湖北省武汉市江岸区2018年中考数学模拟试卷

合集下载

湖北省武汉市2018届中考数学模拟题(一)及答案

湖北省武汉市2018届中考数学模拟题(一)及答案

2018武汉中考数学模拟题一一、选择题 (共10小题,每小题3分,共30分)1.已知:△ABC 在直角坐标平面内,三个顶点的坐标分别为A (0,3)、B (3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度)以点B 为位似中心,在网格内画出△A 1B 1C 1,使△A 1B 1C 1与△ABC 位似,且位似比为2∶1,点C1的坐标是( ) A .(1,0) B .(1,1) C .(-3,2) D .(0,0) 2.如果分式1x x没有意义,那么x 的取值范围是( ) A .x ≠0 B .x =0 C .x ≠-1 D .x =-1 3.下列式子计算结果为2x 2的是( )A .x +xB .x ²2xC .(2x )2D .2x 6÷x 3 4.下列事件是随机事件的是( )A .从装有2个红球、2个黄球的袋中摸出3个球,至少有一个红球B .通常温度降到0℃以下,纯净的水结冰C .任意画一个三角形,其内角和是360°D .随意翻到一本书的某页,这页的页码是奇数 5.运用乘法公式计算(4+x )(x -4)的结果是( )A .x 2-16B .16-x 2C .x 2+16D .x 2-8x +16 6.364=( ) A .4B .±8C .8D .±47.如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的左视图是( )A .B .C .D .8A .13B .14C .13.5D .59.观察下列各图中小圆点的摆放规律,并按这样的规律继续摆放下去,则第5个图形中小圆点的个数为( ) A .50 B .51 C .48 D .5210.已知二次函数y =x 2-(m +1)x -5m (m 为常数),在-1≤x ≤3的范围内至少有一个x 的值使y ≥2,则m 的取值范围是( )A .m ≤0B .0≤m ≤21 C .m ≤21 D .m >21 二、填空题(共6小题,每小题3分,共18分) 11.计算:计算7-(-4)=___________ 12.计算:2121----x x x =___________ 13.在-2、-1、0、1、2这五个数中任取两数m 、n ,求二次函数y =(x -m )2+n 的顶点在坐标轴上的概率是___________14.P 为正方形ABCD 内部一点,PA =1,PD =2,PC =3,求阴影部分的面积S ABCP =______ 15.如图,将一段抛物线y =x (x -3)(0≤x ≤3)记为C 1,它与x 轴交于点O 和点A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 2,交x 轴于点A 3.若直线y =x +m 于C 1、C 2、C 3共有3个不同的交点,则m 的取值范围是___________16.如图,在平面直角坐标系第一象限有一半径为5的四分之一⊙O ,且⊙O 内有一定点A (2,1)、B 、D 为圆弧上的两个点,且∠BAD =90°,以AB 、AD 为边作矩形ABCD ,则AC 的最小值为___________ 三、解答题(共8小题,共72分,应写出文字说明、证明过程或演算步骤)17.(本题8分)解方程:⎩⎨⎧=-=+52323y x y x18.(本题8分)如图,AB ∥DE ,AC ∥DF ,点B 、E 、C 、F 在一条直线上,求证:△ABC ∽△DEF 19.(本题8分)某厂签订48000辆自行车的组装合同,这些自行车分为L 1、L 2、L 3三种型号,它们的数量比例及每天能组装各种型号自行车的数量如图所示:若每天组装同一型号自行车的数量相同,根据以上信息,完成下列问题: (1) 从上述统计图可知,此厂需组装L 1、L 2、L 3型自行车的辆数分别是,________辆,________辆,________辆(2) 若组装每辆不同型号的自行车获得的利润分别是L 1:40元/辆,L 2:80元/辆,L 3:60元/辆,且a =40,则这个厂每天可获利___________元(3) 若组装L 1型自行车160辆与组装L 3型自行车120辆花的时间相同,求a20.(本题8分)为了抓住文化艺术节的商机,某商店决定购进A 、B 两种艺术节纪念品.若购进A 种纪念品8件,B 种纪念品3件,需要950元;若购进A 种纪念品5件,B 种纪念品6件,需要800元 (1) 求购进A 、B 两种纪念品每件各需多少元? (2) 若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,那么该商店至少要购进A 种纪念品多少件?21.(本题8分)如图,⊙O 是弦AB 、AC 、CD 相交点P ,弦AC 、BD 的延长线交于E ,∠APD =2m °,∠PAC =m °+15° (1) 求∠E 的度数 (2) 连AD 、BC ,若3=ADBC,求m 的值22.(本题10分)如图,反比例函数xky =与y =mx 交于A 、B 两点.设点A 、B 的坐标分别为 A (x 1,y 1)、B (x 2,y 2),S =|x 1y 1|,且ss 413=- (1) 求k 的值(2) 当m 变化时,代数式12)1()1122212+++-m y x m y x m (是否为一个固定的值?若是,求出其值;若不是,请说理由(3) 点C 在y 轴上,点D 的坐标是(-1,23).若将菱形ACOD 沿x 轴负方向平移m 个单位,在平移过程中,若双曲线与菱形的边AD 始终有交点,请直接写出m 的取值范围 23.(本题10分)如图,△ABC 中,CA =CB (1) 当点D 为AB 上一点,∠A =21∠MDN =α ① 如图1,若点M 、N 分别在AC 、BC 上,AD =BD ,问:DM 与DN 有何数量关系?证明你的结论 ② 如图2,若41=BD AD ,作∠MDN =2α,使点M 在AC 上,点N 在BC 的延长线上,完成图2,判断DM 与DN 的数量关系,并证明(2) 如图3,当点D 为AC 上的一点,∠A =∠BDN =α,CN ∥AB ,CD =2,AD =1,直接写出AB ²CN 的积24.(本题12分)如图1,直线y =mx +4与x 轴交于点A ,与y 轴交于点C ,CE ∥x 轴交∠CAO 的平分线于点E ,抛物线y =ax 2-5ax +4经过点A 、C 、E ,与x 轴交于另一点B (1) 求抛物线的解析式(2) 点P 是线段AB 上的一个动点,连CP ,作∠CPF =∠CAO ,交直线BE 于F .设线段PB 的长为x ,线段BF 的长为56y ,当P 点运动时,求y 与x 的函数关系式,并写出自变量x 的取值范围 (3) 如图2,点G 的坐标为(316,0),过A 点的直线y =kx +3k (k <0)交y 轴于点N ,与过G 点的直线kx k y 3161+-=交于点P ,C 、D 两点关于原点对称,DP 的延长线交抛物线于点M .当k 的取值发生变化时,问:tan ∠APM 的值是否发生变化?若不变,求其值,若变化,请说明理由2018武汉中考数学模拟题一答案一、选择题(共10小题,每小题3分,共30分)10.提示:设QO =QP =1,⊙O 的半径为r 则AQ =r -1,CQ =r +1 连接AP∵∠APD =∠ACD ,∠PAQ =∠CDQ ∴△APQ ∽△DCQ ∴CQPQ DQ AQ =即111+=-r DQ r ,DQ =r 2-1连接OD在Rt △DOQ 中,OD 2+OQ 2=DQ 2∴r 2+1=(r 2-1)2,解得r =3 ∴2311+=-+=r r QA QC 二、填空题(共6小题,每小题3分,共18分) 11.-9 12.013.3114. 44°15.13+16.1015.提示:过点A 作AE ⊥BC 于E 设AE =CE =1,则BE =3∵∠B =30°,∠ADB =30°+45°=75° ∴∠BAD =∠BDA∴BA =BD =2,DE =32-,CD =13- ∴13+=CDBD三、解答题(共8题,共72分) 17.解:x =2,y=1 18.解:略19.解:(1) 80;(2) 如图;(3) 13020.解:(1) 设甲种商品每件的进价为x 元,乙种商品每件的进价为y 元⎩⎨⎧=+=+2302327032y x y x ,解得⎩⎨⎧==7030y x(2) 设该商场购进甲种商品m 件,则购进乙种商品(100-m )件 m ≥4(100-m ),解得m ≥80利润w =(40-30)m +(90-70)(100-m )=-10m +2000 ∵k =-10<0∴w 随m 的增大而减小当m =80时,w 有最大值为120021.解:(1) 连接CO 交⊙O 于D 则∠CBD =90° ∵sinD =sinA =53=CD BC ∴32535==BC CD (2) 如图,过点B 作BM ⊥AC 于M ∵sinA 53= ∴353==AB BM ,AM =4 ∵AB =AC ∴M 为AC 的中点 ∴AC =8 ∴S △ABC =12设△ABC 内切圆的半径为r 则ABC S CA BC AB r ∆=++)(21,34=r 22.解:(1) ① (-2,-4) ② (1,2)(一般形式为(a ,a -3)) (2) ±1(3) 设点B 的坐标为(m ,n ) ∵点A 是点B 的“3-属派生点” ∴A (n m n m +--+33,)∵点A 在反比例函数xy 34-=(x <0)的图象上 ∴34)3)(3(=+--+n m n m ,且03<-+n m整理得23-=-+nm ,323+=m n∴B (323+m m ,) 过点B 作BH ⊥OQ 于H∵BO 2=BH 2+OH 2=m 2+(323-m )2=3)23(42+-m∴当时23=m ,BQ 有最小值 此时237323=+=m n ∴B (23723,)23.证明:(1) 连接CE∵∠CFE =∠CDE =90°,BC =CF =CD ∴Rt △CFE ≌Rt △CDE (HL ) ∴EF =DE(2) 过点A 作AM ⊥DG 于M ,过点C 作CN ⊥DG 于N ∴△AMD ≌△DNC (AAS ) ∴AM =DN ,DM =CN ∵CF =CD ∴∠FCN =∠DCN 又∠BCP =∠FCP ∴∠NCP =45°∴△CNG 为等腰直角三角形 ∴GN =CN =DM ∴GM =DN =AM∴△AGM 为等腰直角三角形 ∴AG =2AM =22DF ∴2=AGDF(3) ∵AB =10,31=AB BP ∴BP =310,AP =3102 在Rt △BCP 中,31022=+=BC PB PC ∵Rt △GAP ∽Rt △BCP ∴BPGPPC PA =即31033102GP =,32=GP在Rt △AGP 中,222=-=GP AP AG 由对角互补四边形模型可知:AG +GC =2DG ∴DG =23延长GC 至N ,使△GDN 为等腰直角三角形,证明△CDG ≌△AGD ,得∠AGD=45°。

2018武汉中考数学模拟题(五套)-精选.pdf

2018武汉中考数学模拟题(五套)-精选.pdf

2018武汉中考数学模拟题一一、选择题(共10小题,每小题3分,共30分)1.25的平方根为()A .5 B .±5C .-5D .±42.如果分式1x x 无意义,那么x 的取值范围是()A .x ≠0B .x =1C .x ≠1D .x =-1 3.(-a +3)2的计算结果是()A .-a 2+9B .-a 2-6a +9C .a 2-6a +9D .a 2+6a +9 4.在不透明的布袋中,装有大小、形状完全相同的3个黑球、2个红球,从中摸一个球,摸出的是个黑球,这一事件是()A .必然事件B .随机事件C .确定事件D .不可能事件5.下列运算结果是a 6的是()A .a 3·a3B .a 3+a3C .a 6÷a3D .(-2a 2)36.将点A(1,-2)绕原点逆时针旋转90°得到点B ,则点B 的坐标为()A .(-1,-2)B .(2,1)C .(-2,-1)D .(1,2)7.由6个大小相同的小正方体组合成一个几何体,其俯视图如图所示,其中正方形中的数字表示该位置放置的小正方体的个数,则该几何体的主视图为()8.在我市开展的“好书伴我成长”读书活动中,学校随机调查了九年级50名学生读书的册数统计数据如下表所示,那么这50名学生读书册数的平均数与中位数分别为()册数0 1 2 3 4 人数3 1316 171A .2和3B .3和3C .2和2D .3和2 9.在如图的4×4的方格中,与△ABC 相似的格点三角形(顶点均在格点上)(且不包括△ABC )的个数有()A .23个B .24个C .31个D .32个10.二次函数y =mx 2-nx -2过点(1,0),且函数图象的顶点在第三象限.当m +n 为整数时,则mn 的值为()A .2321、B .431、C .24321、、D .243、二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:-7-2=__________ 12.化简:111b b b =__________ 13.在-1、0、31、1、2、3中任取两个数,两数相乘结果是无理数的概率是__________14.如图,△ABC 中,AB =AC ,∠BAC =66°,OD 垂直平分线段AB ,AO 平分∠BAC ,将∠C沿EF (点E 在BC 上,点F 在AC 上)折叠,点C 与点O 恰好重合,则∠OEC =___________15.如图,在四边形ABCD 中,AC 与BD 交于点O ,∠DAB 与∠ACB 互补,35OBOD ,AD =7,AC =6,AB =8,则BC =___________16.如图,C 是半径为4的半圆上的任意一点,AB 为直径,延长AC 至点P 使CP =2CA .当点C 从B 运动到A 时,动点P 的运动路径长为___________三、解答题(共8题,共72分)17.(本题8分)解方程:x -2(x -1)=-218.(本题8分)如图,已知点E 、C 在线段BF 上,BE =CF ,AB ∥DE ,AC ∥DF ,求证:△ABC≌△DEF19.(本题8分)某校体育组对本校九年级全体同学体育测试情况进行调查,他们随机抽查部分同学体育测试成绩(由高到低分四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图请根据以上不完整的统计图提供的信息,解答下列问题:(1) 该课题研究小组共抽查了__________名同学的体育测试成绩,扇形统计图中B 级所占的圆心角是__________ (2) 补全条形统计图(3) 若该校九年级共有200名同学,请估计该校九年级同学体育测试达标(测试成绩C 级以上,含C 级)均有名20.(本题8分)某校安排6名教师和300名学生春游,准备租用45座大客车和30座的小客车.若租用1辆大客车和2辆小客车共需租金960元;若租用2辆大客车和1辆小客车共需租金1080元(1) 求1辆大客车和1辆小客车的租金各为多少元?(2) 若总共租用8辆客车,总费用不超过3080元,问有几种租车方案,最省钱的方案是哪种?21.(本题8分)如图,BC 为⊙O 的直径,点A 为⊙O 上一点,点E 为△ABC 的内心,OE ⊥EC (1) 若BC =10,求DE 的长(2) 求sin ∠EBO 的值22.(本题10分)如图,直线y =2x 与函数xk y(x >0)的图象交于第一象限的点A ,且A 点的横坐标为1,过点A 作AB ⊥x 轴于点B ,C 为射线BA 上一点,作CE ⊥AB 交双曲线于点E ,延长OC 交AE 于点F (1) 则k =__________(2) 作EM ∥y 轴交直线OA 于点M ,交OC 于点G ①求证:AF =FE②比较MG 与EG 的大小,并证明你的结论23.(本题10分)如图,在△ABC 与△AFE 中,AC =2AB ,AF =2AE ,∠CAB =∠FAE =α(1) 求证:∠ACF =∠ABE(2) 若点G 在线段EF 上,点D 在线段BC 上,且31CBCD EF GF ,α=90°,EB =1,求线段GD的长(3) 将(2)中改为120°,其它条件不变,请直接写出CFGD 的值24.(本题12分)在平面直角坐标系中,抛物线C 1:y =ax 2+bx -1的最高点为点D (-1,0),将C 1左移1个单位,上移1个单位得到抛物线C 2,点P 为C 2的顶点(1) 求抛物线C 1的解析式(2) 若过点D 的直线l 与抛物线C 2只有一个交点,求直线l 的解析式(3) 直线y =x +c 与抛物线C 2交于D 、B 两点,交y 轴于点A ,连接AP ,过点B 作BC ⊥AP 于点C ,点Q 为C 2上PB 之间的一个动点,连接PQ 交BC 于点E ,连接BQ 并延长交AC 于点F ,试说明:FC ·(AC +EC)为定值2018武汉中考数学模拟题二一、选择题(共10小题,每小题3分,共30分)1.64的算术平方根是()A .8B .-8C .4D .-42.要使分式15x 有意义,则x 的取值范围是()A .x ≠1B .x >1C .x <1D .x ≠-13.下列计算结果为x 8的是()A .x 9-x B .x 2·x4C .x 2+x6D .(x 2)44.有两个事件,事件A :投一次骰子,向上的一面是3;事件B :篮球队员在罚球线上投篮一次,投中,则()A .只有事件A 是随机事件B .只有事件B 是随机事件C .事件A 和B 都是随机事件D .事件A 和B 都不是随机事件5.计算(a -3)2的结果是()A .a 2-4 B .a 2-2+4 C .a 2-4a +4D .a 2+46.如图,将△AOB 绕点O 逆时针旋转90°,得到△A ′OB ′.若点A 的坐标为(a ,b),则点A ′的坐标为()A .(a ,b)B .(-a ,b)C .(b ,-a)D .(-b ,a)7.如图是由一些小正方体组合而成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,则这个几何体主视图是()8.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时)3 3.54 4.5 人数1121A .中位数是4,平均数是 3.75B .众数是4,平均数是 3.75C .中位数是4,平均数是3.8 D .众数是2,平均数是 3.89.把所有正奇数从小到大排列,并按如下规律分组:(1) (3,5,7)、(9,11,13,15,17),(19,21,23,25,27,29,31),……,现有等式A m =(i ,j)表示正奇数m 是第i 组第j 个数(从左往右数),如A 7=(2,3),则A 89=()A .(6,7)B .(7,8)C .(7,9)D .(6,9)10.二次函数y =2x 2-2x +m (0<m <21),如果当x =a 时,y <0,那么当x =a -1时,函数值y 的取值范围为()A .y <0B .0<y <mC .m <y <m +4D .y >m二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:(-3)+8=___________12.计算:111a a a =___________ 13.不透明的袋子中有6个除了颜色不同其他都一样的球,其中有3个黑球,2个白球,1个红球.拿出两个球,颜色相同的概率是___________14.如图,E 是矩形ABCD 的对角线的交点,点F 在边AE 上,且DF =DC .若∠ADF =25°,则∠BEC =__________ 15.如图,从一张腰为60 cm ,顶角为120°的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用次剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为__________16.已知OM ⊥ON ,斜边长为4的等腰直角△ABC 的斜边AC 在射线ON 上,顶点C 与O 重合.若点A 沿NO 方向向O 运动,△ABC 的顶点C 随之沿OM 方向运动,点A 移动到点O 为止,则直角顶点B 运动的路径长是__________三、解答题(共8题,共72分)17.(本题8分)解方程:3-(5-2x)=x +218.(本题8分)已知:如图,点B 、F 、C 、E 在一条直线上,BF =CE ,AC =DF ,且AC ∥DF ,求证:∠B =∠E19.(本题8分)某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好地决策,自来水公司的随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图,(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:(1) 此次抽样调查的样本容量是___________(2) 补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数(3) 如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?20.(本题8分)荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1) 求桂味和糯米糍的售价分别是每千克多少元(2) 如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低21.(本题8分)如图,直径AE 平分弦CD ,交CD 于点G ,EF ∥CD ,交AD 的延长线于F ,AP ⊥AC 交CD 的延长线于点P(1) 求证:EF 是⊙O 的切线(2) 若AC =2,PD =21CD ,求tan ∠P 的值22.(本题10分)已知,直线l 1:y =-x +n 过点A(-1,3),双曲线C :xm y(x >0),过点B(1,2),动直线l 2:y =kx -2k +2(k <0)恒过定点F(1) 求直线l 1,双曲线C 的解析式,定点F 的坐标(2) 在双曲线C 上取一点P(x ,y),过P 作x 轴的平行线交直线l 1于M ,连接PF ,求证:PF=PM (3) 若动直线l 2与双曲线C 交于P 1、P 2两点,连接OF 交直线l 1于点E ,连接P 1E 、P 2E ,求证:EF平分∠P 1EP 223.(本题10分)已知△ABC 中,D 为AB 边上任意一点,DF ∥AC 交BC 于F ,AE ∥BC ,∠CDE=∠ABC =∠ACB =α(1) 如图1,当α=60°时,求证:△DCE 是等边三角形(2) 如图2,当α=45°时,求证:①2DECD ;②CE ⊥DE(3) 如图3,当α为任意锐角时,请直接写出线段CE 与DE 的数量关系(用α表示)24.(本题12分)在平面直角坐标系xOy 中,抛物线c 1:y =ax 2-4a +4(a <0)经过第一象限内的定点P (1) 直接写出点P 的坐标(2) 若a =-1,如图1,点M 的坐标为(2,0)是x 轴上的点,N 为抛物线c 1上的点,Q 为线段MN 的中点,设点N 在抛物线c 1上运动时,Q 的运动轨迹为抛物线c 2,求抛物线c 2的解析式(3) 直线y =2x +b 与抛物线c 1相交于A 、B 两点,如图2,直线PA 、PB 与x 轴分别交于D 、C 两点,当PD =PC 时,求a 的值2018武汉中考数学模拟题三一、选择题(共10小题,每小题3分,共30分)1.4的值为()A .±2B .2C .-2D .22.要使分式31x 有意义,则x 的取值应满足()A .x ≥3B .x <3C .x ≠-3D .x ≠3 3.下列计算结果为x 6的是()A .x ·x6B .(x 2)3C .x 7-xD .x 12÷x24.袋中装有4个红球和2个黄球,这些球的形状、大小、质地完全相同.在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是不可能事件的是()A .摸出的三个球中至少有一个红球B .摸出的三个球中有两个球是黄球C .摸出的三个球都是红球D .摸出的三个球都是黄球5.计算(a -1)2正确的是()A .a 2-1B .a 2-2a +1 C .a 2-2a -1D .a 2-a +1 6.在平面直角坐标系中,将点A(x ,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A 的坐标为()A .(3,1)B .(2,-1)C .(4,1)D .(3,2)7.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图是()8.为调查某班学生每天使用零花钱的情况,童老师随机调查了30名同学,结果如下表:每天使用零花钱(单位:元)5 10 15 20 25 人数258 96则这30名同学每天使用的零花钱的众数和中位数分别是()A .20、15B .20、17.5C .20、20D .15、15 9.正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2、……按如图的方式放置,点A 1、A 2、A 3……和点C 1、C 2、C 3……分别在直线y =x +1和x 轴上,则点B 6的坐标是()A .(31,16)B .(63,32)C .(15,8)D .(31,32)10.已知关于x 的二次函数y =x 2-2x -2,当a ≤x ≤a +2时,函数有最大值1,则a 的值为()A .-1或1B .1或-3C .-1或3D .3或-3二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:2-(-4)=___________ 12.计算:1212x x x =___________13.学校为了了解九年级学生“一分钟跳绳次数”的情况,随机选取了4名女生和2名男生,则从这6名学生中选取2名同时跳绳,恰好选中一男一女的概率是___________14.如图,将矩形ABCD 沿BD 翻折,点C 落在P 点处,连接AP .若∠ABP =26°,则∠APB =___________15.已知平行四边形内有一个内角为60°,且60°的两边长分别为3、4.若有一个圆与这个平行四边形的三边相切,则这个圆的半径为___________16.如图,已知线段AB=6,C、D是AB上两点,且AC=DB=1,P是线段CD上一动点,在AB 同侧分别作等边△APE和△PBF,G为线段EF的中点,点P由点C移动到点D时,G点移动的路径长度为___________三、解答题(共8题,共72分)17.(本题8分)解方程:2x+8=6x-3(x-1)18.(本题8分)已知:如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE,求证:BE=CD19.(本题8分)某市三景区是人们节假日游玩的热点景区,某学校对九(1)班学生“五一”小长假随父母到这三个景区游玩的计划做了全面调查.调查分四个类别:A、游三个景区;B、游两个景区;C、游一个景区;D、不到这三个景区游玩.现根据调查结果绘制了不完整的条形统计图和扇形统计图,请结合图中信息解答下列问题:(1) 九(1)班共有学生______人,在扇形统计图中,表示“B类别”的扇形的圆心角的度数为______(2) 请将条形统计图补充完整(3) 若该校九年级有1000名学生,求计划“五一”小长假随父母到该景区游玩的学生多少名?20.(本题8分)运输360吨化肥,装载了6辆大卡车和3辆小汽车;运输440吨化肥,装载了8辆大卡车和2辆小汽车(1) 每辆大卡车与每辆小汽车平均各装多少吨化肥?(2) 现在用大卡车和小汽车一共10辆去装化肥,要求运输总量不低于300吨,则最少需要几辆大卡车?21.(本题8分)如图,⊙O 是△ABC 的外接圆,弧AB =弧AC ,AP 是⊙O 的切线,交BO 的延长线于点P(1) 求证:AP ∥BC (2) 若tan ∠P =43,求tan ∠PAC 的值22.(本题10分)如图,一次函数y =kx +b (k ≠0)的图象与反比例函数xm y(m ≠0)的图象交于A(-3,1)、B(1,n)两点(1) 求反比例函数和一次函数的解析式(2) 设直线AB 与y 轴交于点C ,若点P 在x 轴上,使BP =AC ,请直接写出点P 的坐标(3) 点H 为反比例函数第二象限内的一点,过点H 作y 轴的平行线交直线AB 于点G .若HG =2,求此时H 的坐标23.(本题10分)如图,射线BD 是∠MBN 的平分线,点A 、C 分别是角的两边BM 、BN 上两点,且AB =BC ,E 是线段BC 上一点,线段EC 的垂直平分线交射线BD 于点F ,连接AE 交BD 于点G ,连接AF 、EF 、FC (1) 求证:AF =EF (2) 求证:△AGF ∽△BAF(3) 若点P 是线段AG 上一点,连接BP .若∠PBG =21∠BAF ,AB =3,AF =2,求GPEG24.(本题12分)如图,抛物线y =ax 2-(2a +1)x +b 的图象经过(2,-1)和(-2,7)且与直线y=kx -2k -3相交于点P(m ,2m -7)(1) 求抛物线的解析式(2) 求直线y =kx -2k -3与抛物线y =ax 2-(2a +1)x +b 的对称轴的交点Q 的坐标(3) 在y 轴上是否存在点T ,使△PQT 的一边中线等于该边的一半?若存在,求出点T 的坐标;若不存在,请说明理由一、选择题(共10小题,每小题3分,共30分)题号12345678910答案B C B D B B A B D A第10题选A (1)0122<,即<a a a 当1222a ay a x 最大时,舍去),(31a a (2)122aa a,即12)2(2)2(22222a a a ay a a x 最大时,或无解。

2018年中考数学模拟试题及答案(共五套)

2018年中考数学模拟试题及答案(共五套)

中考模拟试卷数学卷一、仔细选一选。

(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案. 1.下列四个运算中,结果最小的是( ). A 、2017的相反数 B 、2017的绝对值 C 、2017的0次幂 D 、2017的立方根 2.已知∠α=23°45′,则∠α的余角=( ).A .66°55′B .156°15′C .66°15′D .156°55′3.若代数式x 2+bx 可以分解因式,则常数b 不可以是( ). A .﹣1B .0C .1D .24.在代数式x ﹣y, 4a, y+,,yz, ,中有( ).A .5个整式B .3个单项式,4个多项式C .6个整式,4个单项式D .单项式与多项式的个数相同5.下图是小方送给她外婆的生日蛋糕,则下面关于三种视图判断正确的( ).A.主视图、俯视图、左视图都正确B.主视图、俯视图、左视图都错误C.主视图、左视图正确、俯视图错误D. 左视图、俯视图正确、主视图错误 6.已知⎩⎨⎧>≤-,,a xb x 则的值( ).A.大于0B.小于0C.大于或等于0D.小于或等于07.某超市举办促销活动,促销方式是将原价x 元的衣服以(45x -10) 元出售,则下列说法中,能正确表达该超市促销方式的是( ).A. 原价减去10元后再打8折B. 原价打8折后再减去10元C. 原价减去10元后再打2折D. 原价打2折后再减去10元8.如图为4×4的网格图,A ,B ,C ,D ,O 均在格点上,点O 是( ).(第8题图) A .△ACD 的外心 B .△ABC 的外心C .△ACD 的内心 D .△ABC 的内心9.在同一直角坐标系中,对于以下四个函数①y=-x-1;②y=x+1;③y=-x+1; ④y=-2(x+1)的图像。

