干涉法测微小量(实验报告)
干涉法测微小量
实验八干涉法测微小量【实验目的】1. 理解牛顿环和尖劈干涉条纹的成因与等厚干涉的含义。
2. 学习用等厚干涉法测量曲率半径和薄膜厚度。
3. 学会使用读数显微镜。
【实验仪器】牛顿环仪、劈尖【仪器介绍】1、目镜接筒2、目镜3、锁紧螺钉4、调焦手轮5、标 尺6、测微鼓轮7、锁紧手轮I &接头轴9、方轴10、 锁紧手轮II 11、底座12、反光镜旋轮 13、压片 14、 半反镜组 15、物镜组 16、镜筒17、刻尺 18、锁 紧螺钉 19、棱镜室 读数显微镜是测微螺旋和带十字叉丝的显微镜的组 合体,它是一种既可作长度测量又可作观察之用的光学仪 器。
本实验用来测量牛顿环的直径和劈尖厚度。
中包括读数显微镜的主要结构。
目镜( 2) (3 )固定于任一位置,棱镜室(19)可在转,物镜(15)用丝扣拧入镜筒内,镜筒(轮(4)完成调焦。
转动测微鼓轮(6),显微镜沿燕尾导轨作纵向移动,利用锁紧手轮I (7),将方轴(9)固定于接头轴十字孔中。
接头轴( 8)可在底座(11)中旋转、升降,用锁紧手轮II (10)紧固。
根据使用要求不同方轴可插入接头轴另一个十字孔 中,使镜筒处水平位置。
压片(13)用来固定被测件。
旋转反光镜旋轮( 12)调节反光镜方位。
为便于做等厚干涉实验,本仪器还配备了半反镜(14)附件。
旋转测微鼓轮可以使显微镜筒横向水平移动,通过标尺和测微鼓轮的读数可以准确确定显微镜筒 的水平横向位置。
标尺读数准线和测微鼓轮组成一个螺旋测微装置,当测微鼓轮旋转 一周时,标尺读数准线沿标尺移动1mm ,而测微鼓轮的圆周上刻有 100个分度,故每分度便相当于0.01mm 。
如图16-2所示读书显微镜的读数应为 29.723mm 。
(注意要估读一位)1 —标尺;2-标尺读数准线 ;3 -测微鼓轮;4 -测微鼓轮读数准线。
读数显微镜、钠光灯。
如图 16-1 可用锁紧螺钉 3600方向上旋16)用调焦手2I 19 10 11图 16-1H 9 L8 171615 n J3 124【实验原理】图16-21、牛顿环们设任意两级暗环的直径为D K 1和D K 2,由(16-2)式可得出:牛顿环是牛顿1675年在制作天文望远镜时偶然将一个望远镜的物镜放在平玻璃 上发现的。
干涉法测微小量-实验报告
干涉法测微小量-实验报告一、实验目的1、了解干涉法的基本原理。
2、熟悉干涉法测量微小量的方法。
3、掌握利用干涉法测量薄膜厚度的实验方法。
二、实验仪器干涉仪、白光源、磨镜机、膜层样品。
三、实验原理干涉仪是一种利用光的干涉现象来测量物体形状、膜厚度等的仪器。
(1)薄膜颜色法当光通过薄膜时,由于光的反射和透射作用,产生了干涉现象。
观察到的颜色与膜厚有关系,当膜厚满足一定的条件时,可以观察到非常明显的颜色条纹。
(2)牛顿环法使用牛顿环法测量微小量时,实验者在透明物体表面放置一个凸透镜,然后将一部分光线通过透镜,并与另一部分光线在半透镜后相遇,这两部分光线发生干涉,形成一系列明暗相间的环带,实验者可以通过测量主环半径的变化来推算出微小量的值。
当光从第一介质的边界垂直地入射到第二介质(薄膜/interface)后,反射和透射光之间的相位差取决于第二介质的折射率和膜厚。
干涉图样中的环线,可以由相邻两个波前的相位相差为2π的条件得到:Δ = 2nt其中,Δ为相位差,n为薄膜的折射率,t为膜层的厚度。
四、实验步骤1、用磨镜机将膜层样品磨成两面平行、厚度均匀的薄片。
2、设置干涉仪,调节反射镜和凸透镜位置,使使干涉图案清晰。
3、通过调节厚度标准,测量出膜层厚度与颜色之间的关系。
4、分别记录膜层样品在白光源和单色光源下的干涉图案和颜色,比较两种光源下测得的膜厚度数据。
5、通过测量主环半径的变化来推算出微小量的值。
五、实验注意事项1、干涉法测微小量是一种高精度的测试方法,实验者在实验过程中要小心谨慎操作。
2、干涉法测微小量需要使用精度高的仪器,实验者要注意保养和维护干涉仪的正常使用状态。
六、实验结果及分析样品编号透射颜色透射波长n 膜层厚度(nm)样品1 黄蓝色573nm 1.44 201.29样品2 绿紫色520nm 1.48 153.48样品3 黄色579nm 1.53 124.96样品4 绿色486nm 1.49 142.962、微小量的数据样品编号主环半径(m)微小量(m)样品1 0.0051 1.27 × 10-6样品2 0.0048 1.20 × 10-6样品3 0.0043 1.08 × 10-6样品4 0.0046 1.15 × 10-6从表格数据可以看出,随着膜层厚度增加,透射颜色发生变化,且主环半径也随之发生变化。
(实验报告)干涉法测微小量(已批阅).
(实验报告)干涉法测微小量(已批阅).
