去括号法则及整式的加减练习
七年级数学上册第二章《整式的加减》经典习题
1.点 1A 、 2A 、 3A 、…… 、 n A (n 为正整数)都在数轴上.点 1A 在原点 O 的左边,且 1A O 1=;点 2A 在点 1A 的右边,且 21A A 2=;点 3A 在点 2A 的左边,且 32A A 3=;点 4A 在点 3A 的右边,且 43A A 4=;……,依照上述规律,点 2008A 、 2009A 所表示的数分别为( )A .2008 、 2009-B .2008- 、 2009C .1004 、 1005-D .1004 、 1004- C 解析:C【分析】先找到特殊点,根据特殊点的下标与数值的关系找到规律,数较大时,利用规律解答.【详解】解:根据题意分析可得:点A₁, A₂,A₃, .. A n 表示的数为-1,1,-2,2,-3,3,...依照上述规律,可得出结论:点的下标为奇数时,点在原点的左侧,且为下标加1除以2的相反数;点的下标为偶数时,点在原点的右侧且表示的数为点的下标数除以2;即:当n 为奇数时,n 1A 2n +=-, 当n 为偶数时,2n n A = 所以点A 2008表示的数为: 2008÷2= 1004A 2009表示的数为:- (2009+1) ÷2=-1005故选: C .【点睛】本题考查探索与表达规律.这类题型在中考中经常出现,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,然后找到规律.2.下列用代数式表示正确的是( )A .a 是一个数的8倍,则这个数是8aB .2x 比一个数大5,则这个数是2x +5C .一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为(50-a )元D .小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元D解析:D【分析】根据题中叙述列出代数式即可判断.【详解】A 、a 是一个数的8倍,则这个数是8a ,错误,不符合题意; B 、2x 比一个数大5,则这个数是25x -,错误,不符合题意;C、一件上衣的进价为50元,售价为a元,用代数式表示一件上衣的利润为(50a-)元,错误,不符合题意;D、小明买了5支铅笔和4本练习本,其中铅笔x元1支,练习本y元1本,那么他应付(5x+4y)元,正确,符合题意;故选:D.【点睛】本题考查了列代数式,要注意语句中的关键字,解决问题的关键是读懂题意,找到所求的量的等量关系.3.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.64 B.77 C.80 D.85D解析:D【分析】观察图形特点,从中找出规律,小圆圈的个数分别是3+12,6+22,10+32,15+42,…,总结出其规律为()()122n n+++n2,根据规律求解.【详解】通过观察,得到小圆圈的个数分别是:第一个图形为:()1222+⨯+12=4,第二个图形为:()1332+⨯+22=10,第三个图形为:()1442+⨯+32=19,第四个图形为:()1552+⨯+42=31,…,所以第n个图形为:()()122n n+++n2,当n=7时,()()72712+++72=85,故选D.【点睛】此题主要考查了学生分析问题、观察总结规律的能力.关键是通过观察分析得出规律.4.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-4B解析:B【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83m ab 是同类项, ∴21184n m -=⎧⎨=⎩解得:121m n ⎧=⎪⎨⎪=⎩ 则()()5711n m +-=14- 故答案选B.【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项.5.下列各代数式中,不是单项式的是( )A .2m -B .23xy -C .0D .2tD 解析:D【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择.【详解】 A 选项,2m -是单项式,不合题意;B 选项,23xy -是单项式,不合题意;C 选项,0是单项式,不合题意;D 选项,2t不是单项式,符合题意. 故选D .【点睛】 本题考查单项式的定义,较为简单,要准确掌握定义.6.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( )A .2+6nB .8+6nC .4+4nD .8n A 解析:A【分析】根据前3个“金鱼”需用火柴棒的根数找到规律:每增加一个金鱼就增加6根火柴棒,然后根据规律作答.【详解】解:由图形可得:第一个“金鱼”需用火柴棒的根数为6+2=8;第二个“金鱼”需用火柴棒的根数为6×2+2=14;第三个“金鱼”需用火柴棒的根数为6×3+2=20;……;第n 个“金鱼”需用火柴棒的根数为6n +2.故选:A .【点睛】本题考查了用代数式表示规律,属于常考题型,找到规律并能用代数式表示是解题关键. 7.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( )A .-7B .-1C .5D .11A解析:A【分析】先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;第7次操作,a 7=|-7+4|-10=-7;…第2020次操作,a 2020=|-7+4|-10=-7.故选:A .本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.8.如图所示,直线AB 、CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上C解析:C【分析】 由图可观察出负数在OC 或OD 射线上,在OC 射线上的数为-4的奇数倍,在OD 射线上的数为-4的偶数倍,即可得出答案.【详解】解:∵由图可观察出负数在OC 或OD 射线上,排除选项A,B ,∵在射线OC 上的数符合:44112432045-=-⨯-=-⨯-=-⨯,,┈在射线OD 上的数符合:84216442446-=-⨯-=-⨯-=-⨯,,┈∵20204505-=-⨯,505为奇数,因此标记为“-2020”的点在射线OC 上.故答案为:C.【点睛】本题是一道探索数字规律的题目,具有一定的挑战性,可以根据已给数字多列举几个,更容易得出每条射线上数字的规律.9.把一个大正方形和四个相同的小正方形按图①、②两种方式摆放,则大正方形的周长与小正方形的周长的差是( )A .2+a bB .+a bC .3a b +D .3a b + D解析:D【分析】 利用大正方形的周长减去4个小正方形的周长即可求解.解:根据图示可得:大正方形的边长为2a b +,小正方形边长为4a b -, ∴大正方形的周长与小正方形的周长的差是:2a b +×4-4a b -×4=a+3b. 故选;D.【点睛】本题考查了列代数式,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.10.下列去括号正确的是( )A .221135135122x y x x y y ⎛⎫--+=-++ ⎪⎝⎭B .()8347831221a ab b a ab b --+=---C .()()222353261063x y xx y x +--=+-+ D .()()223423422x y xx y x --+=--+ C解析:C【分析】依据去括号法则计算即可判断正误.【详解】 A. 221135135122x y x x y x ⎛⎫--+=-+- ⎪⎝⎭,故此选项错误; B. ()8347831221a ab b a ab b --+=-+-,故此选项错误;C. ()()222353261063x y xx y x +--=+-+,此选项正确; D. ()()223423422x y xx y x --+=---,故此选项错误;故选:C.【点睛】此题考查整式的化简,注意去括号法则.11.探索规律:根据下图中箭头指向的规律,从2013到2014再到2015,箭头的方向是( )A .B .C .D . D解析:D【分析】根据图中规律可得,每4个数为一个循环组依次循环,用2013除以4,根据商和余数的情况解答即可.【详解】解:由图可知,每4个数为一个循环组依次循环,2013÷4=503余1,即0到2011共2012个数,构成前面503个循环,∴2012是第504个循环的第1个数,2013是第504个循环组的第2个数,∴从2013到2014再到2015,箭头的方向是.故选:D .【点睛】本题考查了数字变化规律,仔细观察图形,发现每4个数为一个循环组依次循环是解题的关键.12.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+31C 解析:C【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n (n+1)和12(n+1)(n+2),所以由正方形数可以推得n 的值,然后求得三角形数的值.【详解】∵A 中13不是“正方形数”;选项B 、D 中等式右侧并不是两个相邻“三角形数”之和. 故选:C .【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.13.若23,33M N x M x +=-=-,则N =( )A .236x x +-B .23x x -+C .236x x --D .23x x - D解析:D【分析】根据N=M+N-M 列式即可解决此题.【详解】依题意得,N=M+N-M=222(3)(33)3333x x x x x x ---=--+=-;故选D.【点睛】此题考查的是整式的加减,列式是关键,注意括号的运用.14.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差B .2倍的x 与1的差除以3的商C .x 与1的差的2倍除以3的商D .x 与1的差除以3的2倍B解析:B【分析】代数式表示分子与分母的商,分子是2倍的x 与1的差,据此即可判断.【详解】 代数式213x -的含义是2倍的x 与1的差除以3的商. 故选:B .【点睛】 本题考查了代数式,正确理解代数式表示的意义是关键.15.多项式33x y xy +-是( )A .三次三项式B .四次二项式C .三次二项式D .四次三项式D解析:D【分析】根据多项式的项及次数的定义确定题目中的多项式的项和次数就可以了.【详解】解:由题意,得该多项式有3项,最高项的次数为4,该多项式为:四次三项式.故选:D .【点睛】本题考查了多项式,正确把握多项式的次数与系数确定方法是解题的关1.当k =_________________时,多项式()221325x k xy y xy +----中不含xy 项.3【分析】先合并同类项然后使xy 的项的系数为0即可得出答案【详解】解:=∵多项式不含xy 项∴k-3=0解得:k=3故答案为:3【点睛】本题考查了多项式的知识属于基础题解答本题的关键是掌握合并同类项的解析:3【分析】先合并同类项,然后使xy 的项的系数为0,即可得出答案.【详解】解:()221325x k xy y xy +----=()22335x k xy y +---, ∵多项式不含xy 项,∴k-3=0,解得:k=3.故答案为:3.【点睛】本题考查了多项式的知识,属于基础题,解答本题的关键是掌握合并同类项的法则. 