高一第一学期期末数学水平测试参考答案

合集下载

定西市重点中学2023届高一数学第一学期期末学业水平测试试题含解析

定西市重点中学2023届高一数学第一学期期末学业水平测试试题含解析
2022-2023 学年高一上数学期末模拟试卷
注意事项 1.考生要认真填写考场号和座位序号。 2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用 2B 铅笔作答;第二部分必须用黑 色字迹的签字笔作答。 3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共 12 小题,共 60 分)
2
9.已知
,
,
,则 的大小关系
A.
B.
C.
D.
10.已知角 的终边过点 P1, 2,则 tan 等于( )
A.2
B. 2
C. 1
D. 1
2
2
11.把长为 9m 的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是()
A. 3 3 m2 8
B. 2m2
C. 9 2 m2 8
D. 9 3 m2 8
【解析】讨论 a 0 和 a 0 两种情况讨论,解方程,求 a 的值.
【详解】当 a 0 时, log2 a 4 a 16 ,成立,

a
0
时,
1 2
a
4
a
2 ,成立,
所以 a 16 或 2 .
故答案为:16 或 2
15、(1)3(2) a 3 2 2 或 a 3 2 2
【解析】(1)由 f 1 4 可得 a b 3,再利用基本不等式中乘“1”法的应用计算可得;
(1)求函数 f x 解析式,并写出函数 f x 的单调递增区间; (2)将函数 f x 图象上所有点的横坐标缩短到原来的 1 (纵坐标不变),再将所得的函数图象上所有点向左平移
4
m
0
m
2
个单位长度,得到函数

高一数学期末考试测试卷参考答案

高一数学期末考试测试卷参考答案

高一数学期末考试测试卷参考答案1.B【详解】因为,所以,则,所以复数所对应的向量的坐标为.故选:B 2.A【详解】,故选:A.3.D【详解】向量在上的投影为,向量在上的投影向量为.故选:D.4.C 【详解】由题意,可得,即因为,所以,即,故△ABC 是直角三角形故选:C 5.A【详解】由可得: ,故 ,解得 ,故 ,故选:A 6.C【详解】根据题意:概率等于没有黄球的概率减去只有白球或只有红球的概率.即.故选:.7.D【详解】对于A ,空间中两直线的位置关系有三种:平行、相交和异面,故A 错误;对于B ,若空间中两直线没有公共点,则这两直线异面或平行,故B 错误;对于C ,和两条异面直线都相交的两直线是异面直线或相交直线,故C 错误;12i z z +=⋅()2i 11z -⋅=()()112i 12i 12i 2i 12i 112i 555z ----====------z 12,55⎛⎫-- ⎪⎝⎭()441414333333AD AB BD AB BC AB AC AB AB AC a b =+=+=+-=-+=-+ a b ·cos 3a π ab 1·cos ·232b a b b b π=⨯= 1cos 22a b C a ++=⨯cos b C a=2222b a b c a ab+-=222a b c =+90A =︒sin 2sin B C =2b c =22222567cos 248b c a c A bc c +--===2,4c b ==11sin 4222ABC S bc A ==⨯⨯ 3331115162312p ⎛⎫⎛⎫⎛⎫=---= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C对于D ,如图,在长方体中,当所在直线为所在直线为时,与相交,当所在直线为所在直线为时,与异面,若两直线分别是正方体的相邻两个面的对角线所在的直线,则这两直线可能相交,也可能异面,故D 正确.(8题)故选:D8.A【详解】在△ABC 中,b cos A =c﹣a ,由正弦定理可得sin B cos A =sin C ﹣sin A ,可得sin B cos A =sin (A +B )﹣sin A =sin A cos B +cos A sin B ﹣sin A ,即sin A cos B =sin A ,由于sin A ≠0,所以,由B ∈(0,π),可得B=,设AD =x,则CD =2x ,AC =3x ,在△ADB ,△BDC,△ABC 中分别利用余弦定理,可得cos ∠ADB=,cos ∠CDB =,cos ∠ABC =,由于cos ∠ADB =﹣cos ∠CDB ,可得6x 2=a 2+2c 2﹣12,再根据cos ∠ABC =,可得a 2+c 2﹣9x 2=ac ,所以4c 2+a 2+2ac =36,根据基本不等式可得4c 2+a 2≥4ac ,所以ac ≤6,当且仅当a =c 所以△ABC 的面积S =ac sin ∠ABC ac A .9.AC【详解】对于A ,是纯虚数,故A 正确;对于B ,,对应的点的坐标为,位于第四象限,故B 错误;对于C ,复数的共轭复数为,故C 正确;对于D ,,故D 错误.故选:AC10.BC ABCD A B C D -''''A B ',a BC 'b a b A B ',a B C 'b a b 12121212121cos 2B =3π2244x c x +-22448x a x +-22292a c x ac+-12122z 12(1i)2i 13i z z -=--=-(1,3)-1z 11i z =+12(1i)2i 2i 2z z =-⋅=+11.【详解】对于A ,由,则,故A 错误;对于B ,与相互独立,则与相互独立,故,故B 正确;对于CD ,互斥,则,,故C 正确,D 错误.故选:BC11.BC【详解】对于A 选项,由图形可知,直线、异面,A 错;对于B 选项,连接,因为,则直线与所成角为或其补角,易知为等边三角形,故,因此,直线与所成的角为,B 对;对于C 选项,分别取、的中点、,连接、、,因为四边形为正方形,、分别为、的中点,所以,且,又因为,则四边形为矩形,所以,,且,同理可证,且,因为平面,则平面,因为平面,则,因为,、平面,所以,平面,因为平面,所以,,因此,平面与平面所成二面角的平面角为,因为平面,平面,所以,,又因为,故为等腰直角三角形,故,因此,平面与平面所成二面角的平面角为,C 对;对于D 选项,易知,又因为且,则四边形为等腰梯形,分别过点、在平面内作、,垂足分别为、,()()0.2,0.6P A P B ==()()1P A P B+≠A B A B ()()()()()()10.48P AB P A P B P A P B ==-=,A B ()()()0.8P A B P A P B ⋃=+=()()0P AB P =∅=AM BN 1AD 1//MN CD MN AC 1ACD ∠1ACD △160ACD ∠= MN AC 60 AB CD E F ME MF EF ABCD E F AB CD //AE DF AE DF =AD AE ⊥AEFD EF AB ⊥//EF AD 1//MF DD 12MF DD ==1DD ⊥ABCD MF ⊥ABCD AB ⊂ABCD AB MF ⊥EF MF F ⋂=EF MF ⊂EMF AB ⊥EMF ME ⊂EMF AB ME ⊥AMB ABCD MEF ∠MF ⊥ABCD EF ⊂ABCD MF EF ⊥2MF EF ==MEF 45MEF Ð=o AMB ABCD 45 BN ===1A M =1//MN A B 112MN A B =1A BNM M N 1A BNM 1MP A B ⊥1NQ A B ⊥P Q因为,,,所以,,所以,,因为,,,则四边形为矩形,所以,,所以,所以,,由A 选项可知,平面截正方体所得的截面为梯形,故截面面积为,D 错.故选:BC.12.2【详解】.故答案为:2.13.【详解】在中,由正弦定理可得,,又由题知,所以,整理得,,在中,由余弦定理得,,所以,又,所以.故答案为:.14. 【详解】由题意,恰有一个人面试合格的概率为:,甲签约,乙、丙没有签约的概率为;1A M BN =1MA P NBQ ∠=∠190MPA NQB ∠=∠= 1Rt Rt A MP BNQ △≌△1A P BQ =//MN PQ 1MP A B ⊥1NQ A B ⊥MNQP PQ MN ==112A B PQ A P BQ -====MP ===BMN 1A BNM ()1922A B MN MP +⋅==()2202a kb b a b kb k k -⋅=⋅-⇔-=⇔= π3ABC sin sin sin C c A B a b =++sin sin sin a b C a c A B -=-+a b c a c a b-=-+222b a c ac =+-ABC 2222cos b a c ac B =+-1cos 2B =()0,B π∈3B π=3π49793113113114(1)(1(1(1)(1)(14334334339P =⨯-⨯-+-⨯⨯-+-⨯-⨯=13112(1)4333P =⨯-⨯=甲未签约,乙、丙都签约的概率为甲乙丙三人都签约的概率为,所以至少一人签约的概率为.故答案为:;.15.【详解】(1)由频率分布直方图可得分数不小于60的频率为:,则分数小于60的频率为:,故从总体的500名学生中随机抽取一人,其分数小于60的概率估计为;(2)由频率分布直方图易得分数小于70的频率为,分数小于80的频率为,则测评成绩的第分位数落在区间上,所以测评成绩的第分位数为;(3)依题意,记事件 “抽到的学生分数小于30”,事件 “抽到的学生是男生”,因为分数小于40的学生有5人,其中3名男生;所以“抽到的学生是男生”的概率为,因为分数小于30的学生有2人,其中1名男生,所以“抽到的学生分数小于30” 的概率为,因为事件表示“抽到的学生分数小于30且为男生”,满足条件的只有1名男生,所以,因为,所以这两个事件不相互独立.16.【详解】(1)由,,故,由余弦定理可得,即,即,13111(143336P=-⨯⨯=3311143312P =⨯⨯=2117336129++=4979()0.020.040.02100.8++⨯=10.80.2-=0.20.40.875%[)70,8075%0.35701078.750.4+⨯=A =B =()35P B =()25P A =AB ()15P AB =()()()P A P B P AB ≠sin θ=π,π2θ⎛⎫∈ ⎪⎝⎭cos θ==2222cos 54413BD AB AD AB AD θ=+-⋅=++=BD CD ==sin sin AB BD ADB θ=∠sin sin AB ADB BD θ∠=⋅==则故有,故,;(2),,故,则,其中,则当,即ABCD 的面积最大,此时,即此时小路BD.17.【详解】(1)取棱的中点,连接、、,则就是所求作的线,如图:在正方体中,连,是的中点,为的中点,则,且,于是得四边形是平行四边形,有,而平面,平面,因此平面,πcos cos sin 2ADC ADB ADB ⎛⎫∠=+∠=-∠= ⎪⎝⎭2222cos 4132225AC AD CD AD CD ADC ⎛=+-⋅∠=+-⨯= ⎝5AC =22111117sin 222222ABCD ABD BCD S S S AB AD BD θ=+=⋅+=+⨯= 1sin 2ABD S AB AD θθ=⋅= 2222cos 549BD AB AD AB AD θθθ=+-⋅=+-=-21922BCD S BD θ==- ()995sin 22ABCD ABD BCD S S S θθθϕ=+=+-=-+ sin ϕ=π0,2ϕ⎛⎫∈ ⎪⎝⎭π2θϕ-=πcos cos sin 2θϕϕ⎛⎫=+=-= ⎪⎝⎭2917BD ⎛=-= ⎝1DD F AF CF AC ,,FC FA CA 1111ABCD A B C D -EF E 1CC F 1DD EF CD BA ∥∥EF CD BA ==ABEF AF BE ∥BE ⊂1BD E AF ⊄1BD E AF 1BD E又,,即四边形为平行四边形,则,又平面,平面,于是有平面,而,平面,从而得平面平面,所以就是所求作的线.(2)在正方体中,连接,如图,且,则四边形为平行四边形,有,三棱锥的体积,所以四棱锥的体积.18.【详解】(1)解:由频率分布直方图,根据平均数的计算公式,估计这次知识能力测评的平均数:分.(2)解:由频率分布直方图,可得的频率为,的频率为,所以用分层随机抽样的方法从,两个区间共抽取出4名学生,可得从抽取人,即为,从中抽取人,即为,从这4名学生中随机抽取2名依次进行交流分享,有 ,共有12个基本事件;其中第二个交流分享的学生成绩在区间的有:,共有3个,所以概率为.(3)解:甲最终获胜的可能性大.理由如下:由题意,甲至少得1分的概率是,1FD CE ∥1FD CE =1CED F 1CF ED ∥1ED ⊂1BD E CF ⊄1BD E CF 1BD E CF AF F ⋂=,CF AF ⊂AFC AFC 1BD E ,,FC FA CA 1111ABCD A B C D -11111,,,,,,AD BC EA EB EC ED AC 11AB C D ∥11AB C D =11ABC D 1112ABC D ABC S S = △1E ABC -111111112()21233263E ABC A BC E BC E V V S AB BC C E AB --==⋅=⋅⋅=⨯⨯⨯= 11E ABC D -111423E ABC D E ABC V V --==(650.01750.015850.045950.03)1084.5x =⨯+⨯+⨯+⨯⨯=[)60,700.1[]90,1000.3[)60,70[]90,100[)60,701a []90,10031,2,3()()()()(),1,,2,,3,1,2,1,3,a a a ()()()()()()()2,3,1,,2,,3,,2,1,3,1,3,2a a a []60,70()()()1,,2,,3,a a a 31124P ==4750可得,其中,解得,则甲的2分或3分的概率为:,所以乙得分为2分或3分的概率为,因为,所以甲最终获胜的可能性更大.19.【详解】(1)由题知,,所以∠AOB 是所折成的直二面角的平面角,即OA ⊥OB .因为,所以AO ⊥平面,所以OC 是AC 在平面内的射影,在四边形ABCD是等腰梯形中,,高得,,在和中,, 所以,,所以,因为AO ⊥平面,平面,所以,因为,所以平面,因为平面,所以(2)由(1)知,,所以⊥平面AOC .设,过点E 作于点F ,连接,因为,所以平面,因为平面,所以所以是二面角的平面角.由(1)知得,,高得,.所以,,12471(1)(1)(1)2550p ----=01p ≤≤45p =1241241241243(1(1(12552552552555P =⨯⨯-+⨯-⨯+-⨯⨯+⨯⨯=253255>1OA OO ⊥1OB OO ⊥1OO OB O = 1OBCO 1OBCO 3AB CD =h =tan A =6AB =2CD =1OO =1Rt OO B 1Rt OO C △11tan OB OO B OO ∠==111tan O C O OC OO ∠===160OO B ∠=︒130O OC ∠=︒1OC BO ⊥1OBCO 1BO ⊂1OBCO 1AO BO ⊥AO OC O = 1BO ⊥AOC AC ⊂AOC 1AC BO ⊥1AC BO ⊥1OC BO ⊥1BO 1OC O B E ⋂=EF AC ⊥1O F 1EF O B E = AC ⊥1O EF 1O F ⊂1O EF 1O F AC⊥1O FE ∠1O AC O --3AB CD =h =tan A =6AB =2CD =3OA =1OO =11O C =所以,因为平面平面,平面平面,,所以平面,因为平面,所以 所以又所以二面角1O A =AC =1AOO D ⊥1BOO C 1AOO D 11BOO C OO =11OO CO ⊥1CO ⊥1AOO D 1AO ⊂1AOO D 11CO AO ^111O A O C O F AC ⋅=11sin30O E OO =⋅= 111sin O E O FE O F ∠==1O AC O --。

成都市2024届高一上数学期末学业水平测试试题含解析

成都市2024届高一上数学期末学业水平测试试题含解析

为3,4 55
所以 sin 3 , 是锐角,可得 cos 4 ,
5
5
因为锐角 的终边与单位圆相交于 Q 点,且纵坐标为 4 ,
5
所以 sin 4 , 是锐角,可得 cos 3 ,
5
5
所以 sin sin cos cos sin 3 3 4 4 1,
【解题分析】

由已知可得 AD⊥DC 又由其余各棱长都为 1 得正三角形 BCD,取 CD 得中点 E,连 BE,则 BE⊥CD 在平面 ADC 中,过 E 作 AD 的平行线交 AC 于点 F,则∠BEF 为二面角 A﹣CD﹣B 的平面角
∵EF= 1 (三角形 ACD 的中位线),BE= 3 (正三角形 BCD 的高),BF= 2 (等腰 RT 三角形 ABC,F 是斜边中点)
易知该长方体的长、宽、高分别为1、 2 、 3 ,
所以该几何体的外接球半径 r 1 22 32 14 ,
2
2
所以该球的表面积
S
4 r2
4
14 2
2
14
.
故答案为:14 .
12、

【解题分析】根据正切函数性质求解、
【题目详解】由正切函数性质,由

所以
,,
故答案为:

,,
13、 【解题分析】解直角三角形 AOC,求出半径 AO,代入弧长公式求出弧长的值 解:如图:设∠AOB=2,AB=2,过点 0 作 OC⊥AB,C 为垂足, 并延长 OC 交 于 D,则∠AOD=∠BOD=1,AC= AB=1
ABCD , PA 3 , AB 1, BC 2 ,则此阳马的外接球的表面积为______.
12.不等式
的解集为______

河北省邢台一中2023届高一上数学期末学业水平测试试题含解析

河北省邢台一中2023届高一上数学期末学业水平测试试题含解析
最短.
15.命题“ x 0 , x2 1 2x ”的否定是___________.
16.已知角 A 为
的内角,
,则
______
三、解答题(本大题共 6 小题,共 70 分)
17.如图,正三棱柱 ABC A1B1C1 的底面边长为 3,侧棱 AA1 3 ,D 是 CB 延长线上一点,且 BD BC
f
m
f
m
2,
因为 f (m) 1,所以 f m 3 .
故选:B. 7、D
【解析】由题意确定直线斜率,再根据点斜式求直线方程.
【详解】由题意直线
l

AB
垂直,所以 kl
1 42
3l
:
y4
3(x 3),3x
y 13
0,
33
选 D.
【点睛】本题考查直线斜率与直线方程,考查基本求解能力.
8、A
y 2|x| x2 的大致图象是( )
A.
B.
C.
D.
10.函数 y 2 x 1 的定义域是 x 1
A.(-1,2] C.(-1 ,2)
B.[-1,2] D.[-1,2)
11.已知直线 l1 : y 3x 2 ,直线 l2:6x 2 y 1 0 ,则 l1 与 l2 之间的距离为()
【详解】振幅 A 即为半径,即 A 3;
因为逆时针方向每分转 1.5 圈,所以 1.5 2 ; 60 20
K dmax dmin 3 2.2 (2.2 3) 2.2;
2
2
故选:D.
3、D
【解析】由任意角三角函数的定义可得结果.
【详解】依题意得
.
故选:D.
4、B
【解析】因为函数

辽宁省大连市2023-2024学年高一上学期期末考试数学答案

辽宁省大连市2023-2024学年高一上学期期末考试数学答案

大连市2023~2024学年度第一学期期末考试高一数学参考答案与评分标准说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 一、单项选择题:1.C 2.C 3.D 4.A 5.B 6.B 7.D 8.A 二、多项选择题:9.AC 10.ACD 11.BCD 12.BC 三、填空题:13.1 14.2()f x x -=(答案不唯一) 15.8;8.7 16.四、解答题:17.(本小题满分10分)解:(1)2(2,3)2(1,2)(2,3)(2,4)(4,1)+=+-=+-=-a b …………………2分|2|+==a b …………………4分(2)方法一:由已知得(2,3)(1,2)(2,23)λλλλ+=+-=+-+a b ,(2,3)(1,2)(21,32)λλλλ+=+-=+-a b …………………6分因为与共线,所以(2)(32)(21)(23)λλλλ+-=+-+ …………………8分 解得1λ=或1λ=-. …………………10分方法二:由已知(2,3)=a ,(1,2)=-bλ+a b λ+a b因为2(2)13⨯-≠⨯,所以a 与b 不共线, …………………6分 所以a b λ+≠0,因为与共线,所以存在实数μ,使得()a b a b λμλ+=+ …………………8分即a b a b λμλμ+=+,所以1λμλμ=⎧⎨=⎩,解得1λ=或1λ=- …………………10分18.(本小题满分12分) 解:(1)由频率分布直方图可知,(0.0050.0050.00750.020.0025)201a +++++⨯=解得0.01=a . …………………3分 (2)估计80%分位数为0.80.10.10.150.41101150.01----+=. ……………6分(3)由频率分布直方图可知,得分在[50,70)分数段的人数为1000.0052010⨯⨯=人,得分在[70,90)分数段的人数为1000.00752015⨯⨯=人. …………………7分 由分层抽样可知,在[50,70)分数段抽取两人,分别记为12,a a ,在[70,90)分数段抽取三人,分别记为123,,b b b , …………………8分 因此这个试验的样本空间可记为{}12111213212223121323Ω,,,,,,,,,a a a b a b a b a b a b a b b b b b b b =, 共包含10个样本点. …………………9分方法一:记A :抽取的这2名学生至少有1人成绩在[70,90)内,则}111213212223121323{,,,,,,,,=A a b a b a b a b a b a b b b b b b b ,包含9个样本点,……………10分 所以()109=P A . …………………12分 方法二:记A :抽取的这2名学生至少有1人成绩在[70,90)内, 则A :抽取的这2名学生成绩都在[50,70)内,}12{=A a a ,包含1个样本点, …………………10分所以()101=P A , λ+a b λ+a b从而1()1()911010=-=-=P A P A . …………………12分 19.(本小题满分12分)解:设,(1,2,3)=i i A B i 分别表示甲、乙在第i 次投篮投中. (1)所求的概率为1111211()()()323==⨯=P A B P A P B . …………………4分(2)所求的概率为111211223111211223()()()()++=++P A A B A A B A B A P A P A B A P A B A B A1211212111333233232327=+⨯⨯+⨯⨯⨯⨯=. …………………8分 (3)所求的概率为11211221121122()()()+=+P A B A A B A B P A B A P A B A B2112121232332329=⨯⨯+⨯⨯⨯=. …………………12分 20.(本小题满分12分)(1)当时,01<-xx 可化为(1)0-<x x , 所以原不等式的解集(0,1)=M . …………………2分(2)①因为322a =221=,所以2221(log )log 2y x x =- ……………3分 令2log t x =,则(0,2)t ∈所以211[,3)216=-∈-y t t ,即1[,3)16A =- …………………5分可化为()(1)0--<x m x 当1>m 时,(1,)M m =,不合题意; …………………7分当1=m 时,=∅M ,不合题意; …………………9分 当1<m 时,(,1)M m =, 因为,所以116<-m . …………………11分 0m =01x mx -<-{|3}MA x m x =<<综上所述,116<-m . …………………12分 ②因为313log 18log 2a =+=29log 3=,所以21(2)22x x y =-⋅ ………………3分 令2x t =,则(0,2)t ∈所以211[,3)216=-∈-y t t ,即1[,3)16A =- …………………5分可化为 ()(1)0--<x m x 当1>m 时,(1,)M m =,不合题意; …………………7分当1=m 时,=∅M ,不合题意; …………………9分 当1<m 时,(,1)M m =, 因为,所以116<-m . …………………11分 综上所述,116<-m . …………………12分 21.(本小题满分12分)(1)证明:令()(1)1=+-g x f x ,因为∈x R , …………………1分()()(1)(1)2g x g x f x f x +-=++-+-所以222(12)220121212x x x x-+=+-=-=+++…………………3分所以函数()g x 为奇函数, …………………4分 函数()f x 的图象关于点(1,1)对称. …………………5分 (2)解:方法一:由(1)知2()(1)1112-=+-=-+xg x f x ,任取12,x x ∈R ,且21>x x ,因为2121122121222(22)()()12122(12)(12)--+----=-=++++x x x x x x x x g x g x ,因为21>x x ,所以21220->x x ,所以21()()>g x g x ,01x mx -<-{|3}MA x m x =<<所以函数()g x 在R 上为增函数, …………………7分 因为2()(21)2+->f a f a ,所以2(11)11(221)-+->--+f a f a ,所以2(1)(22)->--g a g a , …………………9分 因为函数()g x 为奇函数,所以2(1)(22)->-+g a g a , …………………10分 因为函数()g x 在R 上为增函数,所以2122->-+a a , …………………11分 即2230+->a a ,解得31<->或a a . …………………12分 方法二:任取12,x x ∈R ,且21>x x ,因为21211221211111224(22)()()12122(12)(12)x x x x x x x x f x f x --+----=-=++++,因为21>x x ,所以21220->x x ,所以21()()>f x f x ,所以函数()f x 在R 上为增函数, …………………7分 由(1)有()(2)2+-=f x f x …………………8分 因为2()(21)2+->f a f a ,所以22(2)(21)2--+->f a f a ,所以2(21)(2)->-f a f a , …………………10分 因为函数()f x 在R 上为增函数,所以2212a a ->-, …………………11分 即2230+->a a ,解得31<->或a a . …………………12分 22.(本小题满分12分)解:(1)因为3x x e e -+=,所以2310x x e e -+=令=xs e ,则1s ,2s 为2310-+=s s 的两根,所以1212121+⋅=⋅==x x x xs s e e e ,得120+=x x . …………………2分(2)22()2()12x x x x g x e e a e e --=+-++ 令-=+x x t e e ,因为0>x e ,所以2-=+≥x x t e e当且仅当x x e e -=,即0=x 时等号成立. …………………3分 因为2222--=+x x t e e ,所以222212210(2)=--+=-+≥y t at t at t 的最小值为1 当2≤a 时,1441-=a ,解得134=a ,不合题意 …………………5分 当2>a 时,2101-+=a ,解得3a =±,所以3a =. …………………7分 综上所述3=a . …………………8分 (3)因为()x F x e =,所以1()ln F x x -=,所以ln 1ln()1()ln()=ln()x mx h x me mx e mx --=++ …………………9分方法一:令ln()1mx u e -=,则ln ln()1u mx =- 所以ln 12=++≥y u u ,因为ln 1=++y u u 在(0,)+∞上是增函数,且当1=u 时,2=y所以ln()11mx u e -=≥,即ln()1ln ln 10mx m x -=+-≥, …………………11分 所以1ln ln -≤m x 在(,)∈+∞x e 上恒成立,所以1ln 1-≤m ,解得1≥m . …………………12分方法二:令ln()v mx =,则12v y e v -=+≥,因为1v y e v -=+在R 上是增函数,且当1v =时,2=y所以1v ≥,即ln()ln ln 1v mx m x ==+≥, …………………11分 所以1ln ln -≤m x 在(,)∈+∞x e 上恒成立,所以1ln 1-≤m ,解得1≥m . …………………12分。

