2014一轮复习课件 第2章 第7节 函数的图象

合集下载

届高考数学一轮复习讲义第二章函数图象-.ppt

届高考数学一轮复习讲义第二章函数图象-.ppt

函数图象与解析式的对应 关系
例 2 已知函数 f(x)=lg |x|,g(x)=-x2+1,则函数 f(x)·g(x) 的图象只可能是______.(填序号)
f(x)·g(x)=-(x2-1)lg|x|是偶函数,从 f(x)·g(x)的性质入手进 行判断.
解析 f(x)g(x)=-(x2-1)lg|x|是偶函数,图象不可能是①③. 又 f(x)·g(x)=-(x2-1)lg|x|无最小值,所以只可能是④.
要点梳理
忆一忆知识要点
(2)对称变换 ①y=f(-x)与 y=f(x)的图象关于 y 轴对称. ②y=-f(x)与 y=f(x)的图象关于 x 轴 对称. ③y=-f(-x)与 y=f(x)的图象关于 原点 对称. (3)翻折变换 ①作 y=f(x)的图象,将图象位于 x 轴下方的部分以 x 轴为对 称轴翻折到上方,其余部分不变,得到 y=|f(x)|的图象; ②作 y=f(x)在 y 轴上及 y 轴右边的图象部分,并作 y 轴右边 的图象关于 y 轴对称的图象,即得 y=f(|x|)的图象.
(2)因 y=1+x-3 1,先作出 y=3x的图象,将其图象向右平移 一个单位,再向上平移一个单位,即得 y=xx+-21的图象,如 图②.
(3)先作出 y=log2x 的图象,再将其图象向下平移一个单位, 保留 x 轴上方的部分,将 x 轴下方的图象翻折到 x 轴上方, 即得 y=|log2x-1|的图象,如图③.
可以用描点作图,也可以用图象变换法作图.
解 (1)∵y=|lg x|=l-g lxg,xx,≥01<,x<1. ∴函数 y=|lg x|的图象如图①; (2)将函数 y=2x 的图象向左平移 2 个单位即可得出函数 y= 2x-2 的图象,如图②;

高考数学一轮总复习教学课件第二章 函 数第7节 对数函数

高考数学一轮总复习教学课件第二章 函 数第7节 对数函数

g(x)=(a-1)x2-ax在同一坐标系中的图象可能是(

)
解析:(1)g(x)=(a-1)x2-ax的图象过原点,排除A,C;
当0<a<1时,f(x)=logax单调递减,g(x)开口向下,排除D.故选B.
(2)(2024·浙江杭州模拟)已知二次函数f(x)的图象如图所示,将
其向右平移2个单位长度得到函数g(x)的图象,则不等式g(x)>
在[-1,4)上单调递减,所以f(x)max=f(-1)=2log25,则B正确;
因为f(x)在(-6,-1)上单调递增,在[-1,4)上单调递减,
且f(-4)=f(2)=4,
所以不等式f(x)<4的解集是(-6,-4)∪(2,4),则C错误;
因为f(x)在[-1,4)上单调递减,所以D错误.
故选AB.

.
解析:(3)因为函数f(x)是定义在R上的偶函数,且在(-∞,0]上单
调递减,
所以可将 f(lo (2x-5))>f(log38)等价于|lo (2x-5)|>|log38|,



即 log3(2x-5)>log38 或 log3(2x-5)<-log38=log3 ,即 2x-5>8 或
再借助y=logax的单 忽略函数的定义域
调性求解
角度三
对数函数性质的综合应用
[例4] (多选题)(2023·河北邯郸模拟)已知函数f(x)=log2(x+6)+
log2(4-x),则(
)

B.f(x)有最大值

A.f(x)的定义域是(-6,4)
C.不等式f(x)<4的解集是(-∞,-4)∪(2,+∞)

2014一轮复习指导资料 第2章 第7节 函数的图象

2014一轮复习指导资料 第2章 第7节 函数的图象

图象如图甲;
2x-1,x≥1, |x-1| ②y=2 = -x+1 2 ,x<1,
图象如图乙;
x-1 x+2-3 3 ③y= = =1- ,图象如图丙. x+2 x+2 x+2
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
【互动探究】 3 对于本例(2)③, 若改为“写出由函数 y=x 的图象得到函 x-1 数 y= 图象的过程”,则如何求解? x+2 3 解:把 y=x 的图象以 x 轴为对称轴进行对称,则得到函
象关于原点对称,是两个函数的图象对称.
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
2.一个函数的图象关于y轴对称与两个函数的图象关于y轴
对称相同吗? 提示:一个函数的图象关于y轴对称与两个函数的图象关于y 轴对称不是一回事.函数y=f(x)的图象关于y轴对称是自身对 称,说明该函数为偶函数;而函数y=f(x)与函数y=f(-x)的图象
(1)解析:由y=f(x)的图象向左平移两个单位得:y=f(x+ 2);再把y=f(x+2)的图象关于原点对称得:y=-f(-x+2)的图
象,可知答案.
答案:B
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
(2)解:①y=|lg
lg x,x≥1, x|= -lg x,0<x<1,
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
一、作图 1.描点法

第2章 第7节 函数的图象

第2章 第7节 函数的图象
A>1,伸为原来的A倍
y=f(ωx) ;
y=f(x)―――――――――――――→ y=Af(x) . 0<A<1,缩为原来的A倍
主干知识 自主排查
(3)对称变换 y=f(x)―――――→y= -f(x) y=f(x)―――――→y= f(-x)
关于y轴对称 关于x轴对称
; ;
关于原点对称 y=f(x) ――→ y= -f(-x) . (4)翻折变换 y=f(x)―――――――――――――→y=f(|x|);
主干知识 自主排查
2.利用图象变换法作函数的图象 (1)平移变换 y=f(x)――――――――――→ y=f(x-a)
a<0,左移|a|个单位 a>0,右移a个单位
; .
b>0,上移b个单位 y=f(x)――――――――――→ y=f(x)+b
b<0,下移|b|个单位
主干知识 自主排查
(2)伸缩变换 y=f(x)=
(1)首先作出y =lg x的图象C1,然后将 C1向右平移1个 函数图象作法的 2个关键点 单位,得到y=lg(x-1)的图象C2,再把C2在x轴下方 (1) 常见的几种函数图象如二次函数、反比例函 的图象作关于 x轴对称的图象,即为所求图象C3:y= |lg(x-1)|.如图1所示(实线部分). 数、指数函数、对数函数、幂函数、形如 y=x+ + (2)y=2x 1-1的图象可由y=2x的图象向左平移1个单 m 位,得y=2x+1的图象,再向下平移一个单位得到,如 (m>0)的函数是图象变换的基础. x 图2所示. 2 x -x-2x≥0, 2 (2) 掌握平移交换、伸缩变换、对称变换等常用方 (3)y=x -|x|-2= 2 其图象如图3所 x +x-2x<0, 法技巧,可以帮助我们简化作图过程. 示.