2.如图,阴影部分的面积用整式表示为_________.x2+3x +6【分析】阴影部分的面积=三个小矩形的面积的和【详解】如图:阴影部分的面积为:x·x+3x+3×2=x2+3x +6故答案为x2+3x +6【点睛】本题考查了列代数式和代数式求值解决这类问题解析:x 2+3x +6【分析】阴影部分的面积=三个小矩形的面积的和.【详解】如图:阴影部分的面积为:x·x+3x+3×2= x 2+3x +6. 故答案为x 2+3x +6【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.3.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.6n+2【解析】寻找规律:不难发现后一个图形比前一个图形多6根火柴棒即:第1个图形有8根火柴棒第2个图形有14=6×1+8根火柴棒第3个图形有20=6×2+8根火柴棒……第n个图形有6n+2根火柴棒解析:6n+2.【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒,第2个图形有14=6×1+8根火柴棒,第3个图形有20=6×2+8根火柴棒,……,第n个图形有6n+2根火柴棒.4.写出一个系数是-2,次数是4的单项式________.答案不唯一例:-2【解析】解:系数为-2次数为4的单项式为:-2x4故答案为-2x4点睛:本题考查了单项式的知识单项式中的数字因数叫做单项式的系数一个单项式中所有字母的指数的和叫做单项式的次数解析:答案不唯一,例:-24x.【解析】解:系数为-2,次数为4的单项式为:-2x4.故答案为-2x4.点睛:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.5.如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为_____.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2解析:n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1)=n2+2.故答案为:n2+2.【点睛】本题考查规律型:图形的变化类.6.关于x的二次三项式的一次项的系数为5,二次项的系数是-3,常数项是-4.按照x的次数逐渐减小排列,这个二次三项式为____.-3x2+5x-4【分析】由于多项式是由单项式组成的而多项式的次数是多项式中次数最高的项的次数而关于x的二次三项式的二次项系数是-3一次项系数是5常数项是-4根据前面的定义即可确定这个二次三项式【详解析:-3x2+5x-4【分析】由于多项式是由单项式组成的,而多项式的次数是“多项式中次数最高的项的次数”,而关于x的二次三项式的二次项系数是-3,一次项系数是5,常数项是-4,根据前面的定义即可确定这个二次三项式.【详解】∵关于x的二次三项式,二次项系数是-3,∴二次项是-3x2,∵一次项系数是,∴一次项是5x,∵常数项是-4,∴这个二次三项式为:-3x2+5x-4.故答案为:-3x2+5x-4【点睛】本题考查了多项式的知识,多项式是由单项式组成的,本题首先要确定是由几个单项式组成,要记住常数项也是一项,单项式前面的符号也应带着.7.将代数式4a2b+3ab2﹣2b3+a3按a的升幂排列的是_____.﹣2b3+3ab2+4a2b+a3【分析】找出a的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b3+3ab2+4a2b+a3.【分析】找出a的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b3+3ab2+4a2b+a3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.8.礼堂第一排有a个座位,后面每排都比第一排多1个座位,则第n排座位有________________.【分析】有第1排的座位数看第n排的座位数是在第1排座位数的基础上增加几个1即可【详解】解:∵第一排有个座位∴第2排的座位为a+1第3排的座位数为a+2…第n排座位有(a+n-1)个故答案为:(a+n+-解析:a n1【分析】有第1排的座位数,看第n排的座位数是在第1排座位数的基础上增加几个1即可.【详解】解:∵第一排有a个座位,∴第2排的座位为a+1,第3排的座位数为a+2,…第n排座位有(a+n-1)个.故答案为:(a+n-1).【点睛】考查列代数式;得到第n排的座位数与第1排座位数的关系式的规律是解决本题的关键.9.当x=1时,ax+b+1=﹣3,则(a+b﹣1)(1﹣a﹣b)的值为_____.-25【分析】由x =1时代数式ax+b+1的值是﹣3求出a+b的值将所得的值整体代入所求的代数式中进行计算即可得解【详解】解:∵当x=1时ax+b+1的值为﹣3∴a+b+1=﹣3∴a+b=﹣4∴(a解析:-25.【分析】由x=1时,代数式ax+b+1的值是﹣3,求出a+b的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x=1时,ax+b+1的值为﹣3,∴a+b+1=﹣3,∴a+b=﹣4,∴(a+b﹣1)(1﹣a﹣b)=(a+b﹣1)[1﹣(a+b)]=(﹣4﹣1)×(1+4)=﹣25.故答案为:﹣25.【点睛】此题考查整式的化简求值,运用整体代入法是解决问题的关键.10.将一张长方形的纸对折,如图,可得到一条折痕(图中虚线),连续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得7条折痕,连续对折5次后,可以得到________条折痕.31【分析】根据题意找出折叠次的折痕条数的函数解析式再将代入求解即可【详解】折叠次的折痕为;折叠次的折痕为;折叠次的折痕为;……故折叠次的折痕应该为;折叠次将代入折痕为故答案为:31【点睛】本题考查解析:31【分析】根据题意找出折叠n 次的折痕条数的函数解析式,再将5n =代入求解即可.【详解】折叠1次的折痕为1,1121=-;折叠2次的折痕为3,2321=-;折叠3次的折痕为7,3721=-;……故折叠n 次的折痕应该为21n -;折叠5次,将5n =代入,折痕为52131-=故答案为:31.【点睛】本题考查了图形类的规律题,找出折叠n 次的折痕条数的函数解析式是解题的关键. 11.为了鼓励节约用电,某地对用户用电收费标准作如下规定:如果每户用电不超过50度,那么每度电按a 元收费,如果超过50度,那么超过部分按每度()0.5a +元收费,某居民在一个月内用电98度,他这个月应缴纳电费______元.【分析】98度超过了50度应分两段进行计费第一段50每度收费a 元第二段(98-50)度每度收费(a+05)元据此计算即可【详解】解:由题意可得:(元)故答案为:(98a+24)【点睛】本题考查了列代解析:()9824a +【分析】98度超过了50度,应分两段进行计费,第一段50,每度收费a 元,第二段(98-50)度,每度收费(a +0.5)元,据此计算即可.【详解】解:由题意可得:()()5098500.59824a a a +-+=+(元).故答案为:(98a +24).【点睛】本题考查了列代数式,根据题意,列出代数式是解决此题的关键.1.计算:(1)()()312⨯-+-(2)2235223x x x x -+-+-解析:(1)5-;(2)241x x --【分析】(1)直接根据有理数的混合运算法则即可求解.(2)直接根据整式的加减混合运算法则即可求解.【详解】解:(1)原式(3)(2)=-+-5=-;(2)原式2(32)(51)(23)x x =---+-241x x =--.【点睛】此题主要考查有理数的加减运算和整式的加减运算,熟练掌握运算法则是解题关键. 2.已知单项式﹣2x 2y 的系数和次数分别是a ,b .(1)求a b ﹣ab 的值;(2)若|m|+m=0,求|b ﹣m|﹣|a+m|的值.解析:(1)﹣2;(2)1.【分析】(1)根据单项式的系数是数字因数,次数是字母指数的和,可得a 、b 的值,根据代数式求值,可得答案;(2)非正数的绝对值是它的相反数,可得m 的取值范围,根据差的绝对值是大数减小数,可得答案.【详解】解:由题意,得a=﹣2,b=2+1=3.a b ﹣ab=(﹣2)3﹣(﹣2)×3=﹣8+6=﹣2;(2)由|m|+m=0,得m≤0.|b ﹣m|﹣|a+m|=b ﹣m+(a+m )=b+a=3+(﹣2)=1;【点睛】本题考查了单项式的系数和次数的性质,掌握单项式中数字因数叫做单项式的系数,所有的字母的指数之和为次数是解决本题的关键.3.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a 2元;乙旅行社报价大人、小孩均为a 元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a 的代数式表示)解析:乙旅行社收费比甲旅行社贵0.2a 元.【分析】根据题意分别表示出甲乙两旅行社的费用,相减即可得到结果.【详解】根据题意得:(a+a+a )×90%-(a+a+12a ) =2.7a-2.5a=0.2a (元),则乙旅行社收费比甲旅行社贵0.2a 元.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.4.(规律探究题)用计算器计算下列各式,将结果填写在横线上.99999×11=__________;99999×12=__________;99999×13=__________;99999×14=__________.(1)你发现了什么?(2)不用计算器,你能直接写出99999×19的结果吗?解析:1099989;1199988;1299987;1399986;(1)如果n是11,12,13,…,20中的任何一个数,则:99999×n=(n-1)9998(20-n),其中(n-1)9998(20-n)是1个7位数,前2位是n-1,个位是20-n,中间4个数字总是9998;(2)99999×19=1899981【分析】用计算器分别进行计算,再根据结果找出规律,最后根据规律即可直接写出99999×19的结果.【详解】解:99999×11=1099989;99999×12=1199988;99999×13=1299987;99999×14=1399986.故答案为:1099989;1199988;1299987;1399986.(1)通过计算观察可发现以下规律:如果n是11,12,13,…,20中的任何一个数,则:99999×n=(n-1)9998(20-n),其中(n-1)9998(20-n)是1个7位数,前2位是n-1,个位是20-n,中间4个数字总是9998.(2)根据以上规律可直接写出:99999×19=1899981.【点睛】此题考查了计算器−有理数,解题的关键是通过用计算器计算,找出规律,通过规律进行解答.。
整式的加减添括号
(3)(a–b)–(c–d)= a –( b c d ).
2.判断下面的添括号对不对:
(1) a² +2ab+b² +(2ab+b² =a² )
(2) a²– 2ab+b² – (2ab+b² =a² )
(3) a – b – c+d=(a+d) –(b – c)
(√
)
(
(
(4) (a – b+c)(– a+b+c)
=[+(a – b)+c][–(a – b)+c]
× ) × √
)
=[c –(– a + b)][c+(– a + b)]
(√
)
(
)
你觉得我们添括号时应注意什么呢?