干涉法测微小量是物理、化学等多种领域常用的测量技术,可广泛应用于检测微小量的物理、化学物质的构成成分及大小等特性。
本实验以物理学仪器—干涉仪,以了解其相关原理及测量方法,详细研究并妥善操作干涉仪,实现对微小量的准确测量。
实验现场,我们装备了多种仪器设备,其中有半导体激光、光纤、波导、干涉物镜、计算机等,?表示所测实验样品的长度,?表示该物体的物理实验现象及测量结果。
所测样品经过精确调整,激光整体成像稳定、清晰。
依据干涉仪的原理,在激光学范畴,当灰度图像准确拍摄完毕,即可无缝连接计算机,把模拟航班仪及其相关接口的输入端全部接受,真实表示所测实验样品的物理偏移量。
在量测的过程中,根据实验要求,逐渐变化激光的数量,由而伴随波数的变化,随时记录模拟仪和相关输入端的变化,把变化偏移量输入计算机,由计算机将接受的数据按照原理预定义好的算法进行分析,由此根据分析结果,乘以放大系数,便可计算出微小物体的长度?。
本实验让我清楚地认识了干涉仪的基本原理,熟悉了具体的操作过程,详细了解了对微小量的测量原理,以及量测实验样品物理偏移量的处理过程,进而求出实验物体的长度?。
另外,本实验也锻炼了我们熟练操作干涉仪及相关仪器设备、形成有效数据、熟练处理数据的实际能力,积累了大量经验,掌握了实用的实验技术。
迈克尔逊专题实验报告
学院:电气工程学院班级:1108班姓名:李静怡学号:11291240指导老师:张丽梅上课时间:周五17:40【摘要】迈克尔逊干涉仪是用分振幅法产生双光束以实现干涉的精密仪器,其用途很广,主要用于观察干涉现象,研究许多物理参数(如温度,压强,电场,磁场等)对光传播的影响,测波长和波的折射率等。
迈克耳逊干涉仪是这个专题试验最主要的试验仪器。
本文记录了实验过程及实验收获,并且叙述了对于此次实验的心得及对实验的拓展。
【关键词】迈克尔逊干涉仪钠光双线白光干涉测量微小量【实验论述】一、实验理论迈克尔逊干涉仪专题实验中的三个实验中都不可或缺的就是右图所示的装置,三个实验均是通过调整从同一光源发出的两条相干光线到视野的光程差,找到光源发生干涉现象的距离。
之后,通过精密的仪器测量和理论推导的公式求出波长、双线波长差或测量玻璃的折射率等。
二、实验内容1、测量钠双线波长差。
这是第一个试验,实验内容主要有三方面:①观察钠光双光束干涉现象;①测量钠光平均波长,并与公认值比较;③测量钠光双线的波长差。
首先用激光调出激光的干涉条纹并调至中心,这一步较为简单,很快毛玻璃上就出现黑红相间的条纹了。
但换上钠光后条纹并不容易找到,换回激光后发现激光条纹也有变化了。
经过好几次的反复调整,钠光的条纹出现,为黄色的明暗相间的圆条纹。
转动微调手轮,并开始记录每冒出50个条纹时M1镜的位置,共记录了7个数据。
2、白光干涉测量平板玻璃折射率。
实验的主要内容有:①观察白光干涉现象;②测量玻璃折射率。
这是专题实验里最难最耗时的一个,试验对眼睛要求很高,连续直视着白炽灯不是一件好受的事情,对我的耐性考验极大,需要目不转睛的盯着小玻璃片背后的亮光随时可能出现也可能随时消失的条纹将微调手柄调上上千圈,一个不留神,幸运之神悄然远去,只留下在小白炽灯下苦叹并毅然决然从头再来的我们。
3、法布里—玻罗干涉仪测钠双线波长差。
实验内容:①观察钠光多光束干涉现象;②测量钠双线波长差。
全息干涉技术_实验报告
一、实验目的1. 理解全息干涉技术的原理和基本操作流程。
2. 掌握二次曝光全息干涉法的操作步骤。
3. 通过实验,观察并分析全息干涉条纹的形成和变化。
4. 学习全息干涉技术在微小形变测量中的应用。
二、实验原理全息干涉技术是一种利用光的干涉原理记录和再现物体光波波前信息的照相技术。
它能够记录物体光波的振幅和相位信息,从而实现物体的三维再现。
二次曝光全息干涉法是一种常用的全息干涉技术,通过在同一片感光板上分别记录同一物体变形前后的两张全息照片,来观察物体表面的微小形变。
三、实验仪器与材料1. 全息实验台2. 氦氖激光器3. 分束器4. 反射镜5. 扩束镜6. 载物台7. 全息干板8. 显影液和定影液9. 暗房设备10. 悬臂梁四、实验步骤1. 实验准备:将全息实验台、激光器、分束器、反射镜、扩束镜、载物台、全息干板等仪器设备安装调试好。
2. 激光束调整:调整激光器,使激光束通过分束器后分成两束,一束作为参考光束,另一束作为物光束。
3. 第一次曝光:将待测悬臂梁放置在载物台上,调整悬臂梁的位置,使其位于激光束的物光路径上。
打开激光器,对悬臂梁进行第一次曝光,记录下悬臂梁的初始状态。
4. 变形处理:在第一次曝光后,对悬臂梁施加一定的力,使其发生微小形变。
5. 第二次曝光:关闭激光器,将悬臂梁恢复到初始状态,再次打开激光器,对悬臂梁进行第二次曝光,记录下悬臂梁的变形状态。
6. 显影和定影:将全息干板放入显影液和定影液中,进行显影和定影处理。
7. 观察与分析:用激光照射全息干板,观察干涉条纹的形成和变化,分析物体表面的微小形变。
五、实验结果与分析1. 通过实验观察,可以看到全息干涉条纹的形成和变化。
当悬臂梁发生微小形变时,干涉条纹会发生相应的变化,从而反映了物体表面的形变情况。
2. 通过分析干涉条纹的疏密分布,可以计算出物体表面各点位移的大小,从而实现微小形变的测量。
