五年级奥数精品讲义 第1讲 数的整除(有精讲,有分层精炼)

合集下载

五年级数学提高讲义——数的整除性

五年级数学提高讲义——数的整除性

第一讲 数的整除性基础班作业1.四位数4□7□能被55整除,这样的四位数有哪些?2、有些四位数能被7整除,且将它从中间划分成前后两个两位数时,前面的数能被3整除,后面的数能被5整除。

那么所有这样的数中最小的是多少?3、 已知数022983298329832983个 n 能被18整除,那么n 的最小值是多少?4、 有一天非常热,四对夫妇共饮了44瓶可口可乐。

女士安喝了2瓶,贝蒂3瓶,卡罗尔4瓶,多萝西5瓶。

布朗先生和他的妻子两人喝得一样多,但是其他三位男士都比他们各自的妻子喝得多:格林先生是其妻的两倍,怀特先生是三倍,史密斯先生是四倍。

请你说出各位先生的妻子是谁?5、 把若干个自然数1、2、3、……连乘到一起,如果已知这个乘积的最末53位恰好都是零,那么最后出现的自然数最小应该是多少?最大是多少?解析1、11555⨯=,先考虑5,则个位只能是0或5。

再考虑11,奇数位数字之和是0+□或5+□,偶数位数字之和是4+7=11,所以百位数字应分别取0和6,那么这样的四位数字有2个,分别是4070、4675。

2解析:能被3整除的两位数最小为12,能被5整除的数个位是0或5,因此这样的四位数为12□0或12□5,又能被7整除,估算可知这个数是1225。

3解析:9218⨯=,这个多位数的个位上是2,满足被2整除,因此只需考虑个位数字之和能否被9整除。

22220)3892(+=++⨯+++n n 是9的倍数,109902422⨯==+⨯,那么n 的最小值为4。

4解析:由题意可知,布朗太太所喝的可乐瓶数乘以2即为夫妇二人的总瓶数,格林太太应乘以3,怀特太太应乘以4,史密斯太太应乘以5,所得结果相加得44。

2×5+3×4+4×3+5×2=44,所以多萝西是布朗太太,卡罗尔是格林太太,贝蒂是怀特太太,安是史密斯太太。

5、解析:所有乘数中每出现一对质因数2和5,乘积的末尾就有一位0,又连续的自然数中2的倍数比5的倍数多,所以只要考虑5的倍数。

五年级数学奥数精品讲义1-34讲

五年级数学奥数精品讲义1-34讲

五年级数学奥数精品讲义1-34讲(总87页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除目录第一讲消去问题(一)第二讲消去问题(二)第三讲一般应用题第四讲盈亏问题(一)第五讲盈亏问题(二)第六讲流水问题第七讲等差数列第八讲找规律能力测试(一)第九讲加法原理第十讲乘法法原理第十一讲周期问题(一)第十二讲周期问题(二)第十三讲巧算(一)第十四讲巧算(二)第十五讲数阵问题(一)第十六讲数阵问题(二)能力测试(二)第十七讲平面图形的计算(一)第十八讲平面图形的计算(二)第十九讲列方程解应用题(一)第二十讲列方程解应用题(二)第二十一讲行程问题(一)第二十二讲行程问题(二)第二十三讲行程问题(三)第二十四讲行程问题(四)能力测试(三)第二十五讲平均数问题(一)第二十六讲平均数问题(二)第二十七讲长方体和正方体(一)第二十八讲长方体和正方体(二)第二十九讲数的整除特征第三十讲奇偶性问题第三十一讲最大公约数和最小公倍数第三十二讲分解质因数(一)第三十三讲分解质因数(二)第三十四讲牛顿问题能力测试(四)2第一讲消去问题(一)在有些应用题里,给出了两个或者两个以上的未知数量间的关系,要求出这些未知数的数量。

我们在解题时,可以通过比较条件,分析对应的未知数量变化的情况,想办法消去其中的一个未知量,从而把一道数量关系较复杂的题目变成比较简单的题目解答出来。

这样的解题方法,我们通常把它叫做“消去法”。

例题与方法在学习例题前,我们先进行一些基本数量关系的练习,为用消去法解题作好准备。

(1)买1个皮球和1个足球共用去40元,买同样的5个皮球和5个足球一共用去多少元?(2)3袋子、大米和3袋面粉共重225、千克,1袋大米和1袋面粉共重多少千克?(3)6行桃树和6行梨树一共120棵,照这样子计算8行桃树和8行梨树一共有多少棵?(4)学校买了4个水瓶和25个茶杯,一共用去172元,每个水瓶18元,每个茶杯多少元?例1学校第一次买了3个水瓶和20个茶杯,共用去134元;第二次又买了同样的3个水瓶和16个差杯,共用去118元。

