广东省廉江市第三中学2014届高三数学专题复习 立体几何初步教案
《立体几何综合复习》教学设计
《高三立体几何综合复习》教学设计一、教材分析立体几何是高中数学的重要概念之一。
最近几年高考对立体几何的要求发生了很大的变化,注重空间的平行与垂直关系的判定,淡化空间角和空间距离的考查,因此立体几何的难度和以往相比有大幅度的降。
因此依据考试说明的要求在高三复习中制定以下目标:1.高度重视立体几何基础知识的复习,扎实地掌握基本概念、定理和公式等基础知识。
2.复习过程中指导学生通过网络图或框图主动建构完整的知识体系,尤其要以线线、线面、面面三种位置关系形成网络,能够熟练地转化和迁移。
3.重视模型复习,强化学生的“想图、画图、识图、解图”的能力,重视图形语言、文字语言、符号语言转化的训练。
尤其重视对所画的立体图形、三视图与真实图形思维理解上的一致性。
4.在完成解答题时,要重视培养学生规范书写,注意表述的逻辑性及准确性,要注意训练学生思考的严谨性,在计算相关量时应做到“一作、二证、三算”。
做好本节课的复习,对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有重要的意义。
二、学情分析在传统的高中数学立体几何的学习中,采取的基本方法:面面俱到的知识点整理,典型的例题解答,课堂的跟踪训练,灌输解题规律,这种模式由于缺乏新意,学生思维难以兴奋,发散性思维受到抑制,创新意识逐渐消弱,学习的效果可想而知。
因此立体几何的学习只有深入到学科知识的内部,充分调动学生的思维,触及学生的兴奋点,这样才能达到高效学习的目的。
三、设计思想在新课程理念下,在立体几何教学中我进行了研究性学习的尝试,所谓研究性学习就是应用研究性学习的理念、方法去指导立体几何,学生在教师的引导下尽可能地采取自主性、探究性的学习方式,不仅要注意基础知识的学习,更应该关注自身综合素质、创新意识的提高。
让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。
四、媒体手段利用电子白板,幻灯片课件,几何画板软件。
让学生分组自己动手利用几何画板绘制立体图形,分组讨论得出结论,充分调动学生的学习的积极性主动性,自主的发现问题,找到解决问题的方法。
立体几何专题复习教学设计
立体几何专题教学设计【考情分析】立体几何主要培养学生的发展空间想像能力和推理论证能力。
立体几何是高考必考的内容,试题一般以“两小题一大题或一大题一小题”的形式出现,分值在17—22分左右。
近三年的试题中必有一个选择题是以三视图为背景,来考查空间几何体的表面积或体积。
立体几何在高考中的考查难度一般为中等,从解答题来看,立体几何大题所处的位置为前4道,有承上启下的作用。
主要考查的知识点有: 1.客观题考查的知识点:(1) 判断:线线、线面、面面的位置关系;(2) 计算:求角(异面直线所成角、线面角、二面角);求距离(主要是点面距离、球面距离);求表面积、体积;(3) 球内接简单几何体(正方体、长方体、正四面体、正三棱锥、正四棱柱) (4)三视图、直观图(由几何体的三视图作出其直观图,或由几何体的直观图判断其三视图)2.主观题考查的知识点:(1)有关几何体:四棱锥、三棱锥、(直、正)三、四棱柱;(2)研究的几何结构关系:以线线、线面(尤其是垂直)为主的点线面位置关系; (3)研究的几何量:二面角、线面角、异面直线所成角、线线距、点面距离、面积、体积。
其中,解答题的第二问一般都是求一个空间角,而且都能通过传统方法(几何法)和空间向量两种方法加以解决。
【课时安排】本专题复习时间为三课时:第一课时:空间几何体,主要包括三部分内容:一是空间几何体的结构特征,二是空间几何体的三视图和直观图,三是空间几何体表面积和体积。
第二课时:空间点、线、面的位置关系:主要包括平面的基本性质、平行问题、垂直问题。
第三课时:空间向量及其应用:主要包括空间角和距离的求解。
【基本题型与解决策略】基本题型一:以三视图为背景考查空间几何体的表面积与体积例1.一个几何体的三视图如图所示,其中主视图是边长为2的正三角形,俯视图为正六边形,那么该几何体的体积为 .解决策略:涉及到柱、锥、台、球及其简单组合体的侧面积和体积的计算问题,要根据其结构特征和公式来计算,另外要重视空间问题平面化的思想和割补法、等积转换法的运用;三视图为新增内容,考查不无可能,关键要培养学生的空间想象能力,会“识图”、“复图”。
《几何图形初步》复习参考教案
第四章《几何图形初步》复习教案教学目标1.使学生理解本章的知识结构,并通过本章的知识结构掌握本章的全部知识;2.对线段、射线、直线、角的概念及它们之间的关系有进一步的认识;3.掌握本章的全部定理和公理;4.理解本章的数学思想方法;5.了解本章的题目类型.教学重点和难点重点是理解本章的知识结构,掌握本章的全部定理和公理;难点是理解本章的数学思想方法.教学手段引导——活动——讨论教学方法启发式教学教学过程一、引导学生画出本章的知识结构框图1 / 72 / 7⎧⎨⎩⎧⎨⎩二、具体知识点梳理 (一)几何图形立体图形:棱柱、棱锥、圆柱、圆锥、球等。
1、几何图形平面图形:三角形、四边形、圆等。
主视图--------从正面看2、几何体的三视图 左视图--------从左边看 俯视图--------从上面看(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图。
(2)能根据三视图描述基本几何体或实物原型。
3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的。
(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型。
4、点、线、面、体 (1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
(二)直线、射线、线段 1、基本概念直线射线线段图形端点个数 无 一个 两个 表示法直线a 直线AB (BA ) 射线AB线段a 线段AB (BA ) 作法叙述 作直线AB ; 作直线a作射线AB作线段a ; 作线段AB ;连接AB延长叙述不能延长反向延长射线AB延长线段AB;反向延长线段BA2、直线的性质经过两点有一条直线,并且只有一条直线。
简单地:两点确定一条直线。
3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点。
数学高中立体几何初步教案
数学高中立体几何初步教案
教学目标:
1.了解立体几何的基本概念和性质
2.掌握立体几何的基本公式和计算方法
3.培养学生分析和解决问题的能力
教学内容:
1. 立体几何的基本概念
2. 空间的点、直线、面
3. 空间几何体的投影
4. 空间几何体的旋转体
教学过程:
1.导入:通过展示几何体模型或图片引发学生对立体几何的兴趣
2.讲解立体几何的基本概念和性质,如点、直线、面等的定义和特点
3.讲解空间几何体的投影和旋转体的概念,引导学生理解其形成及应用
4.指导学生完成相关练习和作业,巩固所学知识
5.进行课堂讨论和展示,总结重点知识和难点
教学方法:
1.讲授法:通过教师讲解和示范引导学生理解概念和性质
2.讨论法:通过小组讨论和互动,促进学生思考和交流
3.实践法:通过实际练习和应用, 提高学生解决问题的能力
评价与反思:
1.对学生掌握情况进行诊断性评价,及时调整教学步骤和方法
2.反思教学过程中的不足和改进方案,提高教学效果和学生学习质量拓展与应用:
1.鼓励学生积极参与校内外竞赛或活动,提高立体几何能力
2.激发学生对数学的兴趣, 培养其数学建模和解决实际问题的能力教学反馈:
1.及时对学生的学习情况进行反馈,并提供个性化指导和帮助
2.鼓励学生在学习立体几何中发现问题,并主动探索解决方案
教师签名:_________ 日期:_________。
高中数学教案《立体几何初步》
教学设计:《立体几何初步》一、教学目标1.知识与技能:学生能够理解空间几何体的基本概念,掌握点、线、面的位置关系及基本性质,能够识别并绘制简单的空间图形,理解并计算空间几何体的表面积和体积。
2.过程与方法:通过观察、分析、比较等数学活动,培养学生的空间想象能力和逻辑推理能力;通过小组合作,提高学生解决问题的合作与交流能力。
3.情感态度与价值观:激发学生对立体几何的兴趣,培养学生勇于探索、敢于质疑的科学精神;在解决问题过程中,体验数学的严谨性和美感。
二、教学重点和难点●重点:空间几何体的基本性质,点、线、面的位置关系,空间几何体的表面积和体积计算。
●难点:空间想象能力的培养,复杂空间图形的识别与绘制,以及利用空间几何性质解决实际问题。
三、教学过程1. 导入新课(5分钟)●生活实例引入:展示生活中常见的立体几何体(如建筑、家具、自然物体等),引导学生观察并讨论它们的共同特征,引出立体几何的概念。
●问题驱动:提出一个与立体几何相关的问题,如“如何计算一个房间的体积?”激发学生好奇心,为新课学习做好铺垫。
●明确目标:简要说明本节课的学习目标和任务,让学生有清晰的学习方向。
2. 知识点讲解(15分钟)●基本概念阐述:详细讲解空间几何体的定义、分类及基本性质,包括棱柱、棱锥、圆柱、圆锥等。
●位置关系分析:通过图示和实例,讲解点、线、面在空间中的位置关系,如平行、垂直、相交等,并引导学生理解其性质。
●公式推导:简要推导空间几何体表面积和体积的计算公式,让学生理解公式的来源和适用范围。
3. 直观演示与操作(10分钟)●多媒体演示:利用多媒体课件展示空间几何体的动态形成过程,帮助学生建立直观的空间形象。
●实物模型展示:展示空间几何体的实物模型,让学生亲手触摸、观察,加深对空间图形的认识。
●动手实践:组织学生进行简单的空间图形绘制活动,如用直尺和圆规绘制棱柱的俯视图、左视图等。
4. 问题解决与讨论(15分钟)●例题讲解:选取几道典型例题,讲解如何利用空间几何的性质和公式解决问题。
广东省廉江市第三中学高三数学专题复习 立体几何平面的基本性质学案
广东省廉江市第三中学2014届高三数学专题复习 立体几何平面的基本性质学案一、知识点:1.平面的概念:平面是没有厚薄的,可以无限延伸,这是平面最基本的属性2.平面的画法及其表示方法:①常用平行四边形表示平面通常把平行四边形的锐角画成45 ,横边画成邻边的两倍画两个平面相交时,当一个平面的一部分被另一个平面遮住时,应把被遮住的部分画成虚线或不画(面实背虚) ②一般用一个希腊字母α、β、γ……来表示,还可用平行四边形的对角顶点的字母来表示如平面AC 等3.空间图形是由点、线、面组成的点、线、面的基本位置关系如下表所示:图形 符号语言 文字语言(读法) 图形 符号语言 文字语言(读法) A a A a ∈点A 在直线a 上 a αa α⊂ 直线a 在平面α内A a A a ∉点A 不在直线a 上a αa α=∅ 直线a 与平面α无公共点A α∈点A 在平面α内a A α= 直线a 与平面α交于点A A αA α∉点A 不在平面α内 a Aa b A = 直线a 、b 交于A 点l αβ= 平面α、β相交于直线lα⊄a (平面α外的直线a )表示a α=∅ (a α )或a A α=4 平面的基本性质公理1 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内 推理模式:A AB B ααα∈⎫⇒⊂⎬∈⎭. 如图示: 应用:是判定直线是否在平面内的依据,也可用于验证一个面是否是平面.公理1说明了平面与曲面的本质区别.通过直线的“直”来刻划平面的“平”,通过直线的“无限延伸”来描述平面的“无限延展性”,它既是判断直线在平面内,又是检验平面的方法.公理2如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线推理模式:A l A ααββ∈⎫⇒=⎬∈⎭且A l ∈且l 唯一如图示: 应用:①确定两相交平面的交线位置;②判定点在直线上公理2揭示了两个平面相交的主要特征,是判定两平面相交的依据,提供了确定两个平面交线的方法.公理3 经过不在同一条直线上的三点,有且只有一个平面推理模式:,, A B C 不共线⇒存在唯一的平面α,使得,,A B C α∈应用:①确定平面;②证明两个平面重合“有且只有一个”的含义分两部分理解,“有”说明图形存在,但不唯一,“只有一个”说明图形如果有顶多只有一个,但不保证符合条件的图形存在,“有且只有一个”既保证了图形的存在性,又保证了图形的唯一性.在数学语言的叙述中,“确定一个”,“可以作且只能作一个”与“有且只有一个”是同义词,因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证.二、基本题型:1 下面是一些命题的叙述语,其中命题和叙述方法都正确的是( )A .∵αα∈∈B A ,,∴α∈AB . B .∵βα∈∈a a ,,∴a =βα .C .∵α⊂∈a a A ,,∴A α∈.D .∵α⊂∉a a A ,,∴α∉A .2.下列推断中,错误的是( )A .ααα⊂⇒∈∈∈∈lB l B A l A ,,,C .βα∈∈C B A C B A ,,,,,,且A,B,C 不共线βα,⇒重合B .AB B B A A =⇒∈∈∈∈βαβαβα ,,, D .αα∉⇒∈⊄A l A l ,3.两个平面把空间最多分成___ 部分,三个平面把空间最多分成__部分.4.判断下列命题的真假,真的打“√”,假的打“×”(1)空间三点可以确定一个平面 ( )(2)两个平面若有不同的三个公共点,则两个平面重合( )(3)两条直线可以确定一个平面( )(4)若四点不共面,那么每三个点一定不共线( )(5)两条相交直线可以确定一个平面( )(6)三条平行直线可以确定三个平面( )(7)一条直线和一个点可以确定一个平面( )(8)两两相交的三条直线确定一个平面( )5.看图填空 (1)AC ∩BD = (4)平面A 1C 1CA ∩平面D 1B 1BD =(2)平面AB 1∩平面A 1C 1= (5)平面A 1C 1∩平面AB 1∩平面B 1C =(3)平面A 1C 1CA ∩平面AC = (6)A 1B 1∩B 1B ∩B 1C 1= 6 6.选择题(1)下列图形中不一定是平面图形的是 ( )A 三角形B 菱形 C 梯形 D 四边相等的四边形1(2)空间四条直线每两条都相交,最多可以确定平面的个数是()A 1个 B 4个C 6个D 8个(3)空间四点中,无三点共线是四点共面的()(A)充分不必要条件(B)必要不充分条件(C)充分必要条件(D)既不充分也不必要7.已知直线a//b//c,直线d与a、b、c分别相交于A、B、C,求证:a、b、c、d四线共面.。