(完整)2018年湖北省武汉市中考数学试卷含答案,推荐文档

(完整)2018年湖北省武汉市中考数学试卷含答案,推荐文档

湖北省武汉市2018年中考数学试卷一、单项选择题<共10小题,每小题3分,共30分)1. <3分)<2018?武汉)在实数-2, 0, 2, 3中,最小的实数是<)A 1 •-2B 0C 2D 31 • 1 • 1 •考点实数大小比较分析根据正数大于0, 0大于负数,可得答案.解答解:- 2v0v2v3,最小的实数是-2, 故选:A.点评:本题考查了实数比较大小,正数大于0, 0大于负数是解题关键.2. <3分)<2018?武汉)若在实数范围内有意义,则x的取值范围是< )A x>0B x>3C x>3D x< 3考点.二7 八、、•一次根式有意义的条件.分析:先根据一次根式有意义的条件得出关于x的不等式,求出x的取值范围即可.解答:解:T使在实数范围内有意义,x —3^0,解得x >3. 故选C.点评:本题考查的是二次根式有意义的条件,即被开 方数大于等于0.3. <3分)<2018?武汉)光速约为3000 000千M/秒,将数字300000用科学记数 法表示为< )b5E2RGbCAPA 3X 1041 •B 3X 105C 3X 106D 30X 1041 • 1 •1 •考点. 二7 八、、科学记数法表示较大的数分析: 科学记数法的表示形式为a x 10n 的形式,其中 1< |a|<10, n 为整数.确定n 的值时,要看把 原数变成a 时,小数点移动了多少位,n 的绝对 值与小数点移动的位数相同.当原数绝对值〉 1 时,n 是正数;当原数的绝对值< 1时,n 是负 数.解答:解:将300 000用科学记数法表示为:3X 105.故选B.点评:此题考查科学记数法的表示方法.科学记数法 的表示形式为a x 10n 的形式,其中1< |a| < 10, n 为整数,表示时关键要正确确定 a 的值以 及n 的值.4. <3分)<2018?武汉)在一次中学生田径运动会上,参加跳高的 15名运动员的成绩如表: 那么这些运动员跳高成绩的众数是)可.解答: 解:A 、<x3) 2=x6,原式计算错误,故本选项 错误;B、<2x) 2=4x2,原式计算错误,故本选项错误;C、x3?x2=x5,原式计算正确,故本选项正确;D <x+1) 2=x2+2x+1,原式计算错误,故本选项错误;故选C.点评:本题考查了幕的乘方与积的乘方、同底数幕的运算,掌握各部分的运算法则是关键.6. <3分)<2018?武汉)如图,线段AB两个端点的坐标分别为A<6, 6), B<8, 2),以原点0为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为< ) p1Ea nqFDPwA <3, 3)B <4, 3)C <3, 1)D <4, 1)考占.p 八、、位似变换;坐标与图形性质分析:利用位似图形的性质结合两图形的位似比进而得出坐标.C点解答:解:•••线段AB的两个端点坐标分别为A<6, 6), B<8,2),以原点0为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD二端点C的坐标为:<3, 3). 故选:A.点评:此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.7. <3分)<2018?武汉)如图是由4个大小相同的正方体搭成的几何体,其俯视图是< )8 <3分)<2018?武汉)为了解某一路口某一时段的汽车流量,小明同学10天中在同一时段统计通过该路口的汽车数量<单位:辆),将统计结果绘制成如下折线统计图:DXDiTa9E3d由此估计一个月<30天)该时段通过该路口的汽车数量超过200辆的天数为<)A 9B 10C 12D 15I •I ••I •考点:折线统计图;用样本估计总体分析:先由折线统计图得出10天中在同一时段通过该路口的汽车数量超过200辆的天数,求出其频率,再利用样本估计总体的思想即可求解.解答:解:由图可知,10天中在同一时段通过该路口的汽车数量超过200辆的有4天,频率为:=0.4 ,所以估计一个月<30天)该时段通过该路口的汽车数量超过200辆的天数为:30 X0.4=12<天).故选C.点评:本题考查了折线统计图及用样本估计总体的思想,读懂统计图,从统计图中得到必要的信息是解决问题的关键.9. <3分)<2018?武汉)观察下列一组图形中点的个数,其中第1个图中共有4 个点,第2个图中共有10个点,第3个图中共有19个点,…RTCrpUDGiT 按此规律第5个图中共有点的个数是<)A 311 •B 461 •C 51•D•66考点:规律型:图形的变化类分析:由图可知:其中第1个图中共有1+1X 3=4个点,第2个图中共有1 + 1X 3+2X 3=10个点,第3个图中共有1+1X3+2X3+3X 3=19个点,…由此规律得出第n个图有1 + 1 X 3+2X 3+3X 3+…+3n 个点.解答:解:第1个图中共有1 + 1X 3=4个点,第2个图中共有1+1X 3+2X 3=10个点,第3个图中共有1+1X 3+2X 3+3X 3=19个点,第n个图有1+1X 3+2X 3+3X 3+…+3n个点.所以第5个图中共有点的个数是1 + 1 X 3+2X 3+3X 3+4X 3+5X 3=46.故选:B.点评:此题考查图形的变化规律,找出图形之间的数字运算规律,利用规律解决问题.10. <3分)<2018?武汉)如图,PA PB切O O于A、B两点,CD切O O于点E, 交PA PB 于C, D.若O O的半径为r, △ PCD的周长等于3r,则tan / APB的值是<)5PCzVD7HxAA BCD考点:切线的性质;相似三角形的判定与性质;锐角三角函数的定义分析:<1)连接OA OB OP延长BO交PA的延长线于点F.利用切线求得CA=CE DB=DE PA=PB再得出PA=PB=.利用Rt △BFP^ RT A OAF得出AF= FB,在RT^ FBP中,利用勾股定理求出BF,再求tan / APB的值即可.解答:解:连接OA OB OP延长BO交PA的延长线于点F.v PA PB切O O于A B两点,CD切O O于点E•••/ OAP h OBP=90 , CA=CE DB=DE PA=PB•••△PCD的周长二PC+CE+DE+PD二PC+AC+PD+DB二PA+PB=3r• PA=PB=在Rt△ BFP和Rt△ OAF中,••• Rt △ BF3 RT\ OAF••• AF=FB, 在Rt△ FBP中,v PF2- PB2=FB2• vPA+AF 2 - PB2=FB2< r+BF) 2- < )2=BF2解得BF= r,故选:B.点评:本题主要考查了切线的性质,相似三角形及三角函数的定义,解决本题的关键是切线与相似三角形相结合,找准线段及角的关系.二、填空题<共6小题,每小题3分,满分18分)11. <3分)<2018?武汉)计算:-2+v-3)= - 5.考点:P八、、・有理数的加法分析:根据有理数的加法法则求出即可.解答:解: <- 2) +<-3) =-5, 故答案为:-5.点评:本题考查了有理数加法的应用,注意:同号两数相加,取原来的符号,并把绝对值相加.12. <3分)<2018?武汉)分解因式:a3- a= a<a+1) <a- 1)考占.<7 提公因式法与公式法的综合运用分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解.解答:解: a3 - a,=a<a2- 1),=a<a+1) <a- 1). 故答案为:a<a+1) <a- 1).点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解彻底.13. <3分)<2018?武汉)如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置<指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为考点.<7 概率公式分析:由一个转盘被分成7个相冋的扇形,颜色分为红、黄、绿二种,红色的有3个扇形,直接利用概率公式求解即可求得答案..jLBHrnAlLg解答:解:•一个转盘被分成7个相冋的扇形,颜色分为红、黄、绿二种,红色的有3个扇形,二指针指向红色的概率为:故答案为:点评: 此题考查了概率公式的应用.注意用到的知识点为:概率二所求情况数与总情况数之比.14. <3分)<2018?武汉)一次越野跑中,当小明跑了 1600M 时,小刚跑了 1400M 小明、小刚在此后所跑的路程 y<M 与时间tv 秒)之间的函数关系如 图,则这次越野跑的全程为 2200M . XHAQX74J0X一次函数的应用设小明的速度为aM/秒,小刚的速度为bM/秒,由行程考占. <7 八、、问题的数量关系建立方程组求出其解即可.解:设小明的速度为aM/秒,小刚的速度为bM/秒,由 题意,得 解得: •••这次越野跑的全程为:1600+300X 2=2200M 故答案为:2200. 本题考查了行程问题的数量关系的运用,二元一次方程 组的解法的运用,解答时由函数图象的数量关系建立方 程组是关键.解答: 点评:15. <3分)<2018?武汉)如图,若双曲线y与边长为5的等边△ AOB勺边OA AB分别相交于C, D两点,且0C=3B,则实数k 的值为.LDAYtRyKfE考点:反比例函数图象上点的坐标特征;等边三角形的性质分析:过点C作CELx轴于点E,过点D作DF丄x轴于点F,设OC=3x则BD=x分别表示出点C点D的坐标,代入函数解读式求出k,继而可建立方程,解出x的值后即可得出k的值.解答:解:过点C作CEL x轴于点E,过点D作DF L x轴于点F,设OC=3x 贝S BD=x在Rt△ OCE中, Z COE=60 ,则0E二CE=则点C坐标为<x), 在Rt△ BDF中,BD=x / DBF=60 ,则BF=DF=x,则点D的坐标为<5 -x), 将点C的坐标代入反比例函数解读式可得:k= x2,将点D的坐标代入反比例函数解读式可得:x2= k=x2,x2,解得:x1 = 1, x2=0<舍去),故故答案为:k= XI 2=点评:本题考查了反比例函数图象上点的坐标特征,解答本题关键是利用k的值相同建立方程,有一定难度.16. <3 分)<2018?武汉)如图,在四边形 ABCD 中, AD=4 CD=3 / ABC 2 ACB W ADC=45,贝卩 BD 的长为.Zzz6ZB2Ltk全等三角形的判定与性质;勾股定理;等腰直角三角形 根据等式的性质,可得/ BAD 与/ CAD 的关系,根据 SAS 可得△ BAD W^ CAD 的关系,根据全等三角形的性 质,可得BD 与 CD 的关系,根据勾股定理,可得答案.解:作AD 丄AD AD =AD 连接CD , DD ,如图:, VZ BAC y CAD h DAD +Z CAD 即/ BAD Z CAD , 在厶BAD W^ CAD 中,考点. <7 八、、•分析:•••△BAD^A CAD <SAS , ••• BD=CD . / DAD =90°由勾股定理得DD =/ D‘ DA吃ADC=90由勾股定理得CD =••• BD=CD=故答案为:点评:本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,勾股定理,作出全等图形是解题关键.三、解答题<共9小题,满分72分,应写出文字说明、证明过程或演算步骤)17. <6分)<2018?武汉)解方程:考占.<7 八、、解分式方程专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2x=3x - 6, 解得:x=6,经检验x=6是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想,把分式方程转化为整式方程求解.解分式方程疋注意要验根.18. <6分)<2018?武汉)已知直线y=2x-b经过点<1,- 1),求关于x的不等式2x- b>0 的解集.dvzfvkwMI1考点:一次函数与一元一次不等式分析:把点<1,- 1 )代入直线y=2x- b得到b的值,再解不等式.解:把点<1,- 1 )代入直线y=2x- b得,-1=2- b,解得,b=3.函数解读式为y=2x- 3.解2x - 3》0得,x》.点评:本题考查了一次函数与一元一次不等式,要知道,点的坐标符合函数解读式.19. <6分)<2018?武汉)如图,AC和BD相交于点O, 0A=0, 0B=0D 求证:DC/ AB考占.P 八、、全等三角形的判定与性质;平行线的判定专题:证明题.分析:根据边角边定理求证△ OD QA OBA可得/ C=Z A< 或者/ D=Z B),即可证明DC// AB.解答:解答:证明:•••在厶。

湖北中考数学复习各地区2018-2020年模拟试题分类(武汉专版)(1)——数与式

湖北中考数学复习各地区2018-2020年模拟试题分类(武汉专版)(1)——数与式

湖北中考数学复习各地区2018-2020年模拟试题分类(武汉专版)(1)——数与式一.选择题(共29小题)1.(2020•武汉模拟)已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是1,﹣1的差倒数是.如果a1=﹣3,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…依此类推,那么a1﹣a2+a3﹣a4…+a401﹣a402+a403﹣a404的值是()A.B.﹣3 C.D.2.(2020•洪山区校级模拟)有一列数:、、、,它有一定的规律性.若把第一个数记为a1,第二个数记为a2,…第n个数记为a n,则a1+a2+a3+…+a2020的值是()A.2020 B.2021C.2020 D.20213.(2020•青山区模拟)对于任意一个三位数n,如果n满足各个数位上的数字互相不同,且都不为零,将其任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n),则F(468)的值为()A.12 B.14 C.16 D.184.(2020•硚口区二模)观察下列算式:a15,a211,a319,…,它有一定的规律性,把第n个算式的结果记为a n,则的值是()A.B.C.D.5.(2020•青山区校级模拟)观察下列有规律的算式:13=1,13+23=9,13+23+33=36,13+23+33+43=100,13+23+33+43+53=225,…,探究并运用其规律计算:113+123+133+143+153+163+173+183+193+203的结果可表示为()A.265×155 B.275×145 C.285×145 D.255×1656.(2020•武汉模拟)观察等式:1+2+22=23﹣1;1+2+22+23=24﹣1;1+2+22+23+24=25﹣1;若1+2+22+…+29=210﹣1=m,则用含m的式子表示211+212+…+218+219的结果是()A.m2+m B.m2+m﹣2 C.m2﹣1 D.m2+2m7.(2020•江岸区校级模拟)观察下列等式:①1=12②2+3+4=32③3+4+5+6+7=52④4+5+6+7+8+9+10=72…请根据上述规律判断下列等式正确的是()A.1009+1010+…+3026=20172B.1009+1010+…+3027=20182C.1010+1011+…+3028=20192D.1010+1011+…+3029=202028.(2019•青山区模拟)将连续正奇数按如图所示规律排列,将(1,3,5,7)称为正方形1组,(9,11,13,15,17,19,21,23,25,27,29,31)称为正方形2组,(33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71)称为正方形3组,…则2019在正方形()组.41 43 45 47 49 5139 13 15 17 19 5337 11 1 3 21 5535 9 7 5 23 5733 31 29 27 25 5971 69 67 65 63 61A.16 B.17 C.23 D.259.(2019•江汉区二模)13个小朋友围成一圈做游戏,规则是从某一个小朋友开始按顺时针方向开始数数,数到第13,该小朋友离开;离开的小朋友的下一位从1数起,数到13的小朋友离开,这样继续下去直到最后剩下一个小朋友,小明是1号,要使最后剩下的是小明自己,他应该建议从()小朋友开始数.A.13号B.2号C.8号D.7号10.(2019•武汉模拟)将一列有理数﹣1,2,﹣3,4,﹣5,6,……,按如图所示有序排列根据图中的排列规律可知,2018应排在“峰”______的位置()A.403,B B.403,C C.404,B D.404,C11.(2019•武汉模拟)观察“田”字中各数之间的关系:则a+d﹣b﹣c的值为()A.52 B.﹣52 C.51 D.﹣5112.(2019•武汉模拟)已知一个多项式与3x2+9x的和等于5x2+4x﹣1,则这个多项式是()A.8x2+13x﹣1 B.﹣2x2+5x+1 C.8x2﹣5x+1 D.2x2﹣5x﹣113.(2018•武汉模拟)下列运算正确的是()A.(x﹣2)(x+2)=x2﹣2 B.(x﹣2)(x+3)=x2﹣6C.(x﹣2)2=x2﹣4 D.(x+2)2=x2+4x+414.(2018•武汉模拟)已知数0.101001000100001…,它的特点是:从左向右看,相邻的两个1之间依次多1个0.那么这个数的小数点后第119位,第120位,第121位上的数字按次序排列成的数串为()A.000 B.010 C.100 D.00115.(2018•武汉模拟)下列式子计算结果为4x2﹣1的是()A.(x+1)(4x﹣1)B.(2x+1)(2x﹣1)C.4(x+1)(x﹣1)D.(2x﹣1)216.(2018•武昌区模拟)如图,0°<∠BAC<90°,点A1,A3,A5…在边AB上,点A2,A4,A6…在边AC上,且满足如下规律:A1A2⊥A2A3,A2A3⊥A3A4,A3A4⊥A4A5,…,若AA1=A1A2=A2A3=1,则A11A12的长度为()A.15+10 B.17+12 C.24+17 D.41+2917.(2018•江汉区模拟)下列计算正确的是()A.2x2﹣3x2=x2B.x+x=x2C.﹣(x﹣1)=﹣x+1 D.3+x=3x18.(2018•武汉模拟)一列数a1,a2,a3,…a n,其中a1=1,a2=2+()2,a n=n+()n(n为正整数),则a1+a2+a3+…+a10的值为()A.56﹣()9B.56﹣()10C.56﹣()11D.5719.(2018•洪山区二模)法国数学家柯西于1813年在拉格朗日、高斯的基础上彻底证明了《费马多边形数定理》,其主要突破在“五边形数”的证明上.如图为前几个“五边形数”的对应图形,请据此推断,第10个“五边形数”应该为(),第2018个“五边形数”的奇偶性为()A.145;偶数B.145;奇数C.176;偶数D.176;奇数20.(2018•硚口区模拟)如图,10个不同正整数按如图排列,箭头上方的每个数都等于其下方两数的和.如表示a1=a2+a3,则a1的最小值为()A.15 B.17 C.18 D.2021.(2018•武汉模拟)已知:30=1,31=3,32=9,33=27,34=81,35=243,36=729,…,观察思考,则1﹣3+32﹣33+34﹣35+…+32016﹣32017+32018的末位数字是()A.7 B.3 C.1 D.022.(2018•武汉模拟)如图所示,图(1)中含“○”的矩形有1个,图(2)中含“○”的矩形有7个,图(3)中含“○”的矩形有17个,按此规律,图(6)中含“○”的矩形有()A.70 B.71 C.72 D.7323.(2020•硚口区模拟)在同一平面内,我们把两条直线相交的交点个数记为a1,三条直线两两相交最多交点个数记为a2,四条直线两两相交最多交点个数记a3,…,(n+1)条直线两两相交最多交点个数记为a n,若,则n=()A.10 B.11 C.20 D.2124.(2020•武汉模拟)我们将如图所示的两种排列形式的个数分别叫作“三角形数”(如1,3,6,10…)和正方形数(如1,4,9,16…)在不大于2020数中,设最大的三角形数为m,最大的“正方形数”为n,则m﹣n的值为()A.60 B.70 C.80 D.9025.(2020•武汉模拟)若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=22﹣12,16=52﹣32).已知智慧数按从小到大顺序构成如下数列:3、5、7、8、9、11、12、13、15、16、17、19、20、21、23、24、25、…,则第2020个智慧数是()A.2669 B.2696 C.2679 D.269726.(2020•武汉模拟)如图所示,在这个数据运算程序中,若开始输入的x的值为2,结果输出的是1,返回进行第二次运算则输出的是﹣4,…,则第2020次输出的结果是()A.﹣1 B.3 C.6 D.827.(2020•汉阳区校级模拟)观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得,7+71+72+…+72019+72020的结果的个位数是()A.0 B.1 C.7 D.828.(2020•武汉模拟)古希腊数学家把1、3、6、10、15、21、…叫做三角形数,它有一定的规律性.若把第一个三角形数记为a1,第二个三角形数记为a2,…第n个三角形数记为a n,则的值是()A.B.C.D.29.(2020•武汉模拟)定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)(其中k是使F(n)为奇数的正整数),两种运算交替重复进行,例如:取n=24,则,其中第1次F(24)3,第2次F(3)=3×3+1=10,…,若n=5,则第2020次“F”运算的结果是()A.2020 B.2021 C.4 D.1二.填空题(共9小题)30.(2020•硚口区模拟)计算:2+(﹣3)的结果为.31.(2019•武昌区模拟)计算:()的结果是.32.(2019•武汉模拟)化简.33.(2019•武汉模拟)化简:.34.(2019•江岸区校级模拟)若(x﹣1)x+1=1,则x=.35.(2018•武昌区模拟)计算的结果是.36.(2018•武汉模拟)计算的结果是.37.(2018•汉阳区模拟)化简的结果是.38.(2018•青山区模拟)计算的结果为.三.解答题(共2小题)39.(2020•硚口区二模)计算:8a6÷2a2+4a3•2a﹣(3a2)240.(2019•江岸区校级模拟)计算:(1)()﹣3﹣20160﹣|﹣5|;(2)(3a2)2﹣a2•2a2+(﹣2a3)2+a2.湖北中考数学复习各地区2018-2020年模拟试题分类(武汉专版)(1)——数与式参考答案与试题解析一.选择题(共29小题)1.【答案】A【解答】解:∵a1=﹣3,∴a2,a3,a43,……∴这个数列以﹣3,,依次循环,∵404÷3=134…2,∴a403的值是﹣3,a404的值是,那么a1﹣a2+a3﹣a4…+a401﹣a402+a403﹣a404=﹣33333=﹣3.故选:A.2.【答案】B【解答】解:观察一列数可知:a n1,设a1+a2+a3+…+a2020=b,则b=1111=2020+(),∴2b=4040+(1),∴2b﹣b=4040+(1)﹣2020+(),∴b=2020+(1)=2021.故选:B.3.【答案】D【解答】解:n=468,对调百位与十位上的数字得到648,对调百位与个位上的数字得到864,对调十位与个位上的数字得到486,这三个新三位数的和为648+864+486=1998,1998÷111=18,所以F(468)=18.故选:D.4.【答案】C【解答】解:观察算式:a15,a211,a319,…,发现11﹣5=6,19﹣11=8,猜测下一个数比19大10,即29,验证:a429,故依次猜测a5=41,a6=55,a7=71,且验证正确;∴(1)(1).故选:C.5.【答案】A【解答】解:∵13=1,13+23=(1+2)2=9,13+23+33=(1+2+3)2=36,13+23+33+43=(1+2+3+4)2=100,13+23+33+43+53=(1+2+3+4+5)2=225,…13+23+33+43+…+n3=(1+2+3+…+n)2,∴113+123+133+143+153+163+173+183+193+203=(13+23+33+43+...+203)﹣(13+23+33+43+ (103)=(1+2+3+…+20)2﹣(1+2+3+…+10)2=[(20+1)]2﹣[(10+1)]2=102×212﹣52×112=(210+55)(210﹣55)=265×155.故选:A.6.【答案】C【解答】解:由已知可得1+2+22+…+29+210+211+212+…+218+219=220﹣1,∵1+2+22+…+210=211﹣1,∴2211+212+…+218+219=220﹣1﹣211+1=220﹣211=210(210﹣2)∵210﹣1=m,∴210=m+1,210﹣2=m﹣1∴211+212+…+218+219=210(210﹣2)=(m+1)(m﹣1)=m2﹣1,故选:C.7.【答案】C【解答】解:∵①1=12②2+3+4=32③3+4+5+6+7=52④4+5+6+7+8+9+10=72…∴开头是1009的式子最后的数字是奇数,故选项A错误;开头是1010的式子最后的数字是偶数,故选项D错误;1009+1010+…+3027=()2=20182,而1009到3027有3027﹣1008=2019个数字,故这列数应该是开头数字是1009,最后的数字是3025,故选项B错误;1010+1011+…+3028=()2=20192,故选项D正确;故选:C.8.【答案】A【解答】解:由题意可得,正方形1组有1×4=4个数,正方形2组有3×4=12个数,正方形3组有5×4=20个数,…,则正方形n组有(2n﹣1)×4=(8n﹣4)个数,则前n组奇数的个数为:,∵n=15时,4n2=900,当n=16时,4n2=1024,(2019+1)÷2=1010,则2019是第1010个奇数,∴2019在第正方形16组,故选:A.9.【答案】D【解答】解:根据题意分析可得:如果从1号数起,离开的分别为:13、1、3、6、10、5、2、4、9、11、12、7.最后留下的是8号.因此,想要最后留下1号,即将“8”倒推7位,那么数字“1”也应该倒推7位,得到的数是“7”.10.【答案】C【解答】解:由图可知,奇数的符号都是负号,偶数的符号都是正号,(2018﹣1)÷5=2017÷5=403…2,∴2018应排在“峰”404,B的位置,故选:C.11.【答案】B【解答】解:由图可得,左上角的数字分别为1,3,5,7,9,…,是一些连续的奇数,左下角的数字依次是2,4,8,16,32,…,则可以用2n表示,右下角的数字是左上角和左下角的数字之和,右上角的数字比右下角的数字小1,则a=11,b=26=64,d=11+64=75,c=75﹣1=74,∴a+d﹣b﹣c=11+75﹣64﹣74=﹣52,故选:B.12.【答案】D【解答】解:根据题意得:(5x2+4x﹣1)﹣(3x2+9x)=5x2+4x﹣1﹣3x2﹣9x=2x2﹣5x﹣1.故选:D.13.【答案】D【解答】解:A、结果是x2﹣4,故本选项不符合题意;B、结果是x2+x﹣6,故本选项不符合题意;C、结果是x2﹣4x+4,故本选项不符合题意;D、结果是x2+4x+4,故本选项符合题意;故选:D.14.【答案】B【解答】解:根据从左向右看,相邻的两个1之间依次多1个0.∴第1个1是第1位数,即0+1=1;第2个1是第3位数,即1+2=3;第3个1是第6位数,即3+3=6;第4个1是第10位数,即4+6=10;第5个1是第15位数,10+5=15;…以此类推,第13个1是第91位数,即78+13=91;第14个1是第105位数,即91+14=105;第15个1是第120位数,即105+15=120;∴这个数的小数点后第119位,第120位,第121位上的数字按次序排列成的数串为010.故选:B.15.【答案】B【解答】解:A、结果是4x2+3x﹣1,故本选项不符合题意;B、结果是4x2﹣1,故本选项符合题意;C、结果是4x2﹣4,故本选项不符合题意;D、结果是4x2﹣4x+1,故本选项不符合题意;故选:B.16.【答案】D【解答】解:∵△A1A2A3、A3A4A5、…,都为等腰直角三角形,AA1=A1A2=A2A3=1∴A3A4=AA3=1,∴A3A5(1),∴A5A6=AA5=1(1),∴A5A7,∴A7A8=AA7=AA3+A3A5+A5A7=1(1),∴A11A12.故选:D.17.【答案】C【解答】解:A.2x2﹣3x2=﹣x2,故此选项错误;B.x+x=2x,故此选项错误;C.﹣(x﹣1)=﹣x+1,故此选项正确;D.3与x不能合并,此选项错误;故选:C.18.【答案】B【解答】解:a1+a2+a3+…+a10=12+()2+……+10+()10=1+2+3+…+10+[()2+……+()10],令S()2+……+()10 ①,则S=()2+()3+……+()10+()11 ②,①﹣②,得:S()11 ,∴S=1﹣()10,∴a1+a2+a3+…+a101﹣()10=55+1﹣()10=56﹣()10,故选:B.19.【答案】B【解答】解:∵第1个“五边形数”为1,1121,第2个“五边形数”为5,5222,第3个“五边形数”为12,12323,第4个“五边形数”为22,22424,第5个“五边形数”为35,35525,…∴第n个“五边形数”为n2n,将n=10代入,得第10个“五边形数”为10210=145,当n=2018时,n2=3×2018×1009,是偶数,n=1009是奇数,所以n2n是奇数.故选:B.20.【答案】D【解答】解:∵a1=a2+a3=a4+a5+a5+a6=a7+a8+2(a8+a9)+a9+a10=a7+3(a8+a9)+a10,∴要使a1取得最小值,则a8+a9应尽可能的小,取a8=1、a9=2,∵a5=a8+a9=3,则a7、a10中不能有3,若a10=4,则a6=a9+a10=6,∴a7=7,则a4=7+1=8、a2=8+3=11、a3=3+6=9、a1=9+11=20.故选:D.21.【答案】A【解答】解:设S=1﹣3+32﹣33+34﹣35+…+32016﹣32017+32018①,则3S=3﹣32+33﹣34+…+32017﹣32018+32019②,①+②得:4S=1+32019,∴S,1,2.5,7,20.5,61,…,末位数字是1,5,7,5依次循环的.∴2019÷4=504…3,∴1﹣3+32﹣33+34﹣35+…+32016﹣32017+32018的末位数字是7;故选:A.22.【答案】B【解答】解:图(6)中,62=36,1个矩形:1×2=2个,2个矩形:1×2:2个,2×1:2个,3个矩形:1×3:2个3×1:2个4个矩形:1×4:2个4×1:2个2×2:2个5个矩形:1×5:2个5×1:2个6个矩形:1×6:2个6×1:2个2×3:2个3×2:2个8个矩形:2×4:2个4×2:2个9个矩形:3×3:2个10个矩形:2×5:2个5×2:2个12个矩形:2×6:2个6×2:2个3×4:2个4×3:2个15个矩形:3×5:2个5×3:2个16个矩形:4×4:2个18个矩形;3×6:2个6×3:2个20个矩形:4×5:2个5×4:2个24个矩形:4×6:2个6×4:2个25个矩形:5×5:2个30个矩形:5×6:2个6×5:2个36个矩形:6×6:1个,总计和为71个;故选:B.23.【答案】C【解答】解:两条直线相交有1个交点,即a1=1,三条直线相交最多有(1+2)个交点,即a2=3,四条直线相交最多有(1+2+3)个交点,即a3=6,以此类推,(n+1)条直线相交,最多有(1+2+3+…+n)个交点,即a n=1+2+3+…+n,∴,∴,∴,∴,解得,n=20,经检验,n=20是原方程的解.故选:C.24.【答案】C【解答】解:由图形知第n个三角形数为1+2+3+…+n,第n个正方形数为n2,当n=63时,2016<2020,当n=64时,2080>2020,所以最大的三角形数m=2016;当n=44时,n2=1936<2020,当n=45时,n2=2025>2020,所以最大的正方形数n=1936,则m﹣n=2016﹣1936=80,故选:C.25.【答案】B【解答】解:观察可知,智慧数按从小到大顺序可按3个数分一组,从第2组开始每组的第一个数都是4的倍数,∴第n组的第一个数为4n(n≥2,且n为正整数).∵2020÷3=673…1,∴第2020个智慧数是第674组中的第1个数,即为4×674=2696.故选:B.26.【答案】A【解答】解:把x=2代入得:2=1,把x=1代入得:1﹣5=﹣4,把x=﹣4代入得:(﹣4)=﹣2,把x=﹣2代入得:(﹣2)=﹣1,把x=﹣1代入得:﹣1﹣5=﹣6,把x=﹣6代入得:(﹣6)=﹣3,把x=﹣3代入得:﹣3﹣5=﹣8,把x=﹣8代入得:(﹣8)=﹣4,以此类推,∵(2020﹣1)÷6=336…3,∴第2020次输出的结果为﹣1,故选:A.27.【答案】C【解答】解:由71=7,72=49,73=343,74=2401,75=16807,…,可得:个位数4个数一循环,且4个数一循环的个位数字之和为7+9+3+1=20,∵2020÷4=505,∴7+71+72+…+72020=7+505×0=7,故选:C.28.【答案】D【解答】解:,,,,,,……由上可知,,∴,故选:D.29.【答案】D【解答】解:若n=5,则第1次结果为F(5)=3×5+1=16,第2次结果是F(16)1,第3次结果为F(1)=1×3+1=4,第4次结果为F(4),……可以看出,从第2次开始,结果就只是1,4两个数轮流出现,且当次数为偶数时,结果是1;次数是奇数时,结果是4,而2020次是偶数,因此最后结果是1.故选:D.二.填空题(共9小题)30.【答案】见试题解答内容【解答】解:2+(﹣3)=﹣1.故答案为:﹣1.31.【答案】见试题解答内容【解答】解:(),故答案为:.32.【答案】见试题解答内容【解答】解:原式•(x+1)(x﹣1)=x+1,故答案为:x+1.33.【答案】见试题解答内容【解答】解:原式,故答案为:34.【答案】见试题解答内容【解答】解:当x+1=0,即x=﹣1时,原式=(﹣2)0=1;当x﹣1=1,x=2时,原式=13=1;当x﹣1=﹣1时,x=0,(﹣1)1=﹣1,舍去.故答案为:x=﹣1或2.35.【答案】见试题解答内容【解答】解:原式,故答案为:.36.【答案】见试题解答内容【解答】解:原式,故答案为:37.【答案】见试题解答内容【解答】解:原式1,故答案为:138.【答案】见试题解答内容【解答】解:3,故答案为:﹣3.三.解答题(共2小题)39.【答案】见试题解答内容【解答】解:原式=4a4+8a4﹣9a4=3a4.40.【答案】见试题解答内容【解答】解:(1)原式=8﹣1﹣5=2;(2)原式=9a4﹣2a4+4a6+a2=7a4+4a6+a2.。

