b ,⋯,n n a b 表示n 个乘积,其中1a ,2a ,3a ,⋯,n a ,1b ,2b ,3b ,⋯,n b 为正数.试由(1)、(2)猜测一个一般性的结论.(不要求证明) 13.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:22420=-,221242=-,222064=-,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为22k +和2k (其中k 取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k 取正数)是神秘数吗?为什么?14.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即2222()a ab b a b ±+=±.例如:2(1)3x -+、2(2)2x x -+、2213(2)24x x -+是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项--见横线上的部分).请根据阅读材料解决下列问题:(1)比照上面的例子,写出242x x -+三种不同形式的配方;(2)将22a ab b ++配方(至少两种形式);(3)已知2223240a b c ab b c ++---+=,求a b c ++的值.15.一天,小明和小玲玩纸片拼图游戏,发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式,比如图②可以解释为:22(2)()32a b a b a ab b ++=++(1)图③可以解释为等式: . (2)要拼出一个长为3a b +,宽为2a b +的长方形,需要如图所示的 块, 块, 块.(3).如图④,大正方形的边长为m ,小正方形的边长为n ,若用x 、y 表示四个小长方形的两边长()x y >,观察图案,以下关系式正确的是 (填序号).①224m n xy -=②x y m +=③22x y m n -=④22222m n x y ++=16.先阅读下列材料,再解答后面的问题.一般地,若(0n a b a =>且1a ≠,0)b >,则n 叫做以a 为底b 的对数,记为log a b (即log )a b n =.如4381=,则4叫做以3为底81的对数,记为3log 81(即3log 814)=.(1)计算以下各对数的值:2log 4= ,2log 16= ,2log 64= .(2)观察(1)中三数4、16、64之间满足怎样的关系式,2log 4、2log 16、2log 64之间又满足怎样的关系式;(3)猜想一般性的结论:log log a a M N += (0a >且1a ≠,0M >,0)N >,并根据幂的运算法则:m n m n a a a +=以及对数的含义证明你的猜想.17.阅读理解题:定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为(a bi a +,b 为实数),a 叫这个复数的实部,b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2)(34)53i i i ++-=-.(1)填空:3i = ,4i = .(2)计算:①(2)(2)i i +-;②2(2)i +;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知:()3(1)x y i x yi ++=--,(x ,y 为实数),求x ,y 的值. (4)试一试:请利用以前学习的有关知识将11i i+-化简成a bi +的形式. 18.阅读理解题阅读材料:两个两位数相乘,如果这两个因数的十位数字相同,个位数字的和是10,该类乘法的速算方法是;将一因数的十位数字与另一个因数的十位数字加1的和相乘,所得的积作为计算结果的后两位(数位不足的两位,用零补齐).比如4743⨯,它们的乘积的前两位是4(41)20⨯+=,它们乘积的后两位是 7321⨯=.所以47432021⨯=;再如6268⨯,它们乘积的前两位是6(61)42⨯+=,它们乘积的后两位是2816⨯=,所以62684216⨯=.又如2129⨯,2(21)6⨯+=,不足两位,就将6写在百位;199⨯=,不足两位,就将9写在个位,十位上写零,所以2129609⨯=.该速算方法可以用我们所学的整式的乘法的知识说明其合理性:设其中一个因数的十位数字为a ,个位数字是b ,(a ,b 表示1到9的整数)则该数可表示为10a b +,另一因数可表示为10(10)a b +-.两数相乘可得:22(10)[10(10)]10010(10)100(10)100100(10)100(1)(10)a b a b a a b ab b b a a b b a a b b ++-=+-++-=++-=++-.(注:其中(1)a a +表示计算结果的前两位,(10)b b -表示计算结果的后两位.)问题:两个两位数相乘,如果其中一个因数的十位数字与个位数字相同,另一因数的十位数字与个位数字之和是10.如4473⨯、7728⨯、5564⨯等.(1)探索该类乘法的速算方法,请以4473⨯为例写出你的计算步骤.(2)设十位数字与个位数字相同的因数的十位数字是a ,则该数可以表示为 .设另一因数的十位数字是b ,则该数可以表示为 .(a ,b 表示1~9的正整数)(3)请针对问题(1),(2)的计算,模仿阅读材料中所用的方法写出.如:100(1)(10)a a b b ++-的运算式.19.以下关于x 的各个多项式中,a ,b ,c ,m ,n 均为常数.(1)根据计算结果填写下表:(2)已知22(3)()x x mx n +++既不含二次项,也不含一次项,求m n +的值.(3)多项式M 与多项式231x x -+的乘积为43223x ax bx cx +++-,则2a b c ++的值为 .20.阅读材料解决问题:当0a b ->时,一定有a b >;当0a b -=时,一定有a b =;当0a b -<时,一定有a b <. (1)用“>”或“<”填空:(1)(1)a a +-- 0,(1)a ∴+ (1)a -;(2)已知n 为自然数,(1)(4)P n n =++,(2)(3)Q n n =++,试比P 与Q 的大小;(3)已知654321654324A =⨯,654322654323B =⨯,直接写出A 与B 的大小比较结果.21.(1)如图1,阴影部分的面积是 .