广东省廉江市第三中学2014届高考数学必修内容复习分类讨论思想概要
高中数学必修内容复习(14)—分类议论思想 一、选择题〔本题每题5分,共60分〕1.用0,1,2,3四个数字构成没有重复数字的自然数,把这些自然数从小到大排成一数列,那么1230是这个数列的〔 〕A .第30项B .第32项C .第33项D .第34项 2.函数 f(x)=3-2|x|,g(x)=x 2-2x ,结构函数 F(x),定义以下:当f(x)≥g(x)时,F(x)=g(x);当f(x)<g(x)时,F(x)=f(x),那么F(x)〔〕A .有最大值3,最小值-1B .有最大值3,无最小值C .有最大值7-27,无最小值D .无最大值,也无最小 值 3.从长度分别为 1,2,3,4的四条线段中,任取三条的不一样取法共有 n 种,在这些取法中,以拿出的三条线段为边可构成的三角形的个数为 m ,那么m等于 〔〕 1 1 n 1A .0B .4 C . D .2 6n睁开式的各项系数和为a n ,其二项式系数和为b n ,那么 lim n b n a n等4.记二项式〔1+2x 〕bn an于〔〕A .1B .-1C .0D .不存在5.过点C(1,2)作直线,使其在座标轴上的截距相等,那么知足条件的直线的斜率为〔〕A .1B . 1C .1或2D .1或2 6.设函数f(x)1(x 0)a b)f(ab)(ab)的值为1 (x ,那么(ab)(〔 〕0)2 A .aB .bC .a 、b 中较小的数D .a 、b 中较大的数 7.点P 在定圆O 的圆内或圆周上,圆C 经过点P 且与定圆O 相切,那么动圆C 的圆心轨迹是〔〕A.圆或椭圆或双曲线B.两条射线或圆或抛物线C.两条射线或圆或椭圆D.椭圆或双曲线和抛物线8.假定会合A1、A2知足A1∪A2=A,那么称〔A1,A2〕为会合A的一个分拆,并规定:当且仅当A1=A2时,〔A1,A2〕与〔A2,A1〕为会合A的同一种分拆,那么会合A={a1,a2,a3}的不一样分拆种数是〔〕1n 2,当 n 为奇数时 )9.函数f(n)( 且af(n) f(n1),那么aaaa2,当为偶数时n ) n 12 3100( n等于〔〕A .0B .100C .-100D .1020010.四周体的极点和各棱的中点共10个点,在此中取 4个点,那么这四个点不共面的概率为〔〕5B . 724D .47A .C .707103511.设双曲线的左、右焦点为F 1、F 2,左、右极点为 M 、N ,假定PF 1F 2的一个极点P 在双曲线上,那么PF 1F 2的内切圆与边F 1F 2的切点的地点是〔〕A .在线段MN 的内部B .在线段F 1M 的内部或N F 2内部C .点N 或点MD .以上三种状况都有可能12.从5位男教师和 4位女教师中选出3位教师,派到3个班担当班主任〔每班1位班主任〕, 要求这 3位班主任中男、女教师都要有,那么不一样的选派方案共有〔 〕 A .210种B .420种C .630种D .840种二、填空题〔本题每题4分,共16分〕1x 013.定义符号函数sgnxx 0,那么不等式:x2(2x1)sgnx 的解集是.1 x 014.正ABC 的边长为 2 3 ,那么到三个极点的距离都为1的平面有_________个.15.从装有n 1个球〔此中n 个白球,1个黑球〕的口袋中拿出m 个球0 m n,m,n N ,共有C n m 1种取法。
广东省廉江市第三中学高三数学专题复习 立体几何判定方法汇总学案
广东省廉江市第三中学2014届高三数学专题复习立体几何判定方法汇总学案一、判定两线平行的方法1、平行于同一直线的两条直线互相平行2、垂直于同一平面的两条直线互相平行3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行5、在同一平面内的两条直线,可依据平面几何的定理证明二、判定线面平行的方法1、据定义:如果一条直线和一个平面没有公共点2、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行3、两面平行,则其中一个平面内的直线必平行于另一个平面4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面三、判定面面平行的方法1、定义:没有公共点2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行3 垂直于同一直线的两个平面平行4、平行于同一平面的两个平面平行四、面面平行的性质1、两平行平面没有公共点2、两平面平行,则一个平面上的任一直线平行于另一平面3、两平行平面被第三个平面所截,则两交线平行4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面五、判定线面垂直的方法1、定义:如果一条直线和平面内的任何一条直线都垂直,则线面垂直2、如果一条直线和一个平面内的两条相交线垂直,则线面垂直3、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面4、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面5、如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面6、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面六、判定两线垂直的方法90角1、定义:成2、直线和平面垂直,则该线与平面内任一直线垂直3、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直4、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直5、 一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直七、判定面面垂直的方法1、 定义:两面成直二面角,则两面垂直2、 一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面八、面面垂直的性质1、 二面角的平面角为︒902、 在一个平面内垂直于交线的直线必垂直于另一个平面3、 相交平面同垂直于第三个平面,则交线垂直于第三个平面一、面积:1、ch s =直棱柱侧 ()为直截面周长斜棱柱侧``c l c s = rh cl s π2==圆柱侧2、中截面面积:2`0ss s +=3、`21ch s =正棱锥侧 rl cl s π==21圆锥侧4、()``21h c c s +=正棱台侧 ()()l r r l c c s ``21+=+=π圆台5、预备定理ph s π2=锥球内接圆台,圆柱,圆①24r s π=球 ②rh s π2=球带 ③)(222h r rh s +==ππ球冠6、面积比是相似比的平方,体积比是相似比的立方7、圆锥轴截面的顶角α和侧面展开图的圆心角θ的关系为:2sin 22αππθ⋅=⋅=l r 8、圆台上、下底面半径为r`、r ,母线为l,圆台侧面展开后所得的扇环圆心角为θ,则:l c c l r r l r r `2`360`-=⋅-=︒⋅-=πθ9、圆锥中,过两母线的截面面积为s当轴截面顶角(]︒︒∈90,0α时,αsin 212l s s ==轴截面截面最大 当轴截面顶角[)︒︒∈180,90α时,轴截面截面最大s l l s ≠=︒=222190sin 21 10、球面距离θ⋅=R l (θ用弧度表示,R l=θ)二、体积1、l s sh V `==棱柱(s`为直截面面积) sh h r V =⋅=2π圆柱2、sh V 31=棱锥 sh h r V 31312=⋅=π圆锥3、`)`(31s s s s h V +⋅+=棱台 =++=)``(3122r rr r h V π圆台`)`(31s s s s h +⋅+4、334R V π=球5、)3(31)3(61222h R h h r h V -=+=ππ球缺6、)(31体适用于有内切球的多面内切球半径表体r S V ⋅=。
广东省廉江市第三中学高考数学必修内容复习 直线、平
广东省廉江市第三中学2014届高考数学必修内容复习 直线、平面、简单几何体一、选择题: (本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1、已知),1,2,1(),1,1,0(-=-=b a 则a 与b 的夹角等于A .90°B .30°C .60°D .150°2、设M 、O 、A 、B 、C 是空间的点,则使M 、A 、B 、C 一定共面的等式是A .0=+++OC OB OA OMB .OC OB OA OM --=2 C .OC OB OA OM 413121++=D .0=++MC MB MA3、下列命题不正确的是A .过平面外一点有且只有一条直线与该平面垂直;B .如果平面的一条斜线在平面内的射影与某直线垂直,则这条斜线必与这条直线垂直;C .两异面直线的公垂线有且只有一条;D .如果两个平行平面同时与第三个平面相交,则它们的交线平行。
4、若m 、n 表示直线,α表示平面,则下列命题中,正确的个数为①//m n n m αα⎫⇒⊥⎬⊥⎭②//m m n n αα⊥⎫⇒⎬⊥⎭③//m m n n αα⊥⎫⇒⊥⎬⎭④//m n m n αα⎫⇒⊥⎬⊥⎭A .1个B .2个C .3个D .4个5、四棱锥成为正棱锥的一个充分但不必要条件是A .各侧面是正三角形B .底面是正方形C .各侧面三角形的顶角为45度D .顶点到底面的射影在底面对角线的交点上 6、若点A (42+λ,4-μ,1+2γ)关于y 轴的对称点是B (-4λ,9,7-γ),则λ,μ,γ的值依次为A .1,-4,9B .2,-5,-8C .-3,-5,8D .2,5,87、已知一个简单多面体的各个顶点处都有三条棱,则顶点数V 与面数F 满足的关系式是A .2F+V=4B .2F -V=4C .2F+V=2 (D )2F -V=28、侧棱长为2的正三棱锥,若其底面周长为9,则该正三棱锥的体积是A .239B .433C .233D .439 9、正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是棱AB ,BB 1的中点,A 1E 与C 1F 所成的角是θ,则A .θ=600B .θ=450C .52cos =θ D .52sin =θ10、已知球面的三个大圆所在平面两两垂直,则以三个大圆的交点为顶点的八面体的体积与球体积之比是A .2∶πB .1∶2πC .1∶πD .4∶3π11、设A ,B ,C ,D 是空间不共面的四点,且满足0=⋅AC AB ,0=⋅AD AC ,0=⋅AD AB ,则△BCD 是A .钝角三角形B .直角三角形C .锐角三角形D .不确定12、将B ∠=600,边长为1的菱形ABCD 沿对角线AC 折成二面角θ,若∈θ[60°,120°],则折后两条对角线之间的距离的最值为A .最小值为43, 最大值为23B .最小值为43, 最大值为43C .最小值为41, 最大值为43D .最小值为43, 最大值为23二、填空题:(本大题共6题,每小题3分,共18分)17、若棱锥底面面积为2150cm ,平行于底面的截面面积是254cm ,底面和这个截面的距离是12cm ,则棱锥的高为 ;18、一个四面体的所有棱长都是2,四个顶点在同一个球面上,则此球的表面积为 .三、解答题:(本大题共6题,共46分)19、设空间两个不同的单位向量a r =(x 1, y 1 ,0),b =(x 2, y 2,0)与向量c =(1,1,1)的夹角都等于4π,求2211y x y x ++的值(6分)20、在正方体ABCD ─A 1B 1C 1D 1中,M 、N 、P 分别是A 1B 1,BB 1,B 1C 1的中点,用空间向量的坐标运算证明:B 1D ⊥平面PMN 。
高中数学必修二《第八章 立体几何初步》复习教案及练习