3. 实验结果表明,全息干涉技术在微小形变测量中具有高精度、高分辨率的特点,是一种很有应用前景的测量技术。
光的干涉实验报告
光的干涉实验报告篇一:光的干涉和应用实验报告教案光的等厚干涉与应用一目的1、观察光的等厚干涉现象,加深理解干涉原理2、学习牛顿环干涉现象测定该装置中平凸透镜的曲率半径3、掌握读数显微镜的使用方法4、掌握逐差法处理数据的方法(原文来自:小草范文网:光的干涉实验报告)二仪器读数显微镜,钠光灯,牛顿环装置三原理牛顿环装置是一个曲率半径相当大的平凸透镜放在一平板玻璃上,这样两玻璃间形成空气薄层厚度e与薄层位置到中央接触点的距离r,凸透镜曲率半径R的关系为:(a) (b)图20—1根据干涉相消条件易得第K级暗纹的半径与波长λ及牛顿环装置中平凸透镜的凸面曲率半径R存在下述关系:根据与K成正比的性质采取逐差法处理实验数据四教学内容和步骤1、牛顿环装置的调整,相应的提出问题,怎样将干涉图样调到装置的中心?2、显微镜的调节,焦距怎么调?叉丝怎样调节?干涉图样不清晰怎么办?反光镜怎么用?刻度尺怎么读?3、读数方法,要防止螺距差。
读完一组之后要把牛顿环转90度再重新读一组。
4、用逐差法处理数据,忽略仪器误差。
五注意事项1、仪器轻拿轻放,避免碰撞。
2、镜头不可用手触摸,有灰尘时用擦镜纸轻轻拂去不能用力擦拭。
调焦及调鼓轮时不可超出可调范围。
为防止产生螺距误差,测量过程中鼓轮只能往一个方向转动,不许中途回倒鼓轮。
六主要考核内容1、预习报告内容是否完整,原理图、公式、表格等是否无误。
2、看是否将干涉图样调出来,数据是否有误等。
七参考数据篇二:光的等厚干涉牛顿环实验报告光的等厚干涉牛顿环实验报告[实验目的]1.观察光的等厚干涉现象,熟悉光的等厚干涉的特点。
2.用牛顿环测定平凸透镜的曲率半径。
3.用劈尖干涉法测定细丝直径或微小厚度。
[实验仪器]牛顿环仪,移测显微镜、钠灯、劈尖等。
[实验内容]1.用牛顿环测量平凸透镜表面的曲率半径(1)按图11-2安放实验仪器(2)调节牛顿环仪边框上三个螺旋,使在牛顿环仪中心出现一组同心干涉环。
将牛顿环仪放在显微镜的平台上,调节45°玻璃板,以便获得最大的照度。
等厚干涉实验报告记录
等厚干涉实验报告记录————————————————————————————————作者:————————————————————————————————日期:大学物理实验报告(等厚干涉)一、实验目的:1.、观察牛顿环和劈尖的干涉现象。
2、了解形成等厚干涉现象的条件极其特点。
3、用干涉法测量透镜的曲率半径以及测量物体的微小直径或厚度。
二、实验原理:1.牛顿环牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成,结构如图所示。
当平行单色光垂直照射到牛顿环器件上时,由于平凸透镜和玻璃之间存在一层从中心向外厚度递增的空气膜,经空气膜和玻璃之间的上下界面反射的两束光存在光程差,它们在平凸透镜的凸面(底面)相遇后将发生干涉,干涉图样是以接触点为中心的一组明暗相间、内疏外密的同心圆,称为牛顿环(如图所示。
由牛顿最早发现)。
由于同一干涉圆环各处的空气薄膜厚度相等,故称为等厚干涉。
牛顿环实验装置的光路图如下图所示:设射入单色光的波长为λ,在距接触点r k处将产生第k级牛顿环,此处对应的空气膜厚度为d k,则空气膜上下两界面依次反射的两束光线的光程差为22λδ+=kknd式中,n为空气的折射率(一般取1),λ/2是光从光疏介质(空气)射到光密介质(玻璃)的交界面上反射时产生的半波损失。
根据干涉条件,当光程差为波长的整数倍时干涉相长,反之为半波长奇数倍时干涉相消,故薄膜上下界面上的两束反射光的光程差存在两种情况:2)12(2222λλλδ+=+=kkdkkK=1,2,3,…K=0,1,2,…由上页图可得干涉环半径r k,膜的厚度d k与平凸透镜的曲率半径R之间的关系222)(kkrdRR+-=。
由于dk远小于R,故可以将其平方项忽略而得到22kkrRd=。
结合以上的两种情况公式,得到:λkRRdrkk==22,暗环...,2,1,0=k由以上公式课件,r k与d k成二次幂的关系,故牛顿环之间并不是等距的,且为了避免背光因素干扰,一般选取暗环作为观测对象。
基于改装的迈克尔逊干涉仪测量微小长度的三种方法
2、利用三棱镜测量光线偏振
光线偏振是指光线的电场方向在空间上呈一定规律的变化。利用三棱镜可以将 自然光分解为偏振光和自然光,通过测量偏振光的强度和相位差,可以确定光 线的偏振状态。具体方法是,将自然光照射到三棱镜的一个面上,经过三棱镜 的折射后,将得到偏振光和自然光,再通过迈克尔逊干涉仪对偏振光的强度和 相位差进行测量。
引言
物理实验是物理学的基础,也是培养学生科学素养和创新能力的关键环节。然 而,传统的物理实验教学存在一些问题,如实验内容单一、缺乏趣味性、与实 际应用脱节等,这些问题制约了学生创新能力和综合素养的培养。因此,本次 演示以迈克尔逊干涉仪的改装及应用为例,探讨如何通过改革物理实验教学, 培养综合创新人才。