2014届高考人教A版数学(理)一轮复习讲义2.7函数图象

2014届高考人教A版数学(理)一轮复习讲义2.7函数图象

第7讲函数图象【2014年高考会这样考】1.利用函数图象的变换(平移、对称、翻折、伸缩)作函数图象的草图.2.根据函数的解析式辨别函数图象.3.应用函数图象解决方程、不等式等问题.4.利用函数图象研究函数性质或求两函数图象的交点个数.对应学生28考点梳理1.函数图象的变换(1)平移变换①水平平移:y=f(x±a)(a>0)的图象,可由y=f(x)的图象向左(+)或向右(-)平移a个单位而得到.②竖直平移:y=f(x)±b(b>0)的图象,可由y=f(x)的图象向上(+)或向下(-)平移b个单位而得到.Z_xx_k(2)对称变换①y=f(-x)与y=f(x)的图象关于y轴对称.②y=-f(x)与y=f(x)的图象关于x轴对称.③y=-f(-x)与y=f(x)的图象关于原点对称.(3)伸缩变换①y=af(x)(a>0)的图象,可将y=f(x)图象上每点的纵坐标伸(a>1时)或缩(a <1时)到原来的a倍,横坐标不变.②y=f(ax)(a>0)的图象,可将y=f(x)的图象上每点的横坐标伸(a<1时)或缩(a>1时)到原来的1a倍,纵标标不变.(4)翻折变换①作出y=f(x)的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y=|f(x)|的图象;②作出y=f(x)在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得y =f (|x |)的图象.2.等价变换例如:作出函数y =1-x 2的图象,可对解析式等价变形y =1-x 2⇔⎩⎨⎧ y ≥0,1-x 2≥0,y 2=1-x 2⇔⎩⎨⎧y ≥0,y 2=1-x 2⇔x 2+y 2=1(y ≥0),可看出函数的图象为半圆.此过程可归纳为:(1)写出函数解析式的等价组;(2)化简等价组;(3)作图.3.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象.【助学·微博】一条主线数形结合的思想方法是学习函数内容的一条主线,也是高考考查的热点.作函数图象首先要明确函数图象的形状和位置,而取值、列表、描点、连线只是作函数图象的辅助手段,不可本末倒置.两个区别(1)一个函数的图象关于原点对称与两个函数的图象关于原点对称不同,前者是自身对称,且为奇函数,后者是两个不同的函数对称.(2)一个函数的图象关于y 轴对称与两个函数的图象关于y 轴对称也不同,前者也是自身对称,且为偶函数,后者也是两个不同函数的对称关系. 三种途径明确函数图象形状和位置的方法大致有以下三种途径.(1)图象变换:平移变换、伸缩变换、对称变换.(2)函数解析式的等价变换.(3)研究函数的性质,描点作图.考点自测1.(人教A 版教材习题改编)为了得到函数y =lg x +310的图象,只需把函数y =lg x 的图象上所有的点( ).A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度解析 y =lg x +310=lg(x +3)-1可由y =lg x 的图象向左平移3个单位长度,向下平移1个单位长度而得到.答案 C2.(2013·太原一模)已知函数f (x )=2x -2,则函数y =|f (x )|的图象可能是( ).解析 函数y =|f (x )|=⎩⎨⎧2x -2,x ≥1,2-2x ,x <1,故y =|f (x )|在(-∞,1)上为减函数,在(1,+∞)上为增函数,排除A ,C ,D.答案 B3.(2011·陕西)函数y =x 13的图象是( ).解析 该题考查幂函数的图象与性质,解决此类问题首先是考虑函数的性质,尤其是奇偶性和单调性,再与函数y =x 比较即可.由(-x )13=-x 13知函数是奇函数.同时由当0<x <1时,x 13>x ,当x >1时,x 13<x ,知只有B 选项符合.答案 B4.当a ≠0时,y =ax +b 与y =(b a )x 的图象大致是( ).解析 A 中,a >0,b =1,b a =1,很容易排除;B 中,a >0,b >1,故b a >1,函数y =(b a )x 单调递增,也可排除;C 、D 中,a <0,0<b <1,故b a >1,排除D.故选C.答案 C5.直线y =1与曲线y =x 2-|x |+a 有四个交点,则a 的取值范围是________.解析 y =x 2-|x |+a 是偶函数,图象如图所示,由图象可知直线y =1与曲线y =x 2-|x |+a 有四个交点,需满足a -14<1<a ,∴1<a <54. 答案 ⎝ ⎛⎭⎪⎫1,54对应学生29考向一 作函数图象【例1】►作出下列函数的图象:(1)y =2x +1-1;(2)y =sin|x |;(3)y =|log 2(x +1)|.[审题视点] 根据函数性质通过平移,对称等变换作出函数图象.解 (1)y =2x +1-1的图象可由y =2x 的图象向左平移1个单位,得y =2x +1的图象,再向下平移一个单位得到y =2x +1-1的图象,如图①所示.(2)当x ≥0时,y =sin|x |与y =sin x 的图象完全相同,又y =sin|x |为偶函数,其图象关于y 轴对称,如图②所示.(3)首先作出y =log 2x 的图象c 1,然后将c 1向左平移1个单位,得到y =log 2(x+1)的图象c 2,再把c 2在x 轴下方的图象翻折到x 轴上方,即为所求图象c 3:y =|log 2(x +1)|.如图③所示(实线部分).(1)熟知一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数等函数的图象,再利用图象变换的规律作图.(2)掌握平移变换、伸缩变换、对称变换、翻折变换、周期变换等常用的方法技巧,以简化作图过程.【训练1】 分别画出下列函数的图象:(1)y =|lg x |; (2)y =2x +2;(3)y =x 2-2|x |-1; (4)y =x +2x -1. 解 (1)y =⎩⎨⎧ lg x ,x ≥1.-lg x ,0<x <1.图象如图①. (2)将y =2x 的图象向左平移2个单位.图象如图②.(3)y =⎩⎨⎧x 2-2x -1 (x ≥0),x 2+2x -1 (x <0).图象如图③. (4)因y =1+3x -1,先作出y =3x 的图象,将其图象向右平移1个单位,再向上平移1个单位,即得y =x +2x -1的图象,如图④.考向二 函数图象的辨识【例2】►(2012·山东)函数y =cos 6x 2x -2-x的图象大致为( ).[审题视点] 利用函数的奇偶性及函数值的变化规律求解.解析 函数为奇函数,所以其图象关于原点对称,排除A ;令y =0得cos 6x=0,所以6x =π2+k π(k ∈Z ),x =π12+k 6π(k ∈Z ),函数的零点有无穷多个,排除C ;函数在y 轴右侧的第一个零点为⎝ ⎛⎭⎪⎫π12,0,又函数y =2x -2-x 为增函数,当0<x <π12时,y =2x -2-x >0,cos 6x >0,所以函数y =cos 6x 2x -2-x>0,排除B ;选D.答案D函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复.【训练2】 如图所示,动点P 在正方体ABCD -A 1B 1C 1D 1的对角线BD 1上,过点P 作垂直于平面BB 1D 1D 的直线,与正方体表面相交于M ,N ,设BP =x ,MN =y ,则函数y =f (x )的图象大致是( ).解析 选B.在P 点由B 点向D 1点运动的过程中,考虑P 点的特殊位置,即考虑P 点为BD 1的中点时,此时,M ,N 分别为AA 1和CC 1的中点,MN 的值最大,故排除A ,C .取AA 1中点E 和CC 1中点F ,则BE ,BF 分别为点M ,N的运动轨迹,所以有tan ∠EBD 1=12y x ,故y =2x ·tan ∠EBD 1,而∠EBD 1为定值,故f (x )的图象为线段.排除D.答案 B 考向三 函数图象的应用【例3】►已知函数f (x )=|x 2-4x +3|.(1)求函数f (x )的单调区间,并指出其增减性;(2)求集合M ={m |使方程f (x )=m 有四个不相等的实根}.[审题视点] 利用函数的图象可直观得到函数的单调性,方程解的问题可转化为函数图象交点的问题.解 f (x )=⎩⎨⎧(x -2)2-1, x ∈(-∞,1]∪[3,+∞)-(x -2)2+1, x ∈(1,3)作出函数图象如图.(1)函数的增区间为[1,2],[3,+∞);函数的减区间为(-∞,1],[2,3].(2)在同一坐标系中作出y =f (x )和y =m 的图象,使两函数图象有四个不同的交点(如图).由图知0<m <1,∴M ={m |0<m <1}.(1)利用图象,可观察函数的对称性、单调性、定义域、值域、最值等性质.(2)利用函数图象可以解决一些形如f (x )=g (x )的方程解的个数问题.【训练3】 (2012·天津)已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是________.解析 y =|x 2-1|x -1=⎩⎨⎧x +1,x ≤-1或x >1,-x -1,-1<x <1,函数y=kx-2恒过定点M(0,-2),k MA=0,k MB=4.当k=1时,直线y=kx -2在x>1时与直线y=x+1平行,此时有一个公共点,∴k∈(0,1)∪(1,4),两函数图象恰有两个交点.答案(0,1)∪(1,4)对应学生30热点突破7——函数图象的辨识【命题研究】从近三年的高考试题来看,图象的辨识与对称性以及利用图象研究函数的性质、方程、不等式的解是高考的热点,多以选择题、填空题的形式出现,属中低档题,主要考查基本初等函数的图象的应用以及数形结合思想.预测2014年高考仍将以识图、用图为主要考向,重点考查函数的图象性质以及方程、不等式与图象的综合问题.【真题探究】►(2012·新课标全国)已知函数f(x)=1ln(x+1)-x,则y=f(x)的图象大致为().[教你审题] 观察函数f (x )及四个选项的特点,从函数的定义域、值域、单调性入手或用特殊点验证.[解法] 函数f (x )的定义域为(-1,0)∪(0,+∞),排除D ;又f (1)=1ln 2-1<0,排除A ;g ′(x )=1x +1-1=-1x +1. 