2022-2023学年山东省日照市日照第一中学数学高一上期末学业水平测试试题含解析

2022-2023学年山东省日照市日照第一中学数学高一上期末学业水平测试试题含解析
14、 ##0.5
【解析】将点代入函数解得 ,再计算得到答案.
【详解】 ,故 , .
故答案为:
15、
【解析】几何体为一个圆锥与一个棱柱的组合体,体积为
16、
【解析】利用周期性和奇偶性,直接将 的值转化到 上的函数值,再利用解析式计算,即可求出结果
【详解】依题意知:函数 为奇函数且周期为2,
则 , ,即 .
故选:D
10、A
【解析】令 ,则有 或 , 在 上的减区间为 ,故 在 上的减区间为 ,选A
11、C
【解析】先根据图像求出 即可判断A,利用正弦函数的对称轴及单调性即可判断BC,通过平移变换即可判断D.
【详解】根据函数 的部分图象,可得 所以 ,故A正确;
利用五点法作图,可得 ,可得 ,所以 ,令x ,求得 ,为最小值,故函数 的图象
故 ,解得
∴存在实数 ,使得函数 在区间 上的取值范围是 ,
其中 的取值范围为 .
22、(1)1(2)
【解析】(1)根据奇函数的性质, ,求参数后,并验证;
(2)结合函数 单调性和奇函数的性质,不等式变形得 恒成立,再根据判别式求实数 的取值范围
【小问1详解】
∵ 是定义域为 的奇函数,∴ ,∴ ,则
由三角函数的定义有: .
故选:A
2、B
【解析】由3a=5可得a值,分析函数 为增函数,依次分析f(﹣2)、f(﹣1)、f(0)的值,由函数零点存在性定理得答案
【详解】根据题意,实数a满足3a=5,则a=log35>1,
则函数 为增函数,
且f(﹣2)=(log35)﹣2+2×(﹣2)﹣log53<0,
A. B.
C. D.
3.命题“ , ”的否定是()

完整版)高一第一学期数学期末考试试卷(含答案)

完整版)高一第一学期数学期末考试试卷(含答案)

完整版)高一第一学期数学期末考试试卷(含答案)高一第一学期期末考试试卷考试时间:120分钟注:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U=R,集合A={x|3≤x<7},B={x|x^2-7x+10<0},则(A∩B)的取值为A。

(−∞,3)∪(5,+∞)B。

(−∞,3)∪[5,+∞)C。

(−∞,3]∪[5,+∞)D。

(−∞,3]∪(5,+∞)2.已知a⋅3^a⋅a的分数指数幂表示为A。

a^3B。

a^3/2C。

a^3/4D。

都不对3.下列指数式与对数式互化不正确的一组是A。

e=1与ln1=0B。

8^(1/3)=2与log2^8=3C。

log3^9=2与9=3D。

log7^1=0与7^1=74.下列函数f(x)中,满足“对任意的x1,x2∈(−∞,0),当x1f(x2)”的是A。

x^2B。

x^3C。

e^xD。

1/x5.已知函数y=f(x)是奇函数,当x>0时,f(x)=logx,则f(f(100))的值等于A。

log2B。

−1/lg2C。

lg2D。

−lg26.对于任意的a>0且a≠1,函数f(x)=ax^−1+3的图像必经过点(1,4/5)7.设a=log0.7(0.8),b=log1.1(0.9),c=1.10.9,则a<b<c8.下列函数中哪个是幂函数A。

y=−3x^−2B。

y=3^xC。

y=log_3xD。

y=x^2+1是否有模型能够完全符合公司的要求?原因是公司的要求只需要满足以下条件:当x在[10,1000]范围内时,函数为增函数且函数的最大值不超过5.参考数据为e=2.L,e的8次方约为2981.已知函数f(x)=1-2a-a(a>1),求函数f(x)的值域和当x 在[-2,1]范围内时,函数f(x)的最小值为-7.然后求出a的值和函数的最大值。

2022-2023学年山东省泰安市高一数学第一学期期末教学质量检测试题含解析

2022-2023学年山东省泰安市高一数学第一学期期末教学质量检测试题含解析
2022-2023学年高一上数学期末模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
(3)若函数 满足性质P(T),求证:函数 存在零点.
20.已知函数 是R上的奇函数.
(1)求a的值,并判断 的单调性;
(2)若存在 ,使不等式 成立,求实数b的取值范围.
21.刘先生购买了一部手机,欲使用某通讯网络最近推出的全年免流量费用的套餐,经调查收费标准如下表:
套餐
月租
本地话费
长途话费
套餐甲
2、A
【解析】由题可得分针需要顺时针方向旋转 .
【详解】分针需要顺时针方向旋转 ,即弧度数为 .
故选:A.
3、C
【解析】由集合 , ,结合图形即可写出阴影部分表示的集合
【详解】解:根据条件及图形,即可得出阴影部分表示的集合为 ,
故选 .
【点睛】考查列举法的定义,以及 图表示集合的方法,属于基础题.
4、D
C.3D.2
7.已知命题 : , ,则 为()
A. , B. ,
C. , D. ,
8.已知a=log23+log2 ,b=log29-log2 ,c=log32,则a,b,c的大小关系是()
A.a=b<cB.a=b>c
C.a<b<cD.a>b>c
9.已知点 是第三象限的点,则 的终边位于()
A.第一象限B.第二象限
20、(1) , 为 上的增函数;

深圳市高一上学期期末考试数学试卷含答案

深圳市高一上学期期末考试数学试卷含答案
参考答案
一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.
【1题答案】【答案】C【2题答案】【答案】B【3题答案】【答案】A【4题答案】【答案】C
【5题答案】【答案】D【6题答案】【答案】C【7题答案】【答案】C【8题答案】【答案】B
二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.
(2)若函数 在区间 上是增函数,求实数 的最大值.
21.“湾区之光”摩天轮位于深圳市华侨城欢乐港湾内,摩天轮总高128米,转轮直径约为114米,共有28个酷似太空舱胶囊的全景式进口轿厢,每个轿厢可容纳25人.“湾区之光”旋转一圈时间是28分钟,开启后摩天轮按照逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,设开始转动t(单位;min)后距离地面的高度为H(单位:m)
【17题答案】
【答案】(1) ,
(2)
【18题答案】
【答案】(1)证明见解析
(2)
【19题答案】
【答案】(1)
(2)
【20题答案】
【答案】(1)
(2)
【21题答案】
【答案】(1)
(2) (min)时两人高度第一次达到最大,为57米.
【22题答案】
【答案】(1)证明见解析
(2)
(3)
13.计算: _________.
14.已知角α的终边与单位圆的交点为P ,则 =______.
15.若 , ,且 ,则 __________.
16.已知当 时,不等式 ( 且 )恒成立,则a的取值范围是__________.
四、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.

高一数学上册期末质量检测试卷带答案

高一数学上册期末质量检测试卷带答案

高一数学上册期末质量检测试卷带答案一、选择题1.全集U =R,集合{|A x y ==,则UA( )A .[0,)+∞B .(,0)-∞C .(0,)+∞D .(,0]-∞2.已知函数()f x 的定义域为[]3,3-,则函数()1f x -的定义域为( )A .[]2,3-B .[]2,4-C .[]4,2-D .[]0,23.已知角α的终边过点()sin1,cos1P ,则α是第( )象限角. A .一 B .二 C .三 D .四 4.已知角α的终边经过点(3,4)P ,则5sin 10cos αα+的值为( )A .11B .10C .12D .135.已知函数()2ln f x x x=-,在下列区间中,包含()f x 零点的区间是( ) A .()0,1B .()1,2C .()2,eD .(),e +∞6.黄金分割比是指将整体一分为二,较大部分与整体得比值等于较小部分与较大部分得比值,该比值为0.618m =≈,这是公认的最能引起美感的比例.黄金分割比例得值还可以近似地表示为2sin18sin12cos12m+的 近似值等于( )A .12B .1C .2D 7.若()f x 为偶函数,且在区间(,0)-∞上单调递减,则满足1(31)2f x f ⎛⎫+< ⎪⎝⎭的实数x 的取值范围是( ) A .11,36--⎡⎫⎪⎢⎣⎭B .11,36--⎛⎫ ⎪⎝⎭C .11,26⎡⎫--⎪⎢⎣⎭D .11,26--⎛⎫ ⎪⎝⎭8.已知函数321,01,()4log ,1a ax x x x f x x x x x ⎧--<⎪=⎨⎪->⎩,对()()211212210,0x f x x f x x x x x -∀>>>-成立,则实数a 的取值范围为( )A .1,14⎡⎫⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .1,12⎡⎫⎪⎢⎣⎭二、填空题9.下列函数中,既是偶函数又在区间()0,∞+单调递增的是( ) A .21y x =+B .1y x =-C .21y x =D .x t e -=10.下列命题不正确的有( ) A .函数tan y x =在定义域内单调递增 B .若a b >,则lg lg a b >成立C .命题“0x ∃>,230ax ax +-≥”的否定是“0x ∀>,230ax ax +-<”D .已知()f x 是定义在R 上的奇函数,当(),0x ∈-∞时,()221f x x x =-++,则[)0,x ∈+∞时,函数解析式为()221f x x x =-- 11.已知,,,a b c d R ∈,则下列结论正确的是( ) A .若,a b c d >>,则ac bd > B .若22ac bc >,则a b > C .若0a b >>,则()0a b c ->D .若,a b c d >>,则a d b c ->-12.对于函数()cos 6f x x πω⎛⎫=- ⎪⎝⎭(其中0>ω),下列结论正确的有A .若()12f x f π⎛⎫≤ ⎪⎝⎭恒成立,则ω的取小值为2B .当12ω=时,()f x 的图象关于点4,03π⎛⎫⎪⎝⎭中心对称 C .当2ω=时,()f x 在区间0,2π⎛⎫⎪⎝⎭上为单调函数D .当1ω=时,()f x 的图象可由()sin g x x =的图象向左平移3π个单位长度得到 三、多选题13.已知集合{15}A x Nx =∈<<∣,则A 的非空真子集有________个. 14.关于x 的方程sin 30x x +-=的唯一解在区间()11,22k k k Z ⎛⎫-+∈ ⎪⎝⎭内,则k 的值为__________.15.已知定义在R 上的奇函数y =f (x ),当x >0时,()21x f x x =+-,则关于x 的不等式()22()f x f x -<的解集为___________.16.已知函数()(21)ln(1)f x x a x a =-+++的定义域为(1,)a --+∞, 若()f x ≥0恒成立,则a 的值是______.四、解答题17.已知全集为R ,集合6|03x A x x -⎧⎫=∈>⎨⎬+⎩⎭R ,{}2|2(10)50B x x a x a =∈-++≤R . (1)若B A ⊆R,求实数a 的取值范围;(2)从下面所给的三个条件中选择一个,说明它是B A ⊆R的什么条件(充分必要性).①[7,12)a ∈-;②(7,12]a ∈-;③(6,12]a ∈. 18.已知函数()sin 22f x x x =. (1)求()f x 的最小正周期; (2)将()y f x =图象向右平移π12个单位后得到函数()y g x =的图象,当[0,]x a ∈时,()g x 的最大值为2,求实数a 的取值范围. 19.已知函数22()log (1)log (1)f x x x =-++. (1)判断该函数的奇偶性,并说明理由;(2)判断并证明该函数的单调性,写出该函数在区间2⎫⎪⎢⎪⎣⎭上的值域. 20.某工厂生产某种产品,每日的成本C (单位:万元)与日产量x (单位:吨)满足函数关系式3C x =+,每日的销售额S (单位:万元)与日产量x 的函数关系式35,07819,7k x x S x x ⎧++<<⎪=-⎨⎪≥⎩.已知每日的利润L S C =-,且当2x =时,143L =.(1)求k 的值,并将该产品每日的利润L 万元表示为日产量x 吨的函数; (2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值. 21.对于集合{}12,,,n A θθθ=⋅⋅⋅和常数0θ,定义:()()()22210200cos cos cos n nθθθθθθμ-+-++-=为集合A 相对0θ的“余弦方差”.(1)若集合ππ,34A ⎧⎫=⎨⎬⎩⎭,00θ=,求集合A 相对0θ的“余弦方差”;(2)求证:集合π2π,,π33A ⎧⎫=⎨⎬⎩⎭相对任何常数0θ的“余弦方差”是一个与0θ无关的定值,并求此定值;(3)若集合π,,4A αβ⎧⎫=⎨⎬⎩⎭,[)0,πα∈,[)π,2πβ∈,相对任何常数0θ的“余弦方差”是一个与0θ无关的定值,求出α、β.22.已知函数()2xf x =,()()()g x f x f x =+.(1)解不等式:(2)(1)3f x f x -+>; (2)当1[1,]2x ∈-时,求函数()g x 的值域;(3)若1x ∀∈(0,+∞),2x ∃∈[﹣1,0],使得112(2)()2()0g x ag x g x ++>成立,求实数 a 的取值范围.【参考答案】一、选择题 1.B 【分析】解指数不等式,可化简集合A ,再根据补集的定义求解即可. 【详解】由310x -≥,得033x ≥,所以0x ≥,所以[0,)A =+∞,所以(,0)UA .故选:B 2.B 【分析】由题意可得313x -≤-≤,解此不等式可得出函数()1f x -的定义域. 【详解】由于函数()f x 的定义域为[]3,3-,对于函数()1f x -,有313x -≤-≤,解得24x -≤≤. 因此,函数()1f x -的定义域为[]2,4-. 故选:B. 3.A 【分析】分析()sin1,cos1P 横纵坐标的符号即可求解. 【详解】因为角α的终边过点()sin1,cos1P , 且sin10,cos10>>,所以α是第一象限角. 故选:A 4.B【分析】由角α的终边经过点(3,4)P ,根据三角函数定义,求出sin cos αα,,带入即可求解. 【详解】∵角α的终边经过点(3,4)P ,∴43sin cos 55||5,O y x r r r P αα===∴===,=, ∴435sin 10cos =510=1055αα++. 故选:B 【点睛】利用定义法求三角函数值要注意:(1) 三角函数值的大小与点P (x ,y )在终边上的位置无关,严格代入定义式子就可以求出对应三角函数值;(2) 当角的终边在直线上时,或终边上的点带参数必要时,要对参数进行讨论. 5.C 【分析】利用零点存在定理,分别计算判断()1,(2),()f f f e 的正负,即可判断零点所在区间. 【详解】 因为函数()2ln f x x x =-在()0,∞+上是减函数,且()21ln1201=-=>f ,()22ln 2n 21l 20=-=->f ,()2ln 0=-<f ee e ,所以()2()0⋅<f f e ,由零点存在定理可知,函数()f x 的零点所在区间为()2,e 故选:C 6.B 【分析】由题可得2sin18m =,利用()sin18sin 3012=-sin12cos121cos12cos12m +==.【详解】由题可得2sin18m =,∴()3sin122sin 30123sin123sin122sin18cos12cos12cos12m +-++==cos122cos30sin12cos121cos12cos12-===.故选:B. 7.D 【分析】偶函数有()|(|)f x f x =,把不等式化到区间(0,)+∞上用增函数去掉抽象符号,可化为含绝对值的一次不等式来解. 【详解】因为()f x 为偶函数,()()||f x x f ∴=, 则1(31)2f x f ⎛⎫+< ⎪⎝⎭可化为1(|31|)2f x f ⎛⎫+< ⎪⎝⎭,而偶函数()f x 在区间(,0)-∞上单调递减, 得()f x 在区间(0,)+∞上单调递增, 所以原不等式可化为1|31|2x +<, 所以113122x -<+<,解得1126x -<<-.故选:D. 【点睛】解抽象不等式,常用单调性去掉抽象符号化为简单不等式来解; 或者利用对称性和单调性画草图,由图找出解集. 8.B 【分析】 根据题意可得()()1212f x f x x x <,构造函数()()f xg x x=,使函数()g x 在()0,∞+上单调递减,根据分段函数的单调性可得011121114a a a ⎧⎪<<⎪⎪≥⎨⎪⎪--≥-⎪⎩,解不等式即可求解.【详解】 对()()211212210,0x f x x f x x x x x -∀>>>-成立,即()()21120x f x x f x -<成立,即()()1212f x f x x x <,()()f xg x x∴=在()0,∞+上单调递减, 由()21,01,()4log 1,1a ax x x f x g x x x x ⎧--<≤⎪==⎨⎪->⎩, 可得011121114a aa ⎧⎪<<⎪⎪≥⎨⎪⎪--≥-⎪⎩,解得1142a ≤≤. 故选:B二、填空题9.AB 【分析】利用定义法逐一判断奇偶性,并结合常见函数性质判断单调性,即得结果. 【详解】选项A 中,()211y f x x ==+,定义域为R ,满足()()()221111f x x x f x -=-+=+=,故()1f x 是偶函数,又由二次函数性质知()211y f x x ==+区间()0,∞+单调递增,故符合题意;选项B 中,2()1y f x x ==-,定义域为R ,满足22()11()f x x x f x -=--=-=,故2()f x 是偶函数,在区间()0,∞+上,2()1y f x x ==-是递增函数,故符合题意; 选项C 中,321()y f x x==,定义域为()(),00,-∞⋃+∞,满足()332211()()f x f x x x -===-,故3()f x 是偶函数,但由幂函数性质知2321()y f x x x-===在区间()0,∞+单调递减,故不符合题意;选项D 中,()x t t x e -==,定义域为R ,()x x t x e e --=≠恒成立,故()x t t x e -==不是偶函数,故不符合题意. 故选:AB. 10.ABD 【分析】由正切函数的性质判断A ;由对数函数的性质判断B ;由特称命题的否定判断C ;由函数的奇偶性判断D.【详解】对于选项A :因为tan y x =在其定义域内不具有单调性,故A 不正确; 对于选项B :若0a b >>,则lg lg a b >,故B 不正确;对于选项C :命题“0x ∃>,230ax ax +-≥”的否定是“0x ∀>,230ax ax +-<”,故C 正确;对于选项D :当0x >时,()()()222121f x f x x x x x =--=---+=+-,又()00f =,所以当[)0,x ∈+∞时,()20,021,0x f x x x x =⎧=⎨+->⎩. 故D 不正确. 故选:ABD. 11.BD 【分析】举反例可判断选项A 、C 不正确,由不等式的性质可判断选项B 、D 正确,即可得正确选项. 【详解】对于选项A :举反例:3a =-,4b =-,0c ,2d =-满足,a b c d >>,但ac bd <, 故选项A 不正确;对于选项B :因为22ac bc >,则20c >,所以 a b >,故选项B 正确;对于选项C :因为2a =,1b =,1c =-,满足0a b >>,但()0a b c -<,故选项C 不正确;对于选项D :因为c d >,所以d c ->-,因为a b >,所以a d b c ->-,故选项D 正确, 故选:BD. 12.ABD 【分析】对于A. 若()12f x f π⎛⎫≤ ⎪⎝⎭恒成立, 242()k k Z ω=+∈,结合条件0>ω判定;对于B. 当12ω=时,()1cos 26f x x π⎛⎫=- ⎪⎝⎭,验证403f π⎛⎫= ⎪⎝⎭是否成立; 对于C. 当2ω=时,()cos 26f x x π⎛⎫=- ⎪⎝⎭,验证函数cos y t =在5,66ππ⎛⎫- ⎪⎝⎭是否单调; 对于D. 当1ω=时,()cos 6f x x π⎛⎫=- ⎪⎝⎭,而cos 36g x x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭符合题意.【详解】解:对于A. 若()12f x f π⎛⎫≤ ⎪⎝⎭恒成立,则cos 1,61212f ωπππ⎛⎫-= ⎪⎝⎭⎛⎫= ⎪⎝⎭2()122426k k Z k ωππωπ∴-=∈⇒=+()k ∈Z ,又0>ω,所以ω的取小值为2,故正确; 对于B. 当12ω=时,()1cos 26f x x π⎛⎫=- ⎪⎝⎭,所以1cos cos 04432326f ππππ⎛⎫⎛⎫=⨯-== ⎪ ⎪⎝⎭⎝⎭, 所以()f x 的图象关于点4,03π⎛⎫⎪⎝⎭中心对称,故正确﹔ 对于C. 当2ω=时,()cos 26f x x π⎛⎫=- ⎪⎝⎭,当0,2x π⎛⎫∈ ⎪⎝⎭时,52,666x πππ⎛⎫-∈- ⎪⎝⎭, 此时函数cos y t =在5,66ππ⎛⎫- ⎪⎝⎭上先递增再递减,故不正确;对于D. 当1ω=时,()cos 6f x x π⎛⎫=- ⎪⎝⎭,因为()sin g x x =的图象向左平移3π个单位长度得到,所以sin sin 336cos 26g x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫+=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭+,故正确.故选:ABD. 【点睛】求三角函数单调区间的2种方法:(1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间;(2)图象法:函数的单调性表现在图象上是从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.三、多选题13.6 【分析】由题意可得集合{}234A =,,,结合求子集个数的计算公式即可. 【详解】 由题意知,{}15A x N x =∈<<,所以{}234A =,,, 所以集合A 的非空真子集的个数为:3226-=. 故答案为:6 14.2 【分析】由题意转化为函数()sin 3f x x x =+-在区间()11,22k k k Z ⎛⎫-+∈ ⎪⎝⎭内有唯一零点,求导得()'cos 10f x x =+≥,从而()f x 在R 上递增,且()20f <,502f ⎛⎫> ⎪⎝⎭,由函数的零点存在定理可得结果. 【详解】由题意得,关于x 的方程sin 30x x +-=的唯一解转化为函数()sin 3f x x x =+-在区间()11,22k k k Z ⎛⎫-+∈ ⎪⎝⎭内有唯一零点, ()'cos 10f x x =+≥,()f x ∴在R 上递增,由()2sin 223sin 210f =+-=-<,且5555511sin 3sin302226222f π⎛⎫=+->+-=-= ⎪⎝⎭, 由函数的零点存在定理可得()f x 在52,2⎛⎫⎪⎝⎭上有唯一的零点,又因为方程sin 30x x +-=的唯一解在区间()11,22k k k Z ⎛⎫-+∈ ⎪⎝⎭内,所以2k =.故答案为:2 【点睛】关键点点睛:方程sin 30x x +-=的解转化为函数()sin 3f x x x =+-的零点问题,求导得()f x 的单调性,再结合函数的零点存在定理.15.(,2)(1,)-∞-+∞【分析】确定函数的单调性,然后解不等式. 【详解】2x y =和y x =都是增函数,所以()21x f x x =+-在(0,)+∞上增函数,而02010-+=,即()f x 在[0,)+∞上是增函数,又()f x 是奇函数,所以()f x 在(,0]-∞是递增,也即在(,)-∞+∞上是增函数,因此由()22()f x f x -<得22x x -<,解得2x <-或1x >. 故答案为:(,2)(1,)-∞-+∞. 【点睛】关键点点睛:本题考查函数的奇偶性与单调性,由单调性解函数不等式.解题关键是确定单调性.解题时要注意由奇函数()f x 在(0,)+∞上递增,得()f x 在(,0)-∞上递增,并不能得出()f x 在R 或在(,0)(0,)-∞+∞上递增,但由奇函数()f x 在[0,)+∞上递增,可得其在R 上是增函数.16.13a = 【详解】 试题分析:当011x a <++≤ 时,1a x a --<≤- 时,有()ln 10x a ++≤,∵()0f x ≥,∴12102a x a x --+≤≤,,欲使()0x f x ∀≥,恒成立,则12a a -≥-,∴13a ≥;当11x a ++> 时,x a >- 时,有()ln 10x a ++>,∵()0f x ≥ ,∴12102a x a x --+>>,欲使()0x f x ∀≥, 恒成立,则12a a -≤-,∴13a ≤;故13a =. 考点:1.恒成立问题;2.转化思想.【思路点睛】对对数函数分类讨论:当011x a <++≤时,有()ln 10x a ++≤,欲使()0x f x ∀≥,恒成立,则12a a -≥-;当时,x a >- 时,欲使()0x f x ∀≥, 恒成立,则12a a -≤-,得出答案. 四、解答题17.(1)612a -≤≤(2)选择①,则结论是不充分不必要条件;选择②,则结论是必要不充分条件;选择③,则结论是是充分不必要条件.【分析】(1)解出集合A ,根据补集的定义求出A R ,由B A ⊆R ,得到关于a 的不等式,解得; (2)由(1)知B A ⊆R 的充要条件为[6,12]a ∈-,再根据集合的包含关系判断即可.【详解】解:(1)集合6|0(3)(6,)3x A x x -⎧⎫=∈>=-∞-⋃+∞⎨⎬+⎩⎭R , 所以[3,6]A =-R ,集合{}2|2(10)50{|(2)(5)0}B x x a x a x x a x =∈-++≤=∈--≤R R , 若B A ⊆R ,且5[3,6]A ∈=-R ,只需362a -≤≤, 所以612a -≤≤. (2)由(1)可知B A ⊆R 的充要条件是[6,12]a ∈-, 选择①,[7,12)[6,12]-⊄-且[6,12][7,12)-⊄-,则结论是不充分不必要条件; 选择②,[6,12]-(7,12]-,则结论是必要不充分条件; 选择③,(6,12][6,12]-,则结论是充分不必要条件.【点睛】本题考查根据集合的包含关系求参数的取值范围,以及充分条件必要条件的判断,属于基础题.18.(1)π;(2)π,6⎡⎫+∞⎪⎢⎣⎭. 【分析】(1)依题意得2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,进而可得周期; (2)求得()2sin 26g x x π⎛⎫=+ ⎪⎝⎭,由262x ππ+=得6x π=,进而可得a 的取值范围. 【详解】(1)()sin 222sin 23f x x x x π⎛⎫==+ ⎪⎝⎭,所以()f x 的最小正周期22T ππ==; (2)由已知得()2sin 22sin 21236g x x x πππ⎡⎤⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 令262x ππ+=,解得6x π=,所以实数a 的取值范围是,6π⎡⎫+∞⎪⎢⎣⎭. 19.(1)偶函数,理由见解析(2)函数在(1,0)-上为增函数,在[0,1)上为减函数,证明见解析,值域为(,1]-∞-.【分析】(1)令1010x x +>⎧⎨->⎩求得函数的定义域关于原点对称,再根据()()f x f x -=,可得函数()f x 为偶函数;(2)利用函数单调性的定义证明,根据单调性求值域即可.【详解】(1)由1010x x +>⎧⎨->⎩解得11x -<<, 所以函数定义域为()1,1-,关于原点对称,又22()log (1)log (1)()f x x x f x -=++-=,所以函数()f x 为偶函数.(2)函数在(1,0)-上为增函数,在[0,1)上为减函数.设12,[0,1)x x ∀∈且12x x <,则210x x x ∆=->,2222()log (1)log (1)log (1)f x x x x =-++=-,22212211()()()log 1()x f x f x x -∴-=-,而222112121()[1()]()()0x x x x x x ---=-+<, 所以22211()011()x x -<<-, 故22212211()()()log 01()x f x f x x --=<-, 所以函数在[0,1)上为减函数,因为函数为偶函数,所以函数在(1,0)-上为增函数,当x ⎫∈⎪⎪⎣⎭时,()f x 为减函数,所以21()log 12f x f ≤==-, 即函数值域为(,1]-∞-【点睛】关键点点睛:根据奇偶函数的定义判断函数奇偶性注意分析函数定义域;利用函数单调性的定义证明,要注意做差后变形求证,属于中档题.20.(1)8k ,822(07)816(7)x x L x xx ⎧++<<⎪=-⎨⎪-⎩(2)当日产量为6吨时,日利润达到最大10万元.【分析】(1)利用每日的利润L S C =-,且当2x =时,3L =,可求k 的值;(2)利用分段函数,分别求出相应的最值,即可得出函数的最大值.【详解】解:由题意,每日利润L 与日产量x 的函数关系式为22(07)816(7)k x x L x xx ⎧++<<⎪=-⎨⎪-⎩ (1)当2x =时,143L =,即:14222283k ⨯++=- 8k ∴= 所以822(07)816(7)x x L x xx ⎧++<<⎪=-⎨⎪-⎩ (2)当7x 时,16L x =-为单调递减函数,故当7x =时,9max L =当07x <<时,888222(8)182(8)18888L x x x x x x ⎡⎤=++=-++=--+-⎣-+⎢⎥-⎦1810≤-= 当且仅当82(8)(07)8x x x -=<<-, 即6x =时,10max L =综合上述情况,当日产量为6吨时,日利润达到最大10万元.【点睛】本题考查函数解析式的确定,考查函数的最值,确定函数的解析式是关键,属于中档题. 21.(1)38;(2)证明见解析,定值12;(3)7π12α=,23π12β=或11π12α=,19π12β= 【分析】由“余弦方差”的定义,对(1)(2)(3)逐个求解或证明即可.【详解】(1)依题意:22ππ11cos 0cos 033442228μ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭===; (2)由“余弦方差”定义得:()222000π2πcos cos cos π333θθθμ⎛⎫⎛⎫-+-+- ⎪ ⎪⎝⎭⎝⎭=, 则分子()222000000ππ2π2πcos cos sin sin cos cos sin sin cos πcos sin πsin 3333θθθθθθ⎛⎫⎛⎫=+++++ ⎪ ⎪⎝⎭⎝⎭2220000011cos cos cos 22θθθθθ⎛⎫⎛⎫=+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 22200013cos sin cos 22θθθ=++ 32= 31232μ∴==为定值,与0θ的取值无关. (3)()()222000πcos cos cos 43θαθβθμ⎛⎫-+-+- ⎪⎝⎭=, 分子=()()222000000ππcos cos sin sin cos cos sin sin cos cos sin sin 44θθαθαθβθβθ⎛⎫+++++ ⎪⎝⎭22000011cos +sin sin cos 22θθθθ⎛⎫=+ ⎪⎝⎭()22220000cos cos sin sin 2sin cos sin cos αθαθθθαα+++()22220000cos cos sin sin 2sin cos sin cos βθβθθθββ+++()222222000011cos cos cos sin sin sin 1sin 2sin 2sin cos 22αβθαβθαβθθ⎛⎫⎛⎫=++++++++ ⎪ ⎪⎝⎭⎝⎭ ()22220001cos 21cos 2111cos cos sin sin 1sin 2sin 2sin 222222θθαβαβαβθ+-⎛⎫⎛⎫=++++++++ ⎪ ⎪⎝⎭⎝⎭()()222200cos 2sin 2cos cos sin sin 1sin 2sin 222θθαβαβαβ=+--+++22221111cos cos sin sin 2222αβαβ⎛⎫⎛⎫++++++ ⎪ ⎪⎝⎭⎝⎭ ()()00cos 2sin 2cos 2cos 21sin 2sin 222θθαβαβ=++++22221111cos cos sin sin 2222αβαβ⎛⎫⎛⎫++++++ ⎪ ⎪⎝⎭⎝⎭ ()()00311sin 21sin 2sin 2cos 2cos 2cos 2222θαβθαβ=+⋅+++⋅+. 要使μ是一个与0θ无关的定值,则cos 2cos 201sin 2sin 20αβαβ+=⎧⎨++=⎩, cos 2cos 2αβ=-,2α∴与2β终边关于y 轴对称或关于原点对称,又sin 2sin 21αβ+=-,得2α与2β终边只能关于y 轴对称,1sin 2sin 22cos 2cos 2αβαβ⎧==-⎪∴⎨⎪=-⎩, 又[)0,πα∈,[)π,2πβ∈, 则当72π6α=时,232π6β=; 当112π6α=时,192π6β=. 7π12α∴=,23π12β=或11π12α=,19π12β=. 故7π12α=,23π12β=或11π12α=,19π12β=时,相对任何常数0θ的“余弦方差”是一个与0θ无关的定值.【点睛】本题考查了新定义,考查了三角函数的恒等变换,考查了学生的逻辑推理能力与计算求解能力,属于难题.22.(1){}2|log 3>x x ;(2);(3)()+∞.【分析】(1)由(2)(1)3f x f x -+>,化简得(23)(21)0-+>x x ,结合对数的运算性质,即可求解;(2)由()()()22=+=+xx g x f x f x ,分类讨论,结合指数的单调性,即可求解. (3)根据题意,转化为[]1112min (0,),(2)()2()x ∈+∞+∀>-g x ag x g x ,由(2)求得2max 5(())2=g x ,分离参数,得到115(2)22>-+⋅x x a 恒成立, 结合基本不等式,即可求解. 【详解】(1)由题意,函数()2x f x =,又由不等式(2)(1)3f x f x -+>,可得212230+-->x x ,即(23)(21)0-+>x x ,解得23x >,可得2log 3x >,所以不等式的解集为{}2|log 3>x x ;(2)由()()()22=+=+xx g x f x f x ,①当10,2x ⎡⎤∈⎢⎥⎣⎦时,1()2+⎡=∈⎣x g x ; ②当[1,0)x ∈-时,1()22x xg x =+, 令2x t =,则2111,,1,102'⎡⎤=+∈=-<⎢⎥⎣⎦y t t y t t , 即1y t t =+在1,12⎡⎤⎢⎥⎣⎦上为减函数,故5()2,2⎡⎤∈⎢⎥⎣⎦g x ;综上得:当11,2x ⎡⎤∈-⎢⎥⎣⎦时,函数()g x 的值域为. (3)由题意得,[]1112min (0,),(2)()2()x ∈+∞+∀>-g x ag x g x ,当[]21,0x ∈-,由(2)得2max 5(())2=g x ,所以[]2min 2()5-=-g x , 所以1122(2)225⋅+⋅>-x x a 恒成立,即115(2)22>-+⋅x x a 恒成立,又115222+≥⋅x x 12log =x所以实数a 的取值范围为()+∞.【点睛】有关任意性和存在性问题的求解:此类逻辑推理的关键要素是:逻辑的起点、推理的形式、结论的表达,解决此类问题是对“任意性或存在性”问题进行“等价转化”为两个函数的最值或值域之间的关系,结合基本不等式或不等式的解法等进行求解.。