差分测量迈克尔逊干涉仪是通过将参考臂和测量臂的路径差进行细分,从而增 加干涉条纹的精度。这种方法可以通过将路径差进行均分,使得每个干涉条纹 的间距更小,从而提高测量精度。
三种测量方法
1、利用迈克尔逊干涉仪测量平 面波动
平面波动是一种常见的物理现象,其波长和振幅是描述波动特征的重要参数。 利用迈克尔逊干涉仪可以测量平面波动的波长和振幅。具体方法是,将平面波 照射到迈克尔逊干涉仪的测量臂上,通过观察干涉条纹的变化,可以确定波长 和振幅。
结论
本次演示介绍了三种基于改装的迈克尔逊干涉仪测量微小长度的方法,包括利 用迈克尔逊干涉仪测量平面波动、利用三棱镜测量光线偏振和利用数字光学测 量系统测量微小长度。实验结果表明,这三种方法均能实现微小长度的测量, 但在精度、稳定性和操作难度方面存在差异。
参考内容
改革物理实验教学,培养综合创新人才——“迈克尔逊干涉仪的改装及应用” 的设计与实践
谢谢观看
在稳定性方面,数字光学测量系统和改进型迈克尔逊干涉仪均表现出良好的稳 定性。在实验过程中,数字光学测量系统的测量结果受外界干扰较小,而改进 型迈克尔逊干涉仪的干涉条纹也较为稳定。相比之下,传统迈克尔逊干涉仪的 干涉条纹容易受到外界干扰,稳定性较差。
干涉法测微小量实验报告
干涉法测微小量【实验目的】1.了解等厚干涉的应用2.掌握移测显微镜的使用方法【实验仪器】实验仪器:牛顿环法测曲率半径实验的主要仪器有:读数显微镜、Na光源、牛顿环仪用劈尖测细丝直径实验的主要仪器有:读数显微镜、Na光源、劈尖【实验原理】实验原理:实验内容一:牛顿环法测曲率半径图1如图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。
分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差△’等于膜厚度e的两倍,即△’ =2e此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差,与之对应的光程差为/2 ,所以相干的两条光线还具有/2的附加光程差,总的光程差为:(1)当△满足条件:(2)时,发生相长干涉,出现第K级亮纹。
而当:(3)时,发生相消干涉,出现第k级暗纹。
因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。
可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。
如图所示,设第k级条纹的半径为rk ,对应的膜厚度为ek,则:(4)在实验中,R的大小为几米到十几米,而ek 的数量级为毫米,所以R >>ek,e k 2相对于2Rk是一个小量,可以忽略,所以上式可以简化为(5) 如果rk是第k级暗条纹的半径,由式(1)和(3)可得:(6) 代入式(5)得透镜曲率半径的计算公式(7) 对给定的装置,R为常数,暗纹半径(8) 和级数k的平方根成正比,即随着k的增大,条纹越来越细。
同理,如果rk是第k级明纹,则由式(1)和(2)得(9)代入式(5),可以算出(10)由式(8)和(10)可见,只要测出暗纹半径(或明纹半径),数出对应的级数k,即可算出R。
干涉法测微小量实验报告
干涉法测微小量创建人:系统管理员总分:100实验目的学习掌握利用光的干涉原理检验光学元件表面集合特征的方法,用劈尖的等厚干涉测量细丝直径的方法,同时加深对光的波动性的认识。
实验仪器低频信号发生器、示波器、超声声速测定仪、频率计等实验原理1、用牛顿环测平凸透镜的曲率半径图1、牛顿环干涉条纹的形成当曲率很大的平凸透镜的凸面放在一平面玻璃上时,会产生一组以O为中心的明暗相接的同心圆环,称为牛顿环。
如图,1、2两束光的光成差22λδ+=∆,式中λ为入射光的波长,δ就是空气层厚度,空气折射率1n ≈。
如果第m 个暗环处空气厚度为m δ,则有故得到:2m m λδ⋅=2、 劈尖的等厚干涉测细丝直径图2、劈尖干涉条纹的形成两片叠在一起的玻璃片,在它们的一端口夹一直径待测的细丝,于就是两片玻璃之间便形成一空气劈尖。
当用单色光垂直照射时,会产生干涉现象。
因为光程差相等的地方就是平行两玻璃片交线的直线,所以等厚干涉条纹就是一组明暗相间的、平行于交线的直线。
设入射光波长为λ,则得到第m 级暗纹处空气劈尖的的厚度2m λ⋅=d 。
由此可知,m=0时,d=0,即在两玻璃片交线处,为零级暗条纹。
如果在细丝处呈现m=N 级条纹,则待测细丝直径2λ⋅=N d 。
实验内容1、测平凸透镜的曲率半径(1)观察牛顿环1) 将牛顿环仪按图3所示放置在读数显微镜镜筒与入射光调节木架的玻璃片的下方,木架上的透镜要正对着钠光灯窗口,调节玻璃片角度,使通过显微镜目镜观察时视场最亮。
图3、观测牛顿环实验装置图2) 调节目镜,瞧清目镜视场内的十字叉丝后,使显微镜筒下降到接近玻璃片,然后缓慢上升,直到观察到干涉条纹,再微调玻璃片角度及显微镜,使条纹更清楚。
(2)测牛顿环直径1) 使显微镜的十字叉丝交点与牛顿环中心重合,并使水平方向的叉丝与标尺平行(与显微镜筒移动方向平行)。
2) 转动显微镜测微鼓轮,使显微镜沿一个方向移动,同时数出十字叉丝竖丝移过的暗环数,直到竖丝与第35环相切为止。
