空间向量的正交分解及其坐标表示及坐标运算
向量的正交分解和坐标表示向量的坐标运算
向量减法
若向量a=(x1,y1),b=(x2,y2), 则向量a减去向量b的结果为
(x1-x2,y1-y2)。
向量的模长与夹角
向量的模长
向量a的模长记作|a|,定义为√(x^2+y^2)。
向量的夹角
若向量a=(x1,y1),b=(x2,y2),则向量a和b之间的夹角θ满足cosθ=a·b/|a||b|,其中"·"表示向量的点乘运 算。
向量在几何中的应用
描述点与点之间的位置关系
通过向量表示,可以清晰地描述点与点之间的 位置关系,如距离、角度等。
描述运动和变化
向量可以表示物体的运动和变化,如速度、加 速度等。
描述力
向量可以表示力的大小和方向,用于分析力的合成与分解。
向量在物理中的应用
描述速度和加速度
向量可以表示物体在直线运动中的速度和加速度。
2023
向量的正交分解和坐 标表示向量的坐标运 算
https://
REPORTING
2023
目录
• 向量的正交分解 • 向量的坐标表示 • 坐标表示向量的运算 • 向量的正交分解与坐标表示的应用
2023
PART 01
向量的正交分解
REPORTING
正交分解的定义
01
正交基底
在二维平面中,选取两个不共线的非零向量e1和e2作为基底,任何向量a都可以 表示为e1和e2的线性组合,即a=xe1+ye2。
向量的坐标运算
向量加法
若向量a=(x1,y1),b=(x2,y2), 则向量a和b的加法运算结果
为(x1+x2,y1+y2)。
向量数乘
实数k与向量a的数乘运算结果 为(kx,ky)。
空间向量的正交分解及其坐标表示和运算的坐标表示
思考:当
0
cos
r a
,
r b
1及1
cos
r a
,
r b
0
时,
的夹角在什么范围内?
练习:已知
a
(2,3,5),
b
(3,1,4),
求 a b, a b,8a, a b
rr
解: a b (2, 3,5) (3,1, 4) (1, 2,1)
rr
a b (2, 3,5) (3,1, 4) (5, 4,9)
r
r8ar 8(2, 3,5) (16, 24, 40)
a b (2, 3,5) (3,1, 4) 29
练习:
1.求下列两点间的距离:
(1) A(1,1, 0) , B(1,1,1) ; (2) C(3 ,1, 5) , D(0 , 2 , 3) .
2.求下列两个向量的夹角的余弦:
(1) ar (2 , 3 ,
y
r r ur
以 i, j, k 为单位正交基底
z
z
建立空间直角坐标系O—xyz
upr P(x, y, z)
r r ur
i, j, k 为基底 ur r r ur
(x, y, z)
ur
urp xi y j zk
k
r O r
xi
j
y 记 upuur ( x, y, z)
y OP ( x, y, z)
r 每两个坐标轴的平面叫做坐标平面. 对空间任一向量 a ,由空间
z
r a
向量基本定理,存在唯一的有序实
数组
(a1
,
a2
,
a3
),使
r a
r a1 i
空间向量的正交分解与坐标表示
、 、
【解】
(1)设正三棱柱的侧棱长为a,则 ,0,a),B( ,0,0),C1(0,1,a),
A(0,-1,0),B1(
∴
=( ,1,a),
=(- ,1,a).┄┄┄┄(2分)
,
∵AB1⊥BC1,∴ ∴ 即正三棱柱侧棱长为
=0,即-3+1+a2=0,∴a= . .┄┄┄┄┄┄┄┄┄┄┄(5分)
(3)由条件知,〈
对空间任一点O,有
或 (x+y+z=1)即可,以上结论是判
定空间四点共面的一个充要条件,共面向量定理实际上 也是三个非零向量所在直线共面的必要条件.
设A、B、C及A1、B1、C1分别是异面直线l1,l2上的 三点,而M、N、P、Q分别是线段AA1、BA1、BB1、CC1的 中点.
求证:M、N、P、Q四点共面.
5.如图,AB=AC=BD=1,AB⊂平面α, AC⊥平面α,BD⊥AB,BD与平面α成 30°角,则C、D间的距离为 .