当-1<x <0时,g ′(x )>0,g (x )单调递增,∴g (x )<g (0)=0,∴f (x )在(-1,0)上单调递减且小于0,排除C.故选B.[答案] B[反思] (1)对基本函数的关系式、定义域、值域细心研究,抓住其关键点、单调性、奇偶性等特征,作为判断图象的依据.(2)要掌握判断函数图象的一些基本方法,如:特殊点法(利用特殊点筛选淘汰),导数法(借助导数判断单调性、凹凸性),辅助线法(借助辅助线判断点的位置、图象凹凸状况),平移法,对称法等.【试一试】 (2011·山东)函数y =x 2-2sin x 的图象大致是( ).解析 y ′=12-2cos x .令y ′=0,得cos x =14,则这个方程有无穷多解,即函数y =x 2-2sin x 有无穷多个极值点,又函数是奇函数,图象关于坐标原点对称.排除A ,B ,D ,故选C.答案 C对应学生237 A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.函数y =e sin x (-π≤x ≤π)的大致图象为 ( ).解析 因-π≤x ≤π,由y ′=e sin x cos x >0,得-π2<x <π2.则函数y =e sin x 在区间⎝ ⎛⎭⎪⎫-π2,π2上为增函数,排除A 、B 、C ,故选D. 答案 D2.已知函数f (x )=4|x |+2-1的定义域是[a ,b ](a ,b ∈Z ),值域是[0,1],则满足条件的整数对(a ,b )共有( ). A .2对 B .5对 C .6对 D .无数对解析 显然f (x )=4|x |+2-1为偶函数.其图象如图所示. f (x )=⎩⎪⎨⎪⎧4x +2-1,x ≥0,-4x -2-1,x <0, 要使值域y ∈[0,1],且a ,b ∈Z ,则a =-2,b =0,1,2;a =-1,b =2;a =0,b =2,∴共有5对. 答案 B 3.已知函数f (x )=⎝ ⎛⎭⎪⎫1e x -tan x ⎝ ⎛⎭⎪⎫-π2<x <π2,若实数x 0是函数y =f (x )的零点,且0<t <x 0,则f (t )的值( ). A .大于1 B .大于0 C .小于0 D .不大于0解析 分别作出函数y =⎝ ⎛⎭⎪⎫1e x 与y =tan x 在区间⎝ ⎛⎭⎪⎫-π2,π2上的图象,得到0<x 0<π2,且在区间(0,x 0)内,函数y =⎝ ⎛⎭⎪⎫1e x 的图象位于函数y =tan x 的图象上方,即0<x <x 0时,f (x )>0,则f (t )>0,故选B.答案 B4.如图,正方形ABCD 的顶点A ⎝ ⎛⎭⎪⎫0,22,B ⎝ ⎛⎭⎪⎫22,0,顶点C 、D 位于第一象限,直线l :x =t (0≤t ≤2)将正方形ABCD 分成两部分,记位于直线l 左侧阴影部分的面积为f (t ),则函数S =f (t )的图象大致是 ( ).解析 当直线l 从原点平移到点B 时,面积增加得越来越快;当直线l 从点B 平移到点C 时,面积增加得越来越慢.故选C.答案 C二、填空题(每小题5分,共10分)5.设函数f (x )=|x +2|+|x -a |的图象关于直线x =2对称,则a 的值为________. 解析 因为函数f (x )的图象关于直线x =2对称,则有f (2+x )=f (2-x )对于任意实数x 恒成立,即|x +4|+|x +2-a |=|x -4|+|x -2+a |对于任意实数x 恒成立,从而有⎩⎨⎧2-a =-4,a -2=4,解得a =6. 答案 66.(2011·新课标全国)函数y =11-x 的图象与函数y =2sin πx (-2≤x ≤4)的图象所有交点的横坐标之和等于________.解析 函数y =11-x =-1x -1和y =2sin πx 的图象有公共的对称中心(1,0),画出二者图象如图所示,易知y =11-x与y =2sin πx (-2≤x ≤4)的图象共有8个交点,不妨设其横坐标为x 1,x 2,x 3,x 4,x 5,x 6,x 7,x 8,且x 1<x 2<x 3<x 4<x 5<x 6<x 7<x 8,由对称性得x 1+x 8=x 2+x 7=x 3+x 6=x 4+x 5=2,∴x 1+x 2+x 3+x 4+x 5+x 6+x 7+x 8=8.答案 8三、解答题(共25分)7.(12分)讨论方程|1-x |=kx 的实数根的个数.解 设y =|1-x |,y =kx ,则方程的实根的个数就是函数y =|1-x |的图象与y =kx 的图象交点的个数.由右边图象可知:当-1≤k <0时,方程没有实数根;当k =0或k <-1或k ≥1时,方程只有一个实数根;当0<k <1时,方程有两个不相等的实数根.8.(13分)已知函数f (x )=x 1+x. (1)画出f (x )的草图;(2)指出f (x )的单调区间.解 (1)f (x )=x 1+x =1-1x +1,函数f (x )的图象是由反比例函数y =-1x 的图象向左平移1个单位后,再向上平移1个单位得到,图象如图所示.(2)由图象可以看出,函数f (x )有两个单调递增区间:(-∞,-1),(-1,+∞).B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.函数=ln 1|2x -3|的大致图象为(如图所示) ( ).解析 y =-ln|2x -3|=⎩⎪⎨⎪⎧ -ln (2x -3),x >32,-ln (3-2x ),x <32,故当x >32时,函数为减函数,当x <32时,函数为增函数.答案 A2.(2012·江西)如右图,已知正四棱锥S -ABCD 所有棱长都为1,点E 是侧棱SC 上一动点,过点E 垂直于SC 的截面将正四棱锥分成上、下两部分.记SE =x (0<x <1),截面下面部分的体积为V (x ),则函数y =V (x )的图象大致为 ( ).解析 (1)当0<x <12时,过E 点的截面为五边形EFGHI (如图1所示),连接FI ,由SC 与该截面垂直知,SC ⊥EF ,SC ⊥EI ,∴EF =EI =SE tan 60°=3x ,SI =2SE =2x ,IH =FG =BI =1-2x ,FI =GH =2AH =2 2x ,∴五边形EFGHI的面积S =FG ×GH +12FI × EF 2-⎝ ⎛⎭⎪⎫12FI 2=22x -32x 2,∴V (x )=V C -EFGHI +2V I -BHC =13(22x -32x 2)×CE +2×13×12×1×(1-2x )×22(1-2x )=2x 3-2x 2+26,其图象不可能是一条线段,故排除C ,D.(2)当12≤x <1时, 过E 点的截面为三角形,如图2,设此三角形为△EFG ,则EG =EF =EC tan 60°=3(1-x ),CG =CF =2CE =2(1-x ),三棱锥E -FGC底面FGC 上的高h =EC sin 45°=22(1-x ),∴V (x )=13×12CG ·CF ·h =23(1-x )3,∴V ′(x )=-2(1-x )2,又显然V ′(x )=-2(1-x )2在区间⎝ ⎛⎭⎪⎫12,1上单调递增,V ′(x )<0⎝ ⎛⎭⎪⎫x ∈⎝ ⎛⎭⎪⎫12,1, ∴函数V (x )=23(1-x )3在区间⎝ ⎛⎭⎪⎫12,1上单调递减,且递减的速率越来越慢,故排除B ,应选A.答案 A二、填空题(每小题5分,共10分)3.使log 2(-x )<x +1成立的x 的取值范围是________. ] 解析 作出函数y =log 2(-x )及y =x +1的图象.其中y =log 2(-x )与y =log 2 x 的图象关于y 轴对称,观察图象(如图所示)知-1<x <0,即x ∈(-1,0).也可把原不等式化为⎩⎨⎧-x >0,-x <2x +1后作图.答案 (-1,0)4.(2011·北京)已知函数f (x )=⎩⎪⎨⎪⎧ 2x,x ≥2,(x -1)3,x <2.若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________.解析 作出函数f (x )=⎩⎪⎨⎪⎧ 2x,x ≥2,(x -1)3,x <2的简图,方程f (x )=k 有两个不同的实根,也就是函数f (x )的图象与直线y =k 有两个不同的交点,所以0<k <1.答案 (0,1)三、解答题(共25分)5.(12分)已知函数f (x )=x |m -x |(x ∈R ),且f (4)=0.(1)求实数m 的值;(2)作出函数f (x )的图象并判断其零点个数;(3)根据图象指出f (x )的单调递减区间;(4)根据图象写出不等式f (x )>0的解集;(5)求集合M ={m |使方程f (x )=m 有三个不相等的实根}.解 (1)∵f (4)=0,∴4|m -4|=0,即m =4.(2)∵f (x )=x |m -x |=x |4-x |=⎩⎨⎧x (x -4),x ≥4,-x (x -4),x <4.∴函数f (x )的图象如图:由图象知f (x )有两个零点.(3)从图象上观察可知:f (x )的单调递减区间为[2,4]. ](4)从图象上观察可知:不等式f (x )>0的解集为:{x |0<x <4或x >4}.(5)由图象可知若y =f (x )与y =m 的图象有三个不同的交点,则0<m <4,∴集合M ={m |0<m <4}.6.(13分)设函数f (x )=x +1x (x ∈(-∞,0)∪(0,+∞))的图象为C 1,C 1关于点A (2,1)的对称的图象为C 2,C 2对应的函数为g (x ).(1)求函数y =g (x )的解析式,并确定其定义域;(2)若直线y =b 与C 2只有一个交点,求b 的值,并求出交点的坐标.解 (1)设P (u ,v )是y =x +1x上任意一点, ∴v =u +1u ①.设P 关于A (2,1)对称的点为Q (x ,y ),∴⎩⎨⎧ u +x =4,v +y =2⇒⎩⎨⎧ u =4-x ,v =2-y ,代入①得2-y =4-x +14-x ⇒y =x -2+1x -4, ∴g (x )=x -2+1x -4(x ∈(-∞,4)∪(4,+∞)). (2)联立⎩⎪⎨⎪⎧ y =b ,y =x -2+1x -4⇒x 2-(b +6)x +4b +9=0,∴Δ=(b +6)2-4×(4b +9)=b 2-4b =0⇒b =0或b =4.∴当b =0时得交点(3,0);当b =4时得交点(5,4).。