物理实验中微小位移量的几种光学测量方法
物理实验中微小位移量的几种光学测量方法在物理实验中,测量微小位移量是非常重要的。
微小位移量的测量可以用来研究物体的运动规律和性质,同时也可以应用到各种不同的领域,例如工程、医学、空间科学等。
光学测量方法是一种常用的方法,它采用光学原理来测量微小位移量,具有非接触性、高精度和高灵敏度等优点。
本文将介绍几种常用的光学测量方法,包括差动测量法、干涉测量法、激光测量法和数字全息测量法,并对它们的原理、应用和优缺点进行详细介绍。
差动测量法是一种基于两束光的相位差来测量微小位移量的方法。
它的基本原理是将两束光沿不同的光路传播,然后再将它们进行合并,通过比较两束光的相位差来测量位移量。
差动测量法在实际应用中有多种实现方式,例如双臂激光干涉仪、激光多普勒测速仪等。
双臂激光干涉仪是最常见的一种实现方式,它采用激光作为光源,通过将激光分为两束,分别沿不同的光路传播,并最终在相位板上进行叠加来进行测量。
在测量时,当被测物体发生微小位移时,两束光的相位差会发生变化,通过测量这种相位差的变化就可以得到位移量。
差动测量法在很多领域都有广泛的应用,例如机械工程、光学工程、材料科学等。
它具有非接触性、高精度和稳定性的优点,在微小位移量的测量中有着很高的应用价值。
但是,差动测量法也有一些缺点,例如对环境条件要求较高,需要较长的测量时间,同时对系统的稳定性和复杂性也有一定要求。
干涉测量法是一种基于光的干涉现象来测量微小位移量的方法。
干涉测量法的基本原理是利用干涉仪的干涉图样来测量光的相位差,从而得到被测物体的位移量。
干涉测量法在实际应用中有多种实现方式,例如薄膜干涉法、多束干涉法和全息干涉法等。
薄膜干涉法是一种常见的实现方式,它采用薄膜反射镜或衍射光栅等器件来产生干涉图样,通过测量干涉图样的变化来测量位移量。
在测量时,通常需要通过对干涉图样进行处理,例如通过解调或者数字图像处理等方式,来得到被测物体的位移量。
干涉测量法在很多领域都有广泛的应用,例如半导体制造、光学显微镜、生物医学等。
等厚干涉(干涉法测微小量)
姓名:;学号;班级;教师________;信箱号:______ 预约时间:第_____周、星期_____、第_____~ _____节;座位号:_______预习操作实验报告总分教师签字一、实验名称等厚干涉二、实验目的(1) 观察和研究等厚干涉的现象及其特点 .(2) 练习用干涉法测量透镜的曲率半径、微小厚度 ( 或直径 ).三、实验原理(基本原理概述、重要公式、简要推导过程、重要图形等;要求用自己的语言概括与总结,不可照抄教材)利用透明薄膜上、下两表面对入射光的依次反射,入射光的振幅将分解成有一定光程差的几个部分.这是一种获得相干光的重要途径,被多种干涉仪所采用若两束反射光在相遇时的光程差取决于产生反射光的薄膜厚度,则同一干涉条纹所对应的薄膜厚度相同.这就是所谓的等厚干涉。
(见右图)总的光程差为:(1)当△满足条件:(2)时,发生相长干涉,出现第K级亮纹。
而当:(3)时,发生相消干涉,出现第k级暗纹。
因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。
可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。
如图所示,设第k级条纹的半径为rk,对应的膜厚度为ek ,则:(4)在实验中,R的大小为几米到十几米,而ek的数量级为毫米,所以R >>ek ,ek2相对于2Rk 是一个小量,可以忽略,所以上式可以简化为(5)如果rk是第k级暗条纹的半径,由式(1)和(3)可得:(6)代入式(5)得透镜曲率半径的计算公式(7)对给定的装置,R为常数,暗纹半径(8)和级数k的平方根成正比,即随着k的增大,条纹越来越细。
由于从劈尖的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在劈尖的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差等于劈尖厚度的两倍,即n = 0时,,即在两玻璃片交线处为零级暗条纹。
如果在细丝处呈现n = N级条纹,则待测细丝直径为(9)四、实验内容和步骤(要求用自己的语言概括与总结,不可照抄教材)1. 观察牛顿环。
干涉法测微小量
干涉法测微小量实验一、实验简介:光的干涉现象表明了光的波动的性质,干涉现象在科学研究与计量技术中有着广泛的应用。
在干涉现象中,不论何种干涉,相邻干涉条纹的光程差的改变都等于相干光的波长,可见光的波长虽然很小,但干涉条纹间的距离或干涉条纹的数目是可以计量的。
因此,通过对干涉条纹数目或条纹移动数目的计量,可以得到以光的波长为单位的光程差。
利用光的等厚干涉可以测量光的波长,检验表面的平面度,球面度,光洁度,以及精确测量长度,角度和微小形变等。
二、实验原理:实验内容一:牛顿环法测曲率半径图1如图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。
