正比例函数的图象与性质说课学习的教案学习的学习的教案稿文本.doc

合集下载

正比例函数图像和性质

正比例函数图像和性质

正比例函数的图像和性质学案一、 学习目标:(1)理解正比例函数的意义,能根据实际问题抽象出正比例函数并确定其表达式,能辨别一个函数是否是正比例函数,能根据已知条件求出正比例函数的表达式.(2)会运用“描点法”画正比例函数的图象.掌握正比例函数的图像和性质,能运用正比例函数的性质解决有关问题.(3)经历画正比例函数图像的过程,体会由“数”到“形”的数学思想,通过归纳正比例函数的性质,体会由“形”到“数”的数学思想.(4)通过仔细观察、严谨的思考,加强抽象概括的能力和合作交流的意识,获得研究函数的方法. 二、自学指导问题1.堪称鸟中之王的北极燕鸥,它们每年在北极繁殖,但需到南极越冬,每年在两极之间往返一次,行程达十万千米,燕鸥的这种执着追求的精神和勇气很值得我们大家学习。

1996年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环;大约128天后,人们在25600千米外的澳大利亚发现了它。

(1)这只百余克重的小鸟大约平均每天飞行多少千米?(2)这只燕鸥的行程y (单位:千米)与飞行的时间x (单位:天)之间有什么关系? (3)这只燕鸥飞行1个半月(一个月按30天计算)的行程大约是多少千米?问题2.正比例函数的定义:形如 的函数,叫做正比例函数.其中k 叫做正比例系数.问题3. 下列函数哪些是正比函数,如果是请找出比例系数, (1)y =-0.1x ; (2)2x y =; (3)y =2x 2;(4)y 2=4x ; (5)x y 3= (6) y=(a 2+1)x-2问题4. 描点法画函数图像的一般步骤二、新课学习问题5. 在同一坐标系中,分别画出下列函数的图象:(1)y=x ; (2)y=2x ; (3)y =-2x ; (4)x y 21=; (5)x y 21-=.解:列表描点.连线.三、小组讨论, 合作交流问题6 观察上面五个函数的图象,你能发现它们具有哪些性质?(1)x和y的取值范围(2)函数图象的形状(3)函数图象上有哪些特殊点(4)函数图象的分布情况(5)函数图象的变化趋势(6)函数图象的对称性问题7(1)根据正比例函数图象的形状,画它的图象,你有简单的方法吗?为什么?取哪些点更好呢?(2)请你举例说明正比例函数的图像和性质(3)通过研究特殊的正比例函数的图像和性质,请你能归纳得到正比例函数的一般性质问题8. 请你观察不同的正比例函数图像,发现它们之间有什么关系?四、课堂小结谈谈这节课你的收获五、当堂训练1. 画下列函数图象,并简述它们的性质:(1)x y 23=; (2)y =-3x .2. 正比例函数图象经过(0,0)和(1,-3),则直线经过第 _ 象限,y 随x 的增加而_ __ .3. 已知正比例函数(31)y k x =-,若y 随x 的增大而增大,试确定k 的取值范围.4. 一个正比例函数的图象经过点(2,4). (1) 试求表达式;(2)点-1,12)是否在它的图象上? 5. 已知正比例函数(21)y m x =-图象上的两点A(11,x y ),B(22,x y ),当12x x <时,有12y y >, 试确定m 的取值范围.。

正比例函数的图象和性质说课稿

正比例函数的图象和性质说课稿

正比例函数的图象和性质(说课稿)我讲这节19.2.1《正比例函数图象和性质》,由于时间关系:我重点说说这节课的教学目标、教学重难点、教学过程、教学反思。

一、教学目标1、会画正比例函数的图象;理解正比例函数的图象及性质。

2、能根据正比例函数的图象和解析式y=kx(k≠0)理解k>0和k<0时函数的图象特征与增减性。

3、通过观察图象,归纳总结概括出正比例涵数性质的活动,发展数学感知、数学表征、数学概括能力。

4、体会数形结合的思想,发展几何直观,体验数学的应用价值。

二、教学重难点1、用数形结合的思想方法,通过画图观察,概括正比例函数的图象特征及性质。

2、正比例函数的图象特征及性质。

三、教学过程第一环节:温故知新安排了3个小题,第1,2小题复习正比例函数的解析式及自变量的取值范围,第3小题复习画函数图象的步骤。

设计意图:为本节课做铺垫,抓住本节重点,突破难点做知识储备。

第二环节:设问导读安排了5个问题,第1题利用5点法画正比例函数的图象,分组画,其中每组画两个k>0,两个k<0,让学生先独立完成。

然后,分别两人一组、四人一组讨论。

图象的共同点与不同点,让学生体会动手实践→自主探索→合作交流的过程,从而发现问题,解决问题,进一步概括正比例函数图象的性质,培养学生的概括能力,通过学生的自学→合学→展示真正理解正比例函数图象的性质。

教师追问:1、“为什么所有函数都过(0,0)?”为了更好的体会数形结合思想,数与形是密不可分的,进而学生能够理解为什么“k>0过一、三象限,k<0过二、四象限”。

难点是增减性的理解,我预想让学生从两方面理解(1)从数的角度,利用表格。

(2)从形的角度,利用图象从左到右的趋向。

利用这种直观的发现法培养学生的几何直观能力,得出性质后利用小练习,巩固、理解性质,从而可知“知一推三”。

教师追问:2、“画正比例函数图象时,怎样画最简单?”利用两点确定一条直线很快就想到了两点法,两点一定要取的好操作,其中一点(0,0),另一点根据解析式而定。

正比例函数的图象和性质教案说明

正比例函数的图象和性质教案说明

正比例函数的图象和性质教案说明
一、课题教学目三课型新授课四课时五教学重点六教学难点七教学过程
2、创设情境,探究新知
活动一、自主探究
活动一的设计目的是:通过学生的自身参与、细心观察、类比分析,让学生直观形象的得出正比例函数图象的基本特征:“经过原点的直线”
活动二、合作学习
活动二的设计目的是:培养学生学会合作探究、主动思考,让学生归纳函数的性质。

3、猜想验证,随堂练习
由数形结合得出:常数k直接决定着直线的方向和倾斜程度。

活动三、互动发现
待定系数法就是求常数k的方法,知道了常数k就能求出正比例函数的关系式。

随堂练习是:
要求学生快速画出几个不同正比例函数图象,并由函数图象求出函数的关系式。

4、小结归纳,升华教育
八作业处理九板书设计十教具
2
活动一、自主探究
活动二、合作学习
活动三、互动发现
一、正比例函数的概念复习
二、图象的基本特征:
“正比例函数图象是经过原点的直线”
三、正比例函数的性质:
①、当k>0时,图象经过一、三象限,y随x的增大而增大。