【数学】2014年高考数学复习课件:函数的图象

【数学】2014年高考数学复习课件:函数的图象

y
o
2
5 x
8.如图, fi(x)(i=1, 2, 3, 4)是定义在 [0, 1] 上的四个函数, 其中 满足性质: “对 [0, 1] 中任意的 x1 和 x2 及任意的 ∈[0, 1], f[x1+(1-)x2]≤f(x1)+(1-)f(x2) 恒成立” 的只有( A ) A. f1(x), f3(x) B. f2(x) C. f2(x), f3(x) D. f4(x) y y y f (x) y f (x) 3 f (x) 4
一、函数的图象
在平面直角坐标系中, 以函数 y=f(x) 中的 x 为横坐标, 函数 值 y 为纵坐标的点 (x, y) 的集合, 叫做函数 y=f(x) 的图象.
注: 图象上每一点的坐标 (x, y) 均满足函数关系 y=f(x), 反过 来, 满足 y=f(x) 的每一组对应值 x, y 为坐标的点 (x, y), 均在其图 象上.
纵坐标伸长(A>1)或 缩短(0<A<1)到原来的 A 倍(x 不变)
y=Af(x).
(3)对称变换: ① y=f(x) 与 y=f(-x) 关于 y 轴对称 ② y=f(x) 与 y= -f(x) 关于 x 轴对称 ③ y=f(x) 与 y= -f(-x) 关于原点对称 关于直线 y=x 对称 ④ y=f(x) 与 y=f -1(x) ⑤ y=f(x) 与 y= -f -1(-x) 关于直线 y=-x 对称 保留 y 轴右边图象, 去掉左边图象, ⑥ y=f(x) 与 y=f(|x|) 再作关于 y 轴的对称图象. ⑦ y=f(x) 与 y=|f(x)| 保留 x 轴上方图象, 将 x 轴下方图 象翻折上) x
o
1
2
x
o