《第八章立体几何初步》复习教案8.1 基本立体图形第1课时棱柱、棱锥、棱台的结构特征【基础知识拓展】1.几类特殊的四棱柱四棱柱是一种非常重要的棱柱,平行六面体(底面是平行四边形的四棱柱)、直平行六面体(侧棱垂直于底面的平行六面体)、长方体、正四棱柱、正方体等都是一些特殊的四棱柱,它们之间的关系如下.2.棱柱、棱锥、棱台之间的关系棱柱、棱锥、棱台之间有着内在的联系:将棱台的上底面慢慢扩大到与下底面相同时,转化为棱柱;将棱台的上底面慢慢缩小为一点时,转化为棱锥.如图所示.【跟踪训练】1.判一判(正确的打“√”,错误的打“×”)(1)棱柱的侧面可以不是平行四边形.( )(2)各面都是三角形的多面体是三棱锥.( )(3)棱台的上下底面互相平行,且各侧棱延长线相交于一点.( )答案(1)×(2)×(3)√2.做一做(1)有两个面平行的多面体不可能是( )A.棱柱 B.棱锥C.棱台 D.以上都错(2)面数最少的多面体的面的个数是________.(3)三棱锥的四个面中可以作为底面的有________个.(4)四棱台有________个顶点,________个面,________条边.答案(1)B (2)4 (3)4 (4)8 6 12【核心素养形成】题型一对棱柱、棱锥、棱台概念的理解例1 下列命题中,真命题有________.①棱柱的侧面都是平行四边形;②棱锥的侧面为三角形,且所有侧面都有一个公共点;③棱台的侧面有的是平行四边形,有的是梯形;④棱台的侧棱所在直线均相交于同一点;⑤多面体至少有4个面.[解析] 棱柱是由一个平面多边形沿某一方向平移而形成的几何体,因而侧面是平行四边形,故①正确.棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因而其侧面均是三角形,且所有侧面都有一个公共点,故②正确.棱台是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶点),故③错误,④正确.⑤显然正确.因而真命题有①②④⑤.[答案] ①②④⑤【解题技巧】关于棱柱、棱锥、棱台结构特征问题的解题方法(1)根据几何体的结构特征的描述,结合棱柱、棱锥、棱台的定义进行判断,注意判断时要充分发挥空间想象能力,必要时做几何模型通过演示进行准确判断.(2)解决该类题目需准确理解几何体的定义,要真正把握几何体的结构特征,并且学会通过举反例对概念类的命题进行辨析,即要说明一个命题是错误的,设法举出一个反例即可.【跟踪训练】下列关于棱锥、棱柱、棱台的说法:①棱台的侧面一定不会是平行四边形;②由四个平面围成的封闭图形只能是三棱锥;③棱锥被平面截成的两部分不可能都是棱锥;④棱柱的侧棱与底面一定垂直.其中正确说法的序号是________.答案①②解析①正确,棱台的侧面一定是梯形,而不是平行四边形;②正确,由四个平面围成的封闭图形只能是三棱锥;③错误,如图所示四棱锥被平面截成的两部分都是棱锥;④错误,棱柱的侧棱与底面不一定垂直.题型二对棱柱、棱锥、棱台的识别与判断例2 如图长方体ABCD-A1B1C1D1,(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCEF把这个长方体分成两部分,各部分的几何体还是棱柱吗?[解] (1)是棱柱.是四棱柱,因为长方体中相对的两个面是平行的,其余的每个面都是矩形(四边形),且每相邻的两个矩形的公共边都平行,符合棱柱的结构特征,所以是棱柱.(2)截后的各部分都是棱柱,分别为棱柱BB1F-CC1E和棱柱ABFA1-DCED1.[条件探究] 若本例(2)中将平面BCEF改为平面ABC1D1,则分成的两部分各是什么体?解截后的两部分分别为棱柱ADD1-BCC1和棱柱AA1D1-BB1C1.【解题技巧】棱柱判断的方法判断棱柱,依据棱柱的定义,先确定两个平行的面——底面,再判断其余面——侧面是否为四边形及侧棱是否平行.【跟踪训练】判断下图甲、乙、丙所示的多面体是不是棱台?解根据棱台的定义,可以得到判断一个多面体是不是棱台的标准有两个:一是共点,二是平行,即各侧棱延长线要交于一点,上、下两个底面要平行,二者缺一不可.据此,在图甲中多面体侧棱延长线不相交于同一点,不是棱台;图乙中多面体不是由棱锥截得的,不是棱台;图丙中多面体虽是由棱锥截得的,但截面与底面不平行,因此也不是棱台.题型三空间几何体的展开图问题例3 如下图是三个几何体的侧面展开图,请问各是什么几何体?[解] 由几何体的侧面展开图的特点,结合棱柱、棱锥、棱台的定义,可把侧面展开图还原为原几何体,如图所示:所以(1)为五棱柱,(2)为五棱锥,(3)为三棱台.【解题技巧】空间几何体的展开图(1)解答空间几何体的展开图问题要结合多面体的结构特征发挥空间想象能力和动手能力.(2)若给出多面体画其展开图,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面.(3)若是给出表面展开图,则按上述过程逆推.【跟踪训练】根据如下图所给的平面图形,画出立体图.解将各平面图折起来的空间图形如下图所示.【课堂达标训练】1.下列说法中,正确的是( )A.棱柱中所有的侧棱都相交于一点B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱相等,侧面是平行四边形答案 D解析A选项不符合棱柱的特点;B选项中,如图①,构造四棱柱ABCD-A1B1C1D1,令四边形ABCD是梯形,可知平面ABB1A1∥平面DCC1D1,但这两个面不能作为棱柱的底面;C选项中,如图②,底面ABCD可以是平行四边形;D选项是棱柱的特点.故选D.2.下列三种叙述,正确的有( )①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.A.0个 B.1个 C.2个 D.3个答案 A解析本题考查棱台的结构特征.①中的平面不一定平行于底面,故①错误;②③可用如图的反例检验,故②③不正确.故选A.3.下列图形中,不是三棱柱展开图的是( )答案 C解析本题考查三棱柱展开图的形状.显然C无法将其折成三棱柱,故选C.4.①棱锥的各个侧面都是三角形;②有一个面是多边形,其余各面都是三角形,由这些面围成的几何体是棱锥;③四面体的任何一个面都可以作为棱锥的底面;④棱锥的各侧棱长相等.以上说法正确的序号有________.答案①③解析由棱锥的定义,知棱锥的各侧面都是三角形,故①正确;有一个面是多边形,其余各面都是三角形,如果这些三角形没有一个公共顶点,那么这个几何体就不是棱锥,故②错误;四面体就是由四个三角形所围成的几何体,因此四面体的任何一个面作底面的几何体都是三棱锥,故③正确;棱锥的侧棱长可以相等,也可以不相等,故④错误.5.已知M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,求沿正方体表面从点A到M的最短路程是多少?解若以BC或DC为轴展开,则A,M两点连成的线段所在的直角三角形的两条直角边的长度分别为2 cm,3 cm,故两点之间的距离为13 cm,若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两条直角边的长度分别为1 cm,4 cm.故两点之间的距离是17 cm.故沿正方体表面从A到M的最短路程是13 cm.第2课时圆柱、圆锥、圆台、球和简单组合体的结构特征【基础知识拓展】1.圆柱、圆锥、圆台的关系如图所示.2.处理台体问题常采用还台为锥的补体思想.3.处理组合体问题常采用分割思想.4.空间几何体的轴截面(1)圆柱、圆锥、圆台可以分别看作以矩形的一条边、直角三角形的一条直角边、直角梯形垂直于底边的腰所在直线为旋转轴,经过旋转而成的曲面所围成的几何体.(2)圆柱、圆锥、圆台的轴截面分别是矩形、等腰三角形、等腰梯形,这些轴截面集中反映了旋转体的各主要元素,处理旋转体的有关问题时,一般要画出轴截面.(3)画出轴截面图形,将立体几何的空间问题转化为平面问题来计算,这种把有关立体几何问题转化为平面几何问题的数学思想方法是我们解决立体几何问题的重要思想方法.【跟踪训练】1.判一判(正确的打“√”,错误的打“×”)(1)到定点的距离等于定长的点的集合是球.( )(2)用平面去截圆锥、圆柱和圆台,得到的截面都是圆.( )(3)用平面截球,无论怎么截,截面都是圆面.( )答案(1)×(2)×(3)√2.做一做(1)圆锥的母线有( )A.1条 B.2条C.3条 D.无数条(2)图①中的几何体叫做________,O叫它的________,OA叫它的________,AB叫它的________.(3)图②的组合体是由________和________构成.(4)图③中的几何体有________个面.答案(1)D (2)球球心半径直径(3)圆柱圆锥(4)3【核心素养形成】题型一旋转体的概念例1 下列命题:(1)以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;(2)以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;(3)圆柱、圆锥、圆台的底面都是圆;(4)用一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数为( )A.0 B.1 C.2 D.3[解析] 根据圆柱、圆锥、圆台的概念不难做出判断.(1)以直角三角形的一条直角边为轴旋转才可以得到圆锥;(2)以直角梯形垂直于底边的一腰为轴旋转才可以得到圆台;(3)圆柱、圆锥、圆台的底面都是圆面;(4)用平行于圆锥底面的平面截圆锥,才可得到一个圆锥和一个圆台.故4个均不正确.[答案] A[条件探究] 若本例中(2)改为“以直角梯形的各边为轴旋转”,得到的几何体是由哪些简单几何体组成的?解①以垂直于底边的腰为轴旋转得到圆台;②以较长的底为轴旋转得到的几何体为一圆柱加上一个圆锥;③以较短的底为轴旋转得到的几何体为一圆柱挖去一个同底圆锥;④以斜腰为轴旋转得到的几何体为圆锥加上一个圆台挖去一个小圆锥.【解题技巧】平面图形旋转形成的几何体的结构特征圆柱、圆锥、圆台和球都是由平面图形绕着某条轴旋转而成的,平面图形不同,得到的旋转体也不同,即使是同一平面图形,所选轴不同,得到的旋转体也不一样.判断旋转体,要抓住定义,分清哪条线是轴,什么图形,怎样旋转,旋转后生成什么样的几何体.【跟踪训练】一个有30°角的直角三角尺绕其各条边所在直线旋转所得几何体是圆锥吗?如果以斜边上的高所在的直线为轴旋转180°得到什么几何体?旋转360°又得到什么几何体?解如图(1)和(2)所示,绕其直角边所在直线旋转一周围成的几何体是圆锥;如图(3)所示,绕其斜边所在直线旋转一周围成的几何体是两个同底相对的圆锥.如图(4)所示,绕其斜边上的高所在直线旋转180°围成的几何体是两个半圆锥,旋转360°围成的几何体是一个圆锥.题型二简单组合体的结构特征例2 描述下图几何体的结构特征.[解] 图(1)中的几何体是由一个四棱柱和一个四棱锥拼接而成的组合体.图(2)中的几何体是在一个圆台中挖去一个圆锥后得到的组合体.图(3)中的几何体是在一个圆柱中挖去一个三棱柱后得到的组合体.图(4)中的几何体是由两个同底的四棱锥拼接而成的简单组合体.【解题技巧】简单组合体的两种构成方法(1)简单组合体的构成一般有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.(2)识别或运用几何体的结构特征,要从几何体的概念入手,掌握画图或识图的方法,并善于运用身边的特殊几何体进行判断、比较、分析.【跟踪训练】观察下列几何体,并分析它们是由哪些基本几何体组成的.解图(1)是由一个圆柱中挖去一个圆台形成的.图(2)是由一个球、一个四棱柱和一个四棱台组合而成的.题型三旋转体的计算问题例3 一个圆台的母线长为12 cm,两底面面积分别为4π cm2和25π cm2.求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.[解] (1)如图,圆台的轴截面是等腰梯形ABCD,由已知可得上底面半径O1A =2 cm,下底面半径OB=5 cm,又腰长AB=12 cm,所以圆台的高为AM=122-(5-2)2=315(cm).(2)设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO可得l-12l=25,所以l=20(cm).故截得此圆台的圆锥的母线长为20 cm.【解题技巧】旋转体中的计算问题及截面性质(1)圆柱、圆锥和圆台中的计算问题,一要结合它们的形成过程,分辨清轴、母线及底面半径与旋转前平面图形量的关系;二要切实体现轴截面的作用.解题时,可把轴截面从旋转体中分离出来,以平面图形的计算解决立体问题.(2)球中的计算应注意一个重要的直角三角形,设球的半径为R,截面圆的半径为r,球心到截面的距离为d,则R2=d2+r2.(3)用平行于底面的平面去截柱体、锥体、台体等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的经过旋转轴的截面(轴截面)的性质,利用相似三角形中的相似比,构设相关几何变量的方程组而得解.【跟踪训练】圆台的两底面面积分别为1,49,平行于底面的截面面积的2倍等于两底面面积之和,求圆台的高被截面分成的两部分的比.解将圆台还原为圆锥,如图所示.O2,O1,O分别是圆台上底面、截面和下底面的圆心,V 是圆锥的顶点,令VO 2=h ,O 2O 1=h 1,O 1O =h 2, 设上底面的面积为S 1,半径为r 1, 则S 1=πr 21=1,下底面的面积为S 2,半径为r 2,则S 2=πr 22=49, 截面的面积为S =S 1+S 22=25,半径为r 3,则S =πr 23.由三角形相似得⎩⎪⎨⎪⎧h +h 1h =49+121,h +h 1+h 2h =491,所以⎩⎨⎧h 1=4h ,h 2=2h ,即h 1∶h 2=2∶1.题型四 圆柱、圆锥、圆台侧面展开图的应用例4 如图所示,已知圆柱的高为80 cm ,底面半径为10 cm ,轴截面上有P ,Q 两点,且PA =40 cm ,B 1Q =30 cm ,若一只蚂蚁沿着侧面从P 点爬到Q 点,问:蚂蚁爬过的最短路径长是多少?[解] 将圆柱侧面沿母线AA 1展开,得如图所示矩形.【解题技巧】求圆柱、圆锥、圆台侧面上两点间最短距离都要转化到侧面展开图中,“化曲为直”是求几何体表面上两点间最短距离的好方法.【跟踪训练】国庆节期间,要在一圆锥形建筑物上挂一宣传标语,经测量得圆锥的母线长为3米,高为22米,如图所示.为了美观需要,在底面圆周上找一点M拴系彩绸的一端,沿圆锥的侧面绕一周挂彩绸,彩绸的另一端仍回到原处M,则彩绸最短要多少米?解把圆锥的侧面沿过点M的母线剪开,并铺平得扇形MOM1,如图所示.这样把空间问题转化为平面问题,易知彩绸的最短长度即为线段MM1的长度,由母线长为3米,高为22米,得底面半径为1米,所以扇形的圆心角为120°,所以MM1=33米,即彩绸最短要33米.【课堂达标训练】1.下列几何体中不是旋转体的是( )答案 D解析正方体不可能是旋转体.2.一个等腰三角形绕它的底边所在直线旋转360°形成的曲面所围成的几何体是( )A.球体B.圆柱C.圆台D.两个共底面的圆锥的组合体答案 D解析过等腰三角形的顶点向底边作垂线,得到两个有一条公共边的全等直角三角形,而直角三角形以一条直角边为轴旋转得到的几何体是圆锥.故选D.3.下列几何体中是旋转体的是( )①圆柱;②六棱锥;③正方体;④球体;⑤四面体.A.①和⑤ B.① C.③和④ D.①和④答案 D解析根据旋转体的概念知①④正确.4.指出如图(1)(2)所示的图形是由哪些简单几何体构成的.解分割图形,使它的每一部分都是简单几何体.图(1)是由一个三棱柱和一个四棱柱拼接而成的简单组合体.图(2)是由一个圆锥和一个四棱柱拼接而成的简单组合体.5.圆台的两底面圆的半径分别为2 cm,5 cm,母线长是310 cm,求其轴截面的面积.解如图,在轴截面内过点A作AB⊥O1A1,垂足为B.