北京市海淀区2023-2024学年高一上学期期末考试数学答案

北京市海淀区2023-2024学年高一上学期期末考试数学答案

第 1 页(共 5 页)海淀区2023-2024学年第一学期期末练习高一数学参考答案及评分建议一、选择题:二、填空题(共5小题,每小题4分,共20分)(11)(1,)+∞ (12)3, >(13)0(答案不唯一),(4,4)−(14)(,)−∞+∞,215(15)①② 两空题,第一空2分,第二空2分,15题对一个给2分,有错的则给0分三、解答题(共4小题,共40分)(16)(共9分)解:(Ⅰ)设选中的参观单位恰好为“C :古建筑及历史纪念建筑物”为事件A .……1分所以122()183P A ==. ……3分 (Ⅱ)设两人选择的参观单位恰好在同一个区为事件B , ……4分所以355()41216P B =⨯= . ……7分 (Ⅲ)12P P <. ……9分(17)(共9分)解:(Ⅰ)因为220x x −−<,所以(2)(1)0x x −+<,所以12x −<<, 所以{|12}A x x =−<<. ……1分又53||22x −≥,所以5322x −≥或5322x −≤−, ……2分第 2 页(共 5 页)所以4x ≥或1x ≤,所以{|41}B x x x =≥≤或, ……3分{|14}B x x =<< R ……4分 所以{|42}A B x x x =≥<或,{|12}A B x x =<< R . ……6分(Ⅱ)因为22(24)40x m x m m −+++≤,所以((4))()0x m x m −+−≤,所以4m x m ≤≤+,所以{|4}M x m x m =≤≤+. ……7分 因为B M =R ,所以144m m ≤⎧⎨+≥⎩……8分所以m 的取值范围是{|01}m m ≤≤. ……9分(18)(共11分)解:选择①(Ⅰ)因为()()0f x f x +−=,故[ln(1)ln(1)][ln(1)ln(1)]0x k x x k x −+++++−=,所以22ln(1)ln(1)0x k x −+−=,所以2(1)ln(1)0k x +−=,所以1k =−. ……3分(Ⅱ)当1k =−时,12()111x F x x x −==−+++,()F x 在(0,1)上单调递减, ……4分 证明如下:任取12,(0,1)x x ∈,且12x x <, ……5分 因为212122)(1)()()1(11F F x x x x +−−++−+=− ……6分 21122()0(1)(1)x x x x −=>++ ……7分 所以12()()F x F x >,所以函数()F x 在(0,1)上单调递减. ……8分(Ⅲ)()g x 在区间()1,0−上存在一个零点. ……9分由前两问知,1k =−时,函数()f x 是奇函数,且在(1,0)−上单调递减, 故函数1()()2=++g x f x x在(1,0)−上单调递减,第 3 页(共 5 页) 又1()ln 322ln 302−=−+=>g ,15()ln 2043−=−<g , 所以存在唯一的0(1,0)∈−x ,使0()0=g x ,所以()g x 在区间()1,0−上存在一个零点. ……11分 选择②(Ⅰ)因为()()f x f x =−,且11x −<<,故ln(1)ln(1)[ln(1)ln(1)]x k x x k x −++=++− 所以1(1)ln 01x k x−−=+, 所以1k =. ……3分 (Ⅱ)当1k =时,2()(1)(1)1F x x x x =−+=−.从而()F x 在(0,1)上单调递减, ……4分 证明如下:任取12,(0,1)x x ∈,且12x x <, ……5分 222121(1)(1)()()x F F x x x −−−−= ……6分22212121()()0x x x x x x =−=−+> ……7分所以12()()F x F x >,所以函数()F x 在(0,1)上单调递减. ……8分 (Ⅲ)()g x 在区间()1,0−上存在一个零点. ……9分由前两问知,1k =,函数()f x 是偶函数,且在(1,0)−上单调递增,故函数()()2=++g x f x x 在(1,0)−上单调递增,又(0)(0)220=+=>g f ,2(ln(1()20g =−=, 所以存在唯一的0(1,0)∈−x ,使0()0=g x ,所以()g x 在区间()1,0−上存在一个零点. ……11分(19)(共11分)解:(Ⅰ)()g x 与()h x 关于()f x 唯一交换, 不是任意交换的 ……2分令()()()()f g x h f x =,即22(1)1x x +=−,解得1x =−.第 4 页(共 5 页)所以存在唯一的1x =−∈R ,使得()()()()f g x h f x =,即()g x 与()h x 关于()f x 唯一交换,存在0x =∈R ,使得()()()()f g x h f x ≠,即()g x 与()h x 关于()f x 不是任意交换的. ……4分 (Ⅱ)依题意,x ∀∈R ,()()()()f g x h f x =.因为x ∀∈R ,22()[()2](2)()f x a x a x f x −=−+=+=,所以x ∀∈R ,()()()()()()()()f g x h f x h f x f g x −=−==.所以x ∀∈R ,2222[(1)2][(1)2]a x bx a x bx −−+=+−+,所以2222(1)(1)x bx x bx −−=+−,即2(22)(2)0x bx −=对x ∈R 成立,所以0b =. ……7分 下面检验0b =时,存在函数()h x 使得()g x 与()h x 关于()f x 任意交换. 即验证存在函数()h x ,使得x ∀∈R ,()()()()f g x h f x =,即()222[(1)2](2)a x h a x −+=+.令2(2)t a x =+,2t a ≥, 则22222611[(1)2][(21)2]t t at a a x a a a−+−+=−−+=. 令22611()x ax a h x a−+=, 则()22222611(2)()[(1)2]t at a h a x h t a x a −++===−+对x ∈R 成立, 综上,0b =. ……8分 (Ⅲ)依题意,存在唯一的0x ∈R ,使得()()00()()w g x f w x =.因为x ∀∈R ,()()f x f x −=,22()()11()g x x x g x −=−−=−=,e 11e ()()e 11e x xx xw x w x −−−−−===−++, 所以()()()()()00000()()()()()w g x w g x f w x f w x f w x −===−=−.第 5 页(共 5 页) 所以00x x −=,即00x =.所以()()(0)(0)w g f w =,即11e 12e 1a −−−=+. 所以e 12e 2a −=−+. ……9分 下面检验e 12e 2a −=−+时,()()()()w g x f w x =的解唯一. 因为e 12()1e 1e 1x x x w x −==−++,2()11g x x =−≥−,()1e e 0g x −≥>,()111e 1e 1g x −≤++, 所以()()1221e()11e 1e 11e g x w g x −−=−≥−=+++,当且仅当()1g x =−,即0x =时取等号.又()2e 11e()[()2]2e 11e x x f w x a a −−=+≤=++,当且仅当e 10x −=,即0x =时取等号.所以()()()()w g x f w x ≥,当且仅当0x =时取等号.所以()()()()w g x f w x =的解唯一. 综上,e 12e 2a −=−+.……11分。

衡水中学2022-2023学年高一数学第一学期期末学业质量监测试题含解析

衡水中学2022-2023学年高一数学第一学期期末学业质量监测试题含解析
【详解】由题意可知,函数 的定义域为[1,10],则函数 成立需要满足
,解得 .
故选:B.
9、D
【解析】由对数函数的单调性判断出 ,再根据幂函数 在 上单调递减判断出 ,即可确定大小关系.
【详解】因为 , ,所以
故选:D
【点睛】本题考查利用对数函数及幂函数的单调性比较数的大小,属于基础题.
10、A
【解析】对于A,因为垂直于同一平面的两条直线相互平行,故A正确;对于B,如果一条直线平行于一个平面,那么平行于已知直线的直线与该平面的位置关系有平行或在平面内,故B错;对于C,因同平行于一个平面的两条直线异面、相交或平行,故C错;对于D,与一个平面的平行直线垂直的直线与已知平面是平行、相交或在面内,故D错,选A.
17.如图,已知 , 分别是正方体 的棱 , 的中点.求证:平面 平面 .
18.已知函数
(1)判断 的奇偶性,并加以证明;
(2)求函数的值域
19.已知
(1)化简 ;
(2)若 ,求 值
20.设 ,且 .
(1)求 的值;
(2)求 在区间 上的最大值.
21.已知函数 ,函数 的最小正周期为 .
(1)求函数 的解析式,及当 时, 的值域;
【小问2详解】
令 ,
且 , , 或 ,
或 , 的值域为 .
19、(1)
(2) .
【解析】(1)根据诱导公式及同角关系式化简即得;
(2)根据 可知 ,从而求得结果.
【小问1详解】
由诱导公式可得:

【小问2详解】
由于 ,有 ,得 ,
,可得
故 的值为 .
20、(1) ;(2)2
【解析】(1)直接由 求得 的值;
【点睛】本题考查含有一个量词的命题的否定,是基础题.