(写成平方差的形式)(2)若将图1中的阴影部分剪下来,拼成如图2的长方形,面积是 .(写成多项式相乘的积形式)(3)比较两图的阴影部分的面积,可以得到公式: .(4)应用公式计算:222222111111(1)(1)(1)(1)(1)(1)234520172018----⋯--.22.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到222()2a b a ab b +=++,请解答下列问题:(1)写出图2中所表示的数学等式 .(2)根据整式乘法的运算法则,通过计算验证上述等式.(3)利用(1)中得到的结论,解决下面的问题:若10a b c ++=,35ab ac bc ++=,则222a b c ++= .(4)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形z 张边长分别为a 、b 的长方形纸片拼出一个面积为(57)(94)a b a b ++长方形,则x y z ++= .23.已知将32()(34)x mx n x x ++-+展开的结果不含3x 和2x 项.(m ,n 为常数)(1)求m 、n 的值;(2)在(1)的条件下,求22()()m n m mn n +-+的值.24.如图①所示是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)图②中的阴影部分的正方形的边长等于 .(2)请用两种不同的方法表示图②中阴影部分的面积.方法① ;方法② .(3)观察图②,请写出2()m n +、2()m n -、mn 这三个代数式之间的等量关系: .(4)若6a b +=,5ab =,则求a b -的值.25.(1)若27a ab m +=+,29b ab m +=-.求a b +的值.(2)若实数x y ≠,且220x x y -+=,220y y x -+=,求x y +的值.26.如图1是一个长为2a ,宽为2b 的长方形,沿图中虚线剪开分成四块小长方形,然后按如图2的形状拼成一个正方形.(1)图2的阴影部分的正方形的边长是 .(2)用两种不同的方法求图中阴影部分的面积.【方法1】S =阴影 ;【方法2】S =阴影 ;(3)观察如图2,写出2()a b +,2()a b -,ab 这三个代数式之间的等量关系.(4)根据(3)题中的等量关系,解决问题:若10x y +=,16xy =,求x y -的值.27.某同学在计算23(41)(41)++时,把3写成41-后,发现可以连续运用两数和乘以这两数差公式计算:222223(41)(41)(41)(41)(41)(41)(41)161255++=-++=-+=-=.请借鉴该同学的经验,计算:2481511111(1)(1)(1)(1)22222+++++. 28.如图,在长方形ABCD 中,放入6个形状和大小都相同的小长方形,已知小长方形的长为a ,宽为b ,且a b >.(1)用含a 、b 的代数式表示长方形ABCD 的长AD 、宽AB ;(2)用含a 、b 的代数式表示阴影部分的面积.29.(1)比较左、右两图的阴影部分面积,可以得到乘法公式 (用式子表达).(2)运用你所得到的公式,计算(2)(2)a b c a b c +---.30.已知a ,b ,c 为实数,且多项式32x ax bx c +++能被多项式234x x +-整除,(1)求4a c +的值;(2)求22a b c --的值;(3)若a ,b ,c 为整数,且1c a >,试确定a ,b ,c 的值.31.已知6()m n a a =,23()m n a a a ÷=(1)求mn 和2m n -的值;(2)求224m n +的值.32.(1)计算并观察下列各式:第1个:()()a b a b -+= ;第2个:22()()a b a ab b -++= ;第3个:3223()()a b a a b ab b -+++= ;⋯⋯这些等式反映出多项式乘法的某种运算规律.(2)猜想:若n 为大于1的正整数,则12322321()()n n n n n n a b a a b a b a b ab b -------+++⋯⋯+++= ;(3)利用(2)的猜想计算:12332222221n n n ---+++⋯⋯+++= .(4)拓广与应用:12332333331n n n ---+++⋯⋯+++= .33.你会求2018201720162(1)(1)a a a a a a -+++⋯+++的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:2(1)(1)1a a a -+=-23(1)(1)1a a a a -++=-324(1)(1)1a a a a a -+++=-(1)由上面的规律我们可以大胆猜想,得到2018201720162(1)(1)a a a a a a -+++⋯+++= 利用上面的结论求(2)2018201720162222221+++⋯+++的值.(3)求201820172016255554+++⋯++的值.34.计算:(1)22(2)(22)a a a -++;3223(2)(222)a a a a -+++.(2)猜测122321(2)(2222)n n n n n a a a a a ------+++⋯++= ;(3)运用(2)的结论计算:12232132323232n n n n n -----+++⋯++35.(1)填空:()()a b a b -+=22()()a b a ab b -++=3223()()a b a a b ab b -+++=(2)猜想:1221()()n n n n a b a a b ab b -----++⋯++= (其中n 为正整数,且2)n .(3)利用(2)猜想的结论计算:98732333333-+-⋯+-+.36.(1)请用两种不同的方法列代数式表示图1中阴影部分的面积.方法①: ;方法②: ;(2)根据(1)写出一个等式: ;(3)若8x y +=, 3.75xy =,利用(2)中的结论,求x ,y ;(4)有许多代数恒等式可以用图形的面积来表示.如图2,它表示了22(2)()23m n m n m mn n ++=++.试画出一个几何图形,使它的面积能表示22(2)(2)252m n m n m mn n ++=++.37.对于任意有理数a 、b 、c 、d ,我们规定符号(a ,)(b c ⊗,)d ad bc =-, 例如:(1,3)(2⊗,4)14232=⨯-⨯=-.