2019-2020年八年级数学期末考试题及答案

合集下载

石家庄市新华区2019-2020年八年级上期末数学试卷含答案解析

石家庄市新华区2019-2020年八年级上期末数学试卷含答案解析

石家庄市新华区2019-2020年八年级上期末数学试卷含答案解析一、仔细选一选(本大题共12小题,每小题2分,满分24分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确选项的代码填在题后的括号内)1.4的算术平方根是()A.±2 B.2 C.4 D.﹣22.下列四个图案中,是轴对称图形的是()A.B.C.D.3.若使分式有意义,则x的取值范围是()A.x≠2 B.x≠﹣2 C.x≠﹣1 D.x=24.下列结论正确的是()A.形状相同的两个图形是全等图形B.全等图形的面积相等C.对应角相等的两个三角形全等D.两个等边三角形全等5.下列属于最简二次根式的是()A. B.C.D.6.某市年的地方公共财政收入用四舍五入取近似值后为21.39亿元,则这个数值精确到()A.百分位B.亿位C.千万位D.百万位7.一个等腰三角形的两边长分别是3和7,则它的周长为()A.13 B.15 C.17 D.13或178.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一个锐角都大于45°9.下列运算正确的是()A.2÷=B. =﹣2 C.(﹣)2=﹣2 D.×=10.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC11.如图,数轴上点A,B所对应的实数分别是1和,点B与点C关于点A 对称,则点C所对应的实数是()A.B.2﹣C.2﹣2 D.﹣112.如图,在6×6的正方形网格中,点A,B均在正方形格点上,若在网格中的格点上找一点C,使△ABC为等腰三角形,这样的点C一共有()A.7个B.8个C.10个D.12个二、认真填一填(本大题共6个小题,每小题3分,满分18分.请把答案写在题中横线上)13.0.008的立方根是.14.命题“有一条边和一个锐角分别相等的两个直角三角形全等”是命题.(填“真”或“假”)15.如图,公路AC和BC互相垂直,垂足为点C,公路AB的中点M与点C被湖隔开.已知公路AB=3.2km,则点M,C之间的距离为km.16.规定符号“[m]”表示一个实数m的整数部分,例如:[]=0,[π]=3.则按此规定[﹣1]=.17.如图,长方形纸片ABCD中,已知AD=8,AB=6,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,则CE的长为.18.如图,等边△ABC中,AB=4,AD⊥BC于点D,点F在线段AD上运动,点E在AC上,且AE=2,当EF+CF取最小值时,∠ECF=°.三、细心解答(本大题共8个小题,共58分,解答应写出相应的文字说明或解题步骤)19.计算:(1)2+﹣;(2)(b2﹣ab)•.20.解方程:2﹣=.21.当x=时,求(﹣)÷的值.22.如图,在Rt△ABC中,已知∠ABC=90°,∠ACB=60°,DE是斜边AC的中垂线,分别交AB,AC于点D,E,连接DC,若BD=2,求线段AC的长.23.如图,已知∠MON,点A,B分别在OM,ON边上,且OA=OB.(1)求作:过点A,B分别作OM,ON的垂线,两条垂线的交点记作点D(保留作图痕迹,不写作法);(2)连接OD,若∠MON=50°,则∠ODB=°.24.在数学活动课上,小明将一块等腰直角三角形纸板ABC的直角顶点C放置在直线l上,位置如图所示,∠ACB=90°,过点A,B分别作直线l的垂线,垂足分别为D,E.(1)通过观察,小明猜想△ACD与△CBE全等,请你证明这个猜想;(2)小明把三角形纸板ABC绕点C任意旋转(点C始终在直线l上,直角边不与l重合),借助(1)中的结论,发现线段AD,BE和DE之间存在某种数量关系,请你写出所有用BE,DE表示AD的式子:.25.在我市地铁1号线的建设中,某路段需要有甲、乙两个工程队进行施工,已知甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的,经测算,若由甲队先做15天,剩下的工程再由甲、乙两队合作30天完成.(1)甲、乙两队单独完成这项工程各需多少天?(2)已知甲队的施工费用为6.5万元/天,乙队的施工费用为8.5万元/天,这项工程预算的施工费用为500万元.若甲、乙两队合作完成这项工程,则预算的施工费用是否够用?若不够用,需要追加多少万元?请通过计算说明.26.已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点B,D分别在AN,AM上,连接BD.【发现】(1)如图1,若∠ABC=∠ADC=90°,则∠BCD=°,△CBD是三角形;【探索】(2)如图2,若∠ABC+∠ADC=180°,请判断△CBD的形状,并证明你的结论;【应用】(3)如图3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若点G,H分别在射线OE,OF上,且△PGH为等边三角形,则满足上述条件的△PGH的个数一共有.(只填序号)①2个②3个③4个④4个以上-学年八年级(上)期末数学试卷参考答案与试题解析一、仔细选一选(本大题共12小题,每小题2分,满分24分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确选项的代码填在题后的括号内)1.4的算术平方根是()A.±2 B.2 C.4 D.﹣2【考点】算术平方根.【分析】根据算术平方根的概念即可求出答案.【解答】解:∵22=4,∴4的算术平方根是2,故选(B)2.下列四个图案中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.故选:C.3.若使分式有意义,则x的取值范围是()A.x≠2 B.x≠﹣2 C.x≠﹣1 D.x=2【考点】分式有意义的条件.【分析】直接利用分式有意义则其分母不为零,进而得出答案.【解答】解:∵分式有意义,∴x的取值范围是:x﹣2≠0,解得:x≠2.故选:A.4.下列结论正确的是()A.形状相同的两个图形是全等图形B.全等图形的面积相等C.对应角相等的两个三角形全等D.两个等边三角形全等【考点】全等图形.【分析】能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形,根据全等图形的性质以及全等三角形的性质进行判断即可.【解答】解:A.形状相同的两个图形不一定是全等图形,是相似形,故A错误;B.根据全等图形的性质,可得全等图形的面积相等,故B正确;C.对应角相等且对应边相等的两个三角形全等,故C错误;D.两个边长相等的等边三角形全等,故D错误,故选:B.5.下列属于最简二次根式的是()A. B.C.D.【考点】最简二次根式.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A正确;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数含能开得尽方的因数或因式,故C错误;D、被开方数含分母,故D错误;故选:A.6.某市年的地方公共财政收入用四舍五入取近似值后为21.39亿元,则这个数值精确到()A.百分位B.亿位C.千万位D.百万位【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:21.39亿精确到0.01亿位,即精确到百万位.故选D.7.一个等腰三角形的两边长分别是3和7,则它的周长为()A.13 B.15 C.17 D.13或17【考点】等腰三角形的性质;三角形三边关系.【分析】由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选C.8.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一个锐角都大于45°【考点】反证法.【分析】用反证法证明命题的真假,应先按符合题设的条件,假设题设成立,再判断得出的结论是否成立即可.【解答】解:用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设每一个锐角都大于45°.故选D.9.下列运算正确的是()A.2÷=B. =﹣2 C.(﹣)2=﹣2 D.×=【考点】二次根式的乘除法.【分析】根据=(a≥0,b>0),=|a|,=(a≥0,b ≥0),分别进行计算即可.【解答】解:A、2=,故原题计算错误;B、=2,故原题计算错误;C、(﹣)2=2,故原题计算错误;D、=,故原题计算正确;故选:D.10.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC【考点】全等三角形的判定.【分析】添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用SAS定理证明△EAC≌△FDB即可.【解答】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,,∴△EAC≌△FDB(SAS),故选:A.11.如图,数轴上点A,B所对应的实数分别是1和,点B与点C关于点A 对称,则点C所对应的实数是()A.B.2﹣C.2﹣2 D.﹣1【考点】实数与数轴.【分析】根据点A、B表示的数求出AB,再根据对称可得AC=AB,然后根据数轴上左边的数比右边的小列式计算即可得解.【解答】解:∵点A,B所对应的实数分别是1和,∴AB=﹣1,∵点B与点C关于点A对称,∴AC=AB,∴点C所对应的实数是1﹣(﹣1)=1﹣+1=2﹣.故选B.12.如图,在6×6的正方形网格中,点A,B均在正方形格点上,若在网格中的格点上找一点C,使△ABC为等腰三角形,这样的点C一共有()A.7个B.8个C.10个D.12个【考点】等腰三角形的判定.【分析】首先由勾股定理可求得AB的长,然后分别从BA=BC,AB=AC,CA=CB 去分析求解即可求得答案.【解答】解:∵AB==2,如图所示:∴①若BA=BC,则符合要求的有:C1,C2共2个点;②若AB=AC,则符合要求的有:C3,C4共2个点;③若CA=CB,则符合要求的有:C5,C6,C7,C8,C9,C10共6个点.∴这样的C点有10个.故选:C.二、认真填一填(本大题共6个小题,每小题3分,满分18分.请把答案写在题中横线上)13.0.008的立方根是0.2.【考点】立方根.【分析】根据立方根的概念即可求出答案【解答】解:0.23=0.008∴0.008的立方根是0.2故答案为:0.214.命题“有一条边和一个锐角分别相等的两个直角三角形全等”是假命题.(填“真”或“假”)【考点】命题与定理.【分析】根据直角三角形全等的判定方法判断即可.【解答】解:一条边和一个锐角分别相等的两个直角三角形,边与角不一定是对应边和对应角,例如:两个直角三角形中相等的∠α的邻边与对边相等,两个三角形不全等,所以,这两个直角三角形不一定全等,所以,“有一条边和一个锐角分别相等的两个直角三角形全等”是假命题.故答案为:假.15.如图,公路AC和BC互相垂直,垂足为点C,公路AB的中点M与点C被湖隔开.已知公路AB=3.2km,则点M,C之间的距离为 1.6km.【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半,可得MC=AB=1.6km.【解答】解:∵在Rt△ABC中,∠ACB=90°,M为AB的中点,∴MC=AB=1.6km.故答案为:1.6.16.规定符号“[m]”表示一个实数m的整数部分,例如:[]=0,[π]=3.则按此规定[﹣1]=2.【考点】估算无理数的大小.【分析】直接利用的取值范围得出2<﹣1<3,进而得出答案.【解答】解:∵3<<4,∴2<﹣1<3,∴[﹣1]=2.故答案为:2.17.如图,长方形纸片ABCD中,已知AD=8,AB=6,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,则CE的长为5.【考点】翻折变换(折叠问题).【分析】如图,求出AC的长度;证明EF=EB(设为λ),得到CE=8﹣λ;列出关于λ的方程,求出λ即可解决问题.【解答】解:如图,∵四边形ABCD为矩形,∴∠D=90°,DC=AB=6;由勾股定理得:AC2=AD2+DC2,而AD=8,∴AC=10;由题意得:∠AFE=∠B=90°,AF=AB=6;EF=EB(设为λ),∴CF=10﹣6=4,CE=8﹣λ;由勾股定理得:(8﹣λ)2=λ2+42,解得:λ=3,∴CE=5,故答案为5.18.如图,等边△ABC中,AB=4,AD⊥BC于点D,点F在线段AD上运动,点E在AC上,且AE=2,当EF+CF取最小值时,∠ECF=30°.【考点】轴对称-最短路线问题;等边三角形的性质.【分析】如图,作点E关于直线AD的对称点E′,连接CE′交AD于F′.由EF+FC=FE′+FC,所以当C、E′、F共线时,EF+CF最小,由△ABC是等边三角形,AB=BC=AC=4,AE=AE′=2,推出AE′=E′B,∠ACB=60°,推出∠ACE′=∠BCE′=30°,即可解决问题.【解答】解:如图,作点E关于直线AD的对称点E′,连接CE′交AD于F′.∵EF+FC=FE′+FC,∴当C、E′、F共线时,EF+CF最小,∵△ABC是等边三角形,AB=BC=AC=4,AE=AE′=2,∴AE′=E′B,∠ACB=60°∴∠ACE′=∠BCE′=30°,∴此时∠ECF=30°,故答案为30.三、细心解答(本大题共8个小题,共58分,解答应写出相应的文字说明或解题步骤)19.计算:(1)2+﹣;(2)(b2﹣ab)•.【考点】二次根式的加减法;分式的乘除法.【分析】根据二次根式的性质以及分式运算的性质即可求出答案.【解答】解:(1)原式=4+6﹣4=6,(2)原式=b(b﹣a)•=﹣ab2,20.解方程:2﹣=.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣6﹣x=﹣3,解得:x=3,经检验x=3是增根,分式方程无解.21.当x=时,求(﹣)÷的值.【考点】分式的化简求值.【分析】先将(﹣)÷进行化简,然后将x=代入求解即可.【解答】解:(﹣)÷=×=﹣×=﹣.当x=时,原式=﹣=﹣6.22.如图,在Rt△ABC中,已知∠ABC=90°,∠ACB=60°,DE是斜边AC的中垂线,分别交AB,AC于点D,E,连接DC,若BD=2,求线段AC的长.【考点】线段垂直平分线的性质.【分析】根据直角三角形的性质求出∠A的度数,根据线段垂直平分线的性质得到DA=DC,求出∠DCB=30°,根据直角三角形的性质求出BC的长,得到答案.【解答】解:∵∠ACB=60°,∠B=90°,∴∠A=30°,∵DE是斜边AC的中垂线,∴DA=DC,∴∠ACD=∠A=30°,∴∠DCB=30°,∴BC=BD=2,∴AC=2BC=4.23.如图,已知∠MON,点A,B分别在OM,ON边上,且OA=OB.(1)求作:过点A,B分别作OM,ON的垂线,两条垂线的交点记作点D(保留作图痕迹,不写作法);(2)连接OD,若∠MON=50°,则∠ODB=65°.【考点】作图—基本作图;等腰三角形的性质.【分析】(1)根据过直线上一点作直线垂线的方法作出垂线即可;(2)利用全等三角形的判定与性质结合四边形内角和定理得出答案.【解答】解:(1)如图,DA,DB即为所求垂线;(2)连接OD,∵DB⊥ON,DA⊥OM,∴∠OBD=∠OAD=90°,∠MON=50°,∴∠ADB=180°﹣50°=130°.在Rt△OBD与Rt△OAD中,∵,∴Rt△OBD≌Rt△OAD(HL),∴∠ODB=∠ADB=65°.故答案为:65.24.在数学活动课上,小明将一块等腰直角三角形纸板ABC的直角顶点C放置在直线l上,位置如图所示,∠ACB=90°,过点A,B分别作直线l的垂线,垂足分别为D,E.(1)通过观察,小明猜想△ACD与△CBE全等,请你证明这个猜想;(2)小明把三角形纸板ABC绕点C任意旋转(点C始终在直线l上,直角边不与l重合),借助(1)中的结论,发现线段AD,BE和DE之间存在某种数量关系,请你写出所有用BE,DE表示AD的式子:AD=BE﹣DE,或AD=DE﹣BE,或AD=DE+BE..【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)观察图形,结合已知条件,可知全等三角形为:△ACD与△CBE.根据AAS即可证明;(2)根据全等三角形的性质即可得到结论.【解答】(1)证明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,又∵∠ACB=90°,∴∠ACD=90°﹣∠ECB=∠CBE.在△ACD与△CBE中,,∴△ACD≌△CBE(AAS);(2)AD=BE﹣DE,或AD=DE﹣BE,或AD=DE+BE.故答案为:AD=BE﹣DE,或AD=DE﹣BE,或AD=DE+BE.25.在我市地铁1号线的建设中,某路段需要有甲、乙两个工程队进行施工,已知甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的,经测算,若由甲队先做15天,剩下的工程再由甲、乙两队合作30天完成.(1)甲、乙两队单独完成这项工程各需多少天?(2)已知甲队的施工费用为6.5万元/天,乙队的施工费用为8.5万元/天,这项工程预算的施工费用为500万元.若甲、乙两队合作完成这项工程,则预算的施工费用是否够用?若不够用,需要追加多少万元?请通过计算说明.【考点】分式方程的应用.【分析】(1)设乙队单独完成这项工程需x天,则甲队单独完成这项工程需x天,根据“甲先做15天的工作量+甲、乙合作30天的工作量=1”列分式方程求解可得;(2)把这项工程的总工作量设为1,先求出甲、乙两队合作一天的工作量,再求得甲、乙两队合作完成这项工程需要的时间,根据“合作每天的费用×合作时间”可得所需总费用,从而得出答案.【解答】解:(1)设乙队单独完成这项工程需x天,则甲队单独完成这项工程需x天,根据题意,得: +30×(+)=1,解得:x=60,经检验x=60是原分式方程的解,当x=60时, x=90,答:甲队单独完成这项工程需90天,乙队单独完成这项工程需60天;(2)把这项工程的总工作量设为1,则甲、乙两队合作一天的工作量为(+)=,甲、乙两队合作完成这项工程需要的时间为1÷=36天,∴合作需要的施工费用为36×(6.5+8.5)=540(万元),∵540>500,540﹣500=40(万元),∴预算的施工费用不够用,需要追加40万元.26.已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点B,D分别在AN,AM上,连接BD.【发现】(1)如图1,若∠ABC=∠ADC=90°,则∠BCD=60°,△CBD是等边三角形;【探索】(2)如图2,若∠ABC+∠ADC=180°,请判断△CBD的形状,并证明你的结论;【应用】(3)如图3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若点G,H分别在射线OE,OF上,且△PGH为等边三角形,则满足上述条件的△PGH的个数一共有④.(只填序号)①2个②3个③4个④4个以上【考点】三角形综合题.【分析】(1)利用四边形的内角和即可得出∠BCD的度数,再利用角平分线的性质定理即可得出CB,即可得出结论;(2)先判断出∠CDE=∠ABC,进而得出△CDE≌△CFB(AAS),得出CD=CB,再利用四边形的内角和即可得出∠BCD=60°即可得出结论;(3)先判断出∠POE=∠POF=60°,先构造出等边三角形,找出特点,即可得出结论.【解答】解:(1)如图1,连接BD,∵∠ABC=∠ADC=90°,∠MAN=120°,根据四边形的内角和得,∠BCD=360°﹣(∠ABC+∠ADC+∠MAN)=60°,∵AC是∠MAN的平分线,CD⊥AM.CB⊥AN,∴CD=CB,(角平分线的性质定理),∴△BCD是等边三角形;故答案为:60,等边;(2)如图2,同(1)得出,∠BCD=60°(根据三角形的内角和定理),过点C作CE⊥AM于E,CF⊥AN于F,∵AC是∠MAN的平分线,∴CE=CF,∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°,∴∠CDE=∠ABC,在△CDE和△CFB中,,∴△CDE≌△CFB(AAS),∴CD=CB,∵∠BCD=60°,∴△CBD是等边三角形;(3)如图3,∵OP平分∠EOF,∠EOF=120°,∴∠POE=∠POF=60°,在OE上截取OG'=OP=1,连接PG',∴△G'OP是等边三角形,此时点H'和点O重合,同理:△OPH是等边三角形,此时点G和点O重合,将等边△PHG绕点P逆时针旋转到等边△PG'H',在旋转的过程中,边PG,PH分别和OE,OF相交(如图中G'',H'')和点P围成的三角形全部是等边三角形,(旋转角的范围为(0°到60°包括0°和60°),所以有无数个;理由:同(2)的方法.故答案为④.年2月21日。

2019-2020年八年级下学期期末考试数学试题(解析版)

2019-2020年八年级下学期期末考试数学试题(解析版)

2019-2020年八年级下学期期末考试数学试题(解析版)一、选择题1.直线y=2x+3不经过第()象限.A.一B.二C.三D.四2.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DE⊥BC于点E,则DE的长为()A.2.4 B.3.6 C.4.8 D.63.二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,则m的值为()A.3 B.﹣3 C.3或﹣3 D.以上都不对4.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限5.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)2=1826.某篮球队12名队员的年龄如表:年龄(岁)18192021人数5412则这12名队员年龄的众数和平均数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.57.运动会上,某运动员掷铅球时,所掷铅球的高y(m)与水平距离x(m)之间的函数关系为y=﹣x2+x+,则该运动员的成绩是()A.6 m B.12 m C.8 m D.10 m8.若关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,则k的值为()A.1 B.2 C.1或2 D.以上都不对9.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个10.如图,在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A 3B3C3D3,…,按图示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E 4、C3,…,在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,…,则正方形AxxB2016CxxDxx的边长是()A.()xx B.()2016C.()xx D.()xx二、填空题11.一元二次方程x2=x的解是.12.数据﹣2、﹣1、0、1、2的方差是.13.将直线y=﹣2x﹣3向上平移4个单位长度得到的直线的解析式为.14.若矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两根,则矩形的周长为.15.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为.16.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B (1,1),则关于x的方程ax2﹣bx﹣c=0的解为.17.已知二次函数y=x2﹣2ax+3(a为常数)图象上的三点:A(x1,y1)、B(x2,y 2)、C(x3,y3),其中x1=a﹣3,x2=a+1,x3=a+2,则y1,y2,y3的大小关系是.18.若二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x,y)在x轴下方,对于以下说法:①b2﹣4ac>0;②x=x0是方程ax2+bx+c=y的解;③x1<x<x2;④a(x0﹣x1)(x﹣x2)<0.其中正确的是.三、解答题(共96分)19.解下列方程(1)x2﹣2x+1=0;(2)﹣2x2+4x﹣1=0.20.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值为;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?21.已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)求这个一次函数的图象与两坐标轴围成的三角形的面积.22.关于x的一元二次方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1,x2,问是否存在x1+x2<x1x2的情况,若存在,求k的取值范围,若不存在,请说明理由.23.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.24.甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,如图是两车距A市的路程S(千米)与行驶时间t (小时)之间的函数图象,请结合图象回答下列问题:(1)A、B两市的距离是千米,甲到B市后小时乙到达B市;(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;(3)请直接写出甲车从B市往回返后再经过几小时两车相遇.25.如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.26.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y只,y与x满足如下关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是P元,P与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大值是多少元?(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m 天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?27.如图1,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.(1)求该抛物线的函数解析式;(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).①当t=2秒时,判断点P是否在直线ME上,并说明理由;②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.xx学年江苏省南通市田家炳中学八年级(下)期末数学试卷参考答案与试题解析一、选择题1.直线y=2x+3不经过第()象限.A.一B.二C.三D.四【考点】一次函数的性质.【分析】由条件可分别求得直线与两坐标轴的交点,则可确定出其所在的象限,可求得答案.【解答】解:在y=2x+3中,令y=0可求得x=﹣1.5,令x=0可得y=3,∴直线与x轴交于点(﹣1.5,0),与y轴交于点(0,3),∴直线经过第一、二、三象限,∴不经过第四象限,故选D.【点评】本题主要考查一次函数的性质,利用直线与两坐标轴的交点即可确定出直线所在的象限.2.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DE⊥BC于点E,则DE的长为()A.2.4 B.3.6 C.4.8 D.6【考点】菱形的性质.【分析】首先根据已知可求得OA,OD的长,再根据勾股定理即可求得BC的长,再由菱形的面积等于底乘以高也等于两对角线的乘积,根据此不难求得DE的长.【解答】解:∵四边形ABCD是菱形,对角线AC=8,DB=6,∴BC==5,∵S菱形ABCD=AC×BD=BC×DE,∴×8×6=5×DE,∴DE==4.8,故选C.【点评】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.3.二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,则m的值为()A.3 B.﹣3 C.3或﹣3 D.以上都不对【考点】抛物线与x轴的交点.【分析】利用已知将原式变形得出x12+x22=(x1+x2)2﹣2x1x2,进而利用根与系数关系求出即可.【解答】解:∵二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,∴x12+x22=(x1+x2)2﹣2x1x2=﹣2×(﹣)=,解得:m=±3,故选:C.【点评】此题主要考查了根与系数的关系,得出x12+x22=(x1+x2)2﹣2x1x2是解题关键.4.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【考点】二次函数的图象;一次函数的性质.【分析】根据抛物线的顶点在第四象限,得出n<0,m<0,即可得出一次函数y=mx+n的图象经过二、三、四象限.【解答】解:∵抛物线的顶点在第四象限,∴﹣m>0,n<0,∴m<0,∴一次函数y=mx+n的图象经过二、三、四象限,故选C.【点评】此题考查了二次函数的图象,用到的知识点是二次函数的图象与性质、一次函数的图象与性质,关键是根据抛物线的顶点在第四象限,得出n、m的符号.5.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)2=182【考点】由实际问题抽象出一元二次方程.【专题】增长率问题;压轴题.【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x,那么可以用x分别表示五、六月份的产量,然后根据题意可得出方程.【解答】解:依题意得五、六月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=182.故选B.【点评】增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b 为终止时间的有关数量.6.某篮球队12名队员的年龄如表:年龄(岁)18192021人数5412则这12名队员年龄的众数和平均数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.5【考点】众数;加权平均数.【分析】根据众数及平均数的概念求解.【解答】解:年龄为18岁的队员人数最多,众数是18;平均数==19.故选:A.【点评】本题考查了众数及平均数的知识,掌握众数及平均数的定义是解题关键.7.运动会上,某运动员掷铅球时,所掷铅球的高y(m)与水平距离x(m)之间的函数关系为y=﹣x2+x+,则该运动员的成绩是()A.6 m B.12 m C.8 m D.10 m【考点】二次函数的应用.【分析】依题意,该二次函数与x轴的交点的x值为所求.即在抛物线解析式中.令y=0,求x的正数值.【解答】解:把y=0代入y=﹣x2+x+得:﹣ x2+x+=0,解之得:x1=10,x2=﹣2.又x>0,∴x=10,故选:D.【点评】本题主要考查二次函数的实际应用,熟练掌握二次函数的图象和性质是解题的关键.8.若关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,则k的值为()A.1 B.2 C.1或2 D.以上都不对【考点】根的判别式.【分析】若方程有两相等根,则根的判别式△=b2﹣4ac=0,建立关于k的等式,求出k的值,再把不合题意的解舍去,即可得出答案.【解答】解:∵方程有两相等的实数根,∴△=b2﹣4ac=[﹣(k﹣1)]2﹣4(k﹣1)×=0,且k﹣1≠0,解得:k=1(舍去)或k=2,∴k的值为2;故选B.【点评】本题考查了根的根判别式,掌握当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根是本题的关键.9.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,当t=时,乙到达B城,y甲=250;综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.10.如图,在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A 3B3C3D3,…,按图示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E 4、C3,…,在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,…,则正方形AxxB2016CxxDxx的边长是()A.()xx B.()2016C.()xx D.()xx【考点】正方形的性质;坐标与图形性质.【专题】规律型.【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【解答】解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,则B2C2=()1,同理可得:B3C3==()2,故正方形An BnCnDn的边长是:()n﹣1.则正方形Axx B2016CxxDxx的边长是:()xx.故选:D.【点评】此题主要考查了正方形的性质、锐角三角函数;熟练掌握正方形的性质,得出正方形的边长变化规律是解题关键.二、填空题11.一元二次方程x2=x的解是x=0或x= .【考点】解一元二次方程﹣因式分解法.【分析】移项后因式分解法求解可得.【解答】解:∵x2=x,∴x2﹣x=0,即x(x﹣)=0,∴x=0或x﹣=0,解得:x=0或x=,故答案为:x=0或x=.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.12.数据﹣2、﹣1、0、1、2的方差是 2 .【考点】方差.【分析】根据题目中的数据可以求得这组数据的平均数,然后根据方差的计算方法可以求得这组数据的方差.【解答】解:由题意可得,这组数据的平均数是:,∴这组数据的方差是: =2,故答案为:2.【点评】本题考查方差,解题的关键是明确方差的计算方法.13.将直线y=﹣2x﹣3向上平移4个单位长度得到的直线的解析式为y=﹣2x+1 .【分析】直接根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,把直线y=﹣2x﹣3向上平移4个单位长度后所得直线的解析式为:y=﹣2x﹣3+4,即y=﹣2x+1.故答案为:y=﹣2x+1【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.14.若矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两根,则矩形的周长为16 .【考点】根与系数的关系;矩形的性质.【分析】设矩形的长和宽分别为x、y,由矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两个根,根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系得到x+y=8;xy=,然后利用矩形的性质易求得到它的周长.【解答】解:设矩形的长和宽分别为x、y,根据题意得x+y=8;所以矩形的周长=2(x+y)=16.故答案为:16.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根分别为x1,x2,则x1+x2=﹣,x1•x2=.也考查了矩形的性质.15.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为﹣2<x<﹣1 .【分析】由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(﹣1,﹣2)及直线y=kx+b与x轴的交点坐标,观察直线y=4x+2落在直线y=kx+b的下方且直线y=kx+b落在x轴下方的部分对应的x的取值即为所求.【解答】解:∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x轴的交点坐标为B(﹣2,0),又∵当x<﹣1时,4x+2<kx+b,当x>﹣2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.故答案为:﹣2<x<﹣1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.16.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1 .【考点】二次函数的性质.【专题】数形结合.【分析】根据二次函数图象与一次函数图象的交点问题得到方程组的解为,,于是易得关于x的方程ax2﹣bx﹣c=0的解.【解答】解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),∴方程组的解为,,即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.故答案为x1=﹣2,x2=1.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣.也考查了二次函数图象与一次函数图象的交点问题.17.已知二次函数y=x2﹣2ax+3(a为常数)图象上的三点:A(x1,y1)、B(x2,y 2)、C(x3,y3),其中x1=a﹣3,x2=a+1,x3=a+2,则y1,y2,y3的大小关系是y 2<y3<y1.【考点】二次函数图象上点的坐标特征.【分析】把点的坐标代入可求得y1,y2,y3的值,比较大小即可.【解答】解:∵A(x1,y1)、B(x2,y2)、C(x3,y3)在抛物线上,∴y1=(a﹣3)2﹣2a(a﹣3)+3=﹣a2+12,y2=(a+1)2﹣2a(a+1)+3=﹣a2+4,y3=(a+2)2﹣2a(a+2)+3=﹣a2+7,∵﹣a2+4<﹣a2+7<﹣a2+12,∴y2<y3<y1,故答案为:y2<y3<y1.【点评】本题主要考查二次函数图象上点的坐标特征,掌握函数图象上的点的坐标满足函数解析式是解题的关键.18.若二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x,y)在x轴下方,对于以下说法:①b2﹣4ac>0;②x=x0是方程ax2+bx+c=y的解;③x1<x<x2;④a(x0﹣x1)(x﹣x2)<0.其中正确的是①②④.【考点】抛物线与x轴的交点;二次函数图象与系数的关系.【分析】根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对③④选项讨论即可得解.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),∴△=b2﹣4ac>0,故本选项正确;②∵点M(x0,y)在二次函数y=ax2+bx+c(a≠0)的图象上,∴x=x0是方程ax2+bx+c=y的解,故本选项正确;③若a>0,则x1<x<x2,若a<0,则x0<x1<x2或x1<x2<x,故本选项错误;④若a>0,则x0﹣x1>0,x﹣x2<0,所以,(x0﹣x1)(x﹣x2)<0,∴a(x0﹣x1)(x﹣x2)<0,若a<0,则(x0﹣x1)与(x﹣x2)同号,∴a(x0﹣x1)(x﹣x2)<0,综上所述,a(x0﹣x1)(x﹣x2)<0正确,故本选项正确.故①②④正确,故答案为①②④【点评】本题考查了二次函数与x轴的交点问题,熟练掌握二次函数图象以及图象上点的坐标特征是解题的关键,③④选项要注意分情况讨论.三、解答题(共96分)19.解下列方程(1)x2﹣2x+1=0;(2)﹣2x2+4x﹣1=0.【考点】解一元二次方程﹣公式法;解一元二次方程﹣配方法.【分析】(1)因式分解法求解可得;(2)公式法求解可得.【解答】解:(1)∵(x﹣1)2=0,∴x﹣1=0,即x=1;(2)∵a=﹣2,b=4,c=﹣1,∴△=16﹣4×(﹣2)×(﹣1)=8>0,∴x==﹣2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的基本方法是解题的关键.20.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为40 ,图①中m的值为15 ;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【专题】图表型.【分析】(Ⅰ)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;(Ⅱ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(Ⅲ)根据题意列出算式,计算即可得到结果.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21.已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)求这个一次函数的图象与两坐标轴围成的三角形的面积.【考点】待定系数法求一次函数解析式.【专题】作图题;待定系数法.【分析】(1)利用待定系数法求函数解形式即可;(2)先求一次函数图象与两坐标轴的交点坐标,再利用三角形的面积公式求解即可.【解答】解:(1)设一次函数解析式为y=kx+b,则,解得,∴这个一次函数的解析式为y=2x+1;(2)当y=0时,x=﹣,当x=0时,y=1,所以函数图象与坐标轴的交点为(﹣,0)(0,1),∴三角形的面积=×|﹣|×1=.【点评】本题主要考查待定系数法求一次函数解析式;先求出函数图象与坐标轴的交点坐标是求三角形面积的关键.22.关于x的一元二次方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1,x2,问是否存在x1+x2<x1x2的情况,若存在,求k的取值范围,若不存在,请说明理由.【考点】根与系数的关系;根的判别式.【分析】根据方程有两个实数根结合根的判别式即可得出△=8k+8≥0,解之即可得出k的取值范围,再结合根与系数的关系以及x1+x2<x1x2,即可得出4<2﹣2k,解之即可得出k的取值范围,取两个k的取值范围的交集即可得出结论.【解答】解:不存在,理由如下:∵方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1,x2,∴△=(﹣4)2﹣4×1×[﹣2(k﹣1)]=8k+8≥0,解得:k≥﹣1.∵x1+x2=4,x1x2=2﹣2k,x1+x2<x1x2,∴4<2﹣2k,解得:k<﹣1.∵k≥﹣1和k<﹣1没有交集,∴不存在x1+x2<x1x2的情况.【点评】本题考查了根的判别式以及根与系数的关系,根据根的判别式以及根与系数的关系找出关于k的一元一次不等式是解题的关键.23.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】求出∠BAE=∠CAD,证△BAE≌△CAD,推出∠BEA=∠CDA,BE=CD,得出平行四边形BCDE,根据平行线性质得出∠BED+∠CDE=180°,求出∠BED,根据矩形的判定求出即可.【解答】证明:∵∠BAD=∠CAE,∴∠BAD﹣∠BAC=∠CAE﹣∠BAC,∴∠BAE=∠CAD,∵在△BAE和△CAD中∴△BAE≌△CAD(SAS),∴∠BEA=∠CDA,BE=CD,∵DE=CB,∴四边形BCDE是平行四边形,∵AE=AD,∴∠AED=∠ADE,∵∠BEA=∠CDA,∴∠BED=∠CDE,∵四边形BCDE是平行四边形,∴BE∥CD,∴∠CDE+∠BE D=180°,∴∠BED=∠CDE=90°,∴四边形BCDE是矩形.【点评】本题考查了矩形的判定,平行四边形的性质和判定,平行线的性质全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力,注意:有一个角是直角的平行四边形是矩形.24.甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,如图是两车距A市的路程S(千米)与行驶时间t (小时)之间的函数图象,请结合图象回答下列问题:(1)A、B两市的距离是120 千米,甲到B市后 5 小时乙到达B市;(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;(3)请直接写出甲车从B市往回返后再经过几小时两车相遇.【考点】一次函数的应用.【分析】(1)从图中看,甲车3小时到达B市,则3×40=120千米,即A、B 两市的距离是120千米,根据乙车往返的速度都为20千米/时,那么乙车去时所用的时间为:120÷20=6小时,6+2=8,则8小时后乙到达,所以甲到B市后5小时乙到达B市;(2)分别表示A、B两点的坐标,利用待定系数法求解析式,并写t的取值;(3)先分别求出C、D两点的坐标,再求CD的解析式,求直线AB与CD的交点,即此时两车相遇,时间为12小时,计算甲车从第10小时开始返回,则再经过2小时两车相遇.【解答】解:(1)3×40=120,乙车所用时间: =6,2+6﹣3=5,答:A、B两市的距离是120千米,甲到B市后5小时乙到达B市;故答案为:120,5;(2)由题意得:A(10,120),B(13,0),设甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式为:S=kt+b,把A(10,120),B(13,0)代入得:,解得:,∴甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式为:S=﹣40t+520(10≤t≤13);(3)由题意得:C(8,10),120﹣(10﹣8)×20=80,∴D(10,80),设直线CD的解析式为:S=kt+b,把C(8,120)、D(10,80)代入得:,解得:,∴直线CD的解析式为:S=﹣20t+280,则:,﹣40t+520=﹣20t+280,t=12,12﹣10=2,答:甲车从B市往回返后再经过2小时两车相遇.【点评】本题是一次函数的应用,考查了利用待定系数法求一次函数的解析式,本题属于行程问题,明确路程、时间、速度的关系,注意图形中S所表示的实际意义:两车距A市的路程(千米);理解题意,弄清两直线的交点即为两车相遇所表示的点,并注意自变量t的取值范围.25.如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.【考点】菱形的判定与性质;全等三角形的判定与性质;三角形中位线定理;正方形的判定.【专题】几何综合题;压轴题.【分析】(1)连接AD、BC,利用SAS可判定△APD≌△CPB,从而得到AD=BC,因为EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线,则可以得到EF=FG=GH=EH,根据四边都相等的四边形是菱形,可推出四边形EFGH是菱形;(2)成立,可以根据四边都相等的四边形是菱形判定;(3)先将图形补充完整,再通过角之间的关系得到∠EHG=90°,已证四边形EFGH 是菱形,则四边形EFGH是正方形.【解答】解:(1)四边形EFGH是菱形.(2分)(2)成立.理由:连接AD,BC.(4分)∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.(6分)∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.∴EF=BC,FG=AD,GH=BC,EH=AD.∴EF=FG=GH=EH.∴四边形EFGH是菱形.(7分)(3)补全图形,如答图.判断四边形EFGH是正方形.(9分)理由:连接AD,BC.∵(2)中已证△APD≌△CPB.∴∠PAD=∠PCB.∵∠APC=90°,∴∠PAD+∠1=90°.又∵∠1=∠2.∴∠PCB+∠2=90°.∴∠3=90°.(11分)∵(2)中已证GH,EH分别是△BCD,△ACD的中位线,∴GH∥BC,EH∥AD.∴∠EHG=90°.又∵(2)中已证四边形EFGH是菱形,∴菱形EFGH是正方形.(12分)【点评】此题主要考查了菱形的判定,正方形的判定,全等三角形的判定等知识点的综合运用及推理论证能力.26.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y只,y与x满足如下关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是P元,P与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大值是多少元?(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m 天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?。

宁波市镇海区2019-2020学年八年级上期末数学试卷(含答案)

宁波市镇海区2019-2020学年八年级上期末数学试卷(含答案)