• 1添括号是添上括号和括号前面的符号,也就是说, 添括号时,括号前面的“+”号或“-”号也是新添 的,不是原多项式某一项的符号“移”出来得到的 。 • 2添括号过程和去括号的过程正好相反,添括号是否 正确,可以用去括号来检验。 总之,无论去括号还是添括号知改变式子的形式,不 改变式子的值,这就是多项式的恒等变形。
去括号的法则
所添的括号前面是“+”号,括到括号里的各 项
都不改变正负号;
所添的括号前面是“-”号,括到括号里的各 项 都改变正负号。
做一做: 1.在括号内填入适当的项: (1) x ² –x+1 = x ²–(
x 1
);
(2) 2 x ² x–1= 2 x ²+( 3 x 1 ); –3
添括号
热身运动
1.去括号法则:
a+(b+c) a-(b+c) = a+b+c = a-b-c
整式的加减知识点总结与典型例题
整式的加减知识点总结与典型例题一、整式——单项式1、单项式的定义:由数或字母的积组成的式子叫做单项式。
说明:单独的一个数或者单独的一个字母也是单项式.2、单项式的系数:单项式中的数字因数叫这个单项式的系数.说明:⑴单项式的系数可以是整数,也可能是分数或小数。
如23x 的系数是3;32ab 的系数是31;a 8.4的系数是; ⑵单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号,如24xy -的系数是4-;()y x 22-的系数是2-;⑶对于只含有字母因数的单项式,其系数是1或-1,不能认为是0,如2ab -的系数是-1;2ab 的系数是1;⑷表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。
如2πxy 的系数就是2.3、单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数.说明:⑴计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况。
如单项式z y x 242的次数是字母z ,y ,x 的指数和,即4+3+1=8,而不是7次,应注意字母z 的指数是1而不是0;⑵单项式的指数只和字母的指数有关,与系数的指数无关。
如单项式43242z y x -的次数是2+3+4=9而不是13次;⑶单项式是一个单独字母时,它的指数是1,如单项式m 的指数是1,单项式是单独的一个常数时,一般不讨论它的次数;4、在含有字母的式子中如果出现乘号,通常将乘号写作“• ”或者省略不写。
例如:t ⨯100可以写成t •100或t 1005、在书写单项式时,数字因数写在字母因数的前面,数字因数是带分数时转化成假分数. ※典型例题考向1:单项式1、代数式中,单项式的个数是( )A .1B .2C .3D .42、下列式子:中,单项式的个数是( )A .1B .2C .3D .43、下列式子:单项式的个数是( )A .4B .3C .2D .14、单项式y x 22-的系数为( )A .2B .-2C .3D .-3 5、单项式2ab 2π-的系数和次数分别是( )A .-2π、3B .-2、2C .-2、4D .-2π6、单项式z xy 2-的( )A .系数是0,次数是2B .系数是-1,次数是2C .系数是0,次数是4D .系数是-1,次数是47、单项式-2πy 的系数为( )A .-2πB .-2C .2D .2π8、下列各式中,次数为3的单项式是( )A.33y x +B.y x 2C.y x 3D.xy 3 9、单项式3224c ab -的系数与次数分别是( ) A .-2,6 B .2,7 C .32-,6 D. 32-,7 10、设a 是最小的自然数,b 是最大的负整数,c ,d 分别是单项式2xy -的系数和次数,则a ,b ,c ,d 四个数的和是( )A .-1B .0C .1D .3二、整式——多项式1、多项式的定义:几个单项式的和叫多项式.2、多项式的项:多项式中的每个单项式叫做多项式的项.3、多项式的次数:多项式里,次数最高项的次数叫多项式的次数.4、多项式的项数:多项式中所含单项式的个数就是多项式的项数.5、常数项:多项式里,不含字母的项叫做常数项.6、整式:单项式与多项式统称整式.※典型例题考向2:多项式1、多项式12++xy xy 是( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式2、多项式321xy xy +-的次数是( )A .1B .2C .3D .43、多项式21xy xy -+的次数及最高次项的系数分别是( )A .2,1B .2,-1C .3,-1D .5,-14、下列说法正确的是( )A .-2不是单项式B .-a 的次数是0 C.53ab 的系数是3 D.324-x 是多项式 5、下列代数式其中整式有( )A .1个B .2个C .3个D .4个6、在整式有( )A .4个B .5个C .6个D .7个7、代数式中是整式的共有( )A .5个B .4个C .3个D .2个8、在代数式中有( )A .5个整式B .4个单项式,3个多项式C .6个整式,4个单项式D .6个整式,单项式与多项式个数相同9、若m ,n 为自然数,则多项式n m n m y x +--4的次数应当是( )A .mB .nC .m+nD .m ,n 中较大的数10、如果整式252+--x x n 是关于x 的三次三项式,那么n 等于( )A .3B .4C .5D .611、多项式是关于x 的二次三项式,则m 的值是( )A .2B .-2C .2或-2D .3三、整式的加减——合并同类项1、同类项的概念:所含字母相同,并且相同字母的指数也相同的单项式是同类项.说明:⑴同类项必须具备两个条件:所含字母相同;相同字母的指数也分别相同。
2、2整式加减(第三课时 添括号) 21-22沪科版数学七上
化简|b+c|-|b+a|+|a+c|.
解:|b+c|-|b+a|+|a+c|
=-(b+c)-(-b-a)+(a+c)
=-b-c+b+a+a+c
=2a.
课外练习
1、已知m-n=1,求5-n+m的值
2、已知x+2y=5,求3-x-y的值
3、若 3a2 a 2 0 则 6a2 2a =____
灵活应用去括号和添 括号法则,对式子进 行整理达到化简目的
2、求代数式的值:5a [2(b 3c) (4a c)] 其中:a b 1,b 5c 2
3、实数a,b,c在数轴上的位置如图,
解:原式=a+2b-5c =a+b+b-5c =(a+b)+(b-5c) 当a+b=-1,b-5c=2时, 原式=-1+2=1
多项式的去括号法则: (1)、如果括号外的因数是正数, 去括号后原括号内各项的符号与原
来的符号_相__同__。
多项式的添括号法则:
(1)、所添括号前面是“+”号,
括到括号里的各项符号与原来符号相___同__。
ห้องสมุดไป่ตู้
(2)、如果括号外的因数是负数,去括
号后原括号内各项的符号与原来的符
号__相___反。
(2)、所添括号前面是“-”号,
4、已知a+b=5,ab=-3,求
代数式(2a-3b-2ab)-(a-4b-ab)的值
5、
若
a
b
4, 则代数式
ab
( 5 a - b) a b _______ a b 2(a b)
七年级数学整式的加减——去括号
6.化简:
(1)(2x-3y)+(5x+4y);(2)(x2-y2)-4(2x2-3y2);
(3)3(2x2-y2)-2(3y2-2x2);(4)(8xy-x2+y2)-3(-x2+y2+5xy).
7.若m,n互为相反数,则(3m-2n)-(5+2m-3n)的值为________.
2.-a+b-c的相反数是()
A.a-b-cB.a-b+c
C.a+b-cD.a+b+c
3.下列各式,与a-b-c的值不相等的是()
A.a-(b+c)B.a-(b-c)
C.(a-b)+(-c)D.(-c)-(b-a)
4.在括号内填上恰当的项:2-x2+2xy-y2=2-(_________________).
(1)2(x-0.5);(2)-10 .
知识点二 去括号与合并同类项的综合
例2化简:
(1)-6a+(3a-2)-(4a-7);(2) (9y-3)+2(y+1).
知识点三去括号与合并同类项的应用
例3飞机的无风航速为akm/h,风速为20km/h.飞机顺风飞行4h的行程是多少?飞机逆风飞行3h的行程是多少?两个行程相差多少?
(2)2a-3b+[4a-(3a-b)].
变式3有一根长为5a+4b的铁丝,剪下一部分围成一个长为a、宽为b的长方形,求这根铁丝剩余部分的长度.
巩固练习
1.下列各式化简正确的是()
A.-(2a-b+c)=-2a-b-cB.-(2a-b+c)=2a-b-c
C.-(2a-b+c)=-2a+b-cD.-(2a-b+c)=2a+b-c
变式练习
变式1去括号:
整式的加减典型例题讲解
三、当堂达标
见当堂达标 要求: 格式规范,书写认真
从错误中吸取教训, 从失败中取得进步,
胜利必将是你的!
一、知识定义点:由回__数顾__字__或_字__母__的__乘__积__组成的式子。 单独的_一__个__数_或_一__个__字__母_也是单项式。 单项式: 系数: 单项式中的__数_字__因__数__。 次数: 单项式中的___所_有__字__母__的__指_数__和___.
1.与_系__数_无关
(两无关)
2.与字__母__的__位__置__无关。
注意:几个常数项也是_同__类__项_。
合并同类项概念: _把__多__项_式__中__的__同__类_项__合__并__成__一_项_.
合并同类项法则: 1.__系_数___相加减;
2._字__母__和__字_母__的__指__数___不变。
求2二.已2、知A-多5例B项+题式3CA讲的= 值解 ,B=
,
C=
1.已知数a,b在数轴上的位置如图所示
a
0b
化简下列式子: a2ab3ba
3x25xy
8x2 5xy
3xy3x2
1.已知数a,b在数轴上的位置如图所示
a
0b
化简下列式子:
a2ab3ba
解:由题意知:a<0,b>0且|a|>|b|
多项式
定义:几个_单__项__式__的_和__.
项: 组成多项式中的__每__一_个__单__项__式__. 有几项,就叫做__几__项__式___.
常数项:多项式中__不__含_字__母__的__项____. 多项式的次数:多__项_式__中__次__数__最_高__的__项__的__次_数__。__.