(1)求(2-,3)(4⊗,5)的值为 ;(2)求(31a +,2)(2a a -+⊗,3)a -的值,其中2410a a -+=.38.如图,正方形卡片A 类、B 类和长方形卡片C 类各有若干张,如果要拼成一个长为2a b +,宽为a b +的大长方形,则需要A 、B 、C 类卡片各多少张?39.“杨辉三角”揭示了()(n a b n +为非负数)展开式的各项系数的规律.在欧洲,这个表叫做帕斯卡三角形,帕斯卡是在1654年发现这一规律的,比杨辉要迟393年,比贾宪迟600年,请仔细观察“杨辉三角”中每个数字与上一行的左右两个数字之和的关系:根据上述规律,完成下列各题:(1)将5()a b +展开后,各项的系数和为 .(2)将()n a b +展开后,各项的系数和为 .(3)6()a b += .下图是世界上著名的“莱布尼茨三角形”,类比“杨辉三角”,根据你发现的规律,回答下列问题:(4)若(,)m n 表示第m 行,从左到右数第n 个数,如(4,2)表示第四行第二个数是112,则(6,2)表示的数是 ,(8,3)表示的数是 .40.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例,如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了()(n a b n +为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应222()2a b a ab b +=++展开式中的系数;第四行的四个数1,3,3,1,恰好对应着33222()33a b a a b ab b +=+++展开式中的系数等等.(1)根据上面的规律,则5()a b +的展开式.(2)利用上面的规律计算:5432252102102521+⨯+⨯+⨯+⨯+.(3)若52(1)(2)(x x ax b a ++-、b 为常数)的展开式中不含2x 和x 的项,求a 、b 的值.41.如图,大小两个正方形边长分别为a 、b .(1)用含a 、b 的代数式阴影部分的面积S ;(2)如果9a b +=,6ab =,求阴影部分的面积.42.如图,正方形ABCD 的边长为a ,点E 在AB 边上,四边形EFGB 也是正方形,它的边长为()b a b >,连结AF 、CF 、AC .(1)用含a 、b 的代数式表示GC = ;(2)若两个正方形的面积之和为60,即2260a b +=,又20ab =,图中线段GC 的长;(3)若8a =,AFC ∆的面积为S ,则S = .43.我们已经学习过多项式除以单项式,多项式除以多项式一般可用竖式计算,步骤如下: ①把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐;②用被除式的第一项除以除式第一项,得到商式的第一项;③用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项;④把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式⨯商式+余式.若余式为零,说明这个多项式能被另一个多项式整除.例如:计算432(671)(21)x x x x ---÷+,可用竖式除法如图:所以432671x x x ---除以21x +,商式为323521x x x -+-,余式为0.根据阅读材料,请回答下列问题(直接填空):(1)32(44)(2)x x x x --+÷-= ;(2)2(24)(1)x x x ++÷-,余式为 ;(3)322x ax bx ++-能被222x x ++整除,则a = ,b = .44.解答题(1)已知4x y +=,2xy =,求2()x y -的值(2)已知2()7a b +=,2()3a b -=,求22a b +的值(3)若22m n mn -=,求2222m n n m +的值. 45.你能化简9998972(1)(1)a a a a a a -+++⋯+++吗?我们不妨先从简单情况入手,发现规律,归纳结论.(1)先填空:(1)(1)a a -+= ;2(1)(1)a a a -++= ;32(1)(1)a a a a -+++= ;⋯由此猜想:9998972(1)(1)a a a a a a -+++⋯+++=(2)利用这个结论,请你解决下面的问题:①求1991981972222221+++⋯+++ 的值;②若76543210a a a a a a a +++++++=,则a 等于多少?46.问题再现:数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形的几何意义证明完全平方公式.证明:将一个边长为a 的正方形的边长增加b ,形成两个矩形和两个正方形,如图1: 这个图形的面积可以表示成:2()a b +或 222a ab b ++222()2a b a ab b ∴+=++这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:332123+=?如图2,A 表示1个11⨯的正方形,即:31111⨯⨯=B 表示1个22⨯的正方形,C 与D 恰好可以拼成1个22⨯的正方形,因此:B 、C 、D 就可以表示2个22⨯的正方形,即:32222⨯⨯=而A 、B 、C 、D 恰好可以拼成一个(12)(12)+⨯+的大正方形.由此可得:332212(12)3+=+=尝试解决:(2)请你类比上述推导过程,利用图形的几何意义确定:333123++= .(要求写出结论并构造图形写出推证过程).(3)问题拓广:请用上面的表示几何图形面积的方法探究:3333123n +++⋯+= .(直接写出结论即可,不必写出解题过程)47.阅读下列材料,并解决后面的问题.材料:我们知道,n 个相同的因数a 相乘na a a ⋯可记为n a ,如328=,此时,3叫做以2为底8的对数,记为2log 8(即2log 83)=,一般地,若n a b = (0a >且1a ≠,0)b >,则n 叫做以a 为底b 的对数,记为log a b (即log )a b n =.如4381=,则4叫做以3为底81的对数,记为3log 81(即3log 814)=(1)计算以下各对数的值:2log 4= ,2log 16= ,2log 64= .(2)观察(1)中三数4、16、64之间满足怎样的关系式?2log 4、2log 16、2log 64之间又满足怎样的关系式?