解析:∵AC⊥α,∴AC⊥AB,
∴
=0,
过D作DD′⊥α于点D′,则DD′∥CA, ∴〈 ∴ ∴| 〉=120°, =- |2=( ,又 ,∴ =0, )=2,
)2=1+1+1+2×(-
=(-2,-1,3), =(-1,3,-2), ,| |= , · =-7.
∴cosθ = 答案:120°
=-
,∴θ =120°.
用已知向量表示未知向量,一定要结合图形,以图 形为指导是解题的关键. 1.把要表示的向量标在封闭图形中,表示为其他向量的和
差的形式,进而寻找这些向量与基向量的关系.
2.用基向量表示一个向量时,如果此向量的起点是从基底 的公共点出发的,一般考虑用加法,否则考虑用减法, 如果此向量与一个易求的向量共线,可用数乘.
空间向量的正交分解及其坐标表示、运算 人教课标版精品课件
(3)当cos a , b 0 时,a b 。
思考:当 0 cos a , b 1及 1 cos a , b 0时,
的夹角在什么范围内?
六、应用举例
例1 已知 A(3 , 3 ,1)、B(1, 0 , 5) ,求:A (1)线段 AB 的中点坐标和长度;
(2)空间两点间的距离公式
在空间直角坐标系中,已知 A(x1 , y1 , z1)、
B(x2 , y2 , z2 ) ,则 AB ( x2 x1 , y2 y1 , z2 z1)
| AB | AB AB (x2 x1)2 ( y2 y1)2 (z2 z1)2
是的,折枝的命运阻挡不了。人世一生,不堪论,年华将晚易失去,听几首歌,描几次眉,便老去。无论天空怎样阴霾,总会有几缕阳光,总会有几丝暗香,温暖着身心,滋养着心灵。就让旧年花落深掩岁月,把心事写就在素笺,红尘一梦云烟过,把眉间清愁交付给流年散去的烟山寒色,当冰雪消融,自然春暖花开,拈一朵花浅笑嫣然。
听这位老友,絮絮叨叨地讲述老旧的故事,试图找回曾经的踪迹,却渐渐明白了流年,懂得了时光。过去的沟沟坎坎,风风雨雨,也装饰了我的梦,也算是一段好词,一幅美卷,我愿意去追忆一些旧的时光,有清风,有流云,有朝露晚霞,我确定明亮的东西始终在。静静感念,不着一言,百转千回后心灵又被唤醒,于一寸笑意中悄然绽放。
回忆的老墙,偶尔依靠,黄花总开不败,所有囤积下来的风声雨声,天晴天阴,都是慈悲。时光不管走多远,不管有多老旧,含着眼泪,伴着迷茫,读了一页又一页,一直都在,轻轻一碰,就让内心温软。旧的时光被揉进了岁月的折皱里,藏在心灵的沟壑,直至韶华已远,才知道走过的路不能回头,错过的已不可挽留,与岁月反复交手,沧桑中变得更加坚强。
空间向量的正交分解及其坐标表示和坐标运算
例1.若{a,b,c}是空间的一个基底.试判断{a+b,b+c, c+a}能否作为该空间的一个基底. 解析:假设a+b,b+c,c+a共面,则存在实数λ、μ使 得a+b=λ(b+c)+μ(c+a),∴a+b=λb+μa+(λ+μ)c. ∵{a,b,c}为基底. ∴a,b,c不共面. ∴a+b,b+c,c+a不共面. ∴{a+b,b+c,c+a}可以作为空间的一个基底.
归纳延伸
作业:P98 5,8,9,11 P99 2
1.空间任意三个不共面的向量都可以作为空间向量的一个 基底;基底选定后,任一向量可由基底唯一表示.
