理论力学第二版习题
理论力学(周衍柏第二版)思考题习题答案

1.12为什么被约束在一光滑静止的曲线上运动时,约束力不作功?我们利用动能定理或能量积分,能否求出约束力?如不能,应当怎样去求?
1.13质点的质量是1千克,它运动时的速度是 ,式中 、 、 是沿 、 、 轴上的单位矢量。求此质点的动量和动能的量值。
式中 为速度矢量与 轴间的夹角,且当 时, 。
1.13假定一飞机从 处向东飞到 处,而后又向西飞回原处。飞机相对于空气的速度为 ,而空气相对于地面的速度为 。 与 之间的距离为 。飞机相对于空气的速度 保持不变。
假定 ,即空气相对于地面是静止的,试证来回飞行的总时间为
假定空气速度为向东(或向西),试证来回飞行的总时间为
1.2答:质点运动时,径向速度 和横向速度 的大小、方向都改变,而 中的 只反映了 本身大小的改变, 中的 只是 本身大小的改变。事实上,横向速度 方向的改变会引起径向速度 大小大改变, 就是反映这种改变的加速度分量;经向速度 的方向改变也引起 的大小改变,另一个 即为反映这种改变的加速度分量,故 , 。这表示质点的径向与横向运动在相互影响,它们一起才能完整地描述质点的运动变化情况
由
得
即速度 的大小就决定了轨道的形状,图中 对应于进入轨道时的达到第一二三宇宙速度所需的能量由于物体总是有限度的,故 有一极小值 ,既相互作用的二质点不可能无限接近,对于人造卫星的发射 其为地球半径。 为地面上发射时所需的初动能,图示 分别为使卫星进入轨道时达到一二三宇宙速度在地面上的发射动能。 .为进入轨道前克服里及空气阻力做功所需的能量。
1.10一质点沿着抛物线 运动其切向加速度的量值为法向加速度量值的 倍。如此质点从正焦弦 的一端以速度 出发,试求其达到正焦弦另一端时的速率。
理论力学 第二版 (金尚年 马永利 著) 高等教育出版社 课后答案 1-4章答案

G F
课
w.
θ
cos − − cos
kh
运动方程为 ̇ 2 Fr 0 ̈ − r mr ̈ 2r ̇ F ̇ mr 由径向方程 ̇ ̈ r 2 r 方程的解为 r Ae t Be −t 带入初始条件
da
x
R2 z2 r2
课
2.9 体系的动能为
后
̇ sin cos 0 ̈ sin 2 2mr 2 ̇ mr 2
网
−
∂L ∂
ww
w.
kh
da
w.
co
m
5
d ∂L − ∂L ̇ dt ∂ ∂ 2 ̈ ̇ 0 ̇ mr 2mrr 2.11 体系的动能为 T 势能为 V mgz mg R 2p 该体系只有一个自由度,取R为广义坐标,拉各朗日函数为 ̇2 2 ̇ 2 R22 R L m R R − mg R 2 2p p2 相应的拉各朗日方程为 d ∂L − ∂L ̇ dt ∂R ∂R ̇2 mg ̈ 1 R 2 2m R mR R − mR 2 2 2p p p2 ̇ 0,R ̈ 0则 对于平衡点R g R 2p 2 m R ̇ 2 R2 ̇2 z ̇ 2 2 ̇2 2 m R ̇ 2 R22 R R 2 p2
课
后
答 案
网
Chap3
7
ww
w.
kh
da
w.
co
m
3.1 tanh
L r2
dr
a r2
2mE
L r2
−
L r2
dr
2ma−L 2 r2
E
理论力学(周衍柏第二版)思考题习题答案第二章

第二章质点组力学第二章思考题2.1一均匀物体假如由几个有规则的物体并合(或剜去)而成,你觉得怎样去求它的质心?2.2一均匀物体如果有三个对称面,并且此三对称面交于一点,则此质点即均匀物体的质心,何故?2.3在质点动力学中,能否计算每一质点的运动情况?假如质点组不受外力作用,每一质点是否都将静止不动或作匀速直线运动?2.4两球相碰撞时,如果把此两球当作质点组看待,作用的外力为何?其动量的变化如何?如仅考虑任意一球,则又如何?2.5水面上浮着一只小船。
船上一人如何向船尾走去,则船将向前移动。
这是不是与质心运动定理相矛盾?试解释之。
2.6为什么在碰撞过程中,动量守恒而能量不一定守恒?所损失的能量到什么地方去了?又在什么情况下,能量才也守恒?2.7选用质心坐标系,在动量定理中是否需要计入惯性力?2.8轮船以速度V 行驶。
一人在船上将一质量为m 的铁球以速度v 向船首抛去。
有人认为:这时人作的功为()mvV mv mV v V m +=−+222212121你觉得这种看法对吗?如不正确,错在什么地方?2.9秋千何以能越荡越高?这时能量的增长是从哪里来的?2.10在火箭的燃料全部燃烧完后,§2.7(2)节中的诸公式是否还能应用?为什么?2.11多级火箭和单级火箭比起来,有哪些优越的地方?第二章思考题解答2.1.答:因均匀物体质量密度处处相等,规则形体的几何中心即为质心,故先找出各规则形体的质心把它们看作质点组,然后求质点组的质心即为整个物体的质心。
对被割去的部分,先假定它存在,后以其负质量代入质心公式即可。
2.2.答:物体具有三个对称面已足以确定该物体的规则性,该三平面的交点即为该物体的几何对称中心,又该物体是均匀的,故此点即为质心的位置。
2.3.答:对几个质点组成的质点组,理论上可以求每一质点的运动情况,但由于每一质点受到周围其它各质点的相互作用力都是相互关联的,往往其作用力难以预先知道;再者,每一质点可列出三个二阶运动微分方程,各个质点组有n 3个相互关联的三个二阶微分方程组,难以解算。
力学第二版习题答案(高等教育出版社)05