②、当k<0时,图象经过二、四象限,y随x的增大而减小。

例题1、画出下列正比例函数的图象:
(1)y=2x;(2)y=-2x
随堂练习:
作业布置:
作业1:必做题
作业2:选做题
正比例函数的图象和性质。

《正比例函数的图象和性质》教案

《正比例函数的图象和性质》教案

《正比例函数的图象和性质》教案一、教学目标:1. 知识与技能:学生能够理解正比例函数的定义和图象特点。

学生能够运用正比例函数的性质解决实际问题。

2. 过程与方法:学生通过观察和分析正比例函数的图象,探索其性质。

学生通过合作交流,培养解决问题的能力。

3. 情感态度价值观:学生培养对数学的兴趣和好奇心,体验数学的乐趣。

学生培养团队合作意识,提高自我表达能力。

二、教学重点与难点:重点:正比例函数的定义和图象特点。

正比例函数的性质。

难点:理解和运用正比例函数的性质解决实际问题。

三、教学准备:教学课件或黑板。

正比例函数的图象和性质的相关素材。

练习题和作业。

四、教学过程:1. 导入:引导学生回顾已学过的函数知识,为新课的学习做好铺垫。

通过实际例子引入正比例函数的概念。

2. 探究正比例函数的定义和图象特点:引导学生观察正比例函数的图象,分析其特点。

学生通过合作交流,总结正比例函数的性质。

3. 讲解正比例函数的性质:引导学生理解正比例函数的性质,并能够运用到实际问题中。

通过例题和练习题,巩固学生对正比例函数性质的掌握。

4. 应用与拓展:给学生提供实际问题,让学生运用正比例函数的性质解决。

引导学生思考正比例函数在实际生活中的应用。

五、作业布置:根据课堂练习题和作业,布置相关的习题,巩固学生对正比例函数的图象和性质的理解。

鼓励学生进行思考和探索,培养学生的自学能力。

六、教学评估:1. 课堂提问:在教学过程中,教师应适时提问学生,了解学生对正比例函数图象和性质的理解程度。

通过学生的回答,教师可以及时发现问题,并进行针对性的讲解和辅导。

2. 练习题解答:在课堂练习环节,教师应观察学生的解答过程,了解学生对正比例函数图象和性质的应用能力。

对于学生解答中出现的问题,教师可以进行个别辅导,帮助学生纠正错误,提高解题能力。

3. 作业完成情况:教师应检查学生作业的完成情况,包括答案的正确性和解题过程的完整性。

通过作业反馈,教师可以了解学生对正比例函数图象和性质的掌握情况,为下一步教学提供参考。

人教版八下数学19.2.1 课时2正比例函数的图像和性质教案+学案

人教版八下数学19.2.1 课时2正比例函数的图像和性质教案+学案

人教版八年级下册数学第19章一次函数19.2一次函数19.2.1正比例函数课时2正比例函数的图像和性质教案【教学目标】知识与技能目标1.能够画出正比例函数的图象.2.根据正比例函数的解析式y=kx(k是常数,k≠0)和图象探索并理解其性质.3.根据两点确定一条直线,可以利用两点(两点法)画正比例函数的图象.过程与方法目标在用描点法画正比例函数图象过程中发现正比例函数性质.情感、态度与价值观目标学生在探究合作中交流,体验知识的形成过程,感知数形结合思想.【教学重点】正比例函数图象的画法和性质的理解.【教学难点】利用正比例函数图象与性质灵活解题.【教学准备】教师准备教学中出示的例题;学生准备坐标纸、学习用具.【教学过程设计】一、情境导入导入一:当今网络已经越来越普及,可以用电脑上网,手机上网等,我们班级有位同学经常上网,他的打字速度非常快,达到每分钟可以输入两百个汉字,真是高手!如果他输入的汉字个数用y(单位:百个)来表示,那么y与输入时间x(单位:分钟)的函数关系式是什么?这个函数是我们前面学习的正比例函数吗?用描点法,你能画出这个函数的图象吗?[设计意图]以学生身边感兴趣的问题导入新课,能更好地激发学生学习的积极性.导入二:1.在下列函数中,哪些是正比例函数?并指出正比例系数分别是多少?①y=x,②y=3x2,③y=2x,④y=2x-4,⑤y=,⑥y=-x ,⑦y=-2x.2.画函数图象需要经历哪些步骤?3.你能依据这些步骤画出以上正比例函数的图象吗?[设计意图]通过设计一组正比例函数,引导学生利用上一节知识,即函数的图象的画法来画正比例函数的图象,体会数形结合思想的应用.二、新知构建1.画正比例函数的图象[过渡语]你能用描点法画正比例函数的图象吗?思路一画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点与不同点,考虑两个函数的变化规律.(1)y=2x;(2)y=-2x.学生通过列表、描点、连线,在坐标纸上画出所给函数的图象.教师根据学生画出的图象进行有针对性的讲解.解:(1)列表:函数y=2x中自变量x可以是任意实数.列表表示几组对应值:x-3 -2 -1 0 1 2 3y-6 -4 -2 0 2 4 6描点,连线,画出图象,如图所示:(2)列表:y=-2x的自变量取值范围可以是全体实数,列表表示几组对应值:x-3 -2 -1 0 1 2 3y 6 4 2 0 -2 -4 -6描点,连线,画出图象,如图所示.练习:在同一坐标系中,画出下列函数的图象,并对它们进行比较.(1)y=x;(2)y=-x.[设计意图]利用描点法正确地画出两个函数图象,让学生体会数形结合思想.思路二1.正比例函数的图象问题画出下列正比例函数的图象:①y=2x;②y=-2x;③y=x;④y=-x.学生通过列表、描点、连线,在坐标纸上画出所给函数的图象,并观察规律.教师引导学生画图,注意函数图象的三个关键步骤:列表、描点、连线,边巡视边指出学生画图中出现的问题,最后展示正确图象(如图所示),让学生进行对比修改.[设计意图]通过活动,了解正比例函数图象特点及函数变化规律,让学生自己动手、动口、动脑,经历发现规律的整个过程,从而提高各方面能力及学习兴趣.2.正比例函数的性质思路一提问:观察上面的图象,发现函数图象有什么特点?师生共同归纳函数y=2x和y=-2x的图象特点.两个函数图象的共同点:都是经过原点的直线.不同点:函数y=2x的图象从左向右呈上升状态,经过第一、三象限,即随着x的增大y也增大.函数y=-2x的图象从左向右呈下降状态,经过第二、四象限,即随x 增大y反而减小.学生根据自己所画的图象,以小组形式类似地归纳y=x和y=-x的图象特点:比较两个函数图象可以看出:两个函数图象都是经过原点的直线.函数y=x的图象从左向右上升,经过第一、三象限,即随x的增大y也增大;函数y=-x的图象从左向右下降,经过第二、四象限,即随x的增大y反而减小.总结归纳正比例函数解析式与图象特征之间的规律:正比例函数y=kx.(1)图象:正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线.(2)性质:当k>0时,图象经过第一、三象限,y随x的增大而增大;当k<0时,图象经过第二、四象限,y随x的增大而减小.提问:画正比例函数的图象时,怎样画最简单?为什么?正比例函数y=kx(k是常数,k≠0)的图象是经过原点的一条直线,由于两点确定一条直线,因此画正比例函数图象时我们只需描点(0,0),点(1,k),两点连线即可.说明:正是由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,我们可以称它为直线y=kx.[设计意图]利用描点法正确地画出两个函数图象,在教师的引导下完成函数变化规律的探究过程,并能准确地表达出,从而加深对规律的理解与认识.