浙江省台州市2023-2024学年高一上学期1月期末数学试题含答案

浙江省台州市2023-2024学年高一上学期1月期末数学试题含答案

台州市2023学年第一学期高一年级期末质量评估试卷数学2024.1(答案在最后)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若幂函数()f x x α=的图象过点()4,2,则()3f 的值为()A.19B.33C.32D.【答案】D 【解析】【分析】代入点可求出解析式,即可求出答案.【详解】由幂函数()f x x α=的图象过点()4,2,所以()442f α==,解得12α=,故()12f x x =,所以()1233f =故选:D.2.函数()()lg 1f x x =-的定义域是()A.()1,∞+B.[)1,∞+ C.()(),11,∞∞-⋃+ D.R【答案】A 【解析】【分析】根据对数函数定义域即可得出结论.【详解】由题意,在()()lg 1f x x =-中,10x ->即1x >,所以()f x 的定义域为()1,+∞.故选:A.3.下列函数在其定义域上单调递增的是()A.()1f x x=-B.()12xf x ⎛⎫= ⎪⎝⎭C.()2log f x x =D.()tan f x x=【答案】C 【解析】【分析】利用基本初等函数的单调性逐项判断,可得出合适的选项.【详解】反比例函数()1f x x=-在(),0∞-和()0,∞+上单调递增,在定义域上不单调,A 选项不满足条件;指数函数()12xf x ⎛⎫= ⎪⎝⎭在定义域上单调递减,B 选项不满足条件;对数函数()2log f x x =在其定义域上单调递增,C 选项满足条件;正切函数()tan f x x =在定义域上不单调,D 选项不满足条件.故选:C4.若0a >,01b a b >+=,,则()A.111a b+≤ B.41ab ≤C.221a b +≥D.1≤【答案】B 【解析】【分析】结合已知条件,利用基本不等式判断各选项中的结论是否成立.【详解】若0a >,01b a b >+=,,()11111124b a a b a b a b a b ⎛⎫+=++=+++≥+= ⎪⎝⎭,当且仅当12a b ==等号成立,A 选项错误;24412a b ab +⎛⎫≤⨯= ⎪⎝⎭,当且仅当12a b ==等号成立,B 选项正确;()()22222122a b a b ab a b =+=++≤+,得2212a b +≥,当且仅当12a b ==等号成立,C 选项错误;()222a b a b +=+++=≤,当且仅当12a b ==等号成立,D 选项错误.故选:B5.下列四组函数中,表示同一函数的是()A.y x u ==,B.2ln 2ln y x s t ==,C.2111x y m n x -==+-, D.c π sin os 2y x y x ⎛⎫=+=- ⎪⎝⎭,【答案】A 【解析】【分析】逐项判断选项中两个函数的定义域与对应法则是否相同,即可得出结果.【详解】A 选项中,函数y x =与u v ==,定义域相同,对应关系也相同,是同一函数;B 选项中,函数2ln y x =定义域为()(),00,∞-+∞U ,函数2ln s t =定义域为()0,∞+,定义域不同,不是同一函数;C 选项中,函数211x y x -=-定义域为()(),11,-∞+∞ ,函数1m n =+定义域为R ,定义域不同,不是同一函数;D 选项中,函数2sin cos πy x x ⎛⎫=+= ⎪⎝⎭与函数cos y x =-,对应关系不同,不是同一函数.故选:A6.已知()tan 2αβ+=-,()tan 7αβ-=,则tan2α=()A.13B.13-C.913 D.913-【答案】A 【解析】【分析】()()2ααβαβ=++-,利用两角和的正切公式求解.【详解】已知()tan 2αβ+=-,()tan 7αβ-=,则()()()()()()()tan tan 271tan2tan 1tan tan 1273αβαβααβαβαβαβ++--+⎡⎤=++-===⎣⎦-+---⨯.故选:A7.已知lg20.3010≈,若()2nn ∈N 是10位数,则n 的最小值是()A.29B.30C.31D.32【答案】B 【解析】【分析】由92110n ≥⨯,求满足条件的最小自然数即可.【详解】若2n 是10位数,则n 取最小值时,应满足92110n ≥⨯,则有lg 29n ≥,9929.9lg 20.3010n ≥≈≈,由n ∈N ,则n 的最小值是30.故选:B8.已知函数()(){}()222123i i x n m i iif x m n i --=∈∈R ,,,,部分图象如图所示,则()A.1212m m n n =>,B.1212m m n n >=,C.3131m m n n >>,D.3232m m n n >>,【答案】C 【解析】【分析】分析函数的单调性、对称性,确定对称轴及最大值与i i m n ,的关系,求解即可.【详解】由函数()()222i i x n m i f x --=,令()()222i i ix n g x m-=-,由二次函数性质可知:()i g x 图象关于i x n =对称,i x n <时,()i g x 单调递增,i x n >时,()i g x 单调递减,在i x n =处达到最大值,由图象得:()0i i f n >,则0i m >,根据复合函数的性质可得:()i f x 图象关于i x n =对称,i x n <时,()i f x 单调递增,i x n >时,()i f x 单调递减,在i x n =处达到最大值,则312n n n >=,且最大值为()i i f n =,结合图象可知()()()113322f n f n f n >>,所以132m m m <<.故选:C二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知0a b c >>>,则()A.a c b c +>+B.ac bc >C.a ba cb c>++ D.c ca b <【答案】ABC 【解析】【分析】根据给定条件,利用不等式的性质,结合幂函数性质逐项判断即得.【详解】由0a b c >>>,得a c b c +>+,ac bc >,AB 正确;显然0()()a b ac bc a c b c a c b c --=>++++,即a b a c b c>++,C 正确;函数c y x =在(0,)+∞上单调递增,则c c a b >,D 错误.故选:ABC10.已知函数()ππsin cos sin cos 44f x x x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()A.函数()f x 的最小正周期为2πB.点π,08⎛⎫-⎪⎝⎭是函数()f x 图象的一个对称中心C.函数()f x 在区间π5π,88⎡⎤⎢⎥⎣⎦上单调递减D.函数()f x 的最大值为1【答案】BC 【解析】【分析】利用二倍角公式及辅助角等公式化简得到()πsin 224f x x ⎛⎫=+ ⎪⎝⎭,借助三角函数的性质逐一判断即可.【详解】结合题意:()ππ1π1sin cos sin cos sin 2sin 244222f x x x x x x x ⎛⎫⎛⎫⎛⎫=+++=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即()112πcos 2sin 222224f x x x x ⎛⎫=+=+ ⎪⎝⎭.对于选项A:由()πsin 224f x x ⎛⎫=+ ⎪⎝⎭可得2ω=,所以2ππT ω==,故选项A 错误;对于选项B:将π8x =-代入()2πsin 224f x x ⎛⎫=+ ⎪⎝⎭得:πππsin 2sin 0082842f ⎡⎤⎛⎫⎛⎫-=⨯-+== ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以点π,08⎛⎫- ⎪⎝⎭是函数()f x 图象的一个对称中心,故选项B 正确;对于选项C:对于()πsin 224f x x ⎛⎫=+ ⎪⎝⎭,令π24t x =+,则2=sin 2y t ,因为π5π,88x ⎡⎤∈⎢⎥⎣⎦,所以ππ3π2,422t x ⎡⎤=+∈⎢⎥⎣⎦,而2=sin 2y t 在π3π,22⎡⎤⎢⎥⎣⎦上单调递减,所以函数()f x 在区间π5π,88⎡⎤⎢⎥⎣⎦上单调递减,故选项C 正确;对于选项D:对于()2πsin 224f x x ⎛⎫=+ ⎪⎝⎭,当ππ22π+,Z 42x k k +=∈,即ππ+,Z 8x k k =∈,()max =122f x ⨯=,故选项D 错误.故选:BC.11.定义域均为R 的奇函数()f x 和偶函数()g x ,满足()()2cos xf xg x x +=+,则()A.0R x ∃∈,使得()0R f x m m =∈,B.0R x ∃∈,使得()00g x =C .R x ∀∈,都有()()1f xg x -< D.R x ∀∈,都有()()()()0f xg x f x g x +--=【答案】ACD 【解析】【分析】由两函数的奇偶性列方程组可求出两函数的解析式,对于选项A:利用函数()f x 在R 上单调递增,且值域为R ,即可判断;对于选项B:借助基本不等式及三角函数的最值即可判断;对于选项C:利用函数的值域求出()()1cos 12xf xg x x ⎛⎫-=--< ⎪⎝⎭即可判断;对于选项D:利用函数的奇偶性即可判断.【详解】因为()()2cos xf xg x x +=+,则()()()2cos xf xg x x --+-=+-,因为()f x 为奇函数和()g x 为偶函数,所以()()()(),f x f x g x g x -=--=,所以()()()2cos xf xg x x --+=+-,联立()()()()2cos 2cos xxf xg x x f x g x x -⎧+=+⎪⎨-+=+⎪⎩,可得()()1222x x f x -=-,()()122cos 2x x g x x -=++,对于选项A:由()()111222222x x x x f x -⎛⎫=-=- ⎪⎝⎭,易判断函数()f x 在R 上单调递增,且值域为R ,故0R x ∃∈,使得()0R f x m m =∈,,故选项A 正确;对于选项B:由()()122cos 2xx g x x -=++,因为20,20x x ->>,所以()1122122x x -+≥⨯=,当且仅当22-=x x ,即0x =时,()1222x x -+取得最小值1,而[]cos 1,1x ∈-,当且仅当2ππ,Z x k k =+∈时取到1-,故()()122cos 02xx g x x -=++>(不能同时取等),故不存在0R x ∈,使得()00g x =,故选项B 错误;对于选项C:由()()1222x x f x -=-,()()122cos 2x x g x x -=++,可得()()1cos 2x f x g x x ⎛⎫-=-- ⎪⎝⎭,而102x⎛⎫-< ⎪⎝⎭,[]cos 1,1x -∈-,所以()()1cos 12xf xg x x ⎛⎫-=--< ⎪⎝⎭,故R x ∀∈,都有()()1f x g x -<,故选项C 正确;对于选项D:因为()f x 为奇函数和()g x 为偶函数,所以()()()(),f x f x g x g x -=--=,()()()()()()()()0f x g x f x g x f x g x f x g x +--=-=,故R x ∀∈,都有()()()()0f x g x f x g x +--=,故选项D 正确.故选:ACD.12.设n 是正整数,集合(){}{}12,,,1,11,2,,n i A x x x x i n αα==∈-= ∣,,.对于集合A 中任意元素()12,,,n y y y β= 和()12,,n z z z γ= ,,记()1122,n n P y z y z y z βγ=+++ ,()()111122221,2n n n n M y z y z y z y z y z y z βγ=++-+++-++++- .则()A.当3n =时,若()()1,1,11,1,1βγ==--,,则(),2M βγ=B.当3n =时,(),P r β的最小值为3-C.当6n =时,()(),,M P βγβγ≥恒成立D.当6n =时,若集合B A ⊆,任取B 中2个不同的元素,βγ,(),2P βγ≥,则集合B 中元素至多7个【答案】BD 【解析】【分析】根据()(),,,M P βγβγ的计算公式即可求解AB ,举反例即可求解C ,根据所给定义,即可求解D.【详解】对于A ,当()()1,1,1,1,1,1βγ==--时,()()()1,11111111111132M βγ⎡⎤=+++--+-+--+--=⎣⎦,故A 错误,对于B ,()112233,P y z y z y z βγ=++,而{}1,1,1,2,3i i y z i ∈-=,故当1i i y z =-时,此时()112233,P y z y z y z βγ=++取最小值3-,比如()()1,1,1,1,1,1βγ==---时,(),3P r β=-,故B 正确,对于C ,6n =时,()()1,1,1,1,1,1,1,1,1,1,1,1βγ=------=-----,()()1111222266661,42M y z y z y z y z y z y z βγ=++-+++-++++-=- ,()112266,4P y z y z y z βγ=+++= ,不符合()(),,M P βγβγ≥,故C 错误,对于D ,不妨设B 中一个元素(){}126,,,,1,1i y y y y β=∈- ,1,2,3,4,5,6i =由于(),2P βγ≥,则,βγ中相同位置上的数字最多有两对互为相反数,其他相同位置上的数字对应相同,若,βγ中相同位置中有一对的数字互为相反数,其他相同位置上的数字对应相同,不妨设()126,,,,y y Y γ= 此时(),42P βγ=≥,那么与()126,,,y y Y γ= 相同位置中有一对的数字互为相反数,其他相同位置上的数字对应相同的元素有()11256,,,,y y Y Y γ= ()212456,,,,,y y Y y Y γ= ()3123456,,,,,,y y Y y y Y γ=()4123456,,,,,,y Y y y y Y γ=()5123456,,,,,,Y y y y y Y γ=此时(),42i P γγ=≥,其中1,2,3,4,5i =,(),22,,i j P i j γγ=≥≠,1,2,3,4,5i j =,而i γ,1,2,3,4,5i =与β中相同位置上的数字有两对是不相同的,此时(),22i P γβ=≥,满足,若与()126,,,y y Y γ= 相同位置中有2对的数字互为相反数,那么就与(){}126,,,,1,1i y y y y β=∈- 有3对相同位置上的元素互为相反数,不符合,因此此时B 中满足条件的元素有7个,若,βγ中相同位置中有两对的数字互为相反数,其他相同位置上的数字对应相同,不妨设()126,,,,Y y Y γ'= (),42P γγ=≥',此时()126,,,Y y Y γ'= 与元素()5123456,,,,,Y y y y y Y γ=重复,综上可知B 中元素最多7个,D 正确,故选:BD【点睛】方法点睛:求解新定义运算有关的题目,关键是理解和运用新定义的概念以及元算,利用化归和转化的数学思想方法,将不熟悉的数学问题,转化成熟悉的问题进行求解.对于新型集合,首先要了解集合的特性,抽象特性和计算特性,抽象特性是将集合可近似的当作数列或者函数分析.计算特性,将复杂的关系通过找规律即可利用已学相关知识求解.三、填空题:本大题共4小题,每小题5分,共20分.13.120 角是第_____________象限角.【答案】二【解析】【分析】直接由象限角的概念得答案.【详解】由象限角的定义可知,120 的角是第二象限角.故答案为:二.14.已知函数()1xf x a =+(0a >,且1a ≠)的图象过定点,则该定点的坐标是_________.【答案】()0,2【解析】【分析】借助指数函数令0x =,代入函数式可得定点纵坐标.【详解】在函数()1xf x a =+(0a >,且1a ≠)中,令0x =,则()0012f a =+=,所以该定点的坐标是()0,2.故答案为:()0,2.15.已知tan 3α=,()()πsin πsin 2πcos πcos 2αααα⎛⎫-+- ⎪⎝⎭⎛⎫+-+ ⎪⎝⎭的值为_________.【答案】2【解析】【分析】利用诱导公式化简,结合齐次式代入计算即可.【详解】因为tan 3α=,所以()()πsin πsin sin cos tan 13122πcos sin 1tan 13cos πcos 2αααααααααα⎛⎫-+- ⎪+++⎝⎭====-+-+-+⎛⎫+-+ ⎪⎝⎭.故答案为:2.16.若函数()()220f x x x x a a =-+->在[]0,2上的最小值为1,则正实数a 的值为_________.【答案】134【解析】【分析】对参数a 进行分类讨论,根据分段函数的单调性和最值,即可求得结果.【详解】由题可得()222,23,x x a x af x x x x a x x a x a⎧--≥=-+-=⎨-+<⎩,因为函数()()220f x x x x a a =-+->在[]0,2上的最小值为1,当102a <≤时,在[]0,2上,()f x 在10,2⎡⎤⎢⎥⎣⎦单调递减,1,22⎛⎤ ⎥⎝⎦单调递增,所以()min 111124f x f a ⎛⎫==--= ⎪⎝⎭,解得74a =(舍);当1322a <≤时,在[]0,2上()f x 在[]0,a 单调递减,(],2a 单调递增,所以()()2min 21f x f a a a ==-=,解得1a =(舍);当32a >时,在[]0,2上,()f x 在30,2⎡⎤⎢⎥⎣⎦单调递减,3,22⎛⎤⎥⎝⎦单调递增,所以()min 3991242f x f a ⎛⎫==-+=⎪⎝⎭,解得134a =.故答案为:134四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.计算:(1211333822--⨯;(2)23lg4lg25log 3log 4+-⨯.【答案】(1)π(2)0【解析】【分析】(1)根据根式的性质及分数指数幂的运算法则计算可得;(2)根据对数的运算性质及换底公式计算可得.【小问1详解】()2112303333822π322π341π-+-⨯=-+-=-+-=.【小问2详解】()2232323lg4lg25log 3log 4lg 425log 3log 2lg1002log 3log 2220.+-⨯=⨯-⨯=-⨯=-=18.已知()(){130}A x x x =--<∣,{}B xx m =>∣.(1)若2m =,求A B ⋂;(2)若x A ∈是x B ∈的充分不必要条件,求实数m 的取值范围.【答案】(1){23}x x ∈<<R∣(2)(],1-∞【解析】【分析】(1)由交集的定义直接求解;(2)由题意AB ,利用集合的包含关系求m 的取值范围.【小问1详解】若2m =,则{13}A x x =∈<<R∣,{2}B x x =∈>R ∣,所以{23}A B x x ⋂=∈<<R∣.【小问2详解】若x A ∈是x B ∈的充分不必要条件,则A B ,得1m £,故m 的取值范围是(]1-∞,.19.已知函数()23sin cos 22x f x x m =++的最大值为2.(1)求常数m 的值;(2)先将函数()f x 的图象上所有点的横坐标缩短到原来的12(纵坐标不变),再将所得图象向右平移π6个单位长度,得到函数()g x 的图象,求()g x 在区间π0,2⎡⎤⎢⎥⎣⎦上的取值范围.【答案】(1)12(2)1,22⎡⎤⎢⎥⎣⎦【解析】【分析】(1)利用二倍角公式和辅助角公式化简函数解析式,由函数最大值求常数m 的值;(2)求出图象变换后的函数解析式,然后利用正弦函数的性质求值域.【小问1详解】()211π1sin cos cos sin 2222262x f x x m x x m x m ⎛⎫=++=+++=+++ ⎪⎝⎭.因为()f x 的最大值为2,所以1122m ++=,故12m =.【小问2详解】()πsin 16f x x ⎛⎫=++ ⎪⎝⎭,函数()f x 的图象上所有点的横坐标缩短到原来的12(纵坐标不变),得函数πsin 216y x ⎛⎫=++ ⎪⎝⎭的图象,再将所得图象向右平移π6个单位长度,得()πππ=sin 21sin 21666g x x x ⎡⎤⎛⎫⎛⎫-++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由π02x ≤≤,得ππ5π2666x -≤-≤,所以1πsin 2126x ⎛⎫-≤-≤ ⎪⎝⎭,1π1sin 2226x ⎛⎫≤+-≤ ⎪⎝⎭,故()g x 在区间π0,2⎡⎤⎢⎥⎣⎦上的取值范围是1,22⎡⎤⎢⎥⎣⎦.20.从①31(log 2)3f =-;②函数()f x 为奇函数;③()f x 的值域是()1,1-,这三个条件中选一个条件补充在下面问题中,并解答下面的问题.问题:已知函数()1,R 31x a f x a =-∈+,且.(1)求函数()f x 的解析式;(2)若(32)(9)0x x f a f m ⋅+++≤对任意x ∈R 恒成立,求实数m 的最小值.注:如果选择多个条件分别解答,按第一个解答计分.【答案】(1)答案见解析(2)2-【解析】【分析】(1)根据题意,分别选择①②③,结合函数的性质,求得实数a 的值,即可求解;(2)根据函数的单调性的定义判定方法,得到()f x 在R 上单调递减,再由()f x 为奇函数,把不等式转化为9232x x m ≥--⋅-恒成立,结合指数函数与二次函数的性质,即可求解.【小问1详解】解:若填①:由31(log 2)3f =-,可得33log 21(log 2)1131213aa f =-=-=-++,解得2a =,所以2()131x f x =-+.若填②:由函数()131x a f x =-+,因为函数()f x 为奇函数,故()01f =,可得0(0)1031a f =-=+,解得2a =,所以2()131x f x =-+,即213()13131x x x f x -=-=++,经验证:1331()()3131x x x x f x f x -----===-++,符合题意,所以2()131x f x =-+.若填③:由131x a y =-+,可得131x a y +=+,则131011x a a y y y --=-=>++,即(1)01y a y --<+,又由()f x 的值域是()1,1-,可得11a -=,故2a =,所以2()131x f x =-+.【小问2详解】解:12,R x x ∀∈,且12x x <,则()()2112122(33)()()03131x x x x f x f x --=>++,所以函数()2131x f x =-+在R 上单调递减,又因为213()13131x x x f x -=-=++,满足1331()()3131x x x x f x f x -----===-++,所以()f x 为奇函数,由不等式(32)(9)0x x f a f m ⋅+++≤,可得(232)(9)x x f f m ⋅+≤--,则2329x x m ⋅+≥--,所以9232x x m ≥--⋅-,令30x t =>,记22923222(1)1x x y t t t =--⋅-=---=-+-,所以2y ≤-,所以2m ≥-,所以m 的最小值为2-.21.如图是一种升降装置结构图,支柱OP 垂直水平地面,半径为1的圆形轨道固定在支柱OP 上,轨道最低点D ,2PD =,12OD =.液压杆OA 、OB ,牵引杆CA 、CB ,水平横杆AB 均可根据长度自由伸缩,且牵引杆CA 、CB 分别与液压杆OA 、OB 垂直.当液压杆OA 、OB 同步伸缩时,铰点A B 、在圆形轨道上滑动,铰点C E 、在支柱OP 上滑动,水平横杆AB 作升降运动(铰点指机械设备中铰链或者装置臂的连接位置,通常用一根销轴将相邻零件连接起来,使零件之间可围绕铰点转动).(1)设劣弧 AD 的长为x ,求水平横杆AB 的长和AB 离水平地面的高度OE (用x 表示);(2)在升降过程中,求铰点C E 、距离的最大值.【答案】(1)2sin AB x =;3cos 2OE x =-(2)3-【解析】【分析】(1)轨道圆心为T ,圆的半径为1,劣弧 AD 的长为x 时,有ATD x ∠=,由三角函数表示出AB 和OE 的长;(2)证明出AEC OEA ~ ,则222sin 1cos 33cos cos 22AE x x CE OE x x -===--,通过换元利用基本不等式求出最大值.【小问1详解】记轨道圆心为T ,则1AT =,设劣弧 AD 的长为x ,则ATD x ∠=,得22sin AB AE x ==,3cos cos 2OE OT ET OT x x =-=-=-.【小问2详解】由已知,AB OP ⊥,CA OA ⊥,90CAE ACE CAE OAE ∠+∠=∠+∠= ,则ACE OAE ∠=∠,又90CEA OEA ∠=∠= ,所以AEC OEA ~ ,则222sin 1cos 33cos cos 22AE x x CE OE x x -===--,令3cos 2x t -=,有1522t ⎛⎫∈ ⎪⎝⎭,,.则2535434t t CE t t t --⎛⎫==-+ ⎪⎝⎭,1522t ⎛⎫∈ ⎪⎝⎭,,因为54t t +≥=2t =时,取到等号,所以铰点C E 、距离的最大值为3-.【点睛】方法点睛:求CE 的最大值时,证明AEC OEA ~ ,由已知的AB 和OE ,有21cos 3cos 2x CE x -=-,通过换元3cos 2x t -=,有534CE t t ⎛⎫=-+ ⎪⎝⎭,借助基本不等式可求最大值.22.已知函数()()221151221x x f x x x x ⎧-++<⎪⎪=⎨⎪+≥⎪⎩,,.(1)用单调性定义证明:()f x 在[)1,+∞上单调递增;(2)若函数()()R y f x m m =-∈有3个零点123x x x ,,,满足123x x x <<,且322112x x x x -=-.①求证:()231204x m +=-;②求[]310x 的值([]x 表示不超过x 的最大整数).【答案】(1)证明见解析(2)①证明见解析;②14【解析】【分析】(1)根据函数单调性的定义即可求解,(2)根据函数的图象,结合二次函数的对称性即可求解①,构造函数,,由单调性的定义求解其单调性,即可结合零点存在定理求解②.【小问1详解】[)12,1,x x ∞∀∈+,且12x x <有()()()()1212122212121212222x x x x x x f x f x x x x x x x ⎡⎤-+-⎣⎦-=-+-=,由[)12,1,x x ∞∈+,得122x x +>,121x x ⋅>,所以()12122x x x x +>,得()121220x x x x +->,又由12x x <,得120x x -<.于是()()1212121220x x x x x x x x ⎡⎤-+-⎣⎦<,即()()12f x f x <.所以,函数()f x 在[)1,+∞上单调递增.【小问2详解】①要使()y f x m =-有3个零点,由(1)知,函数()y f x m =-在[)1,+∞上存在一个零点3x ,在(]1∞-,上存在两个零点12x x ,,且122x x =--,代入3221212x x x x --=-,得3222111x x x --=+,于是32121x x +=+,因为()221152x m -++=,所以()()231204*x m +=-⋅②由2332x m x +=,代入()*式,得32333521980x x x +-+=,令()3252198g x x x x =+-+,[)12,1,t t ∞∀∈+,且12t t <,有()()()()221212112112555219g t g t t t t t t t t t ⎡⎤-=-++++-⎣⎦,由于12t t <,所以120t t -<,而[)12,1,t t ∞∈+,则()22221122125552195155122190t t t t t t ++++->⨯++⨯+⨯-=,故()()120g t g t -<,故函数()g x 在[)1,+∞上单调递增,又因为21220g =-<,37028g ⎛⎫=> ⎪⎝⎭,。

福建省邵武市第四中学2022-2023学年高一数学第一学期期末学业水平测试试题含解析

福建省邵武市第四中学2022-2023学年高一数学第一学期期末学业水平测试试题含解析

A. 2, 1
B. 3, 4
C. 1,0
D. 1,2
9.已知函数
f
(x)
e x1
x2
,x 0 2x 1,
x
,若关于 x 的方程 f 2 (x) 3 f (x) a 0(a R) 有 8 个不等的实数根,则 a 的 0
取值范围是 ( )
A.
0,
1 4
B.
1 3
,
3
C. 1,2
D.
解单调递增区间;(3)整体法先得到 f x1, 2 ,换元后得到 t2 2t 2a 1 0 在 t 1, 2 上有根,进而求出 a
的取值范围. 【小问 1 详解】 作出表格如下:
π
x
3
x π
0
3
2
sin
x
π 3
0


11π

6
3
6
3
π
π


2
2
2
0
-2
0
在平面直角坐标系中标出以下五点,
(1)求
的值;
sinsin
(2)求 sin2cos2 cos2sin2 的值
20.函数
f1 ( x)
Asin x
A
0,
0,
|
|
2
的一段图象如图所示.
(1)求函数 f1 x 的解析式;
(2)将函数 y f1 x
图象向右平移 4
个单位,得函数
y
f2 x 的图象,求
y
f2
x