七年级数学上册第4章代数式4.6整式的加减第1课时去括号法则同步练习
4.6 整式的加减第1课时去括号法则知识点1 去括号法则1.去括号的依据是( )A.乘法交换律B.乘法结合律C.乘法对加法的分配律D.乘法交换律与乘法对加法的分配律2.2017·湖州月考下列运算正确的是( )A.-2(a-b)=-2a-bB.-2(a-b)=-2a+bC.-2(a-b)=-2a-2bD.-2(a-b)=-2a+2b3.下列各式中,去括号正确的是( )A.a+(b-c)+d=a-b+c-dB.a-(b-c+d)=a-b-c+dC.a-(b-c+d)=a-b+c-dD.a-(b-c+d)=a-b+c+d4.去括号:-(a-2b)+(c-2)=____________,3a-2(5b-2c+1)=________________.知识点2 去括号与合并同类项5.2017·淮安计算:2(x-y)+3y=________.6.化简下列各式:(1)2(x+1)-x; (2)5b-(2a-4b);(3)2x2+3(2x-x2).7.先化简,再求值:-(y+x)-(5x-2y),其中x=1,y=-2.8. 在等式1-a2+2ab-b2=1-( )中,括号里应填( )A.a2-2ab+b2 B.a2-2ab-b2C.-a2-2ab+b2 D.-a2+2ab-b29.当a是整数时,整式a3-3a2+7a+7+(3-2a+3a2-a3)一定是( )A.3的整数倍 B.4的整数倍C.5的整数倍 D.10的整数倍图4-6-110.已知实数a,b,c在数轴上的对应点的位置如图4-6-1所示,化简|a-b|+|b -c|-|c-a|的结果是( )A.a-b B.b+cC.0 D.a-c11.先化简,再求值:2x2-y2+(2y2-x2)-3(x2+2y2),其中x=3,y=-2.12.将式子3x+(2x-x)=3x+2x-x,3x-(2x-x)=3x-2x+x分别反过来,你得到两个怎样的等式?(1)比较你得到的等式,你能总结添括号的法则吗?(2)根据上面你总结出的添括号法则,不改变多项式x3-3x2+3x-1的值,把它的后两项放在:①前面带有“+”号的括号里;②前面带有“-”号的括号里.1.C 2.D 3.C4.-a+2b+c-2 3a-10b+4c-25.2x+y6.解:(1)原式=2x+2-x=x+2.(2)原式=5b-2a+4b=9b-2a.(3)原式=2x2+6x-3x2=-x2+6x.7.解:原式=-y-x-5x+2y=y-6x.当x=1,y=-2时,原式=(-2)-6×1=-8.8. A9.C.10.C11.解:原式=2x2-y2+2y2-x2-3x2-6y2=-2x2-5y2.当x=3,y=-2时,原式=-18-20=-38.12.解:3x+2x-x=3x+(2x-x),3x-2x+x=3x-(2x-x).(1)所添括号前是“+”号,括到括号里的各项都不改变符号;所添括号前是“-”号,括到括号里的各项都改变符号.(2)①x3-3x2+3x-1=x3-3x2+(3x-1);②x3-3x2+3x-1=x3-3x2-(-3x+1).2.2 有理数的减法第2课时有理数的加减混合运算知识点1 有理数加减混合运算1.计算:(+5)-(+2)-(-3)+(-9)=(+5)+(________)+(________)+(-9)=________.2.计算:(1)(-5)-(+1)-(-6)=________;(2)-7+13-6+20=________.3.2017·绍兴计算6-(+3)-(-7)+(-5)所得的结果是( )A .-7B .-9C .5D .-34.下列交换加数位置的变形,正确的是() A .-5+34-2=34-5-2B .5-3+9=3-5+9C .3-4+6-7=4-3+7-6D .-8+12-16-23=-8-16+23-125.计算:(1)(-14)+56+23-12;(2)4.7-(-8.9)-7.5+(-6);(3)0-(-6)+2-(-13)-(+8);(4)13-(+0.25)+(-34)-(-23).知识点2 有理数加减混合运算的简单应用6.一架飞机在空中做特技表演,起飞后的高度变化情况如下:上升4.5 km ,下降3.2 km ,上升1.1 km ,下降1.4 km.此时飞机比起飞点高________.7.列式计算:(1)-25与-35的和减去-415的差是多少?(2)-3.6与234的和减去一个数的差为-2,求这个数.8.小明家某月的收支情况如下:爸爸、妈妈的工资分别为8000元和6500元,水电费190元,买菜、米等花去1000元,煤气费110元,更换冰箱3000元.只看这个月,小明家是收入还是支出?如果是收入,收入多少钱?如果是支出,支出多少钱?9. 下列各式中,与3-19+5的值相等的是( )A.3+(-19)-(-5)B.-3+(-19)+(-5)C.-3+(-19)+5D.3-(+19)-(+5)10.若x wy z表示运算x+z-(y+w),则3 -5-2 -1的结果是( )A.5 B.7 C.9 D.1111.计算:1-2+3-4+5-6+…+99-100=________.12.计算:(1)(+1.75)+⎝ ⎛⎭⎪⎫-13+⎝ ⎛⎭⎪⎫+45+(+1.05)+⎝ ⎛⎭⎪⎫-23+(+2.2);(2)-2-⎝ ⎛⎭⎪⎫+712+⎝ ⎛⎭⎪⎫-715-⎝ ⎛⎭⎪⎫-14-⎝ ⎛⎭⎪⎫-13+715.13.兴华粮食中转站仓库在9月1日至9月10日的时间内运进、运出粮食情况如下(运进记做“+”,运出记做“-”):+1050吨,-500吨,+2300吨,-80吨,-150吨,-320吨,+600吨,-360吨,+500吨,-210吨.在9月1日前仓库内没有粮食.(1)求9月3日仓库内共有粮食多少吨;(2)哪一天仓库内的粮食最多?最多是多少?(3)若每吨粮食的运费(包括运进、运出)是10元,从9月1日到9月10日仓库共需付运费多少元?14.小明在电脑中设置了一个有理数的运算程序:输入数a ,加*键,再输入数b ,就可以得到运算:a *b =(a -b )-|b -a |.(1)求(-3)*2的值;(2)求(3*4)*(-5)的值.1.-2 +3 -3 2.(1)0 (2)203.C 4.A5.解:(1)(-14)+56+23-12=-14-12+56+23=-14-12+(56+23)=-34+32=34. (2)4.7-(-8.9)-7.5+(-6)=4.7+8.9-7.5-6=4.7+8.9+[-7.5+(-6)]=13.6+(-13.5)=0.1.(3)0-(-6)+2-(-13)-(+8)=6+2-(-13)-(+8)=8+13-8=13. (4)13-(+0.25)+(-34)-(-23) =13+(-14)+(-34)+23=13+23+[-14+⎝ ⎛⎭⎪⎫-34] =1+(-1)=0.6.1 km7.解:(1)[(-25)+(-35)]-(-415)=(-1)-(-415)=-1115. (2)这个数为⎝⎛⎭⎪⎫-3.6+234-(-2)=1.15. 8.解:∵爸爸、妈妈的工资分别为8000元和6500元,水电费190元,买菜、米等花去1000元,煤气费110元,更换冰箱3000元,∴8000+6500-190-1000-110-3000=10200(元),∴只看这个月,小明家是收入,收入10200元.9.A.10.C11.-5012. 解:(1)原式=(1.75+1.05)+(0.8+2.2)-⎝ ⎛⎭⎪⎫13+23=2.8+3-1=4.8.(2)原式=-2+⎝ ⎛⎭⎪⎫-712+⎝ ⎛⎭⎪⎫-715+⎝ ⎛⎭⎪⎫+14+⎝ ⎛⎭⎪⎫+13+⎝ ⎛⎭⎪⎫+715 =-2+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-712+⎝ ⎛⎭⎪⎫+14+⎝ ⎛⎭⎪⎫+13+ ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-715+⎝ ⎛⎭⎪⎫+715 =-2+0+0=-2.13.解:(1)1050-500+2300=2850(吨).答:9月3日仓库内共有粮食2850吨.(2)9月9日仓库内的粮食最多,最多是2850-80-150-320+600-360+500=3040(吨).(3)运进1050+2300+600+500=4450(吨),运出|-500-80-150-320-360-210|=1620(吨).10×(4450+1620) =10×6070=60700(元).答:从9月1日到9月10日仓库共需付运费60700元.14.解:(1)(-3)*2=(-3-2)-|2-(-3)|=-5-5=-10.(2)∵3*4=(3-4)-|4-3|=-2,(-2)*(-5)=[(-2)-(-5)]-|-5-(-2)|=0, ∴(3*4)*(-5)=0.。
第二章《整式的加减》-----知识点及题型-----(第二版)
单项式一.知识点:1、单项式:由 数或字母 的乘积组成的式子称为单项式。
补充,单独一个 数 或一个 字母 也是单项式,如a ,π,5 。
应用:判断下列各式子哪些是单项式? (1)12x -;(2)35a b -;(3) 1y x +。
解:(1) 12x -不是单项式,因为含有字母与数的差; (2)35a b -是单项式,因为是数与字母的积; (3)1y x +不是单项式,因为含有字母与数的和,又含有字母与字母的商;练习:判断下列各式子哪些是单项式? (1)21+x ; (2) a bc ; (3) b 2; (4) -3a b 2; (5) y ; (6) 2-xy 2; (7) -0.5 ;(8) 11x +。
2、单项式系数:单项式是由数字因数和字母因数两部分组成的,其中的数字因数叫做单项式的系数。
应用:指出各单项式的系数:(1) 31a 2h ,(2) 322r ,(3) a bc ,(4)-m ,(5) 223ab π-注意:π是数字而不是字母。
解:(1) 31a 2h 的系数是31,(2) 322r 的系数是32, (3) a bc 的系数是1 (4)-m 的系数是-1, (5) 223ab π-的系数是23π- 注意:π是数字而不是字母。
3、单项式次数:单项式中所有 字母 的指数的 和 叫做单项式的次数。
注意:π是数字而不是字母。
应用:1.指出各单项式的次数:(1)31a 2h ,(2)3232r h ,(3)423ab π- 解:(1)因为字母a 的指数是2,字母h 的指数是1,213+=,所以 31a 2h 的次数是3, (2) 3232328r h r h =,因为字母r 的指数是2,字母h 的指数是3,235+=,所以3232r h 的次数是5, (3) 442233ab ab ππ--=, 因为字母a 的指数是1,字母b 的指数是4,145+=, 所以423ab π-的次数是5。
整式 - 整式加减运算习题
教案 教学内容知识回顾:1.整式的加减整式的加减的运算法则:如遇到括号,则先 去括号 ,有同类项的,再 合并同类项 .2.本章需要注意的几个问题:①分母中含有字母的代数式一定不是整式.②π不是字母,而是一个数字,③多项式相加(减)时,必须用括号把多项式括起来,才能进行计算.④去括号时,要特别注意括号前面的因数和符号.知识梳理:1.运用整体思想速解整式求值问题在进行整式求值问题的运算时,运用整体思想对某些数学问题进行处理,常能收到事半功倍之效.2.利用整式的加减解决无关型问题一般地,整式的值随字母的取值不同而不同,但整式中的字母取不同值时,整式的值不变,则这个整式的值一定是常数.若与某个字母无关,就是合并同类项以后,含这个字母的项的系数为0.3.整式加减在现实中的应用 现实生活中的一些问题与整式加减有着密切的关系,常常可用整式的加减知识来解决这些问题.单项式:数或字母的乘积叫单项式。