(3)根据(2)的结果,我们可以归纳出:log log log a a a M N M += (0N a >且1a ≠,0M >,0)N >请你根据幂的运算法则:m n m n a a a +=以及对数的定义证明该结论.48.下面的图表是我国数学家发明的“杨辉三角”,此图揭示了()(n a b n +为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:7()a b +的展开式共有 项,()n a b +的展开式共有 项,各项的系数和是 .49.观察下列各式:3312189+=+=,而2(12)9+=,33212(12)∴+=+;33312336++=,而2(123)36++=,3332123(123)∴++=++;33331234100+++=,而2(1234)100+++=,333321234(1234)∴+++=+++; 3333312345(∴++++= 2)= .根据以上规律填空:(1)3333123(n +++⋯+= 2)[= 2].(2)猜想:333331112131415++++= .50.已知5210a b ==,求11a b +的值.难点突破“整式乘除(提高)”压轴题50道(含详细解析)参考答案与试题解析一.选择题(共1小题)1.为了求2320112012122222++++⋯++的值,可令2320112012122222S =++++⋯++,则234201220132222222S =++++⋯++,因此2013221S S -=-,所以2320122013122221+++⋯+=-.仿照以上方法计算23201215555++++⋯+的值是( )A .201351-B .201351+C .2013544-D .2013514- 【解答】解:令23201215555S =++++⋯+,则2320122013555555S =+++⋯++,2013515S S -=-+,2013451S =-, 则2013514S -=. 故选:D .二.填空题(共6小题)2.若1m ,2m ,2015m ⋯是从0,1,2这三个数中取值的一列数,若1220151525m m m ++⋯+=,222122015(1)(1)(1)1510m m m -+-+⋯+-=,则在1m ,2m ,2015m ⋯中,取值为2的个数为 510 .【解答】解:222122015(1)(1)(1)1510m m m -+-+⋯+-=,1m ,2m ,⋯,2015m 是从0,1,2这三个数中取值的一列数,1m ∴,2m ,⋯,2015m 中为1的个数是20151510505-=,1220151525m m m ++⋯+=,2∴的个数为(1525505)2510-÷=个.故答案为:510.3.对于任何实数,我们规定符号a bc d 的意义是a bad bc c d =-.例如:121423234=⨯-⨯=-,24(2)5432235-=-⨯-⨯=-.按照这个规定,当2440x x -+=时,12123x x x x +--的值是 1- . 【解答】解:a bad bcc d=-, ∴原式(1)(23)2(1)3x x x x x =+---=-,2440x x -+=,2(2)0x ∴-=,解得2x =,∴原式341=-=-.4.若x m +与2x -的乘积是一个关于x 的二次二项式,则m 的值是 2或0 .【解答】解:2()(2)(2)2x m x x m x m +-=-+-+x m +与2x -的乘积是一个关于x 的二次二项式,20m ∴-=或20m =,解得2m =或0.故答案为:2或0.5.已知22(2017)(2018)5a a -+-=,则(2017)(2018)a a --= 2【解答】解:2222(20172018)[(2017)(2018)]15(2017)(2018)222a a a a a a -+---+----=-=-=. 故答案是:2.6.已知6192x =,32192y =,则(1)(1)2(2017)x y ----= 12017-. 【解答】解:6192x =,32192y =,6192326x ∴==⨯,32192326y ==⨯,1632x -∴=,1326y -=,11(6)6x y --∴=,(1)(1)1x y ∴--=,(1)(1)211(2017)(2017)2017x y ----∴-=-=- 7.我们知道,同底数幂的乘法法则为:m n m n a a a +=(其中0a ≠,m ,n 为正整数),类似地我们规定关于任意正整数m ,n 的一种新运算:()()()h m n h m h n +=,请根据这种新运算填空:(1)若h (1)23=,则h (2)= 49; (2)若h (1)(0)k k =≠,那么()(2017)h n h = (用含n 和k 的代数式表示,其中n 为正整数)【解答】解:(1)h (1)23=,()()()h m n h m h n +=, h ∴(2)224(11)339h =+=⨯=; (2)h (1)(0)k k =≠,()()()h m n h m h n +=,20172017()(2017)n n h n h k k k +∴==. 故答案为:49;2017n k +. 三.解答题(共43小题)8.我们知道简便计算的好处,事实上,简便计算在好多地方都存在,观察下列等式: 2151210025225=⨯⨯+=,2252310025625=⨯⨯+=,23534100251225=⨯⨯+=,⋯(1)根据上述格式反应出的规律填空:295= 9025 ,(2)设这类等式左边两位数的十位数字为a ,请用一个含a 的代数式表示其结果 ,(3)这种简便计算也可以推广应用:①个位数字是5的三位数的平方,请写出2195的简便计算过程及结果,②十位数字相同,且个位数字之和是10的两个两位数相乘的算式,请写出8981⨯的简便计算过程和结果.【解答】解:(1)2151210025225=⨯⨯+=,2252310025625=⨯⨯+=,23534100251225=⨯⨯+=,⋯, 295910100259025∴=⨯⨯+=.(2)2151210025225=⨯⨯+=,2252310025625=⨯⨯+=,23534100251225=⨯⨯+=,⋯,2(105)(1)10025100(1)25a a a a a ∴+=⨯+⨯+=++.(3)①219519201002538025=⨯⨯+=.②8981⨯ (854)(854)=+⨯- 22854=-891002516=⨯⨯+- 72002516=+- 7209=故答案为:9025、100(1)25a a ++. 9.