思路二问题:观察所画的四个函数图象,填写你发现的规律:①四个函数图象都是经过的直线.②函数y= 2x的图象经过第象限,从左向右(呈什么趋势),即y 随x的增大而;③函数y=-2x的图象经过第象限,从左向右,即y随x的增大而;④函数y=x的图象经过第象限,从左向右,即y随x的增大而;⑤函数y=-x的图象经过第象限,从左向右,即y随x的增大而.学生观察图象并回答,教师纠正学生回答中不正确的地方,并适当点拨讲解:①原点;②一、三;上升;增大;③二、四;下降;减小;④一、三;上升;增大;⑤二、四;下降;减小.师生共同归纳总结:正比例函数y=kx(k≠0)的性质:(1)图象是经过原点的一条直线.(2)当k>0时,图象经过第一、三象限,从左向右上升,y随x的增大而增大(递增).(3)当k<0时,图象经过第二、四象限,从左向右下降,y随x的增大而减小(递减).思考:画正比例函数的图象时,怎样画最简单?为什么?正比例函数y=kx(k是常数,k≠0)的图象是经过原点的一条直线,由于两点确定一条直线,因此画正比例函数图象时我们只需描点(0,0),点(1,k),两点连线即可.说明:正是由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,我们可以称它为直线y=kx.[设计意图]引导学生正确画图、积极探索、总结规律、准确表述.[知识拓展](1)正比例函数y=kx可以说成y与x成正比例,要求函数关系式,只需通过x,y的一组对应值求出k,从而确定关系式.(2)正比例函数的图象是过原点的直线,当k>0时,直线从左到右呈上升趋势,经过第一、三象限;当k<0时,直线从左到右呈下降趋势,经过第二、四象限.画正比例函数的图象时,只需要选取除原点外的一点,再过原点和选取点画直线即可,选取的点一般为点(1,k).(3)正比例函数的性质可以逆用.如当正比例函数y=kx(k≠0)中y随x的增大而增大时,k>0,反之,k<0;若正比例函数的图象过第一、三象限,则k>0等.3.例题讲解例1(补充)(1)已知一个正比例函数的图象经过点(-1,3),则这个正比例函数的表达式是.(2)函数y=5x-b2+9的图象经过原点,则b=.(3)直线y=(2k-3)x经过第二、四象限,则k的取值范围是.〔解析〕(1)设正比例函数的解析式为y=kx,把点(-1,3)代入解析式求出k的值即可;(2)把原点坐标(0,0)代入函数解析式列方程进行求解;(3)根据正比例函数性质列不等式进行求解.解:(1)设正比例函数的解析式为y=kx,∵正比例函数的图象经过点(-1,3),∴-k=3,∴k=-3,∴这个正比例函数的表达式是y=-3x.(2)∵函数y=5x-b2+9的图象经过原点(0,0),∴-b2+9=0,∴b2=9,∴b=±3.(3)∵直线y=(2k-3)x经过第二、四象限,∴2k-3<0,∴k<.故k的取值范围是k<.[设计意图]通过设计一组填空题,让学生根据正比例函数的解析式和性质列方程或不等式求字母的取值或取值范围.例2(补充)已知点(2,-4)在正比例函数y=kx的图象上.(1)求k的值;(2)若点(-1,m)在函数y=kx的图象上,试求出m的值;(3)若A,y1,B(-2,y2),C(1,y3)都在此函数图象上,试比较y1,y2,y3的大小关系.〔解析〕(1) 把点(2,-4)代入y=kx中列方程进行求解;(2)把点(-1,m)代入(1)中函数解析式列方程进行求解;(3)根据正比例函数性质进行求解.解:(1)∵点(2,-4)在正比例函数y=kx的图象上,∴2k=-4, ∴k=-2.(2)由k=-2可得y=-2x,∵点(-1,m)在函数y=-2x的图象上,∴m=-2×(-1)=2.(3)y=-2x,∵k=-2<0,∴y随x的增大而减小,∵A,y1,B(-2,y2),C(1,y3)都在函数y=-2x的图象上,-2<<1,∴y3<y1<y2.[设计意图]通过设计正比例函数的简单应用,让学生根据正比例函数的解析式和性质进行求解,及时复习正比例函数的性质.例3(教材例1)画出下列正比例函数的图象:(1)y=2x, y=x;(2)y=-1.5x, y=-4x.〔解析〕根据正比例函数的图象是一条直线,两点确定一条直线来作图.解:(1)列表,得:x0 1y=2x0 2y=x0描点,连线,即为函数y=2x, y=x的图象(如下图).(2)列表,得:x0 1y=-1.5x0 -1.5y=-4x0 -4描点,连线,即为函数y=-1.5x, y=-4x的图象(如下图).[设计意图]通过设计正比例函数图象的简单画图,让学生知道利用两点确定一条直线来作图,体验数形结合思想的应用.三、教学小结师生一起总结正比例函数的图象和性质:(1)正比例函数的图象是经过坐标原点的一条直线.(2)作y=kx的图象时,应先选取两点,通常选点(0,0)与点(1,k);然后在坐标平面内描点(0,0)与点(1,k);最后过点(0,0)与点(1,k)画一条直线.(3)当k>0时,直线y=kx经过第一、三象限,从左向右上升,即:随着x的增大y也增大;当k<0时,直线y=kx经过第二、四象限,从左向右下降,即:随着x的增大y反而减小..【板书设计】19.2一次函数19.2.1正比例函数课时2正比例函数的图像和性质1.画正比例函数的图象2.正比例函数的性质3.例题讲解例1 例2 例3【课堂检测】1.下列函数解析式中,不是正比例函数的是()A.xy=-2B.y+8x=0C.3x=4yD.y=-x解析:根据正比例函数的定义:一般地,两个变量x,y之间的解析式可以表示成形如y=kx(k为常数,且k≠0)的形式,那么y就叫做x的正比例函数.不是正比例函数的是A.故选A.2.函数y=(1-k)x中,如果y随着x增大而减小,那么常数k的取值范围是()A.k<1B.k>1C.k≤1D.k≥1解析:∵函数y=(1-k)x中,y随着x的增大而减小,∴1-k<0,解得k>1.故选B.3.我国是一个严重缺水的国家,大家应倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05 mL.小红同学在洗手后,没有把水龙头拧紧,当小红离开x h后水龙头滴了y mL水.则y关于x的函数解析式为.解析:因为水龙头每秒会滴下2滴水,每滴水约0.05 mL,所以当小红离开x h后水龙头的滴水量y=3600×2×0.05x=360x.故填y=360x.4.直线y=x经过(0,),(,2),且过第象限,y随x的增大而.解析:由y=x可知当y=2时,x=3,故直线y=x经过(0,0),(3,2).由k=>0可知直线y=x 过第一、三象限,y随x的增大而增大.答案:03一、三增大5.已知函数y=(k+3)x|k|-4是正比例函数,且y随x的增大而减小,那么k=. 解析:∵函数y=(k+3)x|k|-4是正比例函数,且y随x的增大而减小,∴∴k=-5.故填-5.6.已知某种小汽车的耗油量是每100 km耗油15升.所使用的93汽油今日涨价到5元/升.(1)写出汽车行驶途中所耗油费y(元)与行程x(km)之间的函数关系式;(2)在平面直角坐标系内描出大致的函数图象;(3)计算娄底到长沙220 km所需油费是多少?解:(1)y=5×x=0.75x.(2)列表,得:x0 1y=0.75x0 0.75描点,连线,得到函数y=0.75x的图象(如下图).(3)当x=220时,y=0.75×220=165(元).