第五章基本知识小结⒈力矩力对点的力矩 F r o⨯=τ力对轴的力矩 ⊥⊥⨯=F r k z ˆτ⒉角动量质点对点的角动量 p r L o⨯= 质点对轴的角动量 ⊥⊥⨯=p r k L zˆ⒊角动量定理适用于惯性系、质点、质点系⑴质点或质点系对某点的角动量对时间的变化率等于作用于质点或质点系的外力对该点的力矩之和∑=dt L d 0 外τ⑵质点或质点系对某轴的角动量对时间的变化率等于作用于质点或质点系的外力对该轴的力矩之和∑=dt dL zz τ⒋角动量守恒定律适用于惯性系、质点、质点系⑴若作用于质点或质点系的外力对某点的力矩之和始终为零,则质点或质点系对该点的角动量保持不变⑵若作用于质点或质点系的外力对某轴的力矩之和始终为零,则质点或质点系对该轴的角动量保持不变⒌对质心参考系可直接应用角动量定理及其守恒定律,而不必考虑惯性力矩。
5.1.1 我国发射的第一颗人造地球卫星近地点高度d 近=439km,远地点高度d 远=2384km,地球半径R 地=6370km,求卫星在近地点和远地点的速度之比。
解:卫星在绕地球转动过程中,只受地球引力(有心力)的作用,力心即为地心,引力对地心的力矩为零,所以卫星对地心的角动量守恒m 月v 近(d 近+R 地)=m 月v 远(d 远+R 地) v 近/v 远=(d 远+R 地)/(d 近+R 地)=(2384+6370)/(439+6370)≈1.295.1.2 一个质量为m 的质点沿着j t b i t a r ˆsin ˆcos ωω+=的空间曲线运动,其中a 、b 及ω皆为常数。
求此质点所受的对原点的力矩。
解:)ˆsin ˆcos (ˆsin ˆcos /ˆcos ˆsin /222222=⨯-=⨯=-==-=+-=--==+-==r r m F r r m a m F r j t b i t a jt b i t a dt v d a j t b i t a dt r d v ωτωωωωωωωωωωωωω5.1.3 一个具有单位质量的质点在力场j t i t t F ˆ)612(ˆ)43(2-+-=中运动,其中t 是时间。
理论力学(周衍柏第二版)思考题习题答案

①
船反向追赶竿的速度 ,设从反船到追上竿共用时间 ,则
②
又竿与水同速,则
③
①+③=②得
1.9答:不一定一致,因为是改变物体运动速度的外因,而不是产生速度的原因,加速度的方向与合外力的方向一致。外力不但改变速度的大小还改变速度的方向,在曲线运动中外力与速度的方向肯定不一致,只是在加速度直线运动二者的方向一致。
1.10答:当速度与物体受的合外力同一方位线且力矢的方位线不变时,物体作直线运动。在曲线运动中若初速度方向与力的方向不一致,物体沿出速度的方向减速运动,以后各时刻既可沿初速度方向运动,也可沿力的方向运动,如以一定初速度上抛的物体,开始时及上升过程中初速度的方向运动,到达最高点下落过程中沿力的方向运动。
理论力学思考题习题 参考答案
2007-10-22
仅供参考,多思考,勤练习
第一章 质点力学
第一章
1.1平均速度与瞬时速度有何不同?在上面情况下,它们一致?
1.2 在极坐标系中, , .为什么 而非 ?为什么 而非 ?你能说出 中的 和 中另一个 出现的原因和它们的物理意义吗?
1.3 在内禀方程中, 是怎样产生的?为什么在空间曲线中它总沿着主法线方向?当质点沿空间运动时,副法线方向的加速度 等于零,而作用力在副法线方向的分量 一般不等于零,这是不是违背了牛顿运动定律呢?
1.3答:内禀方程中, 是由于速度方向的改变产生的,在空间曲线中,由于 恒位于密切面内,速度 总是沿轨迹的切线方向,而 垂直于 指向曲线凹陷一方,故 总是沿助法线方向。质点沿空间曲线运动时, z何与牛顿运动定律不矛盾。因质点除受作用力 ,还受到被动的约反作用力 ,二者在副法线方向的分量成平衡力 ,故 符合牛顿运动率。有人会问:约束反作用力靠谁施加,当然是与质点接触的周围其他物体由于受到质点的作用而对质点产生的反作用力。有人也许还会问:某时刻若 大小不等, 就不为零了?当然是这样,但此时刻质点受合力的方向与原来不同,质点的位置也在改变,副法线在空间中方位也不再是原来 所在的方位,又有了新的副法线,在新的副法线上仍满足 。这反映了牛顿定律得瞬时性和矢量性,也反映了自然坐标系的方向虽质点的运动而变。
力学第二版习题答案第三章

第三章基本知识小结⒈牛顿运动定律适用于惯性系、质点,牛顿第二定律是核心。
矢量式:22dtr d m dt v d m a m F=== 分量式:(弧坐标)(直角坐标)ρτττ2,,,vm ma F dt dv mma F ma F ma F ma F n n z z y y x x =======⒉动量定理适用于惯性系、质点、质点系。
导数形式:dt pd F =微分形式:p d dt F=积分形式:p dt F I∆==⎰)( (注意分量式的运用)⒊动量守恒定律适用于惯性系、质点、质点系。
若作用于质点或质点系的外力的矢量和始终为零,则质点或质点系的动量保持不变。
即∑==恒矢量。
则,若外p F0 (注意分量式的运用)⒋在非惯性系中,考虑相应的惯性力,也可应用以上规律解题。
在直线加速参考系中:0*a m f-=在转动参考系中:ωω⨯=='2,*2*mv f r m f k c⒌质心和质心运动定理 ⑴∑∑∑===i i c i i c i i ca m a m v m v m r m r m⑵∑=c a m F(注意分量式的运用)3.5.1 质量为2kg 的质点的运动学方程为j t t i t r ˆ)133(ˆ)16(22+++-= (单位:米,秒), 求证质点受恒力而运动,并求力的方向大小。
解:∵j i dt r d a ˆ6ˆ12/22+== , j ia m F ˆ12ˆ24+== 为一与时间无关的恒矢量,∴质点受恒力而运动。
F=(242+122)1/2=125N ,力与x 轴之间夹角为:'34265.0/︒===arctg F arctgF x y α3.5.2 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为:j t b i t a r ˆsin ˆcos ωω+= ,a,b,ω为正常数,证明作用于质点的合力总指向原点。
证明:∵rj t b i t a dt r d a2222)ˆsin ˆcos (/ωωωω-=+-==r m a m F2ω-==, ∴作用于质点的合力总指向原点。
华科理论力学教材(第2版2020年7月第4次印刷)课后习题解答(z2)