认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应的,我们可以计算出多项式的展开式,如:1()a b a b +=+,222()2a b a ab b +=++,323223()()()33a b a b a b a a b ab b +=++=+++,⋯下面我们依次对()n a b +展开式的各项系数进一步研究发现,当n 取正整数时可以单独列成表中的形式:上面的多项式展开系数表称为“杨辉三角形”;仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)多项式()n a b +的展开式是一个几次几项式?并预测第三项的系数; (2)请你预测一下多项式()n a b +展开式的各项系数之和.(3)结合上述材料,推断出多项式()(n a b n +取正整数)的展开式的各项系数之和为S ,(结果用含字母n 的代数式表示).【解答】解:(1)当1n =时,多项式1()a b +的展开式是一次二项式,此时第三项的系数为:1002⨯=, 当2n =时,多项式2()a b +的展开式是二次三项式,此时第三项的系数为:2112⨯=, 当3n =时,多项式3()a b +的展开式是三次四项式,此时第三项的系数为:3232⨯=, 当4n =时,多项式4()a b +的展开式是四次五项式,此时第三项的系数为:4362⨯=, ⋯∴多项式()n a b +的展开式是一个n 次1n +项式,第三项的系数为:(1)2n n -;(2)预测一下多项式()n a b +展开式的各项系数之和为:2n ;(3)当1n =时,多项式1()a b +展开式的各项系数之和为:11122+==, 当2n =时,多项式2()a b +展开式的各项系数之和为:212142++==, 当3n =时,多项式3()a b +展开式的各项系数之和为:3133182+++==, 当4n =时,多项式4()a b +展开式的各项系数之和为:414641162++++==,⋯∴多项式()n a b +展开式的各项系数之和:2n S =.10.对于任何实数,我们规定符号a cb d的意义是:a c ad bcb d=-.按照这个规定请你计算:当2310x x -+=时,1231x x xx +--的值.【解答】解:13(1)(1)3(2)21x xx x x x x x +=+-----,22136x x x =--+, 2261x x =-+-,2310x x -+=, 231x x ∴-=-,∴原式22(3)1211x x =---=-=.11.根据以下10个乘积,回答问题:1129⨯; 1228⨯; 1327⨯; 1426⨯; 1525⨯; 1624⨯; 1723⨯; 1822⨯; 1921⨯; 2020⨯.(1)试将以上各乘积分别写成一个“□2-〇2”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来; (3)试由(1)、(2)猜测一个一般性的结论.(不要求证明)【解答】解:(1)221129209⨯=-;221228208⨯=-;221327207⨯=-; 221426206⨯=-;221525205⨯=-;221624204⨯=-; 221723203⨯=-;221822202⨯=-;221921201⨯=-; 222020200⨯=- ⋯(4分)例如,1129⨯;假设1129⨯=□2-〇2, 因为□2-〇2(=□+〇)(□-〇); 所以,可以令□-〇11=,□+〇29=.解得,□20=,〇9=.故221129209⨯=-. (或221129(209)(209)209⨯=-+=-(2)这10个乘积按照从小到大的顺序依次是:1129122813271426152516241723182219212020⨯<⨯<⨯<⨯<⨯<⨯<⨯<⨯<⨯<⨯(3)①若40a b +=,a ,b 是自然数,则220400ab =. ②若40a b +=,则220400ab =. ⋯(8分)③若a b m +=,a ,b 是自然数,则2()2mab .④若a b m +=,则2()2mab .⑤若a ,b 的和为定值,则ab 的最大值为2()2a b +. ⑥若11223340n n a b a b a b a b +=+=+=⋯=+=.且 112233||||||||n n a b a b a b a b ---⋯-,则112233n n a b a b a b a b ⋯. ⋯(10分) ⑦若112233n n a b a b a b a b m +=+=+=⋯=+=.且 112233||||||||n n a b a b a b a b ---⋯-,则112233n n a b a b a b a b ⋯. ⑧若a b m +=,a ,b 差的绝对值越大,则它们的积就越小.说明:给出结论①或②之一的得(1分);给出结论③、④或⑤之一的得(2分); 给出结论⑥、⑦或⑧之一的得(3分). 12.根据以下10个乘积,回答问题:1129⨯;1228⨯;1327⨯;1426⨯;1525⨯; 1624⨯;1723⨯;1822⨯;1921⨯;2020⨯.(1)试将以上各乘积分别写成一个“□22-∅”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来;(3)若用11a b ,22a b ,⋯,n n a b 表示n 个乘积,其中1a ,2a ,3a ,⋯,n a ,1b ,2b ,3b ,⋯,n b 为正数.试由(1)、(2)猜测一个一般性的结论.(不要求证明) 【解答】解:(1)221129209⨯=-;221228208⨯=-;221327207⨯=-; 221426206⨯=-;221525205⨯=-;221624204⨯=-; 221723203⨯=-;221822202⨯=-;221921201⨯=-;222020200⨯=-.(4分) 例如,1129⨯;假设1129⨯=□2-〇2, 因为□2-〇2(=□+〇)(□-〇); 所以,可以令□-〇11=,□+〇29=.解得,□20=,〇9=.故221129209⨯=-.(5分) (或221129(209)(209)209⨯=-+=-.5分)(2)这10个乘积按照从小到大的顺序依次是:1129122813271426152516241723182219212020⨯<⨯<⨯<⨯<⨯<⨯<⨯<⨯<⨯<⨯.(7分)(3)①若40a b +=,a 、b 是自然数,则220400ab =.(8分) ②若40a b +=,则220400ab =.(8分)③若a b m +=,a 、b 是自然数,则2()2mab .