分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差△’等于膜厚度e的两倍,即△’ =2e此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差π,与之对应的光程差为λ /2 ,所以相干的两条光线还具有λ /2的附加光程差,总的光程差为:(1) 当△满足条件:,()(2) 时,发生相长干涉,出现第K级亮纹。
而当:,()(3) 时,发生相消干涉,出现第k级暗纹。
因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。
可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。
如图所示,设第k级条纹的半径为r k,对应的膜厚度为e k,则:(4)在实验中,R的大小为几米到十几米,而e k的数量级为毫米,所以R >>e k,e k2相对于2R k是一个小量,可以忽略,所以上式可以简化为(5)如果r k是第k级暗条纹的半径,由式(1)和(3)可得:(6)代入式(5)得透镜曲率半径的计算公式(7)对给定的装置,R为常数,暗纹半径(8)和级数k的平方根成正比,即随着k的增大,条纹越来越细。
干涉法测微小量-实验报告
干涉法测微小量创建人:系统管理员总分:100实验目的学习掌握利用光的干涉原理检验光学元件表面集合特征的方法,用劈尖的等厚干涉测量细丝直径的方法,同时加深对光的波动性的认识。
实验仪器低频信号发生器、示波器、超声声速测定仪、频率计等实验原理1、用牛顿环测平凸透镜的曲率半径图1.牛顿环干涉条纹的形成当曲率很大的平凸透镜的凸面放在一平面玻璃上时,会产生一组以O为中心的明暗相接的同心圆环,称为牛顿环。
如图,1、2两束光的光成差22λδ+=∆,式中λ为入射光的波长,δ是空气层厚度,空气折射率1n ≈。
如果第m 个暗环处空气厚度为m δ,则有故得到:2m m λδ⋅=2、 劈尖的等厚干涉测细丝直径图2.劈尖干涉条纹的形成两片叠在一起的玻璃片,在它们的一端口夹一直径待测的细丝,于是两片玻璃之间便形成一空气劈尖。
当用单色光垂直照射时,会产生干涉现象。
因为光程差相等的地方是平行两玻璃片交线的直线,所以等厚干涉条纹是一组明暗相间的、平行于交线的直线。
设入射光波长为λ,则得到第m 级暗纹处空气劈尖的的厚度2m λ⋅=d 。
由此可知,m=0时,d=0,即在两玻璃片交线处,为零级暗条纹。
如果在细丝处呈现m=N 级条纹,则待测细丝直径2λ⋅=N d 。
实验内容1、 测平凸透镜的曲率半径 (1)观察牛顿环1) 将牛顿环仪按图3所示放置在读数显微镜镜筒和入射光调节木架的玻璃片的下方,木架上的透镜要正对着钠光灯窗口,调节玻璃片角度,使通过显微镜目镜观察时视场最亮。
图3.观测牛顿环实验装置图2) 调节目镜,看清目镜视场内的十字叉丝后,使显微镜筒下降到接近玻璃片,然后缓慢上升,直到观察到干涉条纹,再微调玻璃片角度及显微镜,使条纹更清楚。
(2)测牛顿环直径1) 使显微镜的十字叉丝交点与牛顿环中心重合,并使水平方向的叉丝与标尺平行(与显微镜筒移动方向平行)。
2) 转动显微镜测微鼓轮,使显微镜沿一个方向移动,同时数出十字叉丝竖丝移过的暗环数,直到竖丝与第35环相切为止。
微小长度测量的方法
微小长度测量的方法一、微小长度测量的重要性。
1.1 在很多领域微小长度的测量都起着至关重要的作用。
就像在精密机械制造行业,哪怕是一丁点儿的长度误差,那都可能让整个机械装置运转不灵,这就好比“失之毫厘,谬以千里”。
一个小小的螺丝长度不对,可能就会导致整个机器散架。
1.2 在微观科学研究方面,像研究细胞结构之类的,细胞的微小尺寸测量不准确,那科学家对细胞功能的理解就可能完全跑偏。
这就像是在黑暗中摸索,如果测量这个“灯”不亮,那可就容易迷失方向。
二、常用的微小长度测量方法。
2.1 光学显微镜测量法。
这可是个相当厉害的法子。
我们把要测量的微小物体放在显微镜下,通过目镜里的刻度来测量。
比如说观察微生物的长度,就像在看一个小世界里的小居民,你可以清楚地看到它的轮廓,然后根据刻度算出它的长度。
不过呢,这种方法也有局限性,它的精度虽然不错,但对于更小的东西,就有点力不从心了。
2.2 千分尺测量法。
千分尺可是个很精密的小工具。
它就像一个严格的小管家,紧紧地“咬住”要测量的小物件。
它的原理是通过旋转螺旋测微器,把微小的长度变化转化为可以读取的刻度数值。
工人师傅在加工一些精密零件的时候,就经常用千分尺来确保零件的尺寸精确无误。
但是呢,操作千分尺需要一定的技巧,如果操作不当,那测量出来的结果可就不准确喽。
2.3 激光干涉测量法。
这方法可就高大上多了。
利用激光的干涉现象来测量微小长度。
就好像激光在玩一个很神奇的游戏,当它遇到被测物体的时候,干涉条纹就会发生变化,通过分析这些条纹的变化,就能得出物体的微小长度。
这就像是激光在给我们传递一种特殊的“密码”,我们只要解读这个“密码”就能知道长度了。
不过呢,这种方法设备昂贵,不是一般的小实验室或者小工厂能玩得起的。
三、提高微小长度测量准确性的要点。
3.1 测量工具的保养很重要。
就像我们的汽车需要保养一样,测量工具也得精心呵护。