1.4.2. 构架整体、AB 部分、弯杆 BC。 P A
B
C
解:2.
1.4.3. 三铰拱整体、AB 部分、BC 部分。 P
F
B
A
C
解:3.
F A
B
F' CBy
FCBy
P
F' CBx
FA
FCBx
FCy
C FCx
目录
1.4.4. A 形构架整体、AB 杆、BC 杆、DE 杆及销钉 B(力 P 作用在销钉 B 上)。
的大小。
FR
F2 60
F1
60
F3
题 2.3 图
目录
解:(1) R F1 F2 F3 上式向 F2 所在方向投影得:
1 2
R
F2
F1
cos
30
∴ R 2F2 2F1
3 100 2173 2
3 200N 2
∴ R 的大小为 200N,指向与假设相反。
( 2 ) Z 0 , ( 设 Z ' 为 F2 的 正 方 向 ) F2 F1 cos 30 0
上的 G 通过三力汇交法得到 O 处的合力为 45 度,则本次作业也认为是正确的
1.4.9.上题中,若销钉 A、C 均与 AC 杆固连,画出 AC 杆受力图。又若销钉 A、B 均与 AB 杆固连,画出 AB 力图。 解:[9.1]若销钉 A、C 均与 AC 杆固连,画出 AC 杆受力图
F
' A
A
F地
题第一步,只要求真解在受力图的可能范围内,通过以后计算可知,销钉 B 对构件 BA 的作
用力为 0,故可假设为任何方向。 1.4.11. 机构整体、连杆 AB、圆盘 O、滑块 B。
理论力学(周衍柏第二版)思考题习题答案

为常数。我们对②式两边求导 ④
由于③=④,所以 ⑤
对⑤式两边积分 ⑥ ⑦
以雨滴下降方向为正方向,对①式分析 ⑧
( 为常数)
当 时, ,所以
第三章习题解答
长为 的均质棒,一端抵在光滑墙上,而棒身则如图示斜靠在与墙相距为 的光滑棱角上。求棒在平衡时与水平面所成的角 。
解 如题3.2.1图所示,
均质棒分别受到光滑墙的弹力 ,光滑棱角的弹力 ,及重力 。由于棒处于平衡状态,所以沿 方向的合力矩为零。即 ①
由①②式得: 所
一均质的梯子,一端置于摩擦系数为 的地板上,另一端则斜靠在摩擦系数为 的高墙上,一人的体重为梯子的三倍,爬到梯
的顶端时,梯尚未开始滑动,则梯与地面的倾角,最小当为若干
解之得
微积分常数,取 ,故
令
所以
第二章习题
求均匀扇形薄片的质心,此扇形的半径为 ,所对的圆心角为2 ,并证半圆片的质心离圆心的距离为 。
解 均匀扇形薄片,取对称轴为 轴,由对称性可知质心一定在 轴上。
有质心公式
设均匀扇形薄片密度为 ,任意取一小面元 ,
又因为
所以
对于半圆片的质心,即 代入,有
如自半径为 的球上,用一与球心相距为 的平面,切出一球形帽,求此球形冒的质心。
直线 在一给定的椭圆平面内以匀角速 绕其焦点 转动。求此直线与椭圆的焦点 的速度。已知以焦点为坐标原点的椭圆的极坐标方程为
式中 为椭圆的半长轴, 为偏心率,常数。
解:以焦点 为坐标原点
则 点坐标
对 两式分别求导
故
如图所示的椭圆的极坐标表示法为
对 求导可得(利用 )又因为
即
所以
故有
第1章部分习题解答理论力学 金尚年第二版【VIP专享】

1.2写出约束在铅直平面内的光滑摆线上运动的质点的微分{x =a(θ-sin θ)y =‒a(1‒cos θ)方程,并证明该质点在平衡位置附近作振动时,振动周期与振幅无关.解:设s 为质点沿摆线运动时的路程,取=0时,s=0θ∵{x =a(θ-sin θ)y =‒a(1‒cos θ)∴ ds=(dx )2+(dy )2 = (dθ‒cos θ∙dθ)2+(sin θddθS== 4 a (1)∫θ02a sin θ2 dθ ‒ cosθ2s =2a cos θ2θ2θ+2a sin θ2θ=a cos θ2 θ2+2a sin θ2θ设 为质点所在摆线位置处切线方向与x 轴的夹角,取逆时针为正,即切线斜率φtan φ=tan φ=dy dx =cos θ ‒1sin θ∴ sin φ ‒cosθ2 受力分析得:ms =‒mg sin φ=mg cosθ2则,此即为质点的运动微分方程。
2a sin θ2θ+a cos θ2 θ2=g cosθ2s =g4a (s ‒4a)∴ (s ‒4a)+g4a (s ‒4a )=0∴s ‒4a 一周期性变化的函数,周期T =2π4ag该质点在平衡位置附近作振动时,振动周期与振幅无关,为.2π4a g1.3证明:设一质量为m 的小球做任一角度的单摆运动0θ运动微分方程为θθθF r r m =+)2(①θθsin mg mr = 给①式两边同时乘以d θθθθθd g d r sin = 对上式两边关于积分得 ②θc g r +=θθcos 212利用初始条件时故 ③0θθ=0=θ 0cos θg c -=由②③可解得 0cos cos 2-θθθ-∙=lg 上式可化为dt d lg=⨯-∙θθθ0cos cos 2-两边同时积分可得θθθθθθθθd g l d g l t ⎰⎰---=--=02222002sin 12sin 10012cos cos 12进一步化简可得θθθθd g l t ⎰-=0002222sin sin 121由于上面算的过程只占整个周期的1/4故⎰-==02022sin2sin124T θθθθd g l t 由ϕθθsin 2sin /2sin 0=两边分别对微分可得θϕϕϕθθθd d cos 2sin 2cos 0=ϕθθ202sin 2sin 12cos-=故ϕϕθϕθθd d 2020sin 2sin 1cos 2sin 2-=由于故对应的00θθ≤≤20πϕ≤≤故ϕϕθϕθϕθθθθπθd g l d g l T ⎰⎰-=-=22022cos 2sinsin 2sin 1/cos 2sin42sin2sin 20故其中⎰-=2022sin 14πϕϕK d g l T 2sin022θ=K 通过进一步计算可得gl π2T =]2642)12(531(4231(21(1[224222 +⨯⨯⨯⨯-⨯⨯⨯⨯++⨯⨯++nK n n K K 1.5解:如图,在半径是R 的时候,由万有引力公式,对表面的一点的万有引力为, ①F =GMmR 2M 为地球的质量;可知,地球表面的重力加速度 g , x 为取地心到无限远的广义坐标,,②md 2xdt 2=mg =F联立①, ②可得:,M 为地球的质量;③g =GMR 2当半径增加 ,R2=R+ ,此时总质量不变,仍为M,∆R ∆R 此时表面的重力加速度 可求:g '④md 2xdt2=mg '=F 2=G MmR 22由④得:⑤g '=GMR 22=GM(R +∆R )2则,半径变化后的g 的变化为⑥∆g =g ‒g '=GMR2‒GM(R +∆R )2对⑥式进行通分、整理后得:⑦∆g =GM R 2∆R 2+2∆RR(R +∆R )2对⑦式整理,略去二阶量,同时远小于R ,得∆R ⑧∆g =g2∆R RR 2=g2∆RR 则当半径改变 时,表面的重力加速度的变化为:∆R 。
理论力学(周衍柏第二版)思考题习题答案