浙江省宁波市八年级(上)期末测试数学试卷一、仔细选一选(本题有12个小题,每小题4分,共48分) 1.下列四组线段中,能组成三角形的是( )A .2cm ,3cm ,4cmB .3cm ,4cm ,7cmC .4cm ,6cm ,2cmD .7cm ,10cm ,2cm 2.下列图案是轴对称图形的是( )A .B .C .D .3.下列各式计算正确的是( ) A .B .C .D .4.若x >y ,则下列式子中错误的是( )A .x ﹣3>y ﹣3B .>C .x+3>y+3D .﹣3x >﹣3y5.在平面直角坐标系中,已知点A (2,3),则点A 关于x 轴的对称点的坐标为( ) A .(3,2) B .(2,﹣3) C .(﹣2,3) D .(﹣2,﹣3)6.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是( ) A .∠1=50°,∠2=40°B .∠1=50°,∠2=50°C .∠1=∠2=45°D .∠1=40°,∠2=40°7.已知点M (1,a )和点N (2,b )是一次函数y=﹣2x+n 图象上的两点,则a 与b 的大小关系是( ) A .a ≤bB .a <bC .a ≥bD .a >b8.直角三角形的两条边长分别是5和12,则斜边上的中线长是( ) A .6B .6.5C .6或 6.5D .6或 2.59.直线l 1:y=k 1x+b 与直线l 2:y=k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 2x >k 1x+b 的解集为( )A.x<﹣1 B.x<3 C.x>﹣1 D.x>310.关于x的不等式组有四个整数解,则a的取值范围是()A.﹣<a≤﹣B.﹣≤a<﹣C.﹣≤a≤﹣D.﹣<a<﹣11.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.一定成立的结论有()A.①②③B.①②③⑤C.②③④D.③④⑤12.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线一点,当PA=CQ时,连结PQ交AC于D,则DE的长为()A.B.C.D.二、认真填一填(本题有6个小题,每小题4分,共24分)13.若代数式有意义,则a的取值范围为.14.命题“等腰三角形的两个底角相等”的逆命题是.15.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,CD=4,则点D到AB的距离为 .16.如图,在边长为2的等边△ABC 中,D 为BC 的中点,E 是AC 边上一点,则BE+DE 的最小值为 .17.阅读理解:我们把对非负实数x“四舍五入”到个位的值记为《x 》,即当n 为非负整数时,若n ﹣≤x <n+,则《x 》=n .例如:《0.67》=1,《2.49》=2,….给出下列关于《x 》的问题:①《》=2;②《2x 》=2《x 》;③当m 为非负整数时,《m+2x 》=m+《2x 》;④若《2x﹣1》=5,则实数x 的取值范围是≤x <;⑤满足《x 》=x 的非负实数x 有三个.其中正确结论的个数是 个.18.如图,已知A 1、A 2、A 3、…、A n 、A n+1是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n A n+1=1,分别过点A 1、A 2、A 3、…、A n 、A n+1作x 轴的垂线交直线y=2x 于点B 1、B 2、B 3、…、B n 、B n+1,连接A 1B 2、B 1A 2、B 2A 3、…、A n B n+1、B n A n+1,依次相交于点P 1、P 2、P 3、…、P n .△A 1B 1P 1、△A 2B 2P 2、△A n B n P n 的面积依次记为S 1、S 2、S 3、…、S n ,则S 2016= .三、解答题(本题有8个小题,共78分,解答需写出必要的文字说明、验算步骤或证明过程)19.计算或化简:(1)(2﹣3)2+(2+)(2﹣)(2)﹣+(﹣2)0+.20.解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.21.“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).22.如图,△ABC中,AB=AC,AD⊥BC垂足为点D,CE⊥AB垂足为点E,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.23.2010年6月5日是第38个世界环境日,世界环境日的主题为“多个物种、一颗星球、一个未来”.为了响应节能减排的号召,某品牌汽车4S店准备购进A型(电动汽车)和B型(太阳能汽车)两种不同型号的汽车共16辆,以满足广大支持环保的购车者的需求.市场营销人员经过市场调查得到如下信息:600万元,则有哪几种进车方案?(2)在(1)的前提下,如果你是经营者,并且所进的汽车能全部售出,你会选择哪种进车方案才能使获得的利润最大?最大利润是多少?(3)假设每台电动汽车每公里的用电费用为0.65元,且两种汽车最大行驶里程均为30万公里,那么从节约资金的角度,你做为一名购车者,将会选购哪一种型号的汽车?并说明理由.24.在平面直角坐标系中,已知点A(﹣2,0),B(2,0),若在坐标轴上存在点C,使得AC+BC=m,则称点C为点A,B的“m和点”.如C坐标为(0,0)时,AC+BC=4,则称C(0,0)为点A,B的“4和点”.(1)若点C为点A,B的“m和点”,且△ABC为等边三角形,求m的值;(2)A,B的“5和点”有几个,请分别求出坐标;(3)直接指出点A,B的“m和点”的个数情况和相应的m取值条件.25.方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图1所示.方成思考后发现了如图1的部分正确信息:乙先出发1h;甲出发0.5小时与乙相遇.请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y<30时,求t的取值范围;(3)分别求出甲,乙行驶的路程S甲,S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N地沿同一公路匀速前往M地,若丙经过h与乙相遇,问丙出发后多少时间与甲相遇?26.如图,直线l 1:y 1=﹣x+2与x 轴,y 轴分别交于A ,B 两点,点P (m ,3)为直线l 1上一点,另一直线l 2:y 2=x+b 过点P . (1)求点P 坐标和b 的值;(2)若点C 是直线l 2与x 轴的交点,动点Q 从点C 开始以每秒1个单位的速度向x 轴正方向移动.设点Q 的运动时间为t 秒.①请写出当点Q 在运动过程中,△APQ 的面积S 与t 的函数关系式; ②求出t 为多少时,△APQ 的面积小于3;③是否存在t 的值,使△APQ 为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.浙江省宁波市八年级(上)期末数学试卷参考答案与试题解析一、仔细选一选(本题有12个小题,每小题4分,共48分)1.下列四组线段中,能组成三角形的是()A.2cm,3cm,4cm B.3cm,4cm,7cm C.4cm,6cm,2cm D.7cm,10cm,2cm【考点】三角形三边关系.【分析】根据三角形的三边关系定理:如果a、b、c是三角形的三边,且同时满足a+b>c,b+c >a,a+c>b,则以a、b、c为边能组成三角形,根据判断即可.【解答】解:A、∵3+2>4,∴2,3,4能组成三角形,故本选项正确;C、∵4+3=7,∴3,4,7不能组成三角形,故本选项错误;D、∵2+4=6,∴2,4,6不能组成三角形,故本选项错误;B、∵7+2<10,∴1,2,3不能组成三角形,故本选项错误;故选A.2.下列图案是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:D图形是轴对称图形,故选:D.3.下列各式计算正确的是()A.B.C.D.【考点】二次根式的混合运算.【分析】根据二次根式的加减运算对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的乘法法则对D进行判断.【解答】解:A、原式=6,所以A选项的计算错误;B、5与5不能合并,所以B选项的计算错误;C、原式=8=8,所以C选项的计算正确;D、原式=2,所以D选项的计算错误.故选C.4.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.>C.x+3>y+3 D.﹣3x>﹣3y【考点】不等式的性质.【分析】根据不等式的基本性质,进行判断即可.【解答】解:A、根据不等式的性质1,可得x﹣3>y﹣3,故A选项正确;B、根据不等式的性质2,可得>,故B选项正确;C、根据不等式的性质1,可得x+3>y+3,故C选项正确;D、根据不等式的性质3,可得﹣3x<﹣3y,故D选项错误;故选:D.5.在平面直角坐标系中,已知点A(2,3),则点A关于x轴的对称点的坐标为()A.(3,2) B.(2,﹣3)C.(﹣2,3)D.(﹣2,﹣3)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.【解答】解:∵点A(2,3),∴点A关于x轴的对称点的坐标为:(2,﹣3).故选:B.6.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°【考点】命题与定理.【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【解答】解:A、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A选项错误;B、不满足条件,故B选项错误;C、满足条件,不满足结论,故C选项正确;D、不满足条件,也不满足结论,故D选项错误.故选:C.7.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+n图象上的两点,则a与b的大小关系是()A.a≤b B.a<b C.a≥b D.a>b【考点】一次函数图象上点的坐标特征.【分析】把点M和点N的坐标代入一次函数的解析式,求出a、b的值,比较即可.【解答】解:∵点M(1,a)和点N(2,b)是一次函数y=﹣2x+n图象上的两点,∴a=﹣2+n,b=﹣4+n,∴a﹣b=(﹣2+n)﹣(﹣4+n)=2>0,∴a>b,故选:D.8.直角三角形的两条边长分别是5和12,则斜边上的中线长是()A.6 B.6.5 C.6或6.5 D.6或2.5【考点】勾股定理;直角三角形斜边上的中线.【分析】分①12是直角边时,利用勾股定理列式求出斜边,根据直角三角形斜边上的中线等于斜边的一半解答,②12是斜边,根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:①12是直角边时,斜边==13,第三边上的中线长=×13=6.5,②12是斜边时,第三边上的中线长=12=6,故选:C .9.直线l 1:y=k 1x+b 与直线l 2:y=k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 2x >k 1x+b 的解集为( )A .x <﹣1B .x <3C .x >﹣1D .x >3【考点】一次函数与一元一次不等式.【分析】观察函数图象,写出直线l 1在直线l 2上方所对应的自变量的范围即可. 【解答】解:不等式k 2x >k 1x+b 的解集为x <﹣1. 故选A .10.关于x 的不等式组有四个整数解,则a 的取值范围是( )A .﹣<a ≤﹣ B .﹣≤a <﹣ C .﹣≤a ≤﹣ D .﹣<a <﹣【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a 的取值范围即可.【解答】解:由(1)得x >8; 由(2)得x <2﹣4a ; 其解集为8<x <2﹣4a ,因不等式组有四个整数解,为9,10,11,12,则,解得﹣≤a <﹣.故选B.11.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.一定成立的结论有()A.①②③B.①②③⑤C.②③④D.③④⑤【考点】全等三角形的判定与性质;等边三角形的性质.【分析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE;②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知②正确;③同②得:△ACP≌△BCQ,即可得出结论;④根据∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④错误;⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知⑤正确.【解答】解:①∵△ABC和△CDE为等边三角形,∴AC=BC,CD=CE,∠BCA=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC,①正确;②∠DCP=180°﹣2×60°=60°=∠ECQ,在△CDP和△CEQ中,,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴∠QPC=∠BCA,∴PQ∥AE,②正确;③同②得:△ACP≌△BCQ,∴AP=BQ,③正确;④∵DE>QE,且DP=QE,∴DE>DP,故④错误;⑤∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵△DCE是等边三角形,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,∴⑤正确;故选:B.12.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线一点,当PA=CQ时,连结PQ交AC于D,则DE的长为()A.B.C.D.【考点】等边三角形的性质.【分析】过P作PF∥BC交AC于F,得出等边三角形APF,推出AP=PF=QC,根据等腰三角形性质求出EF=AE,证△PFD≌△QCD,推出FD=CD,推出DE=AC即可.【解答】解:过P作PF∥BC交AC于F.如图所示:∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.∵在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=1,∴DE=.故选:A.二、认真填一填(本题有6个小题,每小题4分,共24分)13.若代数式有意义,则a的取值范围为a≥2016 .【考点】二次根式有意义的条件.【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得a﹣2016≥0,解得a≥2016,故答案为:a≥2016.14.命题“等腰三角形的两个底角相等”的逆命题是两个角相等三角形是等腰三角形.【考点】命题与定理.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.【解答】解:因为原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,所以命题“等腰三角形的两个底角相等”的逆命题是“两个角相等三角形是等腰三角形”.15.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,CD=4,则点D到AB 的距离为 4 .【考点】角平分线的性质.【分析】直接根据角平分线的性质可得出结论.【解答】解:∵Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,CD=4,∴点D到AB的距离为4.故答案为:4.16.如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为.【考点】轴对称﹣最短路线问题;等边三角形的性质.【分析】作B关于AC的对称点B′,连接BB′、B′D,交AC于E,此时BE+ED=B′E+ED=B′D,根据两点之间线段最短可知B′D就是BE+ED的最小值,故E 即为所求的点.【解答】解:作B关于AC的对称点B′,连接BB′、B′D,交AC于E,此时BE+ED=B′E+ED=B′D,根据两点之间线段最短可知B′D就是BE+ED的最小值,∵B、B′关于AC的对称,∴AC、BB′互相垂直平分,∴四边形ABCB′是平行四边形,∵三角形ABC是边长为2,∵D为BC的中点,∴AD⊥BC,∴AD=,BD=CD=1,BB′=2AD=2,作B′G⊥BC的延长线于G,∴B′G=AD=,在Rt△B′BG中,BG===3,∴DG=BG﹣BD=3﹣1=2,在Rt △B′DG 中,B′D===.故BE+ED 的最小值为.故答案为:.17.阅读理解:我们把对非负实数x“四舍五入”到个位的值记为《x 》,即当n 为非负整数时,若n ﹣≤x <n+,则《x 》=n .例如:《0.67》=1,《2.49》=2,….给出下列关于《x 》的问题:①《》=2;②《2x 》=2《x 》;③当m 为非负整数时,《m+2x 》=m+《2x 》;④若《2x﹣1》=5,则实数x 的取值范围是≤x <;⑤满足《x 》=x 的非负实数x 有三个.其中正确结论的个数是 2 个.【考点】一元一次不等式组的应用.【分析】根据题意可以判断题目中各个结论是否正确,从而可以解答本题. 【解答】解:由题意可得, 《》=1,故①错误;当x=1.4时,《2x 》=《2×1.8》=3,2《x 》=2《1.4》=2,则《2x 》≠2《x 》,故②错误; 当m 为非负整数时,《m+2x 》=m+《2x 》,故③正确;若《2x ﹣1》=5,则4.5≤2x ﹣1<5.5,解得≤x <,故④正确;满足《x 》=x 的非负实数x 的值是x=0,故⑤错误; 由上可得,题目中正确的结论有2个, 故答案为:2.18.如图,已知A 1、A 2、A 3、…、A n 、A n+1是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n A n+1=1,分别过点A 1、A 2、A 3、…、A n 、A n+1作x 轴的垂线交直线y=2x 于点B 1、B 2、B 3、…、B n 、B n+1,连接A 1B 2、B 1A 2、B 2A 3、…、A n B n+1、B n A n+1,依次相交于点P 1、P 2、P 3、…、P n .△A 1B 1P 1、△A 2B 2P 2、△A n B n P n 的面积依次记为S 1、S 2、S 3、…、S n ,则S 2016=.【考点】一次函数图象上点的坐标特征.【分析】根据图象上点的坐标性质得出点B 1、B 2、B 3、…、B n 、B n+1各点坐标,进而利用相似三角形的判定与性质得出S 1、S 2、S 3、…、S n ,进而得出答案.【解答】解:∵A 1、A 2、A 3、…、A n 、A n+1是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n A n+1=1,分别过点A 1、A 2、A 3、…、A n 、A n+1作x 轴的垂线交直线y=2x 于点B 1、B 2、B 3、…、B n 、B n+1,∴B 1的横坐标为:1,纵坐标为:2, ∴B 1(1,2),同理可得:B 2的横坐标为:2,纵坐标为:4, 则B 2(2,4), B 3(3,6)… ∵A 1B 1∥A 2B 2,∴△A 1B 1P 1∽△A 2B 2P 1,∴=,∴△A 1B 1C 1与△A 2B 2C 2对应高的比为1:2,∴A 1B 1边上的高为:,∴S △A1B1P1=××2=,同理可得出:S △A2B2P2=,S △A3B3P3=,∴S n =,==,∴S2016故答案为:.三、解答题(本题有8个小题,共78分,解答需写出必要的文字说明、验算步骤或证明过程)19.计算或化简:(1)(2﹣3)2+(2+)(2﹣)(2)﹣+(﹣2)0+.【考点】二次根式的混合运算;零指数幂.【分析】(1)利用完全平方公式和平方差公式计算;(2)先把各二次根式化简为最简二次根式,再利用二次根式的性质和零指数幂的意义化简,然后合并即可.【解答】解:(1)原式=12﹣12+18+4﹣3=31﹣12;(2)原式=2﹣+1+﹣1=.20.解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.【考点】解一元一次不等式组;在数轴上表示不等式的解集;一元一次不等式组的整数解.【分析】分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可,再找出解集范围内的非负整数即可.【解答】解:,由①得:x≥﹣1,由②得:x<3,不等式组的解集为:﹣1≤x<3.在数轴上表示为:.不等式组的非负整数解为2,1,0.21.“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).【考点】作图—应用与设计作图;三角形三边关系.【分析】(1)应用列举法,根据三角形三边关系列举出所有满足条件的三角形.(2)首先判断满足条件的三角形只有一个:a=2,b=3,c=4,再作图:①作射线AB,且取AB=4;②以点A为圆心,3为半径画弧;以点B为圆心,2为半径画弧,两弧交于点C;③连接AC、BC.则△ABC即为满足条件的三角形.【解答】解:(1)共9种:(2,2,2),(2,2,3),(2,3,3),(2,3,4),(2,4,4),(3,3,3),(3,3,4),(3,4,4),(4,4,4).(2)由(1)可知,只有(2,3,4),即a=2,b=3,c=4时满足a<b<c.如答图的△ABC即为满足条件的三角形.22.如图,△ABC中,AB=AC,AD⊥BC垂足为点D,CE⊥AB垂足为点E,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.【考点】全等三角形的判定与性质.【分析】(1)根据等腰三角形三线合一的性质和已知条件易证△AEF≌△CEB;(2)由(1)可知AF=BC,BC=2CD,所以AF=2CD,问题得证.【解答】解:(1)证明:∵AD⊥BC,∴∠B+∠BAD=90°.∵CE⊥AB,∴∠B+∠BCE=90°.∴∠EAF=∠ECB,在△AEF和△CEB中,,∴△AEF≌△CEB;(2)∵△AEF≌△CEB.∴AF=BC.∵AB=AC,AD⊥BC.∴CD=BD,BC=2CD∴AF=2CD.23.2010年6月5日是第38个世界环境日,世界环境日的主题为“多个物种、一颗星球、一个未来”.为了响应节能减排的号召,某品牌汽车4S店准备购进A型(电动汽车)和B型(太阳能汽车)两种不同型号的汽车共16辆,以满足广大支持环保的购车者的需求.市场营销人员经过市场调查得到如下信息:600万元,则有哪几种进车方案?(2)在(1)的前提下,如果你是经营者,并且所进的汽车能全部售出,你会选择哪种进车方案才能使获得的利润最大?最大利润是多少?(3)假设每台电动汽车每公里的用电费用为0.65元,且两种汽车最大行驶里程均为30万公里,那么从节约资金的角度,你做为一名购车者,将会选购哪一种型号的汽车?并说明理由.【考点】一次函数的应用.【分析】(1)根据已知信息和若经营者的购买资金不少于576万元且不多于600万元,列出不等式组,求解得出进车方案.(2)根据已知列出利润函数式,求最值,选择方案.(3)根据已知通过计算分析得出答案.【解答】解:(1)设A型汽车购进x辆,则B型汽车购进(16﹣x)辆.根据题意得:,解得:6≤x≤8.∵x为整数,∴x取6、7、8.∴有三种购进方案:根据题意得:W=(32﹣30)x+(45﹣42)(16﹣x)W=﹣x+48.∵k=﹣1<0,∴w随x的增大而减小,=﹣6+48=42(万元)∴当x=6时,w有最大值,W最大∴当购进A型车6辆,B型车10辆时,可获得最大利润,最大利润是42万元.(3)设电动汽车行驶的里程为a万公里.当32+0.65a=45时,解得:a=20<30.∴选购太阳能汽车比较合算.24.在平面直角坐标系中,已知点A(﹣2,0),B(2,0),若在坐标轴上存在点C,使得AC+BC=m,则称点C为点A,B的“m和点”.如C坐标为(0,0)时,AC+BC=4,则称C(0,0)为点A,B的“4和点”.(1)若点C为点A,B的“m和点”,且△ABC为等边三角形,求m的值;(2)A,B的“5和点”有几个,请分别求出坐标;(3)直接指出点A,B的“m和点”的个数情况和相应的m取值条件.【考点】勾股定理;坐标与图形性质.【分析】(1)先由A、B两点的坐标求出AB=4,再根据等边三角形的定义得到AC=BC=AB=4,然后根据“m和点”的定义即可求出m=8;(2)设点C为点A,B的“5和点”.根据“m和点”的定义可知点C在坐标轴上,再分两种情况进行讨论:①如果点C在x轴上,设C点坐标为(x,0),根据AC+BC=5列出方程|x+2|+|x ﹣2|=5,解方程求出x的值,即可得到C点坐标;②如果点C在y轴上,设C点坐标为(0,y),根据AC+BC=5列出方程+=5,解方程求出y的值,即可得到C点坐标;(3)由AB=4,可知点A,B的“m和点”的个数情况分三种情况进行讨论:①当m<4时,根据两点之间线段最短可知A,B的“m和点”没有;②当m=4时,x轴上﹣2与2之间的任意一个数所对应的点都是A,B的“m和点”,所以有无数个;③当m>4时,A,B的“m和点”x轴上有2个,y轴上也有2个,一共有4个.【解答】解:(1)∵A(﹣2,0),B(2,0),∴AB=2﹣(﹣2)=4.∵△ABC为等边三角形,∴AC=BC=AB=4,∴AC+BC=4+4=8,即m=8;(2)设点C为点A,B的“5和点”.分两种情况:①如果点C在x轴上,设C点坐标为(x,0).∵AC+BC=5,∴|x+2|+|x﹣2|=5,当x≤﹣2时,﹣(x+2)﹣(x﹣2)=5,解得x=﹣2.5,所以C点坐标为(﹣2.5,0);当﹣2<x≤2时,(x+2)﹣(x﹣2)=5,x无解;当x>2时,(x+2)+(x﹣2)=5,解得x=2.5,所以C点坐标为(2.5,0);②如果点C在y轴上,设C点坐标为(0,y).∵AC+BC=5,∴+=5,∴=2.5,两边平方,得4+y2=6.25,解得y=±1.5.经经验,y=±1.5都是原方程的根,所以C点坐标为(0,1.5),(0,﹣1.5);综上所述,A,B的“5和点”有4个,坐标为(﹣2.5,0),(2.5,0),(0,1.5),(0,﹣1.5);(3)∵AB=4,∴点A,B的“m和点”的个数情况分三种情况:①当m<4时,A,B的“m和点”没有;②当m=4时,A ,B 的“m 和点”有无数个; ③当m >4时,A ,B 的“m 和点”有4个.25.方成同学看到一则材料:甲开汽车,乙骑自行车从M 地出发沿一条公路匀速前往N 地.设乙行驶的时间为t (h ),甲乙两人之间的距离为y (km ),y 与t 的函数关系如图1所示. 方成思考后发现了如图1的部分正确信息:乙先出发1h ;甲出发0.5小时与乙相遇. 请你帮助方成同学解决以下问题:(1)分别求出线段BC ,CD 所在直线的函数表达式; (2)当20<y <30时,求t 的取值范围;(3)分别求出甲,乙行驶的路程S 甲,S 乙与时间t 的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N 地沿同一公路匀速前往M 地,若丙经过h 与乙相遇,问丙出发后多少时间与甲相遇?【考点】一次函数的应用.【分析】(1)利用待定系数法求函数解析式,即可解答;(2)先求出甲、乙的速度、所以OA 的函数解析式为:y=20t (0≤t ≤1),所以点A 的纵坐标为20,根据当20<y <30时,得到20<40t ﹣60<30,或20<﹣20t+80<30,解不等式组即可;(3)得到S 甲=60t ﹣60(),S 乙=20t (0≤t ≤4),画出函数图象即可;(4)确定丙距M 地的路程S 丙与时间t 的函数表达式为:S 丙=﹣40t+80(0≤t ≤2),根据S 丙=﹣40t+80与S 甲=60t ﹣60的图象交点的横坐标为,所以丙出发h 与甲相遇. 【解答】解:(1)直线BC 的函数解析式为y=kt+b ,把(1.5,0),()代入得:解得:,∴直线BC 的解析式为:y=40t ﹣60; 设直线CD 的函数解析式为y 1=k 1t+b 1,把(),(4,0)代入得:,解得:,∴直线CD 的函数解析式为:y=﹣20t+80.(2)设甲的速度为akm/h ,乙的速度为bkm/h ,根据题意得;,解得:,∴甲的速度为60km/h ,乙的速度为20km/h ,∴OA 的函数解析式为:y=20t (0≤t ≤1),所以点A 的纵坐标为20, 当20<y <30时,即20<40t ﹣60<30,或20<﹣20t+80<30,解得:或.(3)根据题意得:S 甲=60t ﹣60()S 乙=20t (0≤t ≤4), 所画图象如图2所示:(4)当t=时,,丙距M 地的路程S 丙与时间t 的函数表达式为:S 丙=﹣40t+80(0≤t ≤2), 如图3,S 丙=﹣40t+80与S 甲=60t ﹣60的图象交点的横坐标为,所以丙出发h 与甲相遇.26.如图,直线l 1:y 1=﹣x+2与x 轴,y 轴分别交于A ,B 两点,点P (m ,3)为直线l 1上一点,另一直线l 2:y 2=x+b 过点P . (1)求点P 坐标和b 的值;(2)若点C 是直线l 2与x 轴的交点,动点Q 从点C 开始以每秒1个单位的速度向x 轴正方向移动.设点Q 的运动时间为t 秒.①请写出当点Q 在运动过程中,△APQ 的面积S 与t 的函数关系式; ②求出t 为多少时,△APQ 的面积小于3;③是否存在t 的值,使△APQ 为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)把P (m ,3)的坐标代入直线l 1上的解析式即可求得P 的坐标,然后根据待定系数法即可求得b ;(2)根据直线l 2的解析式得出C 的坐标,①根据题意得出AQ=9﹣t ,然后根据S=AQ•|y P |即可求得△APQ 的面积S 与t 的函数关系式;②通过解不等式﹣t+<3,即可求得t >7时,△APQ 的面积小于3;③分三种情况:当PQ=PA 时,则(t ﹣7+1)2+(0﹣3)2=(2+1)2+(0﹣3)2,当AQ=PA 时,则(t ﹣7﹣2)2=(2+1)2+(0﹣3)2,当PQ=AQ 时,则(t ﹣7+1)2+(0﹣3)2=(t ﹣7﹣2)2,即可求得.【解答】解;(1)∵点P (m ,3)为直线l 1上一点, ∴3=﹣m+2,解得m=﹣1, ∴点P 的坐标为(﹣1,3),把点P 的坐标代入y 2=x+b 得,3=×(﹣1)+b , 解得b=;(2)∵b=,∴直线l 2的解析式为y=x+, ∴C 点的坐标为(﹣7,0),①由直线l 1:y 1=﹣x+2可知A (2,0), ∴当Q 在A 、C 之间时,AQ=2+7﹣t=9﹣t ,∴S=AQ•|y P |=×(9﹣t )×3=﹣t ;当Q 在A 的右边时,AQ=t ﹣9,|=×(t﹣9)×3=t﹣;∴S=AQ•|yP即△APQ的面积S与t的函数关系式为S=﹣t+或S=t﹣;②∵S<3,∴﹣t+<3或t﹣<3解得7<t<9或9<t<11.③存在;设Q(t﹣7,0),当PQ=PA时,则(t﹣7+1)2+(0﹣3)2=(2+1)2+(0﹣3)2∴(t﹣6)2=32,解得t=3或t=9(舍去),当AQ=PA时,则(t﹣7﹣2)2=(2+1)2+(0﹣3)2∴(t﹣9)2=18,解得t=9+3或t=9﹣3;当PQ=AQ时,则(t﹣7+1)2+(0﹣3)2=(t﹣7﹣2)2,∴(t﹣6)2+9=(t﹣9)2,解得t=6.故当t的值为3或9+3或9﹣3或6时,△APQ为等腰三角形.。

2019-2020学年福建省宁德市八年级(上)期末数学试卷(解析版)

2019-2020学年福建省宁德市八年级(上)期末数学试卷(解析版)

2019-2020学年福建省宁德市中学八年级(上)期末数学试卷一、选择题(每小题3分,共36分)1.(3分)下列四个图案中,是轴对称图形的是()A.B.C.D.2.(3分)等腰三角形的一个内角是50°,则另外两个角的度数分别是()A.65°65°B.50°80°C.65°65°或50°80°D.50°50°3.(3分)下列式子中,从左到右的变形是因式分解的是()A.(x﹣1)(x﹣2)=x2﹣3x+2B.x2﹣3x+2=(x﹣1)(x﹣2)C.x2+4x+4=x(x﹣4)+4D.x2+y2=(x+y)(x﹣y)4.(3分)具备下列条件的两个三角形,可以证明它们全等的是()A.一边和这一边上的高对应相等B.两边和第三边上的中线对应相等C.两边和其中一边的对角对应相等D.直角三角形的斜边对应相等5.(3分)如果:x2﹣8xy+16y2=0,且x=5,则(2x﹣3y)2=()A.B.C.D.6.(3分)如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为()A.1B.2C.3D.47.(3分)对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是()A.∠α=60°,∠α的补角∠β=120°,∠β>∠αB.∠α=90°,∠α的补角∠β=90°,∠β=∠αC.∠α=100°,∠α的补角∠β=80°,∠β<∠αD.两个角互为邻补角8.(3分)如图,在平面直角坐标系中,点A(﹣2,4),B(4,2),在x轴上取一点P,使点P到点A和点B的距离之和最小,则点P的坐标是()A.(﹣2,0)B.(4,0)C.(2,0)D.(0,0)9.(3分)下列各组条件中,能判定△ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EFC.AB=DE,BC=EF,△ABC的周长=△DEF的周长D.∠A=∠D,∠B=∠E,∠C=∠F10.(3分)如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm11.(3分)若有三点A、B、C不在同一条直线上,点P满足PA=PB=PC,则平面内这样的点P有()A.1个B.2个C.1个或2个D.无法确定12.(3分)如图,在△ABC中,∠A=30°,将△ABC绕着B点逆时针旋转40°,到△BDE的位置,则∠a的度数是()A.40°B.30°C.20°D.10°二、填空题(每小题4分,共6分)13.(4分)分解因式:6xy2﹣9x2y﹣y3=.14.(4分)如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=10cm,BD=7cm,则点D到AB的距离为cm.15.(4分)若|x﹣3|+|y+2|=0,则x+y的值为.16.(4分)如图,等边△ABC的边长为3cm,D,E分别是边AB,AC上的点,将△ADE 沿直线DE折叠,使点A落在点A′处,且点A′在△ABC外部,则阴影部分图形的周长为cm.三、解答题(共98分)17.(12分)先化简,再求值.(1)(2x﹣y)2﹣(x﹣2y)(x+2y)+2y(2x﹣y)(其中x=2,y=﹣1)(2)(其中a=﹣1,b=2)(3)已知a2+b2+c2﹣2(a+b+c)+3=0,试求a3+b3+c3﹣3abc的值.18.(8分)计算或解方程:(1)(2)19.(12分)如图,(1)画出△ABC关于Y轴的对称图形△A1B1C1;(2)请计算△ABC的面积;(3)直接写出△ABC关于X轴对称的三角形△A2B2C2的各点坐标.20.(8分)在△ABC中,AB=BC,∠ABC=90°,E为CB延长线上一点,点F在AB上,且AE=CF.求证:BE=BF21.(8分)如图,在△ABC中,AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC =130°,求∠BAC的度数.22.(8分)从A、B两水库向甲、乙两地调水,其中甲地需水15万吨,乙地需水13万吨,A、B两水库各可调出水14万吨,从A水库到甲地50千米,到乙地30千米;从B水库到甲地60千米,到乙地50千米,设计一个调运方案使水的调运总量(单位:万吨・千米)尽可能大.23.(12分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?24.(8分)已知:如图,在△ABC中,AB=AC,延长AB到点D,使BD=AB,取AB的中点E,连结CD和CE.求证:CD=2CE.25.(10分)如图,在△ABC中,BC=AC,∠ACB=90°,D是AC上一点,AE⊥BD交BD的延长线于点E,且AE=BD,求证:BD是∠ABC的角平分线.26.(12分)在学习轴对称的时候,老师让同学们思考课本中的探究题.如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:①作点B关于直线l的对称点B′.②连接AB′交直线l于点P,则点P为所求.请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.(1)在图中作出点P(保留作图痕迹,不写作法).(2)请直接写出△PDE周长的最小值:.2019-2020学年福建省宁德市八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)下列四个图案中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意.故选:C.【点评】本题考查了轴对称图形,掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)等腰三角形的一个内角是50°,则另外两个角的度数分别是()A.65°65°B.50°80°C.65°65°或50°80°D.50°50°【分析】根据等腰三角形的性质推出∠B=∠C,分为两种情况:①当底角∠B=50°时,②当顶角∠A=50°时,根据∠B=∠C和三角形的内角和定理求出即可.【解答】解:∵AB=AC,∴∠B=∠C,①当底角∠B=50°时,则∠C=50°,∠A=180°﹣∠B﹣∠C=80°;②当顶角∠A=50°时,∵∠B+∠C+∠A=180°,∠B=∠C,∴∠B=∠C=×(180°﹣∠A)=65°;即其余两角的度数是50°,80°或65°,65°,故选:C.【点评】本题考查了等腰三角形的性质和三角形的内角和定理,注意此题有两种情况:①当底角∠B=50°时,②当顶角∠A=50°时.3.(3分)下列式子中,从左到右的变形是因式分解的是()A.(x﹣1)(x﹣2)=x2﹣3x+2B.x2﹣3x+2=(x﹣1)(x﹣2)C.x2+4x+4=x(x﹣4)+4D.x2+y2=(x+y)(x﹣y)【分析】因式分解就是要将一个多项式分解为几个整式积的形式.【解答】解:根据因式分解的概念,A,C答案错误;根据平方差公式:(x+y)(x﹣y)=x2﹣y2所以D错误;B答案正确.故选:B.【点评】注意对因式分解概念的理解.4.(3分)具备下列条件的两个三角形,可以证明它们全等的是()A.一边和这一边上的高对应相等B.两边和第三边上的中线对应相等C.两边和其中一边的对角对应相等D.直角三角形的斜边对应相等【分析】利用三角形的高可能在三角形内部或外部和三角形全等的判定方法对A进行判断;利用“SSS”可对B进行判断;利用“SAS”可对C进行判断;根据直角三角形的判定方法对D进行判断.【解答】解:A、一边和这一边上的高对应相等的两个三角形不一定全等,所以A选项错误;B、两边和第三边上的中线对应相等的两三角形全等,所以B选项正确;C、两边和其中一边的对角对应相等的两个三角形不一定全等,所以C选项错误;D、直角三角形的斜边对应相等的两个直角三角形不一定全等,所以D选项错误.故选:B.【点评】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法.也考查了等腰三角形的判定与性质.5.(3分)如果:x2﹣8xy+16y2=0,且x=5,则(2x﹣3y)2=()A.B.C.D.【分析】此题应先对x2﹣8xy+16y2=0变形得(x﹣4y)2=0,则可求出y的值,再把x、y代入(2x﹣3y)2即可得到结果.【解答】解:∵x2﹣8xy+16y2=0,∴(x﹣4y)2=0,x=4y,又x=5,∴y=,∴(2x﹣3y)2=(10﹣)2=.故选:B.【点评】本题考查了因式分解的应用,关键在于利用完全平方公式分解因式求出y的值.6.(3分)如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为()A.1B.2C.3D.4【分析】由垂线段最短可知当PQ⊥OM时PQ最小,当PQ⊥OM时,则由角平分线的性质可知PA=PQ,可求得PQ=2.【解答】解:∵垂线段最短,∴当PQ⊥OM时,PQ有最小值,又∵OP平分∠MON,PA⊥ON,∴PQ=PA=2,故选:B.【点评】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.7.(3分)对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是()A.∠α=60°,∠α的补角∠β=120°,∠β>∠αB.∠α=90°,∠α的补角∠β=90°,∠β=∠αC.∠α=100°,∠α的补角∠β=80°,∠β<∠αD.两个角互为邻补角【分析】熟记反证法的步骤,然后进行判断即可.【解答】解:举反例应该是证明原命题不正确,即要举出不符合叙述的情况;A、∠α的补角∠β>∠α,符合假命题的结论,故A错误;B、∠α的补角∠β=∠α,符合假命题的结论,故B错误;C、∠α的补角∠β<∠α,与假命题结论相反,故C正确;D、由于无法说明两角具体的大小关系,故D错误.故选:C.【点评】本题结合角的比较考查反证法,解此题关键要懂得反证法的意义及步骤.8.(3分)如图,在平面直角坐标系中,点A(﹣2,4),B(4,2),在x轴上取一点P,使点P到点A和点B的距离之和最小,则点P的坐标是()A.(﹣2,0)B.(4,0)C.(2,0)D.(0,0)【分析】作A关于x轴的对称点C,连接AC交x轴于D,连接BC交交x轴于P,连接AP,此时点P到点A和点B的距离之和最小,求出C(的坐标,设直线CB的解析式是y=kx+b,把C、B的坐标代入求出解析式是y=x﹣2,把y=0代入求出x即可.【解答】解:作A关于x轴的对称点C,连接AC交x轴于D,连接BC交交x轴于P,连接AP,则此时AP+PB最小,即此时点P到点A和点B的距离之和最小,∵A(﹣2,4),∴C(﹣2,﹣4),设直线CB的解析式是y=kx+b,把C、B的坐标代入得:,解得:k=1,b=﹣2,∴y=x﹣2,把y=0代入得:0=x﹣2,x=2,即P的坐标是(2,0),故选:C.【点评】本题考查了轴对称﹣最短路线问题,一次函数的解析式,坐标与图形性质等知识点,关键是能画出P的位置,题目比较典型,是一道比较好的题目.9.(3分)下列各组条件中,能判定△ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EFC.AB=DE,BC=EF,△ABC的周长=△DEF的周长D.∠A=∠D,∠B=∠E,∠C=∠F【分析】根据全等三角形的判定(三组对应边分别相等的两个三角形全等(简称SSS))可得当AB=DE,BC=EF,AC=DF可判定△ABC≌△DEF,做题时要对选项逐个验证.【解答】解:A、满足SSA,不能判定全等;B、AC=EF不是对应边,不能判定全等;C、符合SSS,能判定全等;D、满足AAA,不能判定全等.故选:C.【点评】本题考查了全等三角形的判定方法,在应用判定方法做题时找准对应关系,对选项逐一验证,而AAA,SSA不能作为全等的判定方法.10.(3分)如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm【分析】由△ABC中,边AB的中垂线分别交BC、AB于点D、E,AE=3cm,根据线段垂直平分线的性质,即可求得AD=BD,AB=2AE,又由△ADC的周长为9cm,即可求得AC+BC的值,继而求得△ABC的周长.【解答】解:∵△ABC中,边AB的中垂线分别交BC、AB于点D、E,AE=3cm,∴BD=AD,AB=2AE=6cm,∵△ADC的周长为9cm,∴AC+AD+CD=AC+BD+CD=AC+BC=9cm,∴△ABC的周长为:AB+AC+BC=15cm.故选:C.【点评】此题考查了线段垂直平分线的性质,三角形的周长等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.11.(3分)若有三点A、B、C不在同一条直线上,点P满足PA=PB=PC,则平面内这样的点P有()A.1个B.2个C.1个或2个D.无法确定【分析】平面内不在同一条直线的三个点就组成一个三角形.到AB距离相等的点在AB 的垂直平分线上,到BC距离相等的点在BC的垂直平分线上,到AC距离相等的点在AC 的垂直平分线上,而三角形三边的垂直平分线交于一点.【解答】解:到AB距离相等的点在AB的垂直平分线上,到BC距离相等的点在BC的垂直平分线上,到AC距离相等的点在AC的垂直平分线上,而三角形三边的垂直平分线交于一点.故选:A.【点评】本题考查了线段的垂直平分线的性质,熟练掌握线段垂直平分线的性质定理是解题的关键.12.(3分)如图,在△ABC中,∠A=30°,将△ABC绕着B点逆时针旋转40°,到△BDE的位置,则∠a的度数是()A.40°B.30°C.20°D.10°【分析】根据旋转的性质得到∠DBA=40°,∠D=∠A=30°,利用三角形内角和定理即可得到结论.【解答】解:如图,设AC,BD相交于O,∵将△ABC绕着点B逆时针旋转40°,到△BDE的位置,∴∠DBA=40°,∠D=∠A=30°,∵∠AOB+∠A+∠ABD=∠COD+∠D+∠α=180°,而∠AOB=∠COD,∴∠α=∠ABD=40°.故选:A.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.二、填空题(每小题4分,共6分)13.(4分)分解因式:6xy2﹣9x2y﹣y3=﹣y(3x﹣y)2.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=﹣y(y2﹣6xy+9x2)=﹣y(3x﹣y)2,故答案为:﹣y(3x﹣y)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.(4分)如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=10cm,BD=7cm,则点D到AB的距离为3cm.【分析】根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,可得点D 到AB的距离=点D到AC的距离=CD=3.【解答】解:∵BC=10,BD=7,∴CD=3.由角平分线的性质,得点D到AB的距离等于CD=3.故答案为:3.【点评】本题主要考查平分线的性质,由已知能够注意到D到AB的距离即为CD长是解决的关键.15.(4分)若|x﹣3|+|y+2|=0,则x+y的值为1.【分析】根据非负数的性质,可求出x、y的值,然后将x,y再代入计算.【解答】解:∵|x﹣3|+|y+2|=0,∴x﹣3=0,y+2=0,∴x=3,y=﹣2,∴x+y的值为:3﹣2=1,故答案为:1.【点评】此题主要考查了绝对值的性质,根据题意得出x,y的值是解决问题的关键.16.(4分)如图,等边△ABC的边长为3cm,D,E分别是边AB,AC上的点,将△ADE 沿直线DE折叠,使点A落在点A′处,且点A′在△ABC外部,则阴影部分图形的周长为9cm.【分析】由题意得AE=AE′,AD=AD′,故阴影部分的周长可以转化为三角形ABC 的周长.【解答】解:将△ADE沿直线DE折叠,点A落在点A′处,∴AD=A′D,AE=A′E.则阴影部分图形的周长等于BC+BD+CE+A′D+A′E,=BC+BD+CE+AD+AE,=BC+AB+AC,=9.故答案为:9.【点评】本题考查了等边三角形的性质以及折叠的问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.三、解答题(共98分)17.(12分)先化简,再求值.(1)(2x﹣y)2﹣(x﹣2y)(x+2y)+2y(2x﹣y)(其中x=2,y=﹣1)(2)(其中a=﹣1,b=2)(3)已知a2+b2+c2﹣2(a+b+c)+3=0,试求a3+b3+c3﹣3abc的值.【分析】(1)(2)首先化简,然后把x=2,y=﹣1代入化简后的算式,求出算式的值是多少即可.(3)首先应用完全平方公式,求出a、b、c的值各是多少;然后把求出的a、b、c的值代入a3+b3+c3﹣3abc,求出算式的值是多少即可.【解答】解:(1)当x=2,y=﹣1时,(2x﹣y)2﹣(x﹣2y)(x+2y)+2y(2x﹣y)=4x2﹣4xy+y2﹣x2+4y2+4xy﹣2y2=3x2+3y2=3×22+3×(﹣1)2=12+3=15(2)(=(2a+b)(16a2﹣b2)∵当a=﹣1,b=2时,∴原式=0;(3)a2+b2+c2﹣2(a+b+c)+3=0,∴a2+b2+c2﹣2a﹣2b﹣2c+3=0,∴(a﹣1)2+(b﹣1)2+(c﹣1)2=0,∴a=b=c=1,∴a3+b3+c3﹣3abc=0.【点评】此题主要考查了因式分解的应用,以及整式的混合运算﹣化简求值问题,要熟练掌握.18.(8分)计算或解方程:(1)(2)【分析】(1)原式利用零指数幂法则,平方根、立方根定义计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=3+2+4﹣1﹣2=5+1;(2)去分母得:x2+2x﹣x2+4=8,解得:x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.(12分)如图,(1)画出△ABC关于Y轴的对称图形△A1B1C1;(2)请计算△ABC的面积;(3)直接写出△ABC关于X轴对称的三角形△A2B2C2的各点坐标.【分析】(1)从三角形的各点向对称轴引垂线并延长相同单位得到各点的对应点,顺次连接即可;(2)先求出三角形各边的长,得出这是一个直角三角形,再根据面积公式计算;(3)利用轴对称图形的性质可得.【解答】解:(1)如图(2)根据勾股定理得AC==,BC=,AB=,再根据勾股定理可知此三角形为直角三角形,=;则s△ABC(3)根据轴对称图形的性质得:A2(﹣3,﹣2),B2(﹣4,3),C2(﹣1,1).【点评】做轴对称图形的关键是找出各点的对应点,然后顺次连接.20.(8分)在△ABC中,AB=BC,∠ABC=90°,E为CB延长线上一点,点F在AB上,且AE=CF.求证:BE=BF【分析】根据HL证明Rt△CBF≌Rt△ABE即可.【解答】证明:∵∠ABC=90°,∴△CBF,△ABE都是直角三角形,∵BC=BA,CF=AE,∴Rt△CBF≌Rt△ABE(HL),∴BE=BF.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形的全等的条件,属于中考常考题型.21.(8分)如图,在△ABC中,AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC =130°,求∠BAC的度数.【分析】根据等腰三角形三线合一的性质可得AE⊥BC,再求出∠CDE,然后根据直角三角形两锐角互余求出∠DCE,根据角平分线的定义求出∠ACB,再根据等腰三角形两底角相等列式进行计算即可求出∠BAC.【解答】解:∵AB=AC,AE平分∠BAC,∴AE⊥BC(等腰三角形三线合一),∵∠ADC=130°,∴∠CDE=50°,∴∠DCE=90°﹣∠CDE=40°,又∵CD平分∠ACB,∴∠ACB=2∠DCE=80°.又∵AB=AC,∴∠B=∠ACB=80°,∴∠BAC=180°﹣(∠B+∠ACB)=20.【点评】本题考查了等腰三角形三线合一的性质,等腰三角形两底角相等的性质,角平分线的定义,是基础题,准确识图并熟记性质是解题的关键.22.(8分)从A、B两水库向甲、乙两地调水,其中甲地需水15万吨,乙地需水13万吨,A、B两水库各可调出水14万吨,从A水库到甲地50千米,到乙地30千米;从B水库到甲地60千米,到乙地50千米,设计一个调运方案使水的调运总量(单位:万吨・千米)尽可能大.【分析】本题用到的关系是:调运量=调运吨数×调运的路程.本题可根据该关系求出总共的调运量.【解答】解:设A水库向甲地调水为x万吨,水的调运总量为y万吨,则A水库向乙地调水为(14﹣x)万吨;则y=50x+30(14﹣x)+60(15﹣x)+50(x﹣1)=10x+1270(1≤x≤14),∵y=10x+1270中,k=10>0,∴y随x的增大而增大,当x取14时,y值最大,即y=10×14+1270=1410,当x=14时,14﹣x=0,15﹣x=1,x﹣1=13,答:从A水库到甲地调运14万吨,从A水库到到乙地调运0万吨;从B水库向甲地调运1万吨,从B水库向乙地调运13万吨,水的调运总量最大.【点评】此题主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.注意要根据自变量的实际范围确定函数的最值.23.(12分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?【分析】(1)设这项工程的规定时间是x天,根据甲、乙队先合做15天,余下的工程由甲队单独需要5天完成,可得出方程,解出即可.(2)先计算甲、乙合作需要的时间,然后计算费用即可.【解答】解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.经检验x=30是原分式方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=18(天),则该工程施工费用是:18×(6500+3500)=180000(元).答:该工程的费用为180000元.【点评】本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.24.(8分)已知:如图,在△ABC中,AB=AC,延长AB到点D,使BD=AB,取AB的中点E,连结CD和CE.求证:CD=2CE.【分析】先由AB=AC,BD=AB及E是AB中点计算出,又∠A=∠A,根据两边对应成比例且夹角相等的两三角形相似得出△AEC∽△ACD,由相似三角形对应边成比例得出,即CD=2CE.【解答】证明:∵E是AB中点,可设:AE=BE=x,∵AB=AC,BD=AB,则有AC=2x,AD=4x,∴,又∵∠A=∠A,∴△AEC∽△ACD,∴,∴CD=2CE.【点评】本题考查了相似三角形的判定与性质,难度适中,根据条件计算出,是解题的关键.25.(10分)如图,在△ABC中,BC=AC,∠ACB=90°,D是AC上一点,AE⊥BD交BD的延长线于点E,且AE=BD,求证:BD是∠ABC的角平分线.【分析】延长AE、BC交于点F.根据同角的余角相等,得∠DBC=∠FAC;在△BCD 和△ACF中,根据ASA证明全等,得AF=BD,从而AE=EF,根据线段垂直平分线的性质,得AB=BF,再根据等腰三角形的三线合一即可证明.【解答】证明:延长AE、BC交于点F.∵AE⊥BE,∴∠BEF=90°,又∠ACF=∠ACB=90°,∴∠DBC+∠AFC=∠FAC+∠AFC=90°,∴∠DBC=∠FAC,在△ACF和△BCD中,∴△ACF≌△BCD(ASA),∴AF=BD.又AE=BD,∴AE=AF=EF,即点E是AF的中点.∵BE⊥AF∴DE是AF的垂直平分线∴AB=BF,根据等腰三角形三线合一的性质可知:BD是∠ABC的角平分线.【点评】此题综合运用了全等三角形的判定以及性质、线段垂直平分线的性质以及等腰三角形的性质.26.(12分)在学习轴对称的时候,老师让同学们思考课本中的探究题.如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:①作点B关于直线l的对称点B′.②连接AB′交直线l于点P,则点P为所求.请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.(1)在图中作出点P(保留作图痕迹,不写作法).(2)请直接写出△PDE周长的最小值:8.【分析】(1)根据提供材料DE不变,只要求出DP+PE的最小值即可,作D点关于BC 的对称点D′,连接D′E,与BC交于点P,P点即为所求;(2)利用中位线性质以及勾股定理得出D′E的值,即可得出答案.【解答】解:(1)作D点关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求;(2)∵点D、E分别是AB、AC边的中点,∴DE为△ABC中位线,∵BC=6,BC边上的高为4,∴DE=3,DD′=4,∴D′E===5,∴△PDE周长的最小值为:DE+D′E=3+5=8,故答案为:8.【点评】此题主要考查了利用轴对称求最短路径以及三角形中位线的知识,根据已知得出要求△PDE周长的最小值,求出DP+PE的最小值即可是解题关键.。