(浙江专版)高考数学一轮复习 第2章 函数、导数及其应用 第7节 函数的图象教师用书-人教版高三全册

(浙江专版)高考数学一轮复习 第2章 函数、导数及其应用 第7节 函数的图象教师用书-人教版高三全册

第七节 函数的图象1.利用描点法作函数的图象方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、最值等);(4)描点连线.2.利用图象变换法作函数的图象(1)平移变换(2)对称变换①y =f (x )的图象――→关于x 轴对称y =-f (x )的图象; ②y =f (x )的图象――→关于y 轴对称y =f (-x )的图象;③y =f (x )的图象――→关于原点对称y =-f (-x )的图象;④y =a x (a >0且a ≠1)的图象――→关于直线y =x 对称y =log a x (a >0且a ≠1)的图象.(3)伸缩变换①y =f (x )的图象y =f (ax )的图象;②y =f (x )的图象――――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a ,横坐标不变y =af (x )的图象. (4)翻转变换①y =f (x )的图象―――――――――――――→x 轴下方部分翻折到上方x 轴及上方部分不变y =|f (x )|的图象; ②y =f (x )的图象―――――――――――――――→y 轴右侧部分翻折到左侧原y 轴左侧部分去掉,右侧不变y =f (|x |)的图象.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数y =f (1-x )的图象,可由y =f (-x )的图象向左平移1个单位得到.( )(2)函数y =f (x )的图象关于y 轴对称即函数y =f (x )与y =f (-x )的图象关于y 轴对称.( )(3)当x ∈(0,+∞)时,函数y =f (|x |)的图象与y =|f (x )|的图象相同.( )(4)若函数y =f (x )满足f (1+x )=f (1-x ),则函数f (x )的图象关于直线x =1对称.( )[答案] (1)× (2)× (3)× (4)√2.(教材改编)甲、乙二人同时从A 地赶往B 地,甲先骑自行车到两地的中点再改为跑步,乙先跑步到中点再改为骑自行车,最后两人同时到达B 地.已知甲骑车比乙骑车的速度快,且两人骑车速度均大于跑步速度.现将两人离开A 地的距离s 与所用时间t 的函数关系用图象表示,则下列给出的四个函数图象中,甲、乙的图象应该是( )①②③④图2­7­1A .甲是图①,乙是图②B .甲是图①,乙是图④C .甲是图③,乙是图②D .甲是图③,乙是图④ B [设甲骑车速度为V 甲骑,甲跑步速度为V 甲跑,乙骑车速度为V 乙骑,乙跑步速度为V 乙跑,依题意V 甲骑>V 乙骑>V 乙跑>V 甲跑,故选B.]3.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x关于y 轴对称,则f (x )=( )A .ex +1 B .e x -1 C .e -x +1D .e -x -1 D [依题意,与曲线y =e x 关于y 轴对称的曲线是y =e -x ,于是f (x )相当于y =e -x 向左平移1个单位的结果,∴f (x )=e -(x +1)=e-x -1.] 4.(2016·某某高考)函数y =sin x 2的图象是( )D [∵y =sin(-x )2=sin x 2,∴函数为偶函数,可排除A 项和C 项;当x =π2时,sin x 2=sin π24≠1,排除B 项,故选D.]5.若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值X 围是________.【导学号:51062049】(0,+∞) [在同一个坐标系中画出函数y =|x |与y =a -x 的图象,如图所示.由图象知当a >0时,方程|x |=a -x 只有一个解.]作函数的图象作出下列函数的图象: (1)y =⎝ ⎛⎭⎪⎫12|x |;(2)y =|log 2(x +1)|; (3)y =2x -1x -1;(4)y =x 2-2|x |-1. [解] (1)先作出y =⎝ ⎛⎭⎪⎫12x 的图象,保留y =⎝ ⎛⎭⎪⎫12x 图象中x ≥0的部分,再作出y =⎝ ⎛⎭⎪⎫12x 的图象中x >0部分关于y 轴的对称部分,即得y =⎝ ⎛⎭⎪⎫12|x |的图象,如图①实线部分.3分①②(2)将函数y =log 2x 的图象向左平移一个单位,再将x 轴下方的部分沿x 轴翻折上去,即可得到函数y =|log 2(x +1)|的图象,如图②.7分(3)∵y =2+1x -1,故函数图象可由y =1x图象向右平移1个单位,再向上平移2个单位得到,如图③.11分③④(4)∵y =⎩⎪⎨⎪⎧ x 2-2x -1,x ≥0,x 2+2x -1,x <0,且函数为偶函数,先用描点法作出[0,+∞)上的图象,再根据对称性作出(-∞,0)上的图象,得图象如图④.15分[规律方法] 画函数图象的一般方法(1)直接法.当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征直接作出;(2)图象变换法.若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出.易错警示:注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.[变式训练1] 分别画出下列函数的图象:(1)y =|lg x |;(2)y =sin|x |.[解] (1)∵y =|lg x |=⎩⎪⎨⎪⎧ lg x ,x ≥1,-lg x ,0<x <1.∴函数y =|lg x |的图象,如图①.8分(2)当x ≥0时,y =sin|x |与y =sin x 的图象完全相同,又y =sin|x |为偶函数,图象关于y 轴对称,其图象如图②.15分识图与辨图(1)函数y =2x 2-e |x |在[-2,2]的图象大致为( )(2)如图2­7­2,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点.点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )图2­7­2A B C D(1)D (2)B [(1)∵f (x )=2x 2-e |x |,x ∈[-2,2]是偶函数,又f (2)=8-e 2∈(0,1),故排除A ,B.设g (x )=2x 2-e x ,则g ′(x )=4x -e x .又g ′(0)<0,g ′(2)>0,∴g (x )在(0,2)内至少存在一个极值点,∴f (x )=2x 2-e |x |在(0,2)内至少存在一个极值点,排除C.故选D.(2)当点P 沿着边BC 运动,即0≤x ≤π4时, 在Rt △POB 中,|PB |=|OB |tan ∠POB =tan x ,在Rt △PAB 中,|PA |=|AB |2+|PB |2=4+tan 2x ,则f (x )=|PA |+|PB |=4+tan 2x +tan x ,它不是关于x 的一次函数,图象不是线段,故排除A 和C ;当点P 与点C 重合,即x =π4时,由上得f ⎝ ⎛⎭⎪⎫π4=4+tan 2π4+tan π4=5+1,又当点P 与边CD 的中点重合,即x =π2时,△PAO 与△PBO 是全等的腰长为1的等腰直角三角形,故f ⎝ ⎛⎭⎪⎫π2=|PA |+|PB |=2+2=22,知f ⎝ ⎛⎭⎪⎫π2<f ⎝ ⎛⎭⎪⎫π4,故又可排除D.综上,选B.][规律方法] 函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.[变式训练2] (1)已知函数f (x )的图象如图2­7­3所示,则f (x )的解析式可以是( )图2­7­3A .f (x )=ln|x |xB .f (x )=e xxC .f (x )=1x2-1 D .f (x )=x -1x(2)(2017·某某二模)函数y =a +sin bx (b >0且b ≠1)的图象如图2­7­4所示,那么函数y =log b (x -a )的图象可能是( )图2­7­4(1)A (2)C [(1)由函数图象可知,函数f (x )为奇函数,应排除B ,C.若函数为f (x )=x -1x,则x →+∞时,f (x )→+∞,排除D ,故选A. (2)由题图可得a >1,且最小正周期T =2πb<π,所以b >2,则y =log b (x -a )是增函数,排除A 和B ;当x =2时,y =log b (2-a )<0,排除D ,故选C.]函数图象的应用☞角度1 研究函数的性质 已知函数f (x )=x |x |-2x ,则下列结论正确的是( )A .f (x )是偶函数,递增区间是(0,+∞)B .f (x )是偶函数,递减区间是(-∞,1)C .f (x )是奇函数,递减区间是(-1,1)D .f (x )是奇函数,递增区间是(-∞,0)C [将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎪⎨⎪⎧ x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.]☞角度2 确定函数零点的个数已知f (x )=⎩⎪⎨⎪⎧ |lg x |,x >0,2|x |,x ≤0,则函数y =2f 2(x )-3f (x )+1的零点个数是________. 【导学号:51062050】5 [方程2f 2(x )-3f (x )+1=0的解为f (x )=12或1.作出y =f (x )的图象,由图象知零点的个数为5.]☞角度3 求参数的值或取值X 围(2017·某某某某五校联盟一诊)若直角坐标平面内两点P ,Q 满足条件:①P ,Q 都在函数y =f (x )的图象上;②P ,Q 关于原点对称,则称(P ,Q )是函数y =f (x )的一个“伙伴点组”(点组(P ,Q )与(Q ,P )看作同一个“伙伴点组”).已知函数f (x )=⎩⎪⎨⎪⎧ kx -1,x >0,-ln -x ,x <0有两个“伙伴点组”,则实数k 的取值X 围是( )A .(-∞,0)B .(0,1)C.⎝ ⎛⎭⎪⎫0,12 D .(0,+∞)B [根据题意可知,“伙伴点组”的点满足:都在函数图象上,且关于坐标原点对称.可作出函数y =-ln(-x )(x <0)关于原点对称的函数y =ln x (x >0)的图象,使它与直线y =kx -1(x >0)的交点个数为2即可.当直线y =kx -1与y =ln x 的图象相切时,设切点为(m ,ln m ),又y =ln x 的导数为y ′=1x, 即km -1=ln m ,k =1m,解得m =1,k =1, 可得函数y =ln x (x >0)的图象过(0,-1)点的切线的斜率为1,结合图象可知k ∈(0,1)时两函数图象有两个交点.