1.2某船向东航行,速率为每小时15km,在正午某一灯塔。另一船以同样速度向北航行,在下午1时30分经过此灯塔。问在什么时候,两船的距离最近?最近的距离是多少?
1.3曲柄 以匀角速 绕定点O转动。此曲柄借连杆AB使滑块B沿直线 运动。求连杆上 点的轨道方程及速度。设 , 。
1.18答:地球附近的物体都受到随地球自转引起的惯性离心力的作用,此力的方位线平行于赤道平面,指向背离地轴。人造地球卫星的轨道平面和地球赤道平面的夹角越大,则卫星的惯性离心力与轨道平面的家教越大,运动中受的影响也越大,对卫星导向控制系统的要求越高。交角越大,对地球的直接探测面积越大,其科学使用价值越高。
1.4 在怎样的运动中只有 而无 ?在怎样的运动中又只有 而无 ?在怎样的运动中既有 而无 ?
1.5 与 有无不同? 与 有无不同?试就直线运动与曲线运动分别加以讨论.
1.6人以速度 向篮球网前进,则当其投篮时应用什么角度投出?跟静止时投篮有何不同?Байду номын сангаас
1.7雨点以匀速度 落下,在一有加速度 的火车中看,它走什么路经?
1.4答:质点在直线运动中只有 ,质点的匀速曲线运动中只有 ;质点作变速运动时即有 。
1.5答: 即反应位矢 大小的改变又反映其方向的改变,是质点运动某时刻的速度矢量,而 只表示 大小的改变。如在极坐标系中, 而 。在直线运动中,规定了直线的正方向后, 。且 的正负可表示 的指向,二者都可表示质点的运动速度;在曲线运动中 ,且 也表示不了 的指向,二者完全不同。
1.10答:当速度与物体受的合外力同一方位线且力矢的方位线不变时,物体作直线运动。在曲线运动中若初速度方向与力的方向不一致,物体沿出速度的方向减速运动,以后各时刻既可沿初速度方向运动,也可沿力的方向运动,如以一定初速度上抛的物体,开始时及上升过程中初速度的方向运动,到达最高点下落过程中沿力的方向运动。
理论力学(周衍柏 第二版)第3章习题解答

∑F ∑F
∑M
到最小时,
y
x
= N 2 − f1 = 0 ①
= f 2 + N1 − G1 − G2 = 0 ②
且梯子沿过 A 点平行于 z 轴的合力矩为零。即:
i
= G2 l cos θ + G1
l cos θ − f 2 l cos θ − N 2 l sin θ = 0 ③ 2
又因梯子是一个刚体。当一端滑动时,另一端也滑动,所以当梯与地面的倾角达
对于 C 球,它相对于过 D 点与 z 轴平行的轴的合力矩等于零。即:
= Tr sin(β − α ) − Gr sin β = 0 ②
tan β = 3 tan α
3.5 解 如题 3.5.1 图。
y A
o
f2
N2
N1
G2 G 1
f1 B x
题3.5.1图
梯子受到地面和墙的弹力分别为 N1 , N 2 ,受地面和墙的摩擦力分别为 f1 , f 2 。 梯子和人的重力分别为 G1 ,G2 且 G2 = 3G1 。设梯长为 l ,与地面夹角为 θ 。由于 梯子处于平衡,所以
2
=1
可求该切面的面积
⎛ y2 ⎞ ⎟ S ( y ) = πac⎜ − 1 ⎜ b2 ⎟ ⎝ ⎠
故积分
b b ⎛ y2 ⎞ 4 2 2 2 ⎜ ⎟ ρdy = πρab3c y dm y S dy y ac 1 = ⋅ ρ = π − 2 ⎟ ∫ ∫−b ( y ) ∫−b ⎜ b ⎠ 15 ⎝
同理可求
o
αα
y
T
B Tα
β β
β −α c
A r
题3.4.1图
Ox 轴竖直向下,相同的球 A 、 B 、 C 互切, B 、 C 切于 D 点。设球的重力大小
理论力学(周衍柏第二版)答案汇总

第一章习题1.1沿水平方向前进的枪弹,通过某一距离s 的时间为t 1,而通过下一等距离s 的时间为2t .试证明枪弹的减速度(假定是常数)为()()2121122t t t t t t s +- 1.2 某船向东航行,速率为每小时15km,在正午某一灯塔。
另一船以同样速度向北航行,在下午1时30分经过此灯塔。
问在什么时候,两船的距离最近?最近的距离是多少? 1.3 曲柄,r A O =以匀角速ω绕定点O 转动。
此曲柄借连杆AB 使滑块B 沿直线Ox 运动。
求连杆上C 点的轨道方程及速度。
设a CB AC ==,ψϕ=∠=∠ABO AOB ,。
x第1.3题图1.4 细杆OL 绕O 点以角速ω转动,并推动小环C 在固定的钢丝AB 上滑动。
图中的d 为已知常数,试求小球的速度及加速度的量值。
A BOCLxθd 第1.4题图1.5 矿山升降机作加速度运动时,其变加速度可用下式表示:⎪⎭⎫ ⎝⎛-=T t c a 2sin 1π 式中c 及T 为常数,试求运动开始t 秒后升降机的速度及其所走过的路程。
已知升降机的初速度为零。
1.6 一质点沿位失及垂直于位失的速度分别为r λ及μθ,式中λ及μ是常数。
试证其沿位矢及垂直于位失的加速度为⎪⎭⎫ ⎝⎛+-r r r μλμθθμλ,2221.7 试自θθsin ,cos r y r x ==出发,计算x 及y。
并由此推出径向加速度ra 及横向加速度θa 。
1.8 直线FM 在一给定的椭圆平面内以匀角速ω绕其焦点F 转动。
求此直线与椭圆的焦点M 的速度。
已知以焦点为坐标原点的椭圆的极坐标方程为()θcos 112e e a r +-=式中a 为椭圆的半长轴,e 为偏心率,都是常数。
1.9 质点作平面运动,其速率保持为常数。
试证其速度矢量v 与加速度矢量a 正交。
1.10 一质点沿着抛物线px y 22=运动其切向加速度的量值为法向加速度量值的k 2-倍。
如此质点从正焦弦⎪⎭⎫⎝⎛p p ,2的一端以速度u 出发,试求其达到正焦弦另一端时的速率。
力学第二版习题答案第七章