2019-2020学年度北师大版八年级数学上册期末测试卷(含答案)

2019-2020学年度北师大版八年级数学上册期末测试卷(含答案)

2019-2020学年度上学期期末考试试卷八年级 数学本试卷满分100分,考试时间100分钟一、选择题(本大题共8小题,每小题3分,共24分,每小题只有一个正确选项,请将这个正确的选项填在下面表格中.)1.下列各数是无理数的是( ) A.2 B.38 C.722D.0π 2.点P 的坐标是(-3,4),则点P 在( )A.第一象限B.第二象限C.第三象限D.第四象限 3.下列各组数中,能作为直角三角形边长的是( ) A.4,5,6 B.12,16,20 C.5,10,13 D.8,40,414.下列命题是真命题的有( ) ①等边三角形的三个内角都相等; ②如果3325xx -=-,那么x=4; ③两个锐角之和一定是钝角; ④如果x 2>0,那么x>0;A.1个B.2个C.3个D.4个 5.有一组数据:2,5,5,6,7,这组数据的平均数为( ) A.3 B.4 C.5 D.66一个两位数,十位上的数字比个位上的数字大1,若将个位与十位上的数字对调,得到的新数比原数小9,设个位上的数字为x,十位上的数字为y,根据题意,可列方程为( )A.⎩⎨⎧++=+=-910101x y y x y xB.⎩⎨⎧++=+=-910101y x x y y xC.⎩⎨⎧++=+=-910101x y y x x yD.⎩⎨⎧++=+=-910101y x x y x y7.如图在△ABC 中,D 是AB 上一点,E 是AC 上一点,BE,CD 相交于点F,∠A=70°,∠ACD=20°,∠ABE=32°,则∠CFE 的度数为( )。

A.680B.580C.520D.4808. 两条直线y=kx+b 与y=bx+k(k,b 为常数,且k b≠0)在同一坐标系中的图像可能是( )。

二、填空题(本大题共8小题,每小题3分,共24分) 9绝对值最小的实数是 。

10.若一个正数的两个平方根是x-5和x+1,则x= 。

2019—2020年最新鲁教版(五四制)八年级数学上册期末复习检测题及答案解析(试卷).doc

2019—2020年最新鲁教版(五四制)八年级数学上册期末复习检测题及答案解析(试卷).doc

八年级(上)期末数学试卷(五四学制)一、选择题(共12小题,每小题3分,满分36分)1.下列分解因式正确的是()A.﹣a+a3=﹣a(1+a2)B.2a﹣4b+2=2(a﹣2b)C.a2﹣1=(a﹣1)2D.﹣a2+4b2=(2b+a)(2b﹣a)2.下列条件中,能判定四边形是平行四边形的是()A.一组对边平行,另一组对边相等B.对角线相等C.一条对角线平分另一条对角线D.两条对角线互相平分3.绕某个点旋转180°后不能与自身重合的图形是()A.平行四边形B.长方形C.线段 D.等边三角形4.一件衬衫售价a元,利润为m%(m>0),则这种商品每件的成本是()A.B.C.a(1+m%)D.a(1﹣m%)5.某公司要出口一批易拉罐啤酒,标准体积为每瓶350mL,现抽取10瓶样品进行检测,它们的体积与标准体积的差值(单位:mL)如下:﹣6,+3,0,+3,0,0,﹣3,0,+3,+6,则这10瓶易拉罐啤酒体积的平均数及众数为()A.350.6mL,350mL B.0.6mL,0mLC.356mL,353mL D.350.6mL,353mL6.在▱ABCD中,EF过对角线的交点O,AB=4,BC=5,OF=1.5,则四边形ABFE的周长是()A.11 B.11.5 C.12 D.12.57.2710﹣324可以被20和30之间的某两个整数整除,这两个数是()A.22,24 B.23,25 C.26,28 D.27,298.设p=﹣,q=﹣,则p,q的关系是()A.p=q B.p>q C.p<q D.p=﹣q9.如图,在菱形ABCD中,对角线的交点为O,点E是BC的中点,∠BAD=110°,则∠BOE=()A.35° B.40° C.45° D.50°10.如图,已知点A(1,0),B(4,0),将线段AB平移得到线段CD,点B的对应点C恰好落在y轴上,且四边形ABCD的面积为9,则四边形ABCD的周长为()A.14 B.16 C.18 D.2011.如图,将△ABC绕点P逆时针旋转90°得到△A′B′C,则点P的坐标是()A.(1,1)B.(2,1)C.(1,2)D.(1,3)12.如图,过边长为2的正方形ABCD的中心O引两条互相垂直的射线,分别与正方形的边交于E,F两点,则线段EF长的取值范围是()A.≤EF≤2 B.≤EF≤2C.≤EF≤2D.≤EF≤二、填空题(共6小题,每小题3分,满分18分)13.分解因式:x2﹣3x﹣4= .14.=(a﹣1)+ .15.某学校开展数学竞赛,八(1)、八(2)班根据初赛成绩各选出5名选手参加复赛,两个班的5名选手的复赛成绩如图所示.根据图示回答:一班复赛成绩的中位数是分,二班复赛成绩的极差是分.16.如图,人民币旧版壹角硬币内部的正多边形每个内角度数是°.17.如图,在▱ABCD中,G是CD上一点,连接BG且延长交AD的延长线于点E,AF=CG,∠E=30°,∠C=50°,则∠BFD= .18.如图,将三条线段CD,EF,GN分别绕点O旋转,不能与线段AB重合的线段是.三、解答题(共7小题)19.把下列各式因式分解:(1)﹣9a2+6a(a﹣b)﹣(a﹣b)2;(2)(x﹣1)(x﹣2)+.20.先化简,再求值:(﹣)÷(a+1﹣),其中a=﹣.21.如图,在▱ABCD中,AB=AE,连接BE且延长CD的延长线于点F.求证:AD=CF.22.小明和小亮在课外活动中,报名参加了短跑训练.在五次百米训练中,所测成绩如图所示,请根据图中所给信息解答以下问题:分别计算他们的平均数、极差和方差.23.手机专卖店经营的某种手机去年销售总额为10万元,今年每部售价比去年降低500元,若今年卖出的数量与去年卖出的数量相同,且销售总额比去年减少10%,求今年每部手机的售价是多少元.24.如图,菱形ABCD的边长为5,过点A作对角线AC的垂线,交CB的延长线于点E,AE=4.(1)求证:BE=BC;(2)求S菱形ABCD.25.如图,P是等腰Rt△ACB内一点,AC=BC,且PA=8,PB=10,PC=.将△CPB绕点C 按逆时针方向旋转后,得到△CP′A.(1)直接写出旋转的最小角度;(2)求∠APC的度数.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.下列分解因式正确的是()A.﹣a+a3=﹣a(1+a2)B.2a﹣4b+2=2(a﹣2b)C.a2﹣1=(a﹣1)2D.﹣a2+4b2=(2b+a)(2b﹣a)考点:提公因式法与公式法的综合运用.分析:分别利用提取公因式法以及公式法分解因式得出即可.解答:解:A、﹣a+a3=﹣a(1﹣a2)=﹣a(1+a)(1﹣a),故此选项错误;B、2a﹣4b+2=2(a﹣2b+1),故此选项错误;C、a2﹣1=(a﹣1)(a+1),故此选项错误;D、﹣a2+4b2=(2b+a)(2b﹣a),正确.故选:D.点评:此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式是解题关键.2.下列条件中,能判定四边形是平行四边形的是()A.一组对边平行,另一组对边相等B.对角线相等C.一条对角线平分另一条对角线D.两条对角线互相平分考点:平行四边形的判定.分析:根据平行四边形的判定定理(①两组对角分别相等的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③对角线互相平分的四边形是平行四边形;④有一组对边相等且平行的四边形是平行四边形)进行判断即可.解答:解:如图:A、一组对边平行,另一组对边相等的四边形可能是等腰梯形,故本选项错误;B、对角线相等不能判定四边形是平行四边形,故本选项错误;C、一条对角线平分另一条对角线不能判定四边形是平行四边形,故本选项错误;D、两条对角线互相平分的四边形是平行四边形,故本选项正确.故选D.点评:本题考查了平行四边形的判定,解题的关键是了解平行四边形的所有判定定理,难度不大.3.绕某个点旋转180°后不能与自身重合的图形是()A.平行四边形B.长方形C.线段 D.等边三角形考点:旋转对称图形.分析:利用中心对称图形的性质进而分析得出即可.解答:解;A、平行四边形,是中心对称图形,绕某个点旋转180°后能与自身重合的图形,故此选项错误;B、长方形,是中心对称图形,绕某个点旋转180°后能与自身重合的图形,故此选项错误;C、线段,是中心对称图形,绕某个点旋转180°后能与自身重合的图形,故此选项错误;D、等边三角形,不是中心对称图形,绕某个点旋转180°后不能与自身重合的图形,故此选项正确;故选:D.点评:此题主要考查了旋转对称图形,正确把握中心对称图形的定义是解题关键.4.一件衬衫售价a元,利润为m%(m>0),则这种商品每件的成本是()A.B.C.a(1+m%)D.a(1﹣m%)考点:列代数式(分式).分析:根据进价与利润之间的关系求出即可.解答:解:设这种商品每件的成本是x元,根据题意可得:x(1+m%)=a,解得:x=.故选:B.点评:此题主要考查了列代数式,正确掌握进价与利润之间的关系是解题关键.5.某公司要出口一批易拉罐啤酒,标准体积为每瓶350mL,现抽取10瓶样品进行检测,它们的体积与标准体积的差值(单位:mL)如下:﹣6,+3,0,+3,0,0,﹣3,0,+3,+6,则这10瓶易拉罐啤酒体积的平均数及众数为()A.350.6mL,350mL B.0.6mL,0mLC.356mL,353mL D.350.6mL,353mL考点:众数;加权平均数.分析:首先求得﹣6,+3,0,+3,0,0,﹣3,0,+3,+6这10个数的平均数以及众数,然后分别加上350ml,即可求解.解答:解:平均数是:350+(﹣6+3+0+3+0+0﹣3+0+3+6)=350+0.6=350.6ml,﹣10,+5,0,+5,0,0,﹣5,0,+5,+10的众数是0,因而这10瓶啤酒的质量的众数是:350+0=350ml.故选A.点评:本题考查了众数与平均数的求法,正确理解定理,理解与这10瓶罐头质量的平均数及众数的关系是关键.6.在▱ABCD中,EF过对角线的交点O,AB=4,BC=5,OF=1.5,则四边形ABFE的周长是()A.11 B.11.5 C.12 D.12.5考点:平行四边形的性质.分析:先利用平行四边形的性质求出AB、CD、BC、AD的值,可利用全等的性质得到△AEO ≌△CFO,即可求出四边形的周长.解答:解:已知AB=4,BC=5,OE=1.5,根据平行四边形的性质,AB=CD=4,BC=AD=5,在△AEO和△CFO中OA=OC,∠OAE=∠OCF,∠AOE=∠COF,所以△AEO≌△CFO,OE=OF=1.5,则ABFE的周长=EFCD的周长=ED+CD+CF+EF=(DE+CF)+AB+EF=5+4+3=12.故选C.点评:本题考查平行四边形的性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.7.2710﹣324可以被20和30之间的某两个整数整除,这两个数是()A.22,24 B.23,25 C.26,28 D.27,29考点:因式分解的应用.分析:将2710﹣324利用分解因式的知识进行分解,再结合题目能被20至30之间的两个整数整除即可得出答案.解答:解:2710﹣324=324(36﹣1)=324(32﹣1)(33+1)∵可以被20和30之间的某两个整数整除,∴这两个数是26,28.故选:C.点评:此题考查因式分解的实际运用,利用提公因式法和平方差公式是解决问题的关键.8.设p=﹣,q=﹣,则p,q的关系是()A.p=q B.p>q C.p<q D.p=﹣q考点:分式的加减法.专题:计算题.分析:把p与q代入p+q中计算,即可做出判断.解答:解:∵p=﹣,q=﹣,∴p+q=﹣+﹣=﹣=1﹣1=0,则p=﹣q,故选D点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.9.如图,在菱形ABCD中,对角线的交点为O,点E是BC的中点,∠BAD=110°,则∠BOE=()A.35° B.40° C.45° D.50°考点:菱形的性质.分析:由菱形的性质可求得∠ABC,进一步可求得∠ABO,再利用中位线定理可得∠BOE=∠ABO,可求得答案.解答:解:∵四边形ABCD为菱形,∴AD∥BC,∴∠ABC+∠BAD=180°,∴∠ABC=180°﹣110°=70°,∴∠ABO=∠ABC=35°,又∵E为BC中点,∴OE为△ABC的中位线,∴OE∥AB,∴∠BOE=∠ABO=35°,故选A.点评:本题主要考查菱形的性质,掌握菱形对边平行、对角线互相平分且平分每一组对角是解题的关键.10.如图,已知点A(1,0),B(4,0),将线段AB平移得到线段CD,点B的对应点C恰好落在y轴上,且四边形ABCD的面积为9,则四边形ABCD的周长为()A.14 B.16 C.18 D.20考点:坐标与图形变化-平移.分析:根据平移的性质可得四边形ABCD是平行四边形,然后根据点A、B的坐标求出AB,再利用平行四边形的面积求出OC,然后利用勾股定理列式求出BC,再根据平行四边形的周长公式列式计算即可得解.解答:解:∵线段AB平移得到线段CD,∴AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∵A(1,0),B(4,0),∴AB=4﹣1=3,∵四边形ABCD的面积为9,∴3•OC=9,解得OC=3,在Rt△BOC中,由勾股定理得,BC===5,∴四边形ABCD的周长=2(3+5)=16.故选B.点评:本题考查了坐标与图形变化﹣平移,勾股定理,平行四边形的判定与性质,熟记性质并求出BC长度是解题的关键.11.如图,将△ABC绕点P逆时针旋转90°得到△A′B′C,则点P的坐标是()A.(1,1)B.(2,1)C.(1,2)D.(1,3)考点:坐标与图形变化-旋转.分析:先根据旋转的性质得到点A的对应点为点A′,点B的对应点为点B′,再根据旋转的性质得到旋转中心在线段AA′的垂直平分线,也在线段BB′的垂直平分线,即两垂直平分线的交点为旋转中心.解答:解:∵将△ABC以某点为旋转中心,顺时针旋转90°得到△A′B′C′,∴点A的对应点为点A′,点C的对应点为点C′,作线段AA′和CC′的垂直平分线,它们的交点为P(1,2),∴旋转中心的坐标为(1,2).故选:C.点评:本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.12.如图,过边长为2的正方形ABCD的中心O引两条互相垂直的射线,分别与正方形的边交于E,F两点,则线段EF长的取值范围是()A.≤EF≤2 B.≤EF≤2C.≤EF≤2D.≤EF≤考点:全等三角形的判定与性质;正方形的性质.分析:如图,作辅助线;证明△AOE≌△DOF,进而得到OE=OF,此为解决该题的关键性结论;求出OE的范围,借助勾股定理即可解决问题.解答:解:如图,连接EF;∵四边形ABCD为正方形,∴∠EAO=∠FDO=45°,AO=DO;∵∠EOF=90°,∠AOD=90°,∴∠AOE=∠DOF;在△AOE与△DOF中,,∴△AOE≌△DOF(SAS),∴OE=OF(设为λ);由勾股定理得:EF2=OE2+OF2=2λ2;由题意可得:1≤λ≤,∴,故选A.点评:该题以正方形为载体,主要考查了正方形的性质、全等三角形的判定等几何知识点的应用问题;牢固掌握全等三角形的判定等几何知识点,是灵活解题的基础和关键.二、填空题(共6小题,每小题3分,满分18分)13.分解因式:x2﹣3x﹣4= (x+1)(x﹣4).考点:因式分解-十字相乘法等.分析:因为﹣4=1×(﹣4),1+(﹣4)=﹣3,所以x2﹣3x﹣4=(x+1)(x﹣4).解答:解:x2﹣3x﹣4=(x+1)(x﹣4).点评:本题考查十字相乘法分解因式,因为x2+(a+b)x+ab=(x+a)(x+b),只要符合此形式,就可以进行因式分解,称为十字相乘法.14.=(a﹣1)+ .考点:分式的加减法.专题:计算题.分析:原式分子配方后,计算即可得到结果.解答:解:原式==(a﹣1)+,故答案为:点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.15.某学校开展数学竞赛,八(1)、八(2)班根据初赛成绩各选出5名选手参加复赛,两个班的5名选手的复赛成绩如图所示.根据图示回答:一班复赛成绩的中位数是80 分,二班复赛成绩的极差是30 分.考点:中位数;条形统计图;极差.分析:根据中位数和极差的概念求解.解答:解:八(1)班的成绩按照从小到大的顺序排列为:60,75,80,80,95,则中位数为:80,八(2)班的成绩的极差为:95﹣65=30.故答案为:80.30.点评:本题考查了中位数和极差的概念:极差是指一组数据中最大数据与最小数据的差;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.16.如图,人民币旧版壹角硬币内部的正多边形每个内角度数是140 °.考点:多边形内角与外角.分析:根据多边形的内角和公式即可得出结果.解答:解:∵九边形的内角和=(9﹣2)•180°=1260°,又∵九边形的每个内角都相等,∴每个内角的度数=1260°÷9=140°.故答案为:140.点评:本题考查多边形的内角和计算公式.多边形内角和定理:多边形内角和等于(n﹣2)•180°.17.如图,在▱ABCD中,G是CD上一点,连接BG且延长交AD的延长线于点E,AF=CG,∠E=30°,∠C=50°,则∠BFD= 80°.考点:平行四边形的性质.分析:根据平行四边形的对角相等可得∠A=∠C,对边相等可得AB=CD,再利用三角形的内角和定理求出∠ABE,然后求出四边形BGDF是平行四边形,最后利用平行四边形的邻角互补列式计算即可得解.解答:解:在在▱ABCD中,∠A=∠C=50°,AB=CD,∵∠E=30°,∴∠ABE=180°﹣50°﹣30°=100°,∵AF=CG,∴BF=DG,又∵BF∥DG,∴四边形BGDF是平行四边形,∴∠BFD=180°﹣∠ABE=180°﹣100°=80°.故答案为:80°.点评:本题考查了平行四边形的性质,三角形的内角和定理,熟练掌握平行四边形的判定方法与性质是解题的关键.18.如图,将三条线段CD,EF,GN分别绕点O旋转,不能与线段AB重合的线段是线段CD .考点:旋转的性质.分析:连结OA、OC、ON、OF、OB、OD、OG、OE,设小方格正方形的边长为1,如图,易得OA=ON=OF=2,而OC=,根据对应点到旋转中心的距离相等可判断线段CD绕点O旋转,不能与线段AB重合.解答:解:连结OA、OC、ON、OF、OB、OD、OG、OE,设小方格正方形的边长为1,如图,∵OA=ON=OF=2,而OC=,OB=OG=OE=3,而OD=,∴线段EF,GN分别绕点O旋转,能与线段AB重合,而线段CD绕点O旋转,不能与线段AB 重合.故答案为线段CD.点评:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的判定与性质.三、解答题(共7小题)19.把下列各式因式分解:(1)﹣9a2+6a(a﹣b)﹣(a﹣b)2;(2)(x﹣1)(x﹣2)+.考点:提公因式法与公式法的综合运用.分析:(1)首先提取负号,进而利用完全平方公式分解因式得出即可;(2)首先去括号,进而利用完全平方公式分解因式即可.解答:解:(1)﹣9a2+6a(a﹣b)﹣(a﹣b)2=﹣[(3a﹣(a﹣b)]2=﹣(2a+b)2;(2)(x﹣1)(x﹣2)+=x2﹣3x+2+=(x﹣)2.点评:此题主要考查了提取公因式法以及公式法分解因式,正确应用完全平方公式是解题关键.20.先化简,再求值:(﹣)÷(a+1﹣),其中a=﹣.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.解答:解:原式=÷=•=,当a=﹣时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.如图,在▱ABCD中,AB=AE,连接BE且延长CD的延长线于点F.求证:AD=CF.考点:平行四边形的性质.专题:证明题.分析:利用平行四边形的性质得出AD∥BC,AB∥FC,AD=BC,进而得出∠CBF=∠F,即可得出AD=CF.解答:证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥FC,AD=BC,∴∠ABE=∠F,∠CBE=∠FED,∵AB=AE,∴∠ABE=∠AEB,∴∠CBF=∠F,∴BC=FC,∴AD=CF.点评:此题主要考查了平行四边形的性质,利用平行线的性质得出∠CBF=∠F是解题关键.22.小明和小亮在课外活动中,报名参加了短跑训练.在五次百米训练中,所测成绩如图所示,请根据图中所给信息解答以下问题:分别计算他们的平均数、极差和方差.考点:方差;折线统计图;算术平均数;极差.分析:从折线图中得出小明和小亮的五次百米训练的成绩数据,再由公式计算平均数,极差,方差.解答:解:小明的短跑平均成绩=(13.3+13.4+13.3+13.2+13.3)÷5=13.3秒,小亮的短跑平均成绩=(13.2+13.4+13.1+13.5+13.3)÷5=13.3秒,小明的极差=13.4﹣13.2=0.2,小亮的极差=13.5﹣13.1=0.4,小明的方差=[(13.3﹣13.3)2+(13.4﹣13.3)2+(13.3﹣13.3)2+(13.2﹣13.3)2+(13.3﹣13.3)2]÷5=0.004,小亮的方差=[(13.2﹣13.3)2+(13.4﹣13.3)2+(13.1﹣13.3)2+(13.5﹣13.3)2+(13.3﹣13.3)2]÷5=0.02.点评:本题考查平均数、极差和方差的定义与意义,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.23.手机专卖店经营的某种手机去年销售总额为10万元,今年每部售价比去年降低500元,若今年卖出的数量与去年卖出的数量相同,且销售总额比去年减少10%,求今年每部手机的售价是多少元.考点:分式方程的应用.分析:设今年每部手机的售价是x元,则去年每部手机的售价是(x+500)元,根据今年的销售总额比去年减少10%,列方程求解.解答:解:设今年每部手机的售价是x元,则去年每部手机的售价是(x+500)元,由题意得,x=100000×(1﹣10%),解得:x=4500,经检验,x=4500是原分式方程的解,且符合题意.答:今年每部手机的售价是4500元.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.24.如图,菱形ABCD的边长为5,过点A作对角线AC的垂线,交CB的延长线于点E,AE=4.(1)求证:BE=BC;(2)求S菱形ABCD.考点:菱形的性质.分析:(1)由条件可证得∠E+∠ACB=∠EAB+∠BAC,可证得∠E=∠EAB,可得结论;(2)由(1)的结论,结合菱形的性质可得S菱形ABCD=S△EAC,结合条件可求得答案.解答:(1)证明:∵四边形ABCD为菱形,∴AB=BC,∴∠BAC=∠ACB,∵EA⊥AC,∴∠E+∠ACB=∠EAB+∠BAC,∴∠E=∠EAB,∴BA=BE,∴BE=BC;(2)解:在Rt△ACE中,BC=BA=BE=5,∴CE=10,∴AC===2,∵四边形ABCD为菱形,∴△ABC≌△ADC,∴S菱形ABCD=2S△ABC=S△EAC=AE•AC=×4×2=4.点评:本题主要考查菱形的性质,掌握菱形的四条边都相等是解题的关键.25.如图,P是等腰Rt△ACB内一点,AC=BC,且PA=8,PB=10,PC=.将△CPB绕点C 按逆时针方向旋转后,得到△CP′A.(1)直接写出旋转的最小角度;(2)求∠APC的度数.考点:旋转的性质.专题:计算题.分析:(1)由等腰直角三角形的性质得CA=CB,∠ACB=90°,再根据旋转的性质得∠ACB 等于旋转角,于是可判断旋转的最小角度为90°;(2)连结PP′,如图,根据旋转的性质得∠P′CP=∠ACB=90°,CP′=CP=,P′A=PB=10,则可判断△CPP′为等腰直角三角形,得到PP′=CP=6,∠CPP′=45°,然后利用勾股定理的逆定理判断△APP′为直角三角形,∠APP′=90°,于是利用∠APC=∠APP′+∠CPP′计算即可.解答:解:(1)∵△ACB为等腰直角三角形,∴CA=CB,∠ACB=90°,∵△CPB绕点C按逆时针方向旋转后,得到△CP′A,∴∠ACB等于旋转角,∴旋转的最小角度为90°;(2)连结PP′,如图,∵△CPB绕点C按逆时针方向旋转后,得到△CP′A,∴∠P′CP=∠ACB=90°,CP′=CP=,P′A=PB=10,∴△CPP′为等腰直角三角形,∴PP′=CP=×=6,∠CPP′=45°,在△APP′中,∵PP′=6,PA=8,P′A=10,∴PP′2+PA2=P′A2,∴△APP′为直角三角形,∠APP′=90°,∴∠APC=∠APP′+∠CPP′=90°+45°=135°.点评:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的判定与性质和勾股定理的逆定理.。

2019-2020学年山东省菏泽市八年级第二学期期末综合测试数学试题含解析

2019-2020学年山东省菏泽市八年级第二学期期末综合测试数学试题含解析

2019-2020学年山东省菏泽市八年级第二学期期末综合测试数学试题一、选择题(每题只有一个答案正确)1.抛物线y=ax 2+bx 和直线y=ax+b 在同一坐标系的图象可能是( )A .B .C .D .2.如图,平行四边形ABCD 中,DB=DC ,∠C=70°,AE ⊥BD 于E ,则∠DAE 等于( ).A .20°B .25°C .30°D .35°3.如图,在ABC ∆中,//DE BC ,:1:2AD AB =,下列选项正确的是( )A .:1:2DE BC =B .:1:3AE AC = C .:1:3BD AB = D .:1:3AE EC =4.如图,已知AB ∥CD,OA:OD =1:4,点M 、N 分别是OC 、OD 的中点,则ΔABO 与四边形CDNM 的面积比为( ).A .1:4B .1:8C .1:12D .1:165.下列各式不是最简二次根式的是( )A .B .C .D .6.直线 y =kx+b 与 y =mx 在同一平面直角坐标系中的图象如图所示,则关于 x 的不等式 kx+b >mx 的解集为( )A .x >﹣2B .x <﹣2C .x >﹣1D .x <﹣17.在△ABC 中,∠C =90°,AB =c ,∠A =30°,则AC =( )A .12cB .32 cC .2cD .3c8.在今年的中招体育考试中,我校甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:S 甲2=8.5,S 乙2=21.7,S 丙2=15,S 丁2=17.2,则四个班体考成绩最稳定的是( )A .甲班B .乙班C .丙班D .丁班9.点(1,2)-关于原点的对称点坐标是( )A .(1,2)B .(1,2)-C .(1,2)D .(2,1)-10.某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的( )A .平均数B .中位数C .众数D .方差 二、填空题11.已知双曲线k 1y x+=经过点(-1,2),那么k 的值等于_______. 12.等腰梯形的上底是10cm ,下底是16cm ,高是4cm ,则等腰梯形的周长为______cm .13.如图,先画一个边长为1的正方形,以其对角线为边画第二个正方形,再以第二个正方形的对角线为边画第三个正方形,…,如此反复下去,那么第n 个正方形的对角线长为_____.14.某商品经过两次连续的降价,由原来的每件250元降为每件160元,则该商品平均每次降价的百分率为____________.15.关于x 的函数(1)(2)(3)1(4)3k k k y kx k x ---+=+-+(其中(1)(2)(3)10k k k ---+≠)是一次函数,那么k =_______。

北师大版2019-2020学年度初二数学第二学期期末考试试卷( 含答案)

北师大版2019-2020学年度初二数学第二学期期末考试试卷(  含答案)