【教学反思】成功之处:在本节课通过实际问题的引入,激发学生的学习兴趣,再通过设计一组问题,让学生观察、对比、归纳出正比例函数定义,通过例题来巩固新知识,利用一组由浅入深、由易到难的题,逐题递进,落实本节课的教学重点.在教学形式上采用学生口述、互评等多种方法,激发学生思维,营造良好的课堂气氛.不足之处:由于课堂的容量较大,学生思考问题的时间显得相对不足,学困生就显得很吃力.再教设计:教学设计时可以进行分层设计,一组基础题让学困生完成,另一组难的让基础好的学生完成..人教版八年级下册数学第19章平行四边形19.2一次函数19.2.1正比例函数课时2正比例函数的图像和性质学案【学习目标】1.理解正比例函数的图象的特点,会利用两点(法)画正比例函数的图象.2.掌握正比例函数的性质.3.能结合正比例函数的图象和性质解答有关问题.【学习重点】正比例函数的图象和性质.【学习难点】利用正比例函数的图象和性质解答有关问题.【自主学习】一、知识链接1.已知正比例函数y=3x,当x=0时,y= ;当x=1时,y= .2.画函数图象的步骤有:、、.二、新知预习1.画出下列正比例函数的图象:(1)y=2x,13y x=;(2)y=-1.5x,y=-4x.2.函数y=2x,13y x=的图象的共同特点是__________________________;函数y=2x,13y x=的图象的共同特点是____________________________.3.自主归纳:(1)函数y=kx (k是常数,k≠0)的图象是一条经过的;(2)k>0时,函数y=kx (k是常数,k≠0)的图象经过第象限;k<0时,函数y=kx (k是常数,k≠0)的图象经过第象限;(3)k>0时,函数值y随自变量x 的增大而;k<0时,函数值y随自变量x 的增大而.三、自学自测1.函数y=-3x的图象是经过点(0,__)和(1,___)的一条______,图象经过第___、____象限,从左到右呈_____趋势,即y随x的增大而______.2.在平面直角坐标系中,正比例函数y =kx(k<0)的图象的大致位置只可能是().四、我在自学过程中产生的疑惑【构建新知】一、新知梳理知识点1:正比例函数的图象问题1:正比例函数的图象什么?画正比例函数的图象只需要确定几个点?【典例探究】例1用你认为最简单的方法画出下列函数的图象:(1)-3y x=;(2)3.2 y x =方法总结:画正比例函数图象时我们只需描点(0,0)和点(1,k),连线即可. 例2已知正比例函数y=(k+1)x.(1)若函数图象经过第一、三象限,则k的取值范围是________. (2)若函数图象经过点(2,4),则k_____.知识点2:正比例函数的性质问题2:在函数y=x,y=3x,12y x=-和-4y x=中,随着x的增大,y的值分别如何变化?要点归纳:在正比例函数y=kx中:当k>0时,y的值随着x值的增大而________;当k<0时,y的值随着x值的增大而________.例3已知正比例函数y=mx的图象经过点(m,4),且y的值随着x值的增大三、归纳总结正比例函数y=kx(k≠0)图象正比例函数的图象是一条过原点的直线.k>0 k<0图象是自左向右上升的,经过第一、三象限图象是自左向右下降的,经过第二、四象限|k|越大,图象越陡(即越靠近y轴)性质y随x的增大而增大y随x的增大而减小【学习检测】1.下列图象哪个可能是函数y=-x的图象()2.正比例函数y=2x的图象所过的象限是()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限A(解析:∵正比例函数y=2x中,k=2>0,∴正比例函数y=2x的图象经过第一、三象限.)3.对于正比例函数y =(k-2)x,当x 增大时,y 随x 的增大而增大,则k的取值范围()A.k<2B.k≤2 C.k>2D.k≥24.已知正比例函数y=(k-1)的图象经过第二、四象限,则k的值是()A.±3B.±2C.2D.-2D(解析:由正比例函数y=(k-1)的图象经过第二、四象限,可得故k=-2.)5.正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于()A.2B.-2C.4D.-4B(解析:∵正比例函数y =mx 的图象经过点A (m ,4),∴m 2=4,∴m =±2.又∵y 的值随x 值的增大而减小,∴m <0,∴m =-2.故选B .)6.函数y=-7x 的图象经过第_________象限,经过点_______与点_______,y 随x 的增大而_______.7.已知正比例函数y =kx (k ≠0),点(2,-3)在函数图象上,则y 随x 的增大而 .(填增大或减小)减小(解析:∵点(2,-3)在正比例函数y =kx (k ≠0)的图象上,∴2k =-3,解得k =-,∴正比例函数解析式是y =-x ,∵k =-<0,∴y 随x 的增大而减小.)8.点(x 1,y 1)与点(x 2,y 2)是正比例函数y =x 的图象上两点,且x 1<x 2,则y 1 y 2.(填“>”“=”或“<”号)<(解析:由k =>0可知y 随x 的增大而增大,故当x 1<x 2时,y 1<y 2.故填<.) 9.已知正比例函数y=(2m+4)x.(1)当m_______,函数图象经过第一、三象限; (2)当m_______,y 随x 的增大而减小; (3)当m_______,函数图象经过点(2,10).10.如图分别是函数x k y 1=,x k y 2=,x k y 3=,x k y 4=的图象. (1)k 1 k 2,k 3 k 4(填“>”或“<”或“=”); (2)用不等号将k 1, k2, k 3, k 4及0依次连接起来.11.已知函数y =(|a |-3)x 2+2ax +a +3是关于x 的正比例函数,求正比例函数的解析式,并画出函数图象.解:∵函数y =(|a |-3)x 2+2ax +a +3是关于x 的正比例函数,∴|a |-3=0,∴a =±3,当a =3时,y=6x+6(舍);当a=-3时,y=-6x.∴正比例函数的解析式为y=-6x.列表,得:x0 -1y0 6描点,连线即可得到函数y=-6x的图象,如图所示.12.已知y与x成正比例,且当x=-2时y=-4.(1)写出y与x的函数关系式;(2)用两点法画出函数图象;(3)设点(a,-2)在这个函数图象上,求a的值;(4)如果x的取值范围是0≤x≤5,求y的取值范围.解:(1)设y与x的函数关系式为y=kx,∵当x=-2时y=-4,∴-2k=-4,∴k=2,∴y与x的函数关系式为y=2x.(2)列表,得:x0 1y=2x0 2描点,连线得到函数y=2x的图象,如图所示.(3)∵点(a,-2)在这个函数图象上,∴2a=-2,∴a=-1.(4)如果x的取值范围是0≤x≤5,那么y的取值范围为0≤y≤10.13.正比例函数y=2x的图象如图所示,点A的坐标为(2,0),函数y=2x的图象上是否存在一点P,使△OAP的面积为4,如果存在,求出点P的坐标,如果不存在,请说明理由.解:存在.理由如下:因为点A的坐标为(2,0),所以OA=2,设点P的坐标为(n,m),因为△OAP的面积为4,所以×OA×|m|=4,即×2×|m|=4,所以m=±4,当m=4时,把x=n, y=m=4代入y=2x,得4=2n,所以n=2,此时点P的坐标为(2,4),当m=-4时,把x=n, y=m=-4代入y=2x,得-4=2n,所以n=-2,此时点P的坐标为(-2,-4).综上所述,点P的坐标为(2,4)或(-2,-4).。