故选B.]☞角度4 求不等式的解集函数f (x )是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图2­7­5所示,那么不等式f xcos x <0的解集为________.图2­7­5 ⎝ ⎛⎭⎪⎫-π2,-1∪⎝ ⎛⎭⎪⎫1,π2 [在⎝ ⎛⎭⎪⎫0,π2上,y =cos x >0,在⎝ ⎛⎭⎪⎫π2,4上,y =cos x <0. 由f (x )的图象知在⎝⎛⎭⎪⎫1,π2上f x cos x <0, 因为f (x )为偶函数,y =cos x 也是偶函数,所以y =f x cos x 为偶函数, 所以f x cos x <0的解集为⎝ ⎛⎭⎪⎫-π2,-1∪⎝⎛⎭⎪⎫1,π2.] [规律方法] 函数图象应用的常见题型与求解方法(1)研究函数性质:①根据已知或作出的函数图象,从最高点、最低点,分析函数的最值、极值. ②从图象的对称性,分析函数的奇偶性.③从图象的走向趋势,分析函数的单调性、周期性.④从图象与x 轴的交点情况,分析函数的零点等.(2)研究方程根的个数或由方程根的个数确定参数的值(X 围):构造函数,转化为两函数图象的交点个数问题,在同一坐标系中分别作出两函数的图象,数形结合求解.(3)研究不等式的解:当不等式问题不能用代数法求解,但其对应函数的图象可作出时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.[思想与方法]1.识图:对于给定函数的图象,要从图象的左右、上下分布X 围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性,注意图象与函数解析式中参数的关系.2.用图:借助函数图象,可以研究函数的定义域、值域、单调性、奇偶性、对称性等性质.利用函数的图象,还可以判断方程f (x )=g (x )的解的个数,求不等式的解集等.[易错与防X]1.图象变换是针对自变量x 而言的,如从f (-2x )的图象到f (-2x +1)的图象是向右平移12个单位,先作如下变形f (-2x +1)=f ⎝ ⎛⎭⎪⎫-2⎝ ⎛⎭⎪⎫x -12,可避免出错. 2.明确一个函数的图象关于y 轴对称与两个函数的图象关于y 轴对称的不同,前者是自身对称,且为偶函数,后者是两个不同函数的对称关系.3.当图形不能准确地说明问题时,可借助“数”的精确,注重数形结合思想的运用.课时分层训练(九) 函数的图象A 组 基础达标(建议用时:30分钟)一、选择题1.为了得到函数y =2x -2的图象,可以把函数y =2x 的图象上所有的点( ) 【导学号:51062051】A .向右平行移动2个单位长度B .向右平行移动1个单位长度C .向左平行移动2个单位长度D .向左平行移动1个单位长度B [因为y =2x -2=2(x -1),所以只需将函数y =2x 的图象上所有的点向右平移1个单位长度,即可得到y =2(x -1)=2x -2的图象,故B 正确.]2.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )A B C DC [出发时距学校最远,先排除A ,中途堵塞停留,距离没变,再排除D ,堵塞停留后比原来骑得快,因此排除B.]3.(2017·某某某某第一中学能力测试)若函数y =a x-b 的图象如图2­7­6所示,则( )图2­7­6A .a >1,b >1B .a >1,0<b <1C .0<a <1,b >1D .0<a <1,0<b <1D [由题图易知0<a <1,b >0,而函数y =a x-b 的图象是由函数y =a x的图象向下平移b 个单位得到的,且函数y =a x的图象恒过点(0,1),所以由题图可知0<b <1,故选D.]4.已知函数f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,x ,x ≤0,若关于x 的方程f (x )=k 有两个不等的实数根,则实数k 的取值X 围是( )A .(0,+∞) .(-∞,1) C .(1,+∞)D .(0,1]D [作出函数y =f (x )与y =k 的图象,如图所示:由图可知k ∈(0,1],故选D.]5.(2017·某某市镇海中学模拟)若f (x )是偶函数,且当x ∈[0,+∞)时,f (x )=x -1,则f (x -1)<0的解集是( )A .(-1,0)B .(-∞,0)∪(1,2)C .(1,2)D .(0,2)D [由{ x ≥0,f x <0,得0≤x <1.由f (x )为偶函数.结合图象(略)知f (x )<0的解集为-1<x <1.所以f (x -1)<0⇔-1<x -1<1,即0<x <2.] 二、填空题6.已知函数f (x )的图象如图2­7­7所示,则函数g (x )=log 2f (x )的定义域是________. 【导学号:51062052】图2­7­7(2,8] [当f (x )>0时,函数g (x )=log2f (x )有意义,由函数f (x )的图象知满足f (x )>0时,x ∈(2,8].]7.如图2­7­8,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________.图2­7­8f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,f(1,4)x -22-1,x >0[当-1≤x ≤0时,设解析式为y =kx +b ,则⎩⎪⎨⎪⎧-k +b =0,=1,得⎩⎪⎨⎪⎧k =1,=1,∴y =x +1.当x >0时,设解析式为y =a (x -2)2-1. ∵图象过点(4,0),∴0=a (4-2)2-1,得a =14,即y =14(x -2)2-1.综上,f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,f(1,4)x -22-1,x >0.]8.已知定义在R 上的函数y =f (x )对任意的x 都满足f (x +1)=-f (x ),当-1≤x <1时,f (x )=x 3,若函数g (x )=f (x )-log a |x |至少有6个零点,则a 的取值X 围是________.⎝ ⎛⎦⎥⎤0,15∪(5,+∞) [由f (x +1)=-f (x )得f (x +1)=-f (x +2),因此f (x )=f (x +2),函数f (x )是周期为2的周期函数.函数g (x )=f (x )-log a |x |至少有6个零点可转化成y =f (x )与h (x )=log a |x |两函数图象交点至少有6个,需对底数a 进行分类讨论.若a >1,则h (5)=log a 5<1,即a >5.若0<a <1,则h (-5)=log a 5≥-1,即0<a ≤15.所以a 的取值X 围是⎝ ⎛⎦⎥⎤0,15∪(5,+∞).] 三、解答题9.已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],-3,x ∈2,5].(1)在如图2­7­9所示给定的直角坐标系内画出f (x )的图象;图2­7­9(2)写出f (x )的单调递增区间;(3)由图象指出当x 取什么值时f (x )有最值. [解] (1)函数f (x )的图象如图所示.6分(2)由图象可知,函数f (x )的单调递增区间为[-1,0],[2,5].10分 (3)由图象知当x =2时,f (x )min =f (2)=-1, 当x =0时,f (x )max =f (0)=3.15分 10.已知f (x )=|x 2-4x +3|. (1)作出函数f (x )的图象;(2)求函数f (x )的单调区间,并指出其单调性;(3)求集合M ={m |使方程f (x )=m 有四个不相等的实根}.【导学号:51062053】[解] (1)当x 2-4x +3≥0时,x ≤1或x ≥3,∴f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤1或x ≥3,x 2+4x -3,1<x <3,∴f (x )的图象为:(2)由函数的图象可知f (x )的单调区间是(-∞,1],(2,3],(1,2],(3,+∞),其中(-∞,1],(2,3]是减区间;[1,2],[3,+∞)是增区间.10分(3)由f (x )的图象知,当0<m <1时,f (x )=m 有四个不相等的实根,所以M ={m |0<m <1}.15分B 组 能力提升 (建议用时:15分钟)1.已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1mx i =( )A .0B .mC .2mD .4mB [∵f (x )=f (2-x ),∴函数f (x )的图象关于直线x =1对称.又y =|x 2-2x -3|=|(x -1)2-4|的图象关于直线x =1对称,∴两函数图象的交点关于直线x =1对称.当m 为偶数时,∑i =1mx i =2×m2=m ;当m 为奇数时,∑i =1mx i =2×m -12+1=m .故选B.]2.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,og 13x ,x >1,若对任意的x ∈R ,都有f (x )≤|k -1|成立,则实数k 的取值X 围为________.⎝ ⎛⎦⎥⎤-∞,34∪⎣⎢⎡⎭⎪⎫54,+∞ [对任意的x ∈R ,都有f (x )≤|k -1|成立,即f (x )max ≤|k -1|. 因为f (x )的草图如图所示,观察f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,og 13x ,x >1的图象可知,当x =12时,函数f (x )max =14,所以|k -1|≥14,解得k ≤34或k ≥54.]3.已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称.(1)求函数f (x )的解析式;(2)若g (x )=f (x )+a x,g (x )在区间(0,2]上的值不小于6,某某数a 的取值X 围.【导学号:51062054】[解] (1)设f (x )图象上任一点坐标为(x ,y ),∵点(x ,y )关于点A (0,1)的对称点(-x,2-y )在h (x )的图象上, ∴2-y =-x +1-x+2,4分∴y =x +1x ,即f (x )=x +1x.7分(2)由题意g (x )=x +a +1x, 且g (x )=x +a +1x≥6,x ∈(0,2].10分 ∵x ∈(0,2],∴a +1≥x (6-x ), 即a ≥-x 2+6x -1.12分令q (x )=-x 2+6x -1,x ∈(0,2],q (x )=-x 2+6x -1=-(x -3)2+8,∴x ∈(0,2]时,q (x )max =q (2)=7, 故a 的取值X 围为[7,+∞).15分。