2019-2020学年度第二学期期末考试八年级数学试题一、选择题:(每题2分,12小题,共24分)1.下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下面的多边形中,内角和与外角和相等的是()A.B.C.D.3.长和宽分别是a,b的长方形的周长为10,面积为6,则a2b+ab2的值为()A.15 B.16 C.30 D.604.如图,AB∥CD∥EF,AC=4,CE=6,BD=3,则DF的值是()A.4.5 B.5 C.2 D.1.55.如图,BE、CD相交于点A,连接BC,DE,下列条件中不能判断△ABC∽ADE的是()A.∠B=∠D B.∠C=∠E C.=D.=6.关于x的元二次方程2x2+4x﹣c=0有两个不相等的实数根,则实数c可能的取值为()A.﹣5 B.﹣2 C.0 D.﹣87.某超市今年二月份的营业额为82万元,四月份的营业额比三月份的营业额多20万元,若二月份到四月份每个月的月销售额增长率都相同,若设增长率为x,根据题意可列方程()A.82(1+x)2=82(1+x)+20 B.82(1+x)2=82(1+x)C.82(1+x)2=82+20 D.82(1+x)=82+208.如图,▱ABCD中,对角线AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为28,则△ABE的周长为()A.28 B.24 C.21 D.149.如图,已知菱形OABC的两个顶点O(0,0),B(2,2),若将菱形绕点O以每秒45°的速度逆时针旋转,则第2019秒时,菱形两对角线交点D的横坐标为()A.B.C.1 D.﹣110.如图,菱形ABCD的对角线AC、BD相交于点O,过点C作CE⊥AD于点E,连接OE,若OB=8,S菱形ABCD=96,则OE的长为()A.2B.2C.6 D.811.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD 上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为()A.3.6 B.4 C.4.8 D.512.如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=6.M是BD的中点,则CM的长为()A.B.2 C.D.3二、填空题:(每题2分,8小题,共16分)13.因式分解:m2n+2mn2+n3=.14.若分式有意义,则实数x的取值范围是.15.若关于x的分式方程=有增根,则m的值为.16.设x1,x2是一元二次方程x2﹣x﹣1=0的两根,则x1+x2+x1x2=.17.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C 的方向平移,得到△A′B′O′,当点A′与点C重合时,点A与点B′之间的距离为.18.如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长.19.如图,在Rt△ABC中,∠B=90°,AB=2,BC=3,D、E分别是AB、AC的中点,延长BC至点F,使CF=BC,连接DF、EF,则EF的长为.20.如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH与AC交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=AF;⑤EG2=FG•DG,其中正确结论的有(只填序号).三、计算题:(4小题,共18分)21.(1)化简;(m+2+)•(2)先化简,再求值;(+x+2)÷,其中|x|=222.解方程:(1)x2﹣2x﹣5=0;(2)=.四、解答题:(5小题,共42分)23.阅读下列材料:已知实数m,n满足(2m2+n2+1)(2m2+n2﹣1)=80,试求2m2+n2的值解:设2m2+n2=t,则原方程变为(t+1)(t﹣1)=80,整理得t2﹣1=80,t2=81,∴t =±9因为2m2+n2≥0,所以2m2+n2=9.上面这种方法称为“换元法”,把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.根据以上阅读材料内容,解决下列问题,并写出解答过程.已知实数x,y满足(4x2+4y2+3)(4x2+4y2﹣3)=27,求x2+y2的值.24.某书店积极响应政府“改革创新,奋发有为”的号召,举办“读书节“系列活动.活动中故事类图书的标价是典籍类图书标价的1.5倍,若顾客用540元购买图书,能单独购买故事类图书的数量恰好比单独购买典籍类图书的数量少10本.(1)求活动中典籍类图书的标价;(2)该店经理为鼓励广大读者购书,免费为购买故事类的读者赠送图1所示的精致矩形包书纸.在图1的包书纸示意图中,虚线是折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长为折叠进去的宽度.已知该包书纸的面积为875cm2(含阴影部分),且正好可以包好图2中的《中国故事》这本书,该书的长为21cm,宽为15cm,厚为1cm,请直接写出该包书纸包这本书时折叠进去的宽度.25.如图,在△ABC中,AB=AC,AD是BC边的中线,过点A作BC的平行线,过点B作AD 的平行线,两线交于点E.(1)求证:四边形ADBE是矩形;(2)连接DE,交AB与点O,若BC=8,AO=3,求△ABC的面积.26.如图,已知:AD为△ABC的中线,过B、C两点分别作AD所在直线的垂线段BE和CF,E、F为垂足,过点E作EG∥AB交BC于点H,连结HF并延长交AB于点P.(1)求证:DE=DF(2)若BH:HC=11:5;①求:DF:DA的值;②求证:四边形HGAP为平行四边形.27.如图,矩形ABCD中,AB=12,AD=9,E为BC上一点,且BE=4,动点F从点A出发沿射线AB方向以每秒3个单位的速度运动.连接DF,DE,EF.过点E作DF的平行线交射线AB于点H,设点F的运动时间为t(不考虑D、E、F在一条直线上的情况).(1)填空:当t=时,AF=CE,此时BH=;(2)当△BEF与△BEH相似时,求t的值;(3)当F在线段AB上时,设△DEF的面积为S,△DEF的周长为C.①求S关于t的函数关系式;②直接写出C的最小值.参考答案与试题解析一.选择题(共12小题)1.下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选:D.2.下面的多边形中,内角和与外角和相等的是()A.B.C.D.【分析】根据多边形的内角和公式(n﹣2)•180°与多边形的外角和定理列式进行计算即可得解.【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故选:B.3.长和宽分别是a,b的长方形的周长为10,面积为6,则a2b+ab2的值为()A.15 B.16 C.30 D.60【分析】直接利用矩形面积求法结合提取公因式法分解因式计算即可.【解答】解:∵长和宽分别是a,b的长方形的周长为10,面积为6,∴2(a+b)=10,ab=6,故a+b=5,则a2b+ab2=ab(a+b)=30.故选:C.4.如图,AB∥CD∥EF,AC=4,CE=6,BD=3,则DF的值是()A.4.5 B.5 C.2 D.1.5【分析】直接根据平行线分线段成比例定理即可得出结论.【解答】解:∵直线AB∥CD∥EF,AC=4,CE=6,BD=3,∴=,即=,解得DF=4.5.故选:A.5.如图,BE、CD相交于点A,连接BC,DE,下列条件中不能判断△ABC∽ADE的是()A.∠B=∠D B.∠C=∠E C.=D.=【分析】分别根相似三角形的判定方法,逐项判断即可.【解答】解:∵∠BAC=∠DAE,∴当∠B=∠D或∠C=∠E时,可利用两角对应相等的两个三角形相似证得△ABC∽ADE,故A、B选项可判断两三角形相似;当=时,可得=,结合∠BAC=∠DAE,则可证得△ABC∽△AED,而不能得出△ABC∽△ADE,故C不能判断△ABC∽ADE;当=时,结合∠BAC=∠DAE,可证得△ABC∽△ADE,故D能判断△ABC∽△ADE;故选:C.6.关于x的元二次方程2x2+4x﹣c=0有两个不相等的实数根,则实数c可能的取值为()A.﹣5 B.﹣2 C.0 D.﹣8【分析】利用一元二次方程根的判别式(△=b2﹣4ac)可以判断方程的根的情况,有两个不相等的实根,即△>0【解答】解:依题意,关于x的一元二次方程,有两个不相等的实数根,即△=b2﹣4ac=42+8c>0,得c>﹣2根据选项,只有C选项符合,故选:C.7.某超市今年二月份的营业额为82万元,四月份的营业额比三月份的营业额多20万元,若二月份到四月份每个月的月销售额增长率都相同,若设增长率为x,根据题意可列方程()A.82(1+x)2=82(1+x)+20 B.82(1+x)2=82(1+x)C.82(1+x)2=82+20 D.82(1+x)=82+20【分析】根据题意可以列出相应的方程,本题得以解决.【解答】解:由题意可得,82(1+x)2=82(1+x)+20,故选:A.8.如图,▱ABCD中,对角线AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为28,则△ABE的周长为()A.28 B.24 C.21 D.14【分析】先判断出EO是BD的中垂线,得出BE=ED,从而可得出△ABE的周长=AB+AD,再由平行四边形的周长为24,即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴OB=OD,AB=CD,AD=BC,∵平行四边形的周长为28,∴AB+AD=14∵OE⊥BD,∴OE是线段BD的中垂线,∴BE=ED,∴△ABE的周长=AB+BE+AE=AB+AD=14,故选:D.9.如图,已知菱形OABC的两个顶点O(0,0),B(2,2),若将菱形绕点O以每秒45°的速度逆时针旋转,则第2019秒时,菱形两对角线交点D的横坐标为()A.B.C.1 D.﹣1【分析】根据菱形的性质及中点的坐标公式可得点D坐标,再根据旋转的性质可得旋转后点D的坐标.【解答】解:菱形OABC的顶点O(0,0),B(2,2),得D点坐标为(,),即(1,1).∴OD=每秒旋转45°,则第2019秒时,得45°×2019,45°×2019÷360=252.375周,OD旋转了252又周,菱形的对角线交点D的坐标为(﹣,0),故选:B.10.如图,菱形ABCD的对角线AC、BD相交于点O,过点C作CE⊥AD于点E,连接OE,若OB=8,S菱形ABCD=96,则OE的长为()A.2B.2C.6 D.8【分析】由菱形的性质得出BD=16,由菱形的面积得出AC=12,再由直角三角形斜边上的中线性质即可得出结果.【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD=BD,BD⊥AC,∴BD=16,∵S菱形ABCD═AC×BD=96,∴AC=12,∵CE⊥AD,∴∠AEC=90°,∴OE=AC=6,故选:C.11.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD 上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为()A.3.6 B.4 C.4.8 D.5【分析】根据题意和三角形相似的判定和性质,可以求得CD的长,本题得以解决.【解答】解:作DH∥EG交AB于点H,则△AEG∽△ADH,∴,∵EF⊥AC,∠C=90°,∴∠EFA=∠C=90°,∴EF∥CD,∴△AEF∽△ADC,∴,∴,∵EG=EF,∴DH=CD,设DH=x,则CD=x,∵BC=12,AC=6,∴BD=12﹣x,∵EF⊥AC,EF⊥EG,DH∥EG,∴EG∥AC∥DH,∴△BDH∽△BCA,∴,即,解得,x=4,∴CD=4,故选:B.12.如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=6.M是BD的中点,则CM的长为()A.B.2 C.D.3【分析】延长BC到E使BE=AD,则四边形ACED是平行四边形,根据三角形的中位线的性质得到CM=DE=AB,根据跟勾股定理得到AB===5,于是得到结论.【解答】解:延长BC到E使BE=AD,则四边形ACED是平行四边形,∵BC=3,AD=6,∴C是BE的中点,∵M是BD的中点,∴CM=DE=AB,∵AC⊥BC,∴AB===5,∴CM=,故选:C.二.填空题(共8小题)13.因式分解:m2n+2mn2+n3=n(m+n)2.【分析】首先提取公因式n,再利用完全平方公式分解因式得出答案.【解答】解:m2n+2mn2+n3=n(m2+2mn+n2)=n(m+n)2.故答案为:n(m+n)2.14.若分式有意义,则实数x的取值范围是x≠5 .【分析】根据分式有意义的条件可得x﹣5≠0,再解即可.【解答】解:由题意得:x﹣5≠0,解得:x≠5,故答案为:x≠5.15.若关于x的分式方程=有增根,则m的值为 3 .【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入计算即可求出m的值.【解答】解:去分母得:3x=m+3,由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入方程得:6=m+3,解得:m=3,故答案为:316.设x1,x2是一元二次方程x2﹣x﹣1=0的两根,则x1+x2+x1x2=0 .【分析】直接根据根与系数的关系求解.【解答】解:∵x1、x2是方程x2﹣x﹣1=0的两根,∴x1+x2=1,x1×x2=﹣1,∴x1+x2+x1x2=1﹣1=0.故答案为:0.17.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C 的方向平移,得到△A′B′O′,当点A′与点C重合时,点A与点B′之间的距离为10 .【分析】由菱形的性质得出AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,由平移的性质得出O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,得出AO'=AC+O'C=6,由勾股定理即可得出答案.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,∴AO'=AC+O'C=6,∴AB'===10;故答案为10.18.如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长.【分析】证出∠ACD=∠DCB=∠B,证明△ACD∽△ABC,得出=,即可得出结果.【解答】解:∵BC的垂直平分线MN交AB于点D,∴CD=BD=3,∴∠B=∠DCB,AB=AD+BD=5,∵CD平分∠ACB,∴∠ACD=∠DCB=∠B,∵∠A=∠A,∴△ACD∽△ABC,∴=,∴AC2=AD×AB=2×5=10,∴AC=.故答案为:.19.如图,在Rt△ABC中,∠B=90°,AB=2,BC=3,D、E分别是AB、AC的中点,延长BC至点F,使CF=BC,连接DF、EF,则EF的长为.【分析】连接DE,CD,根据三角形中位线的性质得到DE∥BC,DE=BC,推出四边形DCFE是平行四边形,得到EF=CD,根据勾股定理即可得到结论.【解答】解:连接DE,CD,∵D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,∴DE∥CF,∵CF=BC,∴DE=CF,∴四边形DCFE是平行四边形,∴EF=CD,∵在Rt△ABC中,∠B=90°,AB=2,BC=3,∴CD===,∴EF=CD=,故答案为:.20.如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH与AC交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=AF;⑤EG2=FG•DG,其中正确结论的有①②④⑤(只填序号).【分析】①②、证明△ABH≌△ADF,得AF=AH,再得AC平分∠FAH,则AM既是中线,又是高线,得AC⊥FH,证明BH=HM=MF=FD,则FH=2BH;所以①②都正确;③可以直接求出FC的长,计算S△ACF≠1,错误;④根据正方形边长为2,分别计算CE和AF的长得结论正确;⑤利用相似先得出EG2=FG•CG,再根据同角的三角函数列式计算CG的长为1,则DG=CG,得出⑤也正确.【解答】解:①②如图1,∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∠BAD=90°,∵AE平分∠DAC,∴∠FAD=∠CAF=22.5°,在△ABH和△ADF中,,∴△ABH≌△ADF(SAS),∴AH=AF,∠BAH=∠FAD=22.5°,∴∠HAC=∠FAC,∴HM=FM,AC⊥FH,∵AE平分∠DAC,∴DF=FM,∴FH=2DF=2BH,故①②正确;③在Rt△FMC中,∠FCM=45°,∴△FMC是等腰直角三角形,∵正方形的边长为2,∴AC=2,MC=DF=2﹣2,∴FC=2﹣DF=2﹣(2﹣2)=4﹣2,S△AFC=CF•AD≠1,故③不正确;④AF==2,∵△ADF∽△CEF,∴=,∴CE=,∴CE=AF,故④正确;⑤延长CE和AD交于N,如图2,∵AE⊥CE,AE平分∠CAD,∴CE=EN,∵EG∥DN,∴CG=DG,在Rt△FEC中,EG⊥FC,∴∠GEF=∠GCE,∴△EFG∽△CEG,∴=,∴EG2=FG•CG,∴EG2=FG•DG,故选项⑤正确;故答案为:①②④⑤.三、计算题:(4小题,共18分)21.(1)化简;(m+2+)•(2)先化简,再求值;(+x+2)÷,其中|x|=2【分析】(1)原式括号中两项通分并利用同分母分式的加法法则计算,约分即可得到结果;(2)原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,求出x的值代入计算即可求出值.【解答】解:(1)原式=•=•=m+1;(2)原式=•=,由|x|=2,得到x=2或﹣2(舍去),当x=2时,原式=19.22.解方程:(1)x2﹣2x﹣5=0;(2)=.【分析】(1)利用公式法求解可得;(2)两边都乘以(x+1)(x﹣2)化为整式方程,解之求得x的值,继而检验即可得.【解答】解:(1)∵a=1,b=﹣2,c=﹣5,∴△=4﹣4×1×(﹣5)=24>0,则x==1±,∴;(2)两边都乘以(x+1)(x﹣2),得:x+1=4(x﹣2),解得x=3,经检验x=3是方程的解.四、解答题:(5小题,共42分)23.阅读下列材料:已知实数m,n满足(2m2+n2+1)(2m2+n2﹣1)=80,试求2m2+n2的值解:设2m2+n2=t,则原方程变为(t+1)(t﹣1)=80,整理得t2﹣1=80,t2=81,∴t =±9因为2m2+n2≥0,所以2m2+n2=9.上面这种方法称为“换元法”,把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.根据以上阅读材料内容,解决下列问题,并写出解答过程.已知实数x,y满足(4x2+4y2+3)(4x2+4y2﹣3)=27,求x2+y2的值.【分析】设t=x2+y2(t≥0),则原方程转化为(4t+3)(4t﹣3)=27,然后解该方程即可.【解答】解:设t=x2+y2(t≥0),则原方程转化为(4t+3)(4t﹣3)=27,整理,得16t2﹣9=27,所以t2=.∵t≥0,∴t=.∴x2+y2的值是.【点评】考查了换元法解一元二次方程,换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.24.某书店积极响应政府“改革创新,奋发有为”的号召,举办“读书节“系列活动.活动中故事类图书的标价是典籍类图书标价的1.5倍,若顾客用540元购买图书,能单独购买故事类图书的数量恰好比单独购买典籍类图书的数量少10本.(1)求活动中典籍类图书的标价;(2)该店经理为鼓励广大读者购书,免费为购买故事类的读者赠送图1所示的精致矩形包书纸.在图1的包书纸示意图中,虚线是折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长为折叠进去的宽度.已知该包书纸的面积为875cm2(含阴影部分),且正好可以包好图2中的《中国故事》这本书,该书的长为21cm,宽为15cm,厚为1cm,请直接写出该包书纸包这本书时折叠进去的宽度.【分析】(1)设典籍类图书的标价为x元,根据购买两种图书的数量差是10本,列出方程并解答;(2)矩形面积=(2宽+1+2折叠进去的宽度)×(长+2折叠进去的宽度).【解答】解:(1)设典籍类图书的标价为x元,由题意,得﹣10=.解得x=18.经检验:x=18是原分式方程的解,且符合题意.答:典籍类图书的标价为18元;(2)设折叠进去的宽度为ycm,则(2y+15×2+1)(2y+21)=875,化简得y2+26y﹣56=0,∴y=2或﹣28(不合题意,舍去),答:折叠进去的宽度为2cm.【点评】此题考查了分式方程和一元二次方程的应用,(2)题结合了矩形面积的求法考查了图形的折叠问题,能够得到折叠进去的宽度和矩形纸的长、宽的关系,是解决问题的关键.25.如图,在△ABC中,AB=AC,AD是BC边的中线,过点A作BC的平行线,过点B作AD 的平行线,两线交于点E.(1)求证:四边形ADBE是矩形;(2)连接DE,交AB与点O,若BC=8,AO=3,求△ABC的面积.【分析】(1)先求出四边形ADBE是平行四边形,根据等腰三角形的性质求出∠ADB=90°,根据矩形的判定得出即可;(2)根据矩形的性质得出AB=DE=2AO=6,求出BD,根据勾股定理求出AD,根据三角形面积公式求出即可.【解答】(1)证明:∵AE∥BC,BE∥AD,∴四边形ADBE是平行四边形,∵AB=AC,AD是BC边的中线,∴AD⊥BC,即∠ADB=90°,∴四边形ADBE为矩形;(2)解:∵在矩形ADBE中,AO=3,∴AB=2AO=6,∵D是BC的中点,∴DB=BC=4,∵∠ADB=90°,∴AD===2,∴△ABC的面积=BC•AD=×8×2=8.【点评】本题考查了等腰三角形的性质和矩形的性质和判定,能求出四边形ADCE是矩形是解此题的关键.26.如图,已知:AD为△ABC的中线,过B、C两点分别作AD所在直线的垂线段BE和CF,E、F为垂足,过点E作EG∥AB交BC于点H,连结HF并延长交AB于点P.(1)求证:DE=DF(2)若BH:HC=11:5;①求:DF:DA的值;②求证:四边形HGAP为平行四边形.【分析】(1)由AAS证明△BDE≌△CDF,即可得出结论;(2)①设BH=11x,则HC=5x,BC=16x,则,DH=3x,由平行线得出△EDH∽△ADB,得出,即可得出结论;②求出=,证出FH∥AC,即PH∥AC,即可得出结论.【解答】(1)证明:∵AD为△ABC的中线,∴BD=CD,∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS),∴DE=DF;(2)①解:设BH=11x,则HC=5x,BC=16x,则,DH=3x,∵EG∥AB,∴△EDH∽△ADB,∴,∵DE=DF,∴;②证明:∵,∴,∵,∴=,∴FH∥AC,∴PH∥AC,∵EG∥AB,∴四边形HGAP为平行四边形.【点评】本题考查了平行四边形的判定、平行线的判定、全等三角形的判定与性质、相似三角形的判定与性质等知识;熟练掌握平行四边形的判定是关键.27.如图,矩形ABCD中,AB=12,AD=9,E为BC上一点,且BE=4,动点F从点A出发沿射线AB方向以每秒3个单位的速度运动.连接DF,DE,EF.过点E作DF的平行线交射线AB于点H,设点F的运动时间为t(不考虑D、E、F在一条直线上的情况).(1)填空:当t=时,AF=CE,此时BH=;(2)当△BEF与△BEH相似时,求t的值;(3)当F在线段AB上时,设△DEF的面积为S,△DEF的周长为C.①求S关于t的函数关系式;②直接写出C的最小值.【分析】(1)在Rt△ABC中,利用勾股定理可求得AB的长,即可得到AD、t的值,从而确定AE的长,由DE=AE﹣AD即可得解.(2)若△DEG与△ACB相似,要分两种情况:①AG:DE=DH:GE,②AH:EG=DH:DE,根据这些比例线段即可求得t的值.(需注意的是在求DE的表达式时,要分AD>AE和AD<AE两种情况);(3)分别表示出线段FD和线段AD的长,利用面积公式列出函数关系式即可.【解答】解:(1)∵BC=AD=9,BE=4,∴CE=9﹣4=5∵AF=CE即:3t=5,∴t=,∵EH∥DF∴△DAF∽△EBH,∴=即:=解得:BH=;当t=时,AF=CE,此时BH=;(2)由EH∥DF得∠AFD=∠BHE,又∵∠A=∠CBH=90°∴△EBH∽△DAF,∴即=∴BH=当点F在点B的左边时,即t<4时,BF=12﹣3t此时,当△BEF∽△BHE时:即42=(12﹣3t)×解得:t1=2此时,当△BEF∽△BEH时:有BF=BH,即12﹣3t=解得:t2=当点F在点B的右边时,即t>4时,BF=3t﹣12此时,当△BEF∽△BHE时:即42=(3t﹣12)×解得:t3=2+2(3)①∵EH∥DF∴△DFE的面积=△DFH的面积=FH•AD=(12﹣3t+t)×9=54﹣②如图,∵BE=4,∴CE=5,根据勾股定理得,DE=13,是定值,所以当C最小时DE+EF最小,作点E关于AB的对称点E'连接DE,此时DE+EF最小,在Rt△CDE'中,CD=12,CE'=BC+BE'=BC+BE=13,根据勾股定理得,DE'==,∴C的最小值=13+.【点评】此题考查了勾股定理、轴对称的性质、平行四边形及梯形的判定和性质、解直角三角形、相似三角形等相关知识,综合性强,是一道难度较大的压轴题.。

洛阳市2019-2020学年八年级上期末数学试卷含答案解析.doc

洛阳市2019-2020学年八年级上期末数学试卷含答案解析.doc

洛阳市 2019-2020 学年八年级上期末数学试卷含答案解析一、选择题(共8 小题,每小题 3 分,满分24 分)1.计算( a2)3的结果是 ( )A . a 5B. a6C. a8D. 3a22.把 x 3﹣ 2x2y+xy2分解因式,结果正确的是( )A . x(x+y )( x﹣ y) B. x( x 2﹣ 2xy+y2)C. x( x+y)2D. x( x﹣ y)23.解分式方程+ =3 时,去分母后变形为 ( )A . 2+( x+2) =3( x﹣ 1)B. 2﹣ x+2=3 ( x﹣ 1) C. 2﹣( x+2) =3(1﹣ x)D. 2﹣( x+2 )=3( x﹣ 1)4.如图,△ ABC 和△DEF 中, AC=DE ,∠ B= ∠ DEF ,添加下列哪一个条件无法证明△ABC ≌△ DEF( )A . AC ∥DF B.∠ A= ∠ D C. AB=DE D.∠ ACB= ∠ F5.如图,在△ ABC 中,∠ A=50 °,∠ ABC=70 °, BD 平分∠ ABC ,则∠ BDC 的度数是 ( )A . 85°B . 80°C. 75°D. 70°6.如图,小敏做了一个角平分仪ABCD ,其中 AB=AD , BC=DC .将仪器上的点 A 与∠PRQ 的顶点 R 重合,调整AB 和 AD ,使它们分别落在角的两边上,过点 A ,C 画一条射线 AE , AE 就是∠ PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ ADC ,这样就有∠ QAE= ∠ PAE.则说明这两个三角形全等的依据是( )A . SAS B. ASA C. AAS D. SSSxy x﹣2y的值为 ( )7.若 3 =4 ,9 =7,则 3A .B.C.﹣ 3 D .8.如图,在方格纸中,以 AB 为一边作 △ABP ,使之与 △ ABC 全等,从 P 1, P 2,P 3, P 4 四个点中找出符合条件的点 P ,则点 P 有( )A . 1 个B . 2 个C . 3 个D . 4 个二、填空题(共 7 小题,每小题 3 分,满分 21 分) 9.计算:+ =__________ .10.若 ab=2,a ﹣ b=﹣1,则代数式a 2b ﹣ ab 2的值等于 __________ .11.如图,点 D 在 △ ABC 边 BC 的延长线上, CE 平分∠ ACD ,∠ A=80 °,∠ B=40 °,则 ∠ACE 的大小是 __________度.12.已知一个等腰三角形的一边长 4,一边长 5,则这个三角形的周长为 __________ .13.如图: △ ABC 中, DE 是 AC 的垂直平分线, AE=3cm , △ ABD 的周长为 13cm ,则 △ABC 的周长为 __________.14.如图,∠ AOE= ∠ BOE=15 °,EF ∥OB ,EC ⊥ OB ,若 EC=2 ,则 EF=__________ .15.将一张宽为 6cm 的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是 __________cm 2.三、解答题(共8 小题,满分75 分)16.利用图形面积可以证明乘法公式,也可以解释代数中恒等式的正确性.(1)首先请同学们观察用硬纸片拼成的图形(如图 1),根据图形的面积,写出它能说明的乘法公式 __________ ;(2)请同学们观察用硬纸片拼成的图形(如图 2),根据图形的面积关系,写出一个代数恒等式.2 017.先化简,再求值:( x+y )( x﹣ y) +( x﹣ y) +2xy ,其中 x= ( 3﹣π). y=2.18.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.19.如图, AD , AE 分别是△ ABC 的高和角平分线.(1)已知∠ B=40 °,∠ C=60°,求∠ DAE 的度数;(2)设∠ B= α,∠ C=β(α<β).请直接写出用α、β表示∠ DAE的关系式__________.20.如图,点 B 、D 、C、 F 在一条直线上,且BC=FD ,AB=EF .(1)请你只添加一个条件(不再加辅助线),使△ ABC≌△ EFD,你添加的条件是__________;(2)添加了条件后,证明△ABC≌△ EFD.21.如图,在等边△ABC 中,点 D ,E 分别在边 BC, AC 上,且 DE∥ AB ,过点 E 作EF⊥ DE,交 BC 的延长线于点 F,(1)求∠ F 的度数;(2)若 CD=3,求 DF 的长.22.随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km ,运行时间减少了 8h,已知甲市到乙市的普快列车里程为1220km .高铁平均时速是普快平均时速的 2.5 倍.(1 )求高铁列车的平均时速;(2 )某日王先生要从甲市去距离大约780km 的丙市参加14: 00 召开的会议,如果他买到当日 9: 20 从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要 1 小时.试问在高铁列车准点到达的情况下,它能否在开会之前20 分钟赶到会议地点?23.如图,等腰 Rt△ABC 中,∠ ABC=90 °, AB=BC ,点 A 、 B 分别在坐标轴上.(1 )如图①,若点 C 的横坐标为 5,直接写出点 B 的坐标 __________ ;(提示:过 C 作CD⊥ y 轴于点 D,利用全等三角形求出OB 即可)(2 )如图②,若点 A 的坐标为(﹣6, 0),点 B 在 y 轴的正半轴上运动时,分别以OB、 AB 为边在第一、第二象限作等腰Rt△ OBF,等腰 Rt△ ABE ,连接 EF 交 y 轴于点P,当点 B 在 y 轴的正半轴上移动时,PB 的长度是否发生改变?若不变,求出PB 的值.若变化,求 PB 的取值范围.-学年八年级(上)期末数学试卷一、选择题(共 8 小题,每小题 3 分,满分 24 分)231.计算( a ) 的结果是 ( )【考点】 幂的乘方与积的乘方.【分析】 根据幂的乘方,底数不变,指数相乘,计算后直接选取答案.236故选: B .【点评】 本题考查了幂的乘方的性质,熟练掌握性质是解题的关键.2.把 x 3﹣ 2x 2y+xy 2分解因式,结果正确的是 ()2 222C . x ( x+y ) A . x (x+y )( x ﹣ y ) B . x ( x ﹣ 2xy+y )D . x ( x ﹣ y ) 【考点】 提公因式法与公式法的综合运用. 【分析】 此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有 3 项,可采用完全平方公式继续分解.【解答】 解: x 3﹣ 2x 2 y+xy 2,22=x ( x ﹣ 2xy+y ),故选 D .【点评】 本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.3.解分式方程+ =3 时,去分母后变形为 ( )A . 2+( x+2) =3( x ﹣ 1)B . 2﹣ x+2=3 ( x ﹣ 1)C . 2﹣( x+2) =3(1﹣ x )D . 2﹣( x+2 )=3( x ﹣ 1)【考点】 解分式方程.【分析】 本题考查对一个分式确定最简公分母,去分母得能力.观察式子 x ﹣ 1 和 1﹣ x 互 为相反数,可得 1﹣x= ﹣( x ﹣ 1),所以可得最简公分母为 x ﹣ 1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母. 【解答】 解:方程两边都乘以 x ﹣ 1, 得: 2﹣( x+2) =3 ( x ﹣ 1). 故选 D .【点评】 考查了解分式方程,对一个分式方程而言,确定最简公分母后要注意不要漏乘, 这正是本题考查点所在.切忌避免出现去分母后: 2﹣( x+2) =3 形式的出现. 4.如图, △ ABC 和 △DEF 中, AC=DE ,∠ B= ∠ DEF ,添加下列哪一个条件无法证明 △ABC ≌△ DEF( )A . AC ∥DF B.∠ A= ∠ D C. AB=DE D.∠ ACB= ∠ F 【考点】全等三角形的判定.【分析】根据全等三角形的判定定理,即可得出结论.【解答】解:∵ AC=DF ,∠ B= ∠DEF ,∴添加 AC ∥DF,得出∠ ACB= ∠ F,即可证明△ ABC ≌△ DEF,故 A 、 D 都正确;当添加∠ A= ∠ D 时,根据 AAS ,也可证明△ ABC ≌△ DEF ,故 B 正确;但添加 AB=DE 时,没有 SSA 定理,不能证明△ ABC ≌△ DEF,故 C 不正确;故选: C.【点评】本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS, SAS,ASA , AAS ,还有直角三角形全等的HL 定理.5.如图,在△ ABC 中,∠ A=50 °,∠ ABC=70 °, BD 平分∠ ABC ,则∠ BDC 的度数是 ( )A. 85°B . 80°C. 75°D. 70°【考点】三角形内角和定理.【分析】先根据∠ A=50 °,∠ ABC=70 °得出∠ C 的度数,再由 BD 平分∠ ABC 求出∠ ABD的度数,再根据三角形的外角等于和它不相邻的内角的和解答.【解答】解:∵∠ ABC=70 °, BD 平分∠ ABC ,∴∠ ABD=70 °× =35°,∴∠ BDC=50 °+35 °=85 °,故选: A .【点评】本题考查的是三角形的外角和内角的关系,熟知三角形的外角等于和它不相邻的内角的和是解题的关键.6.如图,小敏做了一个角平分仪ABCD ,其中 AB=AD , BC=DC .将仪器上的点 A 与∠PRQ 的顶点 R 重合,调整AB 和 AD ,使它们分别落在角的两边上,过点 A ,C 画一条射线 AE , AE 就是∠ PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ ADC ,这样就有∠ QAE= ∠ PAE.则说明这两个三角形全等的依据是( )A . SAS B. ASA C. AAS D. SSS【考点】全等三角形的应用.【分析】在△ ADC 和△ ABC 中,由于 AC 为公共边, AB=AD , BC=DC ,利用 SSS定理可判定△ ADC ≌△ ABC ,进而得到∠ DAC= ∠BAC ,即∠ QAE= ∠ PAE.【解答】解:在△ ADC 和△ ABC 中,,∴△ ADC ≌△ ABC ( SSS ), ∴∠ DAC= ∠ BAC , 即∠ QAE= ∠ PAE . 故选: D .【点评】 本题考查了全等三角形的应用;这种设计,用 SSS 判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.x y x ﹣2y的值为 ()7.若 3 =4 ,9 =7,则 3A .B .C .﹣ 3D .【考点】 同底数幂的除法;幂的乘方与积的乘方.【分析】 由 3 x yx ﹣2yx 2y x 2 y,代入即可求得答案.=4 , 9 =7 与3=3÷3 =3 ÷( 3 )【解答】 解:∵3x =4, 9y =7,∴3 x ﹣ 2yx 2yx2 y.=3 ÷3 =3 ÷( 3 ) =4÷7=故选 A .3x ﹣2y 变【点评】 此题考查了同底数幂的除法与幂的乘方的应用.此题难度适中,注意将形为 3x ÷( 32) y是解此题的关键.8.如图,在方格纸中,以 AB 为一边作 △ABP ,使之与 △ ABC 全等,从 P 1, P 2,P 3, P 4 四个点中找出符合条件的点 P ,则点 P 有( )A . 1 个B . 2 个C . 3 个D . 4 个 【考点】 全等三角形的判定.【分析】 根据全等三角形的判定得出点P 的位置即可.【解答】 解:要使 △ABP 与 △ ABC 全等,点 P 到 AB 的距离应该等于点 C 到 AB 的距离,即 3 个单位长度,故点 P 的位置可以是 P 1, P 3, P 4 三个,故选 C【点评】 此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点 P 的位置.二、填空题(共 7 小题,每小题 3 分,满分 21 分)9.计算:+ =2 .【考点】 分式的加减法. 【专题】 计算题.【分析】原式利用同分母分式的加法法则计算,约分即可得到结果.【解答】解:原式 == =2,故答案为: 2【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.2 210.若 ab=2,a﹣ b=﹣1,则代数式 a b﹣ ab 的值等于﹣ 2.【专题】因式分解.【分析】首先提取公因式ab,进而将已知代入求出即可.【解答】解:∵ ab=2,a﹣ b= ﹣ 1,∴a 2b﹣ ab2=ab(a﹣ b) =2×(﹣ 1) =﹣ 2.故答案为:﹣ 2.【点评】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.11.如图,点 D 在△ ABC 边 BC 的延长线上, CE 平分∠ ACD ,∠ A=80 °,∠ B=40 °,则∠ACE 的大小是60 度.【考点】三角形的外角性质.【分析】由∠ A=80 °,∠ B=40 °,根据三角形任意一个外角等于与之不相邻的两内角的和得到∠ ACD= ∠ B+∠ A ,然后利用角平分线的定义计算即可.【解答】解:∵∠ ACD= ∠ B+∠ A ,而∠ A=80 °,∠ B=40 °,∴∠ ACD=80 °+40 °=120 °.∵CE 平分∠ ACD ,∴∠ ACE=60 °,故答案为60【点评】本题考查了三角形的外角定理,关键是根据三角形任意一个外角等于与之不相邻的两内角的和.12.已知一个等腰三角形的一边长4,一边长5,则这个三角形的周长为13 或 14.【考点】等腰三角形的性质;三角形三边关系.【分析】分 4 是腰长和底边两种情况讨论,再利用三角形的任意两边之和大于第三边判断是否能组成三角形解答.【解答】解:①若4 是腰长,则三角形的三边分别为4、 4、 5,能组成三角形,周长 =4+4+5=13 ,②若 4 是底边,则三角形的三边分别为4、5、 5,能组成三角形,周长 =4+5+5=14 ,综上所述,这个三角形周长为13 或 14.故答案为: 13 或 14 .【点评】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.13.如图:△ ABC 中, DE 是 AC 的垂直平分线,AE=3cm ,△ ABD 的周长为13cm,则△ABC 的周长为19.【考点】线段垂直平分线的性质.【分析】由已知条件,利用线段的垂直平分线的性质,得到AD=CD , AC=2AE ,结合周长,进行线段的等量代换可得答案.【解答】解:∵ DE 是 AC 的垂直平分线,∴AD=CD , AC=2AE=6cm ,又∵△ ABD 的周长 =AB+BD+AD=13cm,∴A B+BD+CD=13cm ,即 AB+BC=13cm ,∴△ ABC 的周长 =AB+BC+AC=13+6=19cm .故答案为 19.【点评】此题主要考查了线段垂直平分线的性质(垂直平分线上任意一点,到线段两端点的距离相等),进行线段的等量代换是正确解答本题的关键.14.如图,∠ AOE= ∠ BOE=15 °,EF∥OB ,EC⊥ OB,若 EC=2 ,则 EF=4 .【考点】含 30 度角的直角三角形;角平分线的性质.【分析】作 EG⊥ OA 于 F,根据角平分线的性质得到EG 的长度,再根据平行线的性质得到∠ OEF=∠ COE=15 °,然后利用三角形的外角和内角的关系求出∠ EFG=30 °,利用 30°角所对的直角边是斜边的一半解题.【解答】解:作 EG⊥ OA 于 G,如图所示:∵EF ∥OB,∠ AOE= ∠ BOE=15 °∴∠ OEF=∠ COE=15 °, EG=CE=2 ,∵∠ AOE=15 °,∴∠ EFG=15 °+15°=30 °,∴∴EF=2EG=4 .故答案为: 4.【点评】本题考查了角平分线的性质、平行线的性质、含 30°角的直角三角形的性质;熟练掌握角平分线的性质,证出∠ EFG=30 °是解决问题的关键.15.将一张宽为 6cm 的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是 18cm 2.【考点】 翻折变换(折叠问题).【分析】 当 AC ⊥ AB 时,重叠三角形面积最小,此时 △ABC 是等腰直角三角形,利用三角形面积公式即可求解.【解答】 解:如图,当 AC ⊥ AB 时,三角形面积最小, ∵∠ BAC=90 °∠ ACB=45 ° ∴ A B=AC=4cm ,∴S △ABC = ×6×6=18cm 2. 故答案是: 18.【点评】 本题考查了折叠的性质,发现当 AC ⊥ AB 时,重叠三角形的面积最小是解决问题的关键.三、解答题(共 8 小题,满分 75 分)16.利用图形面积可以证明乘法公式,也可以解释代数中恒等式的正确性.( 1)首先请同学们观察用硬纸片拼成的图形(如图 1),根据图形的面积,写出它能说明的乘法公式( a+b ) 2=a 2+2ab+b 2;( 2)请同学们观察用硬纸片拼成的图形(如图 2),根据图形的面积关系,写出一个代数恒等式.【考点】 完全平方公式的几何背景.a+b ,大正方形的面积就为( a+b ) 2,2 【分析】 (1)图中可以得出,大正方形的边长为个矩形的边长相同,且长为 a ,宽为 b ,则 2 个矩形的面积为 2ab ,空白的是两个正方形,较大的正方形的边长为a ,面积等于 a 2,小的正方形边长为b ,面积等于 b 2,大正方形面 积减去 2 个阴影矩形的面积就等于空白部分的面积.(2)图中可以得出,大正方形的边长为a+b ,大正方形的面积就为( a+b ) 2,4 个矩形的 边长相同,且长为 a ,宽为 b ,则 4 个矩形的面积为 4ab ,中间空心的正方形的边长为a ﹣b ,面积等于( a ﹣ b )2,大正方形面积减去 4 个阴影矩形的面积就等于中间空白部分的面 积. 【解答】 解:( 1)∵阴影部分都是全等的矩形,且长为 a ,宽为 b ,∴ 2 个矩形的面积为 2ab ,∵大正方形的边长为 a+b ,∴大正方形面积为( a+b ) 2,∴空白正方形的面积为a 2 和b 2,∴( a+b ) 2=a 2 +2ab+b 2.222.故答案为( a+b ) =a +2ab+b (2)∵四周阴影部分都是全等的矩形,且长为 a ,宽为 b , ∴四个矩形的面积为 4ab , ∵大正方形的边长为 a+b ,∴大正方形面积为( a+b ) 2,∴中间小正方形的面积为( a+b )2﹣ 4ab ,∵中间小正方形的面积也可表示为:(a ﹣ b ) 2,∴( a ﹣ b )2=( a+b ) 2﹣4ab . 【点评】 本题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关 键.17.先化简,再求值:( x+y )( x ﹣ y ) +( x ﹣ y ) 2+2xy ,其中 x= ( 3﹣ π) 0. y=2. 【考点】 整式的混合运算 —化简求值;零指数幂. 【专题】 计算题;整式.【分析】 原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,把x 与 y 的值代入计算即可求出值.【解答】 解:原式 =x 2﹣ y 2+x 2﹣ 2xy+y 2+2xy=2x 2,当 x= ( 3﹣π) 0=1 时,原式 =2. 【点评】 此题考查了整式的混合运算﹣化简求值,以及零指数幂,熟练掌握运算法则是解本题的关键.18.先化简: ÷( ﹣ ),再从﹣ 2< x < 3 的范围内选取一个你最喜欢的值代入,求值.【考点】 分式的化简求值. 【专题】 计算题.【分析】 原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把 x 的值代入计算即可求出值.【解答】 解:原式 =÷ = ? = ,当 x=2 时,原式 =4 .【点评】 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键. 19.如图, AD , AE 分别是 △ ABC 的高和角平分线.( 1)已知∠ B=40 °,∠ C=60°,求∠ DAE 的度数;( 2)设∠ B= α,∠ C=β( α< β).请直接写出用 α、 β表示∠ DAE 的关系式 ( β﹣ α).【考点】三角形内角和定理.【分析】(1)根据三角形内角和定理求出∠BAC ,再根据角平分线的定义求出∠BAE ,根据直角三角形两锐角互余求出∠BAD ,然后求解即可.(2)同( 1)即可得出结果.【解答】解:( 1)∵∠ B=40 °,∠ C=60°,∴∠ BAC=180 °﹣∠ B﹣∠ C=180°﹣ 40°﹣ 60°=80 °,∵AE 是角平分线,∴∠ BAE=∠ BAC=×80°=40°,∵AD 是高,∴∠ BAD=90 °﹣∠ B=90 °﹣ 40°=50 °,∴∠ DAE= ∠ BAD ﹣∠ BAE=50 °﹣ 40°=10°;(2)∵∠ B= α,∠ C=β(α<β),∴∠ BAC=180 °﹣(α+β),∵AE 是角平分线,∴∠ BAE=∠ BAC=90°﹣(α+β),∵AD 是高,∴∠ BAD=90 °﹣∠ B=90 °﹣α,∴∠ DAE= ∠ BAD ﹣∠ BAE=90 °﹣α﹣ [90°﹣(α+β)]=(β﹣α);故答案为:(β﹣α).【点评】本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,直角三角形两锐角互余的性质,熟记定理并准确识图是解题的关键.20.如图,点 B 、D 、C、 F 在一条直线上,且BC=FD ,AB=EF .(1)请你只添加一个条件(不再加辅助线),使△ ABC≌△ EFD,你添加的条件是∠B= ∠ F 或 AB ∥ EF 或 AC=ED ;(2)添加了条件后,证明△ABC≌△ EFD.【考点】全等三角形的判定.【专题】证明题;开放型.【分析】(1)本题要判定△ABC ≌△ EFD ,已知 BC=DF , AB=EF ,具备了两组边对应相等,故添加∠ B= ∠ F 或 AB ∥EF 或 AC=ED 后可分别根据 SAS、 AAS 、 SSS 来判定其全等;(2)因为 AB=EF ,∠ B=∠ F,BC=FD ,可根据 SAS 判定△ ABC ≌△ EFD .【解答】解:( 1)∠ B= ∠F 或 AB ∥ EF 或 AC=ED ;(2)证明:当∠ B=∠ F 时在△ ABC 和△ EFD 中∴△ ABC ≌△ EFD ( SAS).【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.21.如图,在等边△ABC 中,点 D ,E 分别在边 BC, AC 上,且 DE∥ AB ,过点 E 作EF⊥ DE,交 BC 的延长线于点 F,(1)求∠ F 的度数;(2)若 CD=3,求 DF 的长.【考点】等边三角形的判定与性质.【分析】(1)根据平行线的性质可得∠ EDC= ∠B=60 °,根据三角形内角和定理即可求解;(2)易证△ EDC 是等边三角形,再根据直角三角形的性质即可求解.【解答】解:( 1)∵△ ABC 是等边三角形,∴∠ B=60 °,∵DE ∥ AB ,∴∠ EDC= ∠B=60 °,∵EF ⊥DE,∴∠ DEF=90 °,∴∠ F=90°﹣∠ EDC=30 °;(2)∵∠ ACB=60 °,∠ EDC=60 °,∴△ EDC 是等边三角形.∴ED=DC=3 ,∵∠ DEF=90 °,∠ F=30 °,∴DF=2DE=6 .【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30 度的锐角所对的直角边等于斜边的一半.22.随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km ,运行时间减少了 8h,已知甲市到乙市的普快列车里程为 1220km .高铁平均时速是普快平均时速的 2.5 倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km 的丙市参加 14: 00 召开的会议,如果他买到当日 9: 20 从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要 1 小时.试问在高铁列车准点到达的情况下,它能否在开会之前20 分钟赶到会议地点?【考点】分式方程的应用.【分析】(1)设普快的平均时速为x 千米 / 小时,高铁列车的平均时速为 2.5x 千米 /小时,根据题意可得,高铁走(1220﹣ 90)千米比普快走1220 千米时间减少了8 小时,据此列方程求解;(2)求出王先生所用的时间,然后进行判断.【解答】解:( 1)设普快的平均时速为x 千米 /小时,高铁列车的平均时速为 2.5x 千米 /小时,由题意得,﹣=8 ,解得: x=96,经检验, x=96 是原分式方程的解,且符合题意,则2.5x=240 ,答:高铁列车的平均时速为240 千米 /小时;(2) 780÷240=3.25 ,则坐车共需要 3.25+1=4.25 (小时),从 9: 20 到下午 1: 40,共计 4小时>4.25小时,故王先生能在开会之前到达.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.23.如图,等腰Rt△ABC 中,∠ ABC=90 °, AB=BC ,点 A 、 B 分别在坐标轴上.(1)如图①,若点 C 的横坐标为5,直接写出点 B 的坐标( 0, 2);(提示:过 C 作CD⊥ y 轴于点 D,利用全等三角形求出OB 即可)(2)如图②,若点 A 的坐标为(﹣6, 0),点 B 在 y 轴的正半轴上运动时,分别以OB、 AB 为边在第一、第二象限作等腰Rt△ OBF,等腰 Rt△ ABE ,连接 EF 交 y 轴于点P,当点 B 在 y 轴的正半轴上移动时,PB 的长度是否发生改变?若不变,求出PB 的值.若变化,求PB 的取值范围.【考点】全等三角形的判定与性质;坐标与图形性质;等腰直角三角形.【分析】(1)作 CD ⊥BO ,易证△ABO ≌△ BCD ,根据全等三角形对应边相等的性质即可解题;(2)作 EG⊥y 轴,易证△ BAO ≌△ EBG 和△EGP≌△ FBP,可得 BG=AO 和 PB=PG ,即可求得 PB=AO ,即可解题.【解答】解:( 1)如图 1,作 CD⊥ BO 于 D,∵∠ CBD+ ∠ ABO=90 °,∠ ABO+ ∠ BAO=90 °,∴∠ CBD= ∠ BAO ,在△ ABO 和△ BCD 中,,∴△ ABO ≌△ BCD ( AAS ),∴C D=BO=2 ,∴B 点坐标( O, 2);故答案为:( 0, 2);(2)如图 3,作 EG⊥ y 轴于 G,∵∠ BAO+ ∠ OBA=90 °,∠ OBA+ ∠ EBG=90 °,∴∠ BAO= ∠ EBG,在△ BAO 和△ EBG 中,,∴△ BAO ≌△ EBG ( AAS ),∴BG=AO , EG=OB ,∵O B=BF ,∴BF=EG ,在△ EGP 和△ FBP 中,,∴△ EGP≌△ FBP( AAS ),∴PB=PG ,∴PB= BG= AO=3 .【点评】本题考查了勾股定理、角平分线的性质、相似三角形的判定与性质,熟练掌握三角形全等的证明是解本题的关键.。