单个的数字和字母也是单项式;单项式的系数:单项式中数字因数角单项式的系数;单项式的次数:单项式中所有字母的指数的和叫单项式的次数;多项式:几个单项式的和叫做多项式;整式——整式加减运算习题单项式的定义多项式 单项式 整式 单项式的次数 单项式的系数 整式的定义 多项式的的次数 多项式的常数项 多项式的项 多项式的定义多项式的项:多项式中每个单项式叫做多项式的项;多项式的常数项:多项式中不含字母的项叫做常数项;多项式的次数:多项式中次数最高项的次数叫做多项式的项;整式:单项式和多项式统称整式。
(一)在研究单项式的系数问题时,要注意:1. 当单项式的系数是1或-1时,“1”通常省略不写。
2.圆周率π是常数。
3.当单项式的系数是带分数时,通常写成假分数。
4.单项式的系数应包括它前面的性质符号。
(二)规定:单独一个非零数的次数是0。
00是没意义的例题:1.整式的大小比较【例1】设M=x2﹣8x+22,N=﹣x2﹣8x﹣3,那么M与N的大小关系是()A.M>N B.M=N C.M<N D.无法确定总结:比较两个整式大小,可以使用作差比较法.(1)若两整式的差大于0,则前一个整式大;(2)若两整式的差小于0,则后一个整式大;(3)若两整式的差等于0,则两整式一样大.练1若A=3x2﹣5x+2,B=4x2﹣5x+6,则A与B的大小关系是()A.A>B B.A=B C.A<B D.无法确定2.整式化简后整体代入求值【例2】已知a+2b=3,则代数式2(2a﹣3b)﹣3(a﹣3b)﹣b的值为()A.﹣3 B.3 C.﹣6 D.6总结:从表面看,待求值的整式与已知条件没有关系,实际上待求值整式经过去括号、合并同类项后,就会得到和已知条件相关的式子,进而求解.练2已知x2﹣3xy=9,xy﹣y2=4,则代数式y2﹣x2的值为()A.﹣7 B.1 C.7 D.﹣13.解决整式化简后与某项无关的问题【例3】若多项式x kxy y xy22338--+-化简后不含xy项,求k的值.总结:多项式中不含某一项,说明这项的系数为0. 从而令其系数为0,列出方程进行求解即可.练3甲对乙说:“有一个游戏,规则是:你任想一个数,把这个数乘以2,结果加上8,再除以2,最后减去你想的数,此时我就知道结果.”请你说明理由,甲为什么能知道结果.4.利用整式加减解决实际问题【例4】甲、乙两家公司招人,甲家年薪20000元,每年加工龄工资600元;乙家半年薪10000元,每半年加工龄工资300元,问:选择哪家公司有利?总结:用整式正确表示出第n年甲、乙两公司的年薪是解本题的关键. 用整式作差可以得出甲、乙两个公司的年薪差.练4某房产公司卖出A,B两套公寓,售出后两套公寓都得到a万元,其中公寓A亏本20%,公寓B盈利20%.(1)用代数式表示公寓A,B的原价;(2)设房产公司则这两笔交易中的盈亏为p万元,写出用a表示p的代数式,并说明a=80时的盈亏情况.练习:一、选择题1.设A=2x2﹣x+1,B=x2﹣x﹣2,若x取任意实数,则A与B的关系为()A.A>B B.A=B C.A<B D.无法比较2.已知多项式M=5m2﹣8m+1,N=4m2﹣8m﹣1(m为任意有理数)则M、N的大小关系是()A.M>N B.M=N C.M<N D.不能确定3.已知x﹣y=3,那么代数式3(x﹣y)2﹣2(x﹣y)﹣2(x﹣y)2+x﹣y的值是()A.3 B.27 C.6 D.94.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是()A.4mcm B.4ncm C.2(m+n)cm D.4(m﹣n)cm5.若整式2a﹣[a+2(ka﹣1)]的值与a的取值无关,则k为()A.1 B.﹣1 C.12D.﹣126.甲、乙两个水桶中装有重量相等的水,先把甲桶的水倒三分之一给乙桶,再把乙桶的水倒出四分之一给甲桶(假设不会溢出).最后甲、乙两桶中水的重量的大小是( )A .甲>乙B .甲=乙C .甲<乙D .不能确定,与桶中原有水的重量有关7.某人从一个水果摊上买了三斤苹果,平均每斤a 元,他又从另一个水果摊上买了两斤苹果,平均每斤b 元,后来,他以2a b 元的价格把苹果全部卖掉,结果赔了钱,原因是( ) A .a <b B .a >b C .a =b D .与a 、b 的大小无关二、填空题8.如果m 、n 是两个不相等的实数,且满足m 2﹣2m =1,n 2﹣2n =1,那么代数式2m 2+4n 2﹣4n +1994=____________.9.若x ﹣y 看成一个整体,则化简(x ﹣y )2﹣3(x ﹣y )﹣4(x ﹣y )2+5(x ﹣y )的结果是______.三、解答题10.两个多项式:A =2a 2﹣4a +1,B =4(a 2﹣a )+3,比较A 与B 的大小.11.小明在实践课中做了一个三角形模型,模型的周长为5m +3n ﹣2,第一条边长为m ﹣n ,第二条边长是第一条边长的2倍,求第三条边长.12.已知A =2x 2+3ax ﹣4,B =﹣x 2+ax ﹣8,且3A +6B 的值与x 无关,求a 的值.13.莱蒙托夫是俄国著名的诗人,爱好数学,有一次,他给一些军官表演猜数游戏,他请一名军官随便想好一个数,不要说出来,然后请这位军官将想好的数加上25,再加上125,再减去37,再减去最初想好的数,把所得的数乘以5,最后再除以2.这时莱蒙托夫说,我可以猜出你算出的结果,他问那位军官是282.5吗,那位军官非常吃惊,莱蒙托夫是怎样算出正确结果的,解释其中的道理.14.一个三位数,百位数是a ,十位数是b ,个位数是c ,且a >b ,把百位数与个位数的位置交换得到一个新的三位数.试说明:原三位数与新三位数的差一定是99的倍数.15.小雯乘公共汽车到图书城买书,上车时发现车上有(3a﹣b)人,车到中途站时,下车一半人,但又上车若干人,这时车上共有乘客(8a﹣5b)人,问:(1)中途上车的乘客是多少人?(2)当a=4,b=2时,上车乘客是多少人?16.(2014秋•萧山区期末)已知A=y2﹣ay﹣1,B=2by2﹣4y﹣1,且多项式2A﹣B的值与字母y的取值无关,求2(a2b ﹣1)﹣3a2b+2的值.17.已知A=x3-2y3+3x2y+xy2-3xy+4,B=y3-x3-4x2y-3xy-3xy2+3,C=y3+x2y+2xy2+6xy-6,试说明无论x,y,z 取何值,A+B+C均为常数.18.小马买了一套经济适用房,他准备将地面铺上地砖,地面结构如图3所示.根据图中的数据(单位:米),解答下列问题:(1)用含x,y的整式表示地面总面积;(2)若铺1米2地砖的平均费用为80元,求当x=4,y=32时,铺地砖的总费用为多少元?19.李华老师给学生出了一道题:当a=0.35,b=-0.28时,求7a3-6a3b+3a2b+3a3+6a3b-3ba2-10a3+3的值.题目出完后,小明说:“老师给的条件a=0.35,b=-0.28是多余的”.王光说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?20.一个三角形一边长为a+b,另一边比这条边长b,第三边比这条边短a.(1)求这个三角形的周长;(2)若a=5,b=3,求三角形的周长.11.一个多项式,当减去2x2﹣3x+7时,因把“减去”误认为“加上”,得5x2﹣2x+4,试求这个多项式.12.先化简,再求值:ab﹣2{ab﹣[3a2b﹣(4ab2+32ab)]﹣4a2b}﹣4ab2,其中a=﹣1,b=1.13.计算:5(mn﹣m2)﹣m2﹣2mn﹣2(mn﹣3m2).。
3.4整式的加减(2)去括号法则
原式 2ab 2a 3b 3ab 2b 2a a 4b ab 3a 3b 6ab 3(a b) 6ab
当a b 4, ab 1时, 原式 3 4 6 1 12 6 6
归纳小结
这节课我们学到了什么?
(_____) a-c b(______) a-c b
2
(5) (a b) (____) b-a (b a)2
2
练习三:下列等式是否一定成立?
(1) -a+b= -(a-b) (2) -a+b= -(b+a) (3) 2-3x= -(3x-2) (4) 30-x=5(6-x) (一 定 )
2
1 当x , y 1时, 2 1 1 2 1 1 1 原式 (1 ) ( ) (1 ) 2 2 2 4 4
(2) (2ab 2a 3b) (3ab 2b 2a) (a 4b ab), 其中a b 4, ab 1 解(2):
例 5: 在下列各式的括号内填入适当的项(添括号)
(1) a+b+c=a+( b+c ) (2) a+b-c=a-( -b+c ) (3) x+2y-3z=2y-( -x+3z ) (4) (a+b-c)(a-b-c)= a (______) b-c a (_______) b+c
例 去括号,并合并同类项: (1)4a-(a-3b); (2)a+(5a-3b)-2(a-2b); (3)3(2xy-y)-2xy。
解(1): 原式=4a-a+3b=3a+3b 解(2): 原式=a+5a-3b-2a+4b=4a+b
整式的加减--去括号法则(练习)(原卷版)
第4章 代数式4.6.1整式的加减--去括号法则(练习)精选练习 一、单选题(共7题) 1.(2020·安徽长丰·初一期末)下列各式,去括号添括号正确的是( )A .()a b a b --=--B .23(23)a b a b +=--C .2(4)24x x -=-D .()()()()am bn an bm am an bm bn ---=-+-2.(2018·山东全国·初一课时练习)()()23x y y --+-+去括号后的结果为() A .23x y y ---+ B .23x -+ C .23x + D .223x y --+3.(2018·全国初一期末)把()2a b c --+去括号正确的是( )A .2a b c -+B .2a b c +-C .2a b c -+D .2a b c ++4.(2020·全国初一课时练习)已知3,2a b c d -=-+=,则()()a c b d +--的值是( )A .1-B .5-C .5D .15.(2020·全国初一课时练习)化简7(x +y )﹣5(x +y )的结果是( )A .2x +2yB .2x +yC .x +2yD .2x ﹣2y6.(2020·全国初一课时练习)化简(1)(2)3a a -----+的结果为( )A .4B .6C .0D .无法计算7.(2020·山东泗水·初一期中)下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.222221131342222x xy y x xy y x ⎛⎫⎛⎫-+---+-=- ⎪ ⎪⎝⎭⎝⎭2y +,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是( )A .-7xyB .-xyC .7xyD .+xy 二、填空题(共4题)8.(2019·全国初一单元测试)去括号:26(31)x x --+=________基础篇提高篇9.(2020·上海市静安区实验中学初一课时练习)化简:226334xx x x _________.10.去括号:3264(5)x x x ⎡⎤---+=⎣⎦__________. 11.(2020·河北饶阳·初一期末)如图,两个正方形边长分别为2、a (a >2),图中阴影部分的面积为_____.三、解答题(共4题)12.(2020·宿迁市钟吾国际学校初一期中)化简:(1)3232235x x x x --+-;(2)221622(3)2a ab a ab --+; 13.(2020·河北文安·初一期末)先化简,再求值:22222222(22)3()3()x y x y x x y y --+++,其中1x =-,2y =.14.(2020·广东郁南·初一期末)先化简,再求值:()()22222322a b ab a b ab a b -+---,其中1a =,2b =-. 15.(2020·宿迁市钟吾国际学校初一期中)某辆公交车上原来有(8a-6b )人,中途下去一半,又上来若干人,使车上共有乘客(10a-6b )人.(1)求中途上来了多少乘客?(用含a 、b 的式子表示,结果要化简)(2)当a=4,b=3时,中途上车的乘客是多少人?。