2014高考数学一轮复习2.7函数的图象课件(精)

2014高考数学一轮复习2.7函数的图象课件(精)

x 【解析】 (1)∵函数 y= - 2sin x是奇函数,图象关于 2 原点对称,当 x→+∞时,f(x)→+∞ . 1 1 又 y′= - 2cos x,令y′= 0,得 cos x= , 2 4 1 x ∴ cos x= 有无穷多个解,因此 y= - 2sin x有多个极 4 2 值点,只有 C符合. (2)∵ y=f(2x+ 1)是奇函数, ∴ f(2x+ 1)的图象关于原点 (0, 0)对称. 1 又 f(2x+ 1)的图象向右平移 个单位得到 f(2x)的图象. 2
且f(-x)=-f(x),因此函数f(x)是奇函数.
【答案】
C
2 .当 0< a< 1时,在同一坐标系中,函数 y = a - x与 y =
logax的图象是(
)
1 【解析】 由0<a<1,知 >1. a - ∴y=a x是增函数,y=logax是减函数.
【答案】 C
3.函数y=f(x)为偶函数,则函数y=f(x+1)的一条对称
1 【尝试解答】 (1)当x=1时,y= <0,排除A; ln 2-1 当x=0时,y不存在,排除 D. 当x从负方向无限趋近 0时,y趋向于-∞,排除C,选 B.
函数y=f(2x+1)的图象是由函数y=f(2x)的图 1 象沿x轴方向,向左平移 个单位得到的, 2 又y=f(2x+1)是偶函数,其图象关于y轴对称, 1 所以函数y=f(2x)的图象关于直线x= 对称. 2
1 (1)(2012· 课标全国卷)已知函数f(x)= , ln(x+1)-x 则y=f(x)的图象大致为( )
(2)(2013·佛山模拟)已知y=f(2x+1)是偶函数,则函数y
=f(2x)的图象关于直线________对称.
【审题视点】 (1)利用特殊点和变化趋势判断.

高考文数学一轮复习课件第二章第七节函数的图象

高考文数学一轮复习课件第二章第七节函数的图象

命题方向二 解不等式
典例6 已知奇函数f(x)在(-∞,0)上是减函数,若f(-2)=0,则xf(x)<0的解集为
(B) A.(-2,0)∪(0,2) C.(-1,0)∪(2,+∞)
B.(-∞,-2)∪(2,+∞) D.(-∞,-2)∪(0,2)
解析 由题意得函数f(x)的大致图象如下,
因为xf(x)<0,所以函数f(x)的图象应在第二、四象限,所以不等式的解集为 (-∞,-2)∪(2,+∞),故选B.
规律总结 函数图象的识辨可从以下方面入手 1.由函数的定义域判断图象的左右位置;由函数的值域判断图象的上下位置; 2.由函数的单调性判断图象的变化趋势; 3.由函数的奇偶性判断图象的对称性; 4.由函数的周期性判断图象的循环往复; 5.由特殊点排除不符合要求的图象.
2-1
(1)函数y=
2
2x3 x 2-
规律总结 利用函数图象的直观性求解相关问题,关键在于准确作出函数图象,根据函数 解析式的特征和图象的直观性先确定函数的相关性质,特别是函数图象的对 称性,然后解决相关问题.
3-1 已知函数f(x)为R上的偶函数,当x≥0时, f(x)单调递减,若f(2a)>f(1-a),则a
的取值范围是 ( C )
解析
lg x(x 1),
(1)y=-lg x(0 x
1)
的图象如图①.
(2)将y=2x的图象向左平移2个单位长度即可得到y=2x+2的图象,如图②.
(3)y= x 2 =1+ 3 ,先作出y= 3 的图象,再将其图象向右平移1个单位长度,向上
x-1 x-1
x
平移1个单位长度,即得到y= x 2 的图象,如图③.