由已知OA=2,O1A1=5,AA1=310,∴A1B=3.∴AB=AA21-A1B2=90-9=9.∴S轴截面=12(2OA+2O1A1)·AB=12×(4+10)×9=63(cm2).故圆台轴截面的面积为63 cm2.8.2 立体图形的直观图【基础知识拓展】1.斜二测画法是联系直观图和原图形的桥梁,可根据它们之间的可逆关系寻找它们的联系;在求直观图的面积时,可根据斜二测画法,画出直观图,从而确定其高和底边等,而求原图形的面积可把直观图还原为原图形.两者之间关系为:S 直S 原=24.2.在用斜二测画法画直观图时,平行线段仍然平行,所画平行线段之比仍然等于它的真实长度之比,但所画夹角大小不一定是其真实夹角大小.【跟踪训练】1.判一判(正确的打“√”,错误的打“×”)(1)相等的角,在直观图中仍相等.( )(2)长度相等的线段,在直观图中长度仍相等.( )(3)若两条直线垂直,在直观图中对应的直线也互相垂直.( )答案(1)×(2)×(3)×2.做一做(1)利用斜二测画法画边长为3 cm的正方形的直观图,可以是下列选项中的( )(2)在已知图形中平行于x轴的线段AB=6 cm,则在直观图中线段A′B′=______cm;在已知图形中平行于y轴的线段CD=4 cm,则在直观图中线段C′D′=______cm.(3)在空间几何体中,平行于z轴的线段AB=10 cm,则在直观图中对应的线段A′B′=________cm.(4)在用斜二测画法画水平放置的△ABC时,若∠A的两边平行于x轴、y轴,则在直观图中,∠A′=________.答案(1)C (2)6 2 (3)10 (4)45°或135°【核心素养形成】题型一平面图形的直观图画法例1 画水平放置的正五边形的直观图.[解] (1)建立如图①所示的直角坐标系xOy,再建立如图②所示的坐标系x′O′y′,使∠x′O′y′=45°.(2)在图①中作BG⊥x轴于G,EH⊥x轴于H,在坐标系x′O′y′中作O′H′=OH,O′G′=OG,O′A′=12OA,O′F′=12OF.过F′作C′D′∥x′轴且C′D′=CD,C′F′=F′D′.(3)在平面x′O′y′中,过G′作G′B′∥y′轴,且G′B′=12GB,过H′作H′E′∥y′轴,且H′E′=12HE.连接A′B′,B′C′,C′D′,D′E′,E′A′,得五边形A′B′C′D′E′为正五边形ABCDE的直观图.【解题技巧】画平面图形直观图的技巧(1)要画好对应平面图形的直观图,首先应在原图形中确定直角坐标系,然后在此基础上画出水平放置的平面坐标系.(2)画水平放置的平面多边形的直观图的关键是确定多边形的顶点位置.顶点位置可以分为两类:一类是在轴上或在与轴平行的线段上,这类顶点比较容易确定;另一类是不在轴上且不在与轴平行的线段上,这类顶点一般通过过此点作与轴平行的线段,将此点转到与轴平行的线段上来确定.【跟踪训练】用斜二测画法画边长为4 cm的水平放置的正三角形的直观图.解(1)如图①所示,以BC边所在的直线为x轴,以BC边上的高线AO所在的直线为y轴.(2)画对应的x′轴、y′轴,使∠x′O′y′=45°.在x′轴上截取O′B′=O′C′=2 cm,在y′轴上截取O′A′=12OA,连接A′B′,A′C′,则三角形A′B′C′即为正三角形ABC的直观图,如图②所示.题型二空间几何体的直观图画法例2 画出底面是正方形,侧棱均相等的四棱锥的直观图.[解] 画法:(1)画轴.画Ox轴、Oy轴、Oz轴,∠xOy=45°(或135°),∠xOz=90°,如图①.(2)画底面.以O为中心在xOy平面内,画出正方形的直观图ABCD.(3)画顶点.在Oz轴上截取OP,使OP的长度是原四棱锥的高.(4)成图.顺次连接PA,PB,PC,PD,并擦去辅助线,将被遮住的部分改为虚线,得四棱锥的直观图如图②.【解题技巧】画空间几何体的直观图应遵循的原则(1)对于一些常见简单几何体(柱体、锥体、台体、球)的直观图,应该记住它们的大致形状,以便可以较快、较准确地画出.(2)画空间几何体的直观图比画平面图形的直观图增加了一个z轴,表示竖直方向.(3)平行于z轴(或在z轴上)的线段,平行性与长度都与原来保持一致.(4)画空间几何体的直观图,可先画出底面的平面图形,坐标系的建立要充分利用几何体的对称性,然后画出竖轴.此题也可以把点A,B,C,D放在坐标轴上,画法实质是各顶点的确定.【跟踪训练】已知几何体的三视图如图所示,用斜二测画法画出它的直观图.解(1)画轴.如图①,画x轴,y轴,z轴,使∠xOy=45°,∠xOz=90°.(2)画圆台的两底面.利用椭圆模板,画出底面⊙O,在z轴上截取OO′,使OO′等于三视图中相应的长度,过点O′作Ox的平行线O′x′,Oy的平行线O′y′,类似底面⊙O的作法作出上底面⊙O′.(3)画圆锥的顶点.在O′z上截取O′P,使O′P等于三视图中O′P的长度.(4)成图.连接PA′,PB′,A′A,B′B,整理得到三视图所表示的几何体的直观图,如图②.题型三直观图还原平面图形例 3 (1)如图,△A′B′C′是水平放置的平面图形的斜二测直观图,将其恢复成原图形;(2)在(1)中若|C′A′|=2,B′D′∥y′轴且|B′D′|=1.5,求原平面图形△ABC的面积.[解] (1)画法:①画直角坐标系xOy,在x轴上取OA=O′A′,即CA=C′A′.②在题图中,过B′作B′D′∥y′轴,交x′轴于D′,在x轴上取OD=O′D′,过D作DB∥y轴,并使DB=2D′B′.③连接AB,BC,则△ABC即为△A′B′C′原来的图形,如图.(2)∵B′D′∥y′,∴BD⊥AC.又|B′D′|=1.5且|A′C′|=2,∴|BD|=3,|AC|=2.∴S△ABC=12·|BD|·|AC|=3.[结论探究] 若设原平面图形的面积为S,则其直观图的面积S′为多少?解设原图形的高为h,则直观图的高为24h.又平行于x轴的线段长度不变,∴S′=24 S.【解题技巧】直观图还原平面图形的策略还原的关键是找与x′轴、y′轴平行的直线或线段,且平行于x′轴的线段还原时长度不变,平行于y′轴的线段还原时放大为斜二测直观图中相应线段长的2倍,由此确定图形的各个顶点,顺次连接即可.【跟踪训练】如图是四边形ABCD的水平放置的直观图A′B′C′D′,则原四边形ABCD的面积是( )A.14 B.10 2 C.28 D.14 2答案 C解析∵A′D′∥y′轴,A′B′∥C′D′,A′B′≠C′D′,∴原图形是一个直角梯形.又A′D′=4,∴原直角梯形的上、下底及高分别是2,5,8,故其面积为S=12×(2+5)×8=28.题型四直观图与原图间的计算问题例4 已知正三角形ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为( )A.34a2 B.38a2 C.68a2 D.616a2[解析] 如图①②所示的实际图形和直观图,由②可知,A′B′=AB=a,O′C′=12OC=34a,在图②中作C′D′⊥A′B′于点D′,则C′D′=22O′C′=68a,所以S△A′B′C′=12A′B′·C′D′=12×a×68a=616a2.[答案] D【解题技巧】1.利用斜二测画法画空间图形的直观图应遵循的基本原则(1)画空间图形的直观图在要求不太严格的情况下,长度和角度可适当选取.为了增强立体感,被挡住的部分通常用虚线表示.(2)画图时要紧紧把握一斜——在已知图形中垂直于x轴的线段,在直观图中与x轴成45°或135°;二测——两种度量形式,即在直观图中,平行于x轴的线段长度不变,平行于y轴的线段变为原长度的一半2.若一个平面多边形的面积为S原,斜二测画法得到的直观图的面积为S直,则有S直=24S原.【跟踪训练】如图所示,矩形O′A′B′C′是水平放置的平面图形OABC的斜二测直观图,其中O′A′=6 cm,C′D′=2 cm,则四边形OABC的形状是________.答案菱形解析如图,在四边形OABC中,有OD=2O′D′=2×22=4 2 cm,CD=C′D′=2 cm,∴OC=OD2+CD2=(42)2+22=6 cm,∴OA=OC,故四边形OABC是菱形.【课堂达标训练】1.关于“斜二测画法”,下列说法不正确的是( )A.原图形中平行于x轴的线段,其对应线段平行于x′轴,长度不变B.原图形中平行于y轴的线段,其对应线段平行于y′轴,长度变为原来的12C.画与直角坐标系xOy对应的x′O′y′时,∠x′O′y′必须是45°D.在画直观图时,由于选轴的不同,所得的直观图可能不同答案 C解析∠x′O′y′也可以是135°.2.如图所示,△A′B′C′是水平放置的△ABC的直观图,则在△ABC的三边及中线AD中,最长的线段是( )A.AB B.ACC.BC D.AD答案 B解析由直观图可知△ABC是以∠B为直角的直角三角形,所以斜边AC最长.3.如图,已知等腰三角形ABC,则如图所示的四个图中,可能是△ABC的直观图的是( )A.①② B.②③ C.②④ D.③④答案D解析根据平面图形直观图的斜二测画法知③④可能是△ABC的直观图.4.如图,一个三角形的斜二测直观图是等腰直角三角形A′B′O′,若O′B′=1,则原△AOB的面积是________.答案 2解析由题意得O′B′=B′A′=1,∴O′A′=2,且∠B′O′A′=45°,∴△AOB是以∠O为直角的三角形,且OB=1,OA=22,∴S△AOB =12OB·OA=12×1×22= 2.5.有一个正六棱锥(底面为正六边形,侧面为全等的等腰三角形的棱锥),底面边长为3 cm,高为3 cm,画出这个正六棱锥的直观图.解(1)先画出边长为3 cm的正六边形的水平放置的直观图,如图①所示.(2)过正六边形的中心O′建立z′轴,在z′轴上截取O′V′=3 cm,如图②所示.(3)连接V′A′,V′B′,V′C′,V′D′,V′E′,V′F′,如图③所示.(4)擦去辅助线,遮挡部分用虚线表示,即得到正六棱锥的直观图,如图④所示.。
广东省廉江市第三中学2014高中数学 第一章 空间几何体讲解与练习 新人教A版必修2
广东省廉江市第三中学2014高中数学第一章空间几何体讲解与练习新人教A版必修2¤学习目标:认识柱、锥、台、球的结构特征,并能运用这些特征描述现实生活中简单物体的结构.逐步培养观察能力和抽象概括能力.¤知识要点:结构特征图例棱柱(1)两底面相互平行,其余各面都是平行四边形;(2)侧棱平行且相等.圆柱(1)两底面相互平行;(2)侧面的母线平行于圆柱的轴;(3)是以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体.棱锥(1)底面是多边形,各侧面均是三角形;(2)各侧面有一个公共顶点.圆锥(1)底面是圆;(2)是以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体.棱台(1)两底面相互平行;(2)是用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分.圆台(1)两底面相互平行;(2)是用一个平行于圆锥底面的平面去截圆锥,底面和截面之间的部分.球(1)球心到球面上各点的距离相等;(2)是以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体.¤例题精讲:【例1】请描述下列几何体的结构特征,并说出它的名称.(1)由7个面围成,其中两个面是互相平行且全等的五边形,其它面都是全等的矩形;(2)如右图,一个圆环面绕着过圆心的直线l旋转180°.解:(1)特征:具有棱柱的特征,且侧面都是全等的矩形,底面是正五边形.几何体为正五棱柱.(2)由两个同心的大球和小球,大球里去掉小球剩下的部分形成的几何体,即空心球.【例2】若三棱锥的底面为正三角形,侧面为等腰三角形,侧棱长为2,底面周长为9,求棱锥的高.解:底面正三角形中,边长为3,高为333sin 602⨯︒=,中心到顶点距离为332323⨯=, 则棱锥的高为222(3)1-=.【例3】用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1:16,截去的圆锥的母线长是3cm ,求圆台的母线长.解:设圆台的母线为l ,截得圆台的上、下底面半径分别为r ,4r . 根据相似三角形的性质得,334rl r=+,解得9l =. 所以,圆台的母线长为9cm .点评:用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,构设相关几何变量的方程组而解得.【例4】长方体的一条对角线与一个顶点处的三条棱所成的角分别为,,αβγ,求 222cos cos cos αβγ++与222sin sin sin αβγ++的值.解:设长方体的一个顶点出发的长、宽、高分别为a 、b 、c ,相应对角线长为l ,则222l a b c =++.222222cos cos cos ()()()1a b cl l l αβγ++=++=, ∴ 222cos cos cos αβγ++=1.222222222222sin sin sin 2b c a c a b l l lαβγ+++++=++=,∴ 222sin sin sin αβγ++=2. 点评:从长方体的一个顶点出发的对角线与三条棱,均位于直角三角形中,利用直角三角形中的边角关系“cos α=邻斜”、“sin α=对斜”而求. 关键在于找准直角三角形中的三边,斜边是长方体的对角线,角的邻边是各棱长,角的对边是相应矩形面的对角线.第1练 §1.1.1柱、锥、台、球的结构特征※基础达标※能力提高8.长方体的全面积为11,十二条棱的长度之和为24,求这个长方体的一条对角线长.9.如图所示,长方体1111ABCD A B C D .(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCNM 把这个长方体分成两部分,各部分形成的几何体还是棱柱吗?如果是,是几棱柱,并用符号表示. 如果不是,说明理由.※探究创新10.现有一批长方体金属原料,其长宽高的规格为12×3×3.1(长度单位:米). 某车间要用这些原料切割出两种长方体,其长宽高的规格第一种为3×2.4×1,第二种为4×1.5×0.7.若这两种长方体各需900个,假设忽略切割损耗,问至少需多少块金属长方体原料?如何切割?此时材料的利用率是多少?(计算到小数点后面3位)第2讲 §1.1.2 简单组合体的结构特征¤学习目标:认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.¤知识要点:观察周围的物体,大量的几何体是由柱、锥、台等组合而成的,这些几何体称为组合体. ¤例题精讲:【例1】在四棱锥的四个侧面中,直角三角形最多可有( ). A. 1个 B. 2个 C. 3个 D. 4个解:在长方体''''ABCD A B C D -中,取四棱锥'A ABCD -,它的四个侧面都是直角三角形. 选D. 【例2】已知球的外切圆台上、下底面的半径分别为,r R ,求球的半径. 解:圆台轴截面为等腰梯形,与球的大圆相切,由此得梯形腰长为R +r.【例3】圆锥底面半径为1cmcm ,其中有一个内接正方体,求这个内接正方体的棱长. 解:过圆锥的顶点S 和正方体底面的一条对角线CD 作圆锥的截面,得圆锥的轴截面SEF ,正方体对角面CDD 1C 1,如图所示.设正方体棱长为x ,则CC 1=x ,C 1D1=。