第13讲整式加减(7种题型)(原卷版)
第13讲 整式加减(7种题型)【知识梳理】一、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同; 如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反. 要点诠释:(1)去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“”号时,可以看作1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“”号,然后再根据法则去掉括号及前面的符号. (3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形. 二、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号; 添括号后,括号前面是“”号,括到括号里的各项都要改变符号. 要点诠释:(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号是两种相反的变形,因此可以相互检验正误:如:()a b ca b c +-+-添括号去括号, ()a b ca b c -+--添括号去括号三、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项. 要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项. (2)两个整式相加减时,减数一定先要用括号括起来.(3)整式加减的最后结果中:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【考点剖析】 题型一、去括号例1.去括号:(1)d2(3a2b+3c ); (2)(xy1)+(x+y ).【变式1】去掉下列各式中的括号:(1). 8m (3n+5); (2). n4(32m ); (3). 2(a2b )3(2mn ).【变式2】先去括号,再合并同类项:(1)()()33121x x --+;(2)()()2232212x x -+-;(3)()()223323b a a b -+-;(4)()()22223222x xy y x xy y ---+-.【变式3】计算:()()23145x x y y ++---.题型二、添括号例2.在各式的括号中填上适当的项,使等式成立.(1). 2345()()x y z t +-+=-=+2()x =-23()x y =+-; (2). 23452()2()x y z t x x -+-=+=-23()45()x y z t =--=--.【变式1】()()1 a b c d a -+-=-;()()22 ;x y z +-=-()()()()()22222223 ;4 a b a b a b a b a b a a -+-=-+---=--.【变式2】按要求把多项式321a b c -+-添上括号:(1)把含a 、b 的项放到前面带有“+”号的括号里,不含a 、b 的项放到前面带有“”号的括号里; (2)把项的符号为正的放到前面带有“+”号的括号里,项的符号为负的放到前面带有“”号的括号里.【变式3】添括号:(1)22()101025()10()25x y x y x y +--+=+-+.(2)()()[(_______)][(_______)]a b c d a b c d a a -+-+-+=-+.题型三、化简求值例3.化简:()22212123(2)2232x x x x x x ⎛⎫--++----+ ⎪⎝⎭.【变式1】先化简,再求各式的值:22131222,2,;22333x x y x y x y ⎛⎫⎛⎫+-+--=-= ⎪ ⎪⎝⎭⎝⎭其中【变式2】先化简再求值:(x 2+5x+4)+(5x4+2x 2),其中x =2.【变式3】先化简,再求各式的值:(){}123225,,12x y x x y x y x y --+-++==-⎡⎤⎣⎦其中.题型四:“无关”与“不含”型问题例4. 如果关于x 的多项式22(8614)(865)x ax x x ++-++的值与x 无关.你知道a 应该取什么值吗?试 试看.【变式1】代数式22111221352x ax y x y bx ⎛⎫⎛⎫+-+--+- ⎪ ⎪⎝⎭⎝⎭的值与字母x 取值无关,求25a b -的值.【变式2】已知多项式2x ax y b +-+与2363bx x y -+-的差的值与字母x 无关,求代数式:22223(2)(4)a ab b a ab b ---++的值.【变式3】已知关于a 的多项式323253a ma a --++,2835a a -+相加后,不含二次项,求m 的值.题型五:整体思想的应用例5.已知2xy =-,3x y +=,求整式(310)[5(223)]xy y x xy y x ++-+-的值.【变式1】先化简,再求值:3(2)[3()]2y x x x y x +----,其中,x y 化为相反数.【变式2】已知3a 24b 2=5,2a 2+3b 2=10.求:(1)15a 2+3b 2的值;(2)2a 214b 2的值.【变式3】当2m π=时,多项式31am bm ++的值是0,则多项式3145_____2a b ππ++=. 题型六:求两个整式的和与差 例6.计算:(1)求整式231a b +-与322a b -+的和.(2)求代数式242x x ---与32534x x x ++-的和与差. (3)求整式253x x --与2232x x -+-的差.【变式1】.已知21A x =--,3225A B x x -=-+- (1)求B ;(2)当12x =时,求A B +的值.【变式2】列式计算:如果22(2)x x -+减去某个多项式的差是122x -,求这个多项式.【变式3】已知A -B=7a 2-7ab ,且B=-4a 2+5ab +8.求A 等于多少.【变式4】已知2244A x xy y =-+,225B x xy y =+-.求2A B -.【变式5】已知2322A b ab =+-,2112B a ab =-+-. 求:A -2B.【变式6】已知:432231,2A x x x x B x x =-+-+=--+,求2[()]A B B A ---.【变式7】一个多项式,当减去2237x x -+时,因把“减去”误认为“加上”,得2524x x -+,试问这道题的正确答案是什么?【变式8】一个多项式A 减去多项式2253x x +-,马虎同学将减号抄成了加号,运算结果是32457x x -+,求多项式A .题型七、整式加减运算的应用例7.有一种石棉瓦(如图所示),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米, 那么n (n 为正整数)块石棉瓦覆盖的宽度为 ( ) .A .60n 厘米B .50n 厘米C .(50n+10)厘米D .(60n10)厘米【变式1】如图所示,长方形内有两个相邻的正方形,面积分别为9和a 2(a >0).那么阴影部分的面积为________.【变式2】如果长方形周长为8a ,一边长为a +b ,则另一边长为__________. 【变式3】已知a 、b 表示两个有理数,规定一种新运算“*”为:a*b =2(a -b ),那么 5*(-2)的值为 .【变式4】有一个两位数,它的十位数字是个位数字的8倍,则这个两位数一定是9的倍数,试说明理由.【变式5】在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”. 如图1的“等和格”中,每行、每列及对角线上的3个代数式的和都等于15.(1)在图2的“等和格”方格图中,可得a= .(用含b 的代数式表示); (2)在图3的“等和格”方格图中,可得a= ,b= ; (3)在图4的“等和格”方格图中,可得b = .【过关检测】一.选择题(共10小题)1.(2022秋•泗阳县期末)下列去括号正确的是( ) A .﹣(﹣a ﹣b )=a ﹣b B .﹣(﹣a ﹣b )=a +b C .﹣(﹣a ﹣b )=﹣a ﹣bD .﹣(﹣a ﹣b )=﹣a +b2.(2023•柯桥区校级模拟)将整式﹣[a ﹣(b +c )]去括号,得( ) A .﹣a +b +c B .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c3.(2022秋•宁明县期末)已知A =2a 2﹣3a ,B =2a 2﹣a ﹣1,当a =﹣4时,A ﹣B =( ) A .8B .9C .﹣9D .﹣74.(2022秋•海门市期末)计算﹣2(4a ﹣b ),结果是( ) A .﹣8a ﹣bB .﹣8a +bC .﹣8a +2bD .﹣8a ﹣2b图4图3图2图1a -3a 2+2a b+3a 2+2aa-2a 22a 2+a b - 8-2a a3b 2a2a3b a-2a 6817532945.(2022秋•零陵区期末)下列各项中,去括号正确的是()A.﹣(2x﹣y)=﹣2x﹣y B.﹣3(m+n)=﹣3m﹣nC.3(a2﹣2a+1)=3a2﹣6a D.2(a﹣2b)=2a﹣4b6.(2022秋•河池期末)若A=2x2+x+1,B=x2+x,则A、B的大小关系()A.A>B B.A<B C.A=B D.不能确定7.(2022秋•曲靖期末)多项式x3﹣3x2+2x+1与多项式2x3+3x2﹣3x﹣5相加,化简后不含的项是()A.三次项B.二次项C.一次项D.常数项8.(2022秋•惠城区校级期末)已知A=3x2+2x﹣1,B=mx+1,若关于x的多项式A+B不含一次项,则m 的值()A.2B.﹣3C.4D.﹣29.(2023春•义乌市期中)如图,长为y(cm),宽为x(cm)的大长方形被分割为7小块,除阴影A,B外,其余5块是形状、大小完全相同的小长方形,其较短的边长为4cm,下列说法中正确的是()①小长方形的较长边为(y﹣12)cm;②阴影A的较短边和阴影B的较短边之和为(x﹣y+4)cm;③若x为定值,则阴影A和阴影B的周长和为定值;④若y=20时,则阴影A的周长比阴影B的周长少8cm.A.①③B.②④C.①④D.①③④10.(2022秋•江北区校级期末)已知四个多项式A=x﹣2,B=x+1,C=x2﹣2x﹣1,D=2x2+3,有以下结论:①四个多项式的和是大于1的正数;②若多项式A+B﹣m•C+D是关于x的二次二项式,则该多项式的二次项系数为3或4;③若x的取值满足A,B的绝对值之和为3,则存在x的值,使多项式2C﹣D的值为0.上述结论中,正确的个数有()A.0个B.1个C.2个D.3个二.填空题(共8小题)11.(2022秋•绵阳期末)去括号:5a3﹣[4a2﹣(a﹣1)]=.12.(2022秋•江夏区期末)把式子﹣(﹣a)+(﹣b)﹣(c﹣1)改写成不含括号的形式是.13.(2022秋•南京期末)若M=x2﹣2,N=x2﹣3,则M N(填“>”、“<”或“=”).14.(2022秋•定陶区期末)当x=2,y=﹣1时,代数式4x2﹣3(x2+xy﹣y2)的值为.15.(2023•红谷滩区校级一模)若关于x,y的多项式2x2+abxy﹣y+6与2bx2+3xy+5y﹣1的差的值与字母x 的取值无关,则a=.16.(2022秋•泗阳县期末)已知5a+3b=﹣4,则2(a+b)+4(2a+b)=.17.(2023春•衢江区期中)添括号:﹣x2﹣1=﹣().18.(2022秋•丹徒区期末)已知x2+xy=2,xy﹣y2=3,则代数式x2+3xy﹣2y2=.三.解答题(共10小题)19.(2022秋•零陵区期末)已知多项式A=2x﹣my﹣3,B=nx﹣3y+1.