五年级数学 奥数精品讲义1-34讲

五年级数学 奥数精品讲义1-34讲

五年级数学奥数精品讲义1-34讲第一讲消去问题(一)第二讲消去问题(二)第三讲一般应用题第四讲盈亏问题(一)第五讲盈亏问题(二)第六讲流水问题第七讲等差数列第八讲找规律能力测试(一)第九讲加法原理第十讲乘法法原理第十一讲周期问题(一)第十二讲周期问题(二)第十三讲巧算(一)第十四讲巧算(二)第十五讲数阵问题(一)第十六讲数阵问题(二)能力测试(二)第十七讲平面图形的计算(一)第十八讲平面图形的计算(二)第十九讲列方程解应用题(一)第二十讲列方程解应用题(二)第二十一讲行程问题(一)第二十二讲行程问题(二)第二十三讲行程问题(三)第二十四讲行程问题(四)能力测试(三)第二十五讲平均数问题(一)第二十六讲平均数问题(二)第二十七讲长方体和正方体(一)第二十八讲长方体和正方体(二)第二十九讲数的整除特征第三十讲奇偶性问题第三十一讲最大公约数和最小公倍数第三十二讲分解质因数(一)第三十三讲分解质因数(二)第三十四讲牛顿问题能力测试(四)第一讲消去问题(一)在有些应用题里;给出了两个或者两个以上的未知数量间的关系;要求出这些未知数的数量.我们在解题时;可以通过比较条件;分析对应的未知数量变化的情况;想办法消去其中的一个未知量;从而把一道数量关系较复杂的题目变成比较简单的题目解答出来.这样的解题方法;我们通常把它叫做“消去法”.例题与方法在学习例题前;我们先进行一些基本数量关系的练习;为用消去法解题作好准备.(1)买1个皮球和1个足球共用去40元;买同样的5个皮球和5个足球一共用去多少元?(2)3袋子、大米和3袋面粉共重225、千克;1袋大米和1袋面粉共重多少千克?(3)6行桃树和6行梨树一共120棵;照这样子计算8行桃树和8行梨树一共有多少棵?(4)学校买了4个水瓶和25个茶杯;一共用去172元;每个水瓶18元;每个茶杯多少元?例1 学校第一次买了3个水瓶和20个茶杯;共用去134元;第二次又买了同样的3个水瓶和16个差杯;共用去118元.水瓶和茶杯的单价各是多少元?例2 买3个篮球和5个足球共、用去480元;买同样的6个篮球和3个足球共用去519元.篮球和足球的单价各是多少元?练习与思考1、 1袋黄豆和1袋绿豆共重50千克;同样的7袋黄豆和7袋绿豆共重()千克.2、买5条毛巾和5条枕巾共用去90元;买1条毛巾和1条枕巾要()元.3、买4本字典和4本笔记本共、用去了68元;买同样的9本字典和9本笔记本一共要()元.4、9筐苹果和9筐梨共重495千克;找这样计算;2筐苹果和2筐梨共重()千克.5、妈妈买了5米画布和3米白布;一共用去102元.花布每米15元;白布每米多少元?6、果园里有14行桃树和20行梨树;桃树和梨树一共有440棵.每行梨树15棵;每行桃树多少棵?8、食堂第一次运来6袋大米和4袋面粉;一共重400千克;第二次又运来9袋大米和4袋面粉;一共重550千克.每袋大米和每袋面粉各重多少千克?9、3豹味精和7包糖共重3800克;同样的3包味精和14包糖共重7300克.每包味精和每包糖各重多少克?10、育新小学买了8个足球和12个篮球;一共用去了984元;青山小学买了同样的16个足球和10个篮球;一共用去1240元.每个足球和每个篮球各多少元?11、买15张桌子和25把椅子共用去3050元;买同样的 5张桌子和20张椅子;需要1600元.买一张桌子和一把椅子需要多少元?12、3头牛和6只羊一天共吃草93千克;6头牛和5只羊一天共吃草130千克.每头牛每天比每只羊多吃多少千克?第二讲消去问题(二)例1、7袋大米和3袋面粉共重425千克同样的3袋大米和7袋面粉共重325千克.求每袋大米和每袋面粉的重量.3..三头牛和8只羊每天共吃青草93千克;5头牛和15只羊每天吃青草165千克.一头牛和一只羊每天各吃青草多少千克?练习与思考1.3个皮球和5个足球共245元;同样的6个皮和10个足球共()元.2.5盒铅笔和9盒钢笔共190支;同样的2盒铅笔和6盒钢笔共100支.3盒铅笔和3盒钢笔共()支;1盒铅笔和1支钢笔共()支.3.育才小学体育组第一次买了4个篮球和3个排球;共用去了141元;第二次买了5个篮球和4个排球;共用去180元.每个篮球和每个排球各多少元?4.3筐苹果和5筐梨共重138千克;5筐同样的苹果和3筐同样的共重134千克.;每筐苹果和每筐梨各重多少千克?5.某食堂第一次运进大米5袋;面粉7袋;共重1350千克;第二次运进大米3袋;面粉5袋;共重850千克.一袋大米和一袋面粉各重多少千克?6.3件上衣和7条裤子共430元;同样的7件上衣和3条裤子共470元.每件上衣和每条棵子各多少元?7.2千克水果糖和5千克饼干共64元;同样的3千克水果糖和4千克饼干共68元.每千克水果糖和每千克饼干各多少元?8.5包科技书和7包故事书共620本;6包科技书和3包故事书共420本.每包科技书比每包故事书少多少本?9.3个水瓶和8个茶杯共92元;5个水瓶和6个茶杯共102元.每个水瓶和每个茶杯各多少元?10.甲有5盒糖;乙有4盒糕共值44元.如果甲、乙两人对换一盒;则每人所有物品的价值相等.一盒糖、一盒糕各值多少元?第三讲一般应用题在小学里;通常把应用题分为“一般应用题”和“典型应用题|”两大类.“典型应用题”有基本的数量关系、解题模式;较复杂的问题可以通过“转化”;向基本的问题靠拢.我们已经学过的“和差问题”、和“倍差问题”等等;都是“典型应用题”.“一般应用题|”没有各顶的数量关系;也没有可以以来的解题模式.解题时要具体问题具体分析;在认真审题;理解题意的基础上;理清一知条件与所求问题之间的数量关系;从而确定解题的方法.对于比较复杂的问题;可以借助线段图、示意图、直观演示等手段帮助分析.例题与方法例 1、把一条大鱼分成鱼头、鱼身、鱼尾三部分;鱼尾重4千克;鱼头的重量等于鱼尾的重量加身一般的重量;而鱼身体、的重量等于鱼头的重量加上鱼尾的重量.这条鱼重多少千克?例2、一所小学的五年级有四个班;其中五(1)班和五(2)班共有81人;五(2)班和五(3)班共有83人五(3)班和五(4)班共有86人;五(1)班比五(4)班多2人.这所学校五年级四个班各有多少人?