立体几何定理复习课教案
立体几何定理复习课教案《立体几何定理复习课教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!学习主题介绍学习主题:立体几何定理复习课使用教材:人教版版年级册章节教学内容:立体几何是高考的必考内容,不管是选择,填空题,还是解答题都会考查平行与垂直相关定理的转化。
所以本节课的主要内容是利用思维导图,帮助学生复习整理立体几何部分定理的内容和定理使用的条件及熟练掌握定理的应用。
学习目标分析课程标准中与本学习主题相关的语句:1.以立体几何的定义,公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定,理解线面平行,面面平行,线面垂直,面面垂直的性质定理和判定定理,并能够证明。
2.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题。
3.能用向量语言表述线线、线面、面面的平行和垂直关系。
4.能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理)5.能用空间向量的方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究几何问题中的应用。
根据课程标准所设定的学习目标:1、知识与能力:熟练掌握立体几何中的线线、线面、面面平行与垂直的判定定理和性质定理。
能用向量方法解决直线与直线,直线与平面,平面与平面的夹角的计算问题。
2、过程与方法:加强数学语言的训练,培养数学交流能力;培养学生转化的思想,把空间问题转化为平面问题解决问题。
3、情感态度与价值观:调动学生的积极性,让他们主动参与到学习中去。
学生特征分析学生是否对本课的学习内容有所了解?有一定的了解学习本课内容必须具备的知识掌握情况如何?会而不熟,不精本课将采用什么样的方式组织学生学习,学生是否有过这种经历。
用思维导图的方式组织学习,学生从没这种经历学生对本课所采用的学习组织方式的态度如何。
期待是否有使用思维导图学习的经历?没有如学生已经使用过思维导图学习,他们使用的经验和态度如何?如无使用思维导图的经历,预计学生对使用思维导图学习的兴趣和态度如何。
广东省高中数学必修二教案:《立体几何初步》全章复习与巩固
广东省高中数学必修二教案:《立体几何初步》全章复习与巩固【学习目标】1.了解柱,锥,台,球及简单组合体的结构特征.2.能画出简单空间图形的三视图,由三视图能够还原成空间立体图形,并会用斜二测法画出它们的直观图.3.通过观察用平行投影与中心投影这两种方法画出的视图与直观图,了解空间图形的不同表示形式.4.理解柱,锥,台,球的表面积及体积公式.5.理解平面的基本性质及确定平面的条件.6.掌握空间直线与直线,直线与平面,平面与平面平行的判定及性质.7.掌握空间直线与平面,平面与平面垂直的判定及性质.【知识网络】【要点梳理】要点一:空间几何体的结构与特征本章出现的几何体有:①棱柱与圆柱统称为柱体;②棱锥与圆锥统称为锥体;③棱台与圆台统称为台体;④球体.柱体常以直三棱柱、正三棱柱、正四棱柱、正六棱柱、圆柱等为载体,锥体一般以正三棱锥、正四棱锥、正六棱锥、圆锥等为载体,计算高、斜高、边心距、底面半径、侧面积和体积等.在研究正棱锥和圆锥、正棱台和圆台时要充分利用其中的直角三角形:高线,边心距,斜高组成的直角三角形;高线,侧棱(母线),外接圆半径(底面半径)组成的直角三角形.空间几何体的三视图:主视图:它能反映物体的高度和长度;左视图:它能反映物体的高度和宽度;俯视图:它能反映物体的长度和宽度.先会读懂三视图,并还原为直观图,再研究其性质和进行计算.侧面展开图问题是经常出现的一个问题.平面图形的翻折与空间图形的展开问题,要对照翻折(或展开)前后两个图形,分清哪些元素的位置(或数量)关系改变了,哪些没有改变,哪些元素是同一个元素.与几何体的侧面积和体积有关的计算问题,基本概念和公式要熟练,计算要准确,重视方程的思想和割补法、等积转换法的运用,等积转换可使体积计算变得简单化.要点二:平面基本性质刻画平面的公理(或基本性质)是立体几何公理体系的基石,是研究空间图形问题、进行逻辑推理的基础.公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内.作用:是判定直线是否在平面内的依据.公理2:经过不在同一条直线上的三点,有且只有一个平面.作用:提供确定平面最基本的依据.公理3:如果不重合的两个平面有一个公共点,那么它们有且只有一条过这个点的公共直线.作用:是判定两个平面交线位置的依据.公理4:平行于同一条直线的两条直线互相平行.作用:是判定空间直线之间平行的依据.要点三:空间的平行与垂直关系理解和熟练应用空间中线面平行、垂直的有关性质与判定定理,是解决有关计算和证明的金钥匙.归纳出以下判定定理:(1)空间中的平行关系如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行.如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和两平面的交线平行.如果两个平行平面同时与第三个平面相交,那么它们的交线平行.如果两条直线垂直于同一个平面,那么这两条直线平行.(2)空间中的垂直关系如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直.如果一个平面过另一个平面的一条垂线,则两个平面互相垂直.如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.解决空间问题的重要思想方法:等价转化——化空间问题为平面问题.空间平行、垂直关系证明的基本思想方法——转化与联系,如图所示.【典型例题】类型一:空间几何体的三视图例1.某几何体的三视图如图1所示,它的体积为 ( )A .12πB .45πC .57πD .81π【答案】C【解析】该几何体下部分是半径为3,高为5的圆柱,体积为23545V ππ=⨯⨯=,上部分是半径为3,高为4的圆锥,体积为2134123V ππ=⨯⨯⨯=,所以体积为57π.【总结升华】根据三视图判断空间几何体的形状,进而求几何体的表(侧/底)面积或体积,是高考必考内容,处理的关键是准确判断空间几何体的形状,一般规律是这样的:如果三视图均为三角形,则该几何体必为三棱锥;如果三视图中有两个三角形和一个多边形,则该几何体为N 棱锥(N 值由另外一个视图的边数确定);如果三视图中有两个为矩形和一个多边形,则该几何体为N 棱柱(N 值由另外一个视图的边数确定);如果三视图中有两个为梯形和一个多边形,则该几何体为N 棱柱(N 值由另外一个视图的边数确定);如果三视图中有两个三角形和一个圆,则几何体为圆锥.如果三视图中有两个矩形和一个圆,则几何体为圆柱.如果三视图中有两个梯形和一个圆,则几何体为圆台. 举一反三:【变式1】某几何体的三视图如图所示,该几何体的表面积是_____.【答案】92【解析】由三视图可知,原几何体是一个底面是直角梯形,高为4的直四棱柱,其底面积为(25)42282+⨯=,侧面积为(4255)464+++⨯=,故表面积为92. 例2.如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm ).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积; (3)在所给直观图中连结'BC ,证明:'BC ∥面EFG .【思路点拨】(1)按照三视图的要求直接在正视图下面,画出该多面体的俯视图;(2)按照给出的尺寸,利用转化思想V=V 长方体-V 正三棱锥,求该多面体的体积; (3)在长方体ABCD-A′B′C′D′中,连接AD′,在所给直观图中连接BC′,证明EG ∥BC′,即可证明BC′∥面EFG . 【解析】 (1)如图(2)所求多面体体积V V V =-长方体正三棱锥1144622232⎛⎫=⨯⨯-⨯⨯⨯⨯ ⎪⎝⎭(俯视图)(正视图)(侧视图)正视图2284(cm )3=. (3)证明:在长方体ABCD A B C D ''''-中, 连结AD ',则AD BC ''∥. 因为E G ,分别为AA ',A D ''中点, 所以AD EG '∥,从而EG BC '∥.又BC '⊄平面EFG , 所以BC '∥面EFG .【总结升华】长方体的有关知识、体积计算及三视图的相关知识,对三视图的相关知识掌握不到位,求不出有关数据.三视图是新教材中的新内容,故应该是新高考的热点之一,要予以足够的重视. 类型二:几何体的表面积和体积例3.一个几何体的三视图如图所示,该几何体的表面积为 ()A .280B .292C .360D .372 【答案】 C【解析】该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的侧面积S =2×(10×8+10×2+8×2)+2×(6×8+8×2)AC DE FGA 'B 'C 'D '=360.【总结升华】把三视图转化为直观图是解决问题的关键.又根据三视图很容易知道是两个长方体的组合体,画出直观图,得出各条棱的长度.把几何体的表面积转化为下面长方体的全面积加上面长方体的侧面积. 举一反三:【变式1】某三棱锥的三视图如图所示,该三棱锥的表面积是( )A .28+B .30+ C .56+D .60+【答案】B【解析】从所给的三视图可以得到该几何体为三棱锥,本题所求表面积为三棱锥四个面的面积之和.利用垂直关系和三角形面积公式,可得:10,10,10,S S S S ====后右左底因此该几何体表面积30S =+,故选B. 例4.设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为 ( )A .2a πB .273a π C .2113a π D .25a π 【答案】 B【解析】设三棱柱底面所在圆的半径为r ,球的半径为R ,易知2323r a a =⨯=,所以球的半径R 满足:2222173212R a a ⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭,所以22743S R a ππ==球.【总结升华】 这是一个球内接三棱柱,球心是三棱柱两底中心连线的中点,这是本题的关键之处. 举一反三:【变式1】如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥11A BB D D -的体积为 cm3.【答案】6.【解析】∵长方体底面ABCD 是正方形,∴△ABD 中BD BD 边上的高是cm(它也是11A BB D D -中11BB D D 上的高). ∴四棱锥11A BB D D -的体积为123⨯.类型三:直线、平面的平行与垂直例5.如图所示,直三棱柱ABC —A 1B 1C 1中,B 1C 1=A 1C 1,AC 1⊥A 1B ,M 、N 分别是A 1B 1、AB 的中点.(1)求证:C 1M ⊥平面A 1ABB 1; (2)求证:A 1B ⊥AM ;(3)求证:平面AMC 1∥平面NB 1C ; (1)【证明】方法一 由直棱柱性质可得AA 1⊥平面A 1B 1C 1,又∵C1M⊂平面A1B1C1,∴AA1⊥MC1.又∵C1A1=C1B1,M为A1B1中点,∴C1M⊥A1B1.又A1B1∩A1A=A1,∴C1M⊥平面AA1B1B.方法二由直棱柱性质得:平面AA1B1B⊥平面A1B1C1,交线为A1B1,又∵C1A1=C1B1,M为A1B1的中点,∴C1M⊥A1B1于M.由面面垂直的性质定理可得C1M⊥平面AA1B1B.(2)【证明】由(1)知C1M⊥平面A1ABB1,∴C1A在侧面AA1B1B上的射影为MA.∵AC1⊥A1B,MC1⊥A1B,MC1∩AC1=C1,∴A1B⊥平面AMC1,又AM⊂平面AMC1,∴A1B⊥AM.(3)【证明】方法一由棱柱性质知四边形AA1B1B是矩形,M、N分别是A1B1、AB的中点,∴AN//B1M.∴四边形AMB1N是平行四边形.∴AM∥B1N.连接MN,在矩形AA1B1B中有A1B1 //AB.∴MB1 //BN,∴四边形BB1MN是平行四边形.∴BB1 MN.又由BB1//CC1,知MN//CC1.∴四边形MNCC1是平行四边形.∴C1M//CN.又C1M∩AM=M,CN∩NB1=N,∴平面AMC1∥平面NB1C.方法二由(1)知C1M⊥平面AA1B1B,A1B⊂平面AA1B1B,∴C1M⊥A1B.又∵A1B⊥AC1,而AC1∩C1M=C1,∴A1B⊥平面AMC1.同理可证,A1B⊥平面B1NC.∴平面AMC1∥平面B1NC.【总结升华】证明线面之间的垂直关系,要注意在各个阶段以某一直线为主线进行推理,以使推理过程清晰、明朗.例6.如图所示,在五棱锥P-ABCDE,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC,∠ABC=45°,AB=BC=2AE=4,三角形PAB是等腰三角形.