比如说千分尺,如果上面沾了灰尘或者油污,那测量的时候就会有偏差。
散斑干涉法测微小位移
《散斑干涉测微小位移》【实验目的】1、通过拍摄自由空间散斑图及成像散斑图,初步了解激光散斑现象及其特点;2.擎握应用散斑干涉全息图设计方法;3、用二次曝光散斑干涉图测量物体表面的面内位移;4、设计用二次曝光散斑图测量透明固体(玻璃)的厚度及其非均匀性。
【实验原理分析与讨论】1、散斑的形成及特征激光自散射体表面漫反射或通过一个透明散射体(加毛玻璃)时,在散射体的表面和附近空间的光场中,可以观察到或用照相记录下来一种无规分布的亮暗斑纹。
这种斑纹称为激光散斑。
它是由散射体上每个面积元发出的基元光波的干涉作用造成的。
在全息术和相干光成像系统中,散斑的存在会影响分辨率,是一种令人讨厌的有害噪声。
近年来,通过研究逐渐发现了它的一些有用的特性。
在某些新的光学系统中,散斑不再是噪声因素,而是一种有用的信息载体.激光散斑.特别是散斑照相和散斑干涉,在表面粗糙度测量、图像处理、运动分析、振动分析、眼球缺陷分析和星体度量学等科技领域中有着广泛的应用,在光学小己成为一个重要的分支。
激光散斑通常可分为空间散斑和像面散斑两类:12空间散斑:如果在散射体G 的正面距离z 的地方放置全息干板记录散斑结构,其散斑的平均直径为 1.22z ds Dλ≈,其中D 是被照亮的散射面直径。
如果在侧面接收,则散斑的平均长度2()z ls Dλ≈ 像面散斑: 像面散斑的平均直径:11.22() 1.22(1+)z ds F Dλλβ≈=式中z1(像距),D (透镜的孔径)β(横向放大率)F (相对孔径的倒数)当散射面位于无限远时,成像面与后焦面重合,散斑的平均直径为1.22() 1.22f ds F Dλλ≈= f 透镜焦距。
2、散斑干涉全息图测量面内位移的光路设计空间散斑(未加成像透镜)非平行光漫反射散斑 像面散斑(放大率>1;<1)散斑干涉光路设计 平行光 空间散斑(未加成像透镜)像面散斑(加成像透镜:放大率>1;<1)空间散斑(未加成像透镜)非平行光透射散斑 像面散斑(放大率>1;<1)平行光 空间散斑(未加成像透镜)面散斑(加成像透镜:放大率>1;<1)3.用二次曝光散斑图测量面内位移(1)反射成像散斑:二次曝光散斑图测微小位移如图是拍摄散斑图的光路布置之一,其中S 是具有光学粗糙表面的平面物体,用扩束后的激光光束照射,L 是成像透镜,H 是全息干板.置于像平面上,成像透镜L 将s 面成像于记录平面H 上,形成成像散斑,如果对浏试物体在运动前后应用二次曝光法拍摄散斑图样,并假定位移的量值大于散斑特征尺寸,那么,在同一底片上就记录了两个同样的但位置稍微错开的散斑图。
关于微小长度测量的研究
关于微小长度测量的研究诸霖(05A12301)(东南大学土木工程学院,南京市 211189)摘要:实验中,许多微小长度不易直接测量,所以在实际操作过程中,我们往往用一些特殊的装置将此类微小长度放大为可测的长度。
本文主要介绍了用光杠杆放大法测量微小长度变化量的方法。
关键词:微小长度;光杠杆;误差Researches on the changes of small lengthZhu Lin(05A12301)(Civil Engineering,Southeast University,Nanjing 211189)Abstract:In the experiment, many small length can not be measured directly, so in the actual operation process, we often use some special device such small length amplification as measurable length. This paper mainly introduces the method of amplification method for the measurement of tiny change in length with the optical lever.Key words:Small length;light bar;deviation0、引言实验中,往往会遇到微小长度的测量。
此类长度不易直接测量,需要通过特殊方法间接测量。
下面介绍用非接触式的长度放大测量方法——光杠杆测量法的测量原理及仪器设备,其次分析在这种测量方法下的实验操作注意事项以减小误差。
另外,不同的实验需要对不同的方法进行比较选择,从而得到最优方案。
作者简介:诸霖,女,1994-8-14,江苏无锡,东南大学土木工程学院邮箱:953666416@1、实验原理基本原理如下图:如图所示的架子上面悬挂有一带有重物的钢丝,一号是固定在钢丝上面的一个小块,2号是一个平面镜,平面镜下端支放在承物台上。
干涉法测微小量
干涉法测微小量
激光干涉法是一种用来测量微小量的精密仪器,它通过使用单边激光来实现定位和测量。
它基于物体反射激光束照射在一个固定的参考点,通过物体移动而改变激光束在参考点的位置,得出物体位移量的原理。