第七章基本知识小结⒈刚体的质心定义:∑⎰⎰==dm dm r r mr m r c i i c//求质心方法:对称分析法,分割法,积分法。
⒉刚体对轴的转动惯量定义:∑⎰==dm r I r m Iii 22平行轴定理 I o = I c +md 2 正交轴定理 I z = I x +I y. 常见刚体的转动惯量:(略) ⒊刚体的动量和质心运动定理∑==cc a m F v m p⒋刚体对轴的角动量和转动定理∑==βτωI I L⒌刚体的转动动能和重力势能c p k mgy E I E ==21ω⒍刚体的平面运动=随质心坐标系的平动+绕质心坐标系的转动动力学方程:∑∑==cc ccI a m F βτ(不必考虑惯性力矩)动能:221221cc c kI mv E ω+=⒎刚体的平衡方程∑=0F, 对任意轴∑=0τ7.1.2 汽车发动机的转速在12s 内由1200rev/min 增加到3000rev/min.⑴假设转动是匀加速转动,求角加速度。
⑵在此时间内,发动机转了多少转?解:⑴21260/2)12003000(/7.15s rad t===-∆∆πωβ ⑵rad27.152)60/2)(12003000(21039.26222202⨯===∆⨯--πβωωθ对应的转数=42010214.3239.262≈⨯=⨯∆πθ7.1.3 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。
求t 时刻的角速度和角加速度。
解:23212643ct bt ct bt a dt d dtd -==-+==ωθβω7.1.4 半径为0.1m 的圆盘在铅直平面内转动,在圆盘平面内建立o-xy 坐标系,原点在轴上,x 和y 轴沿水平和铅直向上的方向。
边缘上一点A 当t=0时恰好在x 轴上,该点的角坐标满足θ=1.2t+t 2 (θ:rad,t:s)。
⑴t=0时,⑵自t=0开始转45º时,⑶转过90º时,A 点的速度和加速度在x 和y 轴上的投影。
理论力学第二版第二章答案 罗特军

魏
π
y sin x
0
dy sin xdx 2
0
泳
π
涛
da w. co m
yC
π y sin x 1 1 π 2 π y d x d y d x y d y sin xdx 0 0 0 S S 2S 8
由对称性, xC
π 2
课
后
答
四川大学 建筑与环境学院 力学科学与工程系 魏泳涛
课
后
答
四川大学 建筑与环境学院 力学科学与工程系 魏泳涛
案
网
ww
w.
kh
da
7 πr 2 0 πr 2 r r 2 2 7 πr πr 6 2 2 7 πr 0 πr r r 图形形心 y 坐标: 2 2 7 πr πr 6
w.
co
静力学习题及解答—力系的简化
i i
123.6mm , yC
S y S
i i
涛
533.3
i
514.1mm
课
后
答
四川大学 建筑与环境学院 力学科学与工程系 魏泳涛
案
网
ww
w.
kh
da
w.
co
m
静力学习题及解答—力系的简化
2.8 均质平面薄板由正弦曲线与 x 轴的一段所围成,如图所示。求板的中心位置。
解:
S dxdy dx
魏
泳
涛
m
解: q h 1m 78.4 kN m M O (F1 ) F1a 891kN m M O (F2 ) F2b 297kN m 1 水压力主矢大小: qh 313.6kN ,方向水平向右 2 1 h 水压力对 O 点主矩: qh 836.3kN m 2 3 (313.6i 891 j ) kN 945(0.332i 0.943 j ) kN 因此,力系主矢: FR 力系对 O 点主矩: M O 243.3kN m 合力作用线距离 O 点: d
理论力学(周衍柏 第二版)第2章习题解答

2.8 一光滑球 A 与另一静止的光滑球 B 发生斜碰。如两者均为完全弹性体,且两球的质量相
等,则两球碰撞后的速度互相垂直,试证明之。 2.9 一光滑小球与另一相同的静止小球相碰撞。在碰撞前,第一小球运动的方向与碰撞时两
球的联心线成α 角。求碰撞后第一小球偏过的角度 β 以及在各种α 值下 β 角的最大值。设 恢复系数 e 为已知。 2.10 质量为 m2 的光滑球用一不可伸长的绳系于固定点 A 。另一质量为 m1 的球以与绳成θ 角的速度 v1 与 m2 正碰。试求 m1 与 m2 碰后开始运动的速度 v1′ 及 v2′ 。设恢复系数 e 为已知。
离是一致的(因为两次运动水平方向上均以 v水平 = v0cosα 作匀速直线运动,运动 的时间也相同)。所以我们只要比较人把物抛出后水平距离的变化即可。第一次
机枪后退的速度为
M ′ u − (M + M ′)2 − M 2 μg
Mபைடு நூலகம்
2mM
2.16 雨滴落下时,其质量的增加率与雨滴的表面积成正比例,求雨滴速度与时间的关系。
2.17 设用某种液体燃料发动的火箭,喷气速度为 2074 米/秒,单位时间内所消耗的燃料为
原始火箭总质量的 1 。如重力加速度 g 的值可以认为是常数,则利用此种火箭发射人造太 60
zc
=
∫ zdm ∫ dm
=
−
3 4
(a + b)2 (2a + b)
2.3 解 建立如题 2.3.1 图所示的直角坐标,原来W人 与共同作一个斜抛运动。 y v0
α
O
x
4
当达到最高点人把物体水皮抛出后,人的速度改变,设为 vx ,此人即以 vx 的速 度作平抛运动。由此可知,两次运动过程中,在达到最高点时两次运动的水平距
力学第二版习题答案(高等教育出版社)04

第四章基本知识小结⒈功的定义式:⎰⋅=2112r r r d F A直角坐标系中:⎰⎰+==221121,,1212y x y x yxx x x dy F dx F A dx F A ,自然坐标系中:⎰=2112s s ds F A τ极坐标系中:⎰+=2211,,12θθθθr r rrd F dr F A⒉⎰⋅-=-=bap p k r d F a E b E mv E 保势能动能)()(,212重力势能mgy y E p =)(弹簧弹性势能2)(21)(l r k r E p -=静电势能rQqr E p πε4)(=⒊动能定理适用于惯性系、质点、质点系∑∑∆=+kE A A 内外⒋机械能定理适用于惯性系∑∑+∆=+)p k E E A A (非保内外⒌机械能守恒定律适用于惯性系若只有保守内力做功,则系统的机械能保持不变,C E E p k =+⒍碰撞的基本公式接近速度)(分离速度(牛顿碰撞公式)动量守恒方程)e v v e v v v m v m v m v m =-=-+=+)((2010122211202101 对于完全弹性碰撞 e = 1 对于完全非弹性碰撞 e = 0对于斜碰,可在球心连线方向上应用牛顿碰撞公式。
⒎克尼希定理∑+=22'2121i i c k v m mv E绝对动能=质心动能+相对动能 应用于二体问题222121u mv E c k μ+=212121m m m m m m m +=+=μu 为二质点相对速率4.2.2 本题图表示测定运动体能的装置。
绳拴在腰间沿水平展开跨过理想滑轮,下悬重物50kg ,人用力向后蹬传送带而人的质心相对于地面不动,设传送带上侧以2m/s 的速率向后运动,问运动员对传送带做功否?功率如何?解:人作用在传送带上的力有向下的压力和水平向后的静摩擦力,压力方向与传送带位移方向垂直,所以压力不做功,但静摩擦力方向与传送带位移方向相同,所以静摩擦力对传送带做正功。
理论力学(第2版)习题答案