(1)求证:平面PCD⊥平面PAC;(2)求直线PB与平面PCD所成角的大小;(3)求四棱锥P-ACDE的体积.【解析】(1)证明:因为∠ABC=45°,AB=BC=4,所以在△ABC中,由余弦定理得:AC2=22424cos458°,解得AC=+-⨯=以AB2+AC2=8+8=16=BC2,所以AB⊥AC.又PA⊥平面ABCDE,所以PA ⊥AB.又PA∩AC=A,所以AB⊥平面PAC.又AB∥CD,所以CD⊥平面PAC.又因为CDC平面PCD,所以平面PCD⊥平面PAC.(2)由(1)知平面PCD⊥平面PAC,所以在平面PAC内,过点A作AH⊥PC于H,则AH⊥平面PCD.又AB∥CD,AB⊄平面PCD,所以AB∥平面PCD,所以点A到平面PCD的距离等于点B到平面PCD的距离.过点B作BO⊥平面PCD于点O,连接PO,则∠BPO为所求角,且AH=BO,又容易,即∠BPO=30°,所以直线PB与平面PCD 求得AH=2,所以sin∠BPO=12所成角的大小为30°.(3)由(1)知CD ⊥平面PAC ,所以CD ⊥AC .又AC ∥ED ,所以四边形ACDE 是直角梯形.又容易求得DE =,所以四边形ACDE 的面积为1)32⨯+=,所以四棱锥P -AC -DE 的体积为133⨯=. 【总结升华】本题考查了空间几何体的线面与面面垂直、线面角的求解以及几何体的体积,考查了同学们的空间想象能力.举一反三:【变式1】如图,在四棱锥P-ABCD 中,平面PAD ⊥平面ABCD ,AB//DC ,ΔPAD是等边三角形,已知BD=2AD=8,(1)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ;(2)求四棱锥P-ABCD 的体积.【证明】(1)在ΔABD 中,因为AD=4,BD=8,所以222AD BD AB +=,所以AD BD ⊥.又因为面PAD ⊥面ABCD ,面PAD ∩面ABCD=AD ,BD ⊂面ABCD所以BD ⊥面PAD.又BD ⊂面BDM ,所以面MBD ⊥面PAD.(2)过P 作PO ⊥AD ,∵面PAD ⊥面ABCD ,∴PO ⊥面ABCD ,即PO 为四棱锥P-ABCD 的高.又ΔPAD 是边长为4的等边三角形,∴PO=在底面四边形ABCD 中,AB//DC ,AB=2DC ,∴四边形ABCD 为梯形.在Rt ADB ∆中,斜边AB5=,此即为梯形的高.∴S 四边形ABCD =2425=,∴1243P ABCD V -=⨯⨯=类型四:折叠问题例7.在平面四边形ABCD 中,已知AB =BC =CD ,∠ABC =90°,∠BCD =135°,沿AC 将四边形折成直二面角B -C -D .求证:平面ABC ⊥平面BCD .证明:如下图,其中图(1)是平面四边形,图(2)是折后的立体图形.∵ 平面ABC ⊥平面ACD ,交线为AC ,又AB =BC ,∠ABC =90°,∠BCD =135°(在图(1)中),∴ ∠ACD =90°,CD ⊥AC .PP ∴ C D A B C C D B C D⊥⎫⇒⎬⎭平面平面Þ平面ABC ⊥平面BCD . 举一反三:【变式1】如图1,在边长为3的正三角形ABC 中,E ,F ,P 分别为AB ,AC ,BC 上的点,且满足1AE FC CP ===.将△AEF 沿EF 折起到△1A EF 的位置,使平面1A EF ⊥平面EFB ,连结1A B ,1A P .(如图2) (Ⅰ)若Q 为1A B 中点,求证:PQ ∥平面1A EF ; (Ⅱ)求证:1A E ⊥EP .图1 图2【解析】证明:(Ⅰ)取1A E 中点M ,连结,QM MF .在△1A BE 中,,Q M 分别为11,A B A E 的中点, 所以QM ∥BE ,且12QM BE =.因为12CF CP FA PB ==, 所以PF ∥BE ,且12PF BE =, 所以QM ∥PF ,且QM PF =.所以四边形PQMF 为平行四边形.所以PQ ∥FM . 又因为FM ⊂平面1A EF ,且PQ ⊄平面1A EF ,所以PQ ∥平面1A EF .(Ⅱ) 取BE 中点D ,连结DF .因为1AE CF ==,1DE =,所以2AF AD ==,而60A ∠=,即△ADF 是正三角形. 又因为1AE ED ==, 所以EF AD ⊥. 所以在图2中有1A E EF ⊥. 因为平面1A EF ⊥平面EFB ,平面1A EF 平面EFB EF =, 所以1A E ⊥平面BEF . 又EP ⊂平面BEF ,所以1A E ⊥EP .。
高三数学一轮复习教学案:立体几何初步
立体几何初步1.理解平面的基本性质,会用斜二测画法画水平放置的平面图形的直观图、能够画出空间两条直线、直线和平面的各种位置关系的图形,能根据图形想象它们的位置关系.2.了解空间两条直线、直线和平面、两个平面的位置关系.3.掌握直线和平面平行的判定定理和性质定理;理解直线和平面垂直的概念;掌握直线和平面垂直的判定定理和性质定理;掌握三垂线定理及其逆定理.4.掌握直线和直线、直线和平面、平面和平面所成的角、距离的概念;掌握两个平面平行、垂直的判定定理和性质定理.5.了解多面体、凸多面体、正多面体的概念.6.了解棱柱,棱锥的概念;了解棱柱,棱锥的性质;会画其直观图.了解球的概念;掌握球的性质;掌握球的表面积、体积公式.本章的定义、定理、性质多,为了易于掌握,可把主要知识系统化.首先,归纳总结,理线串点,可分为四块:A、平面的三个基本性质,四种确定平面的条件;B、两个特殊的位置关系,即线线,线面,面面的平行与垂直.C、三个所成角;即线线、线面、面面所成角;D、四个距离,即两点距、两线距、线面距、面面距.R P QαCB A其次,平行和垂直是位置关系的核心,而线面垂直又是核心中的核心,线面角、二面角、距离等均与线面垂直密切相关,把握其中的线面垂直,也就找到了解题的钥匙.再次,要加强数学思想方法的学习,立体几何中蕴涵着丰富的思想方法,化空间图形为平面图形解决,化几何问题为坐标化解决,自觉地学习和运用数学思想方法去解题,常能收到事半功倍的效果.第1课时 平面的基本性质公理1 如果一条直线上的 在同一个平面内,那么这条直线上的 都在这个平面内 (证明直线在平面内的依据).公理2 如果两个平面有 个公共点,那么它们还有其他公共点,这些公共点的集合是 (证明多点共线的依据).公理3 经过不在 的三点,有且只有一个平面(确定平面的依据).推论1 经过一条直线和这条直线外的一点有且只有一个平面.推论2 经过两条 直线,有且只有一个平面.推论3 经过两条 直线,有且只有一个平面.例1.正方体ABCD-A 1B 1C 1D 1中,对角线A 1C 与平面BDC 1交于O ,AC 、BD 交于点M .求证:点C 1、O 、M 共线.证明:A 1A ∥CC 1⇒确定平面A 1CA 1C ⊂面A 1C ⇒O ∈面A 1C ⇒O ∈A 1C面BC 1D∩直线A 1C =O ⇒O ∈面BC 1D O 在面A 1C 与平面BC 1D 的交线C 1M 上∴C 1、O 、M 共线变式训练1:已知空间四点A 、B 、C 、D 不在同一平面内,求证:直线AB 和CD 既不相交也不平行.提示:反证法.例2. 已知直线l 与三条平行线a 、b 、c 都相交.求证:l 与a 、b 、c 共面.证明:设a ∩l =A b ∩l =B c ∩l =C a ∥b ⇒ a 、b 确定平面α ⇒l ⊂β A ∈a, B ∈bb ∥c ⇒b 、c 确定平面β 同理可证l ⊂β所以α、β均过相交直线b 、l ⇒ α、β重合⇒ c ⊂α ⇒a 、b 、c 、l 共面变式训练2:如图,△ABC 在平面α外,它的三条边所在的直线AB 、BC 、CA 分别交平面α于P 、Q 、R 点.求证:P 、Q 、R 共线.证明:设平面ABC∩α=l ,由于P =AB∩α,即P =平面ABC∩α=l ,即点P 在直线l 上.同理可证点Q 、R 在直线l 上.∴P 、Q 、R 共线,共线于直线l .例3. 若△ABC 所在的平面和△A 1B 1C 1所在平面相交,并且直线AA 1、BB 1、CC 1相交于一点O ,求证: (1) AB 和A 1B 1、BC 和B 1C 1分别在同一个平面内;A(2) 如果AB 和A 1B 1,BC 和B 1C 1分别相交,那么交点在同一条直线上.证明:(1) ∵AA 1∩BB 1=0,∴AA 1与BB 1确定平面α,又∵A ∈a ,B ∈α,A 1∈α,B 1∈α,∴AB ⊂α,A 1B 1⊂α,∴AB 、A 1B 1在同一个平面内同理BC 、B 1C 1、AC 、A 1C 1分别在同一个平面内(2) 设AB∩A 1B 1=X ,BC∩B 1C 1=Y ,AC∩A 1C 1=Z ,则只需证明X 、Y 、Z 三点都是平面A 1B 1C 1与ABC 的公共点即可.变式训练3:如图,在正方体ABCD -A 1B 1C 1D 1中,E 为AB 中点,F 为AA 1中点,求证:(1) E 、C .D 1、F 四点共面;(2) CE 、D 1F 、DA 三线共点.证明(1) 连结A 1B 则EF ∥A 1B A 1B ∥D 1C∴EF ∥D 1C ∴E 、F 、D 1、C 四点共面(2) 面D 1A∩面CA =DA∴EF ∥D 1C 且EF =21D 1C∴D 1F 与CE 相交 又D 1F ⊂面D 1A ,CE ⊂面AC∴D 1F 与CE 的交点必在DA 上∴CE 、D 1F 、DA 三线共点.例4.求证:两两相交且不通过同一点的四条直线必在同一平面内.证明:(1) 若a 、b 、c 三线共点P ,但点p ∉d ,由d 和其外一点可确定一个平面α又a∩d =A ∴点A ∈α ∴直线a ⊂α同理可证:b 、c ⊂α ∴a 、b 、c 、d 共面(2)若a 、b 、c 、d 两两相交但不过同一点∵a ∩b =Q ∴a 与b 可确定一个平面β又c ∩b =E ∴E ∈β同理c ∩a =F ∴F ∈β∴直线c 上有两点E、F在β上 ∴c ⊂β同理可证:d ⊂β 故a 、b 、c 、d 共面由(1) (2)知:两两相交而不过同一点的四条直线必共面变式训练4:分别和两条异面直线AB 、CD 同时相交的两条直线AC 、BD 一定是异面直线,为什么?解:假设AC 、BD 不异面,则它们都在某个平面α内,则A 、B 、C 、D ∈α.由公理1知AC α⊂≠,BD α⊂≠.这与已知AB 与CD 异面矛盾,所以假设不成立,即AC 、BD 一定是异面直线。
广东省廉江市第三中学高三数学专题复习 立体几何初步教案
广东省廉江市第三中学2014届高三数学专题复习立体几何初步教案【专题要点】1.在掌握直线与平面的位置关系(包括直线与直线、直线与平面、平面与平面间的位置关系)的基础上,研究有关平行和垂直的的判定依据(定义、公理和定理)、判定方法及有关性质的应用;在有关问题的解决过程中,进一步了解和掌握相关公理、定理的内容和功能,并探索立体几何中论证问题的规律;在有关问题的分析与解决的过程中提高逻辑思维能力、空间想象能力及化归和转化的数学思想的应用.2.在掌握空间角(两条异面直线所成的角,平面的斜线与平面所成的角及二面角)概念的基础上,掌握它们的求法(其基本方法是分别作出这些角,并将它们置于某个三角形内通过计算求出它们的大小);在解决有关空间角的问题的过程中,进一步巩固关于直线和平面的平行垂直的性质与判定的应用,掌握作平行线(面)和垂直线(面)的技能;通过有关空间角的问题的解决,进一步提高学生的空间想象能力、逻辑推理能力及运算能力.3.通过复习,使学生更好地掌握多面体与旋转体的有关概念、性质,并能够灵活运用到解题过程中.通过教学使学生掌握基本的立体几何解题方法和常用解题技巧,发掘不同问题之间的内在联系,提高解题能力.4.在学生解答问题的过程中,注意培养他们的语言表述能力和“说话要有根据”的逻辑思维的习惯、提高思维品质.使学生掌握化归思想,特别是将立体几何问题转化为平面几何问题的思想意识和方法,并提高空间想象能力、推理能力和计算能力.5.使学生更好地理解多面体与旋转体的体积及其计算方法,能够熟练地使用分割与补形求体积,提高空间想象能力、推理能力和计算能力.【知识纵横】【教法指引】⑴须明确《直线、平面、简单几何体》中所述的两个平面是指两个不重合的平面⑵与“直线与直线平行”、“直线与平面平行”的概念一样“平面与平面平行”是指“二平面没有公共点”由此可知,空间两个几何元素(点、直线、平面称为空间三个几何元素)间“没有公共点”时,它们间的关系均称为“互相平行”要善于运用平面与平面平行的定义所给定的两平面平行的最基本的判定方法和性质⑶注意两个平行平面的画法——直观地反映两平面没有公共点,将表示两个平面的平行四边形画成对应边平行。
高三专题复习 立体几何 教学设计
C.如果aa,a,那么a//D.如果a//b,b//a,那么a//a
4.如图,在正三棱锥A—BCD中,∠BAC=30°,AB=a,平行于AD、BC的截面EFGH分别交AB、BD、DC、CA于点E、F、G、H.
(1)判定四边形EFGH的形状,并说明理由.
推论1 经过一条直线和这条直线外一点,有且只有一个平面.
推论2 经过两条相交直线,有且只有一个平面.
推论3 经过两条平行直线,有且只有一个平面.
4.证题方法
5.空间线面的位置关系
平行—没有公共点
共面
(1)直线与直线 相交—有且只有一个公共点
异面(既不平行,又不相交)
直线在平面内—有无数个公共点
(2)直线和平面 直线不在平面内 平行—没有公共点
高三数学第一轮专题复习
—立体几何教学设计
【考纲要求】
1.掌握平面的基本性质,空间两条直线、直线和平面、两个平面的位置关系(特别是平行和垂直关系).
2.能运用有关概念以及有关两条直线、直线和平面、两个平面的平行和垂直关系的性质与判定,进行论证和解决有关问题.
【知识结构】
1.平面通常用一个平行四边形来表示.平面常用希腊字母α、β、γ…或拉丁字母M、N、P来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC.
(2)设P是棱AD上的点,当AP为何值时,平面PBC⊥平面EFGH,请给出证明.
4.(1)证明:
同理EF∥FG,∴EFGH是平行四边形
∵A—BCD是正三棱锥,∴A在底面上的射影O是△BCD的中心,
∴DO⊥BC,∴AD⊥BC,
∴HG⊥EH,四边形EFGH是矩形.