2.向量的坐标是在单位正交基底下向量的表示.在表示向 量时,要结合图形的几何性质,充分利用向量的线性运算. 3.利用空间向量的坐标运算可以判断两个向量的平行、 垂直;可以求向量的模以及两个向量的夹角. 4.几何中的平行和垂直可以利用向量进行判断,利用直线
解
→ =1(b+c)-1(a+b+c)=-1a. ∴GH 3 3 3
例3.设向量a=(3,5,-4),b=(2,1,8),计算确定λ,μ的关 系,使a+μb与z轴垂直. λ=2μ
例4.在棱长为1的正方体ABCD-A1B1C1D1中,E、F分别 是D1D、BD的中点,G在棱CD上,且CG= CD,H 为C1G的中点,应用空间向量方法求解下列问题. (1)求证:EF⊥B1C; 51 (2)求EF与C1G所成的角的余弦值. 17
4.空间向量数量积的坐标表示及夹角公式设a=(a1,a2, a3),b=(b1,b2,b3),则 (1)a·b= a1b1+a2b2+a3b3 ; (2)∣a∣=__________________ a b a b a b 1 1 2 2 3 3
(3) cos a, b
3.1.4-3.1.5空间向量的正交分解及其坐标表示
(2)由于可视 0 为与任意一个非零向量共线,与任 隐含着它们都不是 0 。
意两个非零向量共面,所以三个向量不共面,就
(3)一个基底是指一个向量组, 一个基向量是指基底中的某一个向量,
二者是相关连的不同概念。
新知探究:空间向量的正交分解
二、空间向量的正交分解 特殊的: i, j, k两两垂直时 OP OQ zk. OQ xi y j.
定理,存在唯一的有序实数组(x,y, z)使
给定一个空间坐标系和向量
p ,且设
A(x,y,z) e3 e1 O e2 y
有序数组( x, y, z)叫做 p 在空间直角坐标
系O-xyz中的坐标,记作.P=(x,y,z)
p xe1 ye2 ze3
x 其中x叫做点A的横坐标,y叫做点A的纵坐标,z叫做点A的竖坐标.
| AB | ( x2 x1 ) ( y2 y1 ) ( z2 z1 )
2 2
2
新探究:空间向量运算的坐标表示
三、向量的夹角的坐标表示
已知 a ( x1 , y1 , z1 ) , b ( x2 , y2 , z2 ) x1 x2 y1 y2 z1 z2 ab 则 cos a , b ab x12 y12 z12 x2 2 y2 2 z2 2
F1 E1 B1
C1
立空间直角坐标系 O xyz ,则
1 D(0 , 0 , 0) , F1 0 , ,1 . 4 D y 3 C O 1 BE1 1 , , 1 (1 , 1 , 0) 0 , , 1 , 4 4 A B 15 x 1 1 1 1 DF1 0 , ,1 (0 , 0 , 0) 0 , ,1 . BE1 DF1 0 0 1 1 , 16 4 4 4 4 15 17 17 BE DF1 15 16 1 . | BE1 | , | DF1 | . cos BE1 , DF1 | BE1 | | DF1 | 17 17 17 4 4 4 4
学案10:3.1.4 空间向量的正交分解及其坐标表示
3.1.4 空间向量的正交分解及其坐标表示学习目标1.了解空间向量的正交分解的含义.2.掌握空间向量的基本定理,并能用空间向量基本定理解决一些简单问题.3.掌握空间向量的坐标表示,能在适当的坐标系中写出向量的坐标.学习重点:空间向量基本定理的应用.学习难点:应用空间向量基本定理解决问题.要点整合细读课本知识点一空间向量基本定理[填一填]1.定理:条件:三个向量a,b,c.结论:对空间任一向量p,存在有序实数组,使得p=x a+y b+z c.2.基底:空间中任何的三个向量a,b,c都可以构成空间的一个基底,即{a,b,c}.3.基向量:空间的一个基底{a,b,c}中的向量a,b,c都叫做基向量.[答一答]1.(1)空间中怎样的向量能构成基底?(2)基底与基向量的概念有什么不同?2.空间的基底唯一吗?3.为什么空间向量基本定理中x,y,z是唯一的?知识点二空间向量的正交分解及其坐标表示[填一填]1.单位正交基底:有公共起点O的三个的单位向量e1,e2,e3称为.2.空间直角坐标系:以e1,e2,e3的公共起点O为原点,分别以e1,e2,e3的方向为x轴、y轴、z轴的正方向建立空间直角坐标系Oxyz.3.