例 3、甲、乙两位渔夫在和边掉鱼;甲钓了5条;乙钓了3条;吃鱼时;来了一位客人和甲、乙平均分吃这条鱼.吃完后来客付了8角钱作为餐费.问:甲、乙两为渔夫各应得这8角钱中的几角?例 4、一个工地用两台挖土机挖土;小挖土机工作6小时;大挖土机工作8小时;一共挖土312方.已知小挖土机5小时的挖土量等于大挖土机2小时的完土量;两种挖土机每小时各挖土多少方?例 5、甲、乙、丙三人用同样多的钱合买西瓜.分西瓜时;甲和丙都比乙多拿西瓜7.5千克.结果甲和丙各给乙1.5元钱.每千克西瓜多少元|?例 6、小红有一个储蓄筒;存放的都是硬币;其中2分币比5分币多22个.而按钱数算;5分币比2分币多4角.已知这些硬币中有36个1分币.问:小红的储蓄筒里共存了多少钱?练习与思考(第1~4题13分;其余每题12分;共100分.)1.有一段木头;不知它的长度.用一根绳子俩量它;绳子多15米;如果将绳子对折以后再来量;又不够04米.问:这段绳子长多少米?2.甲、乙两人拿出同样多的钱合买一段花布;原约定各拿花布同样多.结果甲拿了6米;乙拿了14米.这样;乙就要给甲12元钱.每米花布的单价是多少元?3.甲、乙丙合三人各出同样多的钱合买苹果若干千克.分苹果时;甲和丙都比乙多拿7.8千克苹果;这样甲和丙各应给乙6元钱.每千克苹果多少钱?4.学校买了2张桌子和5把椅子;共付了330元 .每张桌子的价钱是每把椅子的3倍.每张桌子多少元?5.某校六年级有甲、乙、丙丁四个班;不算甲班;期于三个班的总人数是131人;不算丁班;期于三个班的总人数是134人.已知乙、丙两个班的总人数比甲、丁两个班的总人数少1人;甲、乙丙、丁四个班共有多少人?6.李大伯买了15千克特制面粉和35千克大米;共用去31.2元.已知1千克特特制面粉的价格是1千克大米的 2倍.李大伯买特制面粉和大米各用去多少元?7.14千克大豆的价钱与8千克花生的价钱相等;已知1千克花生比1千克大豆贵12元;大豆和花生的单价各是多少元?8.某车间按计划每天应加工50个零件;实际每天加工56个零件.这样;不仅提前3天完成原计划加工凌驾的任务;而求多加工了120个零件.这个车间实际加工了多少个零件?9.用8千克丝可以织6分米宽的绸4米;现在有10千克的丝;要织75分米宽的绸;可以织几米?|第四讲盈亏问题(一)盈亏问题又叫盈不足问题;是指把一定数量的物品平均分给固定的对象;如果按某种标准分;则分配后会有剩余(盈);按另一种标准分;又会不足(亏);求物品的数量和分配对象的数量.例如:小朋友分苹果;如果每人分2个;就多余16个;如果每人分5个;就缺少14个.小朋友有多少个?苹果有多少个?比较两次分的结果;第一次余16个;第二次少14个;两次相差1+14=30(个).这是因为第二次比第一次每人多分了5-2=3(个)苹果.相差30个;就说明有30÷3=10(个)小朋友.请小读者自己算出苹果的个数.例题与方法例1、将一些糖果分给幼儿园小班的小朋友;如果每人分3 粒;就会余下糖果17粒;如果每人分5粒;就会缺少糖果13粒.问:幼儿园下班有多少个小朋友|这些糖果共有多少粒?例 2、学生搬一批砖;每人搬4块;其中5人要搬两次;如果么人搬5块;就有两人没有砖可搬.搬砖的学生有多少人?这批砖共有多少块?例3某校在植树活动中;把一批树苗分给各班;如果每班分18棵;就会有余下24棵;如果每班分20棵;正好分完.这个学校有多少个班?这批树苗共有多少棵?练习与思考1.小朋友分糖果若每人分4粒则多9粒;若每人呢分5粒则少6粒.问:有多少小朋友?有多少粒糖果?2.小朋友分糖果;每人分10粒正好分完;若每人呢分16粒;则有3个小朋友分不到糖果.问:有多少粒糖果?3.在桥上测量桥高.把绳长对折后垂到水面;还余4米;把绳长3折后垂到水面;还余1米.桥高多少米?绳长多少米?4.某校安排新生宿舍;如果每间住12人;就会有34人没有宿舍住;如果每间住14人就会有空出4间宿舍.这个学校有多少间?要安排多少个新生?5.在依次大扫除中;有一些同学被分配擦玻璃;他们当中如果有2人擦4块;其余的人各擦5块;就会多下12块玻璃没有人擦;如果么人擦6块;刚好擦完.擦玻璃的同学有多少人?玻璃共有多少块?6.有一个数;减去3所的差的4倍;等于它的2倍加上36.这个数是多少?7.体育老师和一个朋友一起上街买足球.他发现自己身边的钱;如果买10个“冠军”牌足球;还差42元;后来他向朋友借了1000元;买了31个“冠军”牌足球;结果多了13元.体育老师原来身边带了多少元?8.某小学生乘汽车去春游;如果每辆车坐65人;就会有15人不能乘车;如果每辆车多坐5人恰好多余了一辆车.一共有多少辆汽车?有多少个学生?第五讲盈亏问题(二)上一讲;我们讲了盈亏问题的一般情形;也就是在量词分配中恰好洋盈(多余);一次亏(不足).事实上;在许多问题里;也会出现两次都是盈(多余);或者两次都是亏(不足)的情况.例 1、学校将一批铅笔奖给三好学生;每人9支缺15支;每人7支就缺7支.问:三好学生有多少人;铅笔有多少支?例2、某小学的部分同学外出参观;如果每辆车坐55人就会余下30个座位;如果每辆车坐50人;就还可以坐10人.有多少辆车?去参观的学生多少人?例3、学校规定上午8时到校.王强上学去;如果每分钟走60米;可以提早10分钟到校;如果每分钟作呕50米可以提早8分钟到校.问:王强什么时候离开家?他家离学校多远?练习与思考(第1~4题13分;其余每题12分;共100分.)1.同学们打羽毛球;每两人一组.每组分6个羽毛球;少10个球;每组分4个羽毛球;少2个球.问:共、有多少个同学打球?有多少个羽毛球?2.学校将一批钢笔奖给三好学生;每人8支缺11支;每人7支缺7支.问:三好学生有多少人?钢笔有多少支?3.某小学的部分学生去春游;如果每辆车坐50人;就会余下30个座位;如果每辆车坐40个人;还可以坐10人.问有多少辆车?去春游的学生多少人?4.一筐苹果分给一个小组;每人5个剩16个;每人7个缺12个.这个小组有多少人?共有多少苹果?5.一些学生分练习本.其中两人每人分6本;其余每人分4本;就会多4本;如果有一人分10本;其余每人分6本;就会少18本.学生有多少人?练习本多少本?6.一个学生从家到学校;先用每分50米的速度走了2分;如果这样走下去;他会迟到8分;后来他改用每分60米的速度前进;结果早到学校5分.