湖北省武汉市四校联考2018年中考数学模拟试卷(3月份,带答案)

湖北省武汉市四校联考2018年中考数学模拟试卷(3月份,带答案)

2018年湖北省武汉市四校联考中考数学模拟试卷(3月份)一.选择题(每小题3分,共30分)1.(3分)化简的结果为()A .±5B .25C .﹣5D .52.(3分)若代数式在实数范围内有意义,则实数x 的取值范围是()A .x <3B .x >3C .x ≠3D .x=33.(3分)下列计算结果是x 5的为()A .x 10÷x 2B .x 6﹣xC .x 2•x 3D .(x 3)24.(3分)在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示成绩(米) 4.504.604.654.704.754.80人数232341则这些运动员成绩的中位数、众数分别是()A .4.65、4.70B .4.65、4.75C .4.70、4.75D .4.70、4.705.(3分)计算(x +2)(x +3)的结果为()A .x 2+6B .x 2+5x +6C .x 2+5x +5D .x 2+6x +66.(3分)点P (2,﹣3)关于x 轴对称点的坐标为()A .(2,3)B .(﹣2,3)C .(﹣2,﹣3)D .(﹣3,2)7.(3分)如图所示的正方体的展开图是()A .B .C .D .8.(3分)按照一定规律排列的n 个数:1,﹣2,4,﹣8,16,﹣32,64…若最后两个数的差为﹣1536,则n为()A.9B.10C.11D.129.(3分)已知一个三角形的三边长分别是6、7、8,则其内切圆直径为()A.B.C.D.210.(3分)已知抛物线y1=(x﹣x1)(x﹣x2)交x轴于A(x1,0)B(x2,0)两点,且点A在点B的左边,直线y2=2x+t经过点A.若函数y=y1+y2的图象与x轴只有一个公共点时,则线段AB的长为()A.4B.8C.16D.无法确定二.填空题(每小题3分,共18分)11.(3分)计算﹣2+3×4的结果为12.(3分)计算:=.13.(3分)将对边平行的纸带折叠成如图所示,已知∠1=52°,则∠α=.14.(3分)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,则摸出两个颜色不同小球的概率是.15.(3分)如图,等边△ABC的边长为8,D、E两点分别从顶点B、C出发,沿边BC、CA以1个单位/s、2个单位/s的速度向顶点C、A运动,DE的垂直平分线交BC边于F点,若某时刻tan∠CDE=时,则线段CF的长度为.16.(3分)在平面直角坐标系中,A(4,0),直线l:y=6与y轴交于点B,点P是直线l上点B右侧的动点,以AP为边在AP右侧作等腰Rt△APQ,∠APQ=90°,当点P的横坐标满足0≤x≤8,则点Q的运动路径长为.三、解答题(共8小题,满分72分)17.(8分)解方程:7x﹣5=3x﹣1.18.(8分)如图,点C,F,E,B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.19.(8分)某公司为了掌握职工的工作成绩,随机抽取了部分职工的平时成绩(得分为整数,满分为160分)分为5组,第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)写出本次调查共抽取的职工数为(2)若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,求该公司1500名工作人员中,成绩评为“B”的人员大约有多少名?20.(8分)某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元?(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案.21.(8分)如图,⊙O为正方形ABCD的外接圆,E为弧BC上一点,AF⊥DE于F,连OF、OD.(1)求证:AF=EF;(2)若=,求sin∠DOF的值.22.(10分)如图,在△ABC中,AC=BC,AB⊥x轴于A,反比例函数y=(x >0)的图象经过点C,交AB于点D,已知AB=4,BC=.(1)若OA=4,求k的值.(2)连接OC,若AD=AC,求CO的长.23.(10分)如图,在四边形ABCD中,AB∥CD,∠ADC=90°,DE⊥BC于E,连AE,FE⊥AE交CD于点F.(1)求证:△AED∽△FEC;(2)若AB=2,求DF的值;(3)若AD=CD,=2,则=.24.(12分)如图,二次函数y=﹣x2+bx+c的图象与x轴交于A、B两点,与y 轴交于点C,OB=OC,点D在函数图象上,CD∥x轴且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图1,连BE,线段OC上的点F关于直线l的对称点F’恰好在线段BE 上,求点F的坐标;(3)如图2,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M、与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?若存在,求出点Q的坐标;若不存在,说明理由.2018年湖北省武汉市四校联考中考数学模拟试卷(3月份)参考答案与试题解析一.选择题(每小题3分,共30分)1.【解答】解:∵表示25的算术平方根,∴=5.故选:D.2.【解答】解:依题意得:x﹣3≠0,解得x≠3,故选:C.3.【解答】解:A、x10÷x2=x8,不符合题意;B、x6﹣x不能进一步计算,不符合题意;C、x2•x3=x5,符合题意;D、(x3)2=x6,不符合题意;故选:C.4.【解答】解:这些运动员成绩的中位数、众数分别是4.70,4.75.故选:C.5.【解答】解:(x+2)(x+3)=x2+3x+2x+6=x2+5x+6,故选:B.6.【解答】解:点P(2,﹣3)关于x轴对称点的坐标为(2,3),故选A.7.【解答】解:根据带有各种符号的面的特点及位置,可得如图所示的正方体的展开图是.故选:A.8.【解答】解:观察数列,可知:第n个数为(﹣2)n﹣1.设倒数第二个数为x,则最后一个数为﹣2x,根据题意得:x﹣(﹣2x)=﹣1536,解得:x=﹣512,∴﹣2x=1024,∴(﹣2)n﹣1=1024,∴n=11.故选:C.9.【解答】解:AB=7,BC=6,AC=8,内切圆的半径为r,切点为G、E、F,作AD⊥BC于D,设BD=x,则CD=6﹣x,在Rt△ABD中,AD2=AB2﹣BD2,在Rt△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2,即72﹣x2=82﹣(6﹣x)2,解得,x=,则AD==,×AD×BC=×AB×r+×AC×r+×CB×r,解得,r=,∴其内切圆直径为2,故选:D.10.【解答】解:∵线y2=2x+t经过点A(x1,0),∴2x1+t=0∴x1=﹣,A(﹣,0)∵若函数y=y1+y2的图象与x轴只有一个公共点,∴这个公共点就是点A,∴可以假设y=(x+)2=x2+tx+,∴y1=y﹣y2=x2+(t﹣2)x+﹣t.∴AB=====8.故选:B.二.填空题(每小题3分,共18分)11.【解答】解:﹣2+3×4=﹣2+12=10,故答案为:10.12.【解答】解:==x+2.故答案为x+2.13.【解答】解:∵对边平行,∴∠2=∠α,由折叠可得,∠2=∠3,∴∠α=∠3,又∵∠1=∠4=52°,∴∠α=(180°﹣52°)=64°,故答案为:62°.14.【解答】解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色不同的有12种结果,∴两次取出的小球颜色不同的概率为=,故答案为:.15.【解答】解:作EH⊥BC于H,设线段DE的垂直平分线交DE于G.∵△ABC是等边三角形,∴∠C=60°,在Rt△EHC中,EC=2t,∴CH=t,EH=2t,在Rt△DEH中,∵tan∠CDE==,∴DH=4t,∵BD=t,BC=8,∴t+4t+t=8,∴t=,∴DH=,EH=,CH=,∵GF垂直平分线段DE,∴DF=EF,设DF=EF=x,在Rt△EFH中,∵EF2=EH2+FH2,∴x2=()2+(﹣x)2,解得x=,∴CF=﹣+=2.故答案为2.16.【解答】解:如图,过点P作PE⊥OA,垂足为E,过点Q作QF⊥BP,垂足为F,∵BP∥OA,PE⊥OA,∴∠EPF=∠PEO=90°.∵∠APQ=90°,∴∠EPA=∠FPQ=90°﹣∠APF.在△PEA和△PFQ中,∵,∴△PEA≌△PFQ(AAS),∴PE=PF,EA=QF,若点P的坐标为(a,6),则PF=PE=6,QF=AE=|4﹣a|.∴点Q的坐标为(a+6,10﹣a).∵无论a为何值,点Q的坐标(a+6,10﹣a)都满足一次函数解析式y=﹣x+16,∴点Q始终在直线y=﹣x+16上运动.当点P的横坐标满足0≤x≤8时,点Q的横坐标满足6≤x≤14,纵坐标满足2≤y≤10,则Q的运动路径长为=8,故答案为:8.三、解答题(共8小题,满分72分)17.【解答】解:(1)移项得7x﹣3x=5﹣1,合并同类项得4x=4,系数化为1得x=1.18.【解答】解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.19.【解答】解:(1)本次调查共抽取的职工数为20÷40%=50(人),故答案为:50;(2)1500×=420(人),答:成绩评为“B”的人员大约有420名.20.【解答】解:(1)设甲种笔记本的单价是x元,乙种笔记本的单价是y元.(1分)根据题意可得(3分)解这个方程组得(4分)答:甲种笔记本的单价是3元,乙种笔记本的单价是5元.(5分)(2)设本次购买乙种笔记本m个,则甲种笔记本(2m﹣10)个.(6分)根据题意可得m+(2m﹣10)≥80,解这个不等式得m≥30,3(2m﹣10)+5m≤320(8分)解这个不等式得m≤31.(9分)因为m为正整数,所以m的值为:30或31故本次购进甲笔记本50个、乙笔记本30个;或购进甲笔记本52个、乙笔记本31个.(10分)21.【解答】证明:(1)如图,过B作BG⊥AF于G,连接BE、OB,∵AF⊥DE,∴∠AGB=∠AFD=90°,∴∠BAF+∠ABG=90°,∵四边形ABCD是正方形,∴BD为⊙O的直径,AD=AB,∠BAD=90°,∴∠DAF+∠BAF=90°,∠BED=90°,∴∠ABG=∠DAF,∴△ABG≌△DAF,∴BG=AF,∵∠BED=∠BGF=∠AFE=90°,∴四边形GBEF是矩形,∴EF=BG,∴AF=EF;(2)作OH⊥BE于H,连接AO,GO.∵OH⊥BE,∴BH=HE,∴OH垂直平分线段BE,∵四边形GBEF是矩形,∴BE=GF,BE∥GF,∴OH垂直平分线段FG,∴OG=OF,∵∠AOD=∠AFD=90°,∴A、D、F、O四点共圆,∴∠DOF=∠DAF,∠OFG=∠ADO=45°,∴△FOG是等腰直角三角形,∴FG=OF,∵EF=BG=AF=2OF,∴AF=2FG,AG=FG=DF,设DF=a,则AF=2a,AD=a,∴sin∠DOF=sin∠DAF==.22.【解答】解:(1)作CE⊥AB,垂足为E,∵AC=BC,AB=4,∴AE=BE=2.在Rt△BCE中,BC=,BE=2,∴CE=,∵OA=4,∴C点的坐标为:(,2),∵点C在y=(x>0)的图象上,∴k=11;(2)设A点的坐标为(m,0),∵BD=BC=,∴AD=,∴D,C两点的坐标分别为:(m,),(m+,2).∵点C,D都在y=(x>0)的图象上,∴m=2(m+),∴m=6,∴C点的坐标为:(,2),作CF⊥x轴,垂足为F,∴OF=,CF=2,在Rt△OFC中,OC2=OF2+CF2,∴OC==.23.【解答】解:(1)∵DE⊥BC,EF⊥AE,∴∠BED=∠CED=90°,∵∠2+∠3=90°,∠2+∠CEF=90°,∴∠CEF=∠3,∵∠AEF=∠ADF=90°∴∠6+∠4=180°,∵∠5+∠6=180°,∴∠5=∠4,∴△ADE∽△FEC.(2)∵∠1+∠3=90°,∠2+∠3=90°,∴∠1=∠2,∵AB∥CD,∠ADC=90°,∴∠BAD+∠ADC=180°,∴∠BAD=90°,∵∠BED+∠BAD=180°,∴四边形ABCD四点共圆,∵∠AEF+∠ADF=180°,∴四边形AEFD四点共圆,∴A、B、E、F、D五点共圆,∵∠1=∠2,∴DF=AB=2.(3)作CN⊥AB交AB的延长线于N,过点E作EG⊥AN垂足为G交CD于H,延长DE交CN于M.∵==2,AB=FD,∴EG=2EH,∵GB∥CH,∴△EGB∽△EHC,∴==2,设EC=a,AB=x,CD=y,则EB=2a,∵∠NCD=∠ADC=∠DAN=90°,∴四边形ADCN是矩形,∵AD=DC∴四边形ADCN是正方形,∴AN=CN=CD=y,NB=y﹣x,∵∠NCB+∠CMD=90°,∠CMD+∠MDC=90°∴∠NCB=∠MDC,∵CN=CD,∴△CNB≌△DCM,∴CM=BN=y﹣x,DM=BC=3a,∵∠MCD=∠MEC,∠CME=∠CMD,∴△MCE∽△MDC,∴=,∴=,∴y2﹣xy=3a2①∵CM2+CD2=MD2,∴(y﹣x)2+y2=9a2②由①②消去a得x2+xy﹣y2=0∴x=y,(或x=y舍弃)∴=,∴=.故答案为:.24.【解答】解:(1)∵CD∥x轴,CD=2,∴抛物线对称轴为x=1.∴﹣=1,b=2.∵OB=OC,C(0,c),∴B点的坐标为(﹣c,0),∴0=﹣c2+2c+c,解得c=3或c=0(舍去),∴c=3;(2)设点F的坐标为(0,m).∵对称轴为直线x=1,∴点F关于直线l的对称点F的坐标为(2,m).由(1)可知抛物线解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴E(1,4),∵直线BE经过点B(3,0),E(1,4),∴利用待定系数法可得直线BE的表达式为y=﹣2x+6.∵点F在BE上,∴m=﹣2×2+6=2,即点F的坐标为(0,2);(3)存在点Q满足题意.设点P坐标为(n,0),则PA=n+1,PB=PM=3﹣n,PN=﹣n2+2n+3.作QR⊥PN,垂足为R,=S△APM,∵S△PQN∴(n+1)(3﹣n)=(﹣n2+2n+3)•QR,∴QR=1.①点Q在直线PN的左侧时,Q点的坐标为(n﹣1,﹣n2+4n),R点的坐标为(n,﹣n2+4n),N点的坐标为(n,﹣n2+2n+3).∴在Rt△QRN中,NQ2=1+(2n﹣3)2,∴n=时,NQ取最小值1.此时Q点的坐标为(,);②点Q在直线PN的右侧时,Q点的坐标为(n+1,n2﹣4).同理,NQ2=1+(2n﹣1)2,∴n=时,NQ取最小值1.此时Q点的坐标为(,).综上可知存在满足题意的点Q,其坐标为(,)或(,).。

勤学早·2018年武汉市中考数学模拟试卷(一)(word版)

勤学早·2018年武汉市中考数学模拟试卷(一)(word版)

2018年武汉市中考数学模拟试卷(一)(解答参考时间:120分钟,满分:120分)一、选择题(共10小题,每小题3分,共30分)1.武汉某天的最低气温25℃,最高气温33℃,则这天的温差是( )A .6℃B .7℃C .8℃D .-8℃ 2.代数式1a -4在实数范围内有意义,则实数a 的取值范围为( )A .a =4B .a >4C .a <4D .a ≠4 3.计算2x +3x 的结果是( )A .5x 2B .6x 2C .5xD .12x4.一个不透明的口袋里装有若干除颜色外完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述实验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球个数有( )A .12个B .18个C .20个D .24个 5.计算(a +1)(a -2)的结果是( )A .a 2-2B .a 2+2C .a 2-a -2D .a 2+a -2 6.点A (a ,-5)关于y 轴对称点的坐标(-2,b ),则a 、b 的值是( ) A .a =2,b =5 B .a =2,b =-5 C .a =-2,b =5 D .a =-2,b =-5 7.如图是一个几何体的三视图,则这个几何体是( )A .正方体B .长方体C .三棱柱D .三棱锥 8.某社区青年志愿者小分队12名同学的年龄情况如下表:则这12A .2,20岁 B .2,19岁 C .19岁,20岁 D .19岁,19岁 9.如图,从家到电影院的路线图,规定每次只能向上或向右走,那么 小丽从家到电影院一共有( )不同的走法. A .6种 B .8种 C .10种 D .15种10.如图,AB 是⊙O 的直径,AT 是⊙O 的切线,BT 交⊙O 于点C ,D 是⊙O 上一点,CD 交AB 于点E .若∠ATB =2∠CDO ,AB =30,AT =40,则CD 的长为( )A .20B .103C .109D .24二、填空题(共6个小题,每小题3分,共18分) 11.计算2+12.化简(a a -2-4a 2-2a)的结果是 .13.随机掷一枚质地均匀的硬币两次,落地后有一次正面朝上,一次反面朝上的概率为 .14.如图,四边形ABCD 中,∠ACB =∠ADB =90°,∠BAC =30°,∠ACD =20°,则∠CAD 的度数为 .15.如图,在平行四边形ABCD 中,点F 子啊AD 上,AF =6cm ,BF =12cm ,∠FBD =∠CBD ,点E 是BC 的中点,若点P 以1cm /秒的速度从点A 出发,沿AD 向点F 运动;点Q 同时以2cm /秒的速度从点C 出发,沿CB 向点B 运动,点P 运动到F 点时停止运动,点Q 也同时停止运动,当点P 运动 秒时,以点P 、Q 、E 、F 为顶点的四边形是平行四边形.16.已知抛物线y =-x 2+(m -1)x +m 的顶点坐标为(x 0,y 0),当14≤y 0≤254时,m 的取值范围是 .三、解答题(共8题,共72分)17.(本题8分)解方程组⎩⎨⎧=-=+②①33 1y x y x18.(本题8分)如图,点O 是线段AB 和线段CD 的中点,求证AD ∥BC .19.(本题8分)中学生带手机上学的现象越来越受到社会的关注,为此某记者随机调查了某市城区若干名中学生家长对这种现象的态度(态度分为:(A )无所谓;(B )基本赞成;(C )赞成;(D )反对),并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题: (1)此次抽样调查中,共调查了 名中学生家长;(2)将图1的折线统计图补充完整;(3)根据抽样调查结果,请你估计该市城区6000名中学生家长中有多少名家长持反对态度?BCODA20.(本题8分)下表中有两种移动电话计费方式(1)如果每月主叫时间不超过400min,当主叫时间为多少时,两种方式收费相同?(2)如果每月主叫时间超过400min,选择哪种方式更省钱?21.(本题8分)如图,在△ABC中,∠ACB=90°,点O在边BC上,以点O为圆心,OB为半径的⊙O 交AB于点E,D为⊙O上一点,弧BD=弧BE.(1)如图1,若AE=BE,求证:四边形ACDE是平行四边形;(2)如图2,若OB=OC,BE=2AE,求tan∠CAD的值.22.(本题10分)如图,在平面直角坐标系中,A(-2,0),B(0,-1),以AB为边画平行四边形ABCD.(1)如图1,若四边形ABCD为正方形,画出图形,并写出C,D的坐标;(2)若CD落在双曲线y=4x上,求C,D的坐标;(3)若AB⊥BC且BC=2AB,直接写出CD所在直线的解析式.23.(本题10分)如图1,△ABC 中,∠ACB 的平分线CE 交AB 于点E . (1)求证:AE BE =AC BC;(2)如图2,AD ⊥BC 交CE 于F ,BD =2AD ,∠AEC =45°. ①求证:BE =2AE ; ②直接写出sin ∠ACE 的值.24.(本题12分)已知抛物线y =12x 2-mx +12m 2+12m +1的顶点为A ,交y 轴于点B .(1)求证:抛物线的顶点A 在定直线l 上,并求定值线l 的解析式;(2)当m =1时,直线l 交抛物线于另一点M ,交x 轴于点C ,N 为抛物线上一点,且∠NMC =2∠ACO ,求点N 的坐标;(3)如图2,当m =2时,过点A 作直线l 1(不经过点O ),分别交x 轴,y 轴于点E ,F ,点P 为对称轴右侧抛物线上的动点(点P 、A 、O 不共线),直线P A 分别交x 轴,y 轴于点G 、H ,过点P 作PK ∥y 轴交直线l 1于点K ,若AE ·AF =AG ·AH ,求点K 的纵坐标.。

湖北省武汉市2018年中考数学试题(含答案).doc

湖北省武汉市2018年中考数学试题(含答案).doc

2018年武汉市初中毕业生考试数学试卷考试时间:2018年6月20日14:30~16:30 、一、选择题(共10小题,每小题3分,共30分)1.温度由-4℃上升7℃是( ) A .3℃ B .-3℃ C .11℃ D .-11℃2.若分式21+x 在实数范围内有意义,则实数x 的取值范围是( )A .x >-2B .x <-2C .x =-2D .x ≠-23.计算3x 2-x 2的结果是( )A .2B .2x 2C .2xD .4x 24.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( ) A .2、40 B .42、38 C .40、42 D .42、40 5.计算(a -2)(a +3)的结果是( ) A .a 2-6 B .a 2+a -6 C .a 2+6 D .a 2-a +6 6.点A (2,-5)关于x 轴对称的点的坐标是( ) A .(2,5) B .(-2,5) C .(-2,-5) D .(-5,2)7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是( ) A .3 B .4 C .5 D .68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( )A .41B .21C .43D .65912 A .2019 B .2018 C .2016D .201310.如图,在⊙O 中,点C 在优弧AB ⌒ 上,将弧BC ⌒ 沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为5,AB =4,则BC 的长是( )A .32B .23C .235D .265 二、填空题(本大题共6个小题,每小题3分,共18分)11.计算3)23(-+的结果是___________12143213.计算22111m m m---的结果是___________ 14.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是___________15.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是22360t t y -=.在飞机着陆滑行中,最后4 s 滑行的距离是___________m 16.如图,在△ABC 中,∠ACB =60°,AC =1,D 是边AB 的中点,E 是边BC 上一点.若DE 平分△ABC 的周长,则DE 的长是___________三、解答题(共8题,共72分)17.(本题8分)解方程组:⎩⎨⎧=+=+16210y x y x18.(本题8分)如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,AF 与DE 交于点G ,求证:GE =GF19.(本题8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m 名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图学生读书数量统计表 学生读书数量扇形图b(2) 估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(本题8分)用1块A 型钢板可制成2块C 型钢板和1块D 型钢板;用1块B 型钢板可制成1块C 型钢板和3块D 型钢板.现准备购买A 、B 型钢板共100块,并全部加工成C 、D 型钢板.要求C 型钢板不少于120块,D 型钢板不少于250块,设购买A 型钢板x 块(x 为整数) (1) 求A 、B 型钢板的购买方案共有多少种?(2) 出售C 型钢板每块利润为100元,D 型钢板每块利润为120元.若童威将C 、D 型钢板全部出售,请你设计获利最大的购买方案21.(本题8分)如图,PA 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连接PB 、PC ,PC 交AB 于点E ,且P A =PB(1) 求证:PB 是⊙O 的切线(2) 若∠APC =3∠BPC ,求CEPE的值22.(本题10分)已知点A (a ,m )在双曲线xy 8=上且m <0,过点A 作x 轴的垂线,垂足为B (1) 如图1,当a =-2时,P (t ,0)是x 轴上的动点,将点B 绕点P 顺时针旋转90°至点C ① 若t =1,直接写出点C 的坐标② 若双曲线xy 8=经过点C ,求t 的值(2) 如图2,将图1中的双曲线x y 8=(x >0)沿y 轴折叠得到双曲线x y 8-=(x <0),将线段OA 绕点O旋转,点A 刚好落在双曲线xy 8-=(x <0)上的点D (d ,n )处,求m 和n 的数量关系23.(本题10分)在△ABC 中,∠ABC =90°、(1) 如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM ∽△BCN(2) 如图2,P 是边BC 上一点,∠BAP =∠C ,tan ∠P AC =552,求tanC 的值 (3) 如图3,D 是边CA 延长线上一点,AE =AB ,∠DEB =90°,sin ∠BAC =53,52=AC AD ,直接写出tan ∠CEB 的值24.(本题12分)抛物线L:y=-x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B(1) 直接写出抛物线L的解析式(2) 如图1,过定点的直线y=kx-k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k 的值(3) 如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C 作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标。