空间向量的坐标表示:对于空间任意一个向量p ,一定可以把它 ,使它的起点与原点O 重合,得到向量OP →=p ,由空间向量基本定理可知,存在有序实数组{x ,y ,z },使得p =x e 1+y e 2+z e 3.把 称作向量p 在单位正交基底e 1,e 2,e 3下的坐标,记作p =(x ,y ,z ),即点P 的坐标为 .[答一答]4.与坐标轴或坐标平面垂直的向量坐标有何特点?5.向量可以平移,向量p 在坐标系中的坐标唯一吗?特别关注1.空间向量基本定理注意点空间向量基本定理表明,用空间三个不共面的已知向量组{a ,b ,c }可以线性表示出空间任意一个向量,而且表示的结果是唯一的.我们在用选定的基向量表示指定的向量时.要结合已知和所求,观察图形,联想相关的运算法则和公式等,就近表示所需向量,再对照目标,将不符合目标要求的向量当作新的所需向量,如此继续下去,直到所有向量都符合目标要求为止.2.空间向量与平面向量的坐标运算的联系类比平面向量的坐标运算,空间向量的坐标运算是平面向量坐标运算的推广,两者实质是一样的,只是表达形式不同而已,空间向量多了个竖坐标.典例讲破类型一 空间向量基本定理的理解例1 已知{e 1,e 2,e 3}是空间的一个基底,且OA →=e 1+2e 2-e 3,OB →=-3e 1+e 2+2e 3,OC →=e 1+e 2-e 3,试判断{OA →,OB →,OC →}能否作为空间的一个基底?通法提炼判断给出的某一向量组能否作为基底,关键是要判断它们是否共面.如果从正面难以入手,可用反证法或利用一些常见的几何图形进行判断. 针对训练1已知a 、b 、c 是不共面的三个向量,则下列选项中能构成一组基底的一组向量是( ) A .2a ,a -b ,a +2b B .2b ,b -a ,b +2a C .a,2b ,b -cD .c ,a +c ,a -c类型二 用基底表示向量例2 如图所示,平行六面体ABCD A 1B 1C 1D 1中,E ,F 分别在B 1B 和D 1D 上,且BE =13BB 1,DF =23DD 1.(1)证明A ,E ,C 1,F 四点共面;(2)若EF →=xAB →+yAD →+zAA 1→,求x +y +z .通法提炼在几何体中,根据图形的特点,选择公共起点最集中的向量中的三个不共面的向量作为基底,或选择有公共起点且关系最明确如夹角或线段长度的三个不共面的向量作为基底,这样更利于解题. 针对训练2已知平行六面体OABC O ′A ′B ′C ′,OA →=a ,OC →=c ,OO ′→=b ,D 是四边形OABC 的对角线交点,则( ) A.O ′D →=-a +b +c B.O ′D →=-b -12a -12cC.O ′D →=12a -b -12cD.O ′D →=12a -b +12c类型三 求向量的坐标例3 如图所示,已知点P 为正方形ABCD 所在平面外一点,且P A ⊥平面ABCD ,M 、N 分别是AB 、PC 的中点,且P A =AD ,求向量MN →的坐标.通法提炼用坐标进行向量的运算,关键之一是把相关的向量以坐标形式表示出来.这里有两个方面的问题:一是如何恰当地建系,一定要分析空间几何体的构造特征,选合适的点作原点、合适的直线和方向作坐标轴,一般来说,有共同的原点,且两两垂直的三条数轴,只要符合右手系的规定,就可以作为空间直角坐标系.二是在给定的空间直角坐标系中如何表示向量的坐标,这里又有两种方法,其一是运用基底法,把空间向量进行正交分解;其二是运用投影法,求出起点和终点的坐标. 针对训练3在直三棱柱ABC A 1B 1C 1中,∠ACB =90°,CA =CB =1,CC 1=2,M 为A 1B 1的中点.以C 为坐标原点,分别以CA ,CB ,CC 1所在的直线为x 轴,y 轴,z 轴,建立空间直角坐标系(如图所示),则AB 1→的坐标为 ,MB →的坐标为(-12,12,-2).课堂达标1.设命题p :a ,b ,c 是三个非零向量;命题q :{a ,b ,c }为空间的一个基底,则命题p 是命题q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.已知{a ,b ,c }是空间的一个基底,则可以和向量p =a +b ,q =a -b 构成基底的向量是( ) A .a B .b C .a +2bD .a +2c3.设{i ,j ,k }是空间向量的一个单位正交基底,则向量a =3i +2j -k ,b =-2i +4j +2k 的坐标分别是 . 