2019-2020学年北师大版八年级数学第一学期期末测试题(含答案)

2019-2020学年北师大版八年级数学第一学期期末测试题(含答案)

2019-2020学年八年级数学第一学期期末测试卷一、选择题(本大题10小题,每小题3分,共30分.)在每小题列出的四个选项中,只有个正确选项,请将正确答案写在答题卷的相应位置1.下列实数中,不是无理数的是()A.B.﹣C.2π(π表示圆周率)D.22.下列各点中,位于第二象限的是()A.(8,﹣1)B.(8,0)C.(﹣,3)D.(0,﹣4)3.下列各组数据中,不是勾股数的是()A.3,4,5B.7,24,25C.8,15,17D.5,7,94.如图,在△ABC中,∠A=80°,点D在BC的延长线上,∠ACD=145°,则∠B是()A.45°B.55°C.65°D.75°5.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.86.一次函数y=﹣2x﹣1的图象大致是()A.B.C.D.7.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)8.下列说法正确的是()A.1的平方根是1B.﹣8的立方根是﹣2C.=±2D.=﹣29.小明中午放学回家自己煮面条吃,有下面几道工序:(1)洗锅盛水2分钟;(2)洗菜3分钟;(3)准备面条及佐料2分钟;(4)用锅把水烧开7分钟;(5)用烧开的水煮面条和菜要3分钟.以上各工序除(4)外,一次只能进行一道工序,小明要将面条煮好,最少用()A.14分钟B.13分钟C.12分钟D.11分钟10.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,由题意列出关于x与y的方程组为()A.B.C.D.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案写在答题卷的相应位置11.计算:=;|﹣|=.12.命题“若a2>b2,则a>b”的逆命题是,该逆命题是(填“真”或“假”)命题.13.计算:(3+)()=.14.小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是分.15.有大小两种货车,2辆大货车与1辆小货车一次可以运货7吨,1辆大货车与2辆小货车一次可以运货5吨.则1辆大货车与1辆小货车一次可以运货吨.16.在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(,).那么点A3的纵坐标是,点A2013的纵坐标是.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:(2﹣1)2﹣()÷.18.解方程组:19.如图,在平面直角坐标系中,Rt△ABC的三个顶点坐标为A(﹣3,0),B(﹣3,﹣3),C (﹣1,﹣3)(1)填空:AC=;(2)在图中作出△ABC关于x轴对称的图形△DEF.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.据市旅游局发布信息,今年春节假期期间,我市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求我市去年外来和外出旅游的人数.21.我区某中学开展“社会主义核心价值观”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.根据图中数据解决下列问题:(1)九(1)班复赛成绩的中位数是分,九(2)班复赛成绩的众数是分;(2)小明同学已经算出了九(1)班复赛的平均成绩=85分;方差S2=[(85﹣85)2+(75﹣85)2+(80﹣85)2+(85﹣85)2+(100﹣85)2]=70(分2),请你求出九(2)班复赛的平均成绩x2和方差S22;(3)根据(2)中计算结果,分析哪个班级的复赛成绩较好?22.已知,直线PQ∥MN,△ABC的顶点A与B分别在直线MN与PQ上,点C在直线AB的右侧,且∠C=45°,设∠CBQ=∠α,∠CAN=∠β.(1)如图1,当点C落在PQ的上方时,AC与PQ相交于点D,求证:∠β=∠α+45°.请将下列推理过程补充完整:证明:∵∠CDQ是△CBD的一个外角(三角形外角的定义),∴∠CDQ=∠α+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∵PQ∥MN(),∴∠CDQ=∠β().∴∠β=(等量代换).∵∠C=45°(已知),∴∠β=∠α+45°(等量代换)(2)如图2,当点C落在直线MN的下方时,BC与MN交于点F,请判断∠α与∠β的数量关系,并说明理由.五、解答题(本大题共3小题,每小题9分,共27分)请将正确答案写在答题卷的相应位置23.如图1所示,小亮家与学校之间有一超市,小亮骑车由家匀速行驶去学校,然后在校学习8小时.最后放学骑车匀速回家(上学与放学均不在超市停留).图2中的折线OABC表示小亮离家的距离y(km)与离家的时间x(h)之间的函数关系.根据已上信息,解答下列问题:(1)小亮上学的速度为km/h,放学回家的速度为km/h;(2)求线段BC所表示的y与x之间的函数关系;(3)如果小亮两次经过超市的时间间隔为8.48小时,那么超市离小亮家多远?24.如图,在△ABC中,∠C=90°,将△ACE沿着AE折叠以后C点正好落在AB边上的点D处.(1)当∠B=28°时,求∠AEC的度数;(2)当AC=6,AB=10时,①求线段BC的长;②求线段DE的长.25.已知:如图,在平面直角坐标系中,点O是坐标系原点,在△AOC中,OA=OC,点A坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,将△AOC沿AC折叠得到△ABC,请解答下列问题:(1)点C的坐标为;(2)求线段OM的长;(3)求点B的坐标.2019-2020学年八年级数学第一学期期末测试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分.)在每小题列出的四个选项中,只有个正确选项,请将正确答案写在答题卷的相应位置1.下列实数中,不是无理数的是()A.B.﹣C.2π(π表示圆周率)D.2【分析】根据无理数、有理数的定义逐一对每个选择支进行判断.【解答】解:是分数,属于有理数,故选项A正确;﹣,2π,2是无理数.故选:A.【点评】此题主要考查了无理数的定义,注意:带根号的开不尽方的数是无理数,无限不循环小数为无理数,含π的数是无理数.如2π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.下列各点中,位于第二象限的是()A.(8,﹣1)B.(8,0)C.(﹣,3)D.(0,﹣4)【分析】依据位于第二象限的点的横坐标为负,纵坐标为正,即可得到结论.【解答】解:∵位于第二象限的点的横坐标为负,纵坐标为正,∴位于第二象限的是(﹣,3)故选:C.【点评】本题主要考查了点的坐标,解题时注意:位于第二象限的点的横坐标为负,纵坐标为正.3.下列各组数据中,不是勾股数的是()A.3,4,5B.7,24,25C.8,15,17D.5,7,9【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:A、32+42=52,能构成直角三角形,是整数,故错误;B、72+242=252,能构成直角三角形,是整数,故错误;C、82+152=172,构成直角三角形,是正整数,故错误;D、52+72≠92,不能构成直角三角形,故正确;故选:D.【点评】此题主要考查了勾股数的定义,熟记勾股数的定义是解题的关键.4.如图,在△ABC中,∠A=80°,点D在BC的延长线上,∠ACD=145°,则∠B是()A.45°B.55°C.65°D.75°【分析】利用三角形的外角的性质即可解决问题;【解答】解:在△ABC中,∵∠ACD=∠A+∠B,∠A=80°,∠ACD=145°,∴∠B=145°﹣80°=65°,故选:C.【点评】本题考查三角形的外角,解题的关键是熟练掌握基本知识,属于中考常考题型.5.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.8【分析】根据方差、众数、平均数、中位数的含义和求法,逐一判断即可.【解答】解:将数据重新排列为0,3,3,4,5,则这组数的众数为3,中位数为3,平均数为=3,方差为×[(0﹣3)2+2×(3﹣3)2+(4﹣3)2+(5﹣3)2]=2.8,故选:B.【点评】本题考查了众数、中位数、平均数以及方差,解题的关键是牢记概念及公式.6.一次函数y=﹣2x﹣1的图象大致是()A.B.C.D.【分析】先根据一次函数的系数判断出函数图象所经过的象限,由此即可得出结论.【解答】解:在y=﹣2x﹣1中,∵﹣2<0,﹣1<0,∴此函数的图象经过二、三、四象限,故选:D.【点评】本题考查的是一次函数的图象,熟知当k<0,b>0时,一次函数y=kx+b的图象在一、二、四象限是解答此题的关键.7.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)【分析】依据内错角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补;同位角相等,两直线平行进行判断即可.【解答】解:A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行),正确;B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等),正确;C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补),正确;D.∵∠DAM=∠CBM,∴AD∥BC(同位角相等,两直线平行),错误;故选:D.【点评】本题主要考查了平行线的性质与判定,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.8.下列说法正确的是()A.1的平方根是1B.﹣8的立方根是﹣2C.=±2D.=﹣2【分析】根据平方根、算术平方根的定义逐一判别可得.【解答】解:A.1的平方根是±1,此选项错误;B.﹣8的立方根是﹣2,此选项正确;C.=2,此选项错误;D.=2,此选项错误;故选:B.【点评】本题主要考查平方根与立方根,解题的关键是掌握平方根和算术平方根及立方根的定义.9.小明中午放学回家自己煮面条吃,有下面几道工序:(1)洗锅盛水2分钟;(2)洗菜3分钟;(3)准备面条及佐料2分钟;(4)用锅把水烧开7分钟;(5)用烧开的水煮面条和菜要3分钟.以上各工序除(4)外,一次只能进行一道工序,小明要将面条煮好,最少用()A.14分钟B.13分钟C.12分钟D.11分钟【分析】根据统筹方法,烧开水时可洗菜和准备面条及佐料,这样可以节省时间,所以小明所用时间最少为(1)、(4)、(5)步时间之和.【解答】解:第一步,洗锅盛水花2分钟;第二步,用锅把水烧开7分钟,同时洗菜3分钟,准备面条及佐料2分钟,总计7分钟;第三步,用烧开的水煮面条和菜要3分钟.总计共用2+7+3=12分钟.故选:C.【点评】解决问题的关键是读懂题意,采用统筹方法是生活中常用的有效节省时间的方法,本题将数学知识与生活相结合,是一道好题.10.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,由题意列出关于x与y的方程组为()A.B.C.D.【分析】设进2个球的有x人,进3个球的有y人,根据20人共进49个球,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设进2个球的有x人,进3个球的有y人,根据题意得:,即.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案写在答题卷的相应位置11.计算:=;|﹣|=2.【分析】根据二次根式的分母有理化和二次根式的性质分别计算可得.【解答】解:==,|﹣|==2,故答案为:,2.【点评】本题主要考查二次根式的分母有理化,解题的关键是掌握二次根式的有理化方法和二次根式的性质.12.命题“若a2>b2,则a>b”的逆命题是如a>b,则a2>b2,,该逆命题是(填“真”或“假”)假命题.【分析】先写出命题的逆命题,然后在判断逆命题的真假.【解答】解:如a2>b2,则a>b”的逆命题是:如a>b,则a2>b2,假设a=1,b=﹣2,此时a>b,但a2<b2,即此命题为假命题.故答案为:如a>b,则a2>b2,假.【点评】此题考查了命题与定理的知识,写出一个命题的逆命题的关键是分清它的题设和结论,然后将题设和结论交换.在写逆命题时要用词准确,语句通顺.13.计算:(3+)()=+1.【分析】利用多项式乘法展开,然后合并即可.【解答】解:原式=3﹣6+7﹣2=+1.故答案为+1.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是79分.【分析】按3:3:4的比例算出本学期数学总评分即可.【解答】解:本学期数学总评分=70×30%+80×30%+85×40%=79(分).故答案为:79.【点评】本题考查了加权成绩的计算,平时成绩:期中考试成绩:期末考试成绩=3:3:4的含义就是分别占总数的30%、30%、40%.15.有大小两种货车,2辆大货车与1辆小货车一次可以运货7吨,1辆大货车与2辆小货车一次可以运货5吨.则1辆大货车与1辆小货车一次可以运货4吨.【分析】设1辆大货车一次可以运货x吨,1辆小货车一次可以运货y吨,由“2辆大货车与1辆小货车一次可以运货7吨,1辆大货车与2辆小货车一次可以运货5吨”,即可得出关于x,y的二元一次方程组,将方程组的两方程相加再除以3,即可求出结论.【解答】解:设1辆大货车一次可以运货x吨,1辆小货车一次可以运货y吨,根据题意得:,(①+②)÷3,得:x+y=4.故答案为:4.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.16.在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(,).那么点A3的纵坐标是,点A2013的纵坐标是()2012.【分析】先求出直线y =kx +b 的解析式,求出直线与x 轴、y 轴的交点坐标,求出直线与x 轴的夹角的正切值,分别过等腰直角三角形的直角顶点向x 轴作垂线,然后根据等腰直角三角形斜边上的高线与中线重合并且等于斜边的一半,利用正切值列式依次求出三角形的斜边上的高线,即可得到A 3的坐标,进而得出各点的坐标的规律.【解答】解:∵A 1(1,1),A 2(,)在直线y =kx +b 上,∴,解得,∴直线解析式为y =x +;设直线与x 轴、y 轴的交点坐标分别为N 、M ,当x =0时,y =,当y =0时, x +=0,解得x =﹣4,∴点M 、N 的坐标分别为M (0,),N (﹣4,0),∴tan ∠MNO ===,作A 1C 1⊥x 轴与点C 1,A 2C 2⊥x 轴与点C 2,A 3C 3⊥x 轴与点C 3,∵A 1(1,1),A 2(,),∴OB 2=OB 1+B 1B 2=2×1+2×=2+3=5,tan ∠MNO ===,∵△B 2A 3B 3是等腰直角三角形,∴A 3C 3=B 2C 3,∴A 3C 3==()2,同理可求,第四个等腰直角三角形A 4C 4==()3,依此类推,点A n 的纵坐标是()n ﹣1.∴A2013=()2012故答案为:,()2012.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:(2﹣1)2﹣()÷.【分析】先利用二次根式的除法法则和完全平方公式运算,然后把各二次根式化简为最简二次根式后合并即可.【解答】解:原式=8﹣4+1﹣(﹣)=9﹣4﹣2+=9﹣5.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.解方程组:【分析】方程组利用代入消元法求出解即可.【解答】解:,把①代入②得:3x﹣2x+3=8,解得:x=5,把x=5代入①得y=7,则原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.如图,在平面直角坐标系中,Rt△ABC的三个顶点坐标为A(﹣3,0),B(﹣3,﹣3),C(﹣1,﹣3)(1)填空:AC=;(2)在图中作出△ABC关于x轴对称的图形△DEF.【分析】(1)利用勾股定理求解可得;(2)分别作出点B与点C关于x轴的对称图形,再与点A首尾顺次连接即可得.【解答】解:(1)AC==,故答案为:;(2)所画图形如下所示,其中△DEF即为所求,【点评】本题主要考查作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质,并据此得出变换后的对应点及勾股定理.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.据市旅游局发布信息,今年春节假期期间,我市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求我市去年外来和外出旅游的人数.【分析】设我市去年外来旅游的有x万人,外出旅游的有y万人,根据去年同期外来旅游比外出旅游的人数多20万人及今年外来与外出旅游的人数与去年人数之间的关系,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设我市去年外来旅游的有x万人,外出旅游的有y万人,根据题意得:,解得:.答:我市去年外来旅游的有100万人,外出旅游的有80万人,【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.21.我区某中学开展“社会主义核心价值观”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.根据图中数据解决下列问题:(1)九(1)班复赛成绩的中位数是85分,九(2)班复赛成绩的众数是100分;(2)小明同学已经算出了九(1)班复赛的平均成绩=85分;方差S2=[(85﹣85)2+(75﹣85)2+(80﹣85)2+(85﹣85)2+(100﹣85)2]=70(分2),请你求出九(2)班复赛的平均成绩x2和方差S22;(3)根据(2)中计算结果,分析哪个班级的复赛成绩较好?【分析】(1)利用众数、中位数的定义分别计算即可;(2)利用平均数和方差的公式计算即可;(3)利用方差的意义进行判断.【解答】解:(1)九(1)班复赛成绩的中位数是85分,九(2)班复赛成绩的众数是100分;故答案为:85,100;(2)九(2)班的选手的得分分别为70,100,100,75,80,所以九(2)班成绩的平均数=(70+100+100+75+80)=85,九(2)班的方差S22=[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160;(3)平均数一样的情况下,九(1)班方差小,所以九(1)班的成绩比较稳定.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了统计图.22.已知,直线PQ∥MN,△ABC的顶点A与B分别在直线MN与PQ上,点C在直线AB的右侧,且∠C=45°,设∠CBQ=∠α,∠CAN=∠β.(1)如图1,当点C落在PQ的上方时,AC与PQ相交于点D,求证:∠β=∠α+45°.请将下列推理过程补充完整:证明:∵∠CDQ是△CBD的一个外角(三角形外角的定义),∴∠CDQ=∠α+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∵PQ∥MN(已知),∴∠CDQ=∠β(两直线平行,同位角相等).∴∠β=∠α+∠C(等量代换).∵∠C=45°(已知),∴∠β=∠α+45°(等量代换)(2)如图2,当点C落在直线MN的下方时,BC与MN交于点F,请判断∠α与∠β的数量关系,并说明理由.【分析】(1)根据题意可以写出推理过程,从而可以解答本题;(2)根据三角形外角的性质和三角形的内角和即可得到结论..【解答】解:(1)证明:∵∠CDQ是△CBD的一个外角(三角形外角的定义),∴∠CDQ=∠α+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∵PQ∥MN(已知),∴∠CDQ=∠β(两直线平行,同位角相等).∴∠β=∠α+∠C(等量代换).∵∠C=45°(已知),∴∠β=∠α+45°(等量代换);故答案为:已知,两直线平行,同位角相等,∠α+∠C,(2)证明:∵∠CFN是△ACF的一个外角(三角形外角的定义),∴∠CFN=∠β+∠C(三角形的一个外角等于和它不相邻的两个内角的和),∵PQ∥MN(已知),∴∠CFN=∠α(两直线平行,同位角相等)∴∠α=∠β+∠C(等量代换).∵∠C=45°(已知),∴∠α=∠β+45°(等量代换).【点评】本题考查了三角形外角的性质,平行线的性质,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.五、解答题(本大题共3小题,每小题9分,共27分)请将正确答案写在答题卷的相应位置23.如图1所示,小亮家与学校之间有一超市,小亮骑车由家匀速行驶去学校,然后在校学习8小时.最后放学骑车匀速回家(上学与放学均不在超市停留).图2中的折线OABC表示小亮离家的距离y(km)与离家的时间x(h)之间的函数关系.根据已上信息,解答下列问题:(1)小亮上学的速度为5km/h,放学回家的速度为3km/h;(2)求线段BC所表示的y与x之间的函数关系;(3)如果小亮两次经过超市的时间间隔为8.48小时,那么超市离小亮家多远?【分析】(1)根据题意和图象中的数据可以求得小亮上学的速度和放学回家的速度;(2)根据图象中的数据和题意可以求得线段BC所表示的y与x之间的函数关系;(3)由题意可知,小明从家到超市和从超市到家的时间之和是总的时间减去两次经过超市的时间间隔,从而可以解答本题.【解答】解:(1)由题意可得,小明上学的速度为:3÷0.6=5km/h,放学回家的速度为:3÷(9.6﹣0.6﹣8)=3km/h,故答案为:5,3;(2)设线段BC所表示的y与x之间的函数关系式为y=kx+b,将B(8.6,3)、C(9.6,0)代入y=kx+b,得,得,∴线段BC所表示的y与x之间的函数关系式为y=﹣3x+28.8(8.6≤x≤9.6);(3)设超市离家skm,=9.6﹣8.48,解得:s=2.1.答:超市离家2.1km.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.24.如图,在△ABC中,∠C=90°,将△ACE沿着AE折叠以后C点正好落在AB边上的点D处.(1)当∠B=28°时,求∠AEC的度数;(2)当AC=6,AB=10时,①求线段BC的长;②求线段DE的长.【分析】(1)在Rt△ABC中,利用互余得到∠BAC=62°,再根据折叠的性质得∠CAE=∠CAB =31°,然后根据互余可计算出∠AEC=59°;(2)①在Rt△ABC中,利用勾股定理即可得到BC的长;②设DE=x,则EB=BC﹣CE=8﹣x,依据勾股定理可得,Rt△BDE中DE2+BD2=BE2,再解方程即可得到DE的长.【解答】解:(1)在Rt△ABC中,∠ABC=90°,∠B=28°,∴∠BAC=90°﹣28°=62°,∵△ACE沿着AE折叠以后C点正好落在点D处,∴∠CAE=∠CAB=×62°=31°,Rt△ACE中,∠ACE=90°∴∠AEC=90°﹣31°=59°.(2)①在Rt△ABC中,AC=6,AB=10,∴BC===8.②∵△ACE沿着AE折叠以后C点正好落在点D处,∴AD=AC=6,CE=DE,∴BD=AB﹣AD=4,设DE=x,则EB=BC﹣CE=8﹣x,∵Rt△BDE中,DE2+BD2=BE2,∴x2+42=(8﹣x)2,解得x=3.即DE的长为3.【点评】本题考查了折叠问题,折叠是一种对称变换,它属于轴对称,解题时常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.25.已知:如图,在平面直角坐标系中,点O是坐标系原点,在△AOC中,OA=OC,点A坐标为(﹣3,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,将△AOC 沿AC 折叠得到△ABC ,请解答下列问题:(1)点C 的坐标为 (5,0) ;(2)求线段OM 的长;(3)求点B 的坐标.【分析】(1)利用勾股定理求出OA 的长即可解决问题;(2)求出直线AC 的解析式,利用待定系数法即可解决问题;(3)只要证明AB =AC =5,AB ∥x 轴,即可解决问题;【解答】解:(1)∵A (﹣3,4),∴OA ==5,∴OA =OC =5,∴C (5,0),故答案为(5,0);(2)设直线AC 的解析式y =kx +b ,函数图象过点A 、C ,得,解得,∴直线AC 的解析式y =﹣x +,当x =0时,y =,即M (0,),∴OM =.(3)∵△AOC沿着AC折叠得到△ABC,∴OA=BA,OC=BC,且∠ACO=∠ACB,又∵OA=OC,∴AB=AC=OC,∴∠BAC=∠ACB,∴∠ACO=∠BAC,∴AB∥x轴,由(1)知,C(5,0),∴OC=5.∵AB=AC=OC,∴AB=5.∵A坐标为(﹣3,4),AB∥x轴,∴B坐标为(2,4).【点评】本题属于三角形综合题,考查了翻折变换,等腰三角形的性质,一次函数的应用等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。

2019-2020学年人教版八年级上册数学期末考试试卷(有答案)-最新精品

2019-2020学年人教版八年级上册数学期末考试试卷(有答案)-最新精品

云南民族大学附属中学2019-2020学年八年级上学期数学期末考试试卷一、单选题1.已知的三边长分别是6cm、8cm、10cm,则的面积是()A.B.C.D.【答案】A【考点】三角形的面积,勾股定理的逆定理【解析】【解答】解:∵62+82=102,∴△ABC是直角三角形,∴△ABC的面积为:×6×8=24.故答案为:A.【分析】先利用勾股定理的逆定理判断出△ABC是直角三角形,然后根据直角三角形的面积计算方法即可算出答案。

2.如果,那么()A.B.C.D.【答案】C【考点】不等式及其性质【解析】【解答】解:A.∵b>a>0,∴,∴﹣>﹣,不符合题意;B.∵b>a>0,∴,不符合题意;C.∵b>a>0,∴,∴﹣<﹣,符合题意;D.∵b>a,∴﹣b<﹣a,不符合题意.故答案为:C.【分析】由,根据被除数一定除数越大商越小得出,然后根据不等式的性质2,不等式的两边都乘以同一个负数,不等号方向改变,即可判断出A,C的正确与否,由,根据不等式的性质2,不等式的两边都乘以同一个负数,不等号方向改变,即可判断D,综上所述即可得出答案。

3.已知等腰三角形的两边长分别为5cm、2cm,则该等腰三角形的周长是()A. 7cmB. 9cmC. 12cm或者9cm D. 12cm【答案】D【考点】三角形三边关系,等腰三角形的性质【解析】【解答】解:①5cm为腰,2cm为底,此时周长为12cm;②5cm为底,2cm为腰,则两边和小于第三边无法构成三角形,故舍去.∴其周长是12cm.故选D.【分析】题目给出等腰三角形有两条边长为4cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.4.面积相等的两个三角形()A. 必定全等B. 必定不全等 C. 不一定全等 D. 以上答案都不对【答案】C【考点】全等三角形的判定与性质【解析】【解答】因为两个面积相等的三角形,则面积的2倍也相等,也就是底乘高相等;但是一个数可以有许多不同的因数,所以说这两个三角形的对应边、对应高不一定相等;故面积相等的两个三角形不一定全等.故答案为:C.点评:本题考查了全等三角形的判定.解答此题需要熟悉三角形的面积公式.【分析】因为两个面积相等的三角形,则面积的2倍也相等,也就是底乘高相等;但是一个数可以有许多不同的因数,所以说这两个三角形的对应边、对应高不一定相等;故面积相等的两个三角形不一定全等.5.以下现象:荡秋千;呼啦圈;跳绳;转陀螺其中是旋转的有()A.B.C.D.【答案】D【考点】生活中的旋转现象【解析】【解答】解:①荡秋千是旋转;②呼啦圈运动不是围绕某一点进行运动,不是旋转;③跳绳时绳子在绕人转动,人在上下运动;④转陀螺是旋转.故答案为:D.【分析】在平面内将一个图形绕着某点,按某个方向转动一定的角度,这样的图形变换叫做旋转,根据定义即可一一判断。

2019-2020学年河南省洛阳市八年级(下)期末数学试卷 (解析版)

2019-2020学年河南省洛阳市八年级(下)期末数学试卷  (解析版)