一轮复习课件 第2章 第7节 函数的图象

一轮复习课件 第2章 第7节 函数的图象

一、作图
1.描点法 利用描点法作图象的三个步骤: 列表 、 描点 、连线 .
2.图象变换法
左右平移:把函数y=f(x)的图象向左 平移aห้องสมุดไป่ตู้a>0)个单 位得y=f(x+a)的图象;把函数y=f(x)的图象向 右 平
平移
移a(a>0)个单位得y=f(x-a)的图象;上下平移:把函 数y=f(x)的图象向 上 平移b(b>0)个单位得y=f(x)+b
B.(0,1]
C.(1,+∞)
D.[1,+∞)
解析:依题意得,当x<0时,y=-x+(x-2)=-2; 当0≤x≤2时,y=x+(x-2)=2x-2; 当x>2时,y=x-(x-2)=2. 在坐标系下画出该函数的图 象,将x轴绕着原点逆时针方向旋转,当旋转到直线恰好经 过点(2,2)的过程中,相应的直线与该函数的图象都有三个不同的 交点,再进一步旋转,相应的直线与该函数的图象都不再有三 个不同的交点,因此满足题意的k的取值范围是(0,1),选A. 答案:A
1
4.已知 x2>x3,则实数 x 的取值范围是________.
1
解析:分别画出函数 y=x2 与 y=x3的图象,如图所示,
1
由于两函数的图象都过点(1,1),由图象可知不等式 x2> x3的 解集为{x|x<0 或 x>1}.
答案:{x|x<0 或 x>1}
5.对 a,b∈R,记 max{a,b}=ab,,aa≥<bb,, 函数 f(x) =max{|x+1|,|x-2|}(x∈R)的最小值是________.
二、识图 对于给定的函数的图象,要能从图象的左、右、上、下分 布范围及变化趋势来研究函数的定义域、值域、单调性、奇偶 性、周期性、对称性等性质. 三、用图 函数的图象形象地显示了函数的性质,为研究数量关系提 供了“形”的直观性,它是探求解题途径、获得问题结果的重 要工具.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-2a+b=0, 由 b=1,
1 a= , 得 2 b=1.
1 1 ∴f(x)=2x+1.同理,当 0<x<2 时,f(x)=-2x. 1 2x+1,-2≤x<0, ∴f(x)= -1x,0<x<2. 2
【考向探寻】
利用函数的图象研究函数值、不等式的解集、方程根等问
x+3 1.为了得到函数 y=lg 10 的图象,只需把函数 y=lg x 的图象上所有的点( )
A.向左平移 3 个单位长度,再向上平移 1 个单位长度 B.向右平移 3 个单位长度,再向上平移 1 个单位长度 C.向左平移 3 个单位长度,再向下平移 1 个单位长度 D.向右平移 3 个单位长度,再向下平移 1 个单位长度
对于左、右平移变换,往往容易出错,在实际 判断中可熟记口诀:左加右减;但要注意加、减指的是在自变
量x上,否则不成立.
【考向探寻】
1.利用函数的图象求参数值、解析式.
2.利用函数图象获取相关的信息,如对称性、单调性等.
【典例剖析】 cos 6x (1)(2012· 山东高考)函数 y= x -x的图象大致为 2 -2
(2)图象变换法:若函数图象可由某个基本函数的图象经过 平移、翻折、对称得到,可利用图象变换作出,但要注意变换 顺序,对不能直接找到熟悉函数的要先变形,并应注意平移变 换与伸缩变换的顺序对变换单位及解析式的影响.
(3) 描 点 法 : 当 上 面 两 种 方 法 都 失 效 时 , 则 可 采 用 描 点 法.为了通过描少量点,就能得到比较准确的图象,常常需要 结合函数的单调性、奇偶性等性质讨论.
象,将x轴绕着原点逆时针方向旋转,当旋转到直线恰好经
过点(2,2)的过程中,相应的直线与该函数的图象都有三个不同的 交点,再进一步旋转,相应的直线与该函数的图象都不再有三 个不同的交点,因此满足题意的k的取值范围是(0,1),选A. 答案:A
4.已知 x >x3,则实数 x 的取值范围是________.
因为点(1,1)在抛物线上,所以 a+2=1,所以 a=-1, 所以抛物线的一部分对应的函数的解析式为 y=-x2+4x- 2(1≤x≤3) . 综 上 所 述 , 函 数 的 解 析 式 为 y = -x+2x≤1, 2 -x +4x-21≤x≤3, x-2x≥3.
寻找图象与函数解析式之间的对应关系的方法 (1)知图求式
解析:分别画出函数 y=x 与 y=x3的图象,如图所示, 由于两函数的图象都过点(1,1),由图象可知不等式 x > x3的 解集为{x|x<0 或 x>1}.
2 1 2 1
2
1
答案:{x|x<0 或 x>1}
5.对 a,b∈R,记
a,a≥b, max{a,b}= b,a<b,
函数 f(x)
y=f(-x)的图象与y=f(x)的图象关于 y轴 对称;y= 对称 -f(x)的图象与y=f(x)的图象关于 x轴 对称;y=-f( -x)的图象与y=f(x)的图象关于 原点 对称
伸缩
将y=f(x)的图象上每点的横坐标不变,纵坐标伸缩 到原来的 a 倍得到y=af(x)(a>0)的图象;将y= f(x)的图象上每点的纵坐标不变,横坐标伸缩到原 1 来的 a 倍得到y=f(ax)(a>0)的图象 y=|f(x)| 的图象是将y=f(x)的图象位于x轴下方的部 分以x轴为对称轴翻折到x轴的上方(x轴上方的图象 保持不变);y=f(|x|)的图象是将y=f(x)的图象位于y
要工具.
四、函数图象的对称性 1.证明 证明函数图象的对称性,即证明函数图象上任意一点关于 对称中心(或对称轴)对称.
2.常用结论 (1)若函数y=f(x)定义域内任一x的值都满足f(a+x)=f(b- a+b x),则y=f(x)的图象关于直线 x= 2 成轴对称图形;特别 地,y=f(x)满足f(a+x)=f(a-x)(或f(2a-x)=f(x))恒成立,则y= f(x)的图象关于直线 x=a 成轴对称图形.
π π π 注意到当 x=-2时,f(x)=0,则 f-2·-2必等于 0, g
排除 C、D.或注意到 x→0-(从小于 0 趋向于 0),f(x)· g(x)→+ ∞,也可排除 C、D.
答案:A
(2)已知函数f(x)的图象如图.求f(x)的解析式.
解:设 f(x)=ax+b,当-2≤x<0 时,
象关于原点对称,是两个函数的图象对称.
2.一个函数的图象关于y轴对称与两个函数的图象关于y轴
对称相同吗? 提示:一个函数的图象关于y轴对称与两个函数的图象关于y 轴对称不是一回事.函数y=f(x)的图象关于y轴对称是自身对 称,说明该函数为偶函数;而函数y=f(x)与函数y=f(-x)的图象
关于y轴对称,是两个函数的图象对称.
题号 分析 (1) 利用图象的平移、对称判断. 先化简函数关系式,再利用图象变换求解.①翻 (2) 折变换;②③平移变换. (1)解析:由y=f(x)的图象向左平移两个单位得:y=f(x+ 2);再把y=f(x+2)的图象关于原点对称得:y=-f(-x+2)的图
象,可知答案.答案:B Nhomakorabea2)解:①y=|lg
(2)函数y=f(x)的图象关于直线x=a及x=b对称,则y=f(x)是
周期函数,且
2|b-a|
是它的一个周期.
1.一个函数的图象关于原点对称与两个函数的图象关于原
点对称相同吗? 提示:一个函数的图象关于原点对称与两个函数的图象关 于原点对称不是一回事.函数y=f(x)的图象关于原点对称是自身 对称,说明该函数为奇函数;而函数y=f(x)与函数y=-f(-x)图
x+3 解析:y=lg 10 =lg(x+3)-1 可由 y=lg x 的图象向左 平移 3 个单位长度,向下平移 1 个单位长度而得到.
答案:C
1 2.函数 y=ln 的图象为( |2x-3|
)
3 3 解析:易知 2x-3≠0,即 x≠2,排除 C、D 项.当 x>2 3 时,函数为减函数,当 x<2时,函数为增函数,所以选 A.
3 数 y=-x 的图象, 然后把所得函数的图象向左平移 2 个单位, x-1 再向上平移一个单位,即可得到函数 y= 的图象. x+2
画函数图象的一般方法 (1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本 函数或解析几何中熟悉的曲线(如圆、椭圆、双曲线、抛物线的
一部分)时,就可根据函数或曲线的特征直接作出.
翻折
轴右侧的部分以y轴为对称轴翻折到y轴的左侧(y轴
右侧的图象保持不变)
二、识图
对于给定的函数的图象,要能从图象的左、右、上、下分
布范围及变化趋势来研究函数的定义域、值域、单调性、奇偶 性、周期性、对称性等性质. 三、用图 函数的图象形象地显示了函数的性质,为研究数量关系提
供了“形”的直观性,它是探求解题途径、获得问题结果的重
=max{|x+1|,|x-2|}(x∈R)的最小值是________.
解析:由|x+1|≥|x-2|,得 1 (x+1) ≥(x-2) ,所以 x≥2.
2 2
1 |x+1|,x≥2, 所以 f(x)= |x-2|,x<1, 2
其图象如图所示. 1 由图形易知,当 x=2时,函数有最小值, 所以
一、作图 1.描点法
利用描点法作图象的三个步骤: 列表 、 描点 、连线 .
2.图象变换法 左右平移:把函数y=f(x)的图象向 左 平移a(a>0)个单 位得y=f(x+a)的图象;把函数y=f(x)的图象向 右 平 移a(a>0)个单位得y=f(x-a)的图象;上下平移:把函 平移 数y=f(x)的图象向 上 平移b(b>0)个单位得y=f(x)+b 的图象;把函数y=f(x)的图象向 下 平移b(b>0)个单位 得y=f(x)-b的图象
注意联系基本函数图象的模型,当选项无 法排除时,代特殊值,或从某些量上也能寻找突破口.
【活学活用】 1.(1)函数y=f(x)与函数y=g(x)的图象如图.
则函数y=f(x)·g(x)的图象可能是(
)
解析:从 f(x)、g(x)的图象可知它们分别为偶函数、奇函 数,故 f(x)· g(x)是奇函数,排除 B. 又 x<0 时,g(x)为增函数且为正值,f(x)也是增函数, 故 f(x)· g(x)为增函数,且正负取决于 f(x)的正负,
答案:A
3.(2013·温州模拟)当直线y=kx与曲线y=|x|-|x-2|有3个
公共点时,实数k的取值范围是( A.(0,1) C.(1,+∞) ) B.(0,1] D.[1,+∞)
解析:依题意得,当x<0时,y=-x+(x-2)=-2; 当0≤x≤2时,y=x+(x-2)=2x-2; 当x>2时,y=x-(x-2)=2. 在坐标系下画出该函数的图
1 1 3 f(x)min=f2=2+1=2.
3 答案:2
【考向探寻】
1.描点法作函数的图象.
2.变换法作函数的图象.
【典例剖析】
(1)(2012·湖北高考)已知定义在区间(0,2)上的函数y
=f(x)的图象如图所示,
则y=-f(2-x)的图象为
(2)分别画出下列函数的图象: ①y=|lg x|; ②y=2|x-1|; x-1 ③y= . x+2
题.
【典例剖析】 (1)设奇函数f(x)的定义域为[-5,5],若当x∈[0,5]时,
f(x)的图象如右图所示,则不等式xf(x)<0的解集为________.
(2)(12分)已知函数f(x)=|x2-4x+3|.
①由所提供的图象的特征,联想相关的函数模型.
②利用待定系数法求出图象所对应的解析式.
(2)知式选图
①从函数的定义域,判断图象左右的位置;从函数的值 域,判断图象的上下位置; ②从函数的单调性,判断图象的变化趋势; ③从函数的奇偶性,判断图象的对称性;
相关文档
最新文档