正比例函数图象和性质教学设计

正比例函数图象和性质教学设计

篇一:正比例函数的图像和性质教学设计《正比例函数的图象和性质》一节的教学设计商南县初级中学石贵旺一、教学内容:正比例函数的图象和性质二、教学目标:(一)知识与能力1、进一步巩固正比例函数的概念,会画正比例函数的图象,进一步熟悉函数图象作图步骤。

2、能根据正比例函数图象观察、发现归纳出它的性质,并会简单运用。

(二)过程与方法 1、通过实例函数图象画法的学习,发现并总结正比例函数图象的常用画法。

2、通过观察、探究、分析、引导学生发现正比例函数的性质。

3、培养学生善于观察问题发现结论,了解数形结合及由一般到特殊的数学思想。

(三)情感态度及价值观培养学生积极参与数学活动,勇于探究,发现数学的现象和规律,培养学生的数学交流能力和团队协作精神。

三、教学重点:正比例函数图象的画法及性质的探索。

四、教学难点:发现、归纳正比例函数的性质。

五、教法与学法教法:本节课选用引导学生观察,发现法和探索实践归纳法。

本节课的难点是发现正比例函数性质,因此我通过教师引导,启发调动学生的积极性,让学生在课堂上多活动(画、图、交流、展示)、多观察(图象),主动参与到整个教学活动中来,最后发现其性质。

学法指导:教师引导学生观察、发现、归纳的学习方法。

六、教具:三角板、多媒体。

七、教学过程。

教学过程:(1)温故知新,引入课题。

1、下列函数哪些是正比例函数?(1)y=-3x (2)y= x + 3 (3) y= 4x (4)y= x2- 1 -2、(学生回答完上述问题后提问概念)一般地,形如y= kx(k≠0)的函数,叫正比例函数,其中k叫做比例系数。

3、画函数图象的一般步骤(1)列表(2)描点(3)连线学生回答后:教师引导:现在我们已经知道正比例函数的意义及画图象的步骤,那么正比例函数的图象有什么特征呢?出示课题(二)探究正比例函数的图象和性质例1、画出下列正比例函数的图象。

(1)y=2x(2)y=-2x解(1)函数y=2x中x 可取任意实数,列表如下:描点连线(2)学生练习画出函数y=-2x的图象。

正比例函数的图象与性质说课稿

正比例函数的图象与性质说课稿

正比例函数的图象与性质说课稿
14.2 .1 正比例函数的图象与性质(2) 说课
一、教材分析
1、地位与作用
本节课是在学好了正比例函数解析式后,对函数内容的进一步研究,是在平面内的点与有序数对的对应关系基础上建立起来的,是函数与图象第一次完美结合,它的研究方法具有一般性和代表性,为学习其它函数图象奠定了基础,起着承上启下的重要作用。