2019-2020学年河南省洛阳市八年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)式子在实数范围内有意义,则x的取值范围是()A.x>0B.x≥﹣1C.x≥1D.x≤12.(3分)下列计算:①+=;②()2=2;③5﹣=5;④(+)(﹣)=﹣1.其中正确的有()个A.1B.2C.3D.43.(3分)某特警部队为了选拔“神枪手”,举行了射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是()A.甲的成绩比乙的成绩稳定B.甲、乙两人成绩的稳定性相同C.乙的成绩比甲的成绩稳定D.无法确定谁的成绩更稳定4.(3分)如图,正方形ABCD中,延长AB至E,使AE=AC,连接CE,则∠BCE=()A.10°B.20°C.30°D.22.5°5.(3分)为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用数量,结果如下(单位:个):7,9,11,8,7,14,10,8,9,7,则这组数据的众数和平均数分别是()A.8和9B.7和9C.9和7D.7和8.56.(3分)面试时,某人的基本知识、表达能力、工作态度的得分分别是90分、80分、85分,若依次按20%、40%、40%的比例确定成绩,则这个人的面试成绩是()A.82分B.86分C.85分D.84分7.(3分)如图,D,E,F分别是△ABC各边的中点,AH是高,若ED=6cm,那么HF的长为()A.5 cm B.6 cm C.10 cm D.不能确定8.(3分)已知一次函数y=(2m﹣1)x+1上两点A(x1,y1)、B(x2,y2),当x1<x2时,有y1<y2,则m的取值范围是()A.m<B.m>C.m<2D.m>09.(3分)四边形ABCD是菱形,对角线AC,BD相交于点O,且∠ACD=30°,BD=2,则菱形ABCD的面积为()A.2B.4C.4D.810.(3分)如图,正方形ABCD的边长为16,点M在边DC上,且DM=4,点N是对角线AC上一动点,则线段DN+MN的最小值为()A.16B.16C.20D.4二、填空题(每小题3分,共15分)11.(3分)若实数a、b满足,则=.12.(3分)在开展“爱心捐助武汉疫区”的活动中,某团支部8名团员捐款分别为(单位:元)6,5,3,5,6,10,5,6,则这组数据的中位数是.13.(3分)方程组的解为.14.(3分)如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,BF=6,AB=5,则AE的长为.15.(3分)如图,在矩形ABCD中,AD=5,AB=8,点E为DC边上的一个动点,把△ADE 沿AE折叠,当点D的对应点D′刚好落在矩形ABCD的对称轴上时,则DE的长为.三、解答题(共75分)16.(8分)计算:(1)3﹣+﹣;(2)÷﹣×+.17.(9分)如图,某学校(A点)到公路(直线l)的距离为30m,到公交站(D点)的距离为50m,现在公路边上建一个商店(C点),使商店到学校A及公交站D的距离相等,求商店C与公交站D之间的距离.(结果保留整数)18.(9分)某校为迎接中华人民共和国建国70周年,开展了以“不忘初心,缅怀革命先烈,奋斗新时代”为主题的读书活动.校德育处对本校七年级学生四月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了随机抽样调査,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如图所示:根据以上信息,解答下列问题:(1)补全上面两幅统计图;填出本次所抽取学生四月份“读书量”的中位数为;(2)求本次所抽取学生四月份“读书量”的平均数;(3)已知该校七年级有600名学生,请你估计该校七年级学生中,四月份“读书量”为5本的学生人数.19.(9分)如图,已知一次函数y1=ax+2与y2=x﹣1的图象交于点A(2,1).(1)求a的值;(2)若点C是直线y2=x﹣1上的点且AC=2,求点C的坐标;(3)直接写出y2>y1>0时,x的取值范围.20.(9分)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形;(2)若∠DEF=90°,DE=8,EF=6,当AF为时,四边形BCEF是菱形.21.(10分)某营业厅销售3部A型号手机和2部B型号手机的营业额为10800元,销售4部A型号手机和1部B型号手机的营业额为10400元.(1)求每部A型号手机和B型号手机的售价;(2)该营业厅计划一次性购进两种型号手机共50部,其中B型号手机的进货数量不超过A型号手机数量的3倍.已知A型手机和B型手机的进货价格分别为1500元/部和1800元/部,设购进A型号手机a部,这50部手机的销售总利润为W元.①求W关于a的函数关系式;②该营业厅购进A型号和B型号手机各多少部时,才能使销售总利润最大,最大利润为多少元?22.(10分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,D为直线BC上一动点(不与点B,C重合),以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,BC与CF的位置关系是,BC、CF、CD 三条线段之间的数量关系为;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请猜想BC与CF的位置关系BC,CD,CF三条线段之间的数量关系并证明;(3)如图3,当点D在线段BC的反向延长线上时,点A,F分别在直线BC的两侧,其他条件不变.若正方形ADEF的对角线AE,DF相交于点O,OC=,DB=5,则△ABC的面积为.(直接写出答案)23.(11分)如图,一次函数y1=x+n与x轴交于点B,一次函数y2=﹣x+m与y轴交于点C,且它们的图象都经过点D(1,﹣).(1)则点B的坐标为,点C的坐标为;(2)在x轴上有一点P(t,0),且t>,如果△BDP和△CDP的面积相等,求t的值;(3)在(2)的条件下,在y轴的右侧,以CP为腰作等腰直角△CPM,直接写出满足条件的点M的坐标.2019-2020学年河南省洛阳市八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)式子在实数范围内有意义,则x的取值范围是()A.x>0B.x≥﹣1C.x≥1D.x≤1【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x﹣1≥0,解得x≥1,故选:C.2.(3分)下列计算:①+=;②()2=2;③5﹣=5;④(+)(﹣)=﹣1.其中正确的有()个A.1B.2C.3D.4【分析】根据合并同类二次根式法则、二次根式的性质和平方差公式依此计算可得.【解答】解:①与不是同类二次根式,不能合并,此式计算错误;②()2=2,此式计算正确;③5﹣=4,此式计算错误;④(+)(﹣)=2﹣3=﹣1,此式计算正确;故选:B.3.(3分)某特警部队为了选拔“神枪手”,举行了射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是()A.甲的成绩比乙的成绩稳定B.甲、乙两人成绩的稳定性相同C.乙的成绩比甲的成绩稳定D.无法确定谁的成绩更稳定【分析】根据方差的定义,方差越小数据越稳定即可判断.【解答】解:∵甲的方差是0.28,乙的方差是0.21,∴S甲2>S乙2,∴乙的成绩比甲的成绩稳定;故选:C.4.(3分)如图,正方形ABCD中,延长AB至E,使AE=AC,连接CE,则∠BCE=()A.10°B.20°C.30°D.22.5°【分析】根据正方形的性质,可以得到∠ACB和∠CAB的度数,再根据AC=AE,可以得到∠ACE和∠AEC的度数,然后即可得到∠BCE的度数.【解答】解:∵AC是正方形ABCD的对角线,∴∠CAB=∠ACB=45°,∵AC=AE,∴∠ACE=∠AEC,∵∠ACE+∠AEC+∠CAE=180°,∴∠ACE=∠AEC=67.5°,∴∠BCE=∠ACE﹣∠ACB=67.5°﹣45°=22.5°,故选:D.5.(3分)为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用数量,结果如下(单位:个):7,9,11,8,7,14,10,8,9,7,则这组数据的众数和平均数分别是()A.8和9B.7和9C.9和7D.7和8.5【分析】根据众数和算术平均数的定义列式计算可得.【解答】解:将这组数据重新排列为7,7,7,8,8,9,9,10,11,14,所以这组数据的众数为7,平均数为=9,故选:B.6.(3分)面试时,某人的基本知识、表达能力、工作态度的得分分别是90分、80分、85分,若依次按20%、40%、40%的比例确定成绩,则这个人的面试成绩是()A.82分B.86分C.85分D.84分【分析】根据加权平均数的计算公式进行计算,即可得出答案.【解答】解:根据题意得:90×20%+80×40%+85×40%=84(分);答:这个人的面试成绩是84分.故选:D.7.(3分)如图,D,E,F分别是△ABC各边的中点,AH是高,若ED=6cm,那么HF的长为()A.5 cm B.6 cm C.10 cm D.不能确定【分析】根据D、E、F分别是△ABC各边的中点,可知DE为△ABC的中位线,根据DE的长度可求得AC的长度,然后根据直角三角形斜边的中线等于斜边的一半,可得HF=AC,即可求解.【解答】解:∵D、E分别是△ABC各边的中点,∴DE为△ABC的中位线,∵ED=6cm,∴AC=2DE=2×6=12(cm),∵AH⊥CD,且F为AC的中点,∴HF=AC=6cm.故选:B.8.(3分)已知一次函数y=(2m﹣1)x+1上两点A(x1,y1)、B(x2,y2),当x1<x2时,有y1<y2,则m的取值范围是()A.m<B.m>C.m<2D.m>0【分析】先根据x1<x2时,y1<y2,得到y随x的增大而增大,所以x的比例系数大于0,那么2m﹣1>0,解不等式即可求解.【解答】解:∵当x1<x2时,有y1<y2∴y随x的增大而增大∴2m﹣1>0,∴m>.故选:B.9.(3分)四边形ABCD是菱形,对角线AC,BD相交于点O,且∠ACD=30°,BD=2,则菱形ABCD的面积为()A.2B.4C.4D.8【分析】由菱形的性质得出OA=OC=AC,OB=OD=BD=1,AC⊥BD,在Rt△OCD 中,由含30°角的直角三角形的性质求出CD=2OD=2,由勾股定理求出OC,得出AC,由菱形的面积公式即可得出结果.【解答】解:∵四边形ABCD是菱形,∴OA=OC=AC,OB=OD=BD=1,AC⊥BD,在Rt△OCD中,∵∠ACD=30°,∴CD=2OD=2,∴OC===,∴AC=2OC=2,∴菱形ABCD的面积=AC•BD=×2×2=2.故选:A.10.(3分)如图,正方形ABCD的边长为16,点M在边DC上,且DM=4,点N是对角线AC上一动点,则线段DN+MN的最小值为()A.16B.16C.20D.4【分析】连接MB交AC于N,此时DN+MN最小,先证明这个最小值就是线段BM的长,利用勾股定理就是即可解决问题.【解答】解:如图,连接MB交AC于N,此时DN+MN最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴DN=BN,∴DN+MN=BN+NM=BM,在Rt△BMC中,∵∠BCM=90°,BC=16,CM=CD﹣DM=16﹣4=12,∴BM=.故选:C.二、填空题(每小题3分,共15分)11.(3分)若实数a、b满足,则=.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则原式=﹣.故答案是:﹣.12.(3分)在开展“爱心捐助武汉疫区”的活动中,某团支部8名团员捐款分别为(单位:元)6,5,3,5,6,10,5,6,则这组数据的中位数是 5.5元.【分析】将数据重新排列,再根据中位数的定义求解可得.【解答】解:将这组数据重新排列为:3,5,5,5,6,6,6,10,所以这组数据的中位数为=5.5(元),故答案为:5.5元.13.(3分)方程组的解为.【分析】由图象可知,一次函数x+y=3与y=2x的交点坐标为(1,2),所以方程组的解为.【解答】解:∵一次函数x+y=3与y=2x的交点坐标为(1,2),∴方程组的解为.故答案为.14.(3分)如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,BF=6,AB=5,则AE的长为8.【分析】连接EF,AE交BF于O点,如图,由作法得AB=AF,AE平分∠BAD,先证明四边形ABEF为菱形得到AE⊥BF,OA=OE,BO=OF=3,然后利用勾股定理计算出OA,从而得到AE的长.【解答】解:连接EF,AE交BF于O点,如图,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠F AE=∠BEA,由作法得AB=AF,AE平分∠BAD,∴∠BAE=∠F AE,∴∠BAE=∠BEA,∴BA=BE,∴AF=BE,而AF∥BE,∴四边形ABEF为平行四边形,而AB=AF,∴四边形ABEF为菱形,∴AE⊥BF,OA=OE,BO=OF=3,在Rt△AOB中,OA===4,∴AE=2OA=8.故答案为8.15.(3分)如图,在矩形ABCD中,AD=5,AB=8,点E为DC边上的一个动点,把△ADE 沿AE折叠,当点D的对应点D′刚好落在矩形ABCD的对称轴上时,则DE的长为或.【分析】过点D′作MN⊥AB于点N,MN交CD于点M,由矩形有两条对称轴可知要分两种情况考虑,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理可得出关于DM长度的一元二次方程,解方程即可得出结论.【解答】解:过点D′作MN⊥AB于点N,MN交CD于点M,如图1所示.设DE=a,则D′E=a.∵矩形ABCD有两条对称轴,∴分两种情况考虑:①当DM=CM时,AN=DM=CD=AB=4,AD=AD′=5,由勾股定理可知:ND′==3,∴MD′=MN﹣ND′=AD﹣ND′=2,EM=DM﹣DE=4﹣a,∵ED′2=EM2+MD′2,即a2=(4﹣a)2+4,解得:a=;②当MD′=ND′时,MD′=ND′=MN=AD=,由勾股定理可知:AN==,∴EM=DM﹣DE=AN﹣DE=﹣a,∵ED′2=EM2+MD′2,即,解得:a=.综上知:DE=或.故答案为:或.三、解答题(共75分)16.(8分)计算:(1)3﹣+﹣;(2)÷﹣×+.【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先计算二次根式的乘除运算、化简二次根式,再计算加减运算可得.【解答】解:(1)原式=3﹣2+﹣3=﹣;(2)原式=﹣+2=4+.17.(9分)如图,某学校(A点)到公路(直线l)的距离为30m,到公交站(D点)的距离为50m,现在公路边上建一个商店(C点),使商店到学校A及公交站D的距离相等,求商店C与公交站D之间的距离.(结果保留整数)【分析】作出A点到公路的距离,构造出直角三角形,利用勾股定理易得BD长,那么根据直角三角形BCD的各边利用勾股定理即可求得商店与车站之间的距离.【解答】解:作AB⊥L于B,则AB=30m,AD=50m.∴BD=40m.设CD=x,则CB=40﹣x,x2=(40﹣x)2+302,x2=1600+x2﹣80x+302,80x=2500,x≈31,答:商店C与公交站D之间的距离约为31米.18.(9分)某校为迎接中华人民共和国建国70周年,开展了以“不忘初心,缅怀革命先烈,奋斗新时代”为主题的读书活动.校德育处对本校七年级学生四月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了随机抽样调査,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如图所示:根据以上信息,解答下列问题:(1)补全上面两幅统计图;填出本次所抽取学生四月份“读书量”的中位数为3本;(2)求本次所抽取学生四月份“读书量”的平均数;(3)已知该校七年级有600名学生,请你估计该校七年级学生中,四月份“读书量”为5本的学生人数.【分析】(1)先由读1本书的人数及其所占百分比可得总人数,再用总人数乘以读4本书的百分比可得其人数,用读3本书人数除以总人数可得其百分比,据此可补全统计图,最后根据中位数的定义可得答案;(2)根据加权平均数的定义求解可得;(3)用总人数乘以样本中四月份“读书量”为5本的学生人数所占比例可得答案.【解答】解:(1)∵被调查的总人数为3÷5%=60(人),∴读书4本的人数为60×20%=12(人),读3本书的人数所占百分比为×100%=35%,∵共有60个数据,其中位数为第30、31个数据的平均数,而第30、31个数据均为3本,∴中位数为=3(本),故答案为:3本.(2)本次所抽取学生四月份“读书量”的平均数为=3.6(本);(3)估计该校七年级学生中,四月份“读书量”为5本的学生人数为600×=60(人).19.(9分)如图,已知一次函数y1=ax+2与y2=x﹣1的图象交于点A(2,1).(1)求a的值;(2)若点C是直线y2=x﹣1上的点且AC=2,求点C的坐标;(3)直接写出y2>y1>0时,x的取值范围.【分析】(1)把A点坐标代入y1=ax+2可求出a的值;(2)设C(t,t﹣1),利用两点间的距离公式得到(t﹣2)2+(t﹣1﹣1)2=(2)2,然后解方程可得到点C的坐标;(3)先确定一次函数y1=﹣x+2与x轴的交点坐标为(4,0),然后结合函数图象,写出x轴上且直线y=x﹣1在直线y=﹣x+2上方所对应的自变量的范围即可.【解答】解:(1)把A(2,1)代入y1=ax+2得2a+2=1,解得a=﹣;(2)设C(t,t﹣1),∵A(2,1),AC=2,∴(t﹣2)2+(t﹣1﹣1)2=(2)2,解得t1=0,t2=4,∴点C的坐标为(0,﹣1)或(4,3);(3)当y=0时,﹣x+2=0,解得x=4,∴一次函数y1=﹣x+2与x轴的交点坐标为(4,0),∴当2<x<4时,y2>y1>0.20.(9分)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形;(2)若∠DEF=90°,DE=8,EF=6,当AF为时,四边形BCEF是菱形.【分析】(1)由AB=DE,∠A=∠D,AF=DC,易证得△ABC≌DEF(SAS),即可得BC=EF,且BC∥EF,即可判定四边形BCEF是平行四边形;(2)由四边形BCEF是平行四边形,可得当BE⊥CF时,四边形BCEF是菱形,所以连接BE,交CF与点G,由三角形DEF的面积求出EG的长,根据勾股定理求出FG的长,则可求出答案.【解答】(1)证明:∵AF=DC,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴BC=EF,∠ACB=∠DFE,∴BC∥EF,∴四边形BCEF是平行四边形;(2)解:如图,连接BE,交CF于点G,∵四边形BCEF是平行四边形,∴当BE⊥CF时,四边形BCEF是菱形,∵∠DEF=90°,DE=8,EF=6,∴DF===10,∴S△DEF=EF×DE,∴EG==,∴FG=CG===,∴AF=CD=DF﹣2FG=10﹣=.故答案为:.21.(10分)某营业厅销售3部A型号手机和2部B型号手机的营业额为10800元,销售4部A型号手机和1部B型号手机的营业额为10400元.(1)求每部A型号手机和B型号手机的售价;(2)该营业厅计划一次性购进两种型号手机共50部,其中B型号手机的进货数量不超过A型号手机数量的3倍.已知A型手机和B型手机的进货价格分别为1500元/部和1800元/部,设购进A型号手机a部,这50部手机的销售总利润为W元.①求W关于a的函数关系式;②该营业厅购进A型号和B型号手机各多少部时,才能使销售总利润最大,最大利润为多少元?【分析】(1)根据3部A型号手机和2部B型号手机营业额10800元,4部A型号手机和1部B型号手机营业额10400元,构造二元一次方程组求解即可;(2)①根据:每类手机利润=单部手机利润×部数,总利润=A型手机利润+B型手机利润,得函数关系式.注意a的取值范围.②根据①的关系式,利用一元函数的性质得出结论.【解答】解:(1)设每部A型号手机的售价为x元,每部B型号手机的售价为y元.由题意,得解得(2)①由题意,得w=(2000﹣1500)a+(2400﹣1800)(50﹣a),即w=30000﹣100a,又∵50﹣a≤3a∴a≥∴w关于a的函数关系式为w=30000﹣100a(a≥);②w关于a的函数关系式为w=30000﹣100a,∵k=﹣100<0,∴w随a的增大而减小,又∵a只能取正整数,∴当a=13时,总利润w最大,最大利润w=30000﹣100×13=2870050﹣a=37答:该营业厅购进A型号手机13部,B型号手机37部时,销售总利润最大,最大利润为28700元22.(10分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,D为直线BC上一动点(不与点B,C重合),以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,BC与CF的位置关系是BC⊥CF,BC、CF、CD三条线段之间的数量关系为CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请猜想BC与CF的位置关系BC,CD,CF三条线段之间的数量关系并证明;(3)如图3,当点D在线段BC的反向延长线上时,点A,F分别在直线BC的两侧,其他条件不变.若正方形ADEF的对角线AE,DF相交于点O,OC=,DB=5,则△ABC的面积为.(直接写出答案)【分析】(1)△ABC是等腰直角三角形,利用SAS即可证明△BAD≌△CAF,从而证得CF=BD,据此即可证得;(2)同(1)相同,利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可得到CF﹣CD=BC;(3)先证明△BAD≌△CAF,进而得出△FCD是直角三角形,根据直角三角形斜边上中线的性质即可得到DF的长,再求出CD,BC即可解决问题.【解答】解:(1)如图1中,∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,∠ABD=∠ACF=45°,∴∠FCB=∠ACF+∠ACB=90°,即CF⊥BC,∵BD+CD=BC,∴CF+CD=BC;故答案为:CF⊥BC,CF+CD=BC.(2)结论:CF⊥BC,CF﹣CD=BC.理由:如图2中,∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS)∴BD=CF,∠ABD=∠ACF=45°,∴∠FCB=∠ACF+∠ACB=90°,即CF⊥BC,∴BC+CD=CF,∴CF﹣CD=BC;(3)如图3中,∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠BAF,∠CAF=90°﹣∠BAF,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD,BD=CF=5,∵∠ABC=45°,∴∠ABD=135°,∴∠ACF=∠ABD=135°,∴∠FCD=135°﹣45°=90°,∴△FCD是直角三角形.∵OD=OF,∴DF=2OC=13,∴Rt△CDF中,CD===12,∴BC=DC﹣BD=12﹣5=7,∴AB=AC=,∴S△ABC=××=.23.(11分)如图,一次函数y1=x+n与x轴交于点B,一次函数y2=﹣x+m与y轴交于点C,且它们的图象都经过点D(1,﹣).(1)则点B的坐标为(,0),点C的坐标为(0,﹣1);(2)在x轴上有一点P(t,0),且t>,如果△BDP和△CDP的面积相等,求t的值;(3)在(2)的条件下,在y轴的右侧,以CP为腰作等腰直角△CPM,直接写出满足条件的点M的坐标.【分析】(1)根据待定系数法,可得函数解析式,分别令y=0和x=0,可得B、C点坐标;(2)根据面积的和差,可得关于t的方程,根据解方程,可得答案;(3)分情况讨论,注意是在y轴的右侧,有三个符合条件的点M,作辅助线,构建三角形全等,根据全等三角形的判定与性质,可得M的坐标.【解答】解:(1)将D(1,﹣)代入y=x+n,解得n=﹣3,即y=x﹣3,当y=0时,x﹣3=0.解得x=,即B点坐标为(,0);将(1,﹣)代入y=﹣x+m,解得m=﹣1,即y=﹣x﹣1,当x=0时,y=﹣1.即C点坐标为(0,﹣1);故答案为:(,0),(0,﹣1);(2)如图1,S△BDP=(t﹣)×|﹣|=,当y=0时,﹣x﹣1=0,解得x=﹣,即E点坐标为(﹣,0),S△CDP=S△DPE﹣S△CPE=(t+)×﹣×(t+)×|﹣1|=,由△BDP和△CDP的面积相等,得:=+,解得t=5.2;(3)以CP为腰作等腰直角△CPM,有以下两种情况:①如图2,当以点C为直角顶点,CP为腰时,点M1在y轴的左侧,不符合题意,过M2作M2A⊥y轴于A,∵∠PCM2=∠PCO+∠ACM2=∠PCO+∠OPC=90°,∴∠ACM2=∠OPC,∵∠POC=∠CAM2,PC=CM2,∴△POC≌△CAM2(AAS),∴PO=AC=5.2,OC=AM2=1,∴M2(1,﹣6.2);②如图3,当以点P为直角顶点,CP为腰时,过M4作M4E⊥x轴于E,同理得△COP≌△PEM4,∴OC=EP=1,OP=M4E=5.2,∴M4(6.2,﹣5.2),同理得M3(4.2,5.2);综上所述,满足条件的点M的坐标为(1,﹣6.2)或(6.2,﹣5.2)或(4.2,5.2).。

江西省萍乡市2019-2020学年八年级下期末数学试题((有答案))

江西省萍乡市2019-2020学年八年级下期末数学试题((有答案))

2019-2020学年江西省萍乡市八年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题只有一个正确答案)1.“a是正数”用不等式表示为()A.a≤0 B.a≥0 C.a<0 D.a>02.当x=1时,下列式子无意义的是()A.B.C.D.3.下列各组数中,以它们为边长的线段能构成直角三角形的是()A.2,4,5 B.6,8,11 C.5,12,12 D.1,1,4.如图,在△ABC中,AB=AC,∠A=40°,将△ABC绕点B逆时针旋转得到△A′BC′,若点C的对应点C′落在AB边上,则旋转角为()A.40°B.70°C.80°D.140°5.将下列多项式因式分解,结果中不含有因式(x﹣2)的是()A.x2﹣4 B.x3﹣4x2﹣12xC.x2﹣2x D.(x﹣3)2+2(x﹣3)+16.如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDE7.不等式组的解集是x>4,那么m的取值范围是()A.m≤4 B.m<4 C.m≥4 D.m>48.若关于x的分式方程﹣1=无解,则m的值为()A.﹣1.5 B.1 C.﹣1.5或2 D.﹣0.5或﹣1.59.如图,点D是等边△ABC的边AC上一点,以BD为边作等边△BDE,若BC=10,BD=8,则△ADE的周长为()A.14 B.16 C.18 D.2010.如图,△ABC中,M是BC的中点,AD平分∠BAC,BD⊥AD于点D,若AB=12,AC =16,则MD等于()A.4 B.3 C.2 D.1二、填空题(本大题共8个小题,每小题3分,共24分)11.分解因式:2m3﹣8m=.12.若一个正多边形的每个外角都等于36°,则它的内角和是.13.点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,则m=.14.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm 到D,则橡皮筋被拉长了cm.15.颖颖同学用20元钱去买方便面35包,甲种方便面每包0.7元,乙种方便面每包0.5元,则她最多可买甲种方便面包.16.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直,垂足为A,交CD于D,若AD=8,则点P到BC的距离是.17.端午节那天,“味美早餐店”的粽子打9折出售,小红的妈妈去该店买粽子花了54元钱,比平时多买了3个,则平时每个粽子卖元.18.如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC、AD的中点,AF∥BC交CE的延长线于F.则四边形AFBD的面积为.三、(本大题共3个题,其中第19题8分,第20,21题各5分,共18分)19.(1)解不等式组:,并把解集在数轴上表示出来.(2)解方程:=﹣1.20.先化简,再求值:(1+)÷,其中x=﹣5.21.如图,在△ABC中,AD平分∠BAC交BC于D,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若DC=4,∠DAC=30°,求AD的长.四、(本大题共2个小题,每小题5分,共10分)22.利用对称性可以设计美丽的图案,在边长为1的正方形方格纸中,有如图所示的四边形(顶点都在格点上).(1)先作出该四边形关于直线l成轴对称的图形,再作出上面所作的图形连同原四边形绕点O 按顺时针方向旋转90°后的图形;(2)完成上述设计后,求出整个图案的面积.23.甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?五、(本大题共2个小题,第24题5分,第25题6分,共11分)24.如图,点O是△ABC内一点,连接OB,OC,并将AB,OB,OC,AC的中点D,E,F,G依次连接得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若OB⊥OC,∠EOM和∠OCB互余,OM=3,求DG的长度.25.“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以下信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.六、(本大题共1个小题,共7分)26.如图,在▱ABCD中,AB⊥AC,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转一个角度α(0°<α≤90°),分别交线段BC,AD于点E,F,连接BF.(1)如图1,在旋转的过程中,求证:OE=OF;(2)如图2,当旋转至90°时,判断四边形ABEF的形状,并证明你的结论;(3)若AB=1,BC=,且BF=DF,求旋转角度α的大小.2019-2020学年江西省萍乡市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题只有一个正确答案)1.“a是正数”用不等式表示为()A.a≤0 B.a≥0 C.a<0 D.a>0【分析】正数即“>0”可得答案.【解答】解:“a是正数”用不等式表示为a>0,故选:D.【点评】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.2.当x=1时,下列式子无意义的是()A.B.C.D.【分析】分式无意义则分式的分母为0,据此求得x的值即可.【解答】解:A、x=0分式无意义,不符合题意;B、x=﹣1分式无意义,不符合题意;C、x=1分式无意义,符合题意;D、x取任何实数式子有意义,不符合题意.故选:C.【点评】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.3.下列各组数中,以它们为边长的线段能构成直角三角形的是()A.2,4,5 B.6,8,11 C.5,12,12 D.1,1,【分析】根据勾股定理的逆定理,只需验证两小边的平方和是否等于最长边的平方即可.【解答】解:A、∵22+42=20≠52,∴不能构成直角三角形,故本选项不符合题意;B、∵62+82=100≠112,∴不能构成直角三角形,故本选项不符合题意;C、∵52+122=169≠122,∴不能构成直角三角形,故本选项不符合题意;D、∵12+12=2=()2,∴能够构成直角三角形,故本选项符合题意.故选:D.【点评】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.如图,在△ABC中,AB=AC,∠A=40°,将△ABC绕点B逆时针旋转得到△A′BC′,若点C的对应点C′落在AB边上,则旋转角为()A.40°B.70°C.80°D.140°【分析】根据旋转角的定义,旋转角就是∠ABC,根据等腰三角形的旋转求出∠ABC即可.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C=(180°﹣∠A)=×140°=70°,∵△A′BC′是由△ABC旋转得到,∴旋转角为∠ABC=70°.故选:B.【点评】本题考查旋转的性质、等腰三角形的性质、三角形内角和定理等知识,解题的关键的理解旋转角的定义,属于中考常考题型.5.将下列多项式因式分解,结果中不含有因式(x﹣2)的是()A.x2﹣4 B.x3﹣4x2﹣12xC.x2﹣2x D.(x﹣3)2+2(x﹣3)+1【分析】对各多项式进行因式分解即可求出答案.【解答】解:(A)原式=(x+2)(x﹣2),结果中含有因式(x﹣2);(B)原式=x(x2﹣4x﹣12)=x(x+2)(x﹣6),结果中不含有因式(x﹣2);(C)原式=x(x﹣2),结果中含有因式(x﹣2);(D)原式=[(x﹣3)+1]2=(x﹣2)2,结果中含有因式(x﹣2);故选:B.【点评】本题考查因式分解,解题的关键是熟练运用因式分解的方法,本题属于基础题型.6.如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDE【分析】把A、B、C、D四个选项分别作为添加条件进行验证,D为正确选项.添加D选项,即可证明△DEC≌△FEB,从而进一步证明DC=BF=AB,且DC∥AB.【解答】解:添加:∠F=∠CDE,理由:∵∠F=∠CDE,∴CD∥AB,在△DEC与△FEB中,,∴△DEC≌△FEB(AAS),∴DC=BF,∵AB=BF,∴DC=AB,∴四边形ABCD为平行四边形,故选:D.【点评】本题是一道探索性的试题,考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.7.不等式组的解集是x>4,那么m的取值范围是()A.m≤4 B.m<4 C.m≥4 D.m>4【分析】求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了结合不等式组的解集即可得答案.【解答】解:解不等式(x+2)﹣3>0,得:x>4,由不等式组的解集为x>4知m≤4,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键8.若关于x的分式方程﹣1=无解,则m的值为()A.﹣1.5 B.1 C.﹣1.5或2 D.﹣0.5或﹣1.5【分析】方程无解即是分母为0,由此可得:原分式方程中的分母为0:x=0或x=3,解方程后x=﹣,分母2m+1=0,解出即可.【解答】解:﹣1=,方程两边都乘以x(x﹣3),得:x(x+2m)﹣x(x﹣3)=2(x﹣3),整理,得:(2m+1)x=﹣6,x=﹣,∵原分式方程无解,∴2m+1=0或﹣=3或﹣=0,解得:x=﹣0.5或x=﹣1.5,故选:D.【点评】本题考查分式方程的解法,解题的关键是熟练运用分式方程的解法,本题属于基础题型,分式方程无解,则分母为0.9.如图,点D是等边△ABC的边AC上一点,以BD为边作等边△BDE,若BC=10,BD=8,则△ADE的周长为()A.14 B.16 C.18 D.20【分析】由△DBC≌△EBA,可知AE=DC,推出AE+AD+DE=AD+CD+ED=AC+DE即可解决问题;【解答】解:∵△ABC,△DBE都是等边三角形,∴BC=BA,BD=BE,∠ABC=∠EBD,∴∠DBC=∠EBA,∴△DBC≌△EBA,∴AE=DC,∴AE+AD+DE=AD+CD+ED=AC+DE,∵AC=BC=10,DE=BD=8,∴△AED的周长为18,故选:C.【点评】本题考查等边三角形的性质、全等三角形的判定和性质等知识,解题时根据是正确寻找全等三角形解决问题,属于中考常考题型.10.如图,△ABC中,M是BC的中点,AD平分∠BAC,BD⊥AD于点D,若AB=12,AC =16,则MD等于()A.4 B.3 C.2 D.1【分析】延长BD交AC于H,根据等腰三角形的性质得到BD=DH,AH=AB=12,根据三角形中位线定理计算即可.【解答】解:延长BD交AC于H,∵AD平分∠BAC,BD⊥AD,∴BD=DH,AH=AB=12,∴HC=AC﹣AH=4,∵M是BC中点,BD=DH,∴MD=CH=2,故选:C.【点评】本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.二、填空题(本大题共8个小题,每小题3分,共24分)11.分解因式:2m3﹣8m=2m(m+2)(m﹣2).【分析】提公因式2m,再运用平方差公式对括号里的因式分解.【解答】解:2m3﹣8m=2m(m2﹣4)=2m(m+2)(m﹣2).故答案为:2m(m+2)(m﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.若一个正多边形的每个外角都等于36°,则它的内角和是1440°.【分析】先根据多边形的外角和求多边形的边数,再根据多边形的内角和公式求出即可.【解答】解:∵一个正多边形的每个外角都等于36°,∴这个多边形的边数为=10,∴这个多边形的内角和=(10﹣2)×180°=1440°,故答案为:1440°.【点评】本题考查了多边形的内角与外角,能正确求出多边形的边数是解此题的关键,注意:多边形的外角和等于360°,边数为n的多边形的内角和=(n﹣2)×180°.13.点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,则m=﹣3 .【分析】根据向右平移横坐标加,y轴上的点的横坐标为0列方程求解即可.【解答】解:∵点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,∴m+2+1=0,解得m=﹣3.故答案为:﹣3.【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.14.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm 到D,则橡皮筋被拉长了 2 cm.【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用.15.颖颖同学用20元钱去买方便面35包,甲种方便面每包0.7元,乙种方便面每包0.5元,则她最多可买甲种方便面12 包.【分析】设可购买甲种方便面x包,则可购买乙种方便面(35﹣x)包,根据总价=单价×数量结合总价不超过20元,即可得出关于x的一元一次不等式,解之取其中的最大整数是解题的关键.【解答】解:设可购买甲种方便面x包,则可购买乙种方便面(35﹣x)包,根据题意得:0.7x+0.5(35﹣x)≤20,解得:x≤12.5,∵x为整数,∴x≤12.故答案为:12.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.16.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直,垂足为A,交CD于D,若AD=8,则点P到BC的距离是 4 .【分析】过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等可得PA=PE,PD=PE,那么PE=PA=PD,又AD=8,进而求出PE=4.【解答】解:过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.故答案为:4【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质并作辅助线是解题的关键.17.端午节那天,“味美早餐店”的粽子打9折出售,小红的妈妈去该店买粽子花了54元钱,比平时多买了3个,则平时每个粽子卖 2 元.【分析】设平时每个粽子卖x元,根据题意列出分式方程,解之并检验得出结论.【解答】解:设平时每个粽子卖x元.根据题意得:解得:x=2经检验x=2是分式方程的解故答案为2元【点评】本题考查了分式方程的应用,解题的关键是找准等量关系,列出分式方程.18.如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC、AD的中点,AF∥BC交CE的延长线于F.则四边形AFBD的面积为12 .【分析】由于AF∥BC,从而易证△AEF≌△DEC(AAS),所以AF=CD,从而可证四边形AFBD是平行四边形,所以S=2S△ABD,又因为BD=DC,所以S△ABC=2S△ABD,所四边形AFBD以S四边形AFBD=S△ABC,从而求出答案.【解答】解:∵AF∥BC,∴∠AFC=∠FCD,在△AEF与△DEC中,∴△AEF≌△DEC(AAS).∴AF=DC,∵BD=DC,∴AF=BD,∴四边形AFBD是平行四边形,∴S四边形AFBD=2S△ABD,又∵BD=DC,∴S△ABC=2S△ABD,∴S四边形AFBD=S△ABC,∵∠BAC=90°,AB=4,AC=6,∴S△ABC=AB•AC=×4×6=12,∴S四边形AFBD=12.故答案为:12【点评】本题考查平行四边形的性质与判定,涉及全等三角形的判定与性质,平行四边形的判定与性质,勾股定理等知识,综合程度较高.三、(本大题共3个题,其中第19题8分,第20,21题各5分,共18分)19.(1)解不等式组:,并把解集在数轴上表示出来.(2)解方程:=﹣1.【分析】(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)由①得:x<﹣1,由②得:x≤2,∴不等式组的解集为x<﹣1,解集表示在数轴上为:;(2)分式方程去分母得:3(x﹣1)=x(x+1)﹣(x+1)(x﹣1),解得:x=2,经检验x=2是分式方程的解.【点评】此题考查了解分式方程,解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.20.先化简,再求值:(1+)÷,其中x=﹣5.【分析】先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=•=•=,当x=﹣5时,原式==.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.21.如图,在△ABC中,AD平分∠BAC交BC于D,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若DC=4,∠DAC=30°,求AD的长.【分析】(1)根据角平分线的性质得到DE=DF,证明Rt△BDE≌Rt△CDF,根据全等三角形的性质得到∠B=∠C,根据等腰三角形的判定定理证明;(2)根据直角三角形的性质求出AC,根据勾股定理计算即可.【解答】(1)证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF,∴∠B=∠C,∴AB=AC;(2)解:∵AD平分∠BAC,BD=CD,∴AD⊥BC,∵∠DAC=30°,∴AC=2DC=8,∴AD==4.【点评】本题考查的是全等三角形的判定和性质、角平分线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.四、(本大题共2个小题,每小题5分,共10分)22.利用对称性可以设计美丽的图案,在边长为1的正方形方格纸中,有如图所示的四边形(顶点都在格点上).(1)先作出该四边形关于直线l成轴对称的图形,再作出上面所作的图形连同原四边形绕点O 按顺时针方向旋转90°后的图形;(2)完成上述设计后,求出整个图案的面积.【分析】(1)直接利用旋转变换以及轴对称变换得出对应点位置进而得出答案.【解答】解:(1)如图所示:(2)一个四边形面积为:×5×1×2=5,整个图案面积为:5×4=20.【点评】此题主要考查了利用旋转设计图案以及利用轴对称设计图案,正确得出对应点位置是解题关键.23.甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?【分析】(1)可设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,则可表示出修路所用的时间,可列分式方程,求解即可;(2)设甲修路a天,则可表示出乙修路的天数,从而可表示出两个工程队修路的总费用,由题意可列不等式,求解即可.【解答】解:(1)设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,根据题意,可列方程:1.5×=,解得x=1.5,经检验x=1.5是原方程的解,且x﹣0.5=1,答:甲每天修路1.5千米,则乙每天修路1千米;(2)设甲修路a天,则乙需要修(15﹣1.5a)千米,∴乙需要修路=15﹣1.5a(天),由题意可得0.5a+0.4(15﹣1.5a)≤5.2,解得a≥8,答:甲工程队至少修路8天.【点评】本题主要考查分式方程及一元一次不等式的应用,找出题目中的等量(或不等)关系是解题的关键,注意分式方程需要检验.五、(本大题共2个小题,第24题5分,第25题6分,共11分)24.如图,点O是△ABC内一点,连接OB,OC,并将AB,OB,OC,AC的中点D,E,F,G依次连接得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若OB⊥OC,∠EOM和∠OCB互余,OM=3,求DG的长度.【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC且EF=BC,DG∥BC且DG=BC,从而得到DE=EF,DG∥EF,再利用一组对边平行且相等的四边形是平行四边形证明即可.(2)想办法证明OM=MF=ME即可解决问题.【解答】解:(1)∵D、G分别是AB、AC的中点,∴DG∥BC,DG=BC,∵E、F分别是OB、OC的中点,∴EF∥BC,EF=BC,∴DG=EF,DG∥EF,∴四边形DEFG是平行四边形;(2)∵OB⊥OC,∴∠BOC=90°,∵∠EOM+∠COM=90°,∠EOM+∠OCB=90°,∴∠COM=∠OCB,∵EF∥BC,∴∠OFE=∠OCB,∴∠MOF=∠MFO,∴OM=MF,∵∠OEM+∠OFM=90°,∠EOM+∠MOF=90°,∴∠EOM=∠MEO,∴OM=EM,∴EF=2OM=6.由(1)有四边形DEFG是平行四边形,∴DG=EF=6.【点评】本题考查平行四边形的判定与性质,三角形的中位线,直角三角形的性质,解本题的关键是判定四边形DEFG是平行四边形.25.“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以下信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.【分析】(1)根据函数图象中的信息,分别运用待定系数法,求得y1,y2关于x的函数表达式即可;(2)当y1=y2时,15x+80=30x,当y1>y2时,15x+80>30x,当y1<y2时,15x+80<30x,分求得x的取值范围即可得出方案.【解答】解:(1)设y1=k1x+80,把点(1,95)代入,可得95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80<30x,解得x>;∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.【点评】本题主要考查了一次函数的应用,解题时注意:求正比例函数y=kx,只要一对x,y 的值;而求一次函数y=kx+b,则需要两组x,y的值.六、(本大题共1个小题,共7分)26.如图,在▱ABCD中,AB⊥AC,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转一个角度α(0°<α≤90°),分别交线段BC,AD于点E,F,连接BF.(1)如图1,在旋转的过程中,求证:OE=OF;(2)如图2,当旋转至90°时,判断四边形ABEF的形状,并证明你的结论;(3)若AB=1,BC=,且BF=DF,求旋转角度α的大小.【分析】(1)由平行四边形的性质得出∠OAF=∠AOF,OA=OC,进而判断出△AOF≌△COE,即可得出结论;(2)先判断出∠BAC=∠AOF,得出AB∥EF,即可得出结论;(3)先求出AC=2,进而得出A=1=AB,即可判断出△ABO是等腰直角三角形,进一步判断出△BFD是等腰三角形,利用等腰三角形的三线合一得出∠BOF=90°,即可得出结论.【解答】(1)证明:在▱ABCD中,AD∥BC,∴∠OAF=∠OCE,∵OA=OC,∠AOF=∠COE,∴△AOF≌△COE(ASA),∴OE=OF;(2)解:当旋转角为90°时,四边形ABEF是平行四边形,理由:∵AB⊥AC,∴∠BAC=90°,∵∠AOF=90°,∴∠BAC=∠AOF,∴AB∥EF,∵AF∥BE,∴四边形ABEF是平行四边形;(3)解:在Rt△ABC中,AB=1,BC=,∴AC==2,∴OA=1=AB,∴△ABO是等腰直角三角形,∴∠AOB=45°,∵BF=DF,∴△BFD是等腰三角形,∵四边形ABCD是平行四边形,∴OB=OD,∴OF⊥BD(等腰三角形底边上的中线是底边上的高),∴∠BOF=90°,∴∠α=∠AOF=∠BOF﹣∠AOB=45°.【点评】此题是四边形综合题,主要考查了平行四边形的性质和判定,全等三角形的判定和性质,等腰三角形的判定和性质,等腰直角三角形的性质,旋转的性质,判断出△ABO是等腰直角三角形是解本题的关键.。

2019-2020学年安徽省六安市霍邱县八年级下学期期末数学试卷 (解析版)

2019-2020学年安徽省六安市霍邱县八年级下学期期末数学试卷 (解析版)