这个学生家到学校的路程是多少米?7.筑路对计划每天筑路720米;实际每天比原计划多筑802米;这样;在规定完成任务时间的前3天;就只剩下1160米未筑.这条路多长?8.老师给幼儿园小朋友分苹果.每2人3个苹果;多2个苹果;每3人5个苹果;少4个苹果.问:有多少小朋友?多少苹果?第六讲流水问题想一想:从南京长江逆流而上去长江三峡;与从长江三峡顺水而下回南京;哪个花的时间少?哪个花的时间多?为什么?原因很简单.在长江行船与在一个平静的湖这行船是不一样的;因为长江的水是一直从西向东(也就是从上游向下游)流着的;船的速度会受到江水的影响.而在平静的湖水中行船时;船的速度不会受到水流的影响.考虑船在水流速度的情况下行驶的问题;就是我们这一讲要讲的流水问题.船在顺水航行时(比方说;从长江三峡顺流而下到南京);船一方面按照自己本身的速度即船速(船在静水中行驶的速度)行驶;同时整个水面又按照水的流动速度在前进;水推动着船向前;所以;船顺水时的航行速度应该等于船本身的速度与水流速度的和.也就是顺水速度=船速+水速比方说;船在静水中行驶10千米;水流速度是每小时5千米;那么;船顺水航行的速度就是每小时10+5=15(千米).同学们可以想一想;上面的问题中;如果是问“船逆水航行的速度是多少?”答案又该怎么样呢?船逆水行驶;情况恰好相反.本来船每小时行驶10千米;但由于水每小时又把它往回推了5千米;结果船每小时只向上游行驶了10—5=5(千米).也就是船在逆水中的速度等于船速度与水速之差.即逆水速度=船速—水速例1、一艘每小时行驶30千米的客轮;在一河水中顺水航行165千米;水速每小时3千米.问:这艘客轮需要航行多少小时?例2、一艘船顺水行320千米需要8小时;水流速度是每小时15千米;这艘船逆水每小时行多少千米?这艘船逆水行这段路程;需要多少小时?例3、甲船逆水航行360千米需要18小时;返回原地需要10小时;乙船逆水航行同样的异端水路需要15小时;返回原地需要多少小时?练习与思考1.一只小船以每小时30千米的速度在176千米长的河中逆水而行;用了211小时.这只小船返回原处需要用多少小时?2.船在静水中的速度是每小时25千米;河水流速位每小时5千米;一只船往返甲、乙两港共花了9小时;两港相距多少千米?3.两地距280千米;一艘轮船在期间航行;顺流用去14小时;逆流用去20小时.求这艘轮船在静水中的速度和水流的速度.4.一架飞机所带的燃料;最多可以用6小时;飞机去是顺风;每小时可以飞1500千米;飞回时逆风;每小时可以飞1200千米.这架飞机最多飞出多少千米;就需要往回飞?5.乙船顺水航行2小时;行了120千米;返回原地用了4小时.甲船顺水航行同一段水路;用了3小时.甲船返回原地比去时多用多少小时?第七讲等差数列(1)1;2;3;4;5;6;7;8;…(2)2;4;6;8;10;12;14;16;…(3)1;4;9;16;25;36;49;…上面三组数都是数列.数列中称为项;第一个数叫第一项;又叫首项;第二个数叫第二项……以此类推;最后一个数叫做这个数列的末项.项的个数叫做项数.一个数列中;如果从第二项起;每一项与它前面一项的差都相等;这样的数列叫等差数列.后项与前项的差叫做这个等差数列的公差.如等差数列:4;7;10;13;16;19;22;25;28.首项是4;末项是28;共差是3.这一讲我们学习有关等差数列的知识.例题与方法例1、在等差数列1;5;9;13;17;…;401中401是第几项?例2、100个小朋友排成一排报数;每后一个同学报的数都比前一个同学报的数多3;小明站在第一个位置;小宏站在最后一个位置.已知小宏报的数是300;小明报的数是几?例3、有一堆粗细均匀的圆木;堆成梯形;最上面的一层有5根圆木;每向下一层增加一根;一共堆了28层.最下面一层有多少根?例4、1+2+3+4+5+6+…+97+98+99+100=?例5、求100以内所有被5除余10的自然数的和.例6、小王和小胡两个人赛跑;限定时间为10秒;谁跑的距离长谁就获胜.小王第一秒跑1米;以后每秒都比以前一秒多跑0.1米;小胡自始至终每秒跑1.5米;谁能取胜?练习与思考(每题10分;共100分.)1.数列4;7;10;……295;298中298是第几项?2.蜗牛每小时都比前一小时多爬0.1米;第10小时蜗牛爬了1.9米;第一小时蜗牛爬多少米?3.在树立俄;10;13;16;…中;907是第几个数?第907个数是多少?4.求自然数中所有三位数的和.5.求所有除以4余1的两位数的和.6.0.1+0.3+0.58.+0.7+0.9+0 11+0 13+0 15+…0 99的和是多少?7.梯子最高一级宽32厘米;最底一级宽110厘米;中间还有6级;各级的宽度成等差数列;中间一级宽多少厘米?8.有12个数组成等差数列;第六项与第七项的和是12;求这12个数的和.9.一个物体从高空落下;已知第一秒下落距离是4.9米;以后每秒落下的距离是都比前一秒多9.8米50秒后物体落地.求物体最初距地面的高度.10.求下面数字方阵中所有数的和.1;2;3;…;98;99;1002;3;4;…99;100;1013;4;5;…;100;101;102……100,101,102, …197,198,199第八讲找规律你能找出下面各数列暴烈的规律吗?请在括号内填上合适的数》(1)8;15;22;();36;…;(2)17;1;15;1;13;1;();();9;1;…;(3)45;1;43;3;41;5;();();37;9;…;(4)1;2;4;8;16;();64;…;(5)10;20;21;42;43;();();174;175;…;(6)1;2;3;5;8;13;21;();55.例1. 1;2;3;2;3;4;3;4;5;4;5;6;6;7;…从第一个数算起;前100个数的和是多少?.练习与思考(第1题30分;其余每题10分;共100分.)(1)找规律;在括号内填上合适的数.(1)1,3,9,27,( ),243;(2)2,7,12,17,22,( ),( ),37;(3)1,3,2,4,3,( ),4;(4)0,3,8,15,24,( ) ,.48;(5)6,3,8,5,10,7,12,9,( ),11;(6)2,3,5,( ),( ),17,23;(7)81,64,();36;();16;9;4;1;(8)21;26;19;24;();();15;20;(9)1;8;9;17;26;();69;(10)4;11;18;25;();39;46;2.