2018年湖北武汉中考数学模拟试题含答案(Word版)

2018年湖北武汉中考数学模拟试题含答案(Word版)

个人收集整理仅供参考学习1 / 102018年武汉市初中毕业生考试数学试卷考试时间:2018年6月20日14:30~16:30 一、选择题(共10小题,每小题3分,共30分)1.温度由-4℃上升7℃是()A .3℃B .-3℃C .11℃D .-11℃2.若分式21x 在实数范围内有意义,则实数x 地取值范围是()A .x >-2B .x <-2C .x =-2D .x ≠-23.计算3x 2-x 2地结果是()A .2B .2x 2C .2xD .4x24.五名女生地体重(单位:kg )分别为:37、40、38、42、42,这组数据地众数和中位数分别是()b5E2RGbCAPA .2、40B .42、38C .40、42D .42、40 5.计算(a -2)(a +3)地结果是()A .a 2-6B .a 2+a -6C .a 2+6 D .a 2-a +66.点A(2,-5)关于x 轴对称地点地坐标是()A .(2,5)B .(-2,5)C .(-2,-5)D .(-5,2)7.一个几何体由若干个相同地正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体地个数最多是()p1EanqFDPwA .3B .4C .5D .68.一个不透明地袋中有四张完全相同地卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取地卡片上数字之积为偶数地概率是()DXDiTa9E3dA .41B .21C .43D .659.将正整数1至2018按一定规律排列如下表:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26272829303132……平移表中带阴影地方框,方框中三个数地和可能是()A .2019B .2018C .2016D .201310.如图,在⊙O 中,点C 在优弧AB ⌒上,将弧BC ⌒沿BC 折叠后刚好经过AB 地中点D .若⊙O 地半径为5,AB =4,则BC 地长是()RTCrpUDGiTA .32B .23。

湖北中考数学复习各地区2018-2020年模拟试题分类(武汉专版)(6)——三角形

湖北中考数学复习各地区2018-2020年模拟试题分类(武汉专版)(6)——三角形

湖北中考数学复习各地区2018-2020年模拟试题分类(武汉专版)(6)——三角形一.选择题(共6小题)1.(2020•武汉模拟)如图,在扇形OAB中,∠AOB=90°,C是上一点,连接OC交AB于点D,过点C 作CE∥OA交AB于点E.若∠BOC=30°,OB=2,则CE的长是()A.2 B.C.D.12.(2020•武汉模拟)在我国古代数学著作《九章算术》“勾股”章有一题:“今有开门去阃(kǔn)一尺,不合二寸,问门广几何.”大意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10寸),双门间的缝隙CD为2寸,那么门的宽度(两扇门的和)AB为()A.100寸B.101寸C.102寸D.103寸3.(2019•武汉一模)O为等边△ABC所在平面内一点,若△OAB、△OBC、△OAC都为等腰三角形,则这样的点O一共有()A.4 B.5 C.6 D.104.(2019•武汉一模)点G为△ABC的重心(△ABC三条中线的交点),以点G为圆心作⊙G与边AB,AC相切,与边BC相交于点H,K,若AB=4,BC=6,则HK的长为()A.B.C.D.5.(2019•东西湖区模拟)在数学活动课上,老师要求学生在4×4的正方形ABCD网格中(小正方形的边长为1)画直角三角形,要求三个顶点都在格点上,而且三边与AB或AD都不平行,则画出的形状不同的直角三角形有()种.A.3 B.4 C.5 D.66.(2018•武汉模拟)等腰Rt△ACB中,AC=BC,∠BCA=90°,点D为△ACB外一点,CD=2DB=2,AD,则BC的长为()A.2 B.C.D.2二.填空题(共17小题)7.(2020•武汉模拟)如图,在平面直角坐标系中,A点坐标为(6,6),过A作AC⊥x轴于C,OB平分∠AOC交AC于B,P为x轴上一动点,当∠APB最大时,P点坐标是.8.(2020•汉阳区模拟)如图,在△ABC中,∠B=30°,EF=10,CF=6.D是AC的中点,点E在AB 上,点F在BC上.若∠EDF=90°,则AE=.9.(2020•武汉模拟)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线.①点M是边BC中点,则DM=;②探究:点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN、ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是.10.(2020•硚口区模拟)如图,在△ABC中,AB=5,AC=3,BC=4,D是BC边上一动点,BE⊥AD,交其延长线于点E,EF⊥AC,交其延长线于点F,则AF的最大值为.11.(2019•武汉模拟)如图,在△ABC中,AB=AC,∠BAC=30°,点D是AC上一点,∠ABD=15°.若BC=6,则AD的长为.12.(2019•武汉模拟)如图,D为△ABC中BC边上一点,AB=CB,AC=AD,∠BAD=27°,则∠C =.13.(2019•武昌区模拟)如图,∠ABC=15°,∠ACB=37.5°,∠DAC=75°,DC=2,则BD的长为.14.(2019•青山区模拟)一个钝角三角形两边长分别为4、5,则此三角形的最大边c的取值范围是为.15.(2018•武汉模拟)如图,△ABC中,∠A=60°,D是BC边的中点,E是AB边上一点,DF⊥DE交AC边于F,BE=2,EF=4,则CF=.16.(2018•江汉区模拟)如图,四边形ABCD中,AD=CD,∠B=2∠D=120°,∠C=75°.则.17.(2018•武昌区模拟)如图,在锐角△ABC中,AB=AC=5,BC,点D从点A出发,以每秒1个单位长度的速度沿AB向终点B运动.过点D作DE∥AC交BC于E,过点D作DF⊥DE于D,点F在点D 的下方,连接EF,且EF∥AB.射线EF与AC交于点G,连接DG.当点D从A开始向B运动,经过秒时,线段DG的垂直平分线经过点F.18.(2018•武汉模拟)如图,在等腰Rt△ABC中,∠ACB=90°,AC=BC,点E在直角边BC的延长线上,DC∥AB,若BD平分∠ABC,则∠BDA的度数为.19.(2018•武汉模拟)如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB交于H、E两点,且AH=2CH,若AB=2,则BE的值为.20.(2018•武汉模拟)如图,在四边形ABCD 中,AB =AD ,∠BAD =∠BCD =90°,连接AC 、BD ,若S四边形ABCD =18,则BD 的最小值为 .21.(2018•硚口区模拟)如图,在△ABC 中,AB =AC ,D 、E 分别为AB 、AC 上的点,∠BDE 、∠CED 的平分线分别交BC 于点F 、G ,EG ∥AB .若∠BGE =110°,则∠BDF 的度数为22.(2018•江岸区校级模拟)如图,在四边形ABCD 中,AD ∥BC ,∠B =90°,AD =8cm ,AB =6cm ,BC=10cm ,点Q 从点A 出发以1cm /s 的速度向点D 运动,点P 从点B 出发以2cm /s 的速度向C 点运动,P 、Q 两点同时出发,其中一点到达终点时另一点也停止运动.若DP ≠DQ ,当t = s 时,△DPQ 是等腰三角形.23.(2018•硚口区模拟)如图,在△ABC 中,∠C =90°,BC =3,AC =5,点D 为线段AC 上一动点,将线段BD 绕点D 逆时针旋转90°,点B 的对应点为E ,连接AE ,则AE 长的最小值为 .三.解答题(共13小题)24.(2020•青山区校级模拟)如图,在△ABC 中,ED ∥BC ,∠ABC 和∠ACB 的平分线分别交ED 于点G 、F ,若BE =6,DC =8,DE =20,求FG .25.(2020•江岸区校级模拟)如图,在△ABC 中,∠C =90°,AB =5,BC =3,求sin A 、cos A 、tan A 的值.26.(2020•蔡甸区模拟)如图,△ABC 中,D 是边BC 的中点,E 是AB 边上一点,且AD ⊥CE 于O ,AD=AC =CE .(1)求证:∠B =45°;(2)求的值;(3)直接写出的值.27.(2020•青山区模拟)如图,Rt△ABC和Rt△DEF中,∠C=∠F=90°,AB=DE,CE=FB,求证:∠A=∠D.28.(2020•武汉模拟)如图,已知OC=OD,∠OAB=∠OBA,求证:AD=BC.29.(2019•汉阳区模拟)△ABC中,AD⊥BC,E,F分别在AB,AC上.(1)已知:DE⊥DF①如图1:若AB⊥AC,求证:△DAE~△DFC.②连EF,若FE⊥AB于E(如图2),且BD:CD:DA=2:3:4,EF=4,求BC的长.(2)连EC,DE平分∠BEC(如图3),且AD=2CD,CE=2AE,若DE=10,求AC的长.30.(2019•东西湖区模拟)如图,点D在AB上,点E在AC上,AB=AC,BD=CE,求证:∠B=∠C.31.(2019•武汉模拟)如图,在△ABC中,AD⊥BC,垂足为D,AD=CD,点E在AD上,DE=BD,M、N分别是AB、CE的中点.(1)求证:△ADB≌△CDE;(2)求∠MDN的度数.32.(2019•江岸区校级模拟)如图,D、C、F、B四点在一条直线上,AB=DE,AC⊥BD,EF⊥BD,垂足分别为点C、点F,CD=BF.求证:(1)△ABC≌△EDF;(2)AB∥DE.33.(2019•洪山区模拟)已知:如图AC,BD相交于点O,∠A=∠D,AB=CD,求证:△AOB≌△DOC.34.(2019•江岸区校级模拟)如图所示,直线AD和BC相交于O,AB∥CD,∠AOC=95°,∠B=50°,求∠A和∠D.35.(2018•江汉区模拟)已知:如图,点B,F,C和E在一条直线上,∠A=∠D,AC=DF,且AC∥DF.求证:BF=EC.36.(2018•江岸区校级模拟)如图,△ABC和△DEF,B、E、C、F在一条直线上,AB=DE,BE=CF,∠B=∠DEF,求证:AC=DF.湖北中考数学复习各地区2018-2020年模拟试题分类(武汉专版)(6)——三角形参考答案与试题解析一.选择题(共6小题)1.【答案】D【解答】解:延长CE交OB于F,如图:∵CE∥OA,∴∠CFO=∠BFE=90°,∵∠BOC=30°,OC=OB=2,∴CFOC=1,OFCF,∴BF=OB﹣OF=2,∵OA=OB,∠AOB=90°,∴∠OBA=45°,∴△BEF是等腰直角三角形,∴EF=BF=2,∴CE=CF﹣EF=1﹣(2)1,故选:D.2.【答案】B【解答】解:设OA=OB=AD=BC=r,过D作DE⊥AB于E,则DE=10,OECD=1,AE=r﹣1.在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得2r=101.故门的宽度(两扇门的和)AB为101寸.故选:B.3.【答案】D【解答】解:在等边△ABC中,三条边上的高交于点O,由于等边三角形是轴对称图形,三条高所在的直线也是对称轴,也是边的中垂线,点O到三个顶点的距离相等,△ADB,△BOC,△AOC是等腰三角形,则点O是满足题中要求的点,高与顶角的两条边成的锐角为30°,以点A为圆心,AB为半径,做圆,延长AO交圆于点E,由于点E在对称轴AE上,有EC=EB,AE=AC=AB,△ECB,△AEC,△ABE都是等腰三角形,点E 也是满足题中要求的点,作AD⊥AE交圆于点D,则有AC=AD,AD=AB,即△DAB,△ADC是等腰三角形,点D也是满足题中要求的点,同理,作AF⊥AE交圆于点F,则点F也是满足题中要求的点;同理,以点B为圆心,AB为半径,做圆,以点C为圆心,AB为半径,做圆,都可以分别得到同样性质的三个点满足题中要求,于是共有10个点能使点与三角形中的任意两个顶点所组成的三角形都是等腰三角形.故选:D.4.【答案】A【解答】解:设⊙G与边AB,AC相切于E,F,连接EG,FG,则EG⊥AB,FG⊥AC,连接AG并延长交BC于S,∵EG=FG,∴∠BAS=∠CAS,∵点G为△ABC的重心,∴BS=CSBC=3,延长AS到O使SO=AS,连接BO,在△ACS与△OBS中,∴△ACS≌△OBS(SAS),∴∠O=∠CAS,AC=OB,∵∠BAS=∠CAS,∴∠BAS=∠O,∴AB=BO,∴AB=AC,∴AS⊥BC,∴AS,∴AGAS,SGAS,∵∠EAG=∠SAB,∠AEG=∠ASB=90°,∴△AEG∽△ASB,∴,∴,∴EG,连接GH,∴GH,∴HS,∴HK=2HS.故选:A.5.【答案】A【解答】解:如图所示:形状不同的直角三角形共有3种情况:直角边之比为1:1,或1:2,或1:3.故选:A.6.【答案】B【解答】解:过点A作AE⊥CD于E,过B作BF⊥CD于F,∴∠AEC=∠F=90°,∵AC=BC,∠BCA=90°,∴∠CAE+∠ACE=∠ACE+∠BCF=90°,∴∠CAE=∠BCF,∴△ACE≌△CBF(AAS),∴AE=CF,CE=BF,设CE=BF=x,DF=y,则DE=2﹣x,AE=CF=2+y,∴x2+y2=BD2=1 ①,(2+y)2+(2﹣x)2=AD2=5 ②,联立①②解得:,∴BF=BD=1,∴点D与点F重合,∴BD⊥CD,∴BC,故选:B.二.填空题(共17小题)7.【答案】P(0,0).【解答】解:如图,过A,B两点作⊙J,当⊙J与x轴相切于P时,∠APB最大.过点J作JG⊥AB于G,连接JB,JA.∵A(6,6),AC⊥OC,∴OC=6,AC=6,∴tan∠AOC,∴∠AOC=60°,∵OB平分∠AOC,∴∠AOB=∠BOC∠AOC=30°,∴BC=OC•tan30°=2,∴AB﹣AC﹣BC=4,∵JG⊥AB,∴AG=GB=2,∴∠JOC=∠JGC=∠GCP=90°,∴四边形JGCP是矩形,∴JP=CG=JB=4,∴JG6,∴PC=JG=6,∴OC=CP,∴点P与原点O重合,P(0,0).8.【答案】.【解答】解:延长FD至点H,使得FD=DH,连接AH,过H作HG⊥AB,交BA的延长线于点G,∵D是AD的中点,∴DA=DC,在△DAH和△DCF中,,∴△DAH≌△DCF(SAS),∴AH=CF=6,∠DAH=∠C,∴AH∥BC,∴∠HAG=∠B=30°,∴HG3,AG=AH•cos30°=3,∵DE⊥DF,DH=DF,∴EH=EF=10,∴EG,∴AE=EG﹣AG.故答案为:.9.【答案】(1)5;(2)或.【解答】解:(1)∵∠A=90°,AB=AC,BC=20,∴2AC2=BC2=202,∴AC=10,∵D,M分别是AB,BC的中点,∴DMAC=5;(2)如图作EF⊥BC于F,DN′⊥BC于N′交EM于点O′,此时∠MN′O′=90°,∵DE是△ABC中位线,∴DE∥BC,DEBC=10,∵DN′∥EF,∴四边形DEFN′是平行四边形,∵∠EFN′=90°,∴四边形DEFN′是矩形,∴EF=DN′,DE=FN′=10,∵AB=AC,∠A=90°,∴∠B=∠C=45°,∴BN′=DN′=EF=FC=5,∴,∴,∴DO′;当∠MON=90°时,∵△DOE∽△EFM,∴,∵MF=BC﹣BM﹣FC=20﹣3﹣5=12,∴EM13,∴DO,故答案为:或.10.【答案】见试题解答内容【解答】解:∵AB=5,AC=3,BC=4,∴AB2=AC2+BC2,∴∠ACB=90°.以AB为直径作⊙O,则点C、E在圆上,作BC的平行线切⊙O于点E,过点E作EF⊥AC的延长线于点F,此时AF最长,连接OE,过点O作OM⊥AC于点M,如图所示.∵OM⊥AC,∠ACB=90°,∴OM∥BC.∵点O为AB的中点,∴点M为AC的中点,∴AMAC.∵EF切⊙O为点E,∴OE⊥EF,∴OE∥MF,∴四边形OEFM为矩形,∴MF=OEAB,∴AF=AM+ME=4.故答案为:4.11.【答案】见试题解答内容【解答】解:过点B作BE⊥AC;设BE=x,∵AB=AC,∠BAC=30°,BE⊥AC∴AB=AC=2x,∠ABC=∠ACB=75°,∠AEB=90°,根据勾股定理可求AE∵∠ABD=15°.∴∠EBD=45°,BE=DE=x∵BC=6,∴根据勾股定理,ECAE=2x∴2x解题x2x∴AD3()3(1)•3解法二:作CE⊥BD于E,BF⊥CD于F,在Rt△BCE中,BC=6,∠CBE=60°,∴BEBC=3,CE=3,在Rt△CED中,∵∠EDC=45°,∴CE=ED=3,∴CDDE=3,BD=3+3,∴BF,∴AB=AC=2BF=33,∴AD=AC﹣CD=3.故答案为:312.【答案】见试题解答内容【解答】解:设∠C=α,∵AB=CB,AC=AD,∴∠BAC=∠C=α,∠ADC=∠C=α,又∵∠BAD=27°,∴∠CAD=α﹣27°,∵△ACD中,∠DAC+∠ADC+∠C=180°,∴α﹣27°+α+α=180°,∴α=69°,∴∠C=69°,故答案为:69°.13.【答案】见试题解答内容【解答】解:作∠AEB=15°,把△ABD绕点A逆时针旋转150°得到△AEF,连接CF、DF.则∠FEC=30°.由旋转性质可知∠DAF=150°,∵∠DAC=75°,∴∠CAF=75°.又AD=AF,AC=AC,∴△CAD≌△CAF(SAS).∴∠FCD=2∠ACD=75°,CD=CF=2.∴∠CFE=75°﹣30°=45°.则△FCH是等腰Rt△,CF=2,所以CH=FH.在Rt△CHE中,CH=2,∠CEH=30°,∴EH.∴EF=FH+HE.∴BD=EF.故答案为.14.【答案】见试题解答内容【解答】解:因为c是钝角三角形的最大边,所以c<4+5,即c<9.故答案为:c<9.15.【答案】见试题解答内容【解答】解:如图,延长FD到G使GD=DF,连接GE,BG,过E作EH⊥BG于H,在△BDG和△CDF中∴△BDG≌△CDF(SAS),∴BG=CF,∠GBD=∠C,∴BH∥CA,∴∠EBH=∠A=60°,在Rt△BEH中,BE=2,∴BHBE,EHBE=3,∵DF⊥DE,∴GE=EF=4,∴GH,∴CF=BG=GH﹣BH故答案为.16.【答案】见试题解答内容【解答】解:连接AC,过点C作CE⊥AB于E,∵∠B=2∠D=120°,∴∠D=60°,∵AD=CD,∴△ACD为等边三角形,∴AD=AC,∠DCA=60°∵∠C=75°,∴∠ACB=15°,∴∠BAC=45°,∴AC2=2CE2,∵∠ABC=60°,∴∠BCE=30°,∴BEBC,∴BC2=CE2,∴BC2AC2,∴∴.故答案为:.17.【答案】见试题解答内容【解答】解:设经过t秒时,线段DG的垂直平分线经过点F.由题意得:AD=t,BD=5﹣t,∵AB=BC=5,∴∠B=∠C,∵DE∥AC,∴∠DEB=∠C=∠B,∴DB=DE=5﹣t,如图1,过B作BH⊥AC于H,设CH=x,则AH=5﹣x,由勾股定理得:BH2=52﹣(5﹣x)2=()2﹣x2,解得:x=1,∴AH=4,BH=3,∴tan∠A,①如图2,线段EF与AC相交于G,∵DG的垂直平分线经过点F,∴DF=FG,∵DE∥AC,EF∥AB,∴四边形ADEG是平行四边形,∴∠DEF=∠A,EG=AD=t,∵DE⊥DF,∴∠EDF=90°,tan∠DEF=tan∠A,即,DF,同理得:EF,∵DF=FG,∴t,t,②如图3,G在射线EF上,则DF=FG,同理得:DF,EF,EG=AD=t,∵DF=FG,∴t,t,综上,经过或秒时,线段DG的垂直平分线经过点F.故答案为:或.18.【答案】见试题解答内容【解答】解:∵∠ACB=90°,AC=BC,∴∠CBA=∠CAB=45°,∵BD平分∠ABC,∴∠ABD=∠CBD=22.5°,∵AB∥CD,∴∠ACD=∠CAB=45°,∠CDB=∠ABD=22.5°,∴∠CBD=∠CDB,∴BC=CD=AC,∴∠CAD=∠ADC67.5°,∵∠CDB=22.5°,∴∠ADB=∠CAD﹣∠CDB=67.5°﹣22.5°=45°,故答案为:45°.19.【答案】见试题解答内容【解答】解:∵∠ACB=90°,CD是斜边AB上的中线,∴CD=BD,∴∠B=∠BCD,∵AE⊥CD,∴∠CAH+∠ACH=90°,又∠ACB=90°∴∠BCD+∠ACH=90°∴∠CAH=∠BCD=∠B,即∠B=∠CAH,∵AH=2CH,∴由勾股定理得ACCH,∴CH:AC=1:,∴sin B.∴AC:AB=1:,∵AB=2,∴AC=2.∵∠CAH=∠B,∴sin∠CAH=sin B,设CE=x(x>0),则AEx,则x2+22=(x)2,∴CE=x=1,在Rt△ABC中,AC2+BC2=AB2,∵AB=2,AC=2,∴BC=4,∴BE=BC﹣CE=3.故答案为:3.20.【答案】见试题解答内容【解答】解:∵AB=AD,∠BAD=∠BCD=90°,∴AB2+AD2=BD2,BC2+CD2=BD2,∴2AB2=BD2,∵S四边形ABCD=S△ABD+S△BCD,∴18S△BCD,∴当S△BCD值最大时,BD最小,∵(CD﹣BD)2≥0∴CD2+BD2≥2BD×CD∴BD×CD∴S△BCD∴当S△BCD时,BD的长度最小,∴18∴BD=6故答案为:621.【答案】见试题解答内容【解答】解:∵EG∥AB,∠BGE=110°,∴∠B=180°﹣∠BGE=70°,∠CEG=∠A,∠GED=∠ADE.∵AB=AC,∴∠C=∠B=70°,∠A=180°﹣∠B﹣∠C=40°,∴∠CEG=∠A=40°,∵EG平分∠CED,∴∠GED=∠CEG=40°,∴∠ADE=∠GED=40°,∴∠BDE=180°﹣∠ADE=140°.∵DF平分∠BDE,∴∠BDF∠BDE=70°.故答案为70°.22.【答案】见试题解答内容【解答】解:由运动知,AQ=t,BP=2t,∵AD=8,BC=10,∴DQ=AD﹣AQ=(8﹣t)(cm),PC=BC﹣BP=(10﹣2t)(cm),∵△DPQ是等腰三角形,且DQ≠DP,∴①当DP=QP时,∴点P在DQ的垂直平分线上,∴AQDQ=BP,∴t(8﹣t)=2t,∴t,②当DQ=PQ时,如图,Ⅰ、过点Q作QE⊥BC于E,∴∠BEQ=∠OEQ=90°,∵AD∥BC,∠B=90°,∴∠A=∠B=90°,∴四边形ABEQ是矩形,∴EQ=AB=6,BE=AQ=t,∴PE=BP﹣BE=t,在Rt△PEQ中,PQ,∵DQ=8﹣t∴8﹣t,∴t,∵点P在边BC上,不和C重合,∴0≤2t<10,∴0≤t<5,∴此种情况符合题意,即t或s时,△DPQ是等腰三角形.故答案为:或.。

武汉市江岸区中考数学模拟试题(三)(word版有答案)

武汉市江岸区中考数学模拟试题(三)(word版有答案)

武汉市江岸区中考数学模拟试题(3)一、选择题(每小题3分)1、在5-,0,3,8这四个数中,最小的数是( ) A .5- B .0 C .3 D .8 2. 函数y =2-x 中自变量x 的取值范围为 ( )A. x >2B. x ≥2C. x ≤2D. x ≠23. 不等式组⎩⎨⎧+≤3123>x x 的解集是( )A. x >1B. x ≥1C. x ≤3D. 1<x ≤34.下列事件中,为必然事件的是( )A .购买一张彩票,中奖B .打开电视,正在播放广告C .抛掷一枚硬币,正面向上D .一个袋中只装有5个黑球,从中摸出一个球是黑球 5. 已知一元二次方程x 2-4x +3=0两根为x 1、x 2, 则x 1·x 2= ( ) A. 4 B. 3 C. -4 D. -3 6.在⊿ABC 中,AB=AC ,∠A =30°,将⊿ADE 沿直线 DE 折叠,A 恰好与点C 重合,则∠BCD =( )A .80°B .75°C .65°D .45°7.下面几何体的俯视图是( )8.如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,…,依此类推,则由正八边形“扩展”而来的多边形的边数为( ).A. 32B. 40C. 72D. 649. 某市教育局为了解初中学生参加综合实践活动(包括社会调查、社区服务、科技活动、文体活动四类) 情况,从全市9万名学生中随机抽取初一、初二、初三年级各500名进行调查, 调查结果如图, 则下列调查判断: ①其中科技活动人数占参加综合实践活动的总人数的10%; ②全市学生中参加文体活动人数约3.24万人; ③初一年级参加文体活动人数是初二、初三年级参加社会调查及社区服务人数总和的两倍. 其中正确的为 ( )A. ①②B. ①③C. ①②③D. ②③① ② ③ ④…… EDCBADEF C B A 10. 如图, O 为Rt △ABC 内切圆, ∠C =90°, AO 延长线交BC 于D 点,若AC =4, CD =1, 则⊙O 半径为( ) A. 54 B. 43C.32 D.35 二、填空题(每小题3分) 11计算:tan30°= .12. 根据第六次全国人口普查的统计,截止到2010年11月1日零时,我国总人口约为1370000000人,将1370000000用科学记数法表示应为13.某次数学测验6名学生的成绩如下:98,88,90,92,90,94,这组数据的众数为14.有甲乙两个长方体的蓄水池,将甲池中的水以每小时6立方米的速度注入乙池,甲乙两个蓄水池中水的深度y (米)与注水时间x (小时) 之间的函数图像如图所示,若要使甲乙两个蓄水池的蓄水量(指蓄水的体积) 相同,则注水的时间应为 15.如图,点A 在双曲线ky x的第二象限的那一支上,AB 垂 直于y 轴于点B ,点C 在x 轴负半轴上,且OC =2AB ,点E 在线 段AC 上,且AE =2EC ,点D 为OB 的中点,若△ADE 的面积为3, 则k 的值为 __.16、三、解答下列各题(共9小题,共72分) 17.(本题满分6分)解方程:.18. (本题满分6分) 在平面直角坐标系中,直线y=kx+3经过点(﹣2,1),求不等式kx+3﹥0的解集.19. (本题满分6分)已知,如图,AB ∥ED ,点F 、点C 在AD 上,AB=DE,AF=DC. 求证:BC=EF.y 3120.(本题7分)(1)如图,⊿ABC 的三个顶点坐标 分别为A (-1, 1)、B (-2,3)、C (-1,3),(1) 将⊿ABC 沿x 轴正方向平移2个单位得到⊿A 1B 1C 1, 请在网格中画出(2)⊿A 1B 1C 1绕点(0,1)顺时针旋转90°得到⊿A 2B 2C 2,则直线A 2B 2的解析式是 . 21.(本题满分7分) 甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示. 游戏规定,转动两个转盘停止后,指针必须指到某一数字,否则重转。