2019-2020学年安徽六安市霍邱县八年级第二学期期末数学试卷一、选择题(共10小题).1.若有意义,则x的取值范围是()A.x≥2B.x≥﹣2C.x>2D.x>﹣22.下列运算正确的是()A.=﹣2B.(2)2=6C.+=D.×=3.用配方法解方程x2﹣6x﹣8=0时,配方结果正确的是()A.(x﹣3)2=17B.(x﹣3)2=14C.(x﹣6)2=44D.(x﹣3)2=1 4.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.6B.7C.8D.95.一个三角形三个内角之比为1:2:3,其所对三边之比为()A.1:2:3B.1::C.1::2D.1::3 6.如图,矩形ABCD的对角线AC=10,∠BOC=120°,则AB的长度是()A.5B.6C.8D.57.一组数据4,5,6,7,7,8的中位数和众数分别是()A.7,7B.7,6.5C.5.5,7D.6.5,78.为执行“均衡教育“政策,某区2017年投入教育经费2500万元,预计到2019年底三年累计投入1.2亿元,若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.2500(1+2x)=12000B.2500(1+x)2=1200C.2500+2500(1+x)+2500(1+2x)=12000D.2500+2500(1+x)+2500(1+x)2=120009.下列命题正确的是()A.一组对边相等,另一组对边平行的四边形一定是平行四边形B.对角线相等的四边形一定是矩形C.两条对角线互相垂直的四边形一定是菱形D.两条对角线相等且互相垂直平分的四边形一定是正方形10.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()A.4B.4C.10D.8二、填空题(本大题共有4小题,每小题5分,共计20分)11.计算÷的结果是.12.已知x1,x2是关于x的方程x2﹣(m﹣1)x﹣m=0的两个根,且x1+x2=3,则m的值是.13.四边形具有不稳定性.如图,矩形ABCD按箭头方向变形成平行四边形A'B'C'D',变形后∠A'=30°,若矩形ABCD的面积是9,则平行四边形A'B'C'D'的面积是14.如图,Rt△ABC中,∠ACB=90°,AC=12,BC=5,延长BC至点D,连接AD,若△ABD是以AD为其中一腰的等腰三角形,则线段DC的长等于.三、解答题(本大题共有9小题,共计90分)15.计算:.16.解方程:x2﹣6x﹣4=0.17.已知:如图,E,F为▱ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.18.已知关于x的方程x2+2(m﹣1)x+m2+5=0有两个不相等的实数根,化简:.19.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点都在网格交点上,请按要求完成下列各题.(1)线段AB的长为,BC的长为.(2)点D也在格点上,且以A,B,C,D为顶点的四边形是平行四边形.请在网格图中画出一个符合条件的平行四边形;(3)设(2)中你所画的平行四边形的面积为S,请通过计算说明;S=AC•BC.20.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,…按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明其正确性.21.某校初二学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):′1号2号3号4号5号总分甲班1009811089103500乙班891009511997500经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)计算两班比赛数据的方差哪一个小?(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述你的理由.方差的公式为.22.“疫情”期间,李晨在家制作一种工艺品,并通过网络平台进行线上销售.经过一段时间后发现:当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,设该商品的售价为x元/件(20≤x≤40).(1)请用含售价x(元/件)的代数式表示每天能售出该工艺品的件数;(2)已知每件工艺品需要20元成本,每天销售该工艺品的纯利润为900元.①求该商品的售价;②为了支持“抗疫”行动,李晨决定每销售一件该工艺品便通过网络平台自动向某救助基金会捐款0.5元,求李晨每天通过销售该工艺品面捐款的数额.23.我们给出如下定义:把对角线相等的四边形叫做“对等四边形”.如图①,在四边形ABCD中,AC=BD,四边形ABCD就是“对等四边形”.(1)下列四边形中,一定是“对等四边形”的是(填序号)①平行四边形②矩形③菱形④梯形(2)如图②,在“对等四边形”ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,求证:四边形EFGH是菱形.(3)在(2)的条件下,若四边形EFGH也是“对等四边形”,且对角线长为2,求四边形ABCD的面积.参考答案一、选择题(共10小题).1.若有意义,则x的取值范围是()A.x≥2B.x≥﹣2C.x>2D.x>﹣2【分析】二次根式有意义,被开方数是非负数.解:依题意,得x﹣2≥0,解得,x≥2.故选:A.2.下列运算正确的是()A.=﹣2B.(2)2=6C.+=D.×=【分析】根据二次根式的性质以及二次根式加法,乘法及乘方运算法则计算即可.解:A:=2,故本选项错误;B:=12,故本选项错误;C:与不是同类二次根式,不能合并,故本选项错误;D:根据二次根式乘法运算的法则知本选项正确.故选:D.3.用配方法解方程x2﹣6x﹣8=0时,配方结果正确的是()A.(x﹣3)2=17B.(x﹣3)2=14C.(x﹣6)2=44D.(x﹣3)2=1【分析】方程利用完全平方公式变形即可得到结果.解:用配方法解方程x2﹣6x﹣8=0时,配方结果为(x﹣3)2=17,故选:A.4.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.6B.7C.8D.9【分析】根据多边形的内角和公式及外角的特征计算.解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故选:C.5.一个三角形三个内角之比为1:2:3,其所对三边之比为()A.1:2:3B.1::C.1::2D.1::3【分析】求出三角形的各个内角,利用直角三角形30度角的性质解决问题即可.解:设△ABC中,∠A:∠B:∠C=1:2:3,∵∠A+∠B+∠C=180°,∴∠A=30°,∠B=60°,∠C=90°,设BC=a,则AB=2a,AC=a,∴BC:AC:AB=1::2,故选:C.6.如图,矩形ABCD的对角线AC=10,∠BOC=120°,则AB的长度是()A.5B.6C.8D.5【分析】由矩形的性质得出OA=OB=4,证明△AOB是等边三角形,得出AB=OA即可.解:∵四边形ABCD是矩形,∴OA=AC=5,OB=OD,AC=BD=10,∴OA=OB=5,∵∠BOC=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=5;故选:A.7.一组数据4,5,6,7,7,8的中位数和众数分别是()A.7,7B.7,6.5C.5.5,7D.6.5,7【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解:在这一组数据中7是出现次数最多的,故众数是7,而将这组数据从小到大的顺序排列后,处于中间位置的数是6,7,那么由中位数的定义可知,这组数据的中位数是(6+7)÷2=6.5.故选:D.8.为执行“均衡教育“政策,某区2017年投入教育经费2500万元,预计到2019年底三年累计投入1.2亿元,若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.2500(1+2x)=12000B.2500(1+x)2=1200C.2500+2500(1+x)+2500(1+2x)=12000D.2500+2500(1+x)+2500(1+x)2=12000【分析】设每年投入教育经费的年平均增长百分率为x,根据题意可得,2017年投入教育经费+2017年投入教育经费×(1+增长率)+2017年投入教育经费×(1+增长率)2=1.2亿元,据此列方程.解:设每年投入教育经费的年平均增长百分率为x,由题意得,2500+2500×(1+x)+2500(1+x)2=12000.故选:D.9.下列命题正确的是()A.一组对边相等,另一组对边平行的四边形一定是平行四边形B.对角线相等的四边形一定是矩形C.两条对角线互相垂直的四边形一定是菱形D.两条对角线相等且互相垂直平分的四边形一定是正方形【分析】A、一组对边相等,另一组对边平行的四边形不一定为平行四边形,例如等腰梯形满足一组对边相等,另一组对边平行,但不是平行四边形;B、对角线相等的四边形不一定为矩形,例题等腰梯形的对角线相等,但不是矩形,应改为对角线相等的平行四边形为矩形;C、对角线互相垂直的四边形不一定为菱形,例如:画出图形,如图所示,AC与BD垂直,但是显然ABCD不是菱形,应改为对角线互相垂直的平行四边形是菱形;D、两条对角线相等且互相垂直平分的四边形是正方形,根据题意画出相应的图形,如图所示,根据对角线互相平分,得到四边形为平行四边形,再由平行四边形的对角线相等,得到平行四边形为矩形,最后根据矩形的对角线互相垂直得到矩形为正方形.解:A、一组对边相等,另一组对边平行的四边形不一定是平行四边形,例如等腰梯形,一组对边平行,另一组对边相等,不是平行四边形,故本选项为假命题;B、对角线相等的四边形不一定是矩形,例如等腰梯形对角线相等,但不是矩形,故本选项为假命题;C、两条对角线互相垂直的四边形不一定是菱形,如图所示:AC⊥BD,但四边形ABCD不是菱形,本选项为假命题;D、两条对角线相等且互相垂直平分的四边形是正方形,已知:四边形ABCD,AC=BD,AC⊥BD,OA=OC,OB=OD,求证:四边形ABCD为正方形,证明:∵OA=OC,OB=OD,∴四边形为平行四边形,又AC=BD,∴四边形ABCD为矩形,∵AC⊥BD,∴四边形ABCD为正方形,则本选项为真命题,故选:D.10.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()A.4B.4C.10D.8【分析】连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB==4,再由勾股定理求出AC即可.解:连接AE,如图:∵EF是AC的垂直平分线,∴OA=OC,AE=CE,∵四边形ABCD是矩形,∴∠B=90°,AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE=5,∴AE=CE=5,BC=BE+CE=3+5=8,∴AB===4,∴AC===4;故选:A.二、填空题(本大题共有4小题,每小题5分,共计20分)11.计算÷的结果是3.【分析】根据二次根式的性质把化简,再根据二次根式的性质计算即可.解:.故答案为:312.已知x1,x2是关于x的方程x2﹣(m﹣1)x﹣m=0的两个根,且x1+x2=3,则m的值是4.【分析】根据方程的系数结合两根之和等于3,即可得出关于m的一元一次方程,解之即可得出m的值.解:∵x1,x2是关于x的方程x2﹣(m﹣1)x﹣m=0的两个根,且x1+x2=3,∴m﹣1=3,∴m=4.故答案为:4.13.四边形具有不稳定性.如图,矩形ABCD按箭头方向变形成平行四边形A'B'C'D',变形后∠A'=30°,若矩形ABCD的面积是9,则平行四边形A'B'C'D'的面积是【分析】根据30°角所对的直角边等于斜边的一半,可知平行四边形的高等于矩形的宽的一半,由于底不变,所以平行四边形A'B'C'D'的面积是矩形面积的一半.解:由题意可知,平行四边形A'B'C'D'的底边A'D'与矩形的长AD相等,平行四边形A'B'C'D'的高变为矩形的宽的一半,所以平行四边形A'B'C'D'的面积是矩形面积的一半.所以平行四边形A'B'C'D'的面积是.故答案为:.14.如图,Rt△ABC中,∠ACB=90°,AC=12,BC=5,延长BC至点D,连接AD,若△ABD是以AD为其中一腰的等腰三角形,则线段DC的长等于5或.【分析】先利用勾股定理求出AB的长,再分①AD=AB;②AD=BD两种情况进行讨论即可得出结论.解:∵Rt△ABC中,∠ACB=90°,AC=12,BC=5,∴AB===13.∵△ABD是以AD为其中一腰的等腰三角形,∴分两种情况:①当AD=AB时,∵AC⊥BD,∴DC=BC=5;②当AD=BD时,设DC=x,则AD=BD=5+x.∵Rt△ADC中,∠ACD=90°,∴DC2+AC2=AD2,即x2+122=(5+x)2,解得x=.综上所述,线段DC的长等于5或.故答案为:5或.三、解答题(本大题共有9小题,共计90分)15.计算:.【分析】首先利用乘法分配律计算乘法,然后化简,再算加减即可.解:原式=+﹣4=2+﹣4=﹣2+.16.解方程:x2﹣6x﹣4=0.【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.解:移项得x2﹣6x=4,配方得x2﹣6x+9=4+9,即(x﹣3)2=13,开方得x﹣3=±,∴x1=3+,x2=3﹣.17.已知:如图,E,F为▱ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.【分析】证明△AEB≌△CFD,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC.∴∠BAE=∠DCF.在△AEB和△CFD中,,∴△AEB≌△CFD(SAS).∴BE=DF.18.已知关于x的方程x2+2(m﹣1)x+m2+5=0有两个不相等的实数根,化简:.【分析】首先利用根的判别式确定m的取值范围,再化简二次根式,利用绝对值的性质计算即可.解:∵x2+2(m﹣1)x+m2+5=0有两个不相等的实数根,∴△=4(m﹣1)2﹣4(m2+5)≥0,即﹣8m﹣16≥0,解得:m<﹣2,则=|1﹣m|+|m+2|=1﹣m﹣m﹣2=﹣2m﹣1.19.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点都在网格交点上,请按要求完成下列各题.(1)线段AB的长为5,BC的长为2.(2)点D也在格点上,且以A,B,C,D为顶点的四边形是平行四边形.请在网格图中画出一个符合条件的平行四边形;(3)设(2)中你所画的平行四边形的面积为S,请通过计算说明;S=AC•BC.【分析】(1)利用勾股定理计算即可.(2)根据平行四边形的判定画出图形即可.(3)利用勾股定理的逆定理证明解:(1)由题意,AB==5,BC==2,故答案为5,.(2)如图所示.(3)由勾股定理得,又∵AB=5,,∴AC2+BC2=AB2,∴∠ACB=90°,由勾股定理逆定理得△ACB为以AC和BC为直角边的直角三角形,∵,又∵所作的平行四边形的面积为△ACB面积的两倍,∴S=AC•BC.20.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,…按照以上规律,解决下列问题:(1)写出第5个等式:5+1;(2)写出你猜想的第n个等式:(+1)(n+1﹣)=n+1(用含n的等式表示),并证明其正确性.【分析】(1)根据所给等式可得答案;(2)首先写出第n个等式,然后再利用二次根式的乘法进行计算即可.【解答】(1)解:(+1)(6﹣)=5+1,故答案为:5+1;(2)(+1)(n+1﹣)=n+1,证明:∵=∴,故答案为:(+1)(n+1﹣)=n+1.21.某校初二学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):′1号2号3号4号5号总分甲班1009811089103500乙班891009511997500经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)计算两班比赛数据的方差哪一个小?(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述你的理由.方差的公式为.【分析】(1)优秀率等于100分以上(含100分)的人数除以总人数;(2)按大小顺序排列,中间一个数或两个数的平均数为中位数;(3)由方差的公式进行计算即可;(4)根据比赛成绩的优秀率高,中位数大,方差小,综合评定,则甲班踢毽子水平较好.解:(1)甲班的优秀率为:3÷5=0.6=60%,乙班的优秀率为:2÷5=0.4=40%;(2)甲班5名学生比赛成绩的中位数是100个乙班5名学生比赛成绩的中位数是97个;(3)甲班的平均分为,乙班的平均分为==100,甲班在这次比赛中的方差为:,乙班在这次比赛中的方差为:∴S甲2<S乙2;(4)甲班定为冠军.因为甲班5名学生的比赛成绩的优秀率比乙班高,中位数比乙班大,方差比乙班小,综合评定甲班踢毽子水平较好.22.“疫情”期间,李晨在家制作一种工艺品,并通过网络平台进行线上销售.经过一段时间后发现:当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,设该商品的售价为x元/件(20≤x≤40).(1)请用含售价x(元/件)的代数式表示每天能售出该工艺品的件数;(2)已知每件工艺品需要20元成本,每天销售该工艺品的纯利润为900元.①求该商品的售价;②为了支持“抗疫”行动,李晨决定每销售一件该工艺品便通过网络平台自动向某救助基金会捐款0.5元,求李晨每天通过销售该工艺品面捐款的数额.【分析】(1)由该商品的售价结合售价每降低1元就会多售出3件,即可得出每天售出该工艺品的件数;(2)①根据总利润=每件工艺品的利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;②根据每天通过销售该工艺品面捐款的数额=0.5×每天销售的数量,即可得出结论.解:(1)∵该商品的售价为x元/件(20≤x≤40),且当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,∴每天能售出该工艺品的件数为60+3(40﹣x)=(180﹣3x)件.(2)①依题意,得:(x﹣20)(180﹣3x)=900,整理,得:x2﹣80x+1500=0,解得:x1=30,x2=50(不合题意,舍去).答:该商品的售价为30元/件.②0.5×(180﹣3×30)=45(元).答:李晨每天通过销售该工艺品面捐款的数额为45元.23.我们给出如下定义:把对角线相等的四边形叫做“对等四边形”.如图①,在四边形ABCD中,AC=BD,四边形ABCD就是“对等四边形”.(1)下列四边形中,一定是“对等四边形”的是②(填序号)①平行四边形②矩形③菱形④梯形(2)如图②,在“对等四边形”ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,求证:四边形EFGH是菱形.(3)在(2)的条件下,若四边形EFGH也是“对等四边形”,且对角线长为2,求四边形ABCD的面积.【分析】(1)由矩形的性质可求解;(2)由三角形中位线定理可得EH=BD=FG,EF=AC=GH,由“对等四边形”的性质可得AC=BD,可得EH=FG=EF=GH,可得结论;(3)先证四边形EFGH是正方形,边长为,可得EF⊥FG,EF=FG=,由三角形中位线定理解得BD⊥AC,BD=AC=,可求解.解:(1)∵矩形的对角线相等,∴矩形一定是“对等四边形”,故答案为:②;(2)证明:连接AC、BD,∵点E,F,G,H分别为边AB,BC,CD,DA的中点,∴EH=BD=FG,EF=AC=GH,∵四边形ABCD是“对等四边形”,∴AC=BD,∴EH=FG=EF=GH,∴四边形EFGH是菱形;(3)连接EG,HF,∵四边形EFGH是菱形,∴GE与HF互相垂直平分,又∵四边形EFGH是“对等四边形”,且对角线长为2,∴GE=HF=2,∴四边形EFGH是正方形,边长为,∴EF⊥FG,EF=FG=,∵点E,F,G,H分别为边AB,BC,CD,DA的中点,∴FG∥BD,FG=BD,EF∥AC,EF=AC,∴BD⊥AC,BD=AC=,∴四边形ABCD的面积等于AC×BD=4.。

2019-2020学年济宁市嘉祥县八年级下期末数学试卷((有答案))(已审阅)

2019-2020学年济宁市嘉祥县八年级下期末数学试卷((有答案))(已审阅)

山东省济宁市嘉祥县八年级(下)期末数学试卷一、选择题:(本大题共10个小题.每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.的倒数是()A.B.C.﹣3D.2.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是()A.2B.3C.5D.73.下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10B.5,12,13C.9,40,41D.7,9,124.下列函数关系式:①y=2x;②y=2x+11;③y=3﹣x;④y=.其中一次函数的个数是()A.1个B.2个C.3个D.4个5.下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.6.下列说法中,正确的是()A.对角线互相垂直且相等的四边形是正方形B.对角线互相平分的四边形是菱形C .对角线互相垂直的四边形是平行四边形D .对角线相等的平行四边形是矩形7.若直线y =kx +b 经过一、二、四象限,则直线y =bx ﹣k 的图象只能是图中的( )A .B .C .D .8.如图所示,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,BN ⊥AN 于点N ,且AB =8,MN =3,则AC 的长是( )A .12B .14C .16D .189.已知点(﹣2,y 1),(1,0),(3,y 2)都在一次函数y =kx ﹣2的图象上,则y 1,y 2,0的大小关系是( ) A .0<y 1<y 2B .y 1<0<y 2C .y 1<y 2<0D .y 2<0<y 110.在直角三角形中,自锐角顶点所引的两条中线长为和,那么这个直角三角形的斜边长为( )A .6B .7C .2D .2二、填空题(本大题共5小题,每小题3分,共15分.)11.有一组数据如下:3,a ,4,6,7,它们的平均数是5,那么a = .12.已知y =,则x y 的值为 .13.在菱形ABCD 中,两条对角线AC 与BD 的和是14.菱形的边AB =5,则菱形ABCD 的面积是 .14.已知点P (1,2)关于x 轴的对称点为P ′,且P ′在直线y =kx +3上,把直线y =kx +3的图象向上平移2个单位,所得的直线解析式为.15.如图①,在▱ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA运动至点A 停止,设点P运动的路程为xcm,△PAB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为.三、解答题:(本大题共7小题,共55分)16.(6分)计算:.17.(6分)已知:如图,在矩形ABCD中,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF ∥BE.求证:四边形BECF是正方形.18.(7分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)19.(8分)已知:一次函数y=(3﹣m)x+m﹣5.(1)若一次函数的图象过原点,求实数m的值;(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.20.(8分)如图,小明在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB为3.3m,在入口的一侧安装了停止杆CD,其中AE为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C恰好与地面接触.此时CA为0.7m.在此状态下,若一辆货车高3m,宽2.5m,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过计算说明.(参考数据:≈1.7)21.(9分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD 交于点O,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.22.(11分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A (4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.2019-2020学年山东省济宁市嘉祥县八年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共10个小题.每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.的倒数是()A.B.C.﹣3D.【分析】利用倒数定义得到结果,化简即可.【解答】解:的倒数为=.故选:D.【点评】此题考查了分母有理化,熟练掌握运算法则是解本题的关键.2.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是()A.2B.3C.5D.7【分析】根据众数的定义先求出x的值,再根据中位数的定义即可得出答案.【解答】解:∵数据3,2,5,3,7,5,x的众数是5,∴5出现的次数是3次,∴x=5,数据重新排列是:2,3,3,5,5,5,7,由于7个数中5在正中间,所以中位数是5.故选:C.【点评】本题考查了众数、中位数,解题的关键是理解众数、中位数的概念,并根据概念求出一组数据的众数、中位数.3.下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10B.5,12,13C.9,40,41D.7,9,12【分析】根据勾股定理的逆定理对四个答案进行逐一判断即可.【解答】解:A、∵62+82=102=100,∴能构成直角三角形;B、52+122=132=169,∴能构成直角三角形;C、92+402=412=1681,∴能构成直角三角形;D、∵72+92≠122,∴不能构成直角三角形.故选:D.【点评】本题考查的是用勾股定理的逆定理判断三角形的形状,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形.4.下列函数关系式:①y=2x;②y=2x+11;③y=3﹣x;④y=.其中一次函数的个数是()A.1个B.2个C.3个D.4个【分析】直接利用一次函数的定义进而得出答案.【解答】解:①y=2x,是一次函数,符合题意;②y=2x+11,是一次函数,符合题意;③y=3﹣x,是一次函数,符合题意;④y=,是反比函数,不符合题意;故选:C.【点评】此题主要考查了一次函数的定义,正确把握定义是解题关键.5.下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.【分析】根据函数的意义即可求出答案.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C不满足条件.故选:C.【点评】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.6.下列说法中,正确的是()A.对角线互相垂直且相等的四边形是正方形B.对角线互相平分的四边形是菱形C.对角线互相垂直的四边形是平行四边形D.对角线相等的平行四边形是矩形【分析】根据平行四边形、菱形、正方形、矩形的性质和判定逐个判断即可.【解答】解:A、对角线互相平分、垂直且相等的四边形是正方形,错误;B、对角线互相平分、垂直的四边形是菱形,错误;C、对角线互相平分的四边形是平行四边形,错误;D、对角线相等的平行四边形是矩形,正确;故选:D.【点评】本题考查了平行四边形、菱形、正方形、矩形的性质和判定的应用,能熟记平行四边形、菱形、正方形、矩形的性质和判定的内容是解此题的关键.7.若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的()A.B.C.D.【分析】由直线经过的象限结合四个选项中的图象,即可得出结论.【解答】解:∵直线y=kx+b经过一、二、四象限,∴k<0,b>0,∴﹣k>0,∴选项B中图象符合题意.故选:B.【点评】本题考查了一次函数图象与系数的关系,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.8.如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=8,MN =3,则AC的长是()A.12B.14C.16D.18【分析】延长BN交AC于D,证明△ANB≌△AND,根据全等三角形的性质、三角形中位线定理计算即可.【解答】解:延长BN交AC于D,在△ANB和△AND中,,∴△ANB≌△AND,∴AD=AB=8,BN=ND,∵M是△ABC的边BC的中点,∴DC=2MN=6,∴AC=AD+CD=14,故选:B.【点评】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.9.已知点(﹣2,y1),(1,0),(3,y2)都在一次函数y=kx﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y1【分析】先根据点(1,0)在一次函数y=kx﹣2的图象上,求出k=2>0,再利用一次函数的性质判断出函数的增减性,然后根据三点横坐标的大小得出结论.【解答】解:∵点(1,0)在一次函数y=kx﹣2的图象上,∴k﹣2=0,∴k=2>0,∴y随x的增大而增大,∵﹣2<1<3,∴y1<0<y2.故选:B.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了一次函数的性质.10.在直角三角形中,自锐角顶点所引的两条中线长为和,那么这个直角三角形的斜边长为()A.6B.7C.2D.2【分析】根据题意画出图形,利用勾股定理解答即可.【解答】解:设AC=b,BC=a,分别在直角△ACE与直角△BCD中,根据勾股定理得到:,两式相加得:a2+b2=36,根据勾股定理得到斜边==6.故选:A.【点评】本题是根据勾股定理,把求直角三角形的斜边长的问题转化为求两直角边的平方和的问题.二、填空题(本大题共5小题,每小题3分,共15分.)11.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么a=5.【分析】利用平均数的定义,列出方程即可求解.【解答】解:由题意知,3,a,4,6,7的平均数是5,则=5,∴a=25﹣3﹣4﹣6﹣7=5.故答案为:5.【点评】本题主要考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数,难度适中.12.已知y=,则x y的值为.【分析】根据二次根是有意义的条件:被开方数是非负数即可求得x的值,进而求得y的值,然后代入求解即可.【解答】根据题意得:,解得:x=3,则y=﹣2,故x y=3﹣2=.故答案是:.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0.13.在菱形ABCD中,两条对角线AC与BD的和是14.菱形的边AB=5,则菱形ABCD的面积是24.【分析】根据菱形的对角线互相垂直,利用勾股定理列式求出AC•BD,再根利用菱形的面积等于对角线乘积的一半列式进行计算即可得解.【解答】解:∵四边形ABCD是菱形,∴OA=AC,OB=BD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OA2+OB2=AB2,即(AC+BD)2﹣AC•BD=AB2,×142﹣AC•BD=52,AC•BD=48,故菱形ABCD的面积是48÷2=24.故答案为:24.【点评】本题考查了菱形的面积公式,菱形的对角线互相垂直平分线的性质,勾股定理的应用,比熟记性质是解题的关键.14.已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为y=﹣5x+5.【分析】直接利用关于x轴对称点的性质得出P′点坐标,再求出k的值,再利用一次函数平移的性质得出答案.【解答】解:∵点P(1,2)关于x轴的对称点为P′,∴P′(1,﹣2),∵P′在直线y=kx+3上,∴﹣2=k+3,解得:k=﹣5,则y=﹣5x+3,∴把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=﹣5x+5.故答案为:y=﹣5x+5.【点评】此题主要考查了一次函数图形与几何变换,正确掌握平移规律是解题关键.15.如图①,在▱ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为xcm,△PAB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为14.【分析】根据图象点P到达C时,△PAB的面积为6,由BC=4,∠B=120°可求得AB =6,H横坐标表示点P从B开始运动到A的总路程,则问题可解.【解答】解:由图象可知,当x=4时,点P到达C点,此时△PAB的面积为6∵∠B=120°,BC=4∴解得AB=6H点表示点P到达A时运动的路程为4+6+4=14故答案为:14【点评】本题为动点问题的函数图象探究题,考查了一次函数图象性质,解答时注意研究动点到达临界点前后函数图象的变化.三、解答题:(本大题共7小题,共55分)16.(6分)计算:.【分析】利用二次根式的乘法法则和零指数幂、负整数指数幂的意义计算.【解答】解:原式=﹣1﹣2+=4﹣3+=.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.(6分)已知:如图,在矩形ABCD中,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF ∥BE.求证:四边形BECF是正方形.【分析】先由BF∥CE,CF∥BE得出四边形BECF是平行四边形,又因为∠BEC=90°得出四边形BECF是矩形,BE=CE邻边相等的矩形是正方形.【解答】证明:∵BF∥CE,CF∥BE∴四边形BECF是平行四边形,又∵在矩形ABCD中,BE平分∠ABC,CE平分∠DCB∴∠EBC=∠ECB=45°∴∠BEC=90°,BE=CE∴四边形BECF是正方形.【点评】本题主要考查平行四边形及正方形的判定.18.(7分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)【分析】(1)观察表格可知甲运动员测试成绩的众数和中位数都是7分;(2)易知=7,=7,=6.3,根据方差的意义不难判断.【解答】解:(1)甲运动员测试成绩中7出现最多,故甲的众数为7;甲成绩重新排列为:5、6、7、7、7、7、7、8、8、8,∴甲的中位数为=7,∴甲测试成绩的众数和中位数都是7分;(2)=×(7+6+8+7+7+5+8+7+8+7)=7,=×(6+6+7+7+7+7+7+7+8+8)=7,=×(5×2+6×4+7×3+8×1)=6.3,∵=,S甲2>S乙2,∴选乙运动员更合适.【点评】本题考查列表法、条形图、折线图、中位数、平均数、方差等知识,熟练掌握基本概念是解题的关键.19.(8分)已知:一次函数y=(3﹣m)x+m﹣5.(1)若一次函数的图象过原点,求实数m的值;(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.【分析】(1)由一次项系数非零及一元一次函数图象上点的坐标特征,可得出关于m的一元一次不等式及一元一次方程,解之即可得出实数m的值;(2)由一次函数的图象经过第二、三、四象限,利用一次函数图象与系数的关系可得出关于m的一元一次不等式组,解之即可得出实数m的取值范围.【解答】解:(1)∵一次函数y=(3﹣m)x+m﹣5的图象过原点,∴,解得:m=5.(2)∵一次函数y=(3﹣m)x+m﹣5的图象经过第二、三、四象限,∴,解得:3<m<5.【点评】本题考查了一次函数图象与系数的关系以及一次函数图象上点的坐标特征,解题的关键是:(1)根据一次项系数非零及一元一次函数图象上点的坐标特征,找出关于m的一元一次不等式及一元一次方程;(2)牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”.20.(8分)如图,小明在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB为3.3m,在入口的一侧安装了停止杆CD,其中AE为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C恰好与地面接触.此时CA为0.7m.在此状态下,若一辆货车高3m,宽2.5m,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过计算说明.(参考数据:≈1.7)【分析】直接利用已知得出CF,CG的长,再利用勾股定理得出CF的长进而得出答案.【解答】解:不能通过.如图,在AB之间找一点F,使BF=2.5m,过点F作GF⊥AB交CD于点G,∵AB=3.3m,CA=0.7m,BF=2.5m,∴CF=AB﹣BF+CA=1.5m,∵∠ECA=60°,∠CGF=30°∴CG=2CF=3m,∴GF===≈2.55(m),∵2.55<3∴这辆货车在不碰杆的情况下,不能从入口内通过.【点评】此题主要考查了勾股定理的应用,正确得出CG的长是解题关键.21.(9分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD 交于点O,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.【分析】(1)想办法证明∠BAD=∠ABC=∠ADC=90°即可解决问题;(2)作OF⊥BC于F.求出EC、OF即可解决问题;【解答】(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC=90°,∴∠BAD=90°,∴∠BAD=∠ABC=∠ADC=90°,∴四边形ABCD是矩形.(2)作OF⊥BC于F.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=CD=1,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△OEC的面积=•EC•OF=1.【点评】本题考查矩形的性质、三角形的面积、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题,属于中考常考题型.22.(11分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A (4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.【分析】(1)利用待定系数法即可求得函数的解析式;(2)求得C的坐标,即OC的长,利用三角形的面积公式即可求解;(3)当△OMC的面积是△OAC的面积的时,根据面积公式即可求得M的横坐标,然后代入解析式即可求得M的坐标.【解答】解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:,则直线的解析式是:y=﹣x+6;//// (2)在y =﹣x +6中,令x =0,解得:y =6,S △OAC=×6×4=12;(3)设OA 的解析式是y =mx ,则4m =2,解得:m=,则直线的解析式是:y=x ,∵当△OMC 的面积是△OAC的面积的时,∴当M的横坐标是×4=1,在y=x 中,当x =1时,y=,则M 的坐标是(1,);在y =﹣x +6中,x =1则y =5,则M 的坐标是(1,5).则M 的坐标是:M 1(1,)或M 2(1,5).当M 的横坐标是:﹣1,在y =﹣x +6中,当x =﹣1时,y =7,则M 的坐标是(﹣1,7);综上所述:M 的坐标是:M 1(1,)或M 2(1,5)或M 3(﹣1,7).【点评】本题主要考查了用待定系数法求函数的解析式以及三角形面积求法等知识,利用M点横坐标为±1分别求出是解题关键.。

2019-2020学年福建省漳州市八年级下学期期末数学试卷 (解析版)

2019-2020学年福建省漳州市八年级下学期期末数学试卷 (解析版)

2019-2020学年福建省漳州市八年级第二学期期末数学试卷一、选择题(共10小题).1.下列各式中,属于分式的为()A.B.C.D.2.如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,关于该图形的对称性,下列说法正确的是()A.是中心对称图形但不是轴对称图形B.是轴对称图形但不是中心对称图形C.既是中心对称图形也是轴对称图形D.既不是中心对称图形也不是轴对称图形3.若一个等腰三角形的两边长分别为2,4,则第三边的长为()A.2 B.3 C.4 D.2或44.下列各式由左到右的变形中,属于分解因式的是()A.a(m+n)=am+anB.10x2﹣5x=5x(2x﹣1)C.6a2b3=2a2b•3b2D.x2﹣16+6x=(x+4)(x﹣4)+6x5.若a>b,则下列关系式不成立的是()A.a﹣5>b﹣5 B.6a>6b C.﹣a>﹣b D.a﹣b>06.若分式的值等于0,则x的值为()A.2 B.0 C.﹣1 D.7.若P是△ABC所在平面内的点,且PA=PB=PC,则下列说法正确的是()A.点P是△ABC三边垂直平分线的交点B.点P是△ABC三条角平分线的交点C.点P是△ABC三边上高的交点D.点P是△ABC三边中线的交点8.在平面直角坐标系中,已知点A(﹣1,2),B(1,0),平移线段AB,使点A落在点A1(2,3)处,则点B的对应点B1的坐标为()A.(﹣2,﹣1)B.(4,1)C.(4,0)D.(﹣2,1)9.下列计算正确的是()A.1+=B.C.a÷b•=a D.10.如图,已知点A(2,1),B(0,2),将线段AB绕点M逆时针旋转到A1B1,点A与A1是对应点,则点M的坐标是()A.(0,﹣2)B.(1,﹣1)C.(0,0)D.(﹣1,﹣1)二、填空题(共6小题).11.因式分解:a2﹣4=.12.在平面直角坐标系中,点P(3,﹣5)关于原点对称的点的坐标是.13.若分式在实数范围内有意义,则x的取值范围是.14.如图,一次函数y=kx+b的图象经过点A(﹣1,2),则不等式kx+b<2的解集为.15.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠BAC =120°,∠C=40°,则∠BAD的大小为度.16.如图,在△ABC中,∠B=45°,∠C=30°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若BD=,则CD的长为.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.请在答题纸的相应位置解答.17.因式分解:(1)mx+my;(2)2x2+4xy+2xy2.18.如图,已知AB=CD,DE⊥AC,BF⊥AC,垂足分别是点E,F,AE=CF.求证:AB∥CD.19.解不等式组:.20.先化简,再求值:(1﹣)÷,其中a=+2.21.证明:等腰三角形的两腰上的中线相等.22.在Rt△ABC中,∠C=90°.(1)在CB上找一点E,使EB=EA;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若AC=4,BC=8,求CE的长.23.已知一次函数y1=kx+2k﹣4的图象过一、三、四象限.(1)求k的取值范围;(2)对于一次函数y2=ax﹣a+1(a≠0),若对任意实数x,y1<y2都成立,求k的取值范围.24.如图,已知△ABC是等边三角形,在△ABC外有一点D,连接AD,BD,CD,将△ACD绕点A按顺时针方向旋转得到△ABE,AD与BE交于点F,∠BFD=97°.(1)求∠ADC的大小;(2)若∠BDC=7°,BD=3,CD=5,求AD的长.25.某药店销售A,B两种口罩,每个A种口罩比B种进价多0.5元,用240元购进A种口罩与用180元购进B种口罩的数量相同.(1)求A,B两种口罩每个的进价;(2)药店计划购进A,B两种口罩共10000个,其中A种口罩的进货量不多于3000个,且B种口罩进货量不超过A种口罩进货量的3倍.设购进A种口罩m个.①求m的取值范围;②若A种口罩每个售价3元,B种口罩每个售价2元,药店决定从销售A种口罩的利润中按每个捐款a(0.4<a<0.6)元给红十字会,做为慈善基金.设药店售完10000个口罩并捐款后获得的利润为W元,求药店获得利润W最大时的进货方案.参考答案一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题纸的相应位置填涂.1.下列各式中,属于分式的为()A.B.C.D.解:A、的分母中不含有字母,因此它们是整式,而不是分式;B、的分母中不含有字母,因此它们是整式,而不是分式;C、分母中含有未知数,所以它是分式;D、的分母中不含有字母,因此它们是整式,而不是分式;故选:C.2.如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,关于该图形的对称性,下列说法正确的是()A.是中心对称图形但不是轴对称图形B.是轴对称图形但不是中心对称图形C.既是中心对称图形也是轴对称图形D.既不是中心对称图形也不是轴对称图形解:该图形是中心对称图形但不是轴对称图形.故选:A.3.若一个等腰三角形的两边长分别为2,4,则第三边的长为()A.2 B.3 C.4 D.2或4解:①4是腰长时,三角形的三边分别为4、4、2,能组成三角形,所以,第三边为4;②4是底边时,三角形的三边分别为2、2、4,∵2+2=4,∴不能组成三角形,综上所述,第三边为4.故选:C.4.下列各式由左到右的变形中,属于分解因式的是()A.a(m+n)=am+anB.10x2﹣5x=5x(2x﹣1)C.6a2b3=2a2b•3b2D.x2﹣16+6x=(x+4)(x﹣4)+6x解:A、该变形是整式乘法,不是因式分解,故本选项不符合题意;B、符合因式分解的概念,故本选项符合题意;C、该变形不是多项式分解因式,故本选项不符合题意;D、该变形没有分解成几个整式的积的形式,故本选项不符合题意.故选:B.5.若a>b,则下列关系式不成立的是()A.a﹣5>b﹣5 B.6a>6b C.﹣a>﹣b D.a﹣b>0 解:A、若a>b,则a﹣5>b﹣5,原变形成立,故本选项不符合题意;B、若a>b,则6a>6b,原变形成立,故本选项不符合题意;C、若a>b,则﹣a<﹣b,原变形不成立,故本选项符合题意;D、若a>b,则a+2>b+2,原变形成立,故本选项不符合题意;故选:C.6.若分式的值等于0,则x的值为()A.2 B.0 C.﹣1 D.解:∵分式的值等于0,∴2x﹣1=0且x+1≠0,解得:x=.故选:D.7.若P是△ABC所在平面内的点,且PA=PB=PC,则下列说法正确的是()A.点P是△ABC三边垂直平分线的交点B.点P是△ABC三条角平分线的交点C.点P是△ABC三边上高的交点D.点P是△ABC三边中线的交点解:∵PA=PB,∴点P在线段AB的垂直平分线上,∵PB=PC,∴点P在线段BC的垂直平分线上,∴点P是△ABC三边垂直平分线的交点,故选:A.8.在平面直角坐标系中,已知点A(﹣1,2),B(1,0),平移线段AB,使点A落在点A1(2,3)处,则点B的对应点B1的坐标为()A.(﹣2,﹣1)B.(4,1)C.(4,0)D.(﹣2,1)解:由点A(﹣1,2)平移后A1(2,3)可得坐标的变化规律是:横坐标+3,纵坐标+1,∴点B的对应点B1的坐标(4,1).故选:B.9.下列计算正确的是()A.1+=B.C.a÷b•=a D.解:(A)原式=,故A错误.(B)原式=+=,故B错误.(C)原式=aו=,故C错误.故选:D.10.如图,已知点A(2,1),B(0,2),将线段AB绕点M逆时针旋转到A1B1,点A与A1是对应点,则点M的坐标是()A.(0,﹣2)B.(1,﹣1)C.(0,0)D.(﹣1,﹣1)解:如图,点M的坐标是(1,﹣1),故选:B.二、填空题:本题共6小题,每小题4分,共24分.请将答案填入答题纸的相应位置.11.因式分解:a2﹣4=(a+2)(a﹣2).解:a2﹣4=(a+2)(a﹣2).故答案为:(a+2)(a﹣2).12.在平面直角坐标系中,点P(3,﹣5)关于原点对称的点的坐标是(﹣3,5).解:点P(3,﹣5)关于原点对称的点的坐标是(﹣3,5),故答案为:(﹣3,5).13.若分式在实数范围内有意义,则x的取值范围是x≠2 .解:∵分式在实数范围内有意义,∴x的取值范围是:x≠2.故答案为:x≠2.14.如图,一次函数y=kx+b的图象经过点A(﹣1,2),则不等式kx+b<2的解集为x >﹣1 .解:∵次函数y=kx+b的图象经过第一、二、四象限,∴y随x的增大而减小,∵点A(﹣1,2)在直线y=kx+b上,∴当x=﹣1时,y=kx+b=2,∴当x>﹣1时,kx+b<2,即不等式kx+b<2的解集为x>﹣1.故答案为x>﹣1.15.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠BAC =120°,∠C=40°,则∠BAD的大小为80 度.解:∵∠BAC=120°,∠C=40°,∴∠B=180°﹣∠BAC﹣∠C=20°,∵AB=BD,∴∠BAD=∠ADB=(180°﹣∠B)÷2=80°,故答案为:80.16.如图,在△ABC中,∠B=45°,∠C=30°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若BD=,则CD的长为 2 .解:过点D作DF⊥AC于F,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DE=DF,在Rt△BED中,∠B=45°,∴2DE2=BD2=()2=2,∴DE2=1,∴DF=DE=1,在Rt△CDF中,∠C=30°,∴CD=2DF=2,故答案为:2.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.请在答题纸的相应位置解答.17.因式分解:(1)mx+my;(2)2x2+4xy+2xy2.解:(1)mx+my=m(x+y);(2)2x2+4xy+2xy2=2(x2+2xy+xy2)=2(x+y)2.18.如图,已知AB=CD,DE⊥AC,BF⊥AC,垂足分别是点E,F,AE=CF.求证:AB∥CD.解:如图,∵DE⊥AC,BF⊥AC,∴∠DEC=∠BFA=90°.又∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在Rt△AFB与Rt△CED中,,∴△AFB≌△CED(HL).∴∠A=∠C.∴AB∥CD.19.解不等式组:.解:,由①得:x<4,由②得;x≥﹣,则原不等式组的解集为﹣≤x<4.20.先化简,再求值:(1﹣)÷,其中a=+2.解:(1﹣)÷===,当a=+2时,原式==.21.证明:等腰三角形的两腰上的中线相等.【解答】已知:△ABC中,AB=AC,AD=DC,AE=EB,求证:BD=CE.证明:∵AB=AC,AD=DC,AE=EB,∴DC=BE,∠DCB=∠EBC.∵BC=CB,∴△BDC≌△CEB(SAS).∴BD=CE.即等腰三角形的两腰上的中线相等.22.在Rt△ABC中,∠C=90°.(1)在CB上找一点E,使EB=EA;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若AC=4,BC=8,求CE的长.解:(1)如图,点E为所作;(2)设CE=x,则EB=AE=8﹣x,在Rt△ACE中,∵AC2+BC2=AE2,∴42+x2=(8﹣x)2,解得x=3,即CE的长为3.23.已知一次函数y1=kx+2k﹣4的图象过一、三、四象限.(1)求k的取值范围;(2)对于一次函数y2=ax﹣a+1(a≠0),若对任意实数x,y1<y2都成立,求k的取值范围.解:(1)由题意得,解得0<k<2,∴k的取值范围是0<k<2;(2)依题意,得k=a,∴y2=kx﹣k+1,∵对任意实数x,y1<y2都成立,∴2k﹣4<﹣k+1,解得k<,∵0<k<2,∴k的取值范围是0<k.24.如图,已知△ABC是等边三角形,在△ABC外有一点D,连接AD,BD,CD,将△ACD绕点A按顺时针方向旋转得到△ABE,AD与BE交于点F,∠BFD=97°.(1)求∠ADC的大小;(2)若∠BDC=7°,BD=3,CD=5,求AD的长.解:(1)∵将△ACD绕点A按顺时针方向旋转得到△ABE,∴AB=AC,∠ADC=∠E,∠CAB=∠DAE=60°,∵∠BFD=97°=∠AFE,∴∠E=180°﹣97°﹣60°=23°,∴∠ADC=∠E=23°;(2)如图,连接DE,∵AD=AE,∠DAE=60°,∴△AED是等边三角形,∴∠ADE=60°,AD=DE,∵将△ACD绕点A按顺时针方向旋转得到△ABE,∴△ACD≌△ABE,∴CD=BE=5,∵∠BDC=7°,∠ADC=23°,∠ADE=60°,∴∠BDE=90°,∴DE===4,∴AD=DE=4.25.某药店销售A,B两种口罩,每个A种口罩比B种进价多0.5元,用240元购进A种口罩与用180元购进B种口罩的数量相同.(1)求A,B两种口罩每个的进价;(2)药店计划购进A,B两种口罩共10000个,其中A种口罩的进货量不多于3000个,且B种口罩进货量不超过A种口罩进货量的3倍.设购进A种口罩m个.①求m的取值范围;②若A种口罩每个售价3元,B种口罩每个售价2元,药店决定从销售A种口罩的利润中按每个捐款a(0.4<a<0.6)元给红十字会,做为慈善基金.设药店售完10000个口罩并捐款后获得的利润为W元,求药店获得利润W最大时的进货方案.解:(1)设A口罩每个的进价x元,则B口罩每个的进价(x﹣0.5)元,根据题意,得,解得x=2,经检验,x=2是原方程的解并且符合题意.∴B口罩每个的进价2﹣0.5=1.5(元),答:A口罩每个的进价2元,则B口罩每个的进价1.5元.(2)①依题意得,10000﹣m≤3m,解得m≥2500,∵m≤3000,∴m的取值范围为2500≤x≤3000;②由①,得2500≤x≤3000;依题意,得W=(3﹣2﹣a)m+(2﹣1.5)(10000﹣m)=(0.5﹣a)m+5000.(Ⅰ)当0.4<a<0.5时,∵0.5﹣a>0,∴W随m的增大而增大,∴当m=3000时,W取最大值;(Ⅱ)当a=0.5时,W的值为5000;(Ⅲ)当0.5<a<0.6时,∵0.5﹣a<0,∴W随m的增大而减小,∴当m=2500时,W取最大值;综上所述,当0.4<a<0.5时,药店购A种口罩3000个,B种口罩7000个;当a=0.5时,药店进A种口罩和B种口罩在符合题意的购买范围内的整数均可;当0.5<a<0.6时,药店购A种口罩2500个,B种口罩7500个.。