各章习题(计算题)部分答案第1章 略 第2章2-1 R 3284kN F .=,R cos()2063,.=︒F i ,R cos()1163,.=︒F j 2-2 3162kN T .=,30β=︒ 2-3 482.α=︒,R 496kN x F .= 2-4 11866N 50N x y F .F ==,2230N 40N x y F F ==-, 330N 60N x y F F ==, 44566N 566N x y F .F .==, 2-5 R 0F =2-6(a) 707kN 354kN 354kN Ax Ay B F .F .F .===,,(b) 05kN 5kN Ax Ay B F F F ===,,(c) 933kN 433kN 612kN Ax Ay B F .F .F .===,,(垂直于支撑面,指向简支梁) 2-7 min 15kN F =,N 25kN F =2-8 0866kN 05kN 1kN Ax Ay BD F .F .T ===,, 2-9 N N 1732kN 3464kN 15m A C F .F .AC .===,, 2-10 03436kN AB AC F F .==,2-11 BC F =,Ax F =,Ay F G = 2-12 N 65EF G F =+2-13 N N C D F F =2-14 231N 1155N 231N 845N AB AE BC BD F F .F F .====,,,2-15 (a) 33PF P F B Ay =-=,(b) P F F B A 32== (A F ,B F 方向相反,组成一力偶) (c) 0==B A F F2-16 1F,AB F,OA F =,7kN BC F =- 2-17 1905N 1905N 1905N 1905N Ax Ay Cx Cy F F F F =-===-,,, 2-18 3571N 3571N 3571N 3571N Ax Ay Cx Cy F F F F ==-=-=,,,·312··312·2-19 24kN m M =⋅,1155kN A B F F .== 第3章3-1 2400N Ax F =,1200N Ay F =,8485N BC F .= 3-2 R 0F'=,260N m O M =⋅ 3-3 (a) R F'qa =,221qa M O = (b) R12F'ql =,21ql q M O = 3-4(a) Ax F =,40kN Ay F =,120kN m A M =⋅,N C F = (b) 0=AxF ,25kN Ay F .=-,15kN By F =,D 25kN y F .=3-5 当60α=︒时,min 4AB PrF L= 3-6 0=Ax F ,qa F Ay2=,2qa M A =3-7 (a)2400N Ax F =,1000N Ay F =-,2400N Dx F =-,2000N Dy F = (b)2400N Ax F =-,1000N Ay F =-,2400N Dx F =,2000N Dy F =3-8 Ax F =,Ay F =,Bx F =,By F =3-9 rPLF Ax 2-=,P F Ay =,r PL F Bx 2=,P F By =,r PL F D 2=,P F C 2=3-10 R 32E F qa =-,qa F BD 22= 3-11 23kN Ax Cx F F .=-=-,1kN Ay Cy F F == 3-12 3PF AC -=,0=EF F ,32P F BD -= 3-13 2F F BC=,2F F DE = 第4章4-1 T 20kN F =,104kN OA F .=-,139kN OB F .=- 4-2 254kN m x M .=⋅,146kN m y M .=⋅,0=z M 4-3 0)(=P z M4-4 θαsin sin )(Pa M AB =P 4-5 3C A B WT T T ===4-6 1kN T =,0=Ax F ,750N Ay F =-,500N Az F =-,433N Bx F =,500N BZ F = 4-7 F F F -==61,F F =3,0542===F F F·313··313·4-8 321M a cM a b M +=,a M F Ay 3=,a M F Az 2=,0=Dx F ,a M F Dy 3-=,aM F Dz 2-= 4-9 4kN Ax F =,146kN Az F .=-,79kN Bx F .=,29kN Bz F .=-4-10 5kN Ox F =-,4kN Oy F =-,8kN Oz F =,32kN m Ox M =⋅,30kN m Oy M =-⋅,20kN m Oz M =⋅4-11 (a ) 10412kN N F .=,20213kN N F .=,30375kN N F .= 4-12 )(22221221r r r r x C --=,0=C y4-13 (a ) 589mm C x .=-,0=C y (b ) 797mm C x .=,349mm C y .= 4-14 )(22221221r r r r x C --=,0=C y4-15 0Ax F =,121(P )2Ay F P =-+,21P 2Az P F =+,0Cx F =,0Cy F =,22Cz P F =第5章5-1 min F =,s arctan f α= 5-2 )()m m sin +cos -P F αϕθϕ=,m θϕ=5-3 (1) A 先滑动,(2) A 、B 一起滑动 5-4 能保持平衡,S 201N F = 5-5 223.0=f5-6 3πarcsin 43πff α=+5-7 1s sin cos P F f αα=-,2s sin cos PF f αα=+,故21F F >5-8 min 845kN Q .= 5-9 435N P .=5-10 θ≤9926.︒5-11 120cm x >5-12 s 2(sin cos )Q R f L αα⋅+≤P ≤s 2(sin cos )Q Rf L αα⋅-5-13 min 1475N P .=5-14 4961N m .⋅≤C M ≤7039N m .⋅ 5-15 11cm b <5-16s s sin cos cos sin f Q f αααα-+≤P ≤s s sin cos cos sin f Q f αααα+- 5-17 arc ϕ=·314··314·5-18 500N P = 5-19 s f ≥15.0 5-20 75mm b .< 第6章6-1 (cos sin )x v lk kt kt =-,(cos sin )y v lk kt kt =-+; )sin (cos 2kt kt lk a x +-=,)sin (cos 2kt kt lk a y --= 6-2 (1) 0=s ;v R ω=;0a τ=,2n a R ω=(2) R s 23=;12v R ω=;2a ωτ=,2n 14a R ω= (3) R s =;0v =;2a R ωτ=-,n 0a =6-3 直角坐标法:t R x ω2cos =,t R y ω2sin =;2sin2x v R t ωω=-,2cos2y v R t ωω=; t R a x ωω2cos 42-=,t R a y ωω2sin 42-=自然坐标法:t R s ω2=;2v R ω=;0a τ=,2n 4a R ω= 6-4 ()sin M x l b t ω=+,()cos M y l b t ω=-;22221()()M M x y l b l b +=+-6.52222()1()x a y b l l-+=+6-6 22)sin (cos h t r l t r x B +-+=ωω,h y B -=6-7v =322xb u a -= 6-8 )cos sin arctan(00tr h tr ωωθ-=6-9 当0s t =时,157cm s M v ./=;0M a τ=,n2617cm s M a ./=当2s t =时,0M v =;2123cm s M a ./τ=-,n0M a =6-10 C x =C y =2C avv l=6-11 t e R t e y ωω222cos sin -+=;[cos v e t ωω=6-12 02cos4m x .t =;0566m s v ./=-;22263m s a ./=-6-13 0arctan rad v tbϕ=;02220rad s bv /b v t ω=+6-14 225t =ϕ;120m s v /=;236000m s n a /= 6-15 8rad s /ω=;2384rad s ./ε=-6-16 转轴O 的位置位于正方形的中心;1rad s /ω=,21rad s /ε=6-17 12C v r ω=;n 214C a r ω=,12C a r ετ=·315··315·6-18 12m s M v ./=;n 272m s M a ./=,206m s M a ./τ= 6-19 0377m s C v ./=6-20 2225000rad s /dεπ=;25922m s a ./= 6-21 32rad .