x
0,
2
一、选择题:本大题共 10 小题,每小题 5 分,共 50 分。在每个小题给出的四个选项中,恰有一项是符合题目要求的

平顶山市2024届高一数学第一学期期末统考试题含解析

平顶山市2024届高一数学第一学期期末统考试题含解析

平顶山市2024届高一数学第一学期期末统考试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(本大题共12小题,共60分)1.已知圆C :x 2+y 2+2x =0与过点A (1,0)的直线l 有公共点,则直线l 斜率k 的取值范围是() A.33,22⎡-⎢⎣⎦ B.33,33⎡-⎢⎣⎦C.11,22⎡⎤-⎢⎥⎣⎦ D.[]1,1-2.已知函数,则()2log 1,026,0x x f x x x ->⎧=⎨-≤⎩,则()()11f f --=A.22log 32- B.2log 71-C.2D.2log 63.如果幂函数()a f x x =的图象经过点()2,4,则()f x 在定义域内A.为增函数B.为减函数C.有最小值D.有最大值4.已知(2,5,6)A -,点P 在y 轴上,||7PA =,则点P 的坐标是A.(0,8,0)B.(0,2,0)C.(0,8,0)或(0,2,0)D.(0,8,0)-5.角α的终边经过点()2,1-,则2sin 3cos αα+的值为()A.55-C.5D.5-6.已知函数1()sin()f x x ωφ=+(0,2ωφπ><)的部分图象如图所示,则,ωφ的值分别为A.2,3π B.2, 3π-C.1, 6π D.1, 6π-7.已知1tan 2α=,则cos sin cos sin αααα+=-().A.2B.2-C.3D.3-8.如图,四边形ABCD 是平行四边形,则()A. B.C. D.9.下表是某次测量中两个变量,x y 的一组数据,若将y 表示为关于x 的函数,则最可能的函数模型是x 23456789y0.63 1.01 1.26 1.46 1.63 1.77 1.89 1.99A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型10.已知角α满足2cos2cos 04παα⎛⎫=+≠⎪⎝⎭,则sin2α=A .18- B.78-C.18 D.7811.已知角θ为第四象限角,则点()sin ,tan P θθ位于()A.第一象限B.第二象限C.第三象限D.第四象限12.从3名男同学,2名女同学中任选2人参加体能测试,则选到的2名同学中至少有一名男同学的概率是()A.910 B.45C.25 D.12二、填空题(本大题共4小题,共20分)0.258+(1258-)0+323log=_____14.若tan(2,4πα+=则sin cossin cosαααα-=+______15.已知tan3α=,则sin cossin cosαααα+=-___________16.函数212()log()f x x x=-的单调增区间为________三、解答题(本大题共6小题,共70分)17.降噪耳机主要有主动降噪耳机和被动降噪耳机两种.其中主动降噪耳机的工作原理是:先通过微型麦克风采集周围的噪声,然后降噪芯片生成与噪声振幅相同、相位相反的反向声波来抵消噪声(如图所示).已知某噪声的声波曲线是()2sin(0,0)3f x A x Aπϕϕπ⎛⎫=+>≤<⎪⎝⎭,其中的振幅为2,且经过点()1,2-.(1)求该噪声声波曲线的解析式()f x以及降噪芯片生成的降噪声波曲线的解析式()g x;(2)将函数()f x图象上各点的横坐标变为原来的3π倍,纵坐标不变得到函数()h x的图象.若锐角θ满足()1013hθ=-,求cos2θ的值.18.已知定义域为R的函数()122xxaf xb+-+=+是奇函数.(1)求,a b的值;(2)判断函数()f x的单调性(只写出结论即可);(3)若对任意的[1,1]t∈-不等式()()2220f t t f k t-+-<恒成立,求实数k的取值范围19.已知a R ∈,函数()21log f x a x ⎛⎫=+ ⎪⎝⎭.(1)当5a =时,解不等式()0f x >;(2)若关于x 的方程()()2log 4250f x a x a ⎡⎤--+-=⎣⎦的解集中恰有一个元素,求a 的取值范围;(3)设0a >,若对任意1,12t ⎡⎤∈⎢⎥⎣⎦,函数()f x 在区间[],1t t +上的最大值与最小值的差不超过1,求a 的取值范围.20.如图,正三棱柱111ABC A B C -的底面边长为3,侧棱13AA =,D 是CB 延长线上一点,且BD BC =()1求二面角1B AD B --的正切值;()2求三棱锥11C ABB -的体积21.函数()()2log 21x f x =-(1)解不等式()1f x <;(2)若方程()()4log 4x f x m =-有实数解,求实数m 的取值范围22.已知,a b ∈R ,0a ≠,函数()cos )f x x x b =++,1()sin cos 22a g x a x x a =⋅+++(1)若(0,)x π∈,()5f x b =-+,求sin cos x x -的值;(2)若不等式()()f xg x ≤对任意x ∈R 恒成立,求b 的取值范围参考答案一、选择题(本大题共12小题,共60分)1、B【解析】利用点到直线的距离公式和直线和圆的位置关系直接求解【详解】根据题意得,圆心(﹣1,0),r =1,设直线方程为y ﹣0=k (x ﹣1),即kx ﹣y ﹣k =0∴圆心到直线的距离d =≤1,解得33-≤k 33≤故选B【点睛】本题考查直线和圆的位置关系,点到直线的距离公式,属于基础题2、B 【解析】因为()2log 1,026,0x x f x x x ->⎧=⎨-≤⎩,所以()()()()2112617117log 71f f f f --=---=--==-,,故选B.3、C【解析】由幂函数()f x x α=的图象经过点(2,4),得到2()f x x =,由此能求出函数的单调性和最值【详解】解: 幂函数()f x x α=的图象经过点(2,4),()224a f ∴==,解得2a =,2()f x x ∴=,()f x ∴在(],0x ∈-∞递减,在[)0,x ∈+∞递增,有最小值,无最大值故选C【点睛】本题考查幂函数的概念和应用,是基础题.解题时要认真审题,仔细解答4、C【解析】依题意设()0,,0P b ,根据7PA ==,解得2,8b =,所以选C .5、D【解析】根据三角函数定义求解即可.【详解】因为角α的终边经过点()2,1-,所以5sin 5α==,25cos 5α==-,所以2565452sin 3cos 555αα+=-=-.故选:D6、B 【解析】由条件知道:27,36x x ππ==均是函数的对称中心,故这两个值应该是原式子分母的根,故得到27sin()0,sin()036w w πφπφ+=+=,由图像知道周期是π,故2w =,故47sin()0,sin()033πφπφ+=+=,再根据三角函数的对称中心得到4+=k 3πφπ,故.3πφ=-如果7433k πφπφπ+=⇒=-,根据2πφ<,得到.3πφ=-故答案为B 点睛:根据函数的图像求解析式,一般要考虑的是图像中的特殊点,代入原式子;再就是一些常见的规律,分式型的图像一般是有渐近线的,且渐近线是分母没有意义的点;还有常用的是函数的极限值等等方法7、C 【解析】将cos sin cos sin αααα+-分子分母同除以cos α,再将1tan 2α=代入求解.【详解】11cos sin 1tan 231cos sin 1tan 12αααααα+++===---.故选:C【点睛】本题主要考查同角三角函数基本关系式,还考查了运算求解的能力,属于基础题.8、D【解析】由线性运算的加法法则即可求解.【详解】如图,设交于点,则.故选:D9、D【解析】对于A ,由于x 均匀增加1,而y 值不是均匀递增,∴不是一次函数模型;对于B ,由于该函数是单调递增,不是二次函数模型;对于C ,x y a =过()0,1,∴不是指数函数模型,故选D.10、B【解析】∵2cos2cos 4παα⎛⎫=+ ⎪⎝⎭∴2222(cos sin )2(cos sin )(cos sin )(cos sin )02αααααααα-=+-=-≠,∴2cos sin 4αα+=,两边平方整理得11+2sin cos 1+sin28ααα==,∴7sin28α=-.选B 11、C 【解析】根据三角函数的定义判断sin θ、tan θ的符号,即可判断.【详解】因为θ是第四象限角,所以sin 0θ<,tan 0θ<,则点(sin ,tan )θθ位于第三象限,故选:C12、A【解析】先计算一名男同学都没有的概率,再求至少有一名男同学的概率即可.【详解】两名同学中一名男同学都没有的概率为2225110C C =,则2名同学中至少有一名男同学的概率是1911010-=.故选:A .二、填空题(本大题共4小题,共20分)13、5【解析】根据根式、指数和对数运算化简所求表达式.【详解】依题意,原式()1134422122125=⨯++=++=.故答案为:5【点睛】本小题主要考查根式、指数和对数运算,考查化归与转化的数学思想方法,属于基础题.14、12-【解析】sin cos sin cos αααα-=+tan 111tan 12tan()4απαα-=-=-++15、2【解析】将齐次式弦化切即可求解.【详解】解:因为tan 3α=,所以sin cos tan 1312sin cos tan 131+++===---αααααα,故答案为:2.16、1,12⎡⎫⎪⎢⎣⎭.【解析】结合定义域由复合函数的单调性可解得结果.【详解】由20x x ->得()f x 定义域为()0,1,令2t x x =-,则t 在112⎡⎫⎪⎢⎣⎭,单调递减,又12log y t =在()0,∞+单调递减,所以()f x 的单调递增区间是112⎡⎫⎪⎢⎣⎭,.故答案为:112⎡⎫⎪⎢⎣⎭,.三、解答题(本大题共6小题,共70分)17、(1)()252sin 36f x x ππ⎛⎫=+ ⎪⎝⎭,()252sin 36g x x ππ⎛⎫=-+ ⎪⎝⎭(2)123526【解析】(1)利用函数的振幅求得A ,代入()1,2-求得ϕ的值,从而求得函数()f x ,利用对称性求得函数()g x ;(2)利用三角函数图像变换求得()h x ,由()1013h θ=-得5cos 2313πθ⎛⎫+=- ⎪⎝⎭,利用同角三角函数的基本关系式及两角和与差的三角公式求得结果.【小问1详解】解:由()2sin (0,0)3f x A x A πϕϕπ⎛⎫=+>≤< ⎪⎝⎭振幅为2知2A =,()22sin 3f x x πϕ⎛⎫∴=+ ⎪⎝⎭,代入()1,2-有22sin 23πϕ⎛⎫+=- ⎪⎝⎭,272,2326k k πππϕπϕπ∴+=-+∴=-+,而0ϕπ≤<,()525,2sin 636f x x πππϕ⎛⎫∴=∴=+ ⎪⎝⎭而()f x 与()g x 关于x 轴对称,()()252sin 36g x f x x ππ⎛⎫∴=-=-+ ⎪⎝⎭【小问2详解】由已知()352sin 26h x f x x ππ⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭,()5102sin 22sin 22cos 2623313h ππππθθθθ⎛⎫⎛⎫⎛⎫∴=+=++=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,5cos 2313πθ⎛⎫∴+=- ⎪⎝⎭40,22333ππππθθ<<∴<+< ,而514cos 2cos 31323ππθ⎛⎫+=->-= ⎪⎝⎭,故223ππθπ<+<,12sin 2313πθ⎛⎫∴+= ⎪⎝⎭cos2cos 233ππθθ⎡⎤⎛⎫∴=+- ⎪⎢⎥⎝⎭⎣⎦cos 2cos sin 2sin 3333ππππθθ⎛⎫⎛⎫=+++ ⎪ ⎝⎭⎝⎭51123132132⎛⎫=-⨯+⨯ ⎪⎝⎭123526-=.18、(1)1a =,2b =;(2)见解析;(3)(2,)+∞.【解析】(1)根据函数奇偶性得()00f =,()()11f f -=-,解得,a b 的值;最后代入验证,(2)可举例比较大小确定单调性,(3)根据函数奇偶性与单调性将不等式化简为2k t >,再根据恒成立转化为对应函数最值问题,最后根据函数最值得结果.【详解】(1) ()f x 在R 上是奇函数,∴()00f =,∴102a b -+=+,∴1a =,∴()1122x x f x b+-=+,∴()()11f f -=-,∴111214b b --=-++,∴2b =,∴()11222xx f x +-=+,经检验知:()()f x f x -=,∴1a =,2b =(2)由(1)可知,()()()21211221221x x x f x -++==-+++在R 上减函数.(3)()()2220f t t f k t -+-< 对于[]1,1t ∈-恒成立,()()222f t t f k t ∴-<--对于[]1,1t ∈-恒成立, ()f x 在R 上是奇函数,()()222f t t f t k ∴-<-对于[]1,1t ∈-恒成立,又 ()f x 在R 上是减函数,222t t t k ∴->-,即2k t >对于[]1,1t ∈-恒成立,而函数()2g x t =在[]1,1-上的最大值为2,2k ∴>,∴实数k 的取值范围为()2,+∞【点睛】对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.19、(1)()1,0,4x ⎛⎫∈-∞-⋃+∞ ⎪⎝⎭.(2)(]{}1,23,4 .(3)2,3⎡⎫+∞⎪⎢⎣⎭【解析】(1)当5a =时,解对数不等式即可;(2)根据对数的运算法则进行化简,转化为一元二次方程,讨论a 的取值范围进行求解即可;(3)根据条件得到11f t f t -+≤()(),恒成立,利用换元法进行转化,结合对勾函数的单调性进行求解即可.试题解析:(1)由21log 50x >⎛⎫+ ⎪⎝⎭,得151x +>,解得()1,0,4x ⎛⎫∈-∞-⋃+∞ ⎪⎝⎭(2)由f (x )﹣log 2[(a ﹣4)x +2a ﹣5]=0得log 2(1x +a )﹣log 2[(a ﹣4)x +2a ﹣5]=0即log 2(1x +a )=log 2[(a ﹣4)x +2a ﹣5],即1x+a =(a ﹣4)x +2a ﹣5>0,①则(a ﹣4)x 2+(a ﹣5)x ﹣1=0,即(x +1)[(a ﹣4)x ﹣1]=0,②,当a =4时,方程②的解为x =﹣1,代入①,成立当a =3时,方程②的解为x =﹣1,代入①,成立当a ≠4且a ≠3时,方程②的解为x =﹣1或x 14a =-,若x =﹣1是方程①的解,则1x +a =a ﹣1>0,即a >1,若x 14a =-是方程①的解,则1x+a =2a ﹣4>0,即a >2,则要使方程①有且仅有一个解,则1<a ≤2综上,若方程f (x )﹣log 2[(a ﹣4)x +2a ﹣5]=0的解集中恰好有一个元素,则a 的取值范围是1<a ≤2,或a =3或a =4(3)函数f (x )在区间[t ,t +1]上单调递减,由题意得f (t )﹣f (t +1)≤1,即log 2(1t +a )﹣log 2(11t ++a )≤1,即1t +a ≤2(11t ++a ),即a ()12111t t t t t -≥-=++设1﹣t =r ,则0≤r 12≤,()()()2111232t r r t t r r r r -==+---+,当r =0时,232r r r =-+0,当0<r 12≤时,212323r r r r r =-++-,∵y =r 2r +在(0)上递减,∴r 219422r +≥+=,∴211229323332r r r r r =≤=-++--,∴实数a 的取值范围是a 23≥【一题多解】(3)还可采用:当120x x <<时,1211a a x x ++>,221211log log a a x x >⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,所以()f x 在()0,∞+上单调递减则函数()f x 在区间[],1t t +上的最大值与最小值分别为()f t ,()1f t +()()22111log log 11f t f t a a t t ⎛⎫⎛⎫-+=+-+≤ ⎪ ⎪+⎝⎭⎝⎭即()2110at a t ++-≥,对任意1,12t ⎡⎤∈⎢⎥⎣⎦成立因为0a >,所以函数()211y at a t =++-在区间1,12⎡⎤⎢⎥⎣⎦上单调递增,12t =时,y 有最小值3142a -,由31042a -≥,得23a ≥故a 的取值范围为2,3⎡⎫+∞⎪⎢⎣⎭20、(1)2(2)934【解析】()1取BC 中点O,11B C 中点E,连结OE,OA,以O 为原点,OD 为x 轴,OE 为y 轴,OA 为z 轴,建立空间直角坐标系,利用向量法能求出二面角1B AD B --的正切值()2三棱锥11C ABB -的体积1111C ABB A BB C V V --=,由此能求出结果【详解】()1取BC 中点O ,11B C 中点E ,连结OE ,OA ,由正三棱柱111ABC A B C -的底面边长为3,侧棱13AA =,D 是CB 延长线上一点,且BD BC=以O 为原点,OD 为x 轴,OE 为y 轴,OA 为z 轴,建立空间直角坐标系,则13(,2B 3,0),(0,A 0,2,9(,2D 0,0),3(,2B 0,0),所以9(,2AD = 0,33)2-,13(,2AB = 3,332-,其中平面ABD 的法向量(0,n =1,0),设平面1ADB 的法向量(,m x = y ,)z ,则19330223333022m AD x z m AB x y z ⎧⋅=-=⎪⎪⎨⎪⋅=+-=⎪⎩,取3z =,得(1,m =1,3),设二面角1B AD B --的平面角为θ,则1cos 5m n m n θ⋅==⋅,则12sin 155θ=-=,则sin tan 2cos θθθ==,所以二面角1B AD B --的正切值为2()2由(1)可得AO ⊥平面11BB C ,所以AO 是三棱锥11A BB C -的高,且332AO =,所以三棱锥11C ABB -的体积:11111111331933333224C ABB A BB C BB C V V AO S --==⨯⨯=⨯⨯⨯⨯= 【点睛】本题主要考查了二面角的求解,及空间几何体的体积的计算,其中解答中根据几何体的结构特征,建立适当的空间直角坐标系,利用向量的夹角公式求解二面角问题是求解空间角的常用方法,同时注意“等体积法”在求解三棱锥体积中的应用,着重考查了推理与运算能力,属于中档试题21、(1){}20log 3x x <<(2)1m >【解析】(1)由()1f x <,根据对数的单调性可得212x -<,然后解指数不等式即可.(2)由()()4log 4x f x m =-实数根,化为214x x m -=-有实根,令2x t =,22()210t t m ⋅-⋅+-=有正根即可,对称轴12t =,开口向上,只需0∆≥即可求解.【详解】(1)由()1f x <,即2log (21)1x -<,所以0212x <-<,123x <<,解得20log 3x <<所以不等式的解集为{}20log 3x x <<.(2)由()()4log 4x f x m =-实数根,即()()221log 21log 42x x m -=-有实数根,所以21x -=有实根,两边平方整理可得22(2)2210x x m ⋅-⋅+-=令2x t =,且1t >,由题意知22()210t t m ⋅-⋅+-=有大于1根即可,即22()21t t m ⋅-⋅+=,令2()2()21g t t t =⋅-⋅+,1t >,故()1g t >故1m >.故实数m 的取值范围1m >.【点睛】本题考查了利用对数的单调性解不等式、根据对数型方程的根求参数的取值范围,属于中档题.22、(1)5(2)见解析.【解析】(1)利用同角三角函数基本关系式进行求解;(2)作差,分离参数,将问题转化为求函数的最值问题,再利用换元思想进行求解.试题解析:(1)依题意得10sin cos 5x x +=,222sin cos 2sin ·cos 5x x x x ∴++=,即32sin ·cos 5x x =-812sin ·cos 5x x ∴-=,即()2228sin cos 2sin ·cos sin cos 5x x x x x x +-=-=由32sin ·cos 05x x =-<,()0,x π∈,得,2x ππ⎛⎫∈ ⎪⎝⎭,sin 0,cos sin cos 0,x x x x ∴>∴-210sin cos ,5x x ∴-=(2)即不等式)1sin cos sin cos 22a b a x x x x a ≤⋅+++++对任意R x ∈恒成立,即)min1sin cos sin cos 22a b a x x x x a ⎡⎤≤⋅++++⎢⎥⎣⎦下求函数)1sin cos sin cos 22a y a x x x x a =⋅+++++的最小值令sin cos ,t x x =+则4t x π⎛⎫⎡=+∈ ⎪⎣⎝⎭且21sin cos .2t x x -⋅=令())1sin cos sin cos 22a m t y a x x x x a ==⋅+++++()2211122222a t a a t a a-=+++=+++()22221222,022a a t t t a a a a ⎛⎫⎛=+++=++≠ ⎪ ⎪ ⎝⎭⎝⎭1°当()201,a m t a⎡-<<<⎣即时在区间上单调递增,()()(min 1.m t m a a ∴==+2°当20a ≤-<,即1a ≥时,()2min 2.m t m a ⎛⎫=-= ⎪ ⎪⎝⎭3°当()(2101,min a m t m a a a <-≤≤-==+即时4°当()(2110,min .a m t m a a a ->-<<==+即时min 2111,0a y a a a a ≥⎧⎪∴=⎨+<≠⎪⎩,所以当1a ≥时,2b ≤;当0a <或0<1a <时,1.b a a ≤+。

高一数学第一学期期末考试试卷(共5套,含参考答案)

高一数学第一学期期末考试试卷(共5套,含参考答案)

高一第一学期期末考试数学试卷 满分:150分 时间: 120分钟一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}|27,|1,A x x B x x x N =-<<=>∈,则AB 的元素的个数为( )A.3B.4C.5D.62.两条直线a ,b 满足a ∥b ,b α⊂,则a 与平面α的关系是( ) A.a ∥α B.a 与α相交 C.a 与α不相交 D.a α⊂3.方程的1xe x =的根所在的区间是( ). A.)21,0( B.)1,21( C.)23,1( D.)2,23(4.函数y=x (x 2-1)的大致图象是( )5.如图所示,已知正四棱锥S —ABCD 侧棱长为2,底面边长为3,E 是SA 的中点,则异面直线BE 与SC 所成角的大小为( ) A.90°B.60°C.45°D.30°6.长方体1111ABCD A B C D -中,2AB =,1AA =3AD =,则 长方体1111ABCD A B C D - 的外接球的直径为 ( ) A.2 B.3 C.4 D.57.圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为( ) A.120° B.150° C.180° D.240°8.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是( ) A.BD ∥平面CB 1D 1 B.AC 1⊥BDC.AC 1⊥平面CB 1D 1D.异面直线AD 与CB 1角为60°9.若方程1ln 02xx a ⎛⎫-+= ⎪⎝⎭有两个不等的实数根,则a 的取值范围是( )A.1,2⎛⎫+∞ ⎪⎝⎭B.()1,+∞C.1,2⎛⎫-∞ ⎪⎝⎭D.(),1-∞10.某几何体的三视图如图所示(单位: cm ),则该几何体的表面积是( )A.65B.6C.2D.511.已知函数()22log f x x x =+,则不等式()()120f x f +-<的解集为( )A. ()(),13,-∞-⋃+∞B. ()(),31,-∞-⋃+∞C. ()()3,11,1--⋃-D. ()()1,11,3-⋃12.已知()()()2,log 0,1x a f x ag x x a a -==>≠,若()()440f g ⋅-<,则y=()f x ,y=()g x 在同一坐标系内的大致图象是( )二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知不等式062<-+px x 的解集为{|32}x x -<<,则p = .14.2lg 2= _________15.函数()lg 21y x =+的定义域是______________________. 16.函数x21f x =-log x+23⎛⎫⎪⎝⎭()()在区间[-1,1]上的最大值为________. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)全集R U =,函数()lg(3)f x x =+-的定义域为集合A ,集合{}02<-=a x x B .(1)求U A ð; (2)若A B A = ,求实数a 的取值范围.18.(本题满分12分)已知函数⎪⎩⎪⎨⎧>-+≤-=)0(,1)1(log )0(,2)21()(2x x x x f x(1)求)(x f 的零点; (2)求不等式()0f x >的解集.19.(12分)如图,在直角梯形ABCD 中,AD ∥BC ,AD =AB ,∠A =90°,BD ⊥DC ,将△ABD 沿BD 折起到△EBD 的位置,使平面EBD ⊥平面BDC. (1) 求证:平面EBD ⊥平面EDC ; (2) 求ED 与BC 所成的角.20.(12分)一块边长为10 cm 的正方形铁块按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器.(1)试把容器的容积V 表示为x 的函数; (2)若x =6,求图2的正视图的面积.21.(本小题满分12分)在三棱柱111C B A ABC -中,侧面11A ABB 为矩形,1AB =,1AA ,D 为1AA 的中点,BD 与1AB 交于点O ,⊥CO 侧面11A ABB .(Ⅰ)证明:1AB BC ⊥; (Ⅱ)若OA OC =,求点1B 到平面ABC 的距离.1A A1B B1C COD22.(本小题满分12分)已知函数4()log (41)x f x kx =++(k ∈R ),且满足(1)(1)f f -=. (1)求k 的值;(2)若函数()y f x =的图象与直线12y x a =+没有交点,求a 的取值范围; (3)若函数1()2()421f x xx h x m +=+⋅-,[]20,log 3x ∈,是否存在实数m 使得()h x 最小值为0,若存在,求出m 的值;若不存在,请说明理由.高一第一学期期末考试 数学试卷参考答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 1 14. 2 15. 16. 316.解析:∵y =⎝ ⎛⎭⎪⎫13x 和y =-log 2(x +2)都是[-1,1]上的减函数,∴f(x)=⎝ ⎛⎭⎪⎫13x-log 2(x +2)在区间[-1,1]上是减函数,∴函数f(x)在区间[-1,1]上的最大值为f(-1)=3.答案:3三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.解:(1)∵⎩⎨⎧>->+0302x x ∴23x -<<…………………………………3分∴A=(-2,3) ∴(][)23u C A =-∞-+∞,,……………………………5分 (2)当0≤a 时,φ=B 满足A B A = ……………………………6分当0>a 时,)(a a B ,-= ∵AB A = ∴A B ⊆[]∴⎪⎩⎪⎨⎧≤-≥-32a a , ∴40≤<a ……………………………9分 综上所述:实数a 的范围是4≤a ……………………………………10分18.解:(1)由0)(=x f 得,⎪⎩⎪⎨⎧=-≤02)21(0x x 或⎩⎨⎧=-+>01)1(log 02x x ,解得1-=x 或1=x .所以,函数)(x f 的零点是—1,1..................................6分(2)由()0f x >得,01()202xx ≤⎧⎪⎨->⎪⎩或20log (1)10x x >⎧⎨+->⎩,解得1x <-或1x >.所以,不等式1)(>x f 的解集是{x |1x <-或1x >}.................................12分19.(1) 证明:∵平面EBD ⊥平面BDC ,且平面EBD ∩平面BDC =BD ,CD ⊥BD , ∴CD ⊥平面EBD , ∵CD 平面EDC ,∴平面EBD ⊥平面EDC.……………………………6分 (2) 解:如答图,连接EA ,取BD 的中点M ,连接AM ,EM , ∵AD ∥BC ,∴∠EDA 即为ED 与BC 所成的角. 又∵AD =AB ,∴ED =EB. ∴EM ⊥BD ,∴EM ⊥平面ABCD.设AB =a ,则ED =AD =a ,EM =MA , ∴AE =a ,∴∠EDA =60°.即ED 与BC 所成的角为60°……………………………12分20.(12分)解 (1)设所截等腰三角形的底边边长为x cm. 在Rt △EOF 中,EF =5 cm ,OF =12x cm ,所以EO =25-14x 2.于是V =13x225-14x 2(cm 3).依题意函数的定义域为{x|0<x<10}.……………………………6分(2)正视图为等腰三角形,腰长为斜高,底边长=AB =6, 底边上的高为四棱锥的高=EO =25-14x 2=4,S =4×62=12(cm 2).……………………………12分21.解:(1),由 得又即又又BD 与CO 交于O 点,又……………………………6分(2),,又AB=1,可得,由得……………………………12分22.解析:(1)(1)(1)f f -=,即144log (41)log (41)k k -+-=++444512log log 5log 144k ∴=-==- ∴12k =- ………………………………………………………………………… ………5分(2)由题意知方程411log (41)22x x x a +-=+即方程4=log (41)x a x +-无解, 令4()log (41)x g x x =+-,则函数()y g x =的图象与直线y a =无交点444411()log 41)log log (1)44x x x xg x x +=+-==+( 任取1x 、2x ∈R ,且12x x <,则12044x x <<,121144x x ∴>. 12124411()()log 1log 1044x x g x g x ⎛⎫⎛⎫∴-=+-+> ⎪ ⎪⎝⎭⎝⎭,()g x ∴在(),-∞+∞上是单调减函数.1114x +>, 41()log 104xg x ⎛⎫∴=+> ⎪⎝⎭. ∴a 的取值范围是(],0.-∞ ……………………………………………………………… 9分注意:如果从复合函数角度分析出单调性,给全分。