2、教学重点:探索并掌握正比例函数图象的性质。

3、教学难点:发现与总结正比例函数图象的性质。

【设计意图】
只有让学生在动手操作观察思考中体会,学生才能真正理解它的本质,将所学知识内化为自己的东西。

二、教学目标
1、知识与技能
认识正比例函数图象是一条直线,学会画正比例函数图象,理解性质,培养学生观察、分析、归纳的逻辑思维能力。

2、过程与方法
让学生经历正比例函数图象的性质的过程,提高学生的探究、分析、归纳能力,领悟数形结合的思想。

3、情感态度与价值观
培养学生主动探究的良好学习习惯,发展学生的团结协作意识,体验数学知识来源于生活又服务于生活这一道理,从而提高学生的学习兴趣。

三、教法分析
采用“创设情境——探究归纳——知识应用”的方法及小组合作的方式,给学生提供充分探
究和交流的时间与空间,让学生经历操作、观察、思考、交流、猜想、验证过程获得知识,形成技能。

另外在教学中采用多媒体教学手段,增进教学的直观性,趣味性,提高教学效率。

1。

正比例函数图像和性质说课稿

正比例函数图像和性质说课稿

《正比例函数图像和性质》说课一教材分析1.地位与作用本节课是在学好了《正比例函数解析式》后,对函数内容的进一步研究,是在平面内的点与有序实数对的对应关系基础上建立起来的,是函数与图像第一次完美结合,它的研究方法具有一般性和代表性。

为学习其它函数图像奠定了基础,起着承上启下的重要作用。

2、教学重点在新课程背景下,我们在关注学生数学学习的结果的同时,更要关注学生数学学习的过程。

所以我认为本节课的教学重点是:探索并掌握正比例函数图象的性质设计意图:只有让学生在动手操作观察思考中体会,学生才能真正理解它的本质,将所学知识内化为自己的东西。

3 ,教学难点函数值的增减性设计意图:函数值的增减性非常的抽象,学生不意理解结合本节内容的地位和作用,我确定了如下的教学目标。

二.教学目标1知识与技能认识正比例函数图像是一条直线,学会画正比例函数图像. 理解性质,,培养学生的观察、分析、归纳的逻辑思维能力2,过程与方法让学生经历正比例函数图象性质的探索过程,提高学生的探究、分析、归纳能力和动手操作能力;领悟数形结合思想,3.情感态度与价值观培养学生主动探究的良好习惯;发展学生的团结协作意识;体验数学知识来源于生活又服务于生活这一道理,从而提高学生的学习兴趣。

俗话说:“教学有法,教无定法,贵在得法”。

行之有效的教法是取得良好教学效果的保障。

三、教法分析采用“创设情境——探索归纳——知识运用”的方法及小组合作的方式,给学生提供充分探索和交流的时间与空间。

让学生经历动手操作、观察,思考、交流、猜想、验证等过程获得知识,形成技能。

另外在教学中采用多媒体教学手段,增进教学的直观性、趣味性,提高教学效率四、学法指导埃德加·富尔在《学会生存》一书中曾精辟地指出:“未来的文盲不再是不识字的人,而是没有学会怎样学习的人。

”教会学生学习,已成为当今国际教育界的共识。

在学法指导上,充分发挥学生的主体地位,关注学生的动手实践的经历,关注学生的自主探究过程,关注学生的合作交流。

正比例函数图象与性质的说课稿

正比例函数图象与性质的说课稿

正比例函数图象与性质的说课稿正比例函数图象与性质教学设计一.教材分析1.教材的地位与作用《正比例函数》是九年制义务教育新课程标准八年级第一学期第十四章的内容。

从比例中的两个量的比值是一个定值,得出两个量成正比例的概念。

学生已经学习了比例的意义与性质,在这个基础上,学生能很容易接受正比例概念。

再从正比例关系到正比例函数,从互相联系的两个变量在变化过程中有互相依从,互相制约的关系,初步引出函数的概念。

因此,本节课具有承上启下的重要作用,函数思想是一种重要的数学思想,体现了数学的建模思想和数形结合思想,对于初次接触到函数的学生而言,理解函数的意义是个难点。

因此本节课在教学中力图向学生展示常见问题中的变量,和变量之间的关系,使学生对以后函数的定义有一定的了解。

2.教学目标知识与技能1.认识正比例函数的意义.2.掌握正比例函数解析式特点.3.理解正比例函数图象性质及特点.4.能利用所学知识解决相关实际问题.过程与方法:1、通过作出函数图象和从图象上获取信息,体会数形结合思想;2、通过解决问题时根据实际情境进行函数的三种表示法的相互转化,体会转化与化归在解决问题中的作用.3、让学生亲自经历“问题情境---函数解析式---函数图象---从图象中获取信息---解决问题”的过程,体验数学知识在实际生活中的广泛应用。

情感、态度与价值观:1.通过对实际问题的解决,使学生亲身感受数学来源于生活。

2.体会在学习中与同学合作和独立思考的重要性,并在教学学习活动中获得成功的体验,树立学生良好的自信心。

教学重点1.理解正比例函数意义及解析式特点.2.掌握正比例函数图象的性质特点.3.能根据要求完成转化,解决问题.教学难点:正比例函数图象性质特点的掌握.二、说教法:探究—交流,归纳—总结在前面的学段中,学生已学习了函数和函数的图像内容。

正比例函数的概念是从实际问题引出的反映了数学与实际的关系。

本节课的主要内容是理解正比例函数意义及解析式特点,掌握正比例函数图象的性质特点,能根据要求完成转化,解决问题.这将为一次函数的学习奠定了基础。

19.2.1正比例函数图象与性质教学设计

19.2.1正比例函数图象与性质教学设计

正比例函数的图像和性质一、教学目标(一)知识与能力1、进一步巩固正比例函数的概念,会画正比例函数的图象,进一步熟悉函数图象作图步骤。

2、能根据正比例函数图象观察、发现归纳出它的性质,并会简单运用。

(二)过程与方法1、通过实例函数图象画法的学习,发现并总结正比例函数图象的常用画法。

2、通过观察、探究、分析、引导学生发现正比例函数的性质。

3、培养学生善于观察问题发现结论,了解数形结合及由一般到特殊的数学思想。

(三)情感态度及价值观培养学生积极参与数学活动,勇于探究,发现数学的现象和规律,培养学生的数学交流能力和团队协作精神。

二、学情分析教材分析:正比例函数图象是在学习正比例函数解析式的后续内容,这一节内容是正比例函数与直角坐标系的完美结合。

学生在这节课中如果能内化和感悟数形结合的思想,将会为以后研究更为复杂的反比例函数及二次函数的图象打下坚实的基础。

学生分析:在这节课之前,该班学生已经较好的拥有了解决平面坐标系的一些基本问题的能力,理解了变量以及常量和代数式的内容,因此在学习新知识的时候也不存在多大的问题,形成了较理想的先决条件,但学生运用数学知识解决实际问题以及推理总结的能力有待进一步加强。