【答案】(3,2,-1),(-2,4,2)【解析】∵i ,j ,k 是单位正交基底,故根据空间向量坐标的概念知a =(3,2,-1), b =(-2,4,2).4.已知点G 是△ABC 的重心,O 是空间任一点,若OA →+OB →+OC →=λOG →,则λ的值是 . 5.如图,四棱锥P OABC 的底面为一矩形,设OA →=a ,OC →=b ,OP →=c ,E 、F 分别是PC 和PB 的中点,用a ,b ,c 表示BF →、BE →、AE →、EF →.参考答案要点整合 细读课本知识点一 空间向量基本定理[填一填]1.不共面 {x ,y ,z }2.不共面[答一答]1.提示:(1)空间任意三个“不共面”的向量都可以作为空间向量的一个基底.(2)一个基底是指一个向量组,一个基向量是指基底中的某一个向量,二者是相关联的不同概念.2.提示:不唯一,只要是三个向量不共面,这三个向量就可以组成空间的一个基底. 3.提示:平移向量a ,b ,c ,p 使它们共起点,如图所示,以p 为体对角线,在a ,b ,c 方向上作平行六面体,易知这个平行六面体是唯一的,因此p 在a ,b ,c 方向上的分解是唯一的,即x ,y ,z 是唯一的.知识点二 空间向量的正交分解及其坐标表示[填一填]1.两两垂直 单位正交基底 3.平移 x ,y ,z (x ,y ,z )[答一答]4.提示:xOy 平面上的点的坐标为(x ,y,0),xOz 平面上的点的坐标为(x,0,z ),yOz 平面上的点的坐标为(0,y ,z ),x 轴上的点的坐标为(x,0,0),y 轴上的点的坐标为(0,y,0),z 轴上的点的坐标为(0,0,z ).另外还要注意向量OP →的坐标与点P 的坐标相同.5.提示:唯一.在空间直角坐标系中,向量平移后,其正交分解不变,故其坐标也不变.典例讲破类型一 空间向量基本定理的理解例1 解:假设OA →,OB →,OC →共面,由向量共面的充要条件知存在实数x ,y ,使OA →=xOB →+yOC →成立.∴e 1+2e 2-e 3=x (-3e 1+e 2+2e 3)+y (e 1+e 2-e 3)=(-3x +y )e 1+(x +y )e 2+(2x -y )e 3.∵{e 1,e 2,e 3}是空间的一个基底, ∴e 1,e 2,e 3不共面,∴⎩⎪⎨⎪⎧-3x +y =1,x +y =2,2x -y =-1,此方程组无解,即不存在实数x ,y ,使OA →=xOB →+yOC →成立.∴OA →,OB →,OC →不共面.故{OA →,OB →,OC →}能作为空间的一个基底. 针对训练1 【答案】C【解析】因为a ,b ,c 不共面,易知a,2b ,b -c 不共面.故应选C. 类型二 用基底表示向量例2 (1)证明:∵AC 1→=AE →+EC 1→,又EC 1→=EB 1→+B 1C 1→=23BB 1→+B 1C 1→=23AA 1→+AD →,AF →=AD →+DF →=AD →+23DD 1→=AD →+23AA 1→,∴EC 1→=AF →,∴AC 1→=AE →+AF →,∴A ,E ,C 1,F 四点共面. (2)解:∵EF →=AF →-AE →=AD →+DF →-(AB →+BE →) =AD →+23DD 1→-AB →-13BB 1→=-AB →+AD →+13AA 1→,∴x =-1,y =1,z =13.∴x +y +z =13.针对训练2 【答案】D【解析】O ′D →=O ′O →+OD →=O ′O →+12OA →+12OC →=-b +12a +12c .类型三 求向量的坐标例3 解:设正方形的边长为a ,∵P A =AD =AB , 且P A ,AD ,AB 两两互相垂直,故可设DA →=a i ,AB →=a j ,AP →=a k .以i ,j ,k 为坐标向量建立如图所示的空间直角坐标系.方法一:∵MN →=MA →+AP →+PN →=-12AB →+AP →+12PC →=-12AB →+AP →+12(AD →+AB →-AP →)=-12a j +a k +12(-a i +a j -a k )=-12a i +12a k ,∴MN →=(-12a,0,12a ).方法二:∵P (0,0,a ),C (-a ,a,0), ∴N 点的坐标为(-12a ,12a ,12a ).