ϕ=6-22 12mm h =6-23 02=ω,222r lb ωε-=6-24 02m s AB v ./=,2005m s AB a ./=;02m s C v ./=,n 20267m s C a ./=,2005m s C a ./τ=6-25 2012ωr a =,方向沿1AO ;2024ωr a =,指向轮心第7章7-1 x'vt =,cos()a kt y'ϕ=+,轨迹方程为cos()ky'a x'vϕ=+ 7-2 2cos M v R ωϕ=,方向水平向左 7-3 (a )2309rad s ./ω=; (b )2182rad s ./ω=7-4 (1)34OC v b ω=,34C lv v b=;(2)234K v a b = 7-5 当0ϕ︒=时,0v =;当30ϕ=︒时,100cm s v /=,向右;当90ϕ︒=时,200cm s v /=,向右7-6 126m s BC v ./=;2274m s BC a ./= 7-7 10cm s CD v /=;2346cm s CD a ./= 7-8 a a =7-9 3v ω=,方向向上7-10 1.732rad /s ω=,28.66rad /s ε=- 7-11 0.173m /s v =,20.05m /s a = 7-12 0.173m /s M v =,20.35m/s M a =7-13 πcos 15sin BC nr v αβ=7-14 23CD r v ω=;29310ωr a C D =7-15 a 3465mm s v ./=;21400mm s CD a /=第8章8-1 122v v r ω-=,122O v v v +=8-2 156cm s C v ./=,17cm s D v /=·316··316·8-3 877cm s C v ./=8-4 375rad s OB ./ω=,I 6rad s /ω=8-5 600mm s A v /=,200mm s B v /=,s C v /=;4rad s 3ABC /ω=,05rad s BD ./ω= 8-6 2rad s AB /ω=,2578rad s AB ./ε=-;667rad s BC ./ω=-,21926rad s BC ./ε=8-7 2()C A Rv a R r r=-,2Bx C a a τ=,2(2)()C By R r v a R r r -=- 8-8 2022ωr a B =,20211ωε=B O 8-9 032C v r ω=,20123ωr a C =8-10 01.15v l ω=8-11 16186rad s O C ./ω=,127817rad s O C ./ε=-8-12 s CD v /=,22m s 3CD a /= 8-13 n 2400cm s B a /=,21705cm s B a ./τ=-,21705cm s C a ./=-8-14 34e OC v v OB b ω==,OC ε=;12E v v =,E a = 8-15 21960mm s B a /=,298rad s AB ./ε=8-160C v ω,方向向左;rR B O 01ωω=,逆时针转向8-17 22()C Rv a R r =-,B a =8-18 n 202B a a ω=,2002)B a a ετ=-8-19 330ωω=B ;209)349(10ω+-=B a 8-20 2m s B v /=,2828m s C v ./=,28m s B a /=,21131m s C a ./= 第9章9-1 rgf=max ω 9-2 min 67r min n /=9-3 1v =9-4 0cos cos sin v x b kt kt k α=+,0sin sin vy kt kα=9-5 0cos x v t α=,201sin 2y v t gt α=+·317··317·9-6 0(1e )kt v s k-=- 9-7 202s t .=,707m s .= 9-8 172N F .=9-9 )(22g a amL F AC +=ω,)(22g a a mL F BC -=ω9-10 max 584kN F .=,min 536kN F .=9-11 g f f a ααααsin cos cos sin -+=,N cos sin W F f αα=- 9-12 )cos 1(200t m F t x ωωυ-+=第10章10-1 (a ) 12p mL ω=,方向水平向右;(b ) p mR ω=,方向水平向右;(c ) p me ω=,方向垂直于OC 的连线;(d ) C p mv =,方向水平向右10-2 30N x F =10-3 11221022a gP P P P F -++= 10-4 11r 12m v v v m m =++10-5 0(sin cos )v t g f'αα=-10-6 12(54)2l p m m ω=+,方向与曲柄垂直且向上 10-7 t m m l m x m m kx ωωsin 1211+=++10-8 2R s =10-9 (1) 3123123(22)cos ,2()C P L P P P L tx P P P ω+++=++ (2) 12123(2)sin ;2()C P P L t y P P P ω+=++2321max 222ωL gP P P F Ox ++=10-10 椭圆 2224l y x =+10-11 (1) 2sin G Wx l t P W Gω+=++ (2) 2m a x 2x G W F l g ω+=10-12 向右移377cm . 10-13 33(sin )cos ox R F m g m a r θθ=+,1233()(sin )sin oy RF m g m g a m g m a rθθ=+-++ 10-14 21212)(m m gm m f b m a ++-=·318··318·10-15 17cm A s =,向左移动;9cm B s =,向右移动 10-16 2max12(2)2ox r F F G G gω=++10-17 24(cos sin )3Ox mR F ωϕεϕπ=-+,24(sin cos )3Oy mR F mg ωϕεϕπ=+- 第11章11-1 (a ) ω2031ml L =,(b ) ω2021mR L =,(a ) ω2023mR L =11-2 208m s a ./=,2862kN T F .=,4626kN Oy F .=11-3 (1) ωωω22231ml mR Ml L O ---=,(2) ωω2231ml Ml L O --=11-4 θω22sin )312(l M m L O +=11-5 480r min n /=11-6 022ωωmr J ma J z z ++=11-7 0N 0Pr F fgt ω= 11-8 211212122()()R M R M'm m R R ε-=+11-9 )()(2212J i J gPR R PR Mi a ++-=11-10 t P P gkl)3(3cos210+=δϕ11-11 gR RW g J R W M a 2101sin +-=α,1T 1sin W F W a g α=+ 11-12 g J r m r m r m r m O++-=2222111122ε11-13 g R m r R m r R m a )()()(2222121ρ++++=,)()()(22221212ρρ+++-=R m r R m g m m Rr F11-14 v =T 13F mg =11-15 θsin 74g a =,θsin 71mg F -= 11-16 g a C 355.0=11-17 3)(2121m m gm m f F a ++-=·319··319·11-18 gr M R m r m R fm r m a 2222121ρ++-=,T 11A F m g m a =-,2T 2B m RF fm g a r=+11-19 2N 22sin 12D QL F a Lα=+,αcos g a Cx =,22212sin 12L a g a a Cy +=α 11-20 N 3633N B F .=11-21 P F F x O x O 516.021==,P F y O 434.11=,P F y O 164.12=第12章12-1 )cos 1(0ϕ+=mgr W AB ,)sin (cos 0θϕ-=mgr W AC 12-2 129904J F W .=,10500J f W =- 12-3 12206J W .=-,23206J W .=,031=W 12-4 (a) 2216T ml ω=,(b) 2234T mR ω=,(c) 2214T mR ω=,(d) 234C T mv =,12-5 10J W =重,503J W .=重12-6 θω222sin 61ml T = 12-7 21s s hf += 12-8 2122)cos (sin 2m m f gr m M r++-=ααϕϕω12-9 v=12-10 A v =12-11 A v =12-12 v =11/sin M R W a g W Wα-=+12-13 C v =45C a g =12-14 98N F .= 12-15 θωsin 3632121l g m m m m ++=,θεcos 23632121lgm m m m ++=12-16 C v =321321843)43(m m m gm m m F +++=12-17 (1) 2211)3()sin (2Rm m gR m M +-=αε, (2) R m m gR m M m F Ox )3(2)2sin cos 6(2121++=αα; ααsin )3()sin 3(21212⋅+++=Rm m gR m M m g m F Oy·320··320·12-18 v =m khmg a 34-=,41s 36F kh mg =+ 第13章13-1 αsin 32g a =13-2 g a 32=,T 3WF =13-3 Q P Pg a 322+=,QP PQF 32+=13-4 g P T a 3cos 2α=,N sin F P T α=-,s 1cos 3F T α= 13-5 22233cos sin 3()sin 2b a g b a ϕϕωϕ-=-13-6 445N ADF .=,54N BE F =13-7 2222(sin )cos sin J mr mr M ϕϕϕϕϕ++= 13-8 2222143)2(43ωr m gr m m M -+=,2143ωr m F Ox -=,4)2()(22121ωr m m g m m F Oy +-+= 13-9 0β=︒时,2329N Ax F =-,1382N Bx F =,1962N Ay By F F .==180β=︒时,12238N Ax F .=,592N Bx F =-,1962N Ay By F F .==13-10 2023ωmr F Ax -=,mgr F Ay =,20221ωmr F Bx =,mgr F By =13-11 g a a C x C 1712==,mg F 175= 13-12 l g 791=ε,lg 732-=ε,0=Ox F ,mg F Oy 72=第14章14-1 ctg 2P /Q /ϕ= 14-2 (3ctg 2)Ax F /P θ=14-3 A F P /=14-4 ctg Q P θ= 14-5 450N Q P /==14-6 12F F l =/2(cos )a ϕ14-7 05kN 21kN m Ax Ay A F F m ===⋅,,14-8 1866kN P .=14-9 2()F lx a k b=+14-10 2(kN)Ax F =, 3.804(kN)Ay F =,24(kN m)A M =-⋅,18.588(kN)B F =。
理论力学第二版答案