(2)作CP⊥AD于P点,连结BP,∵AD⊥BC,∴AD⊥面BCP
广东省廉江市第三中学高三数学专题复习 立体几何线面平行问题(1)
b ′ObaA 1B 1C 1D 1D CBAb a ab a b D 1C 1B 1A 1DC BA βlaαa Aαaα广东省廉江市第三中学2014届高三数学专题复习 立体几何线面平行问题一、知识点1 空间两直线的位置关系(1)相交——有且只有一个公共点;(2)平行——在同一平面内,没有公共点;(3)异面——不在任何..一个平面内,没有公共点; 2.公理4 :平行于同一条直线的两条直线互相平行 推理模式://,////a b b c a c ⇒.3.等角定理:若一个角的两边和另一个角的两边分别平行并且方向相同,则这两个角相等4.等角定理的推论:若两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等. 5.空间两条异面直线的画法 6.异面直线定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线推理模式:,,,A B l B l ααα∉∈⊂∉⇒AB 与l 是异面直线7.异面直线所成的角:已知两条异面直线,a b ,经过空间任一点O 作直线//,//a a b b '',,a b ''所成的角的大小与点O 的选择无关,把,a b ''所成的锐角(或直角)叫异面直线,a b 所成的角(或夹角).为了简便,点O 通常取在异面直线的一条上异面直线所成的角的范围:]2,0(π8.异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直.两条异面直线,a b 垂直,记作a b ⊥.9.求异面直线所成的角的方法:(1)通过平移,在一条直线上找一点,过该点做另一直线的平行线; (2)找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求 10.两条异面直线的公垂线、距离:和两条异面直线都垂直相交....的直线,我们称之为异面直线的公垂线 因为两条异面直线互相垂直时,它们不一定相交,所以公垂线的定义要注意“相交”的含义.两条异面直线的公垂线有且只有一条11.异面直线间的距离:两条异面直线的公垂线在这两条异面直线间的线段(公垂线段)的长度,叫做两条异面直线间的距离.12.直线和平面的位置关系(1)直线在平面内(无数个公共点);(2)直线和平面相交(有且只有一个公共点);(3)直线和平面平行(没有公共点)——用两分法进行两次分类.它们的图形分别可表示为如下,符号分别可表示为a α⊂,a A α=I ,//a α.13.线面平行的判定定理:如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.推理模式:,,////l m l m l ααα⊄⊂⇒. 14. 线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.推理模式://,,//l l m l mαβαβ⊂=⇒I.二、基本题型4.完成下列证明,已知直线a、b、c不共面,它们相交于点P,A∈a,D∈a,B∈b,E∈c求证:BD 和AE是异面直线证明:假设__ 共面于γ,则点A、E、B、D都在平面__内A∈a,D∈a,∴__⊂γ. P∈a,∴P∈__.P∈b,B∈b,P∈c,E∈c ∴__⊂γ,__⊂γ,这与____矛盾∴BD、AE__________5已知,,,E F G H分别是空间四边形四条边,,,AB BC CD DA的中点,(1)求证四边形EFGH是平行四边形(2)若AC⊥BD时,求证:EFGH为矩形;(3)若BD=2,AC=6,求22HFEG+;(4)若AC、BD成30º角,AC=6,BD=4,求四边形EFGH的面积;(5)若AB=BC=CD=DA=AC=BD=2,求AC 与BD间的距离.6空间四边形ABCD中,2AD BC==,,E F分别是,AB CD的中点,3EF=,求异面直线,AD BC所成的角7.在正方体AB CD-A1B1C1D1中,求(1)A1B与B1D1所成角;(2)AC与BD1所成角.8.在长方体DCBAABCD'''-中,已知AB=a,BC=b,AA'=c(a>b),求异面直线BD'与AC所成角的余弦值9.如图,已知P是平行四边形ABCD所在平面外一点,M、N分别是AB、PC的中点(1)求证://MN平面PAD;(2)若4MN BC==,43PA=,求异面直线PA与MN所成的角的大小10.如图,正方形ABCD与ABEF不在同一平面内,M、N分别在AC、BF上,且AM FN=NHPHTCM求证://MN 平面CBE参考答案:5. 证明(1):连结,AC BD ,∵,E F 是ABC ∆的边,AB BC 上的中点,∴//EF AC , 同理,//HG AC ,∴//EF HG ,同理,//EH FG ,所以,四边形EFGH 是平行四边形 证明(2):由(1)四边形EFGH 是平行四边形∵//EF AC ,//EH BD ,∴由AC ⊥BD 得,EF EH ⊥,∴EFGH 为矩形. 解(3):由(1)四边形EFGH 是平行四边形∵BD =2,AC =6,∴113,122EF AC EH BD ==== ∴由平行四边形的对角线的性质 20)(22222=+=+EH EF HF EG .解(4):由(1)四边形EFGH 是平行四边形∵BD =4,AC =6,∴113,222EF AC EH BD ==== 又∵//EF AC ,//EH BD ,AC 、BD 成30º角,∴EF 、EH 成30º角,∴四边形EFGH 的面积 330sin 0=⋅=EH EF S .解(5):分别取AC 与BD 的中点M 、N,连接MN 、MB 、MD 、NA 、NC , ∵AB =BC =CD =DA =AC =BD =2,∴MB =MD =NA =NC =3 ∴BD MN AC MN ⊥⊥,,∴MN 是AC 与BD 的公垂线段G FH E DBANM AC且222=-=NB MB MN ∴AC 与BD 间的距离为2.6. 解:取BD 中点G ,连结,,EG FG EF ,∵,E F 分别是,AB CD 的中点, ∴//,//,EG AD FG BC 且111,122EG AD FG BC ====, ∴异面直线,AD BC 所成的角即为,EG FG 所成的角,在EGF ∆中,2221cos 22EG FG EF EGF EG FG +-∠==-⋅, ∴120EGF ∠=o,异面直线,AD BC 所成的角为60o.9. 略证(1)取PD 的中点H ,连接AH , DC NH DC NH 21,//=⇒ AMNH AM NH AM NH ⇒=⇒,//为平行四边形 PAD AH PAD MN AH MN ⊂⊄⇒,,//PAD MN //⇒A BCDEFG解(2): 连接AC 并取其中点为O ,连接OM 、ON ,则OM 平行且等于BC 的一半,ON 平行且等于PA 的一半,所以ONM ∠就是异面直线PA 与MN 所成的角,由4MN BC ==,3PA =OM=2,ON=3所以030=∠ONM ,即异面直线PA 与MN 成030的角10. 略证:作AB NH AB MT //,//分别交BC 、BE 于T 、H 点 AM FN =NH MT BNH CMT =⇒∆⇒≌从而有MNHT 为平行四边形CBE MN TH MN ////⇒⇒HTB CFEM N。
高三数学专题立体几何复习教案
高三数学专题立体几何复习教案一、教学目标1、掌握以三视图为命题载体,熟悉一些典型的几何体模型,如长(正)方体、三棱柱、三棱锥等几何体的三视图,与学生共同研究空间几何体的结构特征(数量关系、位置关系).2、外接球问题关键是找到球与多面体的联系元素,如球心与截面圆心的关系即“心心相映法”,线面垂直的多面体可补成直棱柱再找外接球球心即“补体法”,进而构建球半径R、截面圆半径r、球心到截面距离d三者之间的勾股定理。
3、在三视图与直观图的互换过程中,培养学生养成构建长方体为“母体”的解题意识,通过寻找外接球球心问题,引导学生更好地理解球与多面体的关系,培养学生的分割与补形的解题意识,特别是将立体几何问题转化为平面几何问题的思想意识和方法,并提高空间想象能力、推理能力、计算能力和动手操作能力,体现化归与转化的基本思想..二、学情分析立体几何是培养学生空间想象力的数学分支,根据学生实际学情,依据考纲依靠课本,在立体几何的复习过程中要想办法让学生建立起完整的知识网络,要突出这门学科的主干,让学生多一点思考,少一点计算。
高考立体几何试题一般是两小题一大题, 其中三视图与直观图、多面体与球相关的外接与内切问题是高考命题的热点,要注意重视空间想象,会识图会画图会想图,提高识图、理解图、应用图的能力,解题时应多画、多看、多想,这样才能提高空间想象能力和解决问题的能力,突出转化、化归的基本思想.三、重点:三视图与直观图的数量、位置的转化;多面体与球相关的外接与内切问题;难点:化归思想,特别是将立体几何问题转化为平面几何问题的思想意识和方法;四、教学方法:问题引导式五、教学过程专题:立体几何问题1:三视图1.一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是( )2.某几何体的三视图如图所示,则该几何体的体积是3.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()1111111 1D. 3问题2:球与多面体4.(2016厦门3月质检15)已知四棱锥P ABCD-的底面ABCD是边长为a的正方形,其外接球的表面积为28π,△PAB是等边三角形,平面PAB⊥平面ABCD,则a=▲.延伸1:已知四棱锥P ABCD-的底面ABCD是边长为a的正方形,其外接球的表面积为π24,平面PAB⊥平面ABCD,△PAB是等腰直角三角形,PA⊥AB,则a=▲.延伸2:已知四棱锥P ABCD-的底面ABCD是边长为a的正方形,其外接球的表面积为π24,平面PAB⊥平面ABCD,△PAB是等腰直角三角形,PA⊥PB,则a=▲.延伸3:已知四棱锥P ABCD-的底面ABCD是边长为a的正方形,其外接球的表面积为240π,△PAB 是等腰三角形,PA=PB=2a,平面PAB⊥平面ABCD,则a=▲.延伸4:已知四棱锥P ABCD-的底面ABCD是边长为a的正方形,其外接球的表面积为π24,平面PAB⊥平面ABCD,△PAB中,PA = 2a,PB= a2,则a=▲.延伸5::已知四棱锥P ABCD-,底面ABCD是AB=a,BC=2a的矩形,其外接球的表面积为28π,△PAB 是等边三角形,平面PAB⊥平面ABCD,则a=▲.延伸6:在三棱锥P ABC -中,23PA =,2PC =,7AB =,3BC =,2ABC π∠=,则三棱锥P ABC -外接球的表面积为()(A )4π (B )163π (C )323π (D )16π问题3:立体几何与空间向量1.平行垂直的证明主要利用线面关系的转化 线∥线线∥面面∥面判定线⊥线线⊥面面⊥面性质线∥线线⊥面面∥面←→−←→−−→−−←→−←→−←−−−←→−←→−2.空间向量在几何中的应用1.线线角:设直线a ,b 的方向向量为a ,b ,其夹角为θ,则222222212121212121,cos cos zy x z y x z z y y x x ba b a b a ++•++++=••=><=θ2.线面角:设直线l 的方向向量为AB , 平面α的法向量为n ,直线l 与平面所成的角为θ,则有222222212121212121,cos sin zy x z y x z z y y x x nAB n AB n AB ++•++++=••=><=θ3.面面角:平面α的法向量为1n ,平面β的法向量为2n ,平面α与平面β的夹角为θ,则有222222212121212121212121,cos cos z y x z y x z z y y x x n n n n n n ++•++++=••=><=θ4.点面距离:222222212121,cos zy x z z y y x x nn PA n PA PA d ++++=•=><•=5.如图,四棱锥P-ABCD 中,底面ABCD 是边长为2的菱形,且︒=∠60DAB ,侧面PAD 为等边三角形,且与底面ABCD 垂直,M 为PC 的中点. (1)求证:PA||平面BDM (2)求证:AD ⊥PB ;nBAnAP(3)求直线AB 与平面BDM 所成角的正弦值. (4)求二面角A -BD -M 的余弦值 MBCAD P题目背景变换为以下几种,如何建立坐标系?延伸1: 如图,四棱锥P-ABCD 中,底面ABCD 是梯形,AB||CD,AB=4,CD=2,︒=∠60DAB ,侧面PAD 为边长为2的等边三角形,且与底面ABCD 垂直.延伸2: 如图,四棱锥P-ABCD 中,底面ABCD 是平行四边形,AB=4,AD=2,且︒=∠60DAB ,侧面PAD 为等边三角形,且与底面ABCD 垂直.限时训练1.某几何体三视图如图一所示,则该几何体的体积为( )A .8-2πB .8-πC .8-π2D .8-π42.已知三棱锥P ABC -的四个顶点都在半径为2的球面上,且PA ⊥平面ABC ,若2AB =,3AC =,2BAC π∠=,则棱PA 的长为( )A .32B .3C .3D .9 3.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( ) A .1 B .2 C .3 D .44.若三棱锥SABC 的底面是以AB 为斜边的等腰直角三角形,2AB SA SB SC ====,则该三棱锥的外接球的表面积为( )图一A .83π B .433π C .43π D .163π5.已知某几何体的三视图如图所示,则该几何体的体积为________.6.如图,长方体ABCD —A 1B 1C 1D 1中,AB = 16,BC = 10,AA 1 = 8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F = 4,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形。
高中数学立体几何初步教案
高中数学立体几何初步教案
教学目标:
1. 了解立体几何的基本概念和性质
2. 掌握立体几何中的常见公式和计算方法
3. 能够独立解决立体几何问题
4. 培养学生的空间想象能力和逻辑思维能力
教学内容:
1. 立体几何的基本概念:点、线、面、体的概念;平面与直线的位置关系
2. 立体图形的性质:长方体、正方体、圆柱、圆锥、球体等的性质介绍
3. 立体几何的计算方法:表面积、体积的计算公式及应用
4. 基本的几何推理和证明方法
教学过程:
1. 导入:通过展示一些立体几何图形,引出立体几何的基本概念和性质
2. 讲解:介绍立体几何的基本概念和性质,以及常见的计算方法和公式
3. 练习:在黑板或投影仪上给出一些练习题,让学生尝试计算表面积和体积
4. 拓展:引导学生思考如何应用所学知识解决实际问题
5. 总结:对本节课的内容进行总结,并强调重点和难点
教学资源:
1. 教科书《数学》,第三册
2. 教学投影仪或黑板
3. 试题集,练习册
课后作业:
1. 完成教师布置的练习题
2. 自行查阅相关资料,进一步了解立体几何的应用
3. 思考如何将立体几何知识运用到实际生活中
教学反思:
1. 教学内容和难度是否适合学生水平?