天津市部分区2019-2020八年级上学期期末数学试卷及答案解析

天津市部分区2019-2020八年级上学期期末数学试卷及答案解析

天津市部分区2019-2020⼋年级上学期期末数学试卷及答案解析天津市部分区2019-2020⼋年级上学期期末数学试卷⼀、选择题(本⼤题共12⼩题,共36.0分)1. 下⾯四个图形中,属于轴对称图形的是( )A. B. C. D.2. 在△ABC 中,AB =5,AC =8,则BC 长可能是( )A. 3B. 8C. 13D. 143. 医学研究发现⼀种新病毒的直径约为0.000043毫⽶,则这个数⽤科学记数法表⽰为( )A. 0.43×10?4B. 0.43×104C. 4.3×10?4D. 4.3×10?5 4. 计算(23)2013×(?32)2014的结果是( )A. 23B. ?23C. 32D. ?32 5. 在式⼦3y x ,a π,3x+1,x+13,b 2b 中,分式有( )A. 1个B. 2个C. 3个D. 4个6. 如图,点D 在△ABC 边BC 的延长线上,CE 平分∠ACD ,∠A =80°,∠B =40°,则∠ACE 的⼤⼩是( )A. 30°B. 40°C. 50°D. 60°7. ⼀个多边形的内⾓和是外⾓和的2倍,这个多边形的边数为( )B. 6C. 7D. 88. 下列计算正确的是( )A. a 2?a 3=a 6B. (?2ab)2=4a 2b 2C. (a 2)3=a 5D. 3a 3b 2÷a 2b 2=3ab9. 如图,点E 、F 在AC 上,AD =BC ,AD//BC ,则添加下列哪⼀个条件后,仍⽆法判定△ADF≌△CBE 的是( )A. DF=BEB. ∠D=∠BC. AE=CFD.DF//BE10.如图,△ABC的⾯积为24,AD是BC边的中线,E为AD的中点,则△DCE的⾯积为()A. 5B. 6C. 7D. 811.如图,在长⽅形纸⽚ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对⾓线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A. 3√3B. 6C. 4D. 512.⼩明要到距家2000⽶的学校上学,⼀天⼩明出发8分钟后,他的爸爸从家出发,在距离学校200⽶的地⽅追上他,已知爸爸⽐⼩明的速度快80⽶/分,求⼩明的速度,若设⼩明的速度是x⽶/分,则根据题意所列⽅程正确的是()A. 1800x?80?1800x=8 B. 1800=8+1800x?80C. 1800x+80?1800x=8 D. 1800x=8+1800x+80⼆、填空题(本⼤题共6⼩题,共18.0分)13.在平⾯直⾓坐标系中,点A(1,?3)关于x轴的对称点的坐标为________.14.若分式x?12x+3有意义,则x的取值范围是______ .15.如图,在Rt△ABC中,∠C=90°,∠ABC=60°,AB的垂直平分线分别交AB与AC于点D和点E,若CE=2,则AB的长为______16.(1)若m+n=10,mn=24,则m2+n2=____________.(2)若a?b=13,a2?b2=39,则(a+b)2=____________.17.如图,点D、E分别在等边△ABC的边BC、AC上,且AE=CD,AD与BE相交于点F,则∠BFD的度数为______ .18.如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP=6,△PMN 的周长最⼩值为______.三、解答题(本⼤题共7⼩题,共46.0分)19.(1)分解因式:x3?x(2)分解因式:(x?2)2?2x+420.化简:(1)(4a?b)?(?2b)2(2)(x+2y?3)(x?2y+3)21.如图,点C在线段BD上,且AB⊥BD,DE⊥BD,AC⊥CE,BC=DE.求证:AB=CD.22.计算:m2?6m+9m2?4?m?2 3?m23.解分式⽅程:2x2?4?x2?x=1.24.某⼯⼚现在平均每天⽐原计划多⽣产50台机器,现在⽣产600台机器所需时间与原计划⽣产450机器所需时间相同,求该⼯⼚原来平均每天⽣产多少台机器?25.等腰Rt△ABC中,AC=AB,∠BAC=90°,点D、E是AC上两点且AD=CE,AF⊥BD于点G,交BC于点F,连接EF,求证:∠1=∠2-------- 答案与解析 --------1.答案:C解析:解:A、不属于轴对称图形,故此选项错误;B、不属于轴对称图形,故此选项错误;C、属于轴对称图形,故此选项正确;D、不属于轴对称图形,故此选项错误;故选:C.根据轴对称图形的概念进⾏判断即可.本题考查的是轴对称图形的概念:如果⼀个图形沿⼀条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.2.答案:B解析:本题考查了三⾓形三边的关系:三⾓形任意两边之和⼤于第三边;三⾓形的两边差⼩于第三边.根据三⾓形三边的关系得到3解:∵AB=5,AC=8,∴3故选:B.3.答案:D解析:本题考查⽤科学记数法表⽰较⼩的数,根据科学计数法的表⽰法则求解即可.解:0.000043=4.3×10?5,故选D.4.答案:C解析:解:原式=[23×(?32)]2013×(?32)=32.故选C.根据幂的乘⽅和积的乘⽅的运算法则求解.本题考查了幂的乘⽅和积的乘⽅,解答本题的关键是掌握幂的乘⽅和积的乘⽅的运算法则.5.答案:C解析:本题主要考查分式的定义,注意π不是字母,是常数,所以aπ、x+13不是分式,是整式.判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解:3yx ,3x+1,b2b是分式.故选C.6.答案:D解析:本题考查了三⾓形的外⾓性质及⾓平分线的定义,由三⾓形的外⾓性质可得∠ACD的度数,再根据⾓平分线性质即可求得∠ACE的⼤⼩.解:∵点D在△ABC边BC的延长线上,∠A=80°,∠B=40°,∴∠ACD=120°∵CE平分∠ACD,∴∠ACE=12∠ACD=60°,故答案选D.7.答案:B解析:解:设这个多边形是n边形,根据题意,得(n?2)×180°=2×360,解得:n=6.即这个多边形为六边形.故选:B.多边形的外⾓和是360°,则内⾓和是2×360=720°.设这个多边形是n边形,内⾓和是(n?2)?180°,这样就得到⼀个关于n的⽅程组,从⽽求出边数n的值.本题考查了多边形的内⾓与外⾓,熟记内⾓和公式和外⾓和定理并列出⽅程是解题的关键.根据多边形的内⾓和定理,求边数的问题就可以转化为解⽅程的问题来解决.8.答案:B解析:解:A、a2?a3=a5,故正确;B、正确;C、(a2)3=a6,故错误;D、3a2b2÷a2b2=3,故错误;故选:B.根据同底数幂的乘法、积的乘⽅、幂的乘⽅、整式的除法,即可解答.本题考查了同底数幂的乘法、积的乘⽅、幂的乘⽅、整式的除法,解决本题的关键是熟记同底数幂的乘法、积的乘⽅、幂的乘⽅、整式的除法的法则.9.答案:A解析:本题主要考查全等三⾓形的判定,掌握全等三⾓形的判定⽅法是解题的关键,即SSS、SAS、ASA、AAS和HL.由AD//BC可得∠A=∠C,再结合AD=BC,可再添加⼀组⾓相等,可添加AF=CE,可得出答案.解:∵AD//BC,∴∠A=∠C,且AD=BC,∴当DF=BE时,满⾜SSA,⽆法判定△ADF≌△CBE;当∠D=∠B时,满⾜ASA,可判定△ADF≌△CBE;当AE=CF时,可得AF=CE,满⾜SAS,可判定△ADF≌△CBE;当DF//BE时,可得∠AFD=∠BEC,满⾜AAS,可判定△ADF≌△CBE;故选A.10.答案:B解析:解:∵AD是BC边的中线,∴BD=CD,∵△ABC的⾯积为24,×S△ABC=12,∴S△ABD=S△ACD=12⼜∵E是AD中点,×S△ABD=6,∴S△ACE=S△DCE=12故选:B.×S△ABC=12,再由E是AD中点知S△ACE=S△DCE=由AD是BC边的中线知S△ABD=S△ACD=121×S△ABD=6.2本题考查了三⾓形的⾯积,主要利⽤了三⾓形的中线把三⾓形分成两个⾯积相等的三⾓形,原理为等底等⾼的三⾓形的⾯积相等.11.答案:B解析:本题考查了翻折变换的性质,矩形的性质,熟练掌握折叠的性质是解题的关键.根据折叠的性质得到AF=AB,∠AFE=∠B=90°,根据等腰三⾓形三线合⼀的性质得到AF=CF,于是得到结论.解:∵将△ABE沿直线AE折叠,点B 恰好落在对⾓线AC上的点F处,∴AF=AB,∠AFE=∠B=90°,∴EF⊥AC,∵∠EAC=∠ECA,∴AE=CE,∴三⾓形ACE为等腰三⾓形,∴AF=CF,∴AC=2AB=6,故选B.12.答案:D解析:本题考查了由实际问题抽象出分式⽅程,分析题意后找到合适的等量关系是解决问题的关键.设⼩明的速度为x⽶/分,则爸爸的速度是(80+x)⽶/分,依据等量关系“⼩明⾛1800⽶的时间=爸爸⾛1800⽶的时间+8分钟”列出⽅程即可.解:设⼩明的速度为x⽶/分,则爸爸的速度是(80+x)⽶/分,依题意得:1800x =8+1800x+80.故选D.13.答案:(1,3)解析:解:点A(1,?3)关于x轴的对称点的坐标为:(1,3).故答案为:(1,3).直接利⽤关于x轴对称点的性质得出答案.此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.14.答案:x≠?32解析:【分析】本题考查了分式有意义的条件,分式有意义,则分母不等于零.根据分母不为零,得到关于x的不等式,即可求出x的取值范围.【解答】解:∵分式x?12x+3有意义,∴2x+3≠0.解得:x≠?32.故答案为:x≠?32.15.答案:4√3解析:解:∵在Rt△ABC中,∠C=90°,∠ABC=60°,∴∠A=30°,∵DE是线段AB的垂直平分线,∴EA=EB,ED⊥AB,∴∠A=∠EBA=30°,∴∠EBC=∠ABC?∠EBA=30°,⼜∵BC⊥AC,ED⊥AB,∴DE=CE=2.在直⾓三⾓形ADE中,DE=2,∠A=30°,∴AE=2DE=4,∴AD=√AE2?DE2=2√3,∴AB=2AD=4√3.故答案为:4√3.由ED是线段AB的垂直平分线,根据线段垂直平分线定理得到EA=EB,根据等边对等⾓可得∠A和∠ABE相等,由∠A的度数求出∠ABE的度数,得出∠EBC=∠EBA=30°,再由⾓平分线上的点到⾓的两边的距离相等得出DE=CE=2.由30°⾓所对的直⾓边等于斜边的⼀半,可得AE=2ED=4,由勾股定理求出AD,那么AB=2AD.此题考查了线段垂直平分线的性质,⾓平分线的性质,含30°⾓的直⾓三⾓形的性质,勾股定理,解题的关键是熟练掌握含30°⾓的直⾓三⾓形的性质,即在直⾓三⾓形中,30°⾓所对的直⾓边等于斜边的⼀半.16.答案:(1)52;(2)9.解析:本题考查了完全平⽅公式和平⽅差公式的应⽤,解题的关键是对公式正确的理解.(1)利⽤完全平⽅公式把条件整体代⼊整理即可求解.(2)利⽤平⽅差公式展开,求得a+b的值,再代⼊数据计算即可.解:(1)∵m+n=10,mn=24,∴m2+n2=(m+n)2?2mn=100?48=52;(2):∵a2?b2=(a+b)(a?b)=13×(a+b)=39,∴a+b=3,∴(a+b)2=32=9.故本题答案为52;9.17.答案:60°解析:解::∵△ABC是等边三⾓形,∴∠BAE=∠C=60°,AB=AC,在△ABE和△CAD中,{AB=CA∠BAE=∠C AE=CD,∴△ABE≌△CAD,∴∠ABE=∠CAD,∵∠BFD=∠ABE+∠BAF=∠CAD+∠BAF=60°,故答案为60°证明△ABE≌△CAD,推出∠ABE=∠CAD,由∠BFD=∠ABE+∠BAF=∠CAD+∠BAF=60°,即可解决问题.本题考查全等三⾓形的判定和性质、等边三⾓形的性质等知识,解题的关键是正确寻找全等三⾓形解决问题,属于中考常考题型.18.答案:6解析:解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=6,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三⾓形,∴CD=OC=OD=6.∴△PMN的周长的最⼩值=PM+MN+PN=CM+MN+DN=CD=6,故答案为:6作点P关于OA的对称点C,关于OB的对称点D,当点M、N在CD上时,△PMN的周长最⼩,证明△COD是等边三⾓形,即可解答.此题主要考查轴对称--最短路线问题,等边三⾓形的判定与性质,关键是做出对称点.19.答案:解:(1)原式=x(x2?1)=x(x+1)(x?1);(2)原式=(x?2)2?2(x?2)=(x?2)(x?4).解析:(1)⾸先提取公因式x,再利⽤平⽅差公式分解因式即可;(2)直接提取公因式(x?2)进⽽分解因式即可.此题主要考查了提取公因式法以及公式法分解因式,正确找出公因式是解题关键.20.答案:解:(1)原式=(4a?b)?4b2=16ab2?4b3;(2)原式=[x+(2y?3)][x?(2y?3)]=x2?(2y?3)2=x2?4y2+12y?9.解析:(1)先算乘⽅,再根据多项式乘以单项式法则算乘法即可;(2)先变形,再根据平⽅差公式进⾏计算,最后根据完全平⽅公式求出即可.本题考查了整式的混合运算,能正确根据整式的运算法则进⾏化简是解此题的关键.21.答案:证明:∵AB⊥BD,ED⊥BD,AC⊥CE,∴∠ACE=∠ABC=∠CDE=90°,∴∠ACB+∠ECD=90°,∠ECD+∠CED=90°,∴∠ACB=∠CED.在△ABC和△CDE中,{∠ACB=∠CED BC=DE∠ABC=∠CDE,∴△ABC≌△CDE(ASA),∴AB=CD.解析:证明△ABC≌△CDE(ASA),可得出结论.本题考查了全等三⾓形的判定和性质;熟练掌握三⾓形全等的判定定理是解题的关键.22.答案:解:原式=(m?3)2(m+2)(m?2)×m?2(m3)=?m?3m+2.解析:先把分⼦、分母因式分解,再按分式乘法法则运算即可.本题考查了分式的乘法,理解和熟练运⽤分式的乘法法则是关键.注意分式运算的结果需化为整式或最简分式.23.答案:解:⽅程两边同乘(x2?4),得2+x(x+2)=x2?4,整理得2+x2+2x=x2?4,2x=?6,x=?3,检验:当x=?3时,x2?4=5≠0,∴原⽅程的解为x=?3.解析:分式⽅程去分母转化为整式⽅程,求出整式⽅程的解得到x的值,经检验即可得到分式⽅程的解.此题考查了解分式⽅程,解分式⽅程注意要检验.24.答案:解:设该⼯⼚原来平均每天⽣产x台机器,则现在平均每天⽣产(x+50)台机器.根据题意得:600x+50=450x,解得:x=150.经检验知,x=150是原⽅程的根.答:该⼯⼚原来平均每天⽣产150台机器.解析:设原计划平均每天⽣产x台机器,则现在平均每天⽣产(x+50)台机器,根据⼯作时间=⼯作总量÷⼯作效率结合现在⽣产600台机器所需要时间与原计划⽣产450台机器所需时间相同,即可得出关于x的分式⽅程,解之经检验后即可得出结论.本题考查了分式⽅程的应⽤,找准等量关系,正确列出分式⽅程是解题的关键.25.答案:证明:过点C作CH⊥AC,交AF的延长线于点H,⼜∵∠BAC=90°,∴∠HCA=∠DAB=90°,∵∠BAC=90°,AG⊥BD,∴∠DAG+∠1=90°,∠ABD+∠1=90°,∴∠ABD=∠CAH,⼜∵AB=CA,∠HCA=∠DAB,∴△ABD≌△CAH,∴AD=CH,∠1=∠H,⼜∵AD=CE,∴CH=CE,∵∠ACB=45°,∠ACH=90°,∴∠BCH=∠ACB=45°,⼜∵FC=FC,CH=CE,∴△ECF≌△HCF,∴∠2=∠H,⼜∵∠1=∠H,∴∠1=∠2.解析:本题主要考查的是等腰三⾓形的性质,全等三⾓形的判定及性质的有关知识,作辅助线构建全等三⾓形和直⾓三⾓形,证明△ABD≌△CAH,得AD=CH,∠1=∠H;得出CE=CH,所以继续证明△ECF≌△HCF,得∠2=∠H,从⽽得出结论.。

2019-2020年八年级下学期期末考试数学试卷(II)

2019-2020年八年级下学期期末考试数学试卷(II)

2019-2020年八年级下学期期末考试数学试卷(II)一、选择题:(本大题共10小题,每题3分共计30分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来)1.下列四个图形中,既是轴对称图形又是中心对称图形的是().A. B. C. D.2.若方程是关于的一元二次方程,则m的取值范围是()A.m≠±l B.m≥一l且m≠1 C.m≥一l D.m>一1且m≠13.已知是关于的方程的一个根,则另一个根是( )A.1 B.-1 C.-2 D.24.对抛物线y=-x2+2x-3 而言,下列结论正确的是( )A.与x轴有两个交点 B.开口向上C.与y轴的交点坐标是(0,3) D.顶点坐标是(1,-2)5.二次函数的图象与轴有交点,则的取值范围是()A. B. C.D.6. 如图,在⊙O中,直径AB垂直于弦CD,垂足为P.若PA=2,PB=8,则CD的长为()A.8 B.6 C.4 D. 27.如图,内接于圆O,,,是圆的直径,BD交AC于点E,连结DC,则等于()A.110° B.70° C.90° D.120°(第6题) (第7题)8.如图,一扇形纸扇完全打开后,外侧两竹条AB 和AC 的夹角为120°,AB 长为25cm ,贴纸部分的宽BD 为15cm ,若纸扇两面贴纸,则贴纸的面积为( ). A .cm 2B .cm 2C .cm 2D .cm 29.输入一组数据,按下列程序进行计算,输出结果如下表:分析表格中的数据,估计方程的一个正数解x 的大致范围为( ). A .20.5<x <20.6 B .20.6<x <20.7C .20.7<x <20.8D .20.8<x <20.910.在同一平面直角坐标系内,一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是( )二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只A DBE C(第8题)静心x20.5 20.6 20.7 20.8 20.9 输出 --8.04 -2.31 3.44 9.21输入x输出+8 平方-826要求填写最后结果.11.三角形两边长分别为3和6,第三边是方程x2﹣6x+8=0的解,则此三角形周长是.12.将抛物线y=(x﹣2)2+3向右平移2个单位,再向下平移3个单位后所得抛物线的解析式为13.抛物线y=x2﹣2x﹣3与x轴的交点坐标为.14.如图,△ABC是一张三角形纸片,⊙O是它的内切圆,点D是其中的两个切点,已知AD=6cm,小明准备用剪刀沿着与⊙O相切的一条直线MN剪下一块三角形(△AMN),则剪下的△AMN的周长是(第14题图) (第15题图)15.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A 顺时针旋转到位置①可得到点,此时;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点,此时;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点,此时;…,按此规律继续旋转,直至得到点为止.则=________.16.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,将Rt△ABC绕点A逆时针旋转45°后得到△AB′C′,点B经过的路径为,图中阴影部分面积是17.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF长为10cm.母线OE(OF)长为10cm.在母线OF上的点A处有一块爆米花残渣,且FA=2cm,一只蚂蚁从杯口的点E处沿圆锥表面爬行到A点,则此蚂蚁爬行的最短距离为____________cm.(第16题图) (第17题图) (第18题图) 18.如图,是抛物线y=ax2+bx+c(a≠0)图象的一部分,已知抛物线的对称轴是直线x=2,与x轴的一个交点是(﹣1,0),有下列结论:①abc<0,②4a+b=0,③抛物线与x轴的另一个交点是(5,0),④若点(﹣2,y1),(5,y2)都在抛物线上,则有y1<y2,请将正确选项的序号都填在横线上.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19. (本题满分8分) 解方程:(1)(x﹣5)2=2(x﹣5)(2)2x(x﹣1)=3x+1.20. (本题满分8分)已知二次函数y=x2+bx+c的图象经过点(0,2)和(1,﹣1),求图象的顶点坐标和对称轴.21. (本题满分7分)如图,水平放置的圆柱形排水管的截面为⊙O,有水部分弓形的高为2,弦AB=4,求⊙O的半径.22.(本题满分11分)电动自动车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?23. (本题满分6分)已知△ABC在平面直角坐标系中的位置如图所示.(1) 分别写出图中点A和点C的坐标;(2) 画出△ABC绕点A按逆时针方向旋转90°后的△AB'C';(3) 在(2)的条件下,求点C旋转到点C'所经过的路线长(结果保留π).234567yAB24、(本题满分9分)如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE.(1)求证:DE是半圆⊙O的切线.(2)若∠BA C=30°,DE=2,求AD的长.25.(本题满分13分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?-----如有帮助请下载使用,万分感谢。

2019-2020学年山东省济宁市曲阜市八年级下学期期末数学试卷 (解析版)

2019-2020学年山东省济宁市曲阜市八年级下学期期末数学试卷 (解析版)

2019-2020学年山东济宁市曲阜市八年级第二学期期末数学试卷一、选择题(共10小题).1.要使二次根式有意义,x的值可以是()A.﹣2B.﹣3C.﹣4D.﹣52.一次函数y=2﹣x与x轴的交点为()A.(1,1)B.(0,2)C.(2,0)D.(3,0)3.在▱ABCD中、如果∠A=65°、那么∠C的度数是()A.115°B.65°C.25°D.35°4.某青年排球队l2名队员的年龄情况如下表所示:年龄1819202122人数14322则这12名队员的平均年龄是()A.18岁B.19岁C.20岁D.21岁5.以下列各组数为边长,能构成直角三角形的是()A.5,12,13B.1,2,C.,,2D.4,5,66.下列运算结果正确的是()A.=﹣3B.(﹣)2=2C.÷=2D.=±4 7.已知四边形ABCD是平行四边形,下列结论不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是菱形8.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15B.13,15C.13,20D.15,159.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0 10.已知:如图,矩形ABCD中,AB=5,BC=12,对角线AC、BD相交于点O,点P是线段AD上任意一点,且PE⊥AC于点E,PF⊥BD于点F,则PE+PF等于()A.B.C.D.二、填空题(共6小题).11.正比例函数图象经过(3,﹣6),则这个正比例函数的解析式是.12.已知:x=,y=﹣2,代数式x2﹣2xy+y2的值为.13.已知,如图,一小船以20海里/时的速度从港口A出发向东北方向航行,另一小船以15海里/时的速度同时从港口A出发向东南方向航行,离开港口1小时后,则两船相距.14.将直线y=2x﹣5向上平移2个单位,所得直线解析式为.15.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AB边中点,菱形ABCD的周长为24,则OH的长等于.16.如图,正方形ABCD的边长是2,对角线AC、BD相交于点O,点E、F分别在边AD、AB上,且OE⊥OF,则四边形AFOE的面积为.三、解答题:共72分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.计算:×+6﹣.18.如图,每个小正方形的边长都为1(1)求四边形ABCD的周长;(2)求∠BCD的大小.19.甲、乙两名同学5次数学练习的成绩如下表:(单位:分)测试日期2月10日2月20日3月5日3月18日3月27日甲126127130133134乙130125130135130已知甲同学这5次数学练习成绩的平均数为130分,方差为10分2.(1)乙同学这5次数学练习成绩的平均数为分,方差为分2;(2)甲、乙都认为自己在这5次练习中的表现比对方更出色,请分别写出一条支持他们俩观点的理由.20.如图,在平行四边形ABCD中,E、F为对角线BD上的两点,且∠BAF=∠DCE.求证:BE=DF.21.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x 轴相交于点B,与y轴交于点D,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k,b的值;(2)请直接写出不等式kx+b﹣3x>0的解集;(3)M为射线CB上一点,过点M作y轴的平行线交y=3x于点N,当MN=OD时,求M点的坐标.22.“双剑合璧,天下无敌”,其意思是指两个人合在一起,取长补短,威力无比.在二次根式中也常有这种相辅相成的“对子”,如:(2+)(2﹣)=1,=3,它们的积中不含根号,我们说这两个二次根式是互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样解:,=7+4.像这样通过分子、分母同乘一个式子把分母中的根号化去的方法,叫做分母有理化.解决下列问题:(1)将分母有理化得;+1的有理化因式是;(2)化简:=;(3)化简:……+.23.如图,矩形ABCD中,点P是线段AD上的一个动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=8cm,AB=6cm,点P从点A出发,以1cm/s的速度向点D运动(不与D 重合).设点P运动的时间为t秒,请用t表示PD的长;并求出t为何值时,四边形PBQD是菱形?参考答案一、选择题(共10小题).1.要使二次根式有意义,x的值可以是()A.﹣2B.﹣3C.﹣4D.﹣5解:由题意得,x+2≥0,解得,x≥﹣2,故选:A.2.一次函数y=2﹣x与x轴的交点为()A.(1,1)B.(0,2)C.(2,0)D.(3,0)解:令y=0,则2﹣x=0,解得x=2,所以一次函数y=2﹣x与x轴的交点坐标是(2,0),故选:C.3.在▱ABCD中、如果∠A=65°、那么∠C的度数是()A.115°B.65°C.25°D.35°解:∵四边形ABCD是平行四边形,∴∠C=∠A=65°,故选:B.4.某青年排球队l2名队员的年龄情况如下表所示:年龄1819202122人数14322则这12名队员的平均年龄是()A.18岁B.19岁C.20岁D.21岁解:(18+4×19+3×20+2×21+2×22)÷12=(18+76+60+42+44)÷12=240÷12=20(岁).故这l2名队员的平均年龄是20岁.故选:C.5.以下列各组数为边长,能构成直角三角形的是()A.5,12,13B.1,2,C.,,2D.4,5,6解:A、52+122=132,能构成直角三角形,故选项符合题意;B、12+22≠()2,不能构成直角三角形,故选项不合题意;C、()2+22≠()2,不能构成直角三角形,故选项不合题意;D、42+52≠62,不能构成直角三角形,故选项不合题意.故选:A.6.下列运算结果正确的是()A.=﹣3B.(﹣)2=2C.÷=2D.=±4解:A、=3,故本选项不符合题意;B、(﹣)2=2,故本选项符合题意;C、÷=,故本选项不符合题意;D、=4,故本选项不符合题意;故选:B.7.已知四边形ABCD是平行四边形,下列结论不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是菱形解:A、∵四边形ABCD是平行四边形,AB=BC,∴四边形ABCD是菱形,故正确;B、∵四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,故正确;C、∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,故正确;D、∵四边形ABCD是平行四边形,AC=BD,四边形ABCD是矩形,故错误.故选:D.8.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15B.13,15C.13,20D.15,15解:把这组数据从小到大排列:10、13、15、15、20,最中间的数是15,则这组数据的中位数是15;15出现了2次,出现的次数最多,则众数是15.故选:D.9.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0解:∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0.故选:C.10.已知:如图,矩形ABCD中,AB=5,BC=12,对角线AC、BD相交于点O,点P是线段AD上任意一点,且PE⊥AC于点E,PF⊥BD于点F,则PE+PF等于()A.B.C.D.解:连接PO,∵矩形ABCD的两边AB=5,BC=12,∴S矩形ABCD=AB•BC=60,OA=OC,OB=OD,AC=BD,AC===13,∴S△AOD=S矩形ABCD=15,OA=OD=AC=,∴S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=OA(PE+PF)=××(PE+PF)=15,∴PE+PF=,故选:A.二、填空题(每题3分,满分18分,将答案填在答题纸上)11.正比例函数图象经过(3,﹣6),则这个正比例函数的解析式是y=﹣2x.解:设这个正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过点(3,﹣6),∴﹣6=3k,解得k=﹣2,∴y=﹣2x.故答案是:y=﹣2x.12.已知:x=,y=﹣2,代数式x2﹣2xy+y2的值为4.解:∵x=,y=﹣2,∴x﹣y=2,∴原式=(x﹣y)2=4,故答案为:413.已知,如图,一小船以20海里/时的速度从港口A出发向东北方向航行,另一小船以15海里/时的速度同时从港口A出发向东南方向航行,离开港口1小时后,则两船相距25海里.解:由题意得:两船的行驶方向为直角,向东北方向航行的小船行驶路程为:20×1=20(海里),向东南方向航行的小船行驶路程为:15×1=15(海里),两船的距离:=25(海里),故答案为:25海里.14.将直线y=2x﹣5向上平移2个单位,所得直线解析式为y=2x﹣3.解:由“上加下减”的原则可知,将函数y=2x﹣5向上平移,2个单位所得函数的解析式为y=2x﹣5+2,即y=2x﹣3.故答案为:y=2x﹣3.15.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AB边中点,菱形ABCD的周长为24,则OH的长等于3.解:∵菱形ABCD的周长等于24,∴AB==6,∵四边形ABCD是菱形,∴AC⊥BD,∵H为AB边中点,∴在Rt△AOB中,OH为斜边上的中线,∴OH=AB=3.故答案为:3.16.如图,正方形ABCD的边长是2,对角线AC、BD相交于点O,点E、F分别在边AD、AB上,且OE⊥OF,则四边形AFOE的面积为1.解:∵四边形ABD是正方形,∴OA=OB,∠OAE=∠OBF=45°,AC⊥BD,∴∠AOB=90°,∵OE⊥OF,∴∠EOF=90°,∴∠AOE=∠BOF,在△AOE和△BOF中,,∴△AOE≌△BOF(ASA),∴△AOE的面积=△BOF的面积,∴四边形AFOE的面积=正方形ABCD的面积=×22=1;故答案为:1.三、解答题:共72分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.计算:×+6﹣.解:原式=+2﹣=2+2﹣=3.18.如图,每个小正方形的边长都为1(1)求四边形ABCD的周长;(2)求∠BCD的大小.解:(1)由勾股定理得:DC==,BC==2,AD==,AB==,所以四边形ABCD的周长为AB+BC+cd+ad=+2++=+3+;(2)连接BD,由勾股定理得:BD==5,∵DC=,BC=2,∴DC2+BC2=BD2,∴∠BCD=90°.19.甲、乙两名同学5次数学练习的成绩如下表:(单位:分)测试日期2月10日2月20日3月5日3月18日3月27日甲126127130133134乙130125130135130已知甲同学这5次数学练习成绩的平均数为130分,方差为10分2.(1)乙同学这5次数学练习成绩的平均数为130分,方差为10分2;(2)甲、乙都认为自己在这5次练习中的表现比对方更出色,请分别写出一条支持他们俩观点的理由.解:(1)乙的平均分=(130+125+130+135+130)=130,方差=[(130﹣130)2+(125﹣130)2+(130﹣130)2+(135﹣130)2+(130﹣130)2]=10.故答案为130,10.(2)答案不唯一,如:甲的数学成绩逐渐进步,更有潜力;乙的数学成绩在130分以上(含130分)的次数更多.20.如图,在平行四边形ABCD中,E、F为对角线BD上的两点,且∠BAF=∠DCE.求证:BE=DF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABF=∠CDE,在△ABF和△CDE中,∴△ABF≌△CDE(ASA),∴ED=BF,∴BD﹣CF=BD﹣DE,∴BE=DF.21.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x 轴相交于点B,与y轴交于点D,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k,b的值;(2)请直接写出不等式kx+b﹣3x>0的解集;(3)M为射线CB上一点,过点M作y轴的平行线交y=3x于点N,当MN=OD时,求M点的坐标.解:(1)当x=1时,y=3x=3,∴C点坐标为(1,3).直线y=kx+b经过(﹣2,6)和(1,3),则,解得:k=﹣1,b=4;(2)x<1;(3)当x=0时,y=﹣x+4=4,∴D点坐标为(0,4),∴OD=4.设点M的横坐标为m,则M(m,﹣m+4),N(m,3m),∴MN=3m﹣(﹣m+4)=4m﹣4∵MN=OD,∴4m﹣4=4,解得m=2.即M点坐标为(2,2).22.“双剑合璧,天下无敌”,其意思是指两个人合在一起,取长补短,威力无比.在二次根式中也常有这种相辅相成的“对子”,如:(2+)(2﹣)=1,=3,它们的积中不含根号,我们说这两个二次根式是互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样解:,=7+4.像这样通过分子、分母同乘一个式子把分母中的根号化去的方法,叫做分母有理化.解决下列问题:(1)将分母有理化得;+1的有理化因式是﹣1;(2)化简:=﹣;(3)化简:……+.解:(1)==,(+1)(﹣1)=()2﹣12=2﹣1=1,即+1的有理化因式是﹣1,故答案为:,﹣1;(2)===﹣,故答案为:﹣.(3)原式=﹣1+﹣+﹣+…+﹣=﹣1=10﹣1=9.23.如图,矩形ABCD中,点P是线段AD上的一个动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=8cm,AB=6cm,点P从点A出发,以1cm/s的速度向点D运动(不与D 重合).设点P运动的时间为t秒,请用t表示PD的长;并求出t为何值时,四边形PBQD是菱形?解:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠PDO=∠QBO,∵O为BD的中点,∴DO=BO,在△PDO和△QBO中,,∴△PDO≌△QBO(ASA),∴OP=OQ;(2)由题意知:AD=8cm,AP=tcm,∴PD=8﹣t,∵PB=PD,∴PB2=PD2,即AB2+AP2=PD2,∴62+t2=(8﹣t)2,解得t=,∴当t=时,PB=PD.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年八年级数学期末考试题及答案
一、选择题(每小题3分,共30分)
1、下列美丽的图案中,是轴对称图形的是( )
A .
B .
C .
D .
2、下列运算正确的是( )
A.6332a a a =+
B.336a a a =÷-
C.3332a a a =⋅
D.6328)2(a a -=-
3、如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是( ) A.2 B.3 C.4 D.8
4、 如果把分式中的x 和y 都扩大2倍,那么分式的值( )
A .不变
B .缩小2倍
C .扩大2倍
D .扩大4倍
5、若等腰三角形的周长为28cm ,一边为1Ocm ,则腰长为( )
A .10cm
B .9cm
C .10cm 或9cm
D .8cm
6、下列各式,分解因式正确的是( )
A .a 2﹣b 2=(a ﹣b )2
B .a 2﹣2ab+b 2
-1=(a ﹣b+1)(a-b-1)
C. )4(423-=-x xy xy y x D .xy+xz+x=x (y+z )
7、 如图,△ABC 中,∠ACB=90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处.若∠A=22°,则∠EDA 等于( )
A .44°
B .68°
C .46°
D .77°
(第7题图) (第8题图)
8、如图,在Rt △ABC 中,∠C=90°,∠CAB 的平分线交BC 于D ,DE 是AB 的垂直平分线,垂足为E .若BC=3,则DE 的长为( )
A .1
B .2
C .3
D .4
9、已知:411=-b
a ,则a
b b a b ab a 7222+---的值等于( ) A.6 B.-6 C.15
2 D.72- 10、一列客车已晚点6分钟,如果将速度每小时加快10km ,那么继续行驶20km 便可正点运行,如果设客车原来行驶的速度是xkm/h.可列出分式方程为( ) A.6102020=+-x x B.6201020=-+x
x C.101102020=+-x x D.10
1201020=-+x x 二、填空题(每小题3分,共24分)
11、若分式 2
12+-x x 有意义,则x 的取值范围是 . 12、2015年诺贝尔生理学或医学奖得主中国科学家屠呦呦,发现了一种病毒的长度约为0.00000456毫米,则数据0.00000456用科学记数法表示为 .
13、点P (-3,2)关于X 轴的对称点的坐标是 .
14、如果一个多边形各边相等,周长为70,且内角和为︒1440,那么它的边长为 .
15、计算:)2()3(22=÷-xy xy .
16、等腰三角形一腰上的高与另一腰的夹角为°40,则该等腰三角形顶角的
度数为 .
17、如图,在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若CD=2,AB=6,则S△ABD= .
(第17题图) (第18题图)
18、如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC 的周长等于AB+BC;(4)D是AC中点.其中正确的命题序号是.
旗直中学联考2016-2017学年第一学期期末试卷
八年级数学答题卡
(满分:120分 时间:90分钟) 2017.1
一、选择题(每小题3分,共30分) 题号 1 2
3 4 5 6 7 8 9 10 答案
二、填空题(每小题3分,共24分)
11、 12、 13、 14、
15、 16、 17、 18、
三、 解答题(共66分)
19、计算:(每小题4分,共12分)
(1)(﹣2)3﹣()﹣1+(
﹣1)0+(﹣)2017×(1.5)2016
(2) a a 2(12)(+-1)-22)
(+a -)1(3+a a
(3)a
a a a +-÷-221)11(
20、因式分解:(每小题4分,共8分)
(1)()1x 1--+a a (2)2232axy y ax ax +-
21、(9分)如图,在平面直角坐标系XOY 中,A (﹣1,5),B (﹣1,0),
C (﹣4,3).
(1)请画出△ABC 关于y 轴对称的△A ′B ′C ′(其中A ′,B ′,C ′ 分别是A ,B ,C 的对应点,不写画法);
(2)直接写出A ′,B ′,C ′三点的坐标:A ′( ),B ′( ), C ′( )
(3)计算△ABC 的面积.
22、(8分)先化简,再求值: b a b a b a b b a b a +-÷⎪⎭

⎝⎛--+-22 其中a=1 ,b=-3.
23、(7分)解方程:4
4x -21222-=-+x x
24、(10分)如图1,在△ABC 中,AB=AC ,点D 是BC 的中点,点E 在AD
上.
(1)求证:BE=CE ;
(2)如图2,若BE 的延长线交AC 于点F ,且BF ⊥AC ,垂足为F , ∠BAC=45°,原题设其它条件不变.求证:△AEF ≌△BCF .
25、(12分)某商店用2000元购进一批小学生书包,出售后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了2元,结果购买第二批书包用了6600元.
(1)请求出第一批每只书包的进价;
(2)该商店第一批和第二批分别购进了多少只书包;
(3)若商店销售这两批书包时,每个售价都是30元,全部售出后,商店共盈利多少元?
参考答案:
一、选择题:
1-5、D,D,C,A,C; 6-10、B,C,A,A,C.
二、填空题:
11、2-≠x ;12、61056.4-⨯;13、(-3,-2);14、7;
15、329xy ;16、︒︒13050或;17、6;18、.
三、解答题:
19、3
210-)1(=原式;;57-)2(-=a 原式.1-)3(=原式 )1(1)1(20-+=x a )(原式、;.)()2(2y x ax -=原式
21、
解:(1)S △ABC =×5×3=
(或7.5).
(2)如图.
(3)A 1(1,5),B 1(1,0),C 1(4,3).
22、.
21,3,1,2=∴-==-原式化简,得:b a b a a 23、解:去分母,得:x=2,检验:略.
24、证明:(1)方法一:利用等腰三角形的“三线合一”, 即,AD 垂直平分BC ,∴BE=CE.
方法二:∵AB=AC ,D 是BC 的中点,
∴∠BAE=∠EAC ,
在△ABE 和△ACE 中,

∴△ABE ≌△ACE (SAS ),
∴BE=CE ;
(2)∵∠BAC=45°,BF ⊥AF ,
∴△ABF 为等腰直角三角形,
∴AF=BF ,
∵AB=AC ,点D 是BC 的中点,
∴AD ⊥BC ,
∴∠EAF+∠C=90°,
∵BF ⊥AC ,
∴∠CBF+∠C=90°,
∴∠EAF=∠CBF ,
在△AEF 和△BCF 中,

∴△AEF ≌△BCF (ASA ).
25、解:(1)设:第一批每只书包的进价为x 元. 2660032000+=⨯x x 解得:x=20. 检验:略.
答:略.
(2)第一批:)(10020
200只= 第二批:100×3=300(只)
答:略.
(3)(30-20)×100+(30-22)×300 =3400(只)
答:略.。

相关文档
最新文档