一串数按下面规律排列:1;3;5;2;4;6;3;5;7;4;6;8;5;7;9;…从第一个数算起;前100个数的和是多少?3.有一串黑白相间的珠子(如下图);第100个黑珠前面一共有多少个白珠?4.在平面中任意作100条直线;这些直线最多能形成多少个交点?5.在平面中任意作20条直线;这些直线最多可把这个平面分成多少个部分?6.序号 1 2 3 4 5算式1+1 2+3 3+5 1+7 2+9序号 6 7 8 9 …算式3+11 1+13 2+15 3+17 …根据上面的规律;第40个序号的算式是什么?算式‘1+103“的序号上多少?7.小正方形的边长是1厘米;依次作出下面这些图形.已知第一幅图的周长是10厘米.(1)36个正方形组成的图形的周长是多少厘米?(2)周长是70厘米的图形;由多少个正方形组成?已知第一幅图的周长是10厘米.(1)36个正方形组成的图形的周厂是多少厘米?(2)周长是70厘米的图形;由多少个正方形组成?8在方格纸上画折线(如本讲例4图);小方格的边长是1;图中的1;2;3;4;…分别表示折线扩大第1;2;3;4;…段.求折线中第100段的长度.长度是30的是第几段?能力测试(一)一、填空题(每空3分;工39分).1.在下面的括号里按照规律填上适当的数字.(1)1;2;3;4;8;16;();64;128.(2)5;10;15;20;25;();35;40.(3)4;7;10;13;16;();22;25.(4)1;1;2;3;5;8;13;21;()(5)1024;512;256;();64;32;16;8;4.(6)2;5;11;20;32;();65;86.(7)1;3;2;4;3;5;();6;5.(8)1;4;9;16;25;();49;64.1.9个人9天共读书1620页;平均1个人1天共读书()页;照这样计算;5个同学5天读书()页.2.如果平均1个同学1天植树()棵;那么;3个同学4天共植树120棵.3.买3只足球和9只篮球共用了570元;买9只足球和27只篮球要用()元.二、计算题(每小题5分;共10分).1.2+4+6+8+10+ … +22+24+262.1+2+3+4+5+6+ … +1996+1997+1998三、应用题(第1~4题10其余每题10分;第5题11分;共51分).1.李老师将一叠练习本分给第一组的同学;如果每人分7本;还多7本.如果每人分9;那么有一个同学译本也分不到.第一组有多少同学?这叠练习本一共有多少本?2.一只小船在河中逆流航行176千米;用了11小时.一知水流速度是每小时4千米;这只小船返回原处要用多少小时?3.4只篮球和8只足球共买560元;6只篮球和3只足球共买390元.问:一只篮球和一只足球各买多少元?4.有10元钞票与5元钞票共128张;其中10元比5元多260元.两种面额的钞票各是多少张?5.下面是一种特殊数列的求和方法.要求数列2;4;8;16;32;64;…;1024;2048的和;方法如下:S= 2+4+8+16+32+64+ … +1024+204822S = 4+8+16+32+64+ … +1024+2048+4096用下面的式子减去上面的式子;就得到S =4096 – 2 = 4094即数列2;4;8;16;32;64;…;1024;2048的和是4094.仔细阅读上面的求和方法;然后利用这种方法求下面数列的和.1;3;9;27;81;243;…;177147;531441.第九讲加法原理在日常生活与实践中;我们经常会遇到分组、计数的问题.解答这一类问题;我们通常运用加法与那里与乘法原理这两个基本的计数原理.熟练掌握这两个原理;不仅可以顺利解答这类问题;而求可以为今后升入中学后学习排列组合等数学知识打下好的基础.什么叫做加法原理呢?我们先来看这样一个问题:从南京到上海;可以乘火车;也可以乘汽车、轮船或者飞机.假如一天中南京到上海有4班火车、6班汽车;3班轮船、2班飞机.那么一天中乘做这些交通工具从南京到上海共有多少种不同的走法?我们把乘坐不同班次的火车、汽车、轮船、飞机称为不同的走法;那么从南京到上海;乘火车有4种走法;乘汽车有6种走法;乘轮船有3种走法;乘坐飞机有2种走法.因为每一种走法都可以从南京到上海;因此;一天中从南京到上海共有4+6+3+2 = 15 (种)不同的走法.我们说;如果完成某一种工作可以有分类方法;一类方法中又有若干种不同的方法;那么完成这件任务工作的方法的总数就等于各类完成这件工作的总和.即N = m1 + m2 + … + m n (N代表完成一件工作的方法的总和;m1,m2, … m n 表示每一类完成工作的方法的种数).这个规律就乘做加法原理.例1 书架上有10本故事书;3本历史书;12本科普读物.志远任意从书架上取一本书;有多少种不同的取法?例2一列火车从上上海到南京;中途要经过6个站;这列火车要准备多少中不同的车票?例3在4 x 4的方格图中(如下图);共有多少个正方形?例4 妈妈;爸爸;和小明三人去公园照相:共有多少种不同的照法?练习与思考1.从甲城到乙城;可乘汽车;火车或飞机.已知一天中汽车有2班;火车有4班;甲城到乙城共有()种不同的走法.2.一列火车从上海开往杭州;中途要经过4个站;沿途应为这列火车准备____种不同的车票.3.下面图形中共有____个正方形.4.图中共有_____个角.5.书架上共有7种不同的的故事书;中层6本不同的科技书;下层有4钟不同的历史书.如果从书架上任取一本书;有____种不同的取法.6.平面上有8个点(其中没有任何三个点在一条直线上);经过每两个点画一条直线;共可以画_____条直线.7.图中共有_____个三角形.8.图中共有____个正方形.9.从2;3;5;7;11;13;这六个数中;每次取出两个数分别作为一个分数的分子和分母;一共可以组成_____个真分数.10.某铁路局从A站到F站共有6个火车站(包括A站和F站)铁路局要为在A站到F站之间运行的。