∵M 点的坐标为(0,12a,0),∴MN →=(-12a,0,12a ).针对训练3 【答案】(-1,1,2)【解析】A (1,0,0),B (0,1,0),B 1(0,1,2),M (12,12,2),AB 1→=CB 1→-CA →=(-1,1,2),MB →=(-12,12,-2). 课堂达标1.【答案】B【解析】当非零向量a ,b ,c 不共面时,{a ,b ,c }可以当基底,否则不能当基底,当{a ,b ,c }为基底时,一定有a ,b ,c 为非零向量. 2.【答案】D【解析】能与p ,q 构成基底,则与p ,q 不共面.∵a =p +q 2,b =p -q 2,a +2b =3p -q 2,∴A 、B 、C 都不合题意,由于{a ,b ,c }构成基底,∴a +2c 与p ,q 不共面,可构成基底. 3.【答案】(3,2,-1),(-2,4,2)【解析】∵i ,j ,k 是单位正交基底,故根据空间向量坐标的概念知a =(3,2,-1), b =(-2,4,2). 4.【答案】3【解析】如图,G 为△ABC 重心,E 为AB 中点,∴OE →=12(OA →+OB →),CG →=23CE →=23(OE →-OC →),∴OG →=OC →+CG →=OC →+23(OE →-OC →)=13(OA →+OB →+OC →),∴λ=3.5.解:BF →=12BP →=12(BO →+OP →)=12(c -b -a )=-12a -12b +12c . BE →=BC →+CE →=-a +12CP →=-a +12(CO →+OP →)=-a -12b +12c .AE →=AP →+PE →=AO →+OP →+12(PO →+OC →)=-a +c +12(-c +b )=-a +12b +12c .EF →=12CB →=12OA →=12a .。
空间向量的正交分解及其坐标表示
2 2 2
新课讲授
5. 向量的直角坐标运算 设a (a1,a 2,a 3 ),b (b1,b2,b3 ),则
(1) b (a1 b1,a 2 b2,a 3 b3 ) a (2) b (a1 b1,a 2 b2,a 3 b3 ) a (3) a (a1,a 2,a 3 )( R ) (4) b a1b1 a 2 b2 a 3 b3 a
x e3 e1 O e2 y
z
p
新课讲授
问题4:向量坐标与点的坐标有何关系?
向量在空间直角坐标系 的求法: 设A( x1,y1,z1 ),B( x 2,y2,z 2 ),则 AB OB OA ( x1,y1,z1 ) ( x 2,y2,z 2 ) ( x2 x1,y2 y1,z2 z1 )
C
D
O
B
y
1 D(0 , 0 , 0) , F1 0 , ,1 . 4
A
x
3 1 BE1 1, ,1 (1,1, 0) 0 , ,1 , 4 4
例2
B 如图,在正方体 ABCD A1B1C1 D1 中, 1 E1
二、空间直角坐标系 单位正交基底:如果空间的一个基底的 三个基向量互相垂直,且长都为1,则这个 基底叫做单位正交基底,常用e1 , e2 , e3 表示 空间直角坐标系:在空间选定一点O和一 个单位正交基底 e1,e2,e3 ,以点O为原点,分别 以e1,e2,e3的正方向建立三条数轴:x轴、y轴、 z轴,它们都叫做坐标轴.这样就建立了一个 z 空间直角坐标系O--xyz
空间向量的正交分解
a b (a 1 b1 , a2 b2 , a3 b3 ) ;
a
(a1 , a2 , a3 ),( R) ;
a b a1b1 a2b2 a3b3
;
a // b a1 b1 , a2 b2 , a3 b3 ( R) ; a1 / b1 a2 / b2 a2 / b2 .
C
z
D1 A1 F1 E1 B1 C1
D
O
A
x
17 17 | BE1 | , | DF1 | . 4 4 15 B BE1 DF1 15 16 cos BE1 , DF1 . | BE1 | | DF1 | 17 17 17 4 4
y
练习一:
1.求下列两个向量的夹角的余弦:
注意:
(1)当 cos a , b 1 时, a 与 b 同向;
a 与 b 反向; (2)当 cos a , b 1 时,
(3)当cos a , b 0 时,a b 。 思考:当 0 cos a , b 1 及 1 cos a , b 0 时, 的夹角在什么范围内?