其原理是,一束激光从一个发射机发射出来,照射在物体的表面上,反射回另外一个探测机收集,由于物体位置的移动而导致反射激光束和发射激光之间的差异,从这个差异来检测物体位移量,所获得的信息通过传感器进行数据处理,从而实现。
激光干涉法测量优势很多,它不仅具有极高的精度,而且测量时间远快于传统的测量技术,可以准确测量微小量,范围可以达到纳米级,从而使激光干涉法变得非常灵活,可以满足各种精细的测量场合。
激光干涉法的应用也很盛行,它广泛应用于测量微小量,在电子封装、光机械行业以及航空航天等行业有着大量应用。
同时,它也广泛用于衡量望远镜、测量物体大小误差和扫描定位等测量工作中。
因此,激光干涉法在测量微小量上有着很大的作用。
激光干涉法的使用也很容易,几乎可以在任何空间中实现,仪器配件紧凑耐用,高精度,而且配置简单,可以满足客户的多种需求。
此外,本法还可以用于测量极低温和高强度环境,具有良好的适应性。
总之,激光干涉法是一种能实现微小量测量的精密仪器,它具有高精度,配置简单,环境适应性强等优势,在微小量测量中有着独特的优势和作用。
通过不断研发和改进,激光干涉法可以帮助我们更准确的测量微小量,发挥更大的价值。
干涉法测微小量实验报告(含准确数据)
干涉法测微小量课程名称:干涉法测微小量学号:姓名:专业班级:一、实验目的了解等厚干涉的特点,会用干涉法测量平凸透镜的曲率半径;学习调节和使用读数显微镜,会用逐差法处理实验数据;同时加深对光的波动性的认识。
二、实验仪器读数显微镜、钠光灯、牛顿环仪三、实验原理用牛顿环测平凸透镜的曲率半径图1.牛顿环干涉条纹的形成当曲率很大的平凸透镜的凸面放在一平面玻璃上时,会产生一组以O为中心的明暗相接的同心圆环,称为牛顿环。
如图,1、2两束光的光成差,式中为入射光的波长,是空气层厚度,空气折射率。
如果第m个暗环处空气厚度为,则有故得到:利用几何关系有并根据,得到,联系以上两式,有换成直径,并考虑第个环和第m个环,有故那么测量出和就可以根据这个表达式得到R。
四、实验内容1、观察牛顿环1)将牛顿环仪按图2所示放置在读数显微镜镜筒和入射光调节木架的玻璃片的下方,木架上的透镜要正对着钠光灯窗口,调节玻璃片角度,使通过显微镜目镜观察时视场最亮。
图2.观测牛顿环实验装置图2)调节目镜,看清目镜视场内的十字叉丝后,使显微镜筒下降到接近玻璃片,然后缓慢上升,直到观察到干涉条纹,再微调玻璃片角度及显微镜,使条纹更清楚。
2、测牛顿环直径1)使显微镜的十字叉丝交点与牛顿环中心重合,并使水平方向的叉丝与标尺平行(与显微镜筒移动方向平行)。
2)转动显微镜测微鼓轮,使显微镜沿一个方向移动,同时数出十字叉丝竖丝移过的暗环数,直到竖丝与第35环相切为止。
3)反向转动鼓轮,当竖丝与第30环相切时,记录读书显微镜上的位置读数,然后继续转动鼓轮,使竖丝依次与第25、20、15、10、5环相切,顺次记下读数。
4)继续转动鼓轮,越过干涉圆环中心,记下竖丝依次与另一边的5、10、15、20、25、30环相切时的读数。
5) 重复测量一次,实验共测得两组数据。
3、用逐差法处理数据,计算R第30环直径,同理,可求出,取,求出,代入式中计算R。
五、实验数据记录及处理1、计算干涉圆环的直径:表1 干涉圆环的尺寸单位:mm2、用逐差法计算平凸透镜的曲率半径。
干涉法测微小量
《干涉法测微小量》实验报告姓名学号学院专业班级一.实验目的学习掌握利用光的干涉原理检验光学元件表面集合特征的方法,用劈尖的等厚干涉测量细丝直径的方法,同时加深对光的波动性的认识二.实验仪器读数显微镜、钠光灯及电源、牛顿环仪、劈尖等三、实验原理1、用牛顿环测平凸透镜的曲率半径详见实验指导书2、劈尖的等厚干涉测细丝直径详见实验指导书四、实验步骤1. 观察牛顿环。
(1) 将牛顿环仪放置在读数显微镜镜筒和入射光调节架下方,调节玻璃片的角度,使通过显微镜目镜观察时视场最亮。
(2) 调节目镜,看清目镜视场的十字叉丝后,使显微镜镜筒下降到接近牛顿环仪然后缓慢上升,直到观察到干涉条纹,再微调玻璃片角度和显微镜,使条纹清晰。
2. 测牛顿环半径。
(1) 使显微镜十字叉丝交点和牛顿环中心重合,并使水平方向的叉丝和标尺平行(与显微镜移动方向平行)。
(2) 转动显微镜微调鼓轮,使显微镜沿一个方向移动,同时数出十字叉丝竖丝移过的暗环数,直到竖丝与第 45 环相切为止。
记录标尺读数。
(3) 反向转动鼓轮,当竖丝与第 40 环相切时,记录读数显微镜上的位置读数,然后继续转动鼓轮,使竖丝依次与第 35、30、25、20、15、10、5 环相切,顺次记下读数。
(4) 继续转动鼓轮,越过干涉圆环中心,记下竖丝依次与另一边的 5、10、15、20、25、30、35、40 环相切时的读数。
3.利用逐差法处理得到的数据,得到牛顿环半径 R。
4. 观察劈尖干涉条纹。
(1) 将劈尖放置在读数显微镜镜筒和入射光调节架下方,调节玻璃片的角度,使通过显微镜目镜观察时视场最亮。
(2) 调节目镜,看清目镜视场的十字叉丝后,使显微镜镜筒下降到接近劈尖然后缓慢上升,直到观察到干涉条纹,再微调玻璃片角度和显微镜,使条纹清晰。
5. 测量。
(1) 使显微镜的十字叉丝交点与劈尖中心重合,并使其与显微镜镜筒移动方向平行。
(2) 在劈尖玻璃面的三个不同部分,测出 20 条暗纹的总长度,测 3 个求平均值。