(完整word版)五年级上册奥数讲义

(完整word版)五年级上册奥数讲义

↑↑↑↑↑优才家教 优等生同步奥数提高 五年级(下)↑↑↑↑↑第一讲 整数问题 第1课 数的整除一、知识要点1. 整除——因数、倍数2. 相关基础知识点回顾(1)0是任何整数的倍数. (2)1是任何整数的因数。

3. 数整除的性质例如:如果2|10,2|6,那么2|(10+6),并且2|(10-6).必要条件:(1)a 、b 、c 三个数是整数 (2)b ≠0 (3)a ÷b=c结论:整数a 能被整数b 整除,或b 能整除a,则a 叫做b 的倍数,b 叫做a 的因数。

记作:b|a例如:如果6|36,9|36,那么[6,9]|36.例如:如果2|72,9|72,且(2,7)=1,那么18|72.例:如果7|14,14|28,那么7|28。

4.数的整除特征(1)能被2整除的数的特征:如果一个整数的个位数是偶数(即个位数是2、4、6、8、0),那么它必能被2整除。

(2)能被5整除的数的特征:如果一个整数的个位数字是0或5,那么它必能被5整除。

(3)能被3(或9)整除的数的特征:如果一个整数的各位数字之和能被3(或9)整除,那么它必能被3(或9)整除.(4)能被4(或25)整除的数的特征:如果一个整数的末两位数能被4(或25)整除,那么它必能被4(或25)整除.例:1864能否被4整除?解:1864=1800+64,因为4|64,4是1864的因数,1864是4的倍数,所以4|1864。

(5)能被8(或125)整除的数的特征:如果一个整数的末三位数能被8(或125)整除,那么它必能被8(或125)整除。

例:29375能否被125整除?解:29375=29000+375,因为125|375,125是375的因数,375是125的倍数,所以125|29375。

(6)能被11整除的数的特征:如果一个整数的奇数位数字之和与偶数位数字之和的差(大减小)能被11整除,那么它必能被11整除。

(奇数位指:这个数的个位、百位、万位……;偶数位指:这个数的十位、千位、十万位……)例:判断13574是否是11的倍数?解:这个数的奇数位上数字之和与偶数位上数字和的差是:(4+5+1)-(7+3)=0。

最新小学五年级奥数全册讲义(1-30讲)(含详解)【值得拥有】

最新小学五年级奥数全册讲义(1-30讲)(含详解)【值得拥有】

小学五年级奥数全册讲义第1讲数字迷(一)第2讲数字谜(二)第3讲定义新运算(一)第4讲定义新运算(二)第5讲数的整除性(一)第6讲数的整除性(二)第7讲奇偶性(一)第8讲奇偶性(二)第9讲奇偶性(三)第10讲质数与合数第11讲分解质因数第12讲最大公约数与最小公倍数(一)第13讲最大公约数与最小公倍数(二)第14讲余数问题第15讲孙子问题与逐步约束法第16讲巧算24第17讲位置原则第18讲最大最小第19讲图形的分割与拼接第20讲多边形的面积第21讲用等量代换求面积第22 用割补法求面积第23讲列方程解应用题第24讲行程问题(一)第25讲行程问题(二)第26讲行程问题(三)第27讲逻辑问题(一)第28讲逻辑问题(二)第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。

例如用猜想、拼凑、排除、枚举等方法解题。

数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。

这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。

例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。

分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。

当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。

(5÷13-7)×(17+9)。

当“÷”在第二或第四个○内时,运算结果不可能是整数。

当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。

例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。

小学五年级奥数解析01-2:数的整除问题

小学五年级奥数解析01-2:数的整除问题

解:把3546725分为3546和725两个数.因为3546-725=2821.再把2821分为2和821两个数,因为8 21—2=819,又13|819,所以13|2821,进而13|3546725.二、例题解:∵45=5×9,∴根据整除“性质2”可知∴y可取0或5。

∴满足条件的六位数是519930或919935。

例2 李老师为学校一共买了28支价格相同的钢笔,共付人民币9□.2□元.已知□处数字相同,请问每支钢笔多少元?解:∵9□.2□元=9□2□分28=4×7,∴根据整除“性质2”可知4和7均能整除9□2□。

4|2□可知□处能填0或4或8。

因为79020,79424,所以□处不能填0和4;因为7|9828,所叫□处应该填8。

又∵9828分=98.28元98.28÷28=3.51(元)答:每支钢笔3.51元。

个条件的整数。

∴根据能被11整除的数的特征可知:1+2+3+4+5的和与5a之差应是11的倍数,即11|(15—5a).或11|(5a—15)。

但是15—5a=5(3—a),5a—15=5(a—3),又(5,11)=1,因此111(3—a)或11|(a—3)。

又∵a是数位上的数字。

∴a只能取0~9。

所以只有a=3才能满足11|(3—a)或11|(a—3),即当a=3时,11|15—5a。

符合题意的整数只有1323334353。

解:∵91=7×13,且(7,13)=1。

根据一个数能被7或13整除的特征可知:因为(7,10)=1,(13,10)=1,所以7,13也就是7因此,用一次性质(特征),就去掉了两组;反复使用性质996次,最后转化成:原数能被7以及13整除,当且仅当能被7以及13整除。