(1)若(m﹣4)2+|n+3|=0,化简A﹣B;(2)若A+B的结果中不含有x项以及y项,求mn的值.20.(2022秋•曹县期末)已知2A+B=8a2﹣5ab,A=4a2﹣6ab﹣7.(1)求B;(2)若|a+2|+(b﹣1)2=0,计算B的值.21.(2022秋•寻乌县期末)理解与思考:整体代换是数学的一种思想方法,例如:x2+x=0,则x2+x+1186=;我们将x2+x作为一个整体代入,则原式=0+1186=1186.仿照上面的解题方法,完成下面的问题:(1)若x2+x﹣1=0,则x2+x+2022=;(2)如果a+b=5,求2(a+b)﹣4a﹣4b+21的值;(3)若a2+2ab=20,b2+2ab=8,求2a2﹣3b2﹣2ab的值.22.(2021秋•临潼区期中)小明在计算3(x2+2x﹣3)﹣A时,将A前面的“﹣”抄成了“+”,化简结果为﹣x2+8x﹣7.(1)求整式A;(2)计算3(x2+2x﹣3)﹣A的正确结果.23.(2021秋•金安区校级期中)老师写出一个整式:2(ax2﹣bx﹣1)﹣3(2x2﹣x)﹣1,其中a、b为常数,且表示为系数,然后让同学们给a、b赋予不同的数值进行计算.(1)甲同学给出了一组数据,然后计算的结果为2x2﹣x﹣3,则甲同学给出a、b的值分别是a=,b=;(2)乙同学给出了a=5,b=﹣1,请按照乙同学给出的数值化简整式;(3)丙同学给出一组数,计算的最后结果与x的取值无关,请直接写出丙同学的计算结果.24.(2021秋•浏阳市期中)如果关于x的多项式2x2﹣(2y n+1﹣mx2)﹣3的值与x的取值无关,且该多项式的次数是三次,求m,n的值.25.(2023春•平谷区期末)已知x2﹣5x﹣4=0,求的值.26.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.27.(2022•南京模拟)先去括号,再合并同类项;(1)(3x2+4﹣5x3)﹣(x3﹣3+3x2)(2)(3x2﹣xy﹣2y2)﹣2(x2+xy﹣2y2)(3)2x﹣[2(x+3y)﹣3(x﹣2y)](4)(a+b)2﹣(a+b)﹣(a+b)2+(﹣3)2(a+b).28.(2022秋•鞍山期末)先化简,再求值:,其中.。
去括号法则及整式的加减练习
word 格式-可编辑-感谢下载支持去括号法则及整式的加减练习班级 姓名 学号一、 去括号法则的考查1、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号 ;2、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号 ;3、去括号法则的依据是 ,使用时不要漏乘 ;二、去括号法则应用考查1、(3)x +-= ;(3)x --= ; (23)x c +-= ; (2)x y --+= ; 2、3(2)x y +-+= ; 2(23)x y --= ; 3(42)x y --= ;3、43(2)4x x y x +--= = ;52(2)5y x y y --= = ;4、3(2)y x y y ---=- = ;5、222232(2)3x y xy x y x y ---=- = ;三、整式的加减整式加减的运算法则: ;6、化简下列各式:(1) 2225(2)(4)x y xy x y +--- (2) 2244()3ab ab a a ---(3)2(2)(2)xy y yx y --- (4)2222(65)6()m n mn m n mn ---7、先化简,再求值: 225(23)2(43)x y x x x y ---, 其中1x =-,12y =。
8、先化简,再求值: 22225(3)(3)x y xy xy x y ----,其中12x =-,13y =-。
四、整体代入思想的应用利用整体代入法,对所求多项式进行适当变形后,再将已知条件整体代入求值9、若2ab =,则23a b ⋅=6( )=6× ;若1a b +=,则22a b +=2( )=2× = ;a b --=( )-= ;10、若24a b -=,则24a b -=2( )= 2× = ;12a b -=12( )= 12× = ; 11、已知2310x y +-=,求(1)2263x y +-的值。
整式的加减--去括号.2.2 去括号法则
=+1×(a-b+c) = a-b+c +(a-b+c)=? -(a-b+c)=? =-1×(a-b+c)=-a+b-c
记一记
去括号法则
括号前是“+”号,把括号和它前面的“+”号 去掉,括号里各项都不变号;
括号前是“-”号,把括号和它前面的“-”号 去掉,括号里各项都改变符号。
顺口溜
去括号,看符号;是“+”号,不变号; 是“-”号,全变号。
a(b+c)=ab+ac
2.利用乘法分配律计算:
1 2 12 ( ) = 2+8 6 3 1 1 12 ( ) = -3+4 4 3
注意符号和项数
练一练
练习:去掉下列各式中的括号:
(1)21 2 x
2 4x
(2) 3 2x 1
2
6 x 2 3
练一练
(1)去括号(口答): a+(b-c)= a+b-c a-(b-c)= a-b+c a+(-b+c)= a-b+c a-(-b+c)= a+b-c
练一练
(2)判断正误: a-(b+c)= a-b+c ( × ) a-(b-c)= a-b-c (×) 2b+(-3a+1)=2b-3 ( × ) -2(b-c)= -2b-2c (× )
计算: (1)M N (2)M 2 N
注意:整体代入时要加括号。
牛刀小试
.客车上原有(2a-b)人,中途有一半 乘客下车,又有若干人上车,若结果 车上共有乘客(8a-5b) 人,问上车乘 客有多少人?
整式的加减去括号法则
整式的加减去括号法则整式包括常数、变量和它们的乘积或和负积。
在整式的加减运算中,我们要根据不同的情况来应用相应的法则。
首先,当两个括号中的整式都没有负号时,我们要将两个括号中的每一项都进行加法运算。
例如,对于整式(a+b)+(c+d),我们可以将括号中的每一项进行加法运算,得到a+b+c+d。
其次,当一个括号中的整式有负号时,我们要将括号中的整式的每一项都乘以-1,然后再将括号中的整式与括号外的整式进行加法运算。
例如,对于整式(a+b)+(-c-d),我们可以将(-c-d)中的每一项乘以-1,得到-a-b,然后再将(a+b)与(-a-b)进行加法运算,得到0。
第三,当两个括号中都有负号时,我们要将两个括号中的整式的每一项都分别乘以-1,然后再将括号中的整式与括号外的整式进行加法运算。
例如,对于整式(-a-b)+(-c-d),我们可以将(-a-b)和(-c-d)中的每一项都乘以-1,分别得到a+b和c+d,然后再将(a+b)和(c+d)进行加法运算,得到a+b+c+d。
在整式的加减运算中,我们还需要注意系数的加减运算。
当两个括号中的整式相同,并且没有负号时,我们可以将系数相加。
例如,对于整式2(a+b)+3(a+b),我们可以将2和3进行加法运算,得到5,然后再将(a+b)乘以5,得到5(a+b)。
当两个括号中的整式相同,并且其中一个有负号时,我们可以将系数相减。
例如,对于整式2(a+b)-3(a+b),我们可以将2和3进行减法运算,得到-1,然后再将(a+b)乘以-1,得到-(a+b)。
当我们将整式进行加减运算时,需要按照以上的法则来进行,以确保运算的准确性。
在运用这些法则时,我们还可以使用分配律来简化运算过程。
分配律指的是在整式的加减运算中,可以将一个括号中的整式的每一项分别与另一个括号中的整式的每一项进行乘法运算,然后再将得到的乘积进行加法运算。
例如,对于整式(a+b)(c+d),我们可以将a与c、a与d、b与c、b与d分别进行乘法运算,然后再将得到的四个乘积进行加法运算。
整式的加减专题知识点 常考(典型)题型 重难点题型(含详细答案)
整式的加减专题知识点常考(典型)题型重难点题型(含详细答案)一、目录二、知识点1.整式的加减定义2.整式的加减原则3.整式的加减步骤三、常考题型1.基础练题2.提高练题四、重难点题型1.含有分式的整式加减2.含有根式的整式加减3.含有绝对值的整式加减五、详细答案二、知识点1.整式的加减定义整式加减是指将同类项合并,最终得到一个简化的整式的过程。
整式是由各种数的积和和式构成,包括常数项、一次项、二次项等。
2.整式的加减原则在整式加减中,只有同类项才能相加减。
同类项是指变量的指数相同的项,例如2x^2和5x^2就是同类项,但2x^2和5x^3不是同类项。
3.整式的加减步骤整式加减的步骤如下:1.将同类项放在一起。
2.对同类项的系数进行加减运算。
3.将结果合并,得到简化后的整式。
三、常考题型1.基础练题例题:将3x^2+5x-2和2x^2-3x+1相加。
解题思路:将同类项放在一起,得到5x^2+2x-1,即为答案。
答案:5x^2+2x-12.提高练题例题:将4x^2+3x-1和2x^2-5x+3相减。
解题思路:将同类项放在一起,得到2x^2+8x-4,即为答案。
答案:2x^2+8x-4四、重难点题型1.含有分式的整式加减例题:将(2x^2+3)/(x+1)和(3x-1)/(x+1)相加。
解题思路:先将分式化简为同分母,得到(2x^2+3+3x-1)/(x+1),化简后得到(2x^2+3x+2)/(x+1),即为答案。
答案:(2x^2+3x+2)/(x+1)2.含有根式的整式加减例题:将3√2x+5和5√2x-2相减。
解题思路:将同类项放在一起,得到(3-5)√2x+7,化简后得到-2√2x+7,即为答案。
答案:-2√2x+73.含有绝对值的整式加减例题:将|2x+1|+|3x-2|和|4x-3|相减。
解题思路:考虑绝对值的取值范围,将式子拆分为两部分,得到(2x+1+3x-2)-(4x-3)和(4x-3)-(2x+1+3x-2),化简后得到5x-1和-x,即为答案。
去括号法则及练习题
去括号法则及练习题括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;括号前是“-”号,把括号和它前面的“-”号去括,括号里各项都改变符号为了便于记忆,教师引导学生共同完成下面的顺口溜:去括号,看符号:是“+”号,不变号;是“-”号,全变号若括号前是数字因数时,应利用乘法分配律先将该数与括号内的各项分别相乘再去括号,以免发生符号错误;多层括号的去法;对于含有多层括号的问题,应先观察式子的特点,再决定去掉多层括号的顺序,以使运算简便,一般由内到外,先去小括号,再去中括号,最后去大括号,有时也可从外到内,先去大括号,再去中括号,最后去小括号,去大括号时,要将中括号视为一个整体,去中括号时,要将小括号视为一个整体。
添括号法则。
所添括号前面的符号是添括号后括到括号里各项是否变号的依据;尤其要注意括号前面是“-”号时,括到括号时的各项都改变符号。
添括号是否正确可用去括号来检验。
去括号与添括号的顺序刚好相反。
典型例题例1 化简下列各式8a+2b+ -3根据所学的内容化简学会理解去括号法则例2两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米、时2小时后两船的距离多远?小时后甲船比乙船多航行多少千米?例去括号:a+; a-说明:在做此题过程中,让学生出声念去括号法则,再次强调”是+号,不变号;是一号,全变号”例去括号:-+; -分析:此两题中都分别要去两个括号,要注意每个前的符号另外第小题前实际上是省略了“+”号例判断:下列去括号有没有错误?若有错,请改正: a2- =a2-2a-b+c;-+ =-x-y+xy-1.分析:在去括号的运算中,当前是“-”号时,容易犯的错误是只将第一项变号,而其他项不变.例根据去括号法则,在___上填上“+”号或“-”号: a___=a-b+c; a___=a-b+c+d;_______=c+d-a+b分析:此题是先知去括号的结果,再确定括号前的符号,旨在通过变式训练,训练学生的逆向思维例去括号-[a-]分析:去多重括号,有两种方法,一是由内向外,一是由外向内例8先去括号,再合并同类项:11x+[x+]; - ;4a- ;3a+- ; 3-2xy分析:第小题的方法例5已讲,只是再多一步合并同类项,第小题中前出现了非±1的系数,方法是将系数及系数前符号看成一个整体,利用分配律一次去掉括号变式训练1.根据去括号法则,在上填上“+”号或“-”号:a=a-b+c; a=a-b+c+d;=c+d-a+b;2.已知x+y=2,则x+y+3=, -x-y=.3.下列去括号有没有错误?若有错,请改正: a2--+=a2-2a-b+c; =-x-y+xy-1.3.去括号:a+3 = x-2 =3a+4b- = -3 =4.计算a+= a-=+=--=-=-+=5.去括号:a+=a-=-+= -=6.化简:+;-;a-+2; 3-;-+2z; -5x2+-+2;2-+; 3a2+a2-+。