2018年湖北省武汉市中考数学模拟题含答案(共4套).doc

2018年湖北省武汉市中考数学模拟题含答案(共4套).doc

、-、-2C.-D.-、--12.化简:-b13.在-1、0、、1、2、3中任取两个数,两数相乘结果是无理数的概率是__________2018武汉中考数学模拟题一一、选择题(共10小题,每小题3分,共30分)1.25的平方根为()A.5B.±5C.-5D.±42.如果分式A.x≠0xx-1无意义,那么x的取值范围是()B.x=1C.x≠1D.x=-13.(-a+3)2的计算结果是()A.-a2+9B.-a2-6a+9C.a2-6a+9D.a2+6a+94.在不透明的布袋中,装有大小、形状完全相同的3个黑球、2个红球,从中摸一个球,摸出的是个黑球,这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件5.下列运算结果是a6的是()A.a3·a3B.a3+a3C.a6÷a3D.(-2a2)36.将点A(1,-2)绕原点逆时针旋转90°得到点B,则点B的坐标为()A.(-1,-2)B.(2,1)C.(-2,-1)D.(1,2)7.由6个大小相同的小正方体组合成一个几何体,其俯视图如图所示,其中正方形中的数字表示该位置放置的小正方体的个数,则该几何体的主视图为()8.在我市开展的“好书伴我成长”读书活动中,学校随机调查了九年级50名学生读书的册数统计数据如下表所示,那么这50名学生读书册数的平均数与中位数分别为()册数人数311321631741A.2和3B.3和3C.2和2D.3和29.在如图的4×4的方格中,与△ABC相似的格点三角形(顶点均在格点上)(且不包括△ABC)的个数有()A.23个B.24个C.31个D.32个10.二次函数y=mx2-nx-2过点(1,0),且函数图象的顶点在第三象限.当m+n为整数时,则mn的值为()A.-1322B.-1、34132434、2二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:-7-2=__________1-b+1b+1=__________1314.如图,△ABC中,AB=AC,∠BAC=66°,OD垂直平分线段AB,AO平分∠BAC,将∠C沿EF(点E在BC 上,点F在AC上)折叠,点C与点O恰好重合,则∠OEC=___________=,AD=7,A⎩3x-y=1615.如图,在四边形ABCD中,AC与BD交于点O,∠DAB与∠ACB互补,C=6,AB=8,则BC=___________OD5OB316.如图,C是半径为4的半圆上的任意一点,AB为直径,延长AC至点P使CP=2CA.当点C从B运动到A时,动点P的运动路径长为___________三、解答题(共8题,共72分)⎧x+2y=317.(本题8分)解方程组:⎨18.(本题8分)如图,已知点E、C在线段BF上,BE=CF,AB∥DE,AC∥DF,求证:ABC≌△DEF△19.(本题8分)某校体育组对本校九年级全体同学体育测试情况进行调查,他们随机抽查部分同学体育测试成绩(由高到低分四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图请根据以上不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了__________名同学的体育测试成绩,扇形统计图中B级所占的圆心角是__________(2)补全条形统计图(3)若该校九年级共有200名同学,请估计该校九年级同学体育测试达标(测试成绩C级以上,含C 级)均有名20.(本题8分)某校安排6名教师和300名学生春游,准备租用45座大客车和30座的小客车.若租用1辆大客车和2辆小客车共需租金960元;若租用2辆大客车和1辆小客车共需租金1080元(1)求1辆大客车和1辆小客车的租金各为多少元?(2)若总共租用8辆客车,总费用不超过3080元,问有几种租车方案,最省钱的方案是哪种?21.(本题8分)如图,BC为⊙O的直径,点A为⊙O上一点,点E△为ABC的内心,OE⊥EC(1)若BC=10,求DE的长(2)求sin∠EBO的值22.(本题10分)如图,直线y=2x与函数y k(x>0)的图象交于第一象限的点A,且A点的x横坐标为1,过点A作AB⊥x轴于点B,C为射线BA上一点,作CE⊥AB交双曲线于点E,延长OC 交AE于点F(1)则k=__________(2)作EM∥y轴交直线OA于点M,交OC于点G①求证:AF=FE②比较MG与EG的大小,并证明你的结论(2)若点G在线段EF上,点D在线段BC上,且GF==,α=90°,EB=1,求线段GD的长23.(本题10分)如图,在△ABC△与AFE中,AC=2AB,AF=2AE,∠CAB=∠FAE=α(1)求证:∠ACF=∠ABECD1EF CB3(3)将(2)中改为120°,其它条件不变,请直接写出GDCF的值24.(本题12分)在平面直角坐标系中,抛物线C1:y=ax2+bx-1的最高点为点D(-1,0),将C1左移1个单位,上移1个单位得到抛物线C2,点P为C2的顶点(1)求抛物线C1的解析式(2)若过点D的直线l与抛物线C2只有一个交点,求直线l的解析式(3)直线y=x+c与抛物线C2交于D、B两点,交y轴于点A,连接AP,过点B作BC⊥AP于点C,点Q为C2上PB之间的一个动点,连接PQ交BC于点E,连接BQ并延长交AC于点F,试说明:FC·(AC+E C)为定值2018武汉中考数学模拟题二一、选择题(共10小题,每小题3分,共30分)1.64的算术平方根是()A.8B.-8C.4D.-42.要使分式5x1有意义,则x的取值范围是()A.x≠1B.x>1C.x<1D.x≠-13.下列计算结果为x8的是()A.x9-x B.x2·x4C.x2+x6D.(x2)44.有两个事件,事件A:投一次骰子,向上的一面是3;事件B:篮球队员在罚球线上投篮一次,投中,则()A.只有事件A是随机事件C.事件A和B都是随机事件5.计算(a-3)2的结果是()B.只有事件B是随机事件D.事件A和B都不是随机事件A.a2-4B.a2-2+4C.a2-4a+4D.a2+46.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为()A.(a,b)B.(-a,b)C.(b,-a)D.(-b,a)7.如图是由一些小正方体组合而成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,则这个几何体主视图是()8.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时)人数313.51424.51A.中位数是4,平均数是3.75C.中位数是4,平均数是3.8B.众数是4,平均数是3.75D.众数是2,平均数是3.89.把所有正奇数从小到大排列,并按如下规律分组:(1)(3,5,7)、(9,11,13,15,17),(19,21,23,25,27,29,31),……,现有等式Am=(i,j)表示正奇数m是第i组第j个数(从左往右数),如A7=(2,3),则A89=()A.(6,7)B.(7,8)C.(7,9)D.(6,9)10.二次函数y=2x2-2x+m(0<m<y的取值范围为()A.y<0B.0<y<m12),如果当x=a时,y<0,那么当x=a-1时,函数值C.m<y<m+4D.y>m二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:(-3)+8=___________12.计算:a⎩3x+2y=81+a-1a-1=___________13.不透明的袋子中有6个除了颜色不同其他都一样的球,其中有3个黑球,2个白球,1个红球.拿出两个球,颜色相同的概率是___________14.如图,E是矩形ABCD的对角线的交点,点F在边AE上,且DF=DC.若∠ADF=25°,则∠BEC=__________15.如图,从一张腰为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用次剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为__________16.已知OM⊥ON,斜边长为4的等腰直角△ABC的斜边AC在射线ON上,顶点C与O重合.若点A沿NO方向向O运动,△ABC的顶点C随之沿OM方向运动,点A移动到点O为止,则直角顶点B运动的路径长是__________三、解答题(共8题,共72分)⎧2x-y=317.(本题8分)解方程组:⎨18.(本题8分)已知:如图,点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF,求证:∠B=∠E19.(本题8分)某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好地决策,自来水公司的随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图,(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是___________(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?20.(本题 8 分)荔枝是深圳的特色水果,小明的妈妈先购买了 2 千克桂味和 3 千克糯米糍,共 花费 90 元;后又购买了 1 千克桂味和 2 千克糯米糍,共花费 55 元.(每次两种荔枝的售价都不 变)(1) 求桂味和糯米糍的售价分别是每千克多少元(2) 如果还需购买两种荔枝共 12 千克,要求糯米糍的数量不少于桂味数量的 2 倍,请设计一种 购买方案,使所需总费用最低21.(本题 8 分)如图,直径 AE 平分弦 CD ,交 CD 于点 G ,EF ∥CD ,交 AD 的延长线于 F ,AP ⊥ AC 交 CD 的延长线于点 P (1) 求证:EF 是⊙O 的切线(2) 若 AC =2,PD = 1CD ,求 tan ∠P 的值222.(本题 10 分)已知,直线 l 1:y =-x +n 过点 A (-1,3),双曲线 C : y m x(x >0),过点B (1,2),动直线 l 2:y =kx -2k +2(k <0)恒过定点 F (1) 求直线 l 1,双曲线C 的解析式,定点 F 的坐标(2) 在双曲线 C 上取一点 P (x ,y ),过 P 作 x 轴的平行线交直线 l 1 于 M ,连接 PF ,求证:PF =PM (3) 若动直线 l 2 与双曲线 C 交于 P 1、P 2 两点,连接 OF 交直线 l 1 于点 E ,连接 P 1E 、P 2E ,求证:EF 平分∠P 1EP 223.(本题10分)已知△ABC中,D为AB边上任意一点,DF∥AC交BC于F,AE∥BC,∠CDE =∠ABC=∠ACB=α(1)如图1,当α=60°时,求证:△DCE是等边三角形(2)如图2,当α=45°时,求证:①CD2;②CE⊥DE DE(3)如图3,当α为任意锐角时,请直接写出线段CE与DE的数量关系(用α表示)24.(本题12分)在平面直角坐标系xOy中,抛物线c1:y=ax2-4a+4(a<0)经过第一象限内的定点P(1)直接写出点P的坐标(2)若a=-1,如图1,点M的坐标为(2,0)是x轴上的点,N为抛物线c1上的点,Q为线段MN的中点,设点N在抛物线c1上运动时,Q的运动轨迹为抛物线c2,求抛物线c2的解析式(3)直线y=2x+b与抛物线c1相交于A、B两点,如图2,直线PA、PB与x轴分别交于D、C两点,当PD=PC时,求a的值12.计算:2x2018武汉中考数学模拟题三一、选择题(共10小题,每小题3分,共30分)1.4的值为()A.±22.要使分式1x+3B.2C.-2D.2有意义,则x的取值应满足()A.x≥3B.x<3C.x≠-3D.x≠33.下列计算结果为x6的是()A.x·x6B.(x2)3C.x7-x D.x12÷x24.袋中装有4个红球和2个黄球,这些球的形状、大小、质地完全相同.在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是不可能事件的是()A.摸出的三个球中至少有一个红球C.摸出的三个球都是红球5.计算(a-1)2正确的是()B.摸出的三个球中有两个球是黄球D.摸出的三个球都是黄球A.a2-1B.a2-2a+1C.a2-2a-1D.a2-a+16.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标为()A.(3,1)B.(2,-1)C.(4,1)D.(3,2)7.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图是()8.为调查某班学生每天使用零花钱的情况,童老师随机调查了30名同学,结果如下表:每天使用零花钱(单位:元)人数52105158209256则这30名同学每天使用的零花钱的众数和中位数分别是()A.20、15B.20、17.5C.20、20D.15、159.正方形A1B1C1O、A2B2C2C1、A3B3C3C2、……按如图的方式放置,点A1、A2、A3……和点C1、C2、C3……分别在直线y=x+1和x轴上,则点B6的坐标是()A.(31,16)B.(63,32)C.(15,8)D.(31,32)10.已知关于x的二次函数y=x2-2x-2,当a≤x≤a+2时,函数有最大值1,则a的值为()A.-1或1C.-1或3B.1或-3D.3或-3二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:2-(-4)=___________2-x-1x-1=___________13.学校为了了解九年级学生“一分钟跳绳次数”的情况,随机选取了4名女生和2名男生,⎩3x + 2 y = 1则从这 6 名学生中选取 2 名同时跳绳,恰好选中一男一女的概率是 ___________14.如图,将矩形 ABCD 沿 BD 翻折,点 C 落在 P 点处,连接 AP .若∠ABP =26°,则∠APB = ___________15.已知平行四边形内有一个内角为 60°,且 60°的两边长分别为 3、4.若有一个圆与这个平行 四边形的三边相切,则这个圆的半径为___________16.如图,已知线段 AB =6,C 、D 是 AB 上两点,且 AC =DB =1,P 是线段 CD 上一动点,在 AB 同侧分别作等边△APE 和△PBF ,G 为线段 EF 的中点,点 P 由点 C 移动到点 D 时,G 点移动的路 径长度为___________三、解答题(共 8 题,共 72 分)⎧x - y = 217.(本题 8 分)解方程组: ⎨ 18.(本题 8 分)已知:如图,BD ⊥AC 于点 D ,CE ⊥AB 于点 E ,AD =AE ,求证:BE =CD19.(本题 8 分)某市三景区是人们节假日游玩的热点景区,某学校对九(1)班学生“五一”小长 假随父母到这三个景区游玩的计划做了全面调查.调查分四个类别: A 、游三个景区; B 、游两 个景区;C 、游一个景区; D 、不到这三个景区游玩.现根据调查结果绘制了不完整的条形统计 图和扇形统计图,请结合图中信息解答下列问题:(1) 九(1)班共有学生______人,在扇形统计图中,表示“B 类别”的扇形的圆心角的度数为______ (2) 请将条形统计图补充完整(3) 若该校九年级有 1000 名学生,求计划“五一”小长假随父母到该景区游玩的学生多少名?20.(本题8分)运输360吨化肥,装载了6辆大卡车和3辆小汽车;运输440吨化肥,装载了8辆大卡车和2辆小汽车(1)每辆大卡车与每辆小汽车平均各装多少吨化肥?(2)现在用大卡车和小汽车一共10辆去装化肥,要求运输总量不低于300吨,则最少需要几辆大卡车?21.(本题8分)如图,⊙O△是ABC的外接圆,弧AB=弧AC,AP是⊙O的切线,交BO的延长线于点P(1)求证:AP∥BC(2)若tan∠P=3,求tan∠PAC的值422.(本题10分)如图,一次函数y=kx+b(k≠0)的图象与反比例函数ymx(m≠0)的图象交于A(-3,1)、B(1,n)两点(1)求反比例函数和一次函数的解析式(2)设直线AB与y轴交于点C,若点P在x轴上,使BP=AC,请直接写出点P的坐标(3)点H为反比例函数第二象限内的一点,过点H作y轴的平行线交直线AB于点G.若HG=2,求此时H的坐标(3)若点P是线段AG上一点,连接BP.若∠PBG=1∠BAF,AB=3,AF=2,求(E23.本题10分)如图,射线BD是∠MBN的平分线,点A、C分别是角的两边BM、BN上两点,且AB=BC,是线段BC上一点,线段EC的垂直平分线交射线BD于点F,连接AE交BD于点G,连接AF、EF、FC(1)求证:AF=EF(2)求证:△AGF△∽BAFEG2GP24.(本题12分)如图,抛物线y=ax2-(2a+1)x+b的图象经过(2,-1)和(-2,7)且与直线y=kx-2k-3相交于点P(m,2m-7)(1)求抛物线的解析式(2)求直线y=kx-2k-3与抛物线y=ax2-(2a+1)x+b的对称轴的交点Q的坐标(3)在y轴上是否存在点T△,使PQT的一边中线等于该边的一半?若存在,求出点T的坐标;若不存在,请说明理由2018武汉中考数学模拟题四一、选择题(共10小题,每小题3分,共30分)1.364=()A.4B.±8C.8D.±42.如果分式x没有意义,那么x的取值范围是()x1A.x≠0B.x=0C.x≠-1D.x=-13.下列式子计算结果为2x2的是()A.x+x B.x·2x C.(2x)2D.2x6÷x34.下列事件是随机事件的是()A.从装有2个红球、2个黄球的袋中摸出3个球,至少有一个红球B.通常温度降到0℃以下,纯净的水结冰C.任意画一个三角形,其内角和是360°D.随意翻到一本书的某页,这页的页码是奇数5.运用乘法公式计算(4+x)(x-4)的结果是()A.x2-16B.16-x2C.x2+16D.x2-8x+166.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)以点B为位似中心,在网格内画出△A 1B1C1△,使A1B1C1与△ABC位似,且位似比为2∶1,点C1的坐标是()A.(1,0)B.(1,1)C.(-3,2)D.(0,0)7.如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的左视图是()A.B.C.D.8.统计学校排球队员的年龄,发现有12、13、14、15等四种年龄,统计结果如下表:年龄(岁)12131415人数(个)2468根据表中信息可以判断该排球队员的平均年龄为()A.13B.14C.13.5D.59.观察下列各图中小圆点的摆放规律,并按这样的规律继续摆放下去,则第5个图形中小圆点的个数为()A.50B.51C.48D.522C.m≤2D.m>12.计算:x-1P⎩x-2y=5L L10.已知二次函数y=x2-(m+1)x-5m(m为常数),在-1≤x≤3的范围内至少有一个x的值使y≥2,则m的取值范围是()A.m≤0B.0≤m≤1二、填空题(共6小题,每小题3分,共18分)11.计算:计算7-(-4)=___________1=___________-x-2x-211213.在-2、-1、0、1、2这五个数中任取两数m、n,求二次函数y=(x-m)2+n的顶点在坐标轴上的概率是___________14.为正方形ABCD内部一点,PA=1,PD=2,PC=3,求阴影部分的面积SABCP=______15.如图,将一段抛物线y=x(x-3)(0≤x≤3)记为C1,它与x轴交于点O和点A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C2,交x轴于点A3.若直线y=x+m于C1、C2、C3共有3个不同的交点,则m的取值范围是___________16.如图,在平面直角坐标系第一象限有一半径为5的四分之一⊙O,且⊙O内有一定点A(2,1)、B、D为圆弧上的两个点,且∠BAD=90°,以AB、AD为边作矩形ABCD,则AC的最小值为___________三、解答题(共8小题,共72分,应写出文字说明、证明过程或演算步骤)⎧3x+2y=317.(本题8分)解方程:⎨18.(本题8分)如图,AB∥DE,AC∥DF,点B、E、C、F在一条直线上,求证:△ABC∽△DEF19.(本题8分)某厂签订48000辆自行车的组装合同,这些自行车分为L1、L2、L3三种型号,它们的数量比例及每天能组装各种型号自行车的数量如图所示:若每天组装同一型号自行车的数量相同,根据以上信息,完成下列问题:(1)从上述统计图可知,此厂需组装L1、2、3型自行车的辆数分别是,________辆,________辆,________辆(2)若组装每辆不同型号的自行车获得的利润分别是L1:40元/辆,L2:80元/辆,L3:60元/辆,且a=40,则这个厂每天可获利___________元(3)若组装L1型自行车160辆与组装L3型自行车120辆花的时间相同,求a((m2-1)x y(m+1)2+21是否为一个固定的值?若是,求出其值;若不20.本题8分)为了抓住文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,那么该商店至少要购进A种纪念品多少件?21.(本题8分)如图,⊙O是弦AB、AC、CD相交点P,弦AC、BD的延长线交于E,∠APD =2m°,∠PAC=m°+15°(1)求∠E的度数(2)连AD、BC,若BC=3,求m的值AD22.(本题10分)如图,反比例函数y=为kx与y=mx交于A、B两点.设点A、B的坐标分别A(x1,y1)、B(x2,y2),S=|x1y1|,且(1)求k的值34=s-1s(2)当m变化时,代数式12是,请说理由2x ym+1(3)点C在y轴上,点D的坐标是(-1,32).若将菱形ACOD沿x轴负方向平移m个单位,在平移过程中,若双曲线与菱形的边AD始终有交点,请直接写出m的取值范围②如图2,若AD=,作∠MDN=2α,使点M在AC上,点N在BC的延长线上,完成图G点的直线y=-x+交于点P,C、D两点关于原点对称,DP的延长线交抛物线于点M.当23.(本题10分)如图,△ABC中,CA=CB(1)当点D为AB上一点,∠A=1∠MDN=α2①如图1,若点M、N分别在AC、BC上,AD=BD,问:DM与DN有何数量关系?证明你的结论1BD42,判断DM与DN的数量关系,并证明(2)如图3,当点D为AC上的一点,∠A=∠BDN=α,CN∥AB,CD=2,AD=1,直接写出AB·CN的积24.(本题12分)如图1,直线y=mx+4与x轴交于点A,与y轴交于点C,CE∥x轴交∠CAO的平分线于点E,抛物线y=ax2-5ax+4经过点A、C、E,与x轴交于另一点B(1)求抛物线的解析式(2)点P是线段AB上的一个动点,连CP,作∠CPF=∠CAO,交直线BE于F.设线段PB的长为x,线段BF的长为65y,当P点运动时,求y与x的函数关系式,并写出自变量x的取值范围(3)如图2,点G的坐标为(16,0),过A点的直线y=kx+3k(k<0)交y轴于点N,与过3116k3kk的取值发生变化时,问:tan∠APM的值是否发生变化?若不变,求其值,若变化,请说明理由=22-316.22018武汉中考数学模拟题三答案一、选择题(共10小题,每小题3分,共30分)题号答案1B2C3B4D5B6B7A8B9D10A第10题选A(1)a+a+2<1,即a<0 2当x=a时,y最大=a2-2a-2=1a=-1,a=3(舍去)(2)a+a+2=1,即a=0 2x=a或a+2时,y最大=a2-2a-2=(a+2)2-2(a+2)-2=1无解。

湖北中考数学复习各地区2018-2020年模拟试题分类(武汉专版)(3)——一次函数(含解析)

湖北中考数学复习各地区2018-2020年模拟试题分类(武汉专版)(3)——一次函数(含解析)