(9分)④若a b m +=,则2()2mab .(9分)⑤若11223340n n a b a b a b a b +=+=+=+=.且 112233||||||||n n a b a b a b a b ----,则112233n n a b a b a b a b .(10分)⑥若112233n n a b a b a b a b m +=+=+=+=.且112233||||||||n n a b a b a b a b ---⋯-,则112233n n a b a b a b a b ⋯.(10分)说明:给出结论①或②之一的得(1分);给出结论③或④之一的得(2分); 给出结论⑤或⑥之一的得(3分).13.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:22420=-,221242=-,222064=-,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为22k +和2k (其中k 取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k 取正数)是神秘数吗?为什么?【解答】解:(1)设28和2012都是“神秘数”,设28是x 和2x -两数的平方差得到, 则22(2)28x x --=, 解得:8x =,26x ∴-=, 即222886=-,设2012是y 和2y -两数的平方差得到, 则22(2)2012y y --=, 解得:504y =, 2502y -=,即222012504502=-, 所以28,2012都是神秘数.(2)22(22)(2)(222)(222)4(21)k k k k k k k +-=+-++=+, ∴由22k +和2k 构造的神秘数是4的倍数,且是奇数倍.(3)设两个连续奇数为21k +和21k -, 则22(21)(21)842k k k k +--==⨯,即:两个连续奇数的平方差是4的倍数,是偶数倍,不满足连续偶数的神秘数为4的奇数倍这一条件.∴两个连续奇数的平方差不是神秘数.14.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即2222()a ab b a b ±+=±.例如:2(1)3x -+、2(2)2x x -+、2213(2)24x x -+是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项--见横线上的部分). 请根据阅读材料解决下列问题:(1)比照上面的例子,写出242x x -+三种不同形式的配方; (2)将22a ab b ++配方(至少两种形式);(3)已知2223240a b c ab b c ++---+=,求a b c ++的值. 【解答】解:(1)242x x -+的三种配方分别为:2242(2)2x x x -+=--,2242(4)x x x x -+=+-,22242x x x -+=-;(2)222()a ab b a b ab ++=+-,222213()24a ab b a b b ++=++;(3)222324a b c ab b c ++---+,222213()(33)(21)44a ab b b b c c =-++-++-+,222213()(44)(21)44a ab b b b c c =-++-++-+,22213()(2)(1)024a b b c =-+-+-=,从而有102a b -=,20b -=,10c -=,即1a =,2b =,1c =,4a b c ∴++=.15.一天,小明和小玲玩纸片拼图游戏,发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式,比如图②可以解释为:22(2)()32a b a b a ab b ++=++(1)图③可以解释为等式: 22(2)(2)252a b a b a ab b ++=++. .(2)要拼出一个长为3a b +,宽为2a b +的长方形,需要如图所示的 块,块, 块.(3).如图④,大正方形的边长为m ,小正方形的边长为n ,若用x 、y 表示四个小长方形的两边长()x y >,观察图案,以下关系式正确的是 (填序号).①224m n xy -=②x y m +=③22x y m n -=④22222m n x y ++=【解答】解:(1)图③可以解释为等式:2222(2)(2)242252a b a b a ab ab b a ab b ++=+++=++ 故答案为:22(2)(2)252a b a b a ab b ++=++. (2)22(3)(2)273a b a b a ab b ++=++ 故答案为:2;7;3. (3)224m n xy -= ∴①正确;x y m +=∴②正确;x y m +=,x y n -=()()x y x y mn ∴+-=,即22x y mn -=,故③正确;22222222()()222()m n x y x y x y x y +=++-=+=+∴④正确.故答案为:①②③④.16.先阅读下列材料,再解答后面的问题.一般地,若(0n a b a =>且1a ≠,0)b >,则n 叫做以a 为底b 的对数,记为log a b (即log )a b n =.如4381=,则4叫做以3为底81的对数,记为3log 81(即3log 814)=.(1)计算以下各对数的值:2log 4= 2 ,2log 16= ,2log 64= .(2)观察(1)中三数4、16、64之间满足怎样的关系式,2log 4、2log 16、2log 64之间又满足怎样的关系式;(3)猜想一般性的结论:log log a a M N += (0a >且1a ≠,0M >,0)N >,并根据幂的运算法则:m n m n a a a +=以及对数的含义证明你的猜想. 【解答】解:(1)2log 42=,2log 164=,2log 646=;(2)222log 4log 16log 64+=;(3)猜想log log log ()a a a M N MN +=.证明:设1log a M b =,2log a N b =,则1b a M =,2b a N =, 故可得1212b b b b MN a a a +==,12log ()a b b MN +=, 即log log log ()a a a M N MN +=. 17.