三、重点难点教学重点:正比例函数图象的画法及性质的探索。

教学难点:发现、归纳正比例函数的性质。

四、教学过程1、复习检查1、形如的函数,叫做正比例函数。

2、下列的哪个点是在函数y=3x的图象上?3、画函数的图象哪三步骤?2、合作探索1、在同一直角坐标系下画出下列正比例函数的图象(1)y=2x (2)y= -2x自学指导:1、作图的三步骤。

2、完成后同桌互相检查,如果检查出问题请进行记录。

1、 y=2x2、 y=-2x解:(1)列表得: 解:(1)列表得:(2)描点、连线:3、画一画4、探索发现5、归纳x …-2-1012…y=2x (x)…-2-1012…y=-2x ……(2)描点、连线6、脑力奔腾画下列正比例函数的图象时,怎样画最简单?y =-3x由于两点确定一条直线,画正比例函数图象时我们只需描点(0,0)和点 (1,k),连线即可.7、快速出击1、函数y=-7x的图象在第象限内,从左向右,y 随x的增大而 .函数y=7x的图象在第象限内,从左向右 ,y随x的增大而 .2、关于正比例函数y=2x,有下列结论①函数图象都经过点(2,1);②函数图像经过第二、四象限;③y随x的增大而增大;④不论x取何值,总有y﹥0.其中,错误的结论是 .8、例题讲解例1. 如果正比例函数y=(8-2a)x的图像经过二、四象限,求a的取值范围。

正比例函数的图象和性质教学设计

正比例函数的图象和性质教学设计

正比例函数的图象和性质一、教学目标:(一)知识与能力1、进一步巩固正比例函数的概念,会画正比例函数的图象,进一步熟悉函数图象作图步骤。

2、能根据正比例函数图象观察、发现归纳出它的性质,并会简单运用。

(二)过程与方法1、通过实例函数图象画法的学习,发现并总结正比例函数图象的画法2、通过观察、探究、分析、引导学生发现正比例函数的性质。

3、培养学生善于观察问题发现结论,了解数形结合及由一般到特殊的数学思想。

(三)情感态度及价值观1、培养学生积极参与数学活动,勇于探究,发现数学的现象和规律2、培养学生的数学交流能力和团队协作精神。

二、教学重、难点:正比例函数图象的画法及性质的探索;发现、归纳正比例函数的性质。

三、教法与学法教法:本节课选用引导学生观察,发现法和探索实践归纳法。

本节课的难点是发现正比例函数性质,因此我通过教师引导,启发调动学生的积极性,让学生在课堂上多活动(画、图、交流、展示)、多观察(图象),主动参与到整个教学活动中来,最后发现其性质。

学法指导:教师引导学生观察、发现、归纳的学习方法。

四、教学过程。

教学过程:(一)温故知新,引入课题1、函数的概念、函数的表示方法2、画函数图象的一般步骤(1)列表(2)描点(3)连线(二)探究正比例函数的图象和性质1、一次函数、正比例函数的概念2、正比例函数的图像及性质画出下列正比例函数的图象。

(1)y=2x (y=x y=½x)(2)y=-3x (y=-2x y=-x)提出问题师:1、观察上面的函数图象,它们的形状相同吗?是什么?图象的位置与k值有何联系? 2、正比例函数中y如何随x的变化而变化?通过研讨,观察、讨论、发现结论:k>0时,y=kx 图象经过一、三象限,图像从左到右是上升的趋势,y随x的增大而增大;k<0时,图象经过二、四象限,图像从左到右是下降的趋势,y随x的增大而减小。

K的绝对值越大直线就越陡峭(靠近y轴)(三)巩固练习1、正比例函数y=(m-1)x的图象经过第一、三象限,则m的取值范围是()A.m=1B.m>1C.m<1D.m≥12、若y=5x3m-2 是正比例函数,则m= __________ .3、.函数y=-7x的图象在第_________象限内,经过点_______与点____________ ,y随x的增大而__________.4、正比例函数y=(k+1)x的图象中y随x的增大而增大,则k的取值范围是____________.5.、已知某种小汽车的耗油量是每100km耗油15 L.所使用的汽油为5元/ L .(1)写出汽车行驶途中所耗油费y(元)与行程x(km)之间的函数关系式;(2)在平面直角坐标系内描出大致的函数图象;(3)计算该汽车行驶220 km所需油费是多少?(四)课堂小结:谈一谈,本节课你有什么收获?正比例函数的图象和性质:一般地,形如y=kx+b(k、b为常数,且k≠0)的函数叫做一次函数.形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.k叫做正比例系数.它是一次函数的特殊形式.图象:经过原点的直线.性质:当k>0时,y的值随着x值的增大而增大; 当k<0时,y的值随着x值的增大而减小. (五)布置作业:课本p36练习:1、2.。

正比例函数的图象与性质 教学设计

正比例函数的图象与性质 教学设计
(x,y)都在正比例函数y=-3x的图象上吗?
4.正比例函数y=kx的图象有何特点?
5.如何快速画出正比例函数的图象?
小结:(1)正比例函数的代数表达式与图象是;
(2)正比例函数y=kx的图象是_______________________;以后可称正比例函数y=kx为;
(3)因为“”,所以画正比例函数y=kx的图象时只需再确定一个点就可以了,通常过(0,0),(1,k)作直线.
着x值的增大而______。
3.函数的图象经过点(0,___)和点(3,__),图象经过第_____象限,y的值
随着x值的增大而______。
4.若函数y=kx的图象经过点(-1,3),则k=____;
若y=kx的图象经过第一、三象限,则k____0。
5.对于函数的两个确定的值来说,当时,对应的函数值的关系是( )
【学习目标】
1.经历正比例函数图象的画图过程,初步了解画函数图象的一般步骤;
2.经历正比例函数图象变化情况的探索过程,发展数形结合的意识和能力;
3.能熟练画出正比例函数的图象,掌握正比例函数及其图象的简单性质。
【教学过程】
设计
教师操作
(一)课前预习
1、什么叫函数的图比例函数y=2x的图象。
探究活动二:
用两点法在同一坐标系内画出下列正比例函数的图象。
y=x,y=3x, ,y= -4x
1试着将图像分组,请说明你的理由
2、观察y=x,y=3x的图像
x值的增大时,y值分别是如何变化的?说明理由
3、正比例函数y=x,y=3x中,随着x值的增大,y的值都增加了,其中哪个增加得更快?(请根据自己的理解说明)
小结:在正比例函数y=kx中,当k>0时,图象经过第_______象限,y的值随着x值的增大而______。k越大,直线越____,y随x上升或下降得越_____。