2. 学生是否能够理解和掌握立体几何的基本概念和性质?
3. 是否存在不足之处,需要在后续教学中加以补充和完善?。
高考数学立体几何备考复习教案
高考数学立体几何备考复习教案一、教学目标1. 知识与技能:使学生掌握立体几何的基本概念、性质和定理,提高空间想象能力。
2. 过程与方法:通过复习,使学生掌握立体几何的解题方法,提高解题能力。
3. 情感态度与价值观:激发学生学习立体几何的兴趣,培养学生的创新意识。
二、教学内容1. 立体几何的基本概念:点、线、面的位置关系,空间向量。
2. 立体几何的性质:平行公理,空间向量的运算律。
3. 立体几何的定理:平行线、异面直线、线面平行、面面平行、线面垂直、面面垂直的判定与性质。
4. 立体几何的计算:体积、表面积、角、距离的计算。
5. 立体几何的综合应用:空间几何体的结构特征,几何体的运动变化。
三、教学重点与难点1. 教学重点:立体几何的基本概念、性质和定理,立体几何的计算方法。
2. 教学难点:立体几何的综合应用,空间想象能力的培养。
四、教学方法1. 采用讲解、示范、练习、讨论、探索相结合的方法,引导学生掌握立体几何的基本概念、性质和定理。
2. 通过案例分析、几何画板演示等手段,培养学生的空间想象能力。
3. 组织学生进行合作学习,提高学生的解题能力。
五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习与作业:检查学生完成的练习和作业,评估学生的掌握程度。
3. 考试成绩:定期进行立体几何的测试,分析学生的成绩,了解学生的学习效果。
教案第一课时:立体几何的基本概念1. 教师讲解立体几何的基本概念,如点、线、面的位置关系,空间向量。
2. 学生通过案例分析,理解并掌握基本概念。
第二课时:立体几何的性质1. 教师讲解立体几何的性质,如平行公理,空间向量的运算律。
2. 学生通过几何画板演示,直观地理解立体几何的性质。
第三课时:立体几何的定理1. 教师讲解立体几何的定理,如平行线、异面直线、线面平行、面面平行、线面垂直、面面垂直的判定与性质。
2. 学生通过案例分析,掌握立体几何的定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省廉江市第三中学2014届高三数学专题复习立体几何初步教案【专题要点】1.在掌握直线与平面的位置关系(包括直线与直线、直线与平面、平面与平面间的位置关系)的基础上,研究有关平行和垂直的的判定依据(定义、公理和定理)、判定方法及有关性质的应用;在有关问题的解决过程中,进一步了解和掌握相关公理、定理的内容和功能,并探索立体几何中论证问题的规律;在有关问题的分析与解决的过程中提高逻辑思维能力、空间想象能力及化归和转化的数学思想的应用.2.在掌握空间角(两条异面直线所成的角,平面的斜线与平面所成的角及二面角)概念的基础上,掌握它们的求法(其基本方法是分别作出这些角,并将它们置于某个三角形内通过计算求出它们的大小);在解决有关空间角的问题的过程中,进一步巩固关于直线和平面的平行垂直的性质与判定的应用,掌握作平行线(面)和垂直线(面)的技能;通过有关空间角的问题的解决,进一步提高学生的空间想象能力、逻辑推理能力及运算能力.3.通过复习,使学生更好地掌握多面体与旋转体的有关概念、性质,并能够灵活运用到解题过程中.通过教学使学生掌握基本的立体几何解题方法和常用解题技巧,发掘不同问题之间的内在联系,提高解题能力.4.在学生解答问题的过程中,注意培养他们的语言表述能力和“说话要有根据”的逻辑思维的习惯、提高思维品质.使学生掌握化归思想,特别是将立体几何问题转化为平面几何问题的思想意识和方法,并提高空间想象能力、推理能力和计算能力.5.使学生更好地理解多面体与旋转体的体积及其计算方法,能够熟练地使用分割与补形求体积,提高空间想象能力、推理能力和计算能力.【知识纵横】【教法指引】⑴须明确《直线、平面、简单几何体》中所述的两个平面是指两个不重合的平面⑵与“直线与直线平行”、“直线与平面平行”的概念一样“平面与平面平行”是指“二平面没有公共点”由此可知,空间两个几何元素(点、直线、平面称为空间三个几何元素)间“没有公共点”时,它们间的关系均称为“互相平行”要善于运用平面与平面平行的定义所给定的两平面平行的最基本的判定方法和性质⑶注意两个平行平面的画法——直观地反映两平面没有公共点,将表示两个平面的平行四边形画成对应边平行。
两个平面平行的写法与线、线平行,线、面平行的写法一议,即将“平面α平行于平面β”,记为“α∥β”⑷空间两个平面的位置关系有且只有“两平面平行”和“两平面相交”两种关系⑸在明确“两个平行平面的公垂线”、“两个平行平面的公垂线段”、“两个平行平面的距离”的概念后,应该注意到,两平行平面间的公垂线段有无数条,但其长度都相等——是唯一确定的值,且两平行平面间的公垂线段,是夹在两平行平面间的所有线段中最短的线段,此外还须注意到,两平行平面间的距离可能化为“其中一个平面内的直线到另一个平面的距离”又可转化为“其中一个面内的一个点到另一个平面的距离⑹三种空间角,即异面直线所成角、直线与平面所成角。
平面与平面所成二面角。
它们的求法一般化归为求两条相交直线的夹角,通常“线线角抓平移,线面角找射影,面面角作平面角”而达到化归目的,有时二面角大小出通过cos θ=原射S S 来求⑺有七种距离,即点与点、点到直线、两条平行直线、两条异面直线、点到平面、平行于平面的直线与该平面、两个平行平面之间的距离,其中点与点、点与直线、点到平面的距离是基础,求其它几种距离一般化归为求这三种距离,点到平面的距离有时用“体积法”来求。
【典例精析】1, 空间几何体及三视图例1.用一些棱长为1cm 的小正方体码放成一个几何体,图1为其俯视图,图2为其主视图则这个几何体的体积最大是 7 cm 3.图1(俯视图) 图2(主视图)例2.一个多面体的直观图及三视图如图所示,则多面体A CDEF -的体积为 ▲ .38例4.右图是由一些相同的小正方体构成的几何体的三视图,这些相同的小正方体共有▲ 个.5 例5.如果一个几何体的三视图如图所示(单位长度: cm), 则此几何体的表面积是2420+2cm 。
例 6.矩形ABCD 中,AB=4,BC=3,沿AC 将矩形ABCD 折成一个直二面角B -AC -D ,则四面体ABCD 的外接球的体积为 π6125例7.一个几何体的三视图中,正视图和侧视图都是矩形,俯视图是等腰直角三角形(如图),根据图中标注的长度,可以计算出该几何体的表面积是 12+4 2.平行与垂直例8.已知:正方体1111ABCD-A B C D ,1AA =2,E 为棱1CC 的中点.⑴求证:11B D AE ⊥;⑵求证://AC 平面1B DE ;⑶求三棱锥1B ADE -的体积证明:连结BD ,则BD //11B D , ∵ABCD 是正方形,∴AC BD ⊥.∵CE ⊥面ABCD ,∴CE BD ⊥. 又C =AC CE ,∴BD ⊥面ACE .∵AE ⊂面ACE ,∴BD AE ⊥, ∴11B D AE ⊥.⑵证明:作1BB 的中点F ,连结AF CF EF 、、. ∵E F 、是1BB 1CC 、的中点,∴CE1B F ,∴四边形1B FCE 是平行四边形,∴ 1CF// B E . ∵,E F 是1BB 1CC 、的中点,∴//EF BC ,又//BC AD ,∴//EF AD .∴四边形ADEF 是平行四边形,AF ∴//ED , ∵AF CF C =,1B E ED E =, ∴平面//ACF 面1B DE .主视图俯视图左视图俯视图左视图又AC ⊂平面ACF ,∴//AC 面1B DE例9. 多面体ABCDE 中,1====AE AC BC AB ,2=CD ,ABC AE 面⊥,CD AE //。
(1)求证:BCD AE 面//;(2)求证:BCD BED 面面⊥。
证明:(1)∵CD AE //BCD AE 面⊄∴BCD AE 面//(2)令BC 中点为N ,BD 中点为M ,连结MN 、EN ∵MN 是BCD ∆的中位线∴CD MN //又∵CD AE //∴MN AE //∴ABC MN 面⊥ ∴AN MN ⊥ ∵ABC ∆为正∆∴BC AN ⊥ ∴BCD AN 面⊥又∵1==MN AE ,MN AE //∴四边形ANME 为平行四边形∴BCD EN 面⊥ ∴BCD BED 面面⊥例10.如图四边形ABCD 是菱形,PA ⊥平面ABCD , Q 为PA 的中点. 求证: ⑴ PC ∥平面QBD ; ⑵ 平面QBD ⊥平面PAC .解:证:设 ⋂AC BD=0,连OQ 。
⑴ ∵ABCD 为菱形, ∴ O 为AC 中点,又Q 为PA 中点。
∴OQ ∥PC又⊄PC 平面QBD ,A BCDEM NABCDEBACDP Q O⊂OQ 平面QBD ∴PC ∥平面QBD⑵ ∵ABCD 为菱形, ∴⊥BD AC ,又∵⊥PA 平面ABCD , ⊂BD 平面ABCD ∴⊥PA BD 又 PA AC D ⋂= ∴BD P ⊥平面AC 又⊂BD 平面QBD ∴P ⊥平面QBD 平面AC 3.距离与角例11.已知DBC ∆∆和ABC 所在的平面互相垂直,且AB=BC=BD,0120=∠=∠DBC CBA ,求:⑴.直线AD 与平面BCD 所成角的大小; ⑵.直线AD 与直线BC 所成角的大小; ⑶.二面角A-BD-C 的余弦值.⑴如图,在平面ABC 内,过A 作AH ⊥BC ,垂足为H ,则AH ⊥平面DBC ,∴∠ADH 即为直线AD 与平面BCD由题设知△AHB ≌△AHD ,则DH ⊥BH ,AH =DH ,∴∠ADH =45° ⑵∵BC ⊥DH ,且DH 为AD 在平面BCD 上的射影,∴BC ⊥AD ,故AD 与BC 所成的角为90°⑶过H 作HR ⊥BD ,垂足为R ,连结AR ,则由三垂线定理知,AR ⊥BD ,故∠ARH 为二面角A —BD —C 的平面角的补角设BC =a ,则由题设知,AH =DH =2,23a BH a =,在△HDB 中,HR =43a ,∴tan ARH =HRAH=2 故二面角A —BD —C 的余弦值的大小为55-【点评】:本题着眼于让学生掌握通性通法几何法在书写上体现:“作出来、证出来、指出来、算出来、答出来”五步斜线和平面所成的角是一个直角三角形所成的锐角,它的三条边分别是平面的垂线段、斜线段及斜线段在平面内的射影。
因此求直线和平面所成的角,几何法一般先定斜足、再作垂线找射影、通过解直角三角形求解;向量法则利用斜线和射影的夹角或考虑法向量,设 θ为直线l 与平面α所成的角,ϕ为直线l 的方向向量v 与平面α的法向量n 之间的夹角,则有θπϕ-=2或θπϕ+=2(如图)特别地 0=ϕ时,2πθ=,α⊥l ;2πϕ=时, 0=θ,α⊆l 或α//l 。
θωαlvnωθαvlncos ∠DBP=22∴∠DBP=45°, 即PB 与平面BCD 所成角为45°. ⑵.过B 作BE ⊥CD 于E ,连结PE ,PD ⊥平面BCD 得PD ⊥BE ,∴BE ⊥平面PCD , ∴∠BPE 为BP 与平面PCD 所成的角,在Rt △BEP 中,BE=22a, BP=2a,∴∠BPE=30° 即BP 与平面PCD 所成角为30°例12.在四棱锥P-ABCD 中,已知ABCD 为矩形,PA ⊥平面ABCD ,设PA=AB=a ,BC=2a ,求二面角B-PC-D 的大小解析1.定义法 过D 作DE ⊥PC 于E ,过E 作EF ⊥PC 于F ,连接FD ,由二面角的平面角的定义可知DEF ∠是所求二面角B-PC-D 的平面角。
求解二面角B-PC-D 的大小只需解△DEF 即可【解法一】过D 作DE ⊥PC 于E ,过E 作EF ⊥PC 于F ,连接FD ,由二面角的平面角的定义可知DEF ∠是所求二面角B-PC-D 的平面角在四棱锥P-ABCD 中, PA ⊥平面ABCD 且ABCD 为矩形,∵AD ⊥DC ∴PD ⊥DC ∵PA=a ,AD=BC=2a ,∴PD=a 5,PC=a 6,DE=630a PC DC PD =∙,CE=662aCP CD =B DP CA B PCA解析一 EF B DP C A解析三E FGB DP C 解析二同理在Rt △PBC 中,a BC PB EC EF EC EF BC PB 63=∙==, 在Rt △EFC 中,FC=a 21, 在Rt △DFC 中,DF=a 25,在△DEF 中由余弦定理cos DEF ∠=5102222-=∙-+ED EF DF ED EF 所求二面角B-PC-D 的余弦值为510-解析2.垂面法 易证面PAB ⊥面PBC ,过A 作AM ⊥BP 于M ,显然AM ⊥面PBC ,从而有AM ⊥PC ,同法可得AN ⊥PC ,再由AM 与AN 相交与A 得PC ⊥面AMN 。