阅读理解题:定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为(a bi a +,b 为实数),a 叫这个复数的实部,b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似. 例如计算:(2)(34)53i i i ++-=-. (1)填空:3i = i - ,4i = . (2)计算:①(2)(2)i i +-;②2(2)i +;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知:()3(1)x y i x yi ++=--,(x ,y 为实数),求x ,y 的值.(4)试一试:请利用以前学习的有关知识将11ii+-化简成a bi +的形式. 【解答】解:(1)21i =-, 321i i i i i ∴==-=-,4221(1)1i i i ==--=,(2)①2(2)(2)4145i i i +-=-+=+=; ②22(2)4414434i i i i i +=++=-++=+;(3)()3(1)x y i x yi ++=--, 1x y x ∴+=-,3y =-,2x ∴=,3y =-;(4)21(1)(1)(1)21(1)(1)22i i i i i i i i i ++++====--+.18.阅读理解题 阅读材料:两个两位数相乘,如果这两个因数的十位数字相同,个位数字的和是10,该类乘法的速算方法是;将一因数的十位数字与另一个因数的十位数字加1的和相乘,所得的积作为计算结果的后两位(数位不足的两位,用零补齐).比如4743⨯,它们的乘积的前两位是4(41)20⨯+=,它们乘积的后两位是7321⨯=.所以47432021⨯=;再如6268⨯,它们乘积的前两位是6(61)42⨯+=,它们乘积的后两位是2816⨯=,所以62684216⨯=.又如2129⨯,2(21)6⨯+=,不足两位,就将6写在百位;199⨯=,不足两位,就将9写在个位,十位上写零,所以2129609⨯=.该速算方法可以用我们所学的整式的乘法的知识说明其合理性:设其中一个因数的十位数字为a ,个位数字是b ,(a ,b 表示1到9的整数) 则该数可表示为10a b +,另一因数可表示为10(10)a b +-. 两数相乘可得:22(10)[10(10)]10010(10)100(10)100100(10)100(1)(10)a b a b a a b ab b b a a b b a a b b ++-=+-++-=++-=++-.(注:其中(1)a a +表示计算结果的前两位,(10)b b -表示计算结果的后两位.) 问题:两个两位数相乘,如果其中一个因数的十位数字与个位数字相同,另一因数的十位数字与个位数字之和是10.如4473⨯、7728⨯、5564⨯等.(1)探索该类乘法的速算方法,请以4473⨯为例写出你的计算步骤.(2)设十位数字与个位数字相同的因数的十位数字是a ,则该数可以表示为 10a a + .设另一因数的十位数字是b ,则该数可以表示为 .(a ,b 表示1~9的正整数) (3)请针对问题(1),(2)的计算,模仿阅读材料中所用的方法写出. 如:100(1)(10)a a b b ++-的运算式.【解答】解:(1)47432⨯+=,4312⨯=,44733212∴⨯=.(2)十位数字与个位数字相同的因数的十位数字是a ,则该数可以表示为10a a +, 另一因数的十位数字是b ,则该数可以表示为10(10)b b +-. 故答案为10a a +、10(10)b b +-.(3)设其中一个因数的十位数字为a ,个位数字也是a 则该数可表示为10a a +,设另一因数的十位数字是b ,则该数可以表示为10(10)(b b a +-,b 表示1到9的整数). 两数相乘可得:(10)[10(10)]10010(10)10(10)a a b b ab a b ab a b ++-=+-++- 100100(10)ab a a b =++- 100(1)(10)a b a b =++-.19.以下关于x 的各个多项式中,a ,b ,c ,m ,n 均为常数. (1)根据计算结果填写下表:。
乘法公式练习题
乘法公式练习题乘法是数学中一种基本的运算方式,它是将两个或多个数相乘的操作。
在解决实际问题和数学计算中,乘法是一个常用的运算。
为了提高乘法运算的技巧和熟练度,我们需要进行大量的练习。
本文将为大家提供一些乘法公式练习题,帮助大家巩固和提高自己的乘法运算能力。
练习一:简单的乘法计算1. 2乘以3等于几?2. 5乘以6等于几?3. 8乘以4等于几?答案:1. 2乘以3等于6。
2. 5乘以6等于30。
3. 8乘以4等于32。
练习二:带有括号的乘法计算2. (5-2)乘以6等于几?3. (8-4)乘以(2+2)等于几?答案:1. (2+3)乘以4等于20。
2. (5-2)乘以6等于18。
3. (8-4)乘以(2+2)等于16。
练习三:多位数的乘法计算1. 12乘以5等于几?2. 45乘以6等于几?3. 78乘以9等于几?答案:1. 12乘以5等于60。
2. 45乘以6等于270。
练习四:乘法交换律的应用1. 3乘以7等于几?7乘以3等于几?是不是两次得到的结果相同?2. 8乘以9等于几?9乘以8等于几?是不是两次得到的结果相同?3. 6乘以4等于几?4乘以6等于几?是不是两次得到的结果相同?答案:1. 3乘以7等于21,7乘以3等于21,是的,两次得到的结果相同。
2. 8乘以9等于72,9乘以8等于72,是的,两次得到的结果相同。
3. 6乘以4等于24,4乘以6等于24,是的,两次得到的结果相同。
练习五:乘法分配律的应用1. 5乘以(2+3)等于几?2. (4+6)乘以8等于几?3. (7-2)乘以(9-5)等于几?答案:1. 5乘以(2+3)等于25。
2. (4+6)乘以8等于80。
3. (7-2)乘以(9-5)等于20。
通过以上练习题,我们可以加深对乘法公式以及乘法运算规律的理解和掌握。
在实际问题中,乘法运算常常被广泛应用。
通过大量练习,我们能够快速准确地进行乘法计算,提高自己的数学运算能力。
希望通过这些乘法练习题,大家能够更好地理解和应用乘法公式,为解决实际问题提供帮助。
乘法公式练习题初二答案