化简整理,得 4 x 6 y 8z 7 0
即到 A 、B 两点距离相等的点的坐标 ( x , y , z ) 满
足的条件是 4 x 6 y 8z 7 0
例2
B1 E1 如图,在正方体 ABCD A1B1C1 D1 中,
A1B1 D1F1 4
,求 BE1 与 DF1 所成的角的余弦值。
z
a
A(x,y,z) O j y
k i x
三、空间向量基本定理
前面我们定义了空间向量的加、减 、数乘、数量积四 种运算,从而空间的有关问题可以转化为空间向量的这四 种运算来处理. 另外,我们还发现类似平面向量基本定理,空间也有 空间向 量基本定理,也就 是说: 已知三个不共面 向量 a 、 b、 c ,那么对于空间任一向量 p ,都存在有序实数组
高考数学知识点之空间向量的正交分解及坐标
高考数学知识点之空间向量的正交分解及坐标高考数学知识点之空间向量的正交分解及坐标空间中具有大小和方向的量叫做空间向量。
向量的大小叫做向量的长度或模。
下面小编给大家介绍空间向量的正交分解及坐标,赶紧来看看吧!高考数学知识点之空间向量的.正交分解及坐标空间向量的正交分解的定义:对空间的任意向量,均可分解为不共面的三个向量,使,如果两两垂直,这种分解就是空间向量的正交分解。
空间向量的坐标表示:在空间直角坐标系O—xyz中,对空间任一点A,存在唯一的有序实数组(x,y,z),使,初中学习方法,有序实数组(x,y,z)叫作向量A 在空间直角坐标系O—xyz中的坐标,记作A(x,y,z),x叫横坐标,y叫纵坐标,z叫竖坐标。
空间向量基本定理:如果三个向量不共面,那么对空间任一向量,存在一个唯一的有序实数组x,y,z,使。
若三向量不共面,我们把叫做空间的一个基底,叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
推论:设O,A,B,C是不共面的四点,则对空间任一点P,都存在唯一的三个有序实数x,y,z,使。
基底在向量中的应用:(l)用基底表示出相关向量来解决向量问题是常用的方法之一.(2)在空间中选择基底主要有以下几个特点:①不共面;②有公共起点;③其长度及两两夹角已知.(3)用基底表示向量,就是利用向量的加法和减法对有关向量进行分解。
用已知向量表示未知向量:用已知向量表示未知向量,一定要结合图像,可从以下角度如手:(1)要用基向量意识,把有关向量尽量统一到基向量上来;(2)把要表示的向量标在封闭的图形中,表示为其它向量的和或差的形式,进而寻找这些向量与基向量的关系;(3)用基向量表示一个向量时,如果此向量的起点是从基底的公共点出发的,一般考虑用加法,否则用减法,如果此向量与一个易求向量共线,可用数乘。
空间向量的正交分解及坐标运算
如果空间的一个基 三底 个的 基向量互相,垂
且长都为1, 则这个基底
z
e3
叫做单位正交基底 ,
常e 用 1,e 2,e 3
来表 。 示 e1
O
e2
y
x
以O 点 为原 ,分 点别 e1、 以 e2、e3 的方x向 轴 、
y轴 、轴 z 的正方向角 建坐 立 O 标 空 x.系 y间 z
ab(a 1 b 1,a 2 b 2,a 3b 3)
a(a 1,a2,a3)( R )
aa//bb a a1 1b 1 b 1 a ,a 22 b2 b a 2 3 ,a b3 3 b 3 ( R )
aba 1b 1a2b2a3b30.
8 a 8 ( 2 , 3 ,5 ) ( 1 6 , 2 4 ,4 0 ) a b ( 2 , 3 ,5 ) ( 3 ,1 , 4 ) 2 9
1.已 知 a ,b 满 向 2a 足 量 b ( 1, 4,3), a 2b (2,4,5)求 ,a ,b .
对应练习:《金榜》 P74-75 例1-2-3及变式训练 P76 基础4、5、7 综合2、3、4
复习:平面向量的坐标运算
设 a= (a1, a2),b= (b1,bห้องสมุดไป่ตู้) 则 ab(a1b 1,a2b2)
aab( ( a1 a 1 , b a 1,2a )2 ( b R 2))
那么, 对于空间任意一个向 p,量一定
可以把它平,移使它的起点与原O点 重合, 得到向量OP p.由空间向量基本定理 知,可
存在有序实数{组 x, y, z},使得
有p序 x x,ey 1,z数 叫 ye2 p z在 e组 做 3
空间向量的正交分解及其坐标表示坐标运算
量OA,OB,OC 表示OP和OQ.