又∵91的倍数中小于1000的只有91×4=364的百位数字是3,∴=364例5 在865后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数值尽可能的小。

数的整除讲义

数的整除讲义

第一章数的整除1.1整数和整除1、整除和除尽整除:除数、被除数、商都是整数。

除尽:除数、被除数、商不一定是整数2、20÷5=4,我们就说20能被5整除,或者说:5能整除20.【例题】1.按要求填空1÷50;18÷6;23÷7;0.6÷0.5;1÷5除尽:()除不尽:()整除:()2、已知正整数x能整除41,求x的值。

3、用1、2、3这三个数任意排列,可组成若干个三位数,在这些三位数中,能被11整除的数哪个三位数?1.2因数和倍数1、寻找一个数的因数通常使用“对称法”如60的因数:1、60;2、30;3,20;4、15;5、12;6、10;2、当这个数过大时,用“公式法”设整数为N,经过分解素因数后可得:N=x1^m1×x2^m2……xn,则因数的个数为P=(m1+1)×(m2+1)……(mn+1)【例题】1、24的因数有哪些?25的因数有哪些?2、4的倍数有哪些?10的倍数有哪些?3、用4、5、6排成的三位数呢中,(1)哪些是5的倍数?(2)哪些是3的倍数?哪些是9的倍数?(3)哪些是6的倍数?(4)哪些是8的倍数4、求144(9×16)的因数有多少个?1.3能被2、5整除的数【例题】1、2( ) 5、3:()5()2、在内这个数能被72整数。

3、用0、1、2、3这四个数字排成一个四位数。

(1)使这个数有因数2,有几种不同的排法?(2)使这个数能被5整数,有几种不同的排法?(3)使这个数是3的倍数,有几种不同的排法?1.4分解素因数1、一个整数如果只有1和本身两个因数,那么这个数就叫做素数。

2、一个整数除了1和本身还有别的因数,那么这个数叫做合数。

3、把一个合数用素因数相乘的形式表示出来叫做分解素因数;4、1的因数只有一个,1既不是素数也不是合数。

【例题】1、先把36分解素因数,再找出36的所有因数,并回答下列问题:(1)36的每一个素因数都是它的因数吗?36的,每一个因数都是它的素因数吗?(2)36的每两个素因数的乘积都是它的因数吗?(3)36的所有素因数的乘积是它的因数吗?2、把426名学生分成人数相等的若干组参加课外活动小组,每组人数在10—25之间,求每组人数及分成的组数。

奥数讲座(5年级-上)(14讲)

奥数讲座(5年级-上)(14讲)
五年级奥数讲座(一)
目录 第一讲 数的整除问题 第二讲 质数、合数和分解质因数 第三讲 最大公约数和最小公倍数 第四讲 带余数的除法 第五讲 奇数与偶数及奇偶性的应用 第六讲 能被 30 以下质数整除的数的特征 第七讲 行程问题 第八讲 流水行船问题 第九讲 “牛吃草”问题 第十讲 列方程解应用题 第十一讲 简单的抽屉原理 第十二讲 抽屉原理的一般表述 第十三讲 染色中的抽屉原理 第十四讲 面积计算
习题一解答 1.39312。 2.8。 3.32250、32550、32850。 4.解:∵1+2+3+…+9=45,3|45, 又∴1993 除以 9 余 4, ∴这个 1993 位数的最末 4 位数字是 1234。 ∵1+2+3+4=10,3 10, ∴这个 1993 位数不能被 3 整除。 5.□为 3、2 共 367.92 元,每只桶 5.11 元。
反之,如果把一个自然数分解质因数之后,各个质因数的指数都是偶数,那么这个 自然数一定是完全平方数。 如上例中,36=62,144=122,1600=402,275625=5252。 例 8 一个整数 a 与 1080 的乘积是一个完全平方数.求 a 的最小值与这个平方数。 分析 ∵a 与 1080 的乘积是一个完全平方数, ∴乘积分解质因数后,各质因数的指数一定全是偶数。 解:∵1080×a=23×33×5×a, 又∵1080=23×33×5 的质因数分解中各质因数的指数都是奇数, ∴a 必含质因数 2、3、5,因此 a 最小为 2×3×5。 ∴1080×a=1080×2×3×5=1080×30=32400。 答:a 的最小值为 30,这个完全平方数是 32400。 例 9 问 360 共有多少个约数? 分析 360=23×32×5。 为了求 360 有多少个约数,我们先来看 32×5 有多少个约数,然后再把所有这些约 数分别乘以 1、2、22、23,即得到 23×32×5(=360)的所有约数.为了求 32×5 有多 少个约数,可以先求出 5 有多少个约数,然后再把这些约数分别乘以 1、3、32,即得 到 32×5 的所有约数。 解:记 5 的约数个数为 Y1, 32×5 的约数个数为 Y2, 360(=23×32×5)的约数个数为 Y3.由上面的分析可知: Y3=4×Y2,Y2=3×Y1, 显然 Y1=2(5 只有 1 和 5 两个约数)。 因此 Y3=4×Y2=4×3×Y1=4×3×2=24。 所以 360 共有 24 个约数。 说明:Y3=4×Y2 中的“4”即为“1、2、22、23”中数的个数,也就是其中 2 的最 大指数加 1,也就是 360=23×32×5 中质因数 2 的个数加 1;Y2=3×Y1 中的“3”即为 “1、3、32”中数的个数,也就是 23×32×5 中质因数 3 的个数加 1;而 Y1=2 中的 “2”即为“1、5”中数的个数,即 23×32×5 中质因数 5 的个数加 1.因此 Y3=(3+1)×(2+1)×(1+1)=24。