高一数学上册期末质量检测试卷答案

高一数学上册期末质量检测试卷答案

高一数学上册期末质量检测试卷答案一、选择题1.设全集U =R ,集合{2}A xx =≥∣,{|05}B x x =≤<,则集合()U C A B ( )A .{}02x x <<B .{}02x x ≤<C .{}02x x <≤D .{}02x x ≤≤2.函数1()lg(2)f x x =-的定义域为( )A .(1,3)B .(0,1)C .[1,2)D .(1,2) 3.若sin 0θ>,tan 0θ<,则θ是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角4.已知角α的终边上有一点P 的坐标是()3,4,则cos 2πα⎛⎫- ⎪⎝⎭的值为( )A .45-B .35 C .35D .455.函数2()log 5f x x x =-+的零点所在的区间是( ) A .()1,2B .()2,3C .()3,4D .()4,56.中国的5G 技术领先世界,5G 技术极大地提高了数据传输速率,最大数据传输速率C 取决于信道带宽W ,经科学研究表明:C 与W 满足2log (1)SC W N=+,其中S 是信道内信号的平均功率,N 是信道内部的高斯噪声功率,SN为信噪比.当信噪比比较大时,上式中真数中的1可以忽略不计.若不改变带宽W ,而将信噪比SN从1000提升至4000,则C 大约增加了( )(附:lg 20.3010≈) A .10%B .20%C .30%D .40%7.定义在[]22-,上的函数()()22?lg 1f x x x =++,则满足()()21f x f x <-的x 的取值范围是( ) A .12,3⎡⎫-⎪⎢⎣⎭B .1,13⎛⎫ ⎪⎝⎭C .113,1,232⎡⎫⎛⎤-⋃⎪ ⎢⎥⎣⎭⎝⎦D .()1,1,3∞∞⎛⎫-⋃+ ⎪⎝⎭8.设函数()4sin2xf x π=,若存在实数12,,,n x x x ,满足当12n x x x <<<时,()()()()()()231122021n n f x f x f x f x f x f x --+-+-=,则正整数n 的最小值为( )A .505B .506C .507D .508二、填空题9.已知函数()f x 是R 上的奇函数,且当0x ≥时,()22f x x x a =++-,则( )A .2a =B .()22f =C .()f x 是增函数D .()312f -=-10.下列命题不正确的有( ) A .函数tan y x =在定义域内单调递增 B .若a b >,则lg lg a b >成立C .命题“0x ∃>,230ax ax +-≥”的否定是“0x ∀>,230ax ax +-<”D .已知()f x 是定义在R 上的奇函数,当(),0x ∈-∞时,()221f x x x =-++,则[)0,x ∈+∞时,函数解析式为()221f x x x =-- 11.如果0a b >>,那么下列不等式成立的是( ) A .a b >B .2211a b < C .22ac bc > D .a c b c ->-12.筒车亦称为“水转筒车”,一种以流水为动力,取水灌田的工具,筒车发明于隋而盛于唐,距今已有1000多年的历史.如图,假设在水流量稳定的情况下,一个半径为3米的筒车按逆时针方向做每6分钟转一圈的匀速圆周运动,筒车的轴心O 距离水面BC 的高度为1.5米,设筒车上的某个盛水筒P 的初始位置为点D (水面与筒车右侧的交点),从此处开始计时,下列结论正确的是( )A .t 分钟时,以射线OA 为始边,OP 为终边的角为36t ππ-B .t 分钟时,该盛水筒距水面距离为3sin 362t ππ⎛⎫-+ ⎪⎝⎭米C .1分钟时该盛水筒距水面距离与3分钟时该盛水筒距水面距离相等D .1个小时内有20分钟该盛水筒距水面距离不小于3米三、多选题13.若“2[4,6],10x x ax ∃∈-->”为假命题,则实数a 的取值范围为___________. 14.已知函数()3181ln 803x f x x -⎛⎫=-- ⎪⎝⎭的零点位于区间(),1k k +内,则整数k =________.15.将函数()cos 6f x x π⎛⎫=- ⎪⎝⎭的图像上各点的横坐标缩短到原来的12倍(纵坐标不变),再把得到的图像向左平移6π个单位长度得到函数()g x 的图像,则()g x 在区间,33ππ⎡⎤-⎢⎥⎣⎦上的值域为_______.16.当生物死亡后,它机体内原有的碳14含量会按确定的比率衰减(称为衰减率),大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.若生物体内原有的碳14含量为A ,按照上述变化规律,生物体内碳14含量y 与死亡年数x 的函数关系式是_______,考古学家在对考古活动时挖掘到的某生物标本进行研究,发现该生物体内碳14的含量是原来的62.5%,则可以推测该生物的死亡时间距今约________年.(参考数据:lg 20.3≈)四、解答题17.已知集合{}2230A x x x =--≤,{}22240,,B x x mx m x R m R =-+-≤∈∈.(1)若[]0,3A B =,求实数m 的值; (2)若RA B ⊆,求实数m 的取值范围.18.已知函数2()cos cos()6f x x x x π=-+.(1)求()f x 的最小正周期T ;(2)若()1(1)0n f x m ++-⋅>对任意的[,]44x ππ∈-和n *∈N 恒成立,求实数m 的取值范围.19.已知()f x 是定义在R 上的奇函数,且(6)()f x f x +=,当(0,3)x ∈时,()2()log 1a f x x x =-+.(1)当(3,0)x ∈-时,求()f x 的解析式; (2)求函数()f x 在[3,3]-上的零点构成的集合.20.十九大以来,国家深入推进精准脱贫,加大资金投入,强化社会帮扶,为了更好的服务于人民,派调查组到某农村去考察和指导工作.该地区有200户农民,且都从事水果种植,据了解,平均每户的年收入为3万元.为了调整产业结构,调查组和当地政府决定动员部分农民从事水果加工,据估计,若能动员()0x x >户农民从事水果加工,则剩下的继续从事水果种植的农民平均每户的年收入有望提高4%x ,而从事水果加工的农民平均每户收入将为()33050x a a ⎛⎫-> ⎪⎝⎭万元.(1)若动员x 户农民从事水果加工后,要使从事水果种植的农民的总年收入不低于动员前从事水果种植的农民的总年收入,求x 的取值范围;(2)在(1)的条件下,要使这200户农民中从事水果加工的农民的总收入始终不高于从事水果种植的农民的总收入,求a 的最大值. 21.对于集合{}12,,,n A θθθ=⋅⋅⋅和常数0θ,定义:()()()22210200cos cos cos n nθθθθθθμ-+-++-=为集合A 相对0θ的“余弦方差”.(1)若集合ππ,34A ⎧⎫=⎨⎬⎩⎭,00θ=,求集合A 相对0θ的“余弦方差”;(2)求证:集合π2π,,π33A ⎧⎫=⎨⎬⎩⎭相对任何常数0θ的“余弦方差”是一个与0θ无关的定值,并求此定值;(3)若集合π,,4A αβ⎧⎫=⎨⎬⎩⎭,[)0,πα∈,[)π,2πβ∈,相对任何常数0θ的“余弦方差”是一个与0θ无关的定值,求出α、β.22.已知二次函数()2f x ax bx c =++满足()01f =,()()121f x f x x +-=-.(1)求()f x 的表达式;(2)若存在[]2,3x ∈,对任意t R ∈,都有()()22f x t m t x ≥-+--,求实数m 的取值范围;(3)记()()h x f x k =+,若对任意的,1x ,2x ,[]31,2x ∈,以()1h x ,()2h x ,()3h x 为边长总可以构成三角形求实数k 的取值范围.【参考答案】一、选择题 1.B 【分析】先求出U C A ,再根据交集的定义求解即可. 【详解】因为{2}A xx =≥∣,U =R ,所以{|2}U C A x x =<,又{|05}B x x =≤<, 所以(){|02}U A B x x =≤<C .2.D 【分析】根据根式函数、分式函数和对数函数的定义域求解. 【详解】由102021x x x -⎧⎪->⎨⎪-≠⎩,解得12x <<.所以函数1()lg(2)f x x =-的定义域为(1,2),故选:D 3.B 【分析】根据sin 0θ>,可判断θ可能在的象限,根据tan 0θ<,可判断θ可能在的象限,综合分析,即可得答案. 【详解】由sin 0θ>,可得θ的终边在第一象限或第二象限或与y 轴正半轴重合, 由tan 0θ<,可得θ的终边在第二象限或第四象限, 因为sin 0θ>,tan 0θ<同时成立,所以θ是第二象限角. 故选:B 4.D 【分析】求出OP r =,由三角函数定义求得sin α,再由诱导公式得结论. 【详解】依题有5r =,∴4sin 5α,∴4cos sin 25παα⎛⎫-== ⎪⎝⎭.故选:D . 5.C 【分析】先判断函数单调递增,再根据零点存在性定理,即可得出结果.因为2log y x =和5y x =-都是增函数,所以2()log 5f x x x =+-在()0,∞+上显然单调递增,又2(3)log 203f =-<,204(4)log 451f =+-=>,根据零点存在性定理可知2()log 5f x x x =-+的零点所在的区间是()3,4, 因为函数单调递增,所以有且仅有一个零点. 故选:C 6.B 【分析】 先计算1000S N =和4000SN=时的最大数据传输速率1C 和2C ,再计算增大的百分比211C C C -即可. 【详解】 当1000SN=时,122log 1001log 1000C W W =≈; 当4000SN=时,222log 4001log 4000C W W =≈. 所以增大的百分比为:2122112log 4000lg 4000lg 4lg10001111log 1000lg1000lg1000C C C W C C W -+=-=-=-=-lg 42lg 220.30100.220%lg100033⨯==≈≈=. 故选:B. 7.C 【分析】根据偶函数的性质和函数在[0,2]上的单调性,将要解不等式等价转化为不等式求解即得. 【详解】()()22lg 1f x x x =++为[]2,2-上的偶函数,且在[]0,2上为单调递增,∴()()21f x f x <-等价于212,x x <-≤即()()2112122x x x ⎧<-⋯⎪⎨-≤⋯⎪⎩,由(1)得()2221x x <-,即23410x x -+>,解得13x <或1x >,由(2)得2212x -≤-≤,解得1322x -≤≤,∴1123x -≤<或312x <≤,即不等式的解集为:113,1,232⎡⎫⎛⎤-⋃⎪ ⎢⎥⎣⎭⎝⎦,故选:C. 8.C 【分析】根据正弦函数的性质,确定()4sin2xf x π=的最值,根据题中条件,得到()()()111,i i f x f x i n i N ++-≤≤-∈尽可能多的取得最大值4,即可求解.【详解】 因为()[]4sin0,42xf x π=∈,即()min 0f x =,()max 4f x =,所以()()124f x f x -≤,当()1f x 与()2f x 一个等于0,另一个为4时,()()12f x f x -取得最大值4;为使满足()()()()()()231122021n n f x f x f x f x f x f x --+-+-=的正整数n 最小,只需()()()111,i i f x f x i n i N ++-≤≤-∈尽可能多的取得最大值4,而505420202021⨯=<,所以至少需506个()()()111,i i f x f x i n i N ++-≤≤-∈,才能使()()()()()()231122021n n f x f x f x f x f x f x --+-+-=,此时1506n -=,即507n =. 故选:C. 【点睛】 关键点点睛:求解本题的关键在于根据三角函数的性质,确定()f x 的最大值,得到()()()111,i i f x f x i n i N ++-≤≤-∈中有505项取得最大值4时,即可求解.二、填空题9.ACD 【分析】由()f x 是R 上的奇函数,则()00=f 可算出2a =,代入可算得()2f 根据()f x 的对称性可得出单调性,根据()()33f f -=-可求得()3f - 【详解】A.项 ()f x 是R 上的奇函数,故()002f a =-= 得2a =,故A 对对于B 项,()2426f =+=,故B 错对于C 项,当0x ≥时,()2f x x x =+在[)0,+∞上为增函数,利用奇函数的对称性可知,()f x 在(],0-∞上为增函数,故()f x 是R 上的增函数,故C 对 ()()339312f f -=-=--=-,故D 对 故选:ACD 【点睛】正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域关于原点对称是函数f (x )为奇函数或偶函数的必要非充分条件;(2)f (-x )=-f (x )或f (-x )=f (x )是定义域上的恒等式.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,反之也成立.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性. 10.ABD 【分析】由正切函数的性质判断A ;由对数函数的性质判断B ;由特称命题的否定判断C ;由函数的奇偶性判断D. 【详解】对于选项A :因为tan y x =在其定义域内不具有单调性,故A 不正确; 对于选项B :若0a b >>,则lg lg a b >,故B 不正确;对于选项C :命题“0x ∃>,230ax ax +-≥”的否定是“0x ∀>,230ax ax +-<”,故C 正确;对于选项D :当0x >时,()()()222121f x f x x x x x =--=---+=+-,又()00f =,所以当[)0,x ∈+∞时,()20,021,0x f x x x x =⎧=⎨+->⎩. 故D 不正确. 故选:ABD. 11.ABD 【分析】根据不等式的性质判断. 【详解】由不等式的性质,AD 显然正确,又22221100a b a b a b >>⇒>>⇒<,B 正确,当0c 时,220ac bc ==,C 错误. 故选:ABD . 12.ACD【分析】由题意写出点P 离水面的距离函数,再计算对应的函数值即可. 【详解】解:如图,以O 为坐标原点建立平面直角坐标系,依题意,设函数解析式为sin()y A t b ωϕ=++,因为半径为3,所以3A =,O 距水面的距离为1.5,所以 1.5b =,每6分钟转一圈,所以6T =,所以23T ππω==,所以3sin 1.53y t πϕ⎛⎫=++ ⎪⎝⎭,当0t =时,0y =,所以3sin 1.50ϕ+=,即1sin 2ϕ=-,所以6πϕ=-,所以563sin 1.3y t ππ⎛⎫+ ⎪⎝-=⎭所以t 分钟时,以射线OA 为始边,OP 为终边的角为36t ππ-,故A 正确,B 错误;当1t =时,63sin 1.533y ππ⎛+-⎫== ⎪⎝⎭;当3t =时,363sin 3 1.53y ππ⎛⎫=+ ⎭-⨯=⎪⎝;故C 正确; 令63sin 1.533y t ππ⎛⎫=+≥ ⎪-⎝⎭,即1sin 326t ππ⎛⎫≥ ⎪⎝⎭-,在一个周期内56663t ππππ≤≤-,解得13t ≤≤,有2分钟,1个小时,有10个周期,所以有21020⨯=分钟,故D 正确; 故选:ACD三、多选题 13.356a ≥【分析】先得到原命题的否定为真命题,再根据不等式恒成立即可求解. 【详解】因为“2[4,6],10x x ax ∃∈-->”为假命题,所以[]24,6,10x x ax ∀∈--≤恒成立,即1x a x-≤在[]4,6恒成立, 所以max 1a x x ⎛⎫≥- ⎪⎝⎭且[]4,6x ∈,又因为()1f x x x=-在[]4,6上是增函数, 所以()()max 1356666f x f ==-=, 所以356a ≥. 故答案为:356a ≥. 14.2【分析】分析函数()f x 的单调性,结合零点存在定理可求得结果. 【详解】因为函数81ln y x =与31803x y -⎛⎫=-- ⎪⎝⎭在()0,∞+上均为增函数,所以,函数()f x 在()0,∞+为增函数,()281ln 2830f =-<,()381ln3810f =->,()()230f f ⋅<, 所以,函数()f x 的零点位于区间()2,3内 ,故2k =. 故答案为:2. 15.⎡⎤⎢⎥⎣⎦【分析】利用三角函数的性质进行伸缩和平移,然后,利用三角函数的单调性即可求解值域 【详解】由题意得,()cos 6f x x π⎛⎫=- ⎪⎝⎭的图像上各点的横坐标缩短到原来的12倍,这时变为cos(2)6y x π=-,再把得到的图像向左平移6π个单位长度,这时变为cos 2()cos(2)666y x x πππ⎡⎤=+-=-⎢⎥⎣⎦,所以,()cos 26g x x π⎛⎫=+ ⎪⎝⎭,∵52,626x πππ⎡⎤+∈-⎢⎥⎣⎦,∴()g x ⎡⎤∈⎢⎥⎣⎦.故答案为:⎡⎤⎢⎥⎣⎦ 16.573012xy ⎛⎫= ⎪⎝⎭; 3883 【分析】根据指数函数模型得出函数关系式,然后由62.5%y =计算x . 【详解】设1年后碳14含量为原来的a 倍,则573012a =,1570312a ⎛⎫= ⎪⎝⎭, ∴573012x x y a ⎛⎫== ⎪⎝⎭,由5730162.52100x ⎛⎫=⎪⎝⎭,即57301528x⎛⎫= ⎪⎝⎭,∴57302221510log log log 2816x⎛⎫== ⎪⎝⎭, ∴211log 104445730lg 20.301x -=-=-=-,3883x ≈. 故答案为:573012xy ⎛⎫= ⎪⎝⎭;3883.四、解答题17.(1)2;(2)(,3)(5,)-∞-+∞. 【分析】(1)解一元二次不等式,求出集合A ,B ,由A B 分析列式即可得解; (2)求出集合B R,再由给定集合的包含关系列出不等式求解即得.【详解】(1)解不等式2230x x --≤得{|13}x x -≤≤,即[1,3]A =-,解不等式22240(2)(2)0x mx m x m x m -+-≤⇔-+--≤,得22m x m -≤≤+,即[2,2]B m m =-+,因[]0,3A B =,则有2023m m -=⎧⎨+≥⎩,解得2m =, 所以实数m 的值为2;(2)由(1)知(,2)(2,)R B m m =-∞-⋃++∞,而RA B ⊆,则有21m +<-或23m ->,解得3m <-或5m >,所以实数m 的取值范围(,3)(5,)-∞-+∞.18.(1)T π=;(2)11(,)22-.【分析】(1)化简()1sin 223f x x π⎛⎫=- ⎪⎝⎭⇒最小正周期22T ππ==; (2)当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,()5111112sin 2636223424x x f x ππππ⎛⎫≤-≤-≤-≤-≤≤ ⎪⎝⎭. ①当n 为偶数时,()()11?0nf x m ++-> ()10f x m ⇔+-> ()1m f x ⇔>--.⇒()max 1m f x ⎡⎤>--⎣⎦.②当n 为奇数时,同理得: ()min 1m f x ⎡⎤<+⎣⎦即可求出m 的取值范围. 【详解】(1)()2cos cos 6f x x x x π⎛⎫=- ⎪⎝⎭1cos sin 2x x x ⎫=++⎪⎪⎝⎭21sin cos 2x x x x =+1sin24x x =+1sin24x x = 1sin 223x π⎛⎫=- ⎪⎝⎭. ()f x 的最小正周期22T ππ==. (2)由(1)知()1sin 223f x x π⎛⎫=- ⎪⎝⎭.当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,52636x πππ≤-≤,111sin 22234x π⎛⎫-≤-≤ ⎪⎝⎭, 即()1124f x -≤≤.①当n 为偶数时,()()110nf x m ++-> ()10f x m ⇔+-> ()1m f x ⇔>--.由题意,只需()max 1m f x ⎡⎤>--⎣⎦.因为当()12f x =-时,()max 112f x ⎡⎤--=⎣⎦,所以12m >-. ②当n 为奇数时,()()110nf x m ++-> ()10f x m ⇔+-> ()1m f x ⇔>+.由题意,只需()min 1m f x ⎡⎤<+⎣⎦.因为当()12f x =-时,()min 112f x ⎡⎤+=⎣⎦,所以12m <. 综上所述,实数m 的取值范围是11,22⎛⎫- ⎪⎝⎭.【点睛】(1)三角函数问题通常需要把它化为“一角一名一次”的结构,借助于sin y x =或cos y x =的性质解题;(2)求参数的取值范围,通常采用分离参数法.19.(1)()2()log 1a f x x x =-++;(2){3,1,0,1,3}--.【分析】(1)由(3,0)x ∈-,可得x -的范围,并得()f x -,然后结合()f x 是奇函数可得结果. (2)根据(1)的条件,令()0f x =,以及函数的奇偶性和周期性,可得结果. 【详解】(1)当(3,0)x ∈-时,(0,3)x -∈,所以2()log ()()1a f x x x ⎡⎤-=---+⎣⎦, 即()2()log 1a f x x x -=++因为()f x 是定义在R 上的奇函数,()2()()log 1a f x f x x x =--=-++,所以当(3,0)x ∈-时,()2()log 1a f x x x =-++.(2)因为()f x 是定义在R 上的奇函数, 所以(0)0f =,且(3)(3)f f -=-, 因为(6)()f x f x +=,所以(3)(3)f f -=, 所以(3)(3)0f f -==, 当(0,3)x ∈时,令()2()log 10a f x x x =-+=,得211x x -+=,解得0x =(舍去),或1x =,即(1)0f =, 又因为()f x 是奇函数, 所以(1)(1)0f f -=-=, 所以函数()f x 在[3,3]-上的零点 构成的集合为{3,1,0,1,3}--. 【点睛】本题主要考查函数奇偶性的应用,难点在于如何求出另外一部分的表达式,属中档题.20.(1)0175x <≤;(2)11 【分析】(1)求得从事水果种植的农民的总年收入,由此列不等式,解不等式求得x 的取值范围. (2)从事水果加工的农民的总收入始终不高于从事水果种植的农民的总收入列不等式,根据分离常数法求得a 的取值范围,由此求得a 的最大值. 【详解】(1)动员x 户农民从事水果加工后,要使从事水果种植的农民的总年收入不低于动员前从事水果种植的农民的总年收入,则()()200310.042003x x -⨯⨯+≥⨯⎡⎤⎣⎦,解得0175x <≤. (2)由于从事水果加工的农民的总收入始终不高于从事水果种植的农民的总收入,则()()33200310.0450x a x x x ⎛⎫-⋅≤-⨯⨯+⎡⎤ ⎪⎣⎦⎝⎭,(0175x <≤), 化简得2000.027a x x≤++,(0a >).由于2000.027711x x ++≥=,当且仅当2000.02100x x x =⇒=时等号成立,所以011a <≤,所以a 的最大值为11. 【点睛】本小题主要考查一元二次不等式的解法,考查基本不等式,考查数学在实际生活中的应用,属于中档题.21.(1)38;(2)证明见解析,定值12;(3)7π12α=,23π12β=或11π12α=,19π12β= 【分析】由“余弦方差”的定义,对(1)(2)(3)逐个求解或证明即可. 【详解】(1)依题意:22ππ11cos 0cos 033442228μ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭===; (2)由“余弦方差”定义得:()222000π2πcos cos cos π333θθθμ⎛⎫⎛⎫-+-+- ⎪ ⎪⎝⎭⎝⎭=, 则分子()222000000ππ2π2πcos cos sin sin cos cos sin sin cos πcos sin πsin 3333θθθθθθ⎛⎫⎛⎫=+++++ ⎪ ⎪⎝⎭⎝⎭2220000011cos cos cos 22θθθθθ⎛⎫⎛⎫=+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭22200013cos sin cos 22θθθ=++32=31232μ∴==为定值,与0θ的取值无关.(3)()()222000πcos cos cos 43θαθβθμ⎛⎫-+-+- ⎪⎝⎭=, 分子=()()222000000ππcos cos sin sin cos cos sin sin cos cos sin sin 44θθαθαθβθβθ⎛⎫+++++ ⎪⎝⎭22000011cos +sin sin cos 22θθθθ⎛⎫=+ ⎪⎝⎭()22220000cos cos sin sin 2sin cos sin cos αθαθθθαα+++()22220000cos cos sin sin 2sin cos sin cos βθβθθθββ+++()222222000011cos cos cos sin sin sin 1sin 2sin 2sin cos 22αβθαβθαβθθ⎛⎫⎛⎫=++++++++ ⎪ ⎪⎝⎭⎝⎭ ()22220001cos 21cos 2111cos cos sin sin 1sin 2sin 2sin 222222θθαβαβαβθ+-⎛⎫⎛⎫=++++++++ ⎪ ⎪⎝⎭⎝⎭()()222200cos 2sin 2cos cos sin sin 1sin 2sin 222θθαβαβαβ=+--+++22221111cos cos sin sin 2222αβαβ⎛⎫⎛⎫++++++ ⎪ ⎪⎝⎭⎝⎭ ()()00cos 2sin 2cos 2cos 21sin 2sin 222θθαβαβ=++++22221111cos cos sin sin 2222αβαβ⎛⎫⎛⎫++++++ ⎪ ⎪⎝⎭⎝⎭ ()()00311sin 21sin 2sin 2cos 2cos 2cos 2222θαβθαβ=+⋅+++⋅+. 要使μ是一个与0θ无关的定值,则cos 2cos 201sin 2sin 20αβαβ+=⎧⎨++=⎩, cos2cos2αβ=-,2α∴与2β终边关于y 轴对称或关于原点对称,又sin 2sin 21αβ+=-,得2α与2β终边只能关于y 轴对称,1sin 2sin 22cos 2cos 2αβαβ⎧==-⎪∴⎨⎪=-⎩, 又[)0,πα∈,[)π,2πβ∈, 则当72π6α=时,232π6β=;当112π6α=时,192π6β=. 7π12α∴=,23π12β=或11π12α=,19π12β=. 故7π12α=,23π12β=或11π12α=,19π12β=时,相对任何常数0θ的“余弦方差”是一个与0θ无关的定值. 【点睛】本题考查了新定义,考查了三角函数的恒等变换,考查了学生的逻辑推理能力与计算求解能力,属于难题.22.(1)()221f x x x =-+;(2)(],1-∞;(3)((),21-∞-⋃+∞.【分析】(1)利用待定系数法即可求解.(2)将不等式化为22230t mx x x xt -+-++≥在t R ∈上恒成立,只需()224230x x x mx ∆=---+≤,进而可得12843m x x+≤+,利用基本不等式求出12312x x+≥,只需8412m +≤即可求解. (2)()()[]21,1,2h x x k x =+-∈⎡⎤⎣⎦,根据题意可得()()min max 2h x h x >,讨论二次函数的对称轴,求出函数在区间[]1,2上的最值,代入不等式即可求解. 【详解】(1)由题意可得()01f c ==,()()()()2211111f x f x a x b x ax bx +-=++++---221ax a b x =++=-,即1,2a b ==-,所以()221f x x x =-+.(2)由题意存在[]2,3x ∈,对任意t R ∈,都有()22212x x t m t x -+≥-+--,即22230t mx x x xt -+-++≥在t R ∈上恒成立, ()224230x x x mx ∴∆=---+≤,解得()284312m x x +≤+即12843m x x+≤+,又12312x x +≥=,当且仅当123x x =时,即2x =时,取“=”,8412m ∴+≤,解得1m ,所以实数m 的取值范围(],1-∞.(3)()()()()221h x f x k x k x k =+=+-++ ()()()[]2222211,1,2x k x k x k x =+-+-=+-∈⎡⎤⎣⎦,对称轴1x k =-,因为对任意的,1x ,2x ,[]31,2x ∈,以()1h x ,()2h x ,()3h x 为边长总可以构成三角形, 则()1h x ()2h x +>()3h x 对任意的,1x ,2x ,[]31,2x ∈恒成立, 即()()min max 2h x h x >,①当12k -≥,即1k ≤-时,()h x 在区间[]1,2上单调递减,()()min max 2h x h x >,即()()2222111k k +->+-,解得2k <-2k >-2k ∴<-②当3122k ≤-<时,即112k -<≤-时,()h x 在区间[]1,1k -上单调递减, 在区间(]1,2k -上单调递增,()()min max 2h x h x >,即()222011k k ⨯>+-=无解. ③当3112k <-<,即102k -<<,()h x 在区间[]1,1k -上单调递减, 在区间(]1,2k -上单调递增,()()min max 2h x h x >, 即()()2220211k k ⨯>+-=+无解.④当11k -≤时,即0k ≥时,()h x 在区间[]1,2上单调递增, ()()min max 2h x h x >,即()()2221121k k +->+-,解得1k <1k >+1k ∴>综上所述,实数k 的取值范围为((),21-∞-⋃+∞. 【点睛】关键点点睛:本题考查了求二次函数的解析式、一元二次不等式恒成立、能成立问题,解题的关键是不等式化为22230t mx x x xt -+-++≥在t R ∈上恒成立,以及()()min max 2h x h x >,考查了分类讨论的思想.。