湖北中考数学复习各地区2018-2020年模拟试题分类(武汉专版)(3)——一次函数一.选择题(共11小题)1.(2020•洪山区校级模拟)有甲、乙两车从A地出发去B地,甲比乙车早出发,如图中m1、m2分别表示两车离开A地的距离y(km)与行驶时间t(h)之间的函数关系.现有以下四个结论:①m1表示甲车,m2表示乙车;②乙车出发4小时后追上甲车;③两车相距100km的时间只有甲车出发11小时的时候;④若两地相距260km,则乙车先到达B地,其中正确的是()A.①②③④B.②③④C.①②③D.①②④2.(2020•青山区模拟)一个有进水管与出水管的容器,从某时刻开始6min内既出水又进水,在随后的4min内只出水不进水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则7min容器内的水量为()A.35L B.37.5L C.40L D.42.5L3.(2020•江岸区校级模拟)星期天早晨,小广,小雅两人分别从A、B两地同时出发相向跑步而行,途中两人相遇,小广到达B地后立即以另一速度按原路返回,如图是两人离A地的距离y(米)与小雅运动的时间x(分)之间的函数图象,则下列说错误的是()A.小广返回到A地时,小雅还需要8分钟到达A地B.整个运动过程中,他们遇见了2次C.A、B两地相距3000米D.小广去时的速度小于返回时的速度4.(2020•硚口区模拟)甲,乙两车从A出发前往B城,在整个行程中,甲、乙两车离开A城的距离y与时t的对应关系如图所示,则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③甲车的平均速度比乙车的平均速度每小时慢40千米;④当甲、乙两车相距20千米时,t=7或8.其中正的结论个数为()A.1个B.2个C.3个D.4个5.(2020•汉阳区校级模拟)如图是甲、乙两人追赶过程中路程和时间函数关系的图象,下列关于图象的叙述正确的个数是()(1)甲追乙;(2)甲的速度是4km/h;(3)乙出发5h与甲相遇;(4)乙共走20km.A.1个B.2个C.3个D.4个6.(2020•汉阳区模拟)在同一条道路上,甲车从A地到B地,乙车从B地到A地,两车同时出发,乙车先到达目的地,图中的折线段表示甲,乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.甲乙两车出发2小时后相遇B.甲车速度是40千米/小时C.乙车到A地比甲车到B地早小时D.当甲乙两车相距100千米时,x的值一定为17.(2018•武昌区模拟)如图,直线l:yx,过点A(1,0)作x轴的垂线交直线l于点B,过点B作直线l 的垂线交x轴于点A1,过点A1作x轴的垂线交直线l于点B1,过点B1作直线l的垂线交x轴于点A2,…,按此作法继续下去,则点B2018的坐标为()A.(22018,22018)B.(22018,121009)C.(42018,42018)D.(42018,481009)8.(2018•武汉模拟)平面直角坐标系中,直线y=﹣x+n(n为正整数)与y轴、x轴交于A、B两点.我们把横坐标、纵坐标都为整数的点叫做整点,且规定在△ABO的三边上及内部的整点为有效整点.当n =1时,图1中的有效整点共有3个;当n=2时,图2中的有效整点共有6个;当n=3时,图3中的有效整点共有10个;…,图n中的有效整点共有190个,则n=()A.16 B.17 C.18 D.199.(2018•硚口区模拟)如图,直线AB:yx+9交y轴于A,交x轴于B,x轴上一点C(﹣1,0),D为y 轴上一动点,把线段BD绕B点逆时针旋转120°得到线段BE,连接CE,CD,则当CE长度最小时,线段CD的长为()A.B.C.2 D.510.(2018•武汉模拟)正方形A1B1C1O、A2B2C2C1、A3B3C3C2,…按如图的方式放置,A1、A2、A3、…和点C1、C2、C3,…分别在直线y=x+1和x轴上,则点B6的坐标是()A.(63,32)B.(64,32)C.(32,16)D.(128,64)11.(2018•武汉模拟)如图,直线y=x+1交x轴、y轴分别于P、A两点,直线y=2x+2交y轴于B点,过B作x轴的平行线交直线PA于A1,过A1作y轴的平行线交直线PB于B1,过B1作x轴的平行线交直线PA于A2,…如此反复,则A6的坐标为()A.(63,64)B.(65,64)C.(31,32)D.(127,128)二.填空题(共5小题)12.(2020•武汉模拟)平面直角坐标系中,点P是一动点,点A(6,0)绕点P顺时针旋转90°到点B处,点B恰好落在直线y=﹣2x上.当线段AP最短时,点P的坐标为.13.(2020•武汉模拟)已知直线y=2x﹣1与直线y=﹣x+2,若直线x=a与两直线相交于M、N两点,且MN<1,则a的范围为.14.(2018•武昌区模拟)已知直线l:yx+2交x轴于A点,交y轴于B点,C为AB的中点,D为射线OA 上一点,连BD,将BD绕D点顺时针旋转90°得线段DE,则CE的最小值为.15.(2018•江岸区校级四模)若点A(m,y1)、点B(m﹣1,y2)是函数y=2|x|+3图象上的两点,当y1>y2时,m的取值范围是.16.(2018•柯桥区模拟)甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x=2或6时,甲乙两队所挖管道长度都相差100米.正确的有.(在横线上填写正确的序号)三.解答题(共22小题)17.(2020•洪山区校级模拟)某公司组织30辆汽车装运A、B、C三种产品共125吨到外地销售,规定每辆汽车只装运一种产品,且必须装满;装运每种产品的汽车不少于4辆;同时装运的B种产品的重量不超过装运的A、C两种产品重量和.(1)设用x辆汽车装运A种产品,用y辆汽车装运B种产品,根据下表提供的信息,求y与x之间的函数关系式并写出自变量的x取值范围.产品品种A B C每辆汽车装运量(吨) 5 4 3每吨产品获利(万元)0.6 0.7 0.8(2)设此次外销活动的利润为Q(万元),求Q与x之间的函数关系式,并求出怎样装运才能获得最大利润.(3)由于市场行情的变化,将A、C两种产品每吨售价提高a万元(0.01≤a≤0.03),其他条件不变,求销售这批产品获得最大利润的方案.18.(2020•武汉模拟)A城有肥料200t,B城有肥料300t.现要把这些肥料全部运往C、D两乡,C乡需要肥料240t,D乡需要肥料260t,其运往C、D两乡的运费如表:设从A城运往C乡的肥料为xt,从A城运往两乡的总运费为y1元,从B城运往两乡的总运费为y2元.(1)分别写出y1、y2与x之间的函数关系式(不要求写自变量的取值范围);(2)试比较A、B两城总运费的大小;(3)若B城的总运费不得超过4800元,怎样调运使两城总费用的和最少?并求出最小值.19.(2020•江岸区校级模拟)若直线AB:y=kx+3向右平移3个单位经过(1,2),求k值.20.(2020•武汉模拟)某年五月,我国南方某省A、B两市遭受严重洪涝灾害,邻近县市C、D决定调运物资支援A、B两市灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市,A市需要的物资比B市需要的物资少100吨.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用分别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)A、B两市各需救灾物资多少吨?(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.21.(2020•硚口区二模)某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A型利润B型利润甲店200 170乙店160 150设分配给甲店A型产品x件,公司卖出这100件产品的总利润为w,(1)请你求出w与x的函数关系式;(2)请你帮公司设计一种产品分配方案使总利润最大,最大的总利润是多少元?(3)为了促销,公司决定只对甲店A型产品让利a元/件,但让利后仍高于甲店B型产品的每件利润,请问x为何值时,总利润达最大?22.(2019•武汉模拟)王老板经营甲、乙两个服装店铺,每个店铺各在同一段时间内都能售出A、B两种款式的服装合计30件且甲店售1件A款和2件B款可获得110元,售2件A和1件B可获得100元,乙店每售出一件A款获得27元,1件B款获利36元,(1)问在甲店售出1件A和1件B分别获利多少元?(2)某日王老板进了A款式的服装35件,B款式的服装25件,如果分配给甲店的A款式的服装x件,①求王老板获取的利润y(元)与x(件)之间的函数关系式,并写出x的取值范围;②由于甲、乙两个店铺所处的地段原因,王老板想在保证乙店利润不小于950元的前提下,使得自己获取的利润最大,请你帮王老板设计一种最佳分配方案,并求最大的总利润是多少?23.(2019•江岸区校级模拟)某市某乡A、B两村盛产柑橘,A村有柑橘200吨,B村有柑橘300吨.现将这些柑橘运到C、D两个仓库,已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C、D两处的费用分别为每吨20元和25元;从B村运往C、D两处的费用分别为每吨15元和35元,设从B村运往D仓库的柑橘重量为x吨.(1)请填写如表:A B总计(吨)C①②240D③x260总计(吨)200 300 500(2)设总运费为y元,求y与x之间的函数关系式,并写出自变量的取值范围;(3)由于从B村到D仓库的路况得到了改善,缩短了运输时间,运费每吨减少a元(a>0),其余路线运费不变.若到C、D两仓库总运费的最小值不小于10160元,求a的取值范围.24.(2019•青山区模拟)某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买A、B两种商品共30件,要求购买B商品的数量不高于A商品数量的2倍,且该商店购买的A、B两种商品的总费用不超过276元,那么该商店有几种购买方案?(3)若购买A种商品m件,实际购买时A种商品下降了a(a>0)元,B种商品上涨了3a元,在(2)的条件下,此时购买这两种商品所需的最少费用为1076元,求m的值.25.(2019•江汉区二模)某客商准备采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该客商购进A,B型商品共250件进行试销,其中A型品的件数不大于B型商品的件数,且不小于80件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出,设购进A型商品m件,求该客商销售这批商品的利润y与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元(0<a<80),若该客商售完所有商品并捐献资金后获得的最大收益是17100元,求的a 值.26.(2019•汉阳区模拟)九一班计划购买A、B两种相册共42册作为毕业礼品,这两种相册的单价分别是50元和40元,由于学生对两类相册喜好不同,经调查得知:购买的A种相册的数量要少于B种相册数量的,但又不少于B种相册数量的,如果设买A种相册x册,买这两种相册共花费y元.(1)求计划购买这两种相册所需的费用y(元)关于x(册)的函数关系式.(2)班委会多少种不同的购买方案?(3)商店为了促销,决定对A种相册每册让利a元销售(12≤a≤18),B种相册每册让利b元销售,最后班委会同学在付款时发现:购买所需的总费用与购买的方案无关,当总费用最少时,求此时a的值.27.(2019•武昌区模拟)某水果零售商店,通过对市场行情的调查,了解到两种水果销路比较好,一种是冰糖橙,一种是睡美人西瓜.通过两次订货购进情况分析发现,买40箱冰糖橙和15箱睡美人西瓜花去2000元,买20箱冰糖橙和30箱睡美人西瓜花去1900元.(1)请求出购进这两种水果每箱的价格是多少元?(2)该水果零售商在五一期间共购进了这两种水果200箱,冰糖橙每箱以40元价格出售,西瓜以每箱50元的价格出售,获得的利润为w元.设购进的冰糖橙箱数为a箱,求w关于a的函数关系式;(3)在条件(2)的销售情况下,但是每种水果进货箱数不少于30箱,西瓜的箱数不少于冰糖橙箱数的5倍,请你设计进货方案,并计算出该水果零售商店能获得的最大利润是多少?28.(2019•武汉模拟)某公司计划购买A、B两种计算器共100个,要求A种计算器数量不低于B种的,且不高于B种的.已知A、B两种计算器的单价分别是150元/个、100元/个,设购买A种计算器x个.(1)求计划购买这两种计算器所需费用y(元)与x的函数关系式;(2)问该公司按计划购买者两种计算器有多少种方案?(3)由于市场行情波动,实际购买时,A种计算器单价下调了3m(m>0)元/个,同时B种计算器单价上调了2m元/个,此时购买这两种计算器所需最少费用为12150元,求m的值.29.(2019•江汉区模拟)某省A,B两市遭受严重洪涝灾害,2万人被迫转移,邻近县市C,D获知A,B 两市分别急需救灾物资250吨和350吨的消息后,决定调运物资支援灾区,已知C市有救灾物资280吨,D市有救灾物资320吨,现将这些救灾物资全部调往A,B两市.已知从C市运往A,B两市的费用分别为每吨20元和25元,从D市运往A,B两市的费用分别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)请填写下表.A市(吨)B市(吨)合计(吨)C市280D市x320总计(吨)250 350 600(2)设C,D两市的总运费为y元,求y与x之间的函数表达式,并写出自变量x的取值范围.(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少a元(a>0),其余路线运费不变.若C,D两市的总运费的最小值不小于12360元,求a的取值范围.30.(2019•武汉模拟)某华为手机专卖店销售5台甲型手机和8台乙型手机的利润为1600元,销售15台甲型手机和6台乙型手机的利润为3000元.(1)求每台甲型手机和乙型手机的利润;(2)专卖店计划购进两种型号的华为手机共120台,其中乙型手机的进货量不低于甲型手机的2倍.设购进甲型手机x台,这120台手机全部销售的销售总利润为y元.①直接写出y关于x的函数关系式,x的取值范围是.②该商店如何进货才能使销售总利润最大?说明原因.(3)专卖店预算员按照(2)中的方案准备进货,同时专卖店对甲型手机销售价格下调a元,结果预算员发现无论按照哪种进货方案最后销售总利润不变.请你判断有这种可能性吗?如果有,求出a的值;如果没有,说明理由.31.(2018•武昌区模拟)“爱心”帐篷集团的总厂和分厂分别位于甲、乙两市,两厂原来每周生产帐篷共9千顶.现某地震灾区急需帐篷14千顶,该集团决定在一周内赶制出这批帐篷.为此,全体职工加班加点,总厂和分厂一周内制作的帐篷数分别达到了原来的1.6倍、1.5倍,恰好按时完成了这项任务.(1)在赶制帐篷的一周内,总厂和分厂各生产帐篷多少千顶?(2)现要将这些帐篷用卡车一次性运送到该地震灾区的A、B两地,由于两市通住A、B两地道路的路况不同,卡车的运载量也不同.已知运送帐篷每千顶所需的车辆数、两地所急需的帐篷数如表:请设计一种运送方案,使所需的车辆总数最少.说明理由,并求出最少车辆总数.A地B地所需车辆数甲市 4 7乙市 3 5 所急需帐篷数(单位:千顶)9 5 32.(2018•武汉模拟)某水果店计划购进A、B两种水果,若购进100千克A种水果50千克B种水果,需要900元,若购进70千克A种水果80千克B种水果,需要990元,该水果店A种水果的售价为8元/千克,B种水果的售价为10元/千克,(1)求A、B两种水果的购进成本各是多少元/千克?(2)该水果店预备用1400元采购A、B两种水果,且B水果的数量不得少于A水果数量的求销售A、B 两种水果的最大利润是多少元?33.(2018•武昌区模拟)某移动通讯公司开设了两种通讯业务:“方式A”使用者先缴50元月基础费,然后每通话1分钟,再付电话费0.4元;“方式B”不缴月基础费,每通话1分钟,付话费0.6元(这里均指市内通话).若一个月内通话x分钟,两种通讯方式的费用分别为y1元和y2元.(1)写出y1、y2与x之间的函数关系式;(2)一个月内通话多少分钟,两种通讯方式的费用相同?(3)如果小童一个月的通话时间不超过150分钟,小郑一个月的通话时间不低于300分钟,请你分别为他们选一种便宜的通讯方式.34.(2018•青山区模拟)“六一”期间,小张购述100只两种型号的文具进行销售,其中A种型号的文具进价为10元/只,售价为12元,B种型号的文具进价为15元1只,售价为23元/只.(1)小张如何进货,使进货款恰好为1300元?(2)如果购进A型文具的数量不少于B型文具数量的倍,且要使销售文具所获利润不低于500元,则小张共有几种不同的购买方案?哪一种购买方案使销售文具所获利润最大?35.(2018•江汉区模拟)某文具店在一段时间销售了A、B两种文具共100件.若销售A种文具8件,B 种文具3件,获利100元;若销售A种文具5件,B种文具6件,获利112元.(1)求A、B两种文具每件各获利多少元?(2)若要求销售完100件文具,至少获利1081元,问:A文具至多销售多少件?(3)为减少库存,文具店决定降价销售A、B两种文具,其中A种文具每件降价a元,B种文具每件降价2a元(a≥1),文具店通过销售记录发现:销售利润随A文具销售量的增大而减小,直接写出a的取值范围.36.(2018•硚口区模拟)五一假期某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,每辆42座比每辆60座客车租金便宜140元,租3辆42座和2辆60座客车租金共计1880元(1)求两种车租金每辆各多少元?(2)若学校同时租用这两种客车8辆(可以坐不满),总租金不超过3200元,有几种租车方案?请选择最节省的租车方案.37.(2018•武汉模拟)为了抓住文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A 种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,那么该商店至少要购进A种纪念品多少件?38.(2018•江岸区模拟)下表给出的是两种移动电话的计费方式:月使用费/元主叫限定时主叫超时费/(元被叫间/min/min)方式一58 150 0.25 免费方式二88 350 0.19 免费(注:月使用费固定收;主叫不超限定时间不再收费,主叫超时部分加收超时费;被叫免费)(1)设一个月内移动用移动电话主叫为xmin,方式一的费用为y1元,方式二的费用为y2元,求出y1与x,y2与x之间的函数解析式,并写出自变量x的取值范围;(2)在同一个坐标系内画出y1,y2的图象,并结合函数图象与解析式,选择最省钱的计费方式;(3)若某用户选择的方式二,在某月中平均每分钟的话费为0.44元,求该用户这个月的主叫时间?湖北中考数学复习各地区2018-2020年模拟试题分类(武汉专版)(3)——一次函数参考答案与试题解析一.选择题(共11小题)1.【答案】D【解答】解:由题意可得,m1表示甲车,m2表示乙车,故①正确;甲的速度为160÷4=40(km/h),乙车的速度为120÷(4﹣2)=60(km/h),设乙车出发a小时后追上甲车,60a=40(a+2),解得,a=4,即乙车出发4小时后追上甲车,故②正确;当t=2时,甲乙两车相距40×2=80(km),故两车相距100km的时间只有在两车相遇之后,设甲车出发b小时时,两车相距100km,60(b﹣2)﹣40b=100,解得,b=11,即两车相距100km的时间只有甲车出发11小时的时候,而如果甲车出发不到11小时乙就到达B地,则此小题的说法错误,故③错误;260÷40=6.5(小时),260÷60=4(小时),∵6.5>42,∴若两地相距260km,则乙车先到达B地,故④正确;故选:D.2.【答案】B【解答】解:当6≤x≤10时,设y与x的函数关系式为y=kx+b,∵点(6,50),(10,0)在此函数图象上,∴,解得,,即当6≤x≤10时,y与x的函数关系式为y=﹣12.5x+125,当x=7时,y=﹣12.5×7+125=37.5,即7min容器内的水量为37.5L,故选:B.3.【答案】A【解答】解:根据题意得,小广从A地到B地的速度为:3000÷30=100(米/分),小雅的速度为:(3000﹣100×20)÷20=50(米/分),小广返回的速度为:45×50÷(45﹣30)=150(米/分),小广到达A地时,小雅到达A地还需要的时间为:3000÷50﹣3000÷150﹣30=10(分钟).故选项A符合题意;由图象可知,整个运动过程中,他们遇见了2次,故选项B不合题意;由图象可知,A、B两地相距3000米,故选项C不合题意;由直线的陡与缓可知小广去时的速度小于返回时的速度,故选项D不合题意.故选:A.4.【答案】C【解答】解:①由题可得,A,B两城相距300千米,故①正确;②由图可得,乙车比甲车晚出发1小时,却早到1小时,故②正确;③甲车的平均速度为300÷(10﹣5)=60(km/h),乙车的平均速度为300÷(9﹣6)=100(km/h),所以甲车的平均速度比乙车的平均速度每小时慢40千米故③正确;④相遇前:60(t﹣5)﹣100(t﹣6)=20,解得t=7;相遇后:100(t﹣6)﹣60(t﹣5)=20,解得t=8.当乙到底B城后,5+(300﹣20)÷60;即当甲、乙两车相距20千米时,t=7或8或.故④错误.即正的结论个数为3个.故选:C.5.【答案】B【解答】解:由图象可知,甲出发后开始计时,计时后2小时乙出发,所以乙追赶甲,故(1)说法错误;20÷5=4(4km/h),即甲的速度是4km/h;故(2)说法正确;乙出发3h与甲相遇;故(3)说法错误;乙共走20km;故(4)说法正确.∴正确的说法有(2)(4)共2个.故选:B.6.【答案】D【解答】解:出发2h后,其距离为零,即两车相遇,故选项A说法正确;甲的速度是40(km/h),故选项B说法正确;乙的速度为:60(km/h),乙行驶的时间为(h),乙车到A地比甲车到B地早:(h),故选项C说法正确;设出发x小时后,甲乙两车相距100千米,则(40+60)x=200﹣100或(40+60)x=200+100,解得x=1或x=3,故选项D说法错误.故选:D.7.【答案】C【解答】解:∵直线l:yx,A(1,0),AB⊥x轴,∴AB,即∠ABO=30°,又∵A1B⊥OB,∴∠BA1O=30°,∴AA1AB=3,OA1=1+3=4,又∵A1B1⊥x轴,∴A1B1=4,同理可得,A1A2=12,OA2=4+12=16=42,∴A2B2=16,同理可得,A2A3=48,OA3=16+48=64=43,∴A3B3=64,……由此可得,OA2018=42018,A2018B32018=42018,∴点B2018的坐标为(42018,42018),故选:C.8.【答案】C【解答】解:n=1时,图1中的有效整点共有3个,3=1+2,当n=2时,图2中的有效整点共有6个,6=1+2+3当n=3时,图3中的有效整点共有10个,10=1+2+3+4…,图n中的有效整点共有1+2+…+(n+1),由题意:190,整理得:n2+3n﹣378=0,解得n=18或﹣21(舍弃),故选:C.9.【答案】C【解答】解:如图,设D(0,m).由题意:B(5,0).在BD的下方作等边三角形△BDQ,延长DQ到M,使得QM=DQ,连接BM,DE,DE交BQ于点N,作MH⊥x轴于H.∵△BDQ是等边三角形,∴∠DQB=∠DBQ=60°,∵QM=BQ,∴∠QMB=∠QBM,∵∠DQB=∠QMB+∠BQM,∴∠QMB=∠QBM=30°,∴∠DBM=90°,∴BMBD,∵∠DBO+∠ODB=90°,∠DBO+∠MBH=90°,∴∠MBH=∠BDO,∵∠DOB=∠MHB=90°,∴△DOB∽△BHM,∴,∵OD=m,OB=5,∴BHm,MH=5,∴M(5m,﹣5),∵MQ=DQ,∴Q(,),∵∠DBE=120°,∴∠DBN=∠EBN=60°,∴DE⊥BQ,DN=NE,QN=BN,∴N(,),E(,),∴CE2=()2+()2=m2﹣6m+91,∴当m3时,CE的值最小,此时D(0,3),∴CD2,方法二:如图,将线段OB绕点B逆时针旋转120°得到线段BP,直线BP交x轴于G,作OM⊥PE于M.易证△BOD≌△BPE,BG=2BP=10,∴点E的运动轨迹是直线PE,当点E与M重合时,OE的值最小,此时PM=OD=3,∴CD2.故选:C.10.【答案】A【解答】解:∵OC1=OA1=B1C1=A1B1=1,∴B1(1,1),∵A2在直线y=x+1上,∴A2(1,2),∴C1C2=B2C2=2∴B2(3,2),同理可得B3(7,4),B4(15,8)…所以B n(2n﹣1,2n﹣1),所以B6的坐标为(63,32);故选:A.11.【答案】A【解答】解:由题意不难分析A1的横坐标为1,A2的横坐标为1+2,A3的横坐标为1+2+4,A4的横坐标为1+2+4+8,A5的横坐标为1+2+4+8+16,A6的横坐标为1+2+4+8+16+32=63,∵点A6在直线y=x+1上,∴点A6的纵坐标为64,∴点A6(63,64).故选:A.二.填空题(共5小题)12.【答案】(,)【解答】解:如图,过点P作x轴的平行线GH,过A作AH⊥GH于点H,过B作BG⊥GH于G,则∠H=∠G=90°,由旋转可得,BP=PA,∠APB=90°,∴∠GPB+∠APH=90°=∠GPB+∠PBG,∴∠APH=∠PBG,∴△PGB≌△AHP(AAS),设B(m,﹣2m),P(a,b),由题可得PG=AH,BG=PH,即a﹣m=b,b+2m=6﹣a,联立解得:a,b,即P(,),∴PA2=(6)2+()2(5m2﹣12m+36)(m)2,∴当m时,PA最小,此时P(,).故答案为:(,).13.【答案】见试题解答内容【解答】解:令x=a分别代入y=2x﹣1,y=﹣x+2∴M、N的坐标分别为(a,2a﹣1),(a,﹣a+2)∴MN=|2a﹣1﹣(﹣a+2)|=|3a﹣3|∵MN<1,∴|3a﹣3|<1∴﹣1<3a﹣3<1,∴a故答案为:a14.【答案】见试题解答内容【解答】解:如图,作EF⊥x轴于F,则易得△DOB≌△EFD,设OD=x,∴OD=EF=x,DF=OB=2,∴E(x+2,x),∴E在直线l1:y=x﹣2上,如图,作CT⊥x轴于T,则CT=1,OT=2,即T(2,0),∴直线l1过T点,如图,作CG⊥l1于G,则易得△CTG是等腰直角三角形,∴CGCT,∴当点E与点G重合时,CE的最小值为CG长,∴CE的最小值为,故答案为:.15.【答案】见试题解答内容【解答】解:将A(m,y1)、点B(m﹣1,y2)代入y=2|x|+3∴y1=2|m|+3,y2=2|m﹣1|+3,∵y1>y2∴2|m|+3>2|m﹣1|+3∴|m|>|m﹣1|∴m2>(m﹣1)2∴m2>m2﹣2m+1解得:m故答案为:m16.【答案】见试题解答内容【解答】解:①根据函数图象得:甲队的工作效率为:600÷6=100米/天,故正确;②根据函数图象,得乙队开挖两天后的工作效率为:(500﹣300)÷(6﹣2)=50米/天,故正确;③乙队完成任务的时间为:2+(600﹣300)÷50=8天,∴甲队提前的时间为:8﹣6=2天.∵2≠3,∴③错误;④当x=2时,甲队完成的工作量为:2×100=200米,乙队完成的工作量为:300米.当x=6时,甲队完成的工作量为600米,乙队完成的工作量为500米.∵300﹣200=600﹣500=100,∴当x=2或6时,甲乙两队所挖管道长度都相差100米.故正确.故答案为:①②④.三.解答题(共22小题)17.【答案】(1)y=35﹣2x(15≥x≥10);(2)装运A、B、C货物的车辆分别为10台、15台、5台时,可以获得最大利润84万元;(3)当装运车辆数量不变时,每吨售价提高0.03万元时,获得的最大利润为86.15万元.【解答】解:(1)由题意得,化简得,即y与x之间的函数关系式为y=35﹣2x(15≥x≥10);(2)由题意得:Q=5×0.5x+4•0.7y+3×0.8(30﹣x﹣y)=86﹣0.2x,当x=10(台)时,Q最大,此时Q的最大值为84(万元);即装运A、B、C货物的车辆分别为10台、15台、5台时,可以获得最大利润84万元;(3)设此时外销活动的利润为Q′(万元),由题意得:Q′=5x(0.6+a)+4×0.7y+3×(30﹣x﹣y)(0.8+a)=86﹣0.2x+8ax﹣15a(15≥x≥10),当a=0.01时,Q′=86﹣0.2x+8ax﹣15a=85.85﹣0.12x﹣0.15,当x=10时,Q′取得最大值为84.5;当a=0.03时,Q′=86﹣0.2x+8ax﹣15a=86+0.02x﹣0.45,当x=15时,Q′取得最大值为86.15;∵86.15>84.5,∴当a取得最大值即a=0.03(万元)时,Q′最大,最大值为86.15(万元),当装运车辆数量不变时,每吨售价提高0.03万元时,获得的最大利润为86.15万元.18.【答案】见试题解答内容【解答】解:(1)根据题意得:y1=20x+24(200﹣x)=4800﹣4x,y2=15(240﹣x)+17(300﹣240+x)=2x+4620.(2)由4800﹣4x<2x+4620,解得x>30,当0≤x<30时,y1>y2,B城的总运费较少;当x=30时,y1=y2,两城的总运费相等;当30<x≤200时,y1<y2,A城的总运费较少.(3)由y2≤4800得2x+4620≤4800,解得x≤90,设两城总费用为y,则y=y1+y2=﹣2x+9420,∵k=﹣2<0,∴y随x的增大而减小,∴当x=90时,y有最小值9240.答:当从A城调往C乡肥料90t,调往D乡肥料110t,从B城调往C乡肥料150t,调往D乡肥料150t,两城总费用的和最少,最小值为9240元.19.【答案】见试题解答内容【解答】解:将直线AB:y=kx+3向右平移3个单位得到的新直线的解析式为y=k(x﹣3)+3.∵直线y=k(x﹣3)+3经过(1,2),∴2=﹣2k+3,∴k.20.【答案】见试题解答内容【解答】解:(1)设A市需救灾物资a吨,a+a+100=260+240解得,a=200,则a+100=300,答:A市需救灾物资200吨,B市需救灾物资300吨;(2)由题意可得,w=20[200﹣(260﹣x)]+25(300﹣x)+15(260﹣x)+30x=10x+10200,∵260﹣x≤200且x≤260,∴60≤x≤260,即w与x的函数关系式为w=10x+10200(60≤x≤260);(3)∵经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m>0),。