小学奥数5年级--第一讲:整除问题

小学奥数5年级--第一讲:整除问题

第一讲:数的整除问题一、基本概念和知识1整除----约数和倍数例如:15/ 3=5,63/7=9一般地,如a、b 、c为整数,b≠0,且a / b=c,即整数a可以整除b(b不等于0),除得的商C正好是整数而没有余数(或者说余数是0),我们就说,a能被b整除(或者说b能整除a)。

记作b|a否则,称为a不能被b整除,(或b不能整除a)记作:如果整数能a被整数b整除,a就叫做b的倍数,b就叫做a的约数。

例如:在上面算式中,15是3的倍数,3是15的约数,63是7的倍数,7是63的约数。

2数的整除性质性质1:如果a. b都能被c整除,那么它们的和与差也能被c整除。

即:如果c|a c|b,那么c | (a+b),c | (a-b)例如:如果2|10,2|6,那么2|(l0+6),并且22|(l0-6).性质2:如果b与c的积能整除a,那么b与c都能整除a即:如果bc|a,那么b|a,c|a。

性质3:如果b、c都能整除a,且b和c互质,那么b与c的积能整除a。

即:如果b| a c|a,且(b,c)=1,那么bc|a。

例如:如果2|28,7|28,且(2,7)=l 那么(2×7)|28。

性质4:如果c能整除b,b能整除a,那么c能整除a。

即:如果c|b,b|a,那么c|a。

例如:如果3|9,9|27,那么3|27。

3数的整除特征①能被2整除的数的特征:个位数字是0 2 4 6 8的整数“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除,另一方面,能被2整除的数,其个位数字只能是偶数(包括0)下面“特征”含义相似。

@能被5整除的数的特征:个位是0或5。

③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。

④能被4 (或25)整除的数的特征:末两位数能被4(或25)整除。

例如:1864=1800+64,因为100是4与25的倍数,所以l800是4与25的倍数又因为4|64,所以1864能被4整除但因为25不能整除64,所以1864不能被25整除⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级奥数讲义
第一讲 数的整除
一、学法指导
数的整除特性:
(1)能被2(或5)、3(或9)整除的数的特征(自己回忆整理)。

(2)能被4(或25)整除的数的特征:如果一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。

(3)能被8(或125)整除的数的特征:如果一个数的末三位能被8(或125)整除这个数就能被(或)125整除。

(4)能被11整除的数的特征:如果一个整数奇数位数字与偶数位数字和的差能被11整除,那么这个数就能被11整除。

(5)能被7、11、13整除的数的特征:一个整数末三位与末三位以前的数的差(大减小)能被7(11或13)整除,那么这个数就能被7(11或13)整除。

补充结论: 1.abcabc 能被7、11、13整除。

2.如果数a 能同时被数b 、c 整除,而且b 、c 互质,那么a 就能被b 、c 的乘积整除。

举例:比如能被72整除的数的特征,就是这个数能同时被8、9整除。

因为72=8×9,而8、9互质,根据上面的结论,一个数能否被72整除,我们只要分析这个数能否同时被8和9整除就可以了。

有了这个结论,我们研究整除特性的范围就被大大地扩展,很多很多我们没学过的数的整除特征,都可以据此找到规律了。

如能被20,26,28,45,91,99整除的数的特征等。

我们研究整除特性有了有利的工具。

二、例题:
例1、 整数6427B A 能被72整除,这个数有那些可能?
例2、 四位数Y X 47能被18整除,要使这个四位数尽可能小,那么这个四位数是
多少?
例3、在1992后面补上三个数字,组成一个七位数,使它分别能被2、3、5、7整除,这个七位数最小是多少?
A1997,能被99整除,A和B各是多少?
例4、一个六位数B
例5、在532后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除,这样的六位数中最小的是□□□□□□。

X1993,求所有满足条件的六位数?
例6、已知45|Y
三、练习
A卷、基本能力训练
154能被72整除,求X+Y是多少?
1、XY
2、1997□□□能被4、5、6整除,那么这个七位数最小是多少?
3、一个能被11整除的最小四位数,去掉它的千位上和个位上的数字以后,是一个同时能被2、3、5整除的最大的两位数。

这个四位数是□□□□。

4、在
5、
6、7的公倍数中,是五位数且最小的是________。

5、173□是一位四位数,在□中先后填入3个数字,使四位数分别可被9、11、6整除,填入的三个数字之和是多少?
6、已知N是一位自然数,S=0,则(1)NNNSNN;(2)NSSNSN;(3)NSNSNS;(4)NSSNSS四个自然数中,一定能同时被2和3整除的数是________。

7、某个七位数,1990□□□能被5,6,7,8,9整除,那么它的最后三个数字依次是:□□□。

8、一张纸上有一个无重复数字的五位数3□6□5,已知这个数字能被75整除,那么满足上述条件的五位数可能是________。

9、能被4、5、6整除的最大三位数是□□□。

10、已知一个自然数A,它能被15整除,且它的各个数位上的数字只有2、5两种,则这种最小的六位数是□□□□□□。

B卷、重点中学试题集锦
1、已知A是一个自然数,它是15的倍数,并且它的各个数位上的数字只有0和8两种,A最小是________。

2、55个苹果分给甲、乙、丙三人,甲的苹果个数是乙的2倍,丙最少,但也多于10个,三人各得苹果多少个?
3、李老师为学校一共买了28枚价格相同的钢笔,共付人民币9□.2□元,已知□处数字相同,请问每枝钢笔多少元?
4、在865后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数值尽可能地小。

5、在十进制中,各位数字均是0或1,并且能被225整除的最小自然数________?
6、从3、5、0、1这四个数字中任选出三个组成没有重复数字且同时能被3、5整除的三位数有________个。

7、有2、3、4、5、7、9这六个数字,组成能被3和5除都余2的最大四位数和最小四位数之差是________。

8、
8
2006888888个除以13余几?。

相关文档
最新文档