2023-2024学年山东省临沂高一上学期期末数学质量测试题(含答案)

2023-2024学年山东省临沂高一上学期期末数学质量测试题(含答案)

2023-2024学年山东省临沂高一上册期末数学质量测试题一、单选题1.已知1sin3α=,,2παπ⎛⎫∈ ⎪⎝⎭,则tanα的值为()A.4BC.-D.【正确答案】A根据同角三角函数的基本关系求出cosα,tanα;【详解】解:因为1sin3α=,22sin cos1αα+=,所以cos3α=±,因为,2παπ⎛⎫∈ ⎪⎝⎭,所以cos3α=-,所以1sin3tancos43ααα==-故选:A2.已知命题:0p x∀>,2log2x x>,则命题p的否定为()A.0x∀>,2log2x x≤B.00x∃>,002log2x x≤C.00x∃>,002log2x x<D.00x∃≤,002log2x x≤【正确答案】B根据全称命题的否定是特称命题,可得选项.【详解】因为全称命题的否定是特称命题,所以命题:0p x∀>,2log2x x>,则命题p的否定为“00x∃>,002log2x x≤”,故选:B.3.已知函数()xf x a=(0a>且1a≠)在(0,2)内的值域是2(1,)a,则函数()y f x=的函数大致是()A .B.C .D .【正确答案】B【详解】试题分析:由题意可知21a>,所以1a>,所以()f x是指数型的增函数.故选B.指数函数的图象与性质.4.若正实数a ,b ,c 满足1b a c c c <<<,则a ,b 的大小关系为()A .01a b <<<B .01b a <<<C .1b a <<D .1a b<<【正确答案】A【分析】根据已知可得01c <<,根据指数函数的单调性,即可得出答案.【详解】因为c 是正实数,且1c <,所以01c <<,则函数x y c =单调递减.由1b a c c c <<<,可得10b a c c c c <<<,所以01a b <<<.故选:A.5.若0a >且1a ≠,函数()(),140.52,1x a x f x a x x ⎧≥⎪=⎨-+<⎪⎩,满足对任意的实数12x x ≠都有11222112()()()()x f x x f x x f x x f x +>+成立,则实数a 的取值范围是()A .(1,)+∞B .(1,8)C .(4,8)D .[4,8)【正确答案】D【分析】由已知可得函数()f x 在R 上单调递增,根据分段函数的单调性列出不等式组,即可求得实数a 的取值范围.【详解】解:11222112()()()()x f x x f x x f x x f x +>+ ,∴对任意的实数12x x ≠都有1212()[()()]0x x f x f x -->成立,可知函数()f x 在R 上单调递增,1140.50(40.5)12a a a a >⎧⎪∴->⎨⎪≥-⨯+⎩,解得[4,8)a ∈,故选:D.6.已知1:12p x ≥-,:2q x a -<,若p 是q 的充分不必要条件,则实数a 的取值范围为()A .(],4-∞B .[]1,4C .(]1,4D .()1,4【正确答案】C【分析】求出p 、q 中的不等式,根据p 是q 的充分不必要条件可得出关于实数a 的不等式组,由此可解得实数a 的取值范围.【详解】解不等式112x ≥-,即131022x x x --=≤--,解得23x <≤,解不等式2x a -<,即22x a -<-<,解得22a x a -<<+,由于p 是q 的充分不必要条件,则(]2,3()2,2a a -+,所以2223a a -≤⎧⎨+>⎩,解得14a <≤.因此,实数a 的取值范围是(]1,4.故选:C.本题考查利用充分不必要条件求参数,同时也考查了分式不等式和绝对值不等式的求解,考查计算能力,属于中等题.7.已知函数π()cos()0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期为π,且当π3x =时,函数()f x 取最小值,若函数()f x 在[,0]a 上单调递减,则a 的最小值是()A .π6-B .5π6-C .2π3-D .π3-【正确答案】A【分析】根据最小正周期求出2ω=,根据当π3x =时,函数取最小值,求出π3ϕ=,从而π()cos 23f x x ⎛⎫=+ ⎪⎝⎭,由[,0]x a ∈得到22,33πππ3x a ⎡⎤+∈+⎢⎥⎣⎦,由单调性列出不等式,求出06π,a ⎡⎫∈-⎪⎢⎣⎭,得到答案.【详解】因为0ω>,所以2π2π2πT ω===,故13πcos(2)ϕ⨯+=-,所以2ππ2π,Z 3k k ϕ+=+∈,解得:ππ,Z k k ϕ=+∈23,因为π||2ϕ<,所以只有当0k =时,π3ϕ=满足要求,故π()cos 23f x x ⎛⎫=+ ⎪⎝⎭,因为[,0]x a ∈,所以22,33πππ3x a ⎡⎤+∈+⎢⎥⎣⎦,故π2,33π0a ⎡⎫∈⎪⎢⎣⎭+,解得:06π,a ⎡⎫∈-⎪⎢⎣⎭,故a 的最小值为π6-.故选:A8.质数也叫素数,17世纪法国数学家马林·梅森曾对“21p -”(p 是素数)型素数作过较为系统而深入的研究,因此数学界将“21p -”(p 是素数)形式的素数称为梅森素数.已知第6个梅森素数为1721M =-,第14个梅森素数为60721N =-,则下列各数中与NM最接近的数为()(参考数据:lg 20.3010≈)A .18010B .17710C .14110D .14610【正确答案】B【分析】根据题意,得到6076075901717212==2212N M -≈-,再结合对数的运算公式,即可求解.【详解】由第6个梅森素数为1721M =-,第14个梅森素数为60721N =-,,可得6076075901717212=212N M -≈-,令5902k =,两边同时取对数,则590lg 2lg k =,可得lg 590lg 2k =,又lg 20.3010≈,所以lg 5900.3010177.59k ≈⨯=,17710k ≈与NM最接近的数为17710.故选:B.二、多选题9.下列结论正确的是()A .若,a b 为正实数,a b ¹,则3223+a b a b b a +>B .若,,a b m 为正实数,a b <,则a m ab m b+<+C .若,a b R ∈,则“0a b >>”是“11a b <”的充分不必要条件D .当0,2x π⎛⎫∈ ⎪⎝⎭时,2sin sin x x +的最小值是【正确答案】AC利用作差法可考查选项A 是否正确;利用作差法结合不等式的性质可考查选项B 是否正确;利用不等式的性质可考查选项C 是否正确;利用均值不等式的结论可考查选项D 是否正确.【详解】对于A ,若a ,b 为正实数,a b ¹,()()()233220a b a b ab a b a b +-+=-+>,3322a b a b ab ∴+>+,故A 正确;对于B ,若a ,b ,m 为正实数,a b <,()()0m b a a m a b m b b b m -+-=>++,则a m ab m b+>+,故B 错误;对于C ,若11a b <,则110b aa b ab--=<,不能推出0a b >>,而当0a b >>时,有0>0b a ab -<,,所以0b aab -<成立,即11a b<,所以“0a b >>”是“11a b<”的充分不必要条件,故C 正确;对于D ,当0,2x π⎛⎫∈ ⎪⎝⎭时,0sin 1x <<,2sin sin x x +≥=,当且仅当()sin 0,1x =时取等号,故D 不正确.故选:AC.易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.10.已知关于x 的方程23xm -=有两个不等实根,则实数m 的取值可能是()A .2B .3C .4D .5【正确答案】CD【分析】化简方程得23x m =±,利用指数函数的值域,列式求解得出答案.【详解】23xm -= ,23x m ∴-=±,23x m -= 有两个不等实根,即23x m =±有两个不等实根,则3030m m +>⎧⎨->⎩,解得3m >,显然选项A ,B 不满足,选项C ,D 满足.故选:CD.11.定义在R 上的函数()f x 满足()(2)f x f x =+,当[3,5]x ∈时,()2|4|f x x =--,则下列说法正确的是()A .ππsin cos 66f f⎛⎫⎛⎫< ⎪ ⎝⎭⎝⎭B .(sin1)(cos1)f f <C .2π2πcos sin 33f f ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭D .(cos 2)(sin 2)f f >【正确答案】BD【分析】根据函数的周期性可得()f x 在[]1,1-上的解析式以及函数在[0,1]上的单调性.比较自变量的大小,即可根据单调性判断A 、B 项;又易知()f x 在[1,1]-上为偶函数,则根据()()f x f x =,可将[1,0]-上的自变量转化为[0,1]上,进而根据单调性,即可判断C 、D 项.【详解】当[1,1]x ∈-时,则[45]3,x +∈,于是()(2)(4)2||f x f x f x x =+=+=-,当01x ≤≤时,()2f x x =-,所以函数()f x 在[0,1]上单调递减;当10x -≤<时,()2f x x =+,所以函数()f x 在[1,0]-上是增函数.()f x 的定义域[1,1]-关于原点对称,且此时()()22-=--=-=f x x x f x则()f x 在[1,1]-上为偶函数.对于A 项,因为ππ0sincos 166<<<,所以ππsin cos 66f f ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭,故A 错误;对于B 项,因为0cos1sin11<<<,所以(cos1)(sin1)f f >,故B 正确;对于C项,因为2π12π0cossin 1323<==<,所以2π2πcossin 33f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>,所以2π2πcos sin 33f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,故C 错误;因为ππ0|cos 2|cos sin |sin 2|144<<=<<,所以(|cos2|)(|sin 2|)f f >,所以(cos 2)(sin 2)f f >,故D 正确.故选:BD.12.已知定义域为R 的奇函数()f x ,当0x >时,21,01()1,121x x x f x x x ⎧-+<≤⎪=⎨>⎪-⎩,下列说法中错误的是()A .当121122x x -<<<时,恒有()()12f x f x >B .若当(0,]x m ∈时,()f x 的最小值为34,则m 的取值范围为17,26⎡⎤⎢⎥⎣⎦C .存在实数k ,使函数()()F x f x kx =-有5个不相等的零点D .若关于x 的方程3()[()]04f x f x a ⎡⎤--=⎢⎥⎣⎦所有实数根之和为0,则34a =-【正确答案】ACD【分析】根据奇函数的定义确定()f x 在(1,0)-上单调性与性质,然后由函数值大小可判断A ,由函数解析式分段求函数值的范围后可判断B ,由直线y kx =与函数()f x 的图象交点个数判断C ,求出3()4f x =的根是17,26,然后确定a 值使()f x a =根的和为53-即可判断D .【详解】选项A ,()f x 是奇函数,10x -≤<时,22()()[()()1]1f x f x x x x x =--=----+=---213()24x =-+-,在1(,0)2-上递减,且()0f x <,()f x 是奇函数,则(0)0f =,01x <≤时,2213()1()24f x x x x =-+=-+,在1(0,)2上递减,但()0f x >,因此()f x 在11(,)22-上不是增函数,A 错;选项B ,当01x <≤时,2213()1()24f x x x x =-+=-+,13()24f =,因此12m ≥,当1m >时,1()21f x x =-是减函数,由13214x =-得76x =,因此76m ≤,综上有1726m ≤≤,B 正确;选项C ,易知0x =是()F x 的一个零点,由于(1)1f =,y kx =过点(1,1)时,1k =,此时由21y xy x x =⎧⎨=-+⎩得21x x x -+=,2(1)0x -=,121x x ==,即直线y x =与21y x x =-+在点(1,1)处相切,因此1k >时,直线y kx =与21(01)y x x x =-+<<的图象只有一交点,在01k <<时,直线y kx =与1(1)21y x x =>-只有一个交点,从而0k >时,直线y kx =与()F x 的图象有三个交点,而0x >时,()0f x >,因此0k ≤,直线y kx =与()F x 的图象无交点,所以直线y kx =与()F x 的图象不可能是5个交点,即函数()()F x f x kx =-不可能有5个不相等的零点,C 错;选项D ,由上讨论知3()4f x =的解为12x =和76x =,因此若关于x 的方程3()[()]04f x f x a ⎡⎤--=⎢⎥⎣⎦所有实数根之和为0,由()f x 是奇函数知若34a =-,则()f x a =的解是12x =-和76x =-,符合题意,但513(537213f ==⨯-(由此讨论知3()7f x =只有一解),即53()37f -=-,即37a =-时,关于x 的方程3()[()]04f x f x a ⎡⎤--=⎢⎥⎣⎦所有实数根之和也为0,D 错.故选:ACD .方法点睛:解决分段函数的零点与交点问题,把零点问题转化为直线与函数图象交点问题进行处理,从而利用函数的性质确定出函数解析式,作出函数图象,观察出结论并找到解题思路.三、填空题13.已知弧长为πcm 3的弧所对圆周角为6π,则这条弧所在圆的半径为____________cm .【正确答案】1【分析】由弧度制公式lrα=求解即可得出答案.【详解】已知弧长为πcm 3的弧所对圆周角为6π,则所对的圆心角为π3,lrα=,313l r ππα∴===,故1.14.已知函数()()22,1log 1,1x ax f x x x ⎧+≤⎪=⎨->⎪⎩,若()02f f ⎡⎤=⎣⎦,则实数a 的值为_________.先求()03f =,再代入求()3f ,求实数a 的值.【详解】()00223f =+=,()()03log 22a f f f ⎡⎤===⎣⎦,即22a =,又0a >,且1a ≠,所以a =15.若函数()log a f x x =(0a >且1a ≠)在1,42⎡⎤⎢⎥⎣⎦上的最大值为2,最小值为m,函数()(32g x m =+[0,)+∞上是增函数,则a m -的值是____________.【正确答案】3【分析】根据对数函数的单调性,分类讨论,再结合已知进行求解得出a 和m 的值,最后根据()g x 的单调性检验即可得到.【详解】当1a >时,函数()log a f x x =是正实数集上的增函数,而函数()log a f x x =在1,42⎡⎤⎢⎥⎣⎦上的最大值为2,因此有(4)log 42a f ==,解得2a =,所以21log 12m ==-,此时()g x =[)0,∞+上是增函数,符合题意,因此()213a m -=--=;当01a <<时,函数()log a f x x =是正实数集上的减函数,而函数()log a f x x =在1,42⎡⎤⎢⎥⎣⎦上的最大值为2,因此有11log 222a f ⎛⎫== ⎪⎝⎭,a =44m ==-,此时()g x =-在[)0,∞+上是减函数,不符合题意.综上所述,2a =,1m =-,3a m -=.故3.16.若函数()()()sin cos 0f x x x ϕϕ<π=++<的最大值为2,则常数ϕ的值为_______.【正确答案】2π根据两角和的正弦公式以及辅助角公式即可求得()()f x x θ=+,可得2=,即可解出.【详解】因为()()()cos sin sin 1cos f x x x x ϕϕθ=++=+,2=,解得sin 1ϕ=,因为0ϕπ<<,所以2ϕπ=.故答案为.2π四、解答题17.在①22{|1}1x A x x -=<+,②{||1|2}A x x =-<,③23{|log }1xA x y x -==+这三个条件中任选一个,补充在下面的横线上,并回答下列问题.设全集U =R ,______,22{|0}.B x x x a a =++-<(1)若2a =,求()()U UC A C B ;(2)若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围.【正确答案】(1)1{}1|x x x ≤-≥或(2)(][),34,-∞-⋃+∞【分析】(1)根据除法不等式,绝对值不等式,对数函数的定义域即可分别求出三种情形下的集合A ;(2)对集合B 中不等式进行因式分解,再根据充分必要条件和集合包含关系即可求解.【详解】(1)若选①:222213{|1}{|0}{|0}{|13}1111x x x x A x x x x x x x x x --+-=<=-<=<=-<<++++,()22{|0}{|()10}{|(2)(1)0}B x x x a a x x a x a x x x ⎡⎤=++-<=++-<=+-<⎣⎦,所以{|2<1}B x x =-<,{|13}U C A x x x =≤-≥或,{|21}U C B x x x =≤-≥或,故()()U U C A C B ⋃=1{}1|x x x ≤-≥或.若选②:{|12}{|212}{|13}A x x x x x x =-<=-<-<=-<<()22{|0}{|()10}{|(2)(1)0}B x x x a a x x a x a x x x ⎡⎤=++-<=++-<=+-<⎣⎦,所以{|2<1}B x x =-<,{|13}U C A x x x =≤-≥或,{|21}U C B x x x =≤-≥或,故()()U U C A C B ⋃=1{}1|x x x ≤-≥或.若选③:()(){}233{|log }031011x x A x y x x x x x x ⎧⎫--====-+=⎨⎬++⎩⎭{|13}x x -<<,()22{|0}{|()10}{|(2)(1)0}B x x x a a x x a x a x x x ⎡⎤=++-<=++-<=+-<⎣⎦,所以{|2<1}B x x =-<,{|13}U C A x x x =≤-≥或,{|21}U C B x x x =≤-≥或,故()()U U C A C B ⋃=1{}1|x x x ≤-≥或.(2)由(1)知{|13}A x x =-<<,()22{|0}{|()10}B x x x a a x x a x a ⎡⎤=++-<=++-<⎣⎦,因为“x A ∈”是“x B ∈”的充分不必要条件,(i )若(1)a a -<--,即12a >,此时{|(1)}B x a x a =-<<--,所以1,3(1)aa -≥-⎧⎨≤--⎩等号不同时取得,解得4a ≥.故4a ≥.(ii )若(1)a a -=--,则B =∅,不合题意舍去;(iii )若(1)a a ->--,即12a <,此时{|(1)}B x a x a =--<<-,1(1),3a a -≥--⎧⎨≤-⎩等号不同时取得,解得3a ≤-.综上所述,a 的取值范围是(][),34,-∞-⋃+∞.18.(1)已知sin 2cos 0αα-=,求22sin cos sin 3sin cos 2cos αααααα--的值;(2)已知4sin()5απ+=,且sin cos 0αα<,求()()()2sin 3tan 34cos παπααπ----的值.【正确答案】(1)12-;(2)73.【分析】(1)先求出tan 2α=,再进行弦化切代入即可求解;(2)先求出4sin 5α=-,3cos 5α=,得到4tan 3α=-,再进行诱导公式和弦化切变换,代入即可求解.【详解】(1)由sin 2cos 0αα-=知tan 2α=∴原式=2tan 21tan 3tan 24622ααα==-----(2) 4sin()5απ+=∴4sin 05α=-<又sin cos 0αα<∴cos 0α>∴3cos 5α==∴4tan 3α=-原式=()()2sin 3tan 4cos απαπα---=2sin 3tan 4cos ααα+-=44237533345⎛⎫⎛⎫⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭=-⨯19.已知函数()323log 1x f x x -=-.(1)求函数()f x 的解析式及定义域;(2)求函数()f x 在()(),00,2x ∈-∞⋃时的值域.【正确答案】(1)()()12031xf x x =-≠-,()f x 的定义域为()(),00,∞-+∞U (2)()15,3,8⎛⎫-∞⋃+∞ ⎪⎝⎭【分析】(1)利用换元法求得函数的解析式,根据函数定义域的求法,求得函数的定义域.(2)结合3x 的取值范围来求得()f x 在()(),00,2x ∈-∞⋃时的值域.【详解】(1)对于3log x ,需0x >;对231x x --,需1x ≠;则()()3log ,00,x ∈-∞⋃+∞,令3log t x =,则0t ≠,3t x =,()()231123312313131tt t t t f t ⋅--⋅-===----,所以()()12031x f x x =-≠-,即()f x 的定义域为()(),00,∞-+∞U .(2)当0x <时,11031,1310,1,13131x xxx <<-<-<<-->--,12331x ->-.当02x <<时,1111139,0318,,318318x xx x <<<-<>-<---,1115223188x-<-=-.所以()f x 在()(),00,2x ∈-∞⋃时的值域为()15,3,8⎛⎫-∞⋃+∞ ⎪⎝⎭.20.已知函数()24f x x π⎛⎫=- ⎪⎝⎭,x R ∈.(1)求函数()f x 的最小正周期和单调递减区间;(2)求函数()f x 在区间,82ππ⎡⎤-⎢⎣⎦上的最小值和最大值,并求出取得最值时x 的值.【正确答案】(1)最小正周期为π,单调减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,Z k ∈;(2)max ()f x =,此时8x π=,min ()1f x =-,此时2x π=.【分析】(1)直接利用周期公式计算周期,再利用整体代入法求余弦型函数的单调减区间即可;(2)先求出24x π-的取值范围,再利用余弦函数的性质求最值及取最值的条件即可.【详解】解:(1)()f x 的最小正周期22||2T πππω===.令2224k x k ππππ≤-≤+,解得588k x k ππππ+≤≤+,Z k ∈,此时时,()f x 单调递减,()f x ∴的单调递减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,Z k ∈;(2),82x ππ⎡⎤∈-⎢⎥⎣⎦,则32,424x πππ⎡⎤-∈-⎢⎥⎣⎦,故cos 2,142x π⎡⎤⎛⎫-∈⎢⎥ ⎪⎝⎭⎣⎦,()24f x x π⎛⎫⎡=-∈- ⎪⎣⎝⎭,max ()f x ∴=cos 214x π⎛⎫-= ⎪⎝⎭,即204x π-=,即8x π=;min ()1f x =-,此时cos 242x π⎛⎫-=- ⎪⎝⎭,即3244x ππ-=,即2x π=.方法点睛:解决三角函数()cos y A x ωϕ=+的图象性质,通常利用余弦函数的图象性质,采用整体代入法进行求解,或者带入验证.21.2022年冬天新冠疫情卷土重来,我国大量城市和地区遭受了奥密克戎新冠病毒的袭击,为了控制疫情,某单位购入了一种新型的空气消毒剂用于环境消毒,已知在一定范围内,每喷洒1个单位的消毒剂,空气中释放的浓度(y 单位:毫克/立方米)随着时间(x 单位:小时)变化的关系如下:当04x 时,1618y x =--;当410x <时,15.2y x =-若多次喷洒,则某一时刻空气中的消毒剂浓度为每次投放的消毒剂在相应时刻所释放的浓度之和.由实验知,当空气中消毒剂的浓度不低于4(毫克/立方米)时,它才能起到杀灭空气中的病毒的作用.(1)若一次喷洒4个单位的消毒剂,则有效杀灭时间可达几小时?(2)若第一次喷洒2个单位的消毒剂,6小时后再喷洒(14)a a 个单位的消毒剂,要使接下来的4小时中能够持续有效消毒,试求a 的最小值.(精确到0.1取1.4)【正确答案】(1)8(2)1.6【分析】(1)根据喷洒4个单位的净化剂后浓度为()644,048202,410x f x x x x ⎧-≤≤⎪=-⎨⎪-<≤⎩,由()4f x ≥求解;(2)得到从第一次喷洒起,经()610x x ≤≤小时后,浓度为()()116251286g x x a x ⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪--⎝⎭⎝⎭,化简利用基本不等式求解.【详解】(1)解:因为一次喷洒4个单位的净化剂,所以其浓度为()644,0448202,410x f x y x x x ⎧-≤≤⎪==-⎨⎪-<≤⎩,当04x ≤≤时,64448x-≥-,解得0x ≥,此时04x ≤≤,当410x <≤时,2024x -≥,解得8x ≤,此时48x <≤,综上08x ≤≤,所以若一次喷洒4个单位的消毒剂,则有效杀灭时间可达8小时;(2)设从第一次喷洒起,经()610x x ≤≤小时后,其浓度为()()116251286g x x a x ⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪--⎝⎭⎝⎭,1616101441414a ax a x a x x=-+-=-+----,因为[][]144,8,1,4x a -∈∈,所以161444414a x a a a x -+--≥--=---,当且仅当161414ax x-=-,即14x =-时,等号成立;所以其最小值为4a --,由44a -≥,解得244a -≤,所以a 的最小值为24 1.6-≈.22.我们知道,指数函数()xf x a =(0a >,且1a ≠)与对数函数()log a g x x =(0a >,且1a ≠)互为反函数.已知函数()2xf x =,其反函数为()g x .(1)求函数()()()223F x g x tg x =-+⎡⎤⎣⎦,[]2,8x ∈的最小值;(2)对于函数()x ϕ,若定义域内存在实数0x ,满足()()00x x ϕϕ-=-,则称()x ϕ为“L 函数”.已知函数()()()223,1,3,1f x mf x x h x x ⎧⎡⎤--≥-⎪⎣⎦=⎨-<-⎪⎩为其定义域上的“L 函数”,求实数m 的取值范围.【正确答案】(1)答案见解析(2)[)1,∞-+【分析】(1)利用换元法令2log ,[1,3]p x p =∈,可得所求为关于p 的二次函数,根据二次函数的性质,分析讨论,即可得答案.(2)根据题意,分别讨论在[1,1]-、(,1)-∞-和(1,)+∞上存在实数0x ,满足题意,根据所给方程,代入计算,结合函数单调性,分析即可得答案.【详解】(1)由题意得2()log g x x=所以()()()()222223log 2log 3F x g x tg x xt x =-+=-+⎡⎤⎣⎦,[]2,8x ∈,令2log ,[1,3]p x p =∈,设2()23,[1,3]M p p tp p =-+∈则()M p 为开口向上,对称轴为p t =的抛物线,当1t ≤时,()M p 在[1,3]上为单调递增函数,所以()M p 的最小值为(1)42M t =-;当13t <<时,()M p 在(1,)t 上单调递减,在(,3)t 上单调递增,所以()M p 的最小值为2()3M t t =-;当3t ≥时,()M p 在[1,3]上为单调递减函数,所以()M p 的最小值为(3)126M t =-;综上,当1t ≤时,()F x 的最小值为42t -,当13t <<时,()F x 的最小值为23t -,当3t ≥时,()F x 的最小值为126t-(2)①设在[1,1]-上存在0x ,满足()()00x x ϕϕ-=-,则0000114234230x x x x m m +--+-⋅-+-⋅-=,令0022x x t -=+,则2t ≥=,当且仅当00x =时取等号,又0[1,1]x ∈-,所以115222t -≤+=,即52,2t ⎡⎤∈⎢⎥⎣⎦,所以00001124234232260x x x x m m t mt +--+-⋅-+-⋅-=---=,所以28471,2220t t m t t -⎡⎤==---⎢⎥⎣⎦所以71,20m ⎡⎤∈--⎢⎥⎣⎦②设在(,1)-∞-存在0x ,满足()()00x x ϕϕ-=-,则00134230x x m --+-+-⋅-=,即001232x x m --=-⋅有解,因为1232x x y --=-⋅在(,1)-∞-上单调递减,所以12m >-,同理当在(1,)+∞存在0x ,满足()()00x x ϕϕ-=-时,解得12m >-,所以实数m 的取值范围[)1,∞-+解题的关键是理解新定义,并根据所给定义,代入计算,结合函数单调性及函数存在性思想,进行求解,属难题。