正比例函数的图象与性质说课稿

正比例函数的图象与性质说课稿

14.2 .1 正比例函数的图象与性质(2) 说课一、教材分析1、地位与作用本节课是在学好了正比例函数解析式后,对函数内容的进一步研究,是在平面内的点与有序数对的对应关系基础上建立起来的,是函数与图象第一次完美结合,它的研究方法具有一般性和代表性,为学习其它函数图象奠定了基础,起着承上启下的重要作用。

2、教学重点:探索并掌握正比例函数图象的性质。

3、教学难点:发现与总结正比例函数图象的性质。

【设计意图】只有让学生在动手操作观察思考中体会,学生才能真正理解它的本质,将所学知识内化为自己的东西。

二、教学目标1、知识与技能认识正比例函数图象是一条直线,学会画正比例函数图象,理解性质,培养学生观察、分析、归纳的逻辑思维能力。

2、过程与方法让学生经历正比例函数图象的性质的过程,提高学生的探究、分析、归纳能力,领悟数形结合的思想。

3、情感态度与价值观培养学生主动探究的良好学习习惯,发展学生的团结协作意识,体验数学知识来源于生活又服务于生活这一道理,从而提高学生的学习兴趣。

三、教法分析采用“创设情境——探究归纳——知识应用”的方法及小组合作的方式,给学生提供充分探究和交流的时间与空间,让学生经历操作、观察、思考、交流、猜想、验证过程获得知识,形成技能。

另外在教学中采用多媒体教学手段,增进教学的直观性,趣味性,提高教学效率。

四、学法指导充分发挥学生的主体地位,关注学生的动手实践的经历,关注学生的自主探究过程,关注学生的合作交流,使学生不断积累活动经验,在活动中获得数学的“思想、方法和能力”,增强学生学习数学的兴趣和自信心。

五、教学过程设计(一)创设情境导入新课当今网络已经越来越普及,可以用电脑上网,手机上网,MP3上网等等。

我们年级有位同学经常上网,他的打字速度非常快,达到每分钟可以输入两百个汉字,真是高手!如果他输入的汉字个数用y(单位:百个)来表示,那么y与输入时间x(单位:分钟)的函数关系式是什么?设计意图:以学生身边感兴趣的问题导入新课,能更好的激发学生学习的积极性。

《正比例函数的图象和性质》教案

《正比例函数的图象和性质》教案

《正比例函数的图象和性质》教案第一章:正比例函数的定义与表达式1.1 引入正比例函数的概念通过实际例子,让学生理解正比例函数的定义,即两个变量之间的比例保持不变。

解释正比例函数的表达式为y = kx (k 为常数)。

1.2 学习正比例函数的参数k解释参数k 的含义,即比例常数。

引导学生理解k 的正负对函数图象的影响。

第二章:正比例函数的图象特点2.1 绘制正比例函数的图象利用数轴和坐标系,引导学生绘制正比例函数的图象。

强调图象是一条通过原点的直线,且斜率为k。

2.2 分析正比例函数图象的性质解释正比例函数图象的斜率表示y 随x 变化的速率。

引导学生观察图象的截距为0,即函数在y 轴上的截距为0。

第三章:正比例函数的性质3.1 单调性解释正比例函数的单调性,即函数图象是一条单调增加或单调减少的直线。

引导学生通过观察图象和分析表达式来判断函数的单调性。

3.2 过原点强调正比例函数图象一定经过原点(0,0)。

引导学生通过实际例子来验证这一性质。

第四章:正比例函数的图象与坐标轴的交点4.1 横轴交点解释正比例函数与x 轴的交点为(0,0)。

引导学生通过表达式和图象来确定横轴交点。

4.2 纵轴交点解释正比例函数与y 轴的交点为(0,k)。

引导学生通过表达式和图象来确定纵轴交点。

第五章:正比例函数的应用5.1 实际问题引入通过实际问题引入正比例函数的应用,例如速度与时间的关系。

引导学生理解速度随时间的变化是成正比例的。

5.2 解题方法解释如何利用正比例函数解决实际问题。

引导学生通过建立方程和绘制图象来解决实际问题。

第六章:正比例函数的图象变换6.1 横向变换讲解正比例函数图象在x 轴方向上的变换,如平移、翻折等。

引导学生通过图象来理解和掌握变换规律。

6.2 纵向变换讲解正比例函数图象在y 轴方向上的变换,如平移、翻折等。

引导学生通过图象来理解和掌握变换规律。

第七章:正比例函数与坐标系的交点7.1 函数图象与坐标系的交点讲解正比例函数图象与坐标系的交点,包括原点、横轴交点和纵轴交点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正比例函数的图象和性质(说课稿)
徐大贵
我说课的题目是《正比例函数图象和性质》,下面我将从教材分析、学生情况、教材教法、教材处理、学法指导及教学过程等六个方面进行阐述。

一、教材分析
(一)教材的地位和作用
《正比例函数的图象和性质》是九年义务教育人教版八年级(下)第
十九章的内容。

之前,学生已经有了平面坐标系的基本知识、常量与变量以
及正比例函数的概念等知识,正比例函数是初中学生第一次接触的函数,描
点、画图,得到其图象的方法为后面学习一次函数,以及学习反比例函数的
图象和二次函数打下良好基础,并且通过观察图象的变化得到其性质也是学
习函数性质的通用方法。

因此,本节课具有承上启下的重要作用。

函数有着非常广泛的实际应
用;函数还是培养学生数学能力的良好题材。

所以,函数在初中数学中占着
举足轻重的作用。

函数的思想是一种重要的数学思想,它体现了运动变化和
对立统一的观点,体现了数形结合等数学思想方法,不仅是知识性方
面,更重要的学习方法方面,作为一名数学老师 ,要传授给学生数学知识 , 更重
要的是传授给学生数学思想和数学方法,因此本节课在教学中力图向
学生展示函数图象的运动变化,通过观察、归纳体会数形结合的数学思想
方法。

(二)教学目标
根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,我制定如下教学目标:
1.知识及能力:
(1)会画正比例函数图象,能结合图象说出正比例函数性质。

(2)根据正比例函数的图象特点,会用两点作图法快速作图。

2.过程与方法:
(1)能够在画图过程中观察并发现函数的性质,学会简单描述及应用。

相关文档
最新文档