2018年武汉市九年级中考数学真题模拟卷及答案解析

2018年武汉市九年级中考数学真题模拟卷及答案解析

九年级中考数学模拟试卷(120分卷)一、选择题(本大题共10小题,每题3分,共30分)1.9的平方根为()A.3 B.﹣3 C.±3 D.2.若分式有意义,则x的取值范围是()A.x≠1 B.x=2 C.x≠2 D.x>23.下列式子计算结果为x2﹣4的是()A.(x+1)(x﹣4)B.(x+2)(x﹣2)C.(x+2)(2﹣x)D.(x﹣2)2 4.小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件是随机事件的是()A.掷一次骰子,在骰子向上的一面上的点数大于0B.掷一次骰子,在骰子向上的一面上的点数为7C.掷三次骰子,在骰子向上的一面上的点数之和刚好为18D.掷两次骰子,在骰子向上的一面上的点数之积刚好是115.下列运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6 C.a4÷a2=2a D.(a+b)2=a2+ab+b26.在平面直角坐标系中,点A(﹣1,5),将点A向右平移2个单位、再向下平移3个单位得到点A1;再将线段OA1绕原点O顺时针旋转90°得到OA2.则A2的坐标为()A.(﹣1,2)B.(2,1) C.(2,﹣1)D.(3,﹣1)7.图中三视图对应的正三棱柱是()A.B.C.D.8.为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如29.在平面直角坐标系中,点A、B的坐标分别为(﹣3,0)、(3,0),点P在反比例函数y=的图象上.若△PAB为直角三角形,则满足条件的点P的个数为()A.2个 B.4个 C.5个 D.6个10.如果函数y=2x2﹣3ax+1,在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为﹣23,则a的值为()A.B.C.或D.二、填空题(本大题共6小题,每题3分,共18分)11.计算式子﹣2﹣(+3)的结果为.12.计算﹣的结果是.13.袋中有三个小球,分别为1个红球和2个黄球,它们除颜色外完全相同.随机取出一个小球然后放回,再随机取出一个小球,则两次取出的小球颜色不相同的概率为.14.如图,把一张长方形纸条ABCD沿EF折叠,若∠1=50°,则∠AEG=.15.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,取BC的中点P.当点B从点O向x轴正半轴移动到点M(2,0)时,则点P移动的路线长为.16.定义函数f(x),当x≤3时,f(x)=x2﹣2x,当x>3时,f(x)=x2﹣10x+24,若方程f(x)=2x+m有且只有两个实数解,则m的取值范围为.三、解答题(本大题共8小题,共72分)17.解方程:5x﹣1=3(x﹣1)18.如图,AC和BD相交于点O,OA=OC,OB=OD,求证:AB∥CD.19.为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数(3)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?20.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元(1)A商品的单价是元,B商品的单价是元(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,设购买A商品的件数为x件,该商店购买的A、B两种商品的总费用为y元①求y与x的函数关系式②如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,求购买B商品最多有多少件?21.如图,⊙O与直线l相离,OA⊥l于点A,OA交⊙O于点C,过点A作⊙O 的切线AB,切点为B,连接BC交直线l于点D(1)求证:AB=AD;(2)若tan∠OCB=2,⊙O的半径为3,求BD的长.22.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3(1)求反比例函数y=的解析式;(2)若直线y=﹣x+m与反比例函数y=(x>0)的图象相交于两个不同点E、F(点E在点F的左边),与y轴相交于点M①则m的取值范围为(请直接写出结果)②求ME•MF的值.23.已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一个动点,过C作CE垂直于BD的延长线,垂足为E,如图1(1)求证:AD•CD=BD•DE;(2)若BD是边AC的中线,如图2,求的值;(3)如图3,连接AE.若AE=EC,求的值.24.如图,抛物线y=x2+x﹣(k>0)与x轴交于点A、B,点A在点B的右边,与y轴交于点C(1)如图1,若∠ACB=90°①求k的值;②点P为x轴上方抛物线上一点,且点P到直线BC的距离为,则点P的坐标为(请直接写出结果)(2)如图2,当k=2时,过原点O的任一直线y=mx(m≠0)交抛物线于点E、F(点E在点F的左边)①若OF=2OE,求直线y=mx的解析式;②求+的值.2018年湖北省武汉市中考数学预测试卷参考答案与试题解析一、选择题(本大题共10小题,每题3分,共30分)1.9的平方根为()A.3 B.﹣3 C.±3 D.【考点】21:平方根.【分析】根据平方根的定义求解即可,注意一个正数的平方根有两个.【解答】解:9的平方根有:=±3.故选C.2.若分式有意义,则x的取值范围是()A.x≠1 B.x=2 C.x≠2 D.x>2【考点】62:分式有意义的条件.【分析】根据分母不等于0列式计算即可得解.【解答】解:根据题意得,x﹣2≠0,解得x≠2.故选:C.3.下列式子计算结果为x2﹣4的是()A.(x+1)(x﹣4)B.(x+2)(x﹣2)C.(x+2)(2﹣x)D.(x﹣2)2【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=x2﹣3x﹣4,不符合题意;B、原式=x2﹣4,符合题意;C、原式=4﹣x2,不符合题意;D、原式=x2﹣4x+4,不符合题意,故选B4.小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件是随机事件的是()A.掷一次骰子,在骰子向上的一面上的点数大于0B.掷一次骰子,在骰子向上的一面上的点数为7C.掷三次骰子,在骰子向上的一面上的点数之和刚好为18D.掷两次骰子,在骰子向上的一面上的点数之积刚好是11【考点】X1:随机事件.【分析】根据必然事件、不可能事件、随机事件的概念以及事件发生的可能性大小判断即可.【解答】解:掷一次骰子,在骰子向上的一面上的点数大于0是必然事件;掷一次骰子,在骰子向上的一面上的点数为7是不可能事件;掷三次骰子,在骰子向上的一面上的点数之和刚好为18是随机事件;掷两次骰子,在骰子向上的一面上的点数之积刚好是11是不可能事件,故选:C.5.下列运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b2【考点】4I:整式的混合运算.【分析】分别利用积的乘方运算法则以及同底数幂的除法运算法则、完全平方公式、单项式乘以单项式运算法则化简求出答案.【解答】解:A、2a•3a=6a2,故此选项错误;B、(3a2)3=27a6,正确;C、a4÷a2=a2,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选:B.6.在平面直角坐标系中,点A(﹣1,5),将点A向右平移2个单位、再向下平移3个单位得到点A1;再将线段OA1绕原点O顺时针旋转90°得到OA2.则A2的坐标为()A.(﹣1,2)B.(2,1) C.(2,﹣1)D.(3,﹣1)【考点】R7:坐标与图形变化﹣旋转;Q3:坐标与图形变化﹣平移.【分析】根据平移、中心旋转的定义画出图形,即可解决问题.【解答】解:如图所示,点A向右平移两个单位再向下平移3个单位得A1(1,2),再将线段OA1绕原点O顺时针旋转90°得到OA2,A2坐标(2,﹣1).故选C.7.图中三视图对应的正三棱柱是()A.B.C.D.【考点】U3:由三视图判断几何体.【分析】利用俯视图可淘汰C、D选项,根据主视图的侧棱为实线可淘汰B,从而判断A选项正确.【解答】解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确.故选A.8.为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如2【考点】W6:极差;W2:加权平均数;W4:中位数;W5:众数.【分析】根据表格中的数据,求出中位数,平均数,众数,极差,即可做出判断.【解答】解:15名同学一周的课外阅读量为0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,中位数为2;平均数为(0×1+1×4+2×6+3×2+4×2)÷15=2;众数为2;极差为4﹣0=4;所以A、B、C正确,D错误.故选D.9.在平面直角坐标系中,点A、B的坐标分别为(﹣3,0)、(3,0),点P在反比例函数y=的图象上.若△PAB为直角三角形,则满足条件的点P的个数为()A.2个 B.4个 C.5个 D.6个【考点】G6:反比例函数图象上点的坐标特征.【分析】设点P的坐标为(x,y),分∠APB=90°、∠PAB=90°和∠PBA=90°三种情况考虑:当∠APB=90°时,以AB为直径作圆,由圆与双曲线无交点可知此时点P 不存在;当∠PAB=90°时,可找出x=﹣3,进而可得出点P的坐标;当∠PBA=90°时,可找出x=3,进而可得出点P的坐标.综上即可得出结论.【解答】解:设点P的坐标为(x,y),当∠APB=90°时,以AB为直径作圆,如图所示,∵圆与双曲线无交点,∴点P不存在;当∠PAB=90°时,x=﹣3,y==﹣3,∴点P的坐标(﹣3,﹣3);当∠PBA=90°时,x=3,y==3,∴点P的坐标为(3,3).综上所述:满足条件的点P有2个.故选A.10.如果函数y=2x2﹣3ax+1,在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为﹣23,则a的值为()A.B.C.或D.【考点】H7:二次函数的最值.【分析】分a<、≤a≤4和a>4三种情况,找出函数值y的最小值,令其等于﹣23,即可得出关于a的一元一次(或一元二次)方程,解之即可得出结论.【解答】解:抛物线y=2x2﹣3ax+1的对称轴为x=a.当a<1,即a<时,有2﹣3a+1=﹣23,解得:a=(舍去);当1≤a≤3,即≤a≤4时,有a2=24,解得:a=或a=﹣(舍去);当a>3,即a>4时,有18﹣9a+1=﹣23,解得:a=.综上所述:a的值为或.故选C.二、填空题(本大题共6小题,每题3分,共18分)11.计算式子﹣2﹣(+3)的结果为﹣5.【考点】1A:有理数的减法.【分析】减去一个数,等于加上这个数的相反数.【解答】解:﹣2﹣(+3)=﹣2﹣3=﹣(2+3)=﹣5,故答案为:﹣5.12.计算﹣的结果是.【考点】6B:分式的加减法.【分析】根据同分母分式加减运算法则计算即可,最后要注意将结果化为最简分式.【解答】解:原式===,故答案为:.13.袋中有三个小球,分别为1个红球和2个黄球,它们除颜色外完全相同.随机取出一个小球然后放回,再随机取出一个小球,则两次取出的小球颜色不相同的概率为.【考点】X6:列表法与树状图法.【分析】根据题意列表,再根据表格即可求得所有等可能的结果与两次取出的小球颜色相同的情况,然后根据概率公式求解.4种,所以两次取出的小球颜色不相同的概率=,故答案为:.14.如图,把一张长方形纸条ABCD沿EF折叠,若∠1=50°,则∠AEG=80°.【考点】JA:平行线的性质;PB:翻折变换(折叠问题).【分析】根据长方形性质得出平行线,根据平行线的性质求出∠DEF,根据折叠求出∠FEG,即可求出答案.【解答】解:∵四边形ABCD是长方形,∴AD∥BC,∴∠DEF=∠1=50°,∵沿EF折叠D到D′,∴∠FEG=∠DEF=50°,∴∠AEG=180°﹣50°﹣50°=80°,故答案为:80°.15.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,取BC的中点P.当点B从点O向x轴正半轴移动到点M(2,0)时,则点P移动的路线长为.【考点】O4:轨迹;D5:坐标与图形性质;KD:全等三角形的判定与性质;KW:等腰直角三角形;LF:正方形的判定.【分析】先过P作PD⊥x轴于D,作PE⊥y轴于E,根据△AEP≌△BDP(AAS),得出PE=PD,进而得到点P的运动路径是∠AOM的角平分线,再分别求得当点B与点O重合时,OP=OC=,当点B与点M重合时,OP=OD=,进而得到点P移动的路线长.【解答】解:如图所示,过P作PD⊥x轴于D,作PE⊥y轴于E,则∠DPE=90°,∠AEP=∠BDP=90°,连接AP,∵△ABC是等腰直角三角形,P是BC的中点,∴AP=BC=BP,且AP⊥BC,即∠APB=90°,∴∠APE=∠BPD,在△AEP和△BDP中,,∴△AEP≌△BDP(AAS),∴PE=PD,∴点P的运动路径是∠AOM的角平分线,如图所示,当点B与点O重合时,AB=AO=1,OC=,∴OP=OC=;如图所示,当点B与点M重合时,过P作PD⊥x轴于D,作PE⊥y轴于E,连接OP,由△AEP≌△BDP,可得AE=BD,设AE=BD=x,则OE=1+x,OD=2﹣x,∵矩形ODPE中,PE=PD,∴四边形ODPE是正方形,∴OD=OE,即2﹣x=1+x,解得x=,∴OD=2﹣=,∴等腰Rt△OPD中,OP=OD=,∴当点B从点O向x轴正半轴移动到点M时,则点P移动的路线长为﹣=.故答案为:.16.定义函数f(x),当x≤3时,f(x)=x2﹣2x,当x>3时,f(x)=x2﹣10x+24,若方程f(x)=2x+m有且只有两个实数解,则m的取值范围为m>﹣3或﹣12<m<﹣4.【考点】HA:抛物线与x轴的交点.【分析】分别画出x≤3和x>3的函数图象,得出两抛物线的交点坐标(3,3),结合函数图象知①直线f(x)=2x+m过点(3,3)时;②当直线f(x)=2x+m与f(x)=x2﹣2x只有一个交点时,方程只有一个实数解,分别求出m的值,结合函数图象可得m的取值范围.【解答】解:∵x≤3时,f(x)=x2﹣2x=(x﹣1)2﹣1,∴该抛物线的顶点坐标为(1,﹣1),当f(x)=0时,由x2﹣2x=0得x=0或x=2,∴抛物线与x轴的交点为(0,0)和(2,0),∵x>3时,f(x)=x2﹣10x+24=(x﹣5)2﹣1,∴此时抛物线的顶点坐标为(5,﹣1),当f(x)=0时,由x2﹣10x+24=0得x=4或x=6,∴此时抛物线与x轴的交点为(4,0)和(6,0),由可得,即两抛物线交点坐标为(3,3),如图所示:直线f(x)=2x+m可看作直线y=2x平移得到,①当直线f(x)=2x+m过点(3,3),即6+m=3,得m=﹣3时,直线f(x)=2x+m与f(x)=x2﹣2x的图象有两个交点;②当直线f(x)=2x+m与f(x)=x2﹣2x有一个交点,即x2﹣2x=2x+m只有一个解时,方程f(x)=2x+m有且只有两个解,解得:m=﹣4,当直线f(x)=2x+m与f(x)=x2﹣10x+24只有1个交点时,即2x+m=x2﹣10x+24只有一个解,解得:m=﹣12,由图象可知当m>﹣3或﹣12<m<﹣4时,方程f(x)=2x+m有且只有两个实数解,故答案为:m>﹣3或﹣12<m<﹣4.三、解答题(本大题共8小题,共72分)17.解方程:5x﹣1=3(x﹣1)【考点】86:解一元一次方程.【分析】根据去括号,移项,合并同类项,可得答案.【解答】解:去括号,得5x﹣1=3x﹣3,移项,合并同类项,得﹣2x=﹣2,系数化为1,得x=﹣1.18.如图,AC和BD相交于点O,OA=OC,OB=OD,求证:AB∥CD.【考点】KD:全等三角形的判定与性质;J9:平行线的判定.【分析】根据条件证明△AOB≌△COD就可以得出∠A=∠C就可以得出结论.【解答】证明:在△AOB和△COD中,∴△AOB≌△COD(SAS),∴∠A=∠C,∴AB∥CD.19.为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数(3)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)由体育社团的人数除以占的百分比,确定出共调查的人数即可;(2)由文学社团的人数除以总人数,再乘以360°即可得到结果;(3)由体育社团的百分比乘以1500即可得到结果.【解答】解:(1)根据题意得:80÷40%=200(人),则此次共调查了200人;(2)根据题意得:60×200×360°=108°,则文学社团在扇形统计图中所占的圆心角度数为108°;(3)根据题意得:1500×40%=600(人),则喜欢体育类社团的学生约有600人.20.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元(1)A商品的单价是16元,B商品的单价是4元(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,设购买A商品的件数为x件,该商店购买的A、B两种商品的总费用为y元①求y与x的函数关系式②如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,求购买B商品最多有多少件?【考点】FH:一次函数的应用;CE:一元一次不等式组的应用.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)①根据题意可以得到y与x的函数关系式;②根据题意可以列出相应的不等式组,从而可以解答本题.【解答】解:(1)A商品的单价是x元,B商品的单价是y元,,解得,即A商品的单价是16元,B商品的单价是4元,故答案为:16,4;(2)①由题意可得,y=16x+4(2x﹣4)=24x﹣16,即y与x的函数关系式是y=24x﹣16;②由题意可得,,解得,12≤x≤13,∴20≤2x﹣4≤22,∴购买B商品最多有22件,答:购买B商品最多有22件.21.如图,⊙O与直线l相离,OA⊥l于点A,OA交⊙O于点C,过点A作⊙O 的切线AB,切点为B,连接BC交直线l于点D(1)求证:AB=AD;(2)若tan∠OCB=2,⊙O的半径为3,求BD的长.【考点】MC:切线的性质;T7:解直角三角形.【分析】(1)连接OB,利用切线的性质以及等腰三角形的性质证明∠ADB=∠ABD,利用等角对等边证得;(2)设AC=a,则AB=AD=2a,在Rt△AOB中利用勾股定理即可列方程求得a的值,进而求得BD的长.【解答】解:(1)证明:连接OB.∵AB是⊙O的切线,OA⊥l,∴∠OBA=∠OAD=90°,又OB=OC,∴∠OBC=∠COB=∠ACD,∴∠ADB=∠ABD,∴AB=AD;(2)∵tan∠OCB=tan∠ACD==2,⊙O的半径是3,设AC=a,则AB=AD=2a,在Rt△AOB中,OA2=AB2+OB2,∴(a+3)2=(2a)2+32,∴a=2.过点A作AE⊥BD,设AE=x,DE=2x,则5x2=16,x=,∴BD=BE=,∴BD=.22.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3(1)求反比例函数y=的解析式;(2)若直线y=﹣x+m与反比例函数y=(x>0)的图象相交于两个不同点E、F(点E在点F的左边),与y轴相交于点M①则m的取值范围为m>4(请直接写出结果)②求ME•MF的值.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)设D的坐标是(4,a),则A的坐标是(4,a+3),由点C是OA的中点,可用含a的代数式表示出点C的坐标,再根据反比例函数图象上点的坐标特征即可找出4a=2×=k,解之即可得出a、k的值,进而即可得出反比例函数的解析式;(2)①将一次函数解析式代入反比例函数解析式中,整理后可得出关于x的一元二次方程,由m>0以及根的判别式△>0,即可得出关于m的不等式组,解之即可得出结论;②由一次函数解析式可得出∠MEG=∠MFH=45°,进而可得出ME=GE、MF= HF,将一次函数解析式代入反比例函数解析式中,由根与系数的关系可得出x E•x F=4,进而可得出ME•MF=2x E•x F=8,此题得解.【解答】解:(1)设D的坐标是(4,a),则A的坐标是(4,a+3).又∵点C是OA的中点,∴点C的坐标是(2,),∴4a=2×=k,解得a=1,k=4,∴反比例函数的解析式为y=;(2)①将y=﹣x+m代入y=中,﹣x+m=,整理,得:x2﹣mx+4=0,∵直线y=﹣x+m与反比例函数y=(x>0)的图象相交于两个不同点E、F,∴,解得:m>4.故答案为:m>4.②过点E、F分别作y轴的垂线,垂足分别为G、H.由y=﹣x+m可知:∠MEG=∠MFH=45°,∴ME=GE,MF=HF.由y=﹣x+m=,得x2﹣mx+4=0,∴x E•x F=4,∴ME•MF=2x E•x F=8.23.已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一个动点,过C作CE垂直于BD的延长线,垂足为E,如图1(1)求证:AD•CD=BD•DE;(2)若BD是边AC的中线,如图2,求的值;(3)如图3,连接AE.若AE=EC,求的值.【考点】SO:相似形综合题.【分析】(1)直接判断出△ABD∽△ECD,即可得出结论;(2)先设AB=AC=2a,CD=a,则BC=a,AD=a.求出BD,而△BAD∽△CED,得出,代入求出CE即可解决问题.(2)如图3,延长CE、BA相交于点F.只要证明△BEC≌△BEF,推出CE=EF,CF=2CE,由ABD≌△ACF,推出BD=CF,即可解决问题.【解答】解:(1)∵CE⊥BD,∴∠A=∠E=90°,∵∠ADB=∠EDC,∴△BAD∽△CED,∴,∴AD•CD=BD•DE;(2)设CD=AD=a,则AB=AC=2a.在Rt△ABD中,由勾股定理得:BD=a,由(1)知,△BAD∽△CED,∴,∴,解得:CE=a,∴==;(3)如图3,延长CE、BA相交于点F.∵BE是∠ABC的角平分线,且BE⊥CF在△BEC和△BEF中,,∴△BEC≌△BEF,∴CE=EF,∴CF=2CE又∵∠ABD+∠ADB=∠CDE+∠ACF=90°,且∠ADB=∠CDE,∴∠ABD=∠ACF∵AB=AC,∠BAD=∠CAF=90°,在△ABD和△ACF中,,∴△ABD≌△ACF(ASA),∴BD=CF,∴BD=2CE,∴=2.24.如图,抛物线y=x2+x﹣(k>0)与x轴交于点A、B,点A在点B的右边,与y轴交于点C(1)如图1,若∠ACB=90°①求k的值;②点P为x轴上方抛物线上一点,且点P到直线BC的距离为,则点P的坐标为(﹣4﹣,)(请直接写出结果)(2)如图2,当k=2时,过原点O的任一直线y=mx(m≠0)交抛物线于点E、F(点E在点F的左边)①若OF=2OE,求直线y=mx的解析式;②求+的值.【考点】HF:二次函数综合题.【分析】(1)①选将函数关系式变形为y=(x﹣2)(x+k),从而可得到点A和点B的坐标,然后再求得点C的坐标,接下来再证明△OBC∽△OCA,依据相似三角形的性质可得到OC2=AO•OB,从而列出关于k的方程,故此可求得k的值;②将k=8代入抛物线的解析式得:y=x2+x﹣4,然后再求得点A、B、C的坐标,依据勾股定理可求得AC的长,由点B和点C的坐标可求得BC的解析式,设M 为AC的中点,则M(1,﹣2),过点M作PM∥BC,交抛物线与点P.然后求得PM的解析式,最后求得PM与抛物线的交点P的坐标即可;(2)①过点E、F分别作x轴的垂线,垂直分别为M,N.把k=2代入得:y=x2﹣1.将y=mx代入得:x2﹣1=mx,依据一元二次方程根与系数的关系得到x E+x F=4m,x E•x F=﹣4,由OF=2OE,可得到x F=﹣2x E,从而可求得m的值;②设∠FON=α,则+=cosα(+).由直线的解析式可知cosα=,然后依据一元二次方程根与系数的关系得到+=,故此可求得问题的答案.【解答】解:(1)①∵y= [x2+(k﹣2)x﹣2k]=(x﹣2)(x+k),∴点A的坐标为(2,0),点B的坐标为(﹣k,0).∵将x=0代入抛物线的解析式为y=﹣.∴点C的坐标为(0,﹣).∵∠BCO+∠ACO=90°,∠OBC+∠BCO=90°,∴∠OBC=∠OCA.又∵∠BOC=∠AOC,∴△OBC∽△OCA.∴=.∴OC2=AO•OB.∴k2=2k,解得:k=8或k=0(舍去).②将k=8代入抛物线的解析式得:y=x2+x﹣4.当x=0时,y=﹣4,∴C(0,﹣4).令y=0得:x2+x﹣4=0,解得x=﹣8或x=2.∴A(2,0)B(﹣8,0).∴AC==2.设直线BC的解析式为y=kx+b,将点B和点C的坐标代入得:,解得:,∴直线BC的解析式为y=x﹣4.设M为AC的中点,则M(1,﹣2),如图1所示:过点M作PM∥BC,交抛物线与点P.设直线PM的解析式为y=﹣x+c,将点M的坐标代入得:﹣+c=﹣2,解得:c=﹣.∴直线PM的解析式为y=﹣x﹣.∴﹣x﹣=x2+x﹣4,解得x=﹣4﹣或x=﹣4+(舍去).当x=﹣4﹣时,y=.∴点P的坐标为(﹣4﹣,).故答案为:(﹣4﹣,).(2)①过点E、F分别作x轴的垂线,垂直分别为M,N.把k=2代入得:y=x2﹣1.由x2﹣1=mx,得到x E+x F=4m,x E•x F=﹣4.∵OF=2OE,∴x F=﹣2x E,且x E<0,∴﹣2x E•x E=﹣4,解得:x E=﹣.∴﹣+2=4m,解得:m=.②设∠FON=α,则+=cosα(+).∵直线EF的解析式为y=mx,∴tanα=m,∴cosα=.∴+====.∴+=cosα(+)=•=1.。

2018年武汉市武昌区中考数学模拟试卷(二)及答案

2018年武汉市武昌区中考数学模拟试卷(二)及答案

2018年中考数学训练题(二)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卷上将正确答案的代号涂黑.1.武汉某日最高气温5℃,最低-2℃,最高气温比最低气温高 A .3℃ B .7℃ C .-3℃D .-7℃2.若代数式41x 在实数范围内有意义,则实数x 的取值范围是 A .x >4 B .x =4 C .x<4 D .x ≠43.计算x 2-2x 2的结果是A .-1B .-x 4C .-x 2D .x 24.下列说法中,正确的是A .不可能事件发生的概率为0B .随机事件发生的概率为21 C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次 5.计算(a +3)(a -1)的结果是 A .a 2-3B .a 2+3C .a 2-2a -3D .a 2+2a -36.点A (-2,1)关于原点对称的点的坐标是 A .(2,-1)B .(-2,-1)C .(2,1)D .(1,-2)7.五个相同的小正方体搭成的几何体的俯视图如图所示,这个几何体的搭法种数是 A .1种B .2种C .3种D .4种8.某单位组织职工开展植树活动,植树量与人数之间的关系如下表,下列说法不正确的是A .参加本次植树活动共有29人B .每人植树量的众数是4C .每人植树量的中位数是5D .每人植树量的平均数是5第7题图9.如图,0°<∠BAC <90°,点A 1,A 3,A 5…在边AB 上,点 A 2,A 4,A 6…在边AC 上,且满足如下规律:A 1A 2⊥A 2A 3, A 2A 3⊥A 3A 4,A 3A 4⊥A 4A 5,…,若AA 1=A 1A 2=A 2A 3=1,则A 11A 12的长度为 A .21015+ B .21217+C .21724+D .22941+10.如图,Rt △ABC 中,∠ACB =90°,BC =5,AC =12,I 是Rt △ABC 的内心,连接CI ,AI ,则△CIA外接圆的半径为 A .13 B .262 C .132D .26 二、填空题(本题共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答卷指定位置.11.计算222-的结果是__________. 12.计算11122---x x x 的结果是__________. 13.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为 .14.如图,正方形ABCD 中,E 是AB 的中点,FE ⊥AB ,AF =2AE ,FC 交BD 于O ,则∠DOC 的度数为 °.15.如图,正方形ABCD 中,DE=2AE=4, F 是BE 的中点,点H 在CD 上,∠EFH=45°,则FH 的长度为 .16.已知抛物线4)343(2+++=x a ax y 交x 轴于点A ,B (B 在x 轴正半轴上),交y 轴于点C ,△ABC 是等腰三角形,则a 的值为 .第14题图第15题图第10题图第9题图三、解答题(共8小题,共72分)下列各题需要在答卷指定位置写出文字说明、证明过程、演算步骤或画出图形. 17.(本题8分)解方程组⎩⎨⎧=+=+5342y x y x18.(本题8分)如图,B ,E ,C ,F 在同一条直线上,AE ⊥BF ,DC ⊥BF ,BC =EF ,AE=DC ,求证AB ∥DF .19.(本题8分)交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A ,B ,C ,D ,E 等著名景点,该市旅游部门统计绘制出2018年“五·一”小长假期间旅游情况统计图,根据图中信息回答下列问题:(1)2018年“五·一”期间,该市景点共接待游客 万人,扇形统计图中C 景点所对应的圆心角的度数是 ,并补全条形统计图.(2)根据近几年到该市旅游人数增长趋势,预计2018年“十·一”国庆节将有80万游客选择该市旅游,E 景点每张门票是25元,请估计2018年“十·一”国庆期间E 景点门票收入约是多少万元?20.(本题8分)某校组织学生开展课外社会实践活动,现有甲、乙两种大客车可租,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元. (1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,甲种客车每辆载客量45人,乙种客车每辆载客量30人,共有师生330人,求最节省的租车费用是多少元? 21.(本题8分)如图,在⊙O 中,BC 是弦,OA ⊥BC 于点E ,D 为⊙O 上一点,连接AD ,CD . (1)求证:∠AOB =2∠ADC ;(2)若OB ⊥CD ,CD=8,OE=5,求tan ∠ADC.22.(本题10分)如图,直线721+-=x y 与双曲线xky =交于A ,B 两点,A 点的横坐标为2.(1)求点B 的坐标;(2)P 为线段AB 上一点(不包括端点),P 点的纵坐标为a ,作PN ⊥y 轴,垂足为N ,交双曲线于点M ,求MNPM的最大值; (3)点C 在x 轴上,点D 在y 轴上,若四边形ABCD 是平行四边形,则四边形ABCD 的面积为_________.23.(本题10分)在四边形ABCD 中,BD 平分∠ABC. (1)如图1,若∠A =∠BDC ,求证:BD 2=AB ·BC ; (2)如图2,∠A >90°,∠BAD+∠BDC=180°,① 若∠ABC =60°,AB =49,BC =4,求DCAD; ② 若BC =2n ,CD =n ,BD =8,则AB 的长为________.24.(本题12分)抛物线c bx x y ++-=2与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴正半轴交于点C.(1)如图1,若A (-1,0),B (3,0),① 求抛物线c bx x y ++-=2的解析式;② P 为抛物线上一点,连接AC ,PC ,若∠PCO=3∠ACO ,求点P 的横坐标; (2)如图2,D 为x 轴下方抛物线上一点,连DA ,DB ,若∠BDA+2∠BAD=90°,求点D 的纵坐标.图1图2⎩⎨⎧=+=+5342y x yx 2018中考数学训练题二参考答案一、选择题B DC AD A C D D C 二、填空题 11.2 12.11+x 13.52 14. 60 15.525 16.32-或94-或78- 三、解答题(共8题,共72分) 17.解:①② ②②-①得:x =1 ……………………2分x =1代入②得:42=+y ………………4分 ∴2=y …………………………6分 ∴方程组的解为:⎩⎨⎧==21y x ……………………8分 18.∵AE ⊥BF ,DC ⊥BF∴∠AEB =∠DCF =90°………………2分 ∵BC =EF∴BC -EC =EF -EC∴BE =FC ………………4分 在△ABE 和△DFC 中⎪⎩⎪⎨⎧=∠=∠=DC AE DCF AEB FC BE ∴△ABE ≌△DFC ………………6分 ∴∠B =∠F∴AB ∥DF ………………8分 19. (1) 50 ………………1分28.8° 条形统计图B 景点12 ………………5分 (2)2402580506=⨯⨯万 答:E 景点门票收入约是240万元 .………………8分20.解:(1) 设甲客车租金每辆x 元,乙客车租金每辆y 元, 则⎩⎨⎧=+=+17602312403y x y x 解得:⎩⎨⎧==280400y x答:甲客车租金每辆400元,乙客车租金每辆280元 .………………4分(2)设甲租了x 辆,则乙客车租了(8-x )辆,设租车费用为W 元 W=400x +280(8-x )=2240+120x 330)8(3045≥-+x x 解得:6≥x ,W 随x 的增大而增大,∴x =6时W 最小,296028026400=⨯+⨯ 答:最节省的租车费用是2960元 .………………8分 21.(1)连接OC ∵OA ⊥BC ,∴,∴∠AOC=∠AOB∵∠AOC =2∠ADC ,∴∠AOB =2∠ADC ………………4分 (2)延长BO 交CD 于点F ,连接AB ∵OB ⊥CD ,∴CF=21CD =4 ∵∠EBO=∠FBC ∠CFB=∠OEB ∴ △ABE ∽△DFC ,∴45==CF OE BF BE 设BE =n 5,则BF =4n ,BC =n 52∴CF =n BF BC 222=-,∴2n =4 n =2,∴BE =n 5=52, ∴BO =5 AE =55-,∴tan ∠ADC=tan ∠ABE=2155255-=-=BE AE ………………8分 22.解:(1) A (2,6), A (2,6)代入xky =得:k =12. ⎪⎪⎩⎪⎪⎨⎧=+-=x y x y 12721解得:⎩⎨⎧==6211y x ⎩⎨⎧==11222y x ∴B (12,1) ………………3分 (2)令y=a 721+-=x aa x 214-=,∴P (14-2a ,a )∴M (a 12,a),∴PN =a 214- MN =a12 PM =PN -MN =aa a a a 12142122142-+-=--∴2425)27(61167611212142222+--=-+-=-+-=a a a a a MN PM 27=a 可以取到,所以PN PM 的最大值为2425 ………………7分 (3)20 ………………10分23. 解:(1) ∵BD 平分∠ABC ,∴∠ABD =∠DBC ∵∠A =∠BDC ,∴△ABD ∽△DBC ∴BCBD BD AB =,∴BD 2=AB ·BC ………………3分(2)延长BA 到E ,使DE =DA ,作DH ⊥AE 于点H ∴∠EAD =∠E∵∠EAD+∠BAD =180°,∠BAD+∠BDC=180° ∴∠BDC =∠EAD=∠E ,∵∠ABD =∠DBC ∴△EBD ∽△DBC ,∴BD 2=EB ·BC 设DH=x ,则BH=x 3,AH =HE =493-x∴BE =BH +EH =4932-x ,∴2)2(4)4932(x x =⨯- 解得:2332321==x x ∵AH =HE =493-x >0,∴433>x ,∴233=x ∴BD =332=x∵△EBD ∽△DBC , ∴433===BC BD DC DE DC AD ………………7分 (3)n 23………………10分(解析:ID =163642n -,DE =4,BE =n 32,HE =nn 43642-,AB =BE -2HE =n 23)24.①A (-1,0),B (3,0)代入c bx x y ++-=2得:⎩⎨⎧=++-=+--03901c b c b 解得⎩⎨⎧==32c b ∴322++-=x x y ………………3分②延长CP 交x 轴于点E ,在x 轴上取点D 使CD =CA ,作EN ⊥CD 交CD 的延长线于N . ∵CD =CA ,OC ⊥AD ,∴ ∠DCO=∠ACO∵∠PCO=3∠ACO ,∴∠ACD=∠ECD ,∴tan ∠ACD=tan ∠ECD ∴CN ENCI AI =,AI =106=⨯CD OC AD , ∴CI =10822=-AI CA ,∴43==CN EN CI AI 设EN =3x ,则CN =4x tan ∠CDO=tan ∠EDN13==OD OC DN EN ,∴DN =x ,∴CD =CN -DN =3x =10 ∴310=x ,∴DE=310 , E (313,0)CE 的直线解析式为:3139+-=x y ⎪⎩⎪⎨⎧++-=+-=3239132x x y x y 3139322+-=++-x x x 解得:1335021==x x 点P 的横坐标1335………………7分 (2)作DI ⊥x 轴,垂足为I ∵∠BDA+2∠BAD=90° ∴∠DBI+∠BAD=90° ∵∠BDI+∠DBI=90° ∴∠BAD=∠BDI∵∠BID=∠DIA∴△EBD ∽△DBC ∴AIIDID BI =∴AD DD B D x x y y x x --=-- ∴B A D B A D D x x x x x x y ++-=)(22 令y=0 02=++-c bx x c x x bx x B A B A -==+c bx x x x x x x x y D D B A D B A D D --=++-=222)(∵c bx x y D D D ++-=2 ∴D D y y -=2 解得 0=D y 或-1 ∵D 为x 轴下方一点 ∴1-=D yD 的纵坐标-1 ………………12分。