高一上学期数学期末测试题(含答案)

高一上学期数学期末测试题(含答案)

高一数学期末测试题(含答案)一、单选题1.函数1()f x x=的定义域是( )A .RB . [)1,-+∞C . ()(),00,∞-+∞D .[)()1,00,-+∞2.不等式()()1210x x --<的解集是( ) A .{}|12x x <<B .{} 12x x <>或C .112x x ⎧⎫<>⎨⎬⎩⎭或 D .112x x ⎧⎫<<⎨⎬⎩⎭3.以下函数中,在()0,∞+上单调递减且是偶函数的是( ) A .()3f x x =-B .()f x x =C .2()2f x x =-D .1()f x x=-4.已知函数()246,06,0x x x f x x x ⎧-+≥=⎨+<⎩,则不等式()3f x >的解集是( )A .()()3,13,-+∞ B .()(),12,3-∞- C .()()1,13,-+∞D .()(),31,3-∞-5.若函数()()212log 45f x x x =-++在区间()32,2m m -+内单调递增,则实数m 的取值范围为( )A .4,33⎡⎤⎢⎥⎣⎦B .4,23⎡⎤⎢⎥⎣⎦C .4,23⎡⎫⎪⎢⎣⎭D .4,3⎡⎫+∞⎪⎢⎣⎭6.已知函数()()()3,2,log 13,2,xa a x f x x x ⎧-≤⎪=⎨-+>⎪⎩是定义域上的单调增函数,则a 的取值范围是( )A.)32⎡⎣B.C.(D .()1,27.已知函数()y f x =的图象如下图所示,则函数(||)y f x =的图象为( )A .B .C .D .8.已知6log 2a =,12log 4b =,18log 6c =,则( ) A .c b a >>B .a b c >>C .c a b >>D .a c b >>9.函数4,0()(),0xt x f x g x x ⎧+≥=⎨<⎩为定义在R 上的奇函数,则21log 3f ⎛⎫ ⎪⎝⎭等于( )A .23B .-9C .-8D .13-2x1A .[)10,2,2⎛⎤⋃+∞ ⎥⎝⎦B .(]1,11,44⎡⎫⎪⎢⎣⎭ C .(]1,11,22⎡⎫⎪⎢⎣⎭D .[)10,4,4⎛⎫⋃+∞ ⎪⎝⎭11.函数211()()1x ax f x a R x ++=∈+,若对于任意的*N x ∈,()3f x ≥恒成立,则a 的取值范围是( )A .8,3⎡⎫-+∞⎪⎢⎣⎭B .2,3⎡⎫-+∞⎪⎢⎣⎭C .1,3⎡⎫-+∞⎪⎢⎣⎭D .[)1,-+∞12.定义运算:()()a ab a b b a b ⎧≤⎪*=⎨>⎪⎩,如121*=,函数()1x xf x a a -=*-(0a >且1a ≠)的值域为( )A .()1,+∞B .10,2⎡⎤⎢⎥⎣⎦C .[)0,∞+D .[)0,1二、填空题13.已知m ,R n ∈,22100m n +=,则mn 的最大值是___________.14.函数()22xf x x =+,则不等式()()212f x f x -<-的解集为___________.15.已知()22f x x x =-,()2xg x a =-,[]11,2x ∃∈-,[]20,1x ∃∈,使得()()12f x g x ≤,则a 的取值范围是___________.16.直线3y a =与函数11(0x y a a +=->且1)a ≠的图像有两个公共点,则a 的取值范围是________三、解答题17.计算(1)160.25371.586-⨯-+⎫⎛ ⎪⎝⎭(2)()32log 232lg 2lg 20lg527log 4log 9+⨯-+⨯.18.已知集合{}22A x a x a =-≤≤+,{|1B x x =≤或}4x ≥.(1)当3a =时,求A B ⋂;(2)“x A ∈”是“R x B ∈”的充分不必要条件,求实数a 的取值范围.19.已知函数()f x 是定义在R 上的奇函数,且(),0x ∈-∞时,()2()1f x x =--.(1)求函数()f x 的解析式;(2)若()()2220x xf a f -⋅+--<任意x 恒成立,求实数a 的取值范围.20.某企业采用新工艺,把企业生产中排放的二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为300吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y 212x =-200x +80000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?21.设函数()y f x =是定义在R +上的函数,并且满足下面三个条件: ①对任意正数,x y ,都有()()()y f x f x f y =+; ①当1x >时,()0f x <; ①()31f =-.(1)求()()1,9,91f f f ⎛⎫⎪⎝⎭的值;(2)证明:()f x 在()0,∞+上是减函数;(3)如果不等式()()22f x f x +-<成立,求x 的取值范围.22.已知函数()221xx f x a =-+是定义域为R 的奇函数.(1)求实数a 的值;(2)证明:f (x )是R 上的减函数(3)当[]3,9x ∈时,不等式()()233log 2log 0f x f m x +-≥恒成立,求实数m 的取值范围参考答案:1.D【分析】列出使函数解析式有意义的不等式,解出x 的取值范围即函数的定义域.【详解】由题,100x x +≥⎧⎨≠⎩,解得[)()1,00,x ∈-+∞.故选: D. 2.D【分析】由一元二次不等式的解法求()()1210x x --<的解集. 【详解】①()()121=0x x --的根为112x =,21x =, 作函数()()121y x x =--图象可得观察图象可得不等式()()1210x x --<的解集是112x x ⎧⎫<<⎨⎬⎩⎭,故选:D. 3.C【分析】依次判断各个选项的奇偶性和单调性,即可得解【详解】选项A ,定义域为R ,()3()f x x f x -==-为奇函数,错误;选项B ,定义域为R ,()||()f x x f x -==为偶函数,但,0(),0x x f x x x ≥⎧=⎨-<⎩在()0,∞+上单调递增,错误;选项C ,定义域为R ,2()2()f x x f x -=-=为偶函数,为对称轴为0x =的开口向下的二次函数,故在()0,∞+上单调递减,正确;选项D ,定义域为1{|0},()()x x f x f x x≠-==-为奇函数,错误. 故选:C 4.A【分析】根据给定条件,分段解不等式,再求并集作答.【详解】函数()246,06,0x x x f x x x ⎧-+≥=⎨+<⎩,则不等式()3f x >等价于063x x <⎧⎨+>⎩或者2463x x x ≥⎧⎨-+>⎩, 解063x x <⎧⎨+>⎩得:30x -<<,解20463x x x ≥⎧⎨-+>⎩得:01x ≤<或3x >,于是得31x -<<或3x >,所以不等式()3f x >的解集是()()3,13,-+∞.故选:A 5.C【分析】根据复合函数单调性结合对数函数定义域计算得到答案.【详解】()()212log 45f x x x =-++,函数定义域满足:2450x x -++>,解得15x -<<,12log y x=在()0,∞+上单调递减,根据复合函数单调性知,245y x x =-++在()32,2m m -+单调递减,函数对称轴为2x =,故32232225m m m m -≥⎧⎪-<+⎨⎪+≤⎩,解得423m ≤<.故选:C. 6.A【解析】根据题中条件,分别保证每段都单调递增,且必须满足()()23log 213a a -≤-+,进而可求解出结果.【详解】因为函数()()()3,2log 13,2xaa x f x x x ⎧-≤⎪=⎨-+>⎪⎩是定义域上的单调增函数,所以()()23113log 213a a a a ⎧->⎪⎪>⎨⎪-≤-+⎪⎩解得:32<a 故选:A. 7.B【分析】保持函数()y f x =的位于y 轴右侧的图象不变,再作其关于y 轴对称的左侧的图象即可.【详解】由已知可得,保持函数()y f x =的位于y 轴右侧的图象不变,再作其关于y 轴对称的左侧的图象即可得到函数(||)y f x =的图象. 故选B.【点睛】本题主要考查函数图象的对称变换,属基础题. 8.A【分析】利用对数性质比较111,,a b c的大小关系,即得,,c b a 的关系. 【详解】由对数运算公式得,221log 61log 3a ==+,441log 121log 3b==+, 661log 181log 3c ==+,易知246log 3log 3log 30>>>,即1111a b c>>>, 故c b a >>. 故选:A. 9.C【分析】根据题意,由奇函数的性质可得()0040f t =+=,解可得t 的值,进而求出()2log 3f 的值,由奇函数的性质分析可得答案.【详解】根据题意,()()4,0,0x m x f x g x x ⎧+≥⎪=⎨<⎪⎩为定义在R 上的奇函数,则有()0040f t =+=,解可得:1t =-,则()24log 3log 92log 341418f =-=-=,则()()2221log log 3log 383f f f ⎛⎫=-=-=- ⎪⎝⎭;故选:C.【点睛】本题考查利用函数的奇偶性求参数以及函数值的计算,在涉及奇函数求参数时,注意结论()00f =的应用,考查计算能力,属于基础题. 10.C【分析】由题意,212x a x >-在(1,1)-上恒成立,令()x g x a =,21()2m x x =-,结合图象,分01a <<和1a >两种情况讨论,列出不等式求解即可得答案.【详解】解:若当(1,1)x ∈-时,均有1()2f x <,即212x a x >-在(1,1)-上恒成立,令()x g x a =,21()2m x x =-,由图象可知:当01a <<时,()1g ()1m ,即11122a -=,所以112a <; 当1a >时,()(1)1g m --,即111122a --=,所以12a <; 综上,112a <或12a <,即实数a 的取值范围是(]1,11,22⎡⎫⎪⎢⎣⎭.故选:C . 11.A【分析】恒成立求参数取值范围问题,在定义域满足的情况下,可以进行参变分离,构造新函数,通过求新函数的最值,进而得到参数取值范围.【详解】对任意*x ∈N ,()3f x ≥恒成立,即21131x ax x ++≥+恒成立,即知83a x x ⎛⎫≥-++ ⎪⎝⎭.设8()g x x x =+,*x ∈N ,则(2)6g =,17(3)3g =. ①(2)(3)g g >,①min 17()3g x =, ①8833x x ⎛⎫-++≤- ⎪⎝⎭,①83a ≥-,故a 的取值范围是8,3⎡⎫-+∞⎪⎢⎣⎭.故选:A.12.D【解析】1a >时,根据*a b 的定义即可得出10()*110xxxxa x f x a a ax --⎧-=-=⎨->⎩,这样即可求出0()1f x <;同样01a <<时,可得出0()1f x <,即得出()f x 的值域为[0,1).【详解】解:1a >时,10()*110xxxxa x f x a a ax --⎧-=-=⎨->⎩,此时0()1f x <; 01a <<时,10()*110xxxxa x f x a a ax --⎧-=-=⎨-<⎩,此时0()1f x <, ()f x ∴的值域为[0,1).故选:D . 13.50【分析】根据给定条件利用基本不等式求解即得.【详解】因m ,R n ∈,22100m n +=,则有22502m n mn +≤=,当且仅当m n =时取“=”,由m n =且22100m n +=解得:m n ==-m n ==于是得当m n ==-m n ==max ()50mn = 所以mn 的最大值是50. 故答案为:50 14.()1,1-【分析】确定函数的奇偶性与单调性后,利用这些性质解不等式.【详解】显然22()2()2()x xf x x x f x --=+-=+=,()f x 是偶函数,0x ≥时,2()2x f x x =+是增函数,所以不等式()()212f x f x -<-等价于(21)(2)f x f x -<-,即212x x -<-, 22(21)(2)x x -<-,2330x ,解得11x -<<.故答案为:(1,1)-. 15.(],3-∞【分析】题干条件,可转化为()()12min max f x g x ≤,借助二次函数的性质和指数型函数的单调性即得解【详解】由题意,[]11,2x ∃∈-,[]20,1x ∃∈,使得()()12f x g x ≤ 可转化为:()()12min max f x g x ≤当[]11,2x ∈-,()22f x x x =-为对称轴为1x =的开口向上的二次函数,因此()in 1m (1)1f f x ==-;当[]20,1x ∈,()2xg x a =-单调递增,因此()ax 2m (1)2g g x a ==-;()()12min max 12f x g x a ∴≤⇔-≤-3a ∴≤故答案为:(],3-∞ 16.1(0,)3【分析】根据1a >和01a <<分类讨论,作出函数11x y a +=-的图象与直线3y a =,由它们有两个交点得出a 的范围.【详解】1a >时,作出函数11x y a +=-的图象,如图,此时在1x ≤-时,01y ≤<,而331a >>,因此3y a =与函数11x y a +=-的图象只有一个交点,不合题意;01a <<时,作出函数11x y a +=-的图象,如图,此时在1x ≥-时,01y ≤<,因此3y a=与函数11x y a +=-的图象有两个交点,则031a <<,解得103a <<. 综上所述,1(0,)3a ∈.故答案为:1(0,)3.【点睛】方法点睛:本题考查直线与函数图象交点个数问题,掌握指数函数的性质与解题关键,解题方法是作出函数图象,由图象观察直线与函数图象交点个数,形象直观,易于得出结论. 17.(1)110 (2)-3【解析】(1)解:原式113133234422222333⎛⎫⎛⎫=+⨯+⨯- ⎪ ⎪⎝⎭⎝⎭2108110=+=. (2)()32log 232lg 2lg 20lg527log 4log 9+⨯-+⨯()()()()332log 22lg 22lg3lg 21lg 21lg 23lg3lg 2=++--+⋅ ()()223lg 21lg 224=+--+ 184=-+ 3=-.18.(1){|11A B x x ⋂=-≤≤或}45x ≤≤;(2){}|1a a < 【分析】(1)先求出集合{}15A x x =-≤≤,再求A B ⋂;(2)先求出{}|14R B x x =<<,用集合法分类讨论,列不等式,即可求出实数a 的取值范围.【详解】(1)当3a =时,{}15A x x =-≤≤. 因为{|1B x x =≤或}4x ≥,所以{|11A B x x ⋂=-≤≤或}45x ≤≤;(2)因为{|1B x x =≤或}4x ≥,所以{}|14R B x x =<<. 因为“x A ∈”是“R x B ∈”的充分不必要条件, 所以AB R.当A =∅时,符合题意,此时有22a a +<-,解得:a <0.当A ≠∅时,要使A B R ,只需222421a a a a +≥-⎧⎪+<⎨⎪->⎩,解得:01a ≤<综上:a <1.即实数a 的取值范围{}|1a a <.19.(1)()()()221,00,01,0x x f x x x x ⎧+>⎪⎪==⎨⎪--<⎪⎩;(2)(],0-∞.【分析】(1)由奇函数的性质可得出()00f =,设()0,x ∈+∞,由奇函数的性质可得出()()f x f x =--可得出()f x 的表达式,综合可得出结果;(2)分析可知函数()f x 为R 上的增函数,由原不等式变形可得出222x x a -⋅<+,利用参变量分离法结合二次函数的基本性质可求得实数a 的取值范围.【详解】(1)因为函数()f x 是定义在R 上的奇函数,所以()00f =,且()()f x f x =--. 设()0,x ∈+∞,则(),0x -∈-∞,所以()()()21f x f x x =--=+,所以()()()221,00,01,0x x f x x x x ⎧+>⎪⎪==⎨⎪--<⎪⎩;(2)因为()()2220x x f a f -⋅+--<对任意x 恒成立,所以()()222x xf a f -⋅<---,又()f x 是定义在R 上的奇函数,所以()()222x xf a f -⋅<+,作出函数()f x 的图象如下图所示:由图可知,()f x 在R 上单调递增,所以222x x a -⋅<+,即()2222x x a <+⨯恒成立, 令20x m =>,22y m m =+,0m >,则函数22y m m =+在()0,∞+上单调递增,所以0y >, 所以0a ≤,即实数a 的取值范围(],0-∞. 20.(1)400;(2)不能获利,至少需要补贴35000元.【分析】(1)每月每吨的平均处理成本为yx,利用基本不等式求解即得最低成本; (2)写出该单位每月的获利f (x )关于x 的函数,整理并利用二次函数的单调性求出最值即可作答.【详解】(1)由题意可知:()21200800003006002y x x x =-+≤≤,每吨二氧化碳的平均处理成本为:800002002002002y x x x =+-≥=, 当且仅当800002x x=,即400x =时,等号成立, ①该单位每月处理量为400吨时,每吨的平均处理成本最低; (2)该单位每月的获利:()221110020080000(300)3500022f x x x x x ⎛⎫=--+=--- ⎪⎝⎭,因300600x ≤≤,函数()f x 在区间[]300,600上单调递减,从而得当300x =时,函数()f x 取得最大值,即()max ()30035000f x f ==-, 所以,该单位每月不能获利,国家至少需要补贴35000元才能使该单位不亏损.21.(1)()()10,9291,2f f f ⎛⎫==-= ⎪⎝⎭;(2)证明见解析;(3)1⎛ ⎝⎭. 【分析】(1)运用赋值法对①式中的,x y 进行赋值可得()1f ,结合①与①可得1(9),9f f ⎛⎫⎪⎝⎭;(2)运用函数单调性的定义和条件①①,可证函数单调递减;(3)利用①与19f ⎛⎫⎪⎝⎭,可将原不等式转化为()129f x x f ⎛⎫⎡⎤-< ⎪⎣⎦⎝⎭,利用函数单调性和定义域可将其转化为具体的不等式求解,得结果.【详解】(1)令1x y ==易得()10f =,而()()()933112f f f =+=--=-, 且()()19109f f f ⎛⎫+== ⎪⎝⎭,得129f ⎛⎫= ⎪⎝⎭;(2)不妨设1201x x ,故211x x > 由①可得210x f x ⎛⎫< ⎪⎝⎭,①()()()22211111·x x f x f x f f x f x x x ⎛⎫⎛⎫==+< ⎪ ⎪⎝⎭⎝⎭, ①()f x 在()0,∞+上为减函数. (3)由条件(1)及(1)的结果得:()129f x x f ⎛⎫⎡⎤-< ⎪⎣⎦⎝⎭,其中020x x >⎧⎨->⎩, 由(2)可得()129x x ->, 解得x的范围是133⎛-+ ⎝⎭.22.(1)12 (2)证明见解析 (3)[)3,+∞【分析】(1)对于定义域是R 的奇函数只要令()00f =,即可求出a 的值.(2)要证明单调性就需要用定义法,即对于定义域内任意的21x x >都有()()21f x f x <,则函数()f x 是单调递减的.(3)解这样的不等式需要应用函数的单调性和奇偶性. (1)①函数是定义域为R 的奇函数,①()0020021f a =-=+,解得12a =.检验:()12221x x f x =-+,()1211221221x x xf x ---=-=-++, ()()0f x f x +-=,故()f x 为奇函数;即所求实数a 的值为12; (2)设1x ∀,2x R ∈且12x x <,则()()1212121212222121x x x x f x f x ⎛⎫-=--- ⎪++⎝⎭()()()()()()21122112122212212221212121x x x x x x x x x x +-+-==++++, ①12x x <,①21220x x ->,()()1221210x x++>,①()()120f x f x ->,即()()12f x f x >,所以f (x )是R 上的减函数, (3)由()()233log 2log 0f x f m x +-≥,可得()()233log 2log f x f m x ≥--.①f (x )是R 上的奇函数,①()()233log log 2f x f m x ≥-,又f (x )是R 上的减函数,所以233log log 20x m x -+≤对[]3,9x ∈恒成立,令3log t x =,①[]3,9x ∈,①[]1,2t ∈, ①220t mt -+≤对[]1,2t ∈恒成立, 即222t m t t t+≥=+; 对于函数()2g t t t=+,当t 12t t ≤,并)12,t t ∞∈+, 则()()()212121212121222t t g t g t t t t t t t t t ⎛⎫⎛⎫--=+-+=- ⎪ ⎪⎝⎭⎝⎭,由于)12,t t ∞∈+,所以212t t >,即()()210g t g t ->, 即()g t在t ≥同理可以证明在0t <≤()g t是减函数,故在t 时取最小值; 图像如下:()13g =,()23g =,故3m ≥;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海淀区高一年级第一学期期末练习
数 学
参考答案及评分标准2015.1
阅卷须知:
1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

2.其它正确解法可以参照评分标准按相应步骤给分。

一.选择题:本大题共12小题,共48分.
BDBBC DDBBA AC
二.填空题:本大题共5小题,每空3分,共27分.
13. [1,3]-14.1,315.[0,4]16.2sin x x +
17.(1)2;(2)2;(3)()f t =π2sin(π)6t -;(4)16
. 三.解答题:本大题共2小题,共25分. 解答应写出文字说明,证明过程或演算步骤.
18.本题满分13分
解:(Ⅰ)函数2()2sin(
)36f x x ππ=+的周期3T =,-----------------------------------1分
--------------------3分
描点画图如图所示. --------------------------------------------------5分
(Ⅱ)函数sin y x =的单调增区间为ππ[2π,2π]()22
k k k -+∈Z .-----------------------6分 由π2π2π2π()2362
k x k k ππ-≤+≤+∈Z , 得1313()2
k x k k -≤≤+∈Z . 所以()f x 单调增区间为1[31,3]()2
k k k -+∈Z .----------------------------------------------9分 (Ⅲ)因为13[,]24
x ∈-, 所以2πππ2π[,]3663
x +∈-, 所以2ππ1sin()[,1]362
x +∈- 所以2ππ2sin(
)[1,2]36x +∈-,即()f x 在13[,]24-上的取值范围是[1,2]-.-------------13分 说明:(Ⅱ)(Ⅲ)问,如果最终结果错误,可细化解题步骤给过程分;如果仅有最终正确结果,无步骤每问各扣1分。

19.本题满分12分
解:(Ⅰ)因为()f x 是定义在R 上的奇函数,
所以(0)(0)f f =--,即(0)0f =.----------------------------------------------------2分
()f x 在区间(0,)+∞上单调递增.------------------------------------------------------4分
(Ⅱ)法1:
任取12,x x ∈(,0)-∞,且120x x x ∆=->,则120,0x x ->->,----------------5分
因为对于区间(0,)+∞上的任意,a b ,都有()()f a b f b +>成立,
所以211()()()f x f x x f x -=-+∆>-,即21()()0f x f x --->.-------------------7分
因为()f x 是定义在R 上的奇函数,
所以1221()()()()0y f x f x f x f x ∆=-=--->---------------------------------------8分
所以函数()f x 是(,0)-∞上的增函数.--------------------------------------------------9分
法2:
任取12,x x ∈(,0)-∞,且120x x <<,则120x x ->->,且210x x ->,------5分
因为对于区间(0,)+∞上的任意,a b ,都有()()f a b f b +>成立,
所以2212[()]()f x x x f x -+->-,即12()()f x f x ->-.-----------------------------7分
因为()f x 是定义在R 上的奇函数,
所以12()()f x f x ->-,即12()()f x f x <,--------------------------------------------8分 所以函数()f x 是(,0)-∞上的增函数.--------------------------------------------------9分 (Ⅲ)()f x 不一定是R 上的增函数. ---------------------------------------------10分 反例如下: 令1,0,()0,0.x f x x x ⎧-≠⎪=⎨⎪=⎩或者1,0,()0,0,1,0.x x f x x x x ->⎧⎪==⎨⎪+<⎩
-----------------------------------------12分 学生用画图方式举反例也可以.。

相关文档
最新文档