1-1 图示曲线规尺的杆长200OA AB ==mm ,而50CD DE AC AE ====mm 。
如果OA 绕O 轴转动的规律是5/t πϕ=,初始时0t =,求尺上D 点的运动方程和轨迹。
解:A 点运动已知,欲求D 点运动,可从D 点相对A 点的几何出发求解。
以,,(,,,,)i i x y i A B C D E =分别表示各点的,x y 坐标。
由OA AB =,CD DE AC AE ===可知:运动过程中ACDE 始终为一个平行四边形,从而:D A x x =,2A D C y y y += OA 绕O 轴转动,转角5tπϕ=∴cos 200cos5A t x OA π=ϕ=,sin 200sin 5A t y OA π=ϕ= s i n ()s i n 150s i n 5C ty O CO A A C π=ϕ=-ϕ= ∴ 200cos 5D A t x x π==(mm), D C 2100sin 5A ty y y π=-=(m m)得到D 点的运动方程为:22221200100D Dx y +=1-2 图示AB 杆长为l ,绕B 点按t ϕω=的规律转动。
与杆连接的滑块按sin s a b t ω=+的规律沿水平线作简谐振动,其中a 、b 、ω为常数,求A 点的轨迹。
解: 点A 的运动为滑块B 与杆AB 二者运动的合成。
在oxy 坐标中,t 时刻x x l y l A B A =+=sin ,cos ϕϕ代入 x s a b B ==+sin ϕ,可得A 的轨迹为122=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+-l y l b a x A A1-3 半径为r 的半圆形凸轮以等速0v 在水平面上滑动,如图所示,求当︒=30θ瞬时顶杆上升的速度大小与加速度大小(杆与凸轮的接触点为M )。
解:由已知条件可得M 点的坐标为0=x ,22002022)(tv t rv t v r r y -=--=,则y 方向上的速度和加速度分别为:202y rv t =(1)22002200220022002022/)(2tv t rv tv t rv t v r v t v t rv v y------= (2)当30=θ时,r t v r 230=-,即r t v )231(0-=代入(1)式和(2)式,可以得到x0303|v y == θ,r r y 20308|-== θ1-4 半径为R 的圆弧与AB 墙相切,在圆心O 处有一光源,点M 从切点C 处开始以等速度0υ沿圆弧运动,如图所示,求M 点在墙上影子'M 的速度大小与加速度大小。