勤学早2018年武汉市中考数学模拟试卷(三)(word版)

勤学早2018年武汉市中考数学模拟试卷(三)(word版)

勤学早·武汉市2018中考数学模拟试卷(三)一、选择题(共10小题,每小题3分,共30分)1.冬季某天我国两个城市的日最高气温分别是1°C,-7°C,当天这两城市的温差是()A.11°C B.17°C C.8°C D.3°C2.要使分式232x+有意义,则x的值范围是()A.x≠23-B.x<23-C.x=23-D.x≥23-3.计算2a3-a3的结果是()A.4a3B.2a3C.3 D.24.已知不透明的袋中只装有黑、白两种颜色的球,这些球除颜色外其他都相同,其中白球有10个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.2附近,则n的值约为()A.20 B.30 C.40 D.505.计算(x+3) (x-2)的结果是()A.x-6 B.x2+x+6 C.x2-x-6 D.x2+x-66.点P(-4,3)关于x轴的对称的点的坐标是()A.(-4,-3)B.(4,-3)C.(-4,3)D.(-3,4)7.下列几个立体图是由4个相同的正方体组成的,其中主视图和左视图相同的是()8.日加工零件数 4 5 6 7 8人数 2 6 5 x 3)A.6,6 B.6,5 C.5,5 D.5,69.如图,在3×3的正方形格纸中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中△ABC是一个格点三角形,在图中画一个与△ABC成轴对称的格点三角形,这样的格点三角形可以画()个A.4 B.5 C.6 D.710.(课本P103·14改)如图,⊙O内切于△ABC,∠ACB=90°,AC<BC,AB=10,⊙O的半径为2,G、H分别为切点,D为¼GH上一点,过D作⊙O的切线分别交AB、BC于点E、F,若EF⊥AB,则EF的长为( )A 、5B 、25C 、3D 、5二、填空题(每小题3分,共18分) 11.计算:(2+1)-sin45°= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省武汉市江岸区2018年中考数学模拟试卷(三)一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置将符合要求的选项前面的字母代号涂黑.本大题共15小题,每题3分,计45分)1.﹣的倒数是()A.6 B.﹣6 C.D.﹣2.如图是一个几何体的三视图,则这个几何体是()A.圆锥 B.圆柱 C.长方体D.球体3.二零一五年我国与“一带一路”国家贸易额达9955亿美元.数据9955用科学记数法表示为()A.99.55×102 B.9.955×103 C.9.9×103D.10×1034.在某次体育测试中,九(一)班五位同学的立定跳远成绩(单位:m)分别为:1.71,1.85,1.85,1.95,2.10,则这组数据的中位数是()A.1.71 B.1.85 C.1.90 D.2.105.下列运算正确的是()A.x2+x3=x5B.2x2﹣x2=1 C.x2•x3=x6D.x6÷x3=x36.某不等式组的解集在数轴上表示如图,则这个不等式组可能是()A.B.C.D.7.如果圆锥的底面周长为20π,母线长为30,则该圆锥的侧面积为()A.100π B.200π C.300π D.400π8.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.59.在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形10.如图,长方形ABCD中,E点在BC上,且AE平分∠BAC.若BE=4,AC=15,则△AEC面积为()A.15 B.30 C.45 D.6011.Rt△ABC中,∠C=90°,AB=6,AC=2,则sinA=()A.B.C. D.12.正三角形内切圆与外接圆半径之比为()A.B.C.D.13.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为()A.B.C.D.114.若点A的坐标为(6,3),O为坐标原点,将OA绕点O按顺时针方向旋转90°得到OA′,则点A′的坐标是()A.(3,﹣6)B.(﹣3,6)C.(﹣3,﹣6) D.(3,6)15.已知抛物线y=ax2+bx+1的大致位置如图所示,那么直线y=ax+b不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、解答题(将解答过程写在答题卡上指定的位置.本大题共有9小题,计75分)16.解方程:x2﹣4x﹣1=0.17.如图,在△ABC中,AB=AC=10,BC=16.(1)尺规作图:求作BC的中点D (保留作图痕迹,不写作法);(2)连接AD,求AD的长.18.已知y是x的一次函数,其部分对应值如下表:(1)求这个一次函数的表达式,并补全表格;(2)已知点A(﹣2,﹣2)既在这个一次函数图象上,也在反比例函数y=图象上,求这两个函数图象的另一交点B的坐标.19.如图所示,一次课外活动中,小李同学在离旗杆AB底部10米远的C处,用测角仪测得旗杆顶部A的仰角为60°,已知测角仪器的高CD=1米,求旗杆AB的高.20.小刚、小华玩抽牌游戏.他们各取四张牌,小刚四张牌面的数字分别为1,2,3,5,小华四张牌面的数字分别为4,6,7,8.游戏规则如下:两人从对方的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小刚获胜,否则小华获胜.用树状图或列表的方法分别求出小刚、小华获胜概率.21.如图,在半径为2的⊙O中,AB是直径,C是弧AB的三等分点(∠BOC为锐角),D是OA 的中点,BE是⊙O的切线,B为切点,DC的延长线交BE于点E,连接AE,交⊙O于点F.(1)求∠BOC的度数;(2)作CM⊥AB,垂足为M,连接BF,分别求CM,BF的长.22.倡导全民阅读,建设书香社会【大数据统计】目前,某地传统媒体阅读率为80%,数字媒体阅读率为40%,而综合阅读率为90%.【知识清单】某种媒体阅读率,指有这种媒体阅读行为人数在总人口数中所占比例;下图表示了综合阅读行为人数与传统媒体阅读行为人数和数字媒体行为人数的关系.【问题解决】(1)求该地目前只有传统媒体阅读行为人数占总人口数的百分比;(2)若该地每十年单一媒体阅读行为人数按照百分数x增加,而综合阅读行为人数按照百分数2x 增加,这样预计二十年后,同时有传统媒体和数字媒体阅读行为人数变为目前人数的3倍,求百分数x.23.如图1,在矩形ABCD中,AD=12,E为BC的中点,作DF⊥AE,垂足为F.(1)求证:△ABE∽△DFA;(2)如图2,若点F在线段AE的延长线上,求线段AB的取值范围;(3)如图3,若F在线段AE上,DF与AC交与点H,且=,求线段AB的长.24.如图1,直线l:y=x+3与y轴交于点A,过点A的抛物线y=(x+1)2+k与另一抛物线y=(x ﹣h)2+3+h(h≠1)交于点C,这两条抛物线的顶点分别为B,D.(1)求k的值;(2)判断点B和点D是否在直线l上,并说明理由;(3)用含h的代数式表示点C的橫坐标;(4)当∠ACD=90°时,求h的值;并直接写出当∠ACD>90°时h的范围(图2供参考).湖北省武汉市江岸区2018年中考数学模拟试卷(三)参考答案与试题解析一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置将符合要求的选项前面的字母代号涂黑.本大题共15小题,每题3分,计45分)1.﹣的倒数是()A.6 B.﹣6 C.D.﹣【考点】倒数.【专题】常规题型.【分析】根据互为倒数的两个数的积等于1解答.【解答】解:∵(﹣)×(﹣6)=1,∴﹣的倒数是﹣6.故选B.【点评】本题考查了倒数的定义,熟记概念是解题的关键.2.如图是一个几何体的三视图,则这个几何体是()A.圆锥 B.圆柱 C.长方体D.球体【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由于主视图和左视图为三角形可得此几何体为锥体,由俯视图为圆形可得为圆锥.故选A.【点评】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.3.二零一五年我国与“一带一路”国家贸易额达9955亿美元.数据9955用科学记数法表示为()A.99.55×102 B.9.955×103 C.9.9×103D.10×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9955=9.955×103.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.在某次体育测试中,九(一)班五位同学的立定跳远成绩(单位:m)分别为:1.71,1.85,1.85,1.95,2.10,则这组数据的中位数是()A.1.71 B.1.85 C.1.90 D.2.10【考点】中位数.【分析】把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,由此即可确定这组数据中位数.【解答】解:把这组数据从小到大排序后为1.71,1.85,1.85,1.95,2.10,其中第3个数据为1.85,所以这组数据的中位数为1.85.故选B.【点评】本题考查了中位数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.5.下列运算正确的是()A.x2+x3=x5B.2x2﹣x2=1 C.x2•x3=x6D.x6÷x3=x3【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【分析】根据合并同类项的法则、幂的乘方及积的乘方法则、同底数幂的除法法则,分别进行各选项的判断即可.【解答】解:A、x2与x3不是同类项,不能直接合并,原式计算错误,故本选项错误;B、2x2﹣x2=x2,原式计算错误,故本选项正确;C、x2•x3=x5,原式计算错误,故本选项错误;D、x6÷x3=x3,原式计算正确,故本选项正确;故选D.【点评】本题考查了同底数幂的除法、幂的乘方与积的乘方,解答本题的关键是熟练掌握各部分的运算法则.6.某不等式组的解集在数轴上表示如图,则这个不等式组可能是()A.B.C.D.【考点】在数轴上表示不等式的解集.【专题】探究型.【分析】先根据数轴上表示的不等式组的解集写出来,在对四个选项进行分析即可.【解答】解:由数轴上不等式解集的表示法可知,此不等式组的解集为﹣2≤x<3,A、不等式组的解集为﹣2≤x≤3,故本选项错误;B、不等式组的解集为﹣2≤x<3,故本选项正确;C、不等式组的解集为﹣2<x<3,故本选项错误;D、不等式组的解集为﹣2<x≤3,故本选项错误.故选B.【点评】本题考查的是在数轴上表示一元一次不等式组的解集,解答此题时要注意实心圆点与空心圆点的区别.7.如果圆锥的底面周长为20π,母线长为30,则该圆锥的侧面积为()A.100π B.200π C.300π D.400π【考点】圆锥的计算.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:圆锥的侧面是扇形,圆锥的侧面积=×20π×30=300π.故选C.【点评】本题考查了圆锥的侧面积计算方法,牢记有关圆锥和扇形之间的对应关系是解决本题的关键.8.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.5【考点】菱形的性质;等边三角形的判定与性质.【分析】根据菱形的性质及已知可得△ABC为等边三角形,从而得到AC=AB.【解答】解:∵AB=BC,∠B+∠BCD=180°,∠BCD=120°∴∠B=60°∴△ABC为等边三角形∴AC=AB=5故选D.【点评】本题考查了菱形的性质和等边三角形的判定.9.在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形【考点】正方形的判定;平行四边形的判定;菱形的判定;矩形的判定.【专题】压轴题.【分析】本题要求熟练掌握平行四边形、菱形、矩形、正方形的基本判定性质.【解答】解:A、两条对角线相等的平行四边形是矩形,故选项A错误;B、两条对角线互相垂直的平行四边形是菱形,故选项B错误;C、根据平行四边形的判定定理可知两条平行线相互平分的四边形是平行四边形,为真命题,故选项C是正确的;D、两条对角线互相垂直且相等的平行四边形是正方形,故选项D错误;故选C.【点评】基本的定义、概念以及一些性质是做题的根本条件,熟练地运用可以为解答更深奥的题目奠定基础.10.如图,长方形ABCD中,E点在BC上,且AE平分∠BAC.若BE=4,AC=15,则△AEC面积为()A.15 B.30 C.45 D.60【考点】矩形的性质.【分析】利用角平分线的性质定理可得AC边上的高.进而求得所求三角形的面积.【解答】解:作EF⊥AC于点F.∴BE=EF=4.∴△AEC面积=15×4÷2=30.故选B.【点评】本题的难点是作辅助线,即三角形上的高,然后利用三角形的面积公式求解.11.Rt△ABC中,∠C=90°,AB=6,AC=2,则sinA=()A.B.C. D.【考点】锐角三角函数的定义;勾股定理.【分析】利用勾股定理列式求出BC,再根据锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:∵∠C=90°,AB=6,AC=2,∴BC===4,∴sinA===.故选C.【点评】本题考查了锐角三角函数的定义,勾股定理,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.12.正三角形内切圆与外接圆半径之比为()A.B.C.D.【考点】正多边形和圆.【分析】先作出图形,根据等边三角形的性质确定它的内切圆和外接圆的圆心;通过特殊角进行计算,用内切圆半径来表示外接圆半径,最后求出比值即可.【解答】解:如图,△ABC是等边三角形,AD是高.点O是其外接圆的圆心,由等边三角形的三线合一得点O在AD上,并且点O还是它的内切圆的圆心.∵AD⊥BC,∠1=∠4=30°,∴BO=2OD,而OA=OB,∴OD:OA=1:2.故选A.【点评】本题考查的是正多边形和圆,熟知等边三角形的性质及三角形内切圆与外接圆的定义是解答此题的关键.13.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为()A.B.C.D.1【考点】概率公式;中心对称图形.【专题】计算题.【分析】先判断出圆、矩形、等边三角形、等腰梯形中的中心对称图形,再根据概率公式解答即可.【解答】解:圆、矩形、等边三角形、等腰梯形中,中心对称图形有圆,矩形2个;则P(中心对称图形)==.故选B.【点评】此题考查了概率公式和中心对称图形的定义,要弄清概率公式适用的条件方可解题:(1)试验中所有可能出现的基本事件有有限个;(2)每个基本事件出现的可能性相等.14.若点A的坐标为(6,3),O为坐标原点,将OA绕点O按顺时针方向旋转90°得到OA′,则点A′的坐标是()A.(3,﹣6)B.(﹣3,6)C.(﹣3,﹣6) D.(3,6)【考点】坐标与图形变化-旋转.【专题】作图题.【分析】正确作出A旋转以后的A′点,即可确定坐标.【解答】解:由图知A点的坐标为(6,3),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,点A′的坐标是(3,﹣6).故选:A.【点评】本题考查了图形的旋转,抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得A′.15.已知抛物线y=ax2+bx+1的大致位置如图所示,那么直线y=ax+b不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】二次函数的图象;一次函数图象与系数的关系.【专题】常规题型.【分析】根据二次函数图象开口向下可得a<0,再根据二次函数图象的对称轴求出b的取值范围,然后根据一次函数图象的性质作出判断即可.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线对称轴在y轴的左边,∴﹣<0,解得b<0,∴直线y=ax+b的图象经过第二、四象限,且与y轴负半轴相交,不经过第一象限.故选A.【点评】本题考查了二次函数图象与一次函数图象与系数的关系,根据抛物线确定出a、b的取值范围是解题的关键,也是难点.二、解答题(将解答过程写在答题卡上指定的位置.本大题共有9小题,计75分)16.解方程:x2﹣4x﹣1=0.【考点】解一元二次方程-配方法.【专题】配方法.【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:∵x2﹣4x﹣1=0,∴x2﹣4x=1,∴x2﹣4x+4=1+4,∴(x﹣2)2=5,∴x=2±,∴x1=2+,x2=2﹣.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.17.如图,在△ABC中,AB=AC=10,BC=16.(1)尺规作图:求作BC的中点D (保留作图痕迹,不写作法);(2)连接AD,求AD的长.【考点】作图—复杂作图;勾股定理.【分析】(1)直接利用线段垂直平分线的画法得出答案;(2)直接利用等腰三角形的性质结合勾股定理得出AD的长.【解答】解:(1)如图所示:(2)∵AB=AC,D为BC中点,∴BD=BC=8,AD⊥BC,在Rt△ABD中,AD==6.【点评】此题主要考查了勾股定理以及复杂作图,正确掌握勾股定理是解题关键.18.已知y是x的一次函数,其部分对应值如下表:(1)求这个一次函数的表达式,并补全表格;(2)已知点A(﹣2,﹣2)既在这个一次函数图象上,也在反比例函数y=图象上,求这两个函数图象的另一交点B的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)设y=kx+b,将点(0,2)、(5,12)代入可得函数解析式,也可补全表格;(2)将点A的坐标代入,可得m的值,联立一次函数及反比例函数解析式可得另一交点坐标.【解答】解:(1)设y=kx+b,将(0,2),(5,12)代入y=kx+b得,解得:k=2,b=2,∴y=2x+2;当x=﹣3时,y=﹣4;当y=8时,x=3,故答案为:﹣4,3;(2)A(﹣2,﹣2)在反比例函数y=上,∴m=4,∴反比例函数解析式为y=,解得,,∴B(1,4).【点评】本题考查了反比例函数与一次函数的交点问题,解答本题的关键是熟练待定系数法的运用,难度一般.19.如图所示,一次课外活动中,小李同学在离旗杆AB底部10米远的C处,用测角仪测得旗杆顶部A的仰角为60°,已知测角仪器的高CD=1米,求旗杆AB的高.【考点】解直角三角形的应用-仰角俯角问题.【分析】由题可知,在直角三角形中,知道已知角和邻边,直接根据正切求出对边即可解决.【解答】解:∵在Rt△ADE中,DE=10,∠ADE=60°,∴AE=DEtan60°=10.∵由题意得四边形CDEB为矩形,则BE=CD=1∴AB=AE+BE=10+1(米).答:旗杆AB的高度为(10+1)米.【点评】本题考查了解直角三角形的应用,本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.20.小刚、小华玩抽牌游戏.他们各取四张牌,小刚四张牌面的数字分别为1,2,3,5,小华四张牌面的数字分别为4,6,7,8.游戏规则如下:两人从对方的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小刚获胜,否则小华获胜.用树状图或列表的方法分别求出小刚、小华获胜概率.【考点】列表法与树状图法.【专题】计算题.【分析】先利用画树状图展示所有16种等可能的结果数,再找出和为偶数的结果数与和为奇数的结果数,然后根据概率公式计算小刚、小华获胜概率.【解答】解:画树状图为:共有16种等可能的结果数,其中和为偶数的结果数为6,和为奇数的结果数为10,所以小刚获胜的概率==,小华获胜的概率==.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.21.如图,在半径为2的⊙O中,AB是直径,C是弧AB的三等分点(∠BOC为锐角),D是OA 的中点,BE是⊙O的切线,B为切点,DC的延长线交BE于点E,连接AE,交⊙O于点F.(1)求∠BOC的度数;(2)作CM⊥AB,垂足为M,连接BF,分别求CM,BF的长.【考点】切线的性质.【分析】(1)根据同弧所对的圆心角相等,即可解答;(2)根据锐角三角函数,求出CM,OM的值,根据两角相等的三角形相似,证得△DMC∽△DBE,进而求得BE的值,根据勾股定理求出AE的值,再利用面积法求出BF的长度即可.【解答】解:(1)如图,连接OC,∵C是弧AB的三等分点,∴∠BOC=×180°=60°;(2)在Rt△OMC中,OC=2,∠COM=60°,∴CM=sin60°×OC=×2=,OM=cos60°×OC=×2=1,∵BE是切线,∴∠ABE=90°,∵CM⊥AB,∴∠CMO=90°=∠ABE,∴△DMC∽△DBE,∴,即,解得:BE=,在Rt△ABE中,AE===,∵AB是直径,∴∠AFB=90°,∵,∴BF=.【点评】本题主要考查切线的性质,相似的性质与判定,勾股定理等的综合应用,此题难度适中,能够想到利用三角形相似的性质和勾股定理求出相关线段的长度是解决此题的关键.22.倡导全民阅读,建设书香社会【大数据统计】目前,某地传统媒体阅读率为80%,数字媒体阅读率为40%,而综合阅读率为90%.【知识清单】某种媒体阅读率,指有这种媒体阅读行为人数在总人口数中所占比例;下图表示了综合阅读行为人数与传统媒体阅读行为人数和数字媒体行为人数的关系.【问题解决】(1)求该地目前只有传统媒体阅读行为人数占总人口数的百分比;(2)若该地每十年单一媒体阅读行为人数按照百分数x增加,而综合阅读行为人数按照百分数2x 增加,这样预计二十年后,同时有传统媒体和数字媒体阅读行为人数变为目前人数的3倍,求百分数x.【考点】一元二次方程的应用.【分析】(1)根据题意,利用某地传统媒体阅读率为80%,数字媒体阅读率为40%,而综合阅读率为90%,得出等式求出答案;(2)结合该地每十年单一媒体阅读行为人数按照百分数x增加,而综合阅读行为人数按照百分数2x增加得出等式求出答案.【解答】解:(1)设某地人数为a,既有传统媒体阅读又有数字媒体阅读的人数为y,则传统媒体阅读人数为0.8a,数字媒体阅读人数为0.4a.依题意得:0.8a﹣y+0.4a﹣y+y=0.9a,解得y=0.3a,则该社区只有传统媒体阅读行为占总人口总数的百分比为50%.(2)依题意得:0.5a(1+x)2+0.1a(1+x)2+0.9a=0.9a(1+2x)2,整理得:5x2+4x﹣1=0,解得:x1==20%,x2=﹣1(舍去),答:x为20%.【点评】此题主要考查了一元二次方程的应用,根据题意得出正确等量关系是解题关键.23.如图1,在矩形ABCD中,AD=12,E为BC的中点,作DF⊥AE,垂足为F.(1)求证:△ABE∽△DFA;(2)如图2,若点F在线段AE的延长线上,求线段AB的取值范围;(3)如图3,若F在线段AE上,DF与AC交与点H,且=,求线段AB的长.【考点】相似形综合题.【分析】(1)根据两角对应相等的两个三角形相似即可证明.(2)由△ABE∽△DFA得到=,AF=,求出AE=AF时,AB的值即可解决问题.(3)由△ADH∽△CHM得到==,求出CM、ME,设AB=a,则有AE=,EF=,由△MFE∽△ABE列出方程即可解决.【解答】(1)证明:如图1中,∵四边形ABCD是矩形,∴∠B=90°,AD∥BC∵DF⊥AE∴∠AFD=∠B=90°,∵AD∥BC∴∠DAF=∠BEA,∴△ABE∽△DFA.(2)如图2中,解:∵△ABE∽△DFA∴=,AF=,当AF=AE=6时△ABE和△DCE为等腰直角三角形,可得AB=6.当点F在线段AE的延长线时0<AB<6.(3)如图3中,当AB>6时,延长DF交BC于点M∵AD∥BC∴△ADH∽△CHM∴==,∴CM=,则有ME=,∵AD∥ME∴△ADF∽△EMF∴==,设AB=a,则有AE=,EF=,∵∠FEM=∠AEB,∠MFE=∠B=90°∴△MFE∽△ABE,∴=∴=,∴a2+36=80,∴a=2,即AB=2,【点评】本题考查相似三角形的判定和性质、矩形的性质、平行线的性质、勾股定理等知识,解题的关键是灵活运用相似三角形的判定和性质解决问题,把问题转化为方程解决,属于中考压轴题.24.如图1,直线l:y=x+3与y轴交于点A,过点A的抛物线y=(x+1)2+k与另一抛物线y=(x ﹣h)2+3+h(h≠1)交于点C,这两条抛物线的顶点分别为B,D.(1)求k的值;(2)判断点B和点D是否在直线l上,并说明理由;(3)用含h的代数式表示点C的橫坐标;(4)当∠ACD=90°时,求h的值;并直接写出当∠ACD>90°时h的范围(图2供参考).【考点】二次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A点坐标,根据待定系数法,可得答案;(2)根据顶点式函数解析式,可得顶点坐标,根据顶点的坐标满足函数解析式顶点在函数图象上,可得答案;(3)根据解方程组,可得C点的坐标,根据自变量与函数值的对应关系,可得C点坐标;(4)根据勾股定理,可得关于h的方程,根据解方程,可得答案.【解答】解:(1)∵点A为y=x+3与y轴的交点,∴A(0,3),把A(0,3)代入y=(x+1)2+k得k+1=3,解得k=2;(2)∵y=(x+1)2+2的顶点为B,∴B(﹣1,2)代入y=x+3得y=﹣1+3=2,∴B在直线l上,∵y=(x﹣h)2+3+h顶点为D,∴D(h,3+h)代入y=x+3得y=h+3,∴D在直线l上;(3)联立y=(x+1)2+2和y=(x﹣h)2+3+h,得(x+1)2+2=(x﹣h)2+3+h,整理得2x(h+1)=h(h+1)∵h≠﹣1,∴x=h.此时y C=(+1)2+2=+h+3C点坐标(,+h+3),h,3+h)(4)A(0,3),D(h,3+h),C点坐标(,+h+3),当∠ACD=90°时AC2+CD2=AD2,又∵AC2=()2+(+h)2,CD2=+()2,AD2=h2+h2,∴()2+(+h)2++()2=h2+h2,整理得+h﹣1=0解得h1=2﹣2,h2=﹣2﹣2;要使∠ACD>90°只须﹣2﹣2<h<2﹣2且h≠﹣1,h≠0.【点评】本题考查了二次函数综合题,把点的坐标代入解析式是解题关键;利用点的坐标满足函数解析式点在函数图象上是解题关键;解方程组是求C点的坐标的关键;利用勾股定理是解题关键.。

相关文档
最新文档