乘法公式练习题初二答案一、填空题1. 52 × 6 = 3122. 89 × 4 = 3563. 76 × 7 = 5324. 45 × 8 = 3605. 64 × 3 = 1926. 78 × 9 = 7027. 33 × 5 = 1658. 57 × 2 = 1149. 68 × 4 = 27210. 95 × 1 = 95二、选择题1. 用乘法公式计算:92 × 3 = ?a) 168 b) 270 c) 276 d) 2760选项c) 2762. 将下列计算式转化为乘法公式:27 + 27 + 27 + 27 = ?a) 27 × 4 b) 27 × 3 c) 27 × 2 d) 27 × 1选项b) 27 × 33. 小明买了3袋橙子,每袋有20个。
他共买了多少个橙子?a) 20 b) 40 c) 60 d) 80选项c) 604. 用乘法公式计算:9 × 9 = ?a) 18 b) 81 c) 90 d) 99选项b) 815. 把7用乘法公式表示为:?a) 7 × 2 b) 7 × 3 c) 7 × 4 d) 7 × 5选项d) 7 × 5三、解答题1. 小明购买了4个相同的书包,每个书包的价格是35元。
他一共花了多少钱?答:小明一共花了4 × 35 = 140 元。
2. 一个篮球队有9名队员,每个队员身上都有一件队服,每件队服的价格是65元。
这个队花了多少钱买队服?答:这个队花了9 × 65 = 585 元。
3. 一个水果摊上有6箱橙子,每箱橙子有15个。
这个水果摊上一共有多少个橙子?答:这个水果摊上一共有6 × 15 = 90 个橙子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乘法公式提升练习题
一、完全平方公式
(1)(-21ab 2-3
2c )2; (2)(x -3y -2)(x +3y -2); (3)(x -2y )(x 2-4y 2)(x +2y );
(4)(2a +3)2+(3a -2)
2 (5)(a -2b +3c -1)(a +2b -3c -1);
(6)(s -2t )(-s -2t )-(s -2t )2; (7)(t -3)2(t +3)2(t 2+9)2
.
二、完全平方式
1、若k x x ++22是完全平方式,则k =
2、.若x 2-7xy +M 是一个完全平方式,那么M 是
3、如果4a 2-N ·ab +81b 2
是一个完全平方式,则N = 4、如果2
24925y kxy x +-是一个完全平方式,那么k = 三、公式的逆用
1.(2x -______)2=____-4xy +y 2. 2.(3m 2+_______)2=_______+12m 2
n +________.
3.x 2-xy +________=(x -______)2. 4.49a 2-________+81b 2=(________+9b )2. 5.代数式xy -x 2-4
1y 2等于( )2 四、配方思想
1、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=、已知0136422=+-++y x y x ,求y x =_______.
3、已知222450x y x y +--+=,求21(1)2
x xy --=_______. 4、已知x 、y 满足x 2十y 2十4
5=2x 十y ,求代数式y x xy +=_______.
5.已知014642222=+-+-++z y x z y x ,则z y x ++= .
6、已知三角形ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,
请说明该三角形是什么三角形
五、完全平方公式的变形技巧
1、已知 2
()16,4,a b ab +==求223a b +与2()a b -的值。
2、已知2a -b =5,ab =23,求 4a 2+b 2
-1的值.
3、已知16x x
-=,求221x x +,441x x + 4、0132=++x x ,求(1)221x x +(2)441x x +
六、利用乘法公式进行计算
(1)972; (2)20022; (3)992-98×100;
(4)49×51-2499. (5))200011)(199911()311)(211(2
222----
七、“整体思想”在整式运算中的运用
1、当代数式532++x x 的值为7时,求代数式2932-+x x =________.
2、已知2083-=x a ,1883-=x b ,168
3-=x c ,求:代数式bc ac ab c b a ---++222的值。
3、已知a=1999x+2000,b =1999x+2001,c =1999x+2002,则多项式a 2+b 2+c 2一ab —bc-ac
的值为( ). A .0 B .1 C .2 D .3
4、 已知2=x 时,代数式10835=-++cx bx ax ,当2-=x 时,代数式835-++cx bx ax 的值
5、若123456786123456789⨯=M ,123456787123456788⨯=N
试比较M 与N 的大小
练习:
1.若x ,y 互为不等于0的相反数,n 为正整数,你认为正确的是
、y n 一定是互为相反数 B.(x 1)n 、(y 1)n 一定是互为相反数 、y 2n 一定是互为相反数 -1、-y 2n -1一定相等
2、已知两个连续奇数的平方差为2000,则这两个连续奇数可以是 .
3、若x 是不为0的有理数,已知)12)(12(22+-++=x x x x M ,
)1)(1(22+-++=x x x x N ,则M 与N 的大小是( )
A .M>N
B . M<N
C . M=N
D .无法确定
4.已知5,3-=+=-c b b a ,则代数式ab a bc ac -+-2的值为( ).
A .一15
B .一2
C .一6
D .6
5.若4,222=+=-y x y x ,则20022002y x +的值是( ).
A .4
B .20022
C . 22002
D .42002
6.如图①,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b),把余下的部分
剪拼成一个矩形(如图②),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( ).
A .))((22b a b a b a -+=-
B .2222)(b ab a b a ++=+
C .2222)(b ab a b a +-=-
D .222))(2(b ab a b a b a -+=-+
7.(1)若x+y =10,x 3+y 3=100,则x 2+y 2=
(2)若a-b=3,则a 3-b 3-9ab = .
8.已知x 2-5x +1=0,则x 2+21x
=________.。