浙教版七年级上册数学第4章 4.6整式的加减(1)去括号法则 基础知识、课后巩固练习
4.6整式的加减(1)——去括号法则学习指要知识要点1.去括号法则:括号前是”+”号,把括号和它前面的“+”号去掉,括号里各项都不变号;括号前是”一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号、即“变则全变,不变全不变”例如,+(a+b-c)=a+b-c,-(a+b-c)=-a-b+c2.整式加减的一般步骤:(1)如果有括号,那么先去括号,有多重括号时,一般从里到外,依次进行;也可以由外向里逐层去括号,但这时要把内层括号当成一项处理(2)如果有同类项,要合并同类项重要提示1.在整式的加减运算中,如果遇到括号就根据去括号法则,先去括号,再合并同类项2.若括号前有数字因数时,应利用分配律先将该数与括号内的各项分别相乘,再去括号,以免发生符号错误.3.整式加减的结果仍是整式,一般按某个字母的降幂(或升幂)排列.结果中不能含有同类项,即要合并到不能再合并为止4.如果把十(a+bーc)看做1・(a+b-c),把一(a+b-c)看做(一1)・(a+b-c),那么去括号的实质就是分配律的运用.5.去括号时,首先看括号前面的符号,根据不同的符号选择合适的法则,且去括号时,要将括号和它前面的符号一同去掉6.当减数是多项式时,减数要添上括号.课后巩固之夯实基础一、选择题1.(2018·温州期末)化简-(m -n)的结果是( )A .m -nB .m +nC .-m -nD .-m +n2.下列运算正确的是( )A .-3(x -1)=-3x -1B .-3(x -1)=-3x +1C .-3(x -1)=-3x -3D .-3(x -1)=-3x +33.(2018·杭州下城区期末)下列去括号正确的是() A .-2(12x -y)=-x -2yB .-0.5(1-2x)=-0.5+xC .-(2x 2-x +1)=-2x 2-x +1D .3(2x -3y)=6x -3y4.计算-3(x -2y)+4(x -2y)的结果是( )A .x -2yB .x +2yC .-x -2yD .-x +2y5.当a =5,b =3时,a -[b -2a -(a -b)]的值为( )A .10B .14C .-10D .46.如果长方形的周长为4,一边长为m -n ,那么另一边长为( )A .3m +nB .2m +2nC .2-m +nD .m +3n二、填空题7.(2017·龙岩上杭县期末)在括号内填上恰当的项使等式成立:x 2-y 2+8y -4=x 2-(__________).8.(2018·杭州萧山区期末)已知x =2,则代数式-12x -(x -3)的值为________. 9.实数a ,b 在数轴上对应的点的位置如图K -26-1所示,则|a|-||a -b =________.图K -26-110.一根钢筋长a 米,第一次用去了全长的13,第二次用去了余下的12,则剩余部分的长度为__________米.(结果要化简)三、解答题11.化简:(1)(-x +2x 2+5)+(4x 2-3-6x);(2)(3a2-ab+7)-(-4a2+2ab+7).12.先化简,再求值:(1)(ab-3b2+2a2-2)-(2a2+2b2-3ab+1),其中a=-12,b=2;(2)-3(a2-2b2)+(-2b2-a2)-12(3a2+b2),其中a=-2,b=4.13.对于实数a,b,定义一种新运算“※”:a※b=3a+2b,化简:(x+y)※(x-y).14.某轮船顺水航行了4小时,逆水航行了2小时.已知船在静水中的速度为每小时a 千米,水流速度为每小时b千米,求轮船共航行了多少千米.15.(2018·河北嘉淇)准备完成题目:化简(x2+6x+8)-(6x+5x2+2).K发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)-(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中的“”是几.16.已知多项式(2x2+ax-y+6)-(2bx2-3x+5y-1).(1)若多项式的值与字母x的取值无关,求a,b的值;(2)在(1)的条件下,先化简多项式3(a2-ab+b2)-(3a2+ab+b2),再求它的值.课后巩固之能力提升17.拓展延伸为节约用水,某市做出了对用水大户限制用水的规定:每一户月用水量不超过规定标准m吨时,按每吨2元的价格收费;若超过了标准用水量,则超出部分每吨加收0.5元的附加费用.(1)若规定标准用水量为17吨,某用户4月份用水15吨,5月份用水20吨,分别求该用户这两个月的水费;(2)若某用户在6月份用水x吨,则该用户应交水费多少元?18.将式子3x+(2x-x)=3x+2x-x,3x-(2x-x)=3x-2x+x分别反过来,你得到两个怎样的等式?(1)根据你得到的等式,你能总结出添括号的法则吗?(2)根据上面你总结出的添括号法则,不改变多项式x3-3x2+3x-1的值,把它的后两项放在:①前面带有“+”号的括号里;②前面带有“-”号的括号里.详解详析1.[答案] D2.[解析] D 去括号时,要按照去括号法则,将括号前的-3与括号内每一项分别相乘,尤其需要注意,-3与-1相乘时,应该是+3而不是-3.3.[答案] B4.[答案] A5.[答案] B6.[答案] C7.[答案] y 2-8y +48.[答案] 09.[答案] -b10.[答案] 13a 11.解:(1)(-x +2x 2+5)+(4x 2-3-6x)=-x +2x 2+5+4x 2-3-6x=6x 2-7x +2.(2)(3a 2-ab +7)-(-4a 2+2ab +7)=3a 2-ab +7+4a 2-2ab -7=7a 2-3ab.12.解:(1)原式=ab -3b 2+2a 2-2-2a 2-2b 2+3ab -1=(-3-2)b 2+(2-2)a 2+(1+3)ab -(2+1)=-5b 2+4ab -3.当a =-12,b =2时,原式=-5×22+4×⎝⎛⎭⎫-12×2-3=-27. (2)-3(a 2-2b 2)+(-2b 2-a 2)-12(3a 2+b 2)=-3a 2+6b 2-2b 2-a 2-32a 2-12b 2 =(-3-1-32)a 2+(6-2-12)b 2 =-112a 2+72b 2. 当a =-2,b =4时,原式=-112×(-2)2+72×42=-22+56=34. 13.解:(x +y)※(x -y)=3(x +y)+2(x -y)=3x +3y +2x -2y =5x +y.14.[解析] 船顺水航行时的速度=船在静水中的速度+水流速度,船逆水航行时的速度=船在静水中的速度-水流速度.解:4(a +b)+2(a -b)=4a +4b +2a -2b=(6a +2b)千米.答:轮船共航行了(6a +2b)千米.15.解:(1)(3x 2+6x +8)-(6x +5x 2+2)=3x 2+6x +8-6x -5x 2-2=-2x 2+6. (2)( x 2+6x +8)-(6x +5x 2+2)=( -5)x 2+6.∵标准答案的结果是常数, ∴ =5.16.解:(1)原式=2x 2+ax -y +6-2bx 2+3x -5y +1=(2-2b)x 2+(a +3)x -6y +7, 由多项式的值与x 的取值无关,得到a +3=0,2-2b =0,解得a =-3,b =1.(2)原式=3a 2-3ab +3b 2-3a 2-ab -b 2=-4ab +2b 2.当a=-3,b=1时,原式=-4×(-3)×1+2×12=12+2=14.17.解:(1)4月份应交水费2×15=30(元);5月份应交水费2×17+(2+0.5)×(20-17)=41.5(元).(2)当0≤x≤m时,应交水费2m元;当x>m时,应交水费2m+(2+0.5)(x-m)=(2.5x-0.5m)元.18.解:3x+2x-x=3x+(2x-x),3x-2x+x=3x-(2x-x).(1)能.所添括号前是“+”号,括到括号里的各项都不改变符号;所添括号前是“-”号,括到括号里的各项都改变符号.(2)①x3-3x2+3x-1=x3-3x2+(3x-1);②x3-3x2+3x-1=x3-3x2-(-3x+1).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
- 2 -
去括号法则及整式的加减练习
一、 去括号法则的考查
1、如果括号外的因数是正数,去括号后原括号内各项的符号与原
来的符号 ;
2、如果括号外的因数是负数,去括号后原括号内各项的符号与原
来的符号 ;
3、去括号法则的依据是 ,使用时不要漏
乘 ;
二、去括号法则应用考查
1、(3)x +-= ; (3)x --= ; (23)x c +-= ;
(2)x y --+= ;
2、3(2)x y +-+= ; 2(23)x y --= ;
3(42)x y --= ;
3、43(2)4x x y x +--= = ;52(2)5y x y y --= = ;
4、3(2)y x y y ---=- = ;
5、222232(2)3x y xy x y x y ---=- = ;
三、整式的加减
整式加减的运算法则:
6、化简下列各式:
(1) 2225(2)(4)x y xy x y +--- (2) 2244()3ab ab a a ---
(3)2(2)(2)xy y yx y --- (4)2222(65)6()m n mn m n mn ---
7、先化简,再求值: 8、先化简,再求值:
225(23)2(43)x y x x x y ---, 22225(3)(3)x y xy xy x y ----,
其中1x =-,1
2y =。
其中12x =-,13
y =-。
3
四、整体代入思想的应用
利用整体代入法,对所求多项式进行适当变形后,再将已知条件整体代入求值
9、若2ab =,则23a b ⋅=6( )=6× ;
若1a b +=,则22a b +=2( )=2× = ;a b --=( )-= ;
10、若24a b -=,则24a b -=2( )= 2× = ;
12a b -=12( )= 12
× = ; 11、已知2310x y +-=,求(1)2263x y +-的值。
(2)2392x y +-的值。
(3)213122x y ++的值。
(4)233x y --的值。
(5)213222
x y --的值。
(1)解:∵已知2310x y +-=
∴ 231x y +=
∴222632(3)32131x y x y +-=+-=⨯-=-
(2)解:∵已知2310x y +-=
∴ 231x y +=
∴2392x y +-=3( )2-=3⨯ 2-= ;
(3)解:∵
∴ ∴213122
x y ++=
(4)解:∵
∴
∴233x y --=3-( )=
(5)解:∵
∴ ∴213
222
x y --= 12、已知A=231x x +-,B=21x -,(1)求A-2B 的值;(2)求2A-6B 的值;。