解:OQ OM MQ 1 OA 1 MN 1 OA 1 (ON OM)
23
2 3O
1 OA 1 (ON 1 OA)
23 2 1 OA 1 1 (OB OC)
M
3 32
Q
1 OA 1 OB 1 OC 36 6
A
P
C
B
N
练习 2.已知空间四边形 OABC 的四条边及 AC 、BD 的长都等于 1 ,点 M 、N 、P 分别是 OA、BC 、OC 的 中点,且 OA a , OB b , OC c , ⑴用 a 、b 、c 表示 MN , MP ; ⑵求 MN MP .
(1)当 cos a , b 1时,a 与 b 同向; (2)当 cos a , b 1时,a 与 b 反向;
(3)当cos a , b 0 时, a b 。
思考:当0 cos a , b 1及 1 cos a , b 0时, 夹角在什么范围内?
练习一:
1.求下列两个向量的夹角的余弦:
a b (a1b1,a2 b2 ,a3 b3 );
a (a1,a2,a3),( R) ; a b a1b1 a2b2 a3b3 ;
a // b a1 b1,a2 b2 ,a3 b3 ( ;R)
a1 / b1 a2 / b2 a2 / b2 . a b a1b1 a2b2 a3b3 0 ;
a, b, c都叫做基向量
特别提示:对于基底{a,b,c},除了应知道 a,b,c不共面,还应明确:
(1)任意不共面的三个向量都可做为空间 的一个基底.
(2 ) 由于可视0为与任意一个非零向量共线, 与任意两个非零向量共面,所以三个向量不共 面,就隐含着它们都不是 0 .
空间向量的正交分解及其坐标表示
z
).
e3 e1
p e2
y
x
例题分析
例2. 设{i , j , k}是空间向量的一个单位正交基底
且m
2i
3
j
4k,n
i
2
j
5k ,
则m ,
n
的坐标分别为__(2_,_3_, _-__4_) _; _(-__1_,_2_, _-__5_) .
同步练习
注意: 1.空间任何三个不共面的向量都可以构成 一个基底;
2.基底确定后,任何一个向量的表示都是唯一 确定的,不同的向量对应不同的一组{x, y, z}.
例题分析
例1.
若
{a,
b,
c}
是空间的一个基底, 试问:
{a
b,
b
c,
c
a}能 否 作 为 空 间 的 一 个 基底 ?
已知向量 p 在基底{ a , b , c }下的坐标是
( 2 , 3 , -1 )求 p 在基底 { a , a+b , a+b+c }
下的坐标.
(-1,4, -1)
空间向量的加减和数乘运算的坐标表示
设a
(1)a
(2)a
(3)a
(a1 , a2 , a3 ),b (b1 , b2 , b3 ) (
c
b+c
a+c
O
b
a
a+b
例题分析
例1.
若
{a,
b,
c}
是空间的一个基底, 试问:
{a
b,
b
314空间向量的正交分解及其坐标表示
空间向量的正交分解及其坐标表示、运算教学要求:掌握空间向量的正交分解及空间向量基本定理和坐标表示;掌握空间向量的坐标运算的规律;会根据向量的坐标,判断两个向量共线或垂直.教学重点:空间向量基本定理、向量的坐标运算.教学难点:理解空间向量基本定理.自学导引1. 空间向量的正交分解设,,i j k 是空间三个两两垂直的向量,那么,对空间任一向量p ,存在一个___________,使得___________,我们称___________为向量p 在,,i j k 上的分向量.2.空间向量基本定理:____________________________________________________________3. 基底,基向量如果三个向量,,a b c 不共面,那么所有空间向量所组成的集合就是{p |p =x a +y b + z c , x 、y 、z ∈R}.这个集合可看作是由向量,,a b c 生成的,我们把___________叫做空间的一个基底,___________都叫做基向量.空间任何___________都可构成空间的一个基底.4. 单位正交基底:设123,,e e e 为______________________的单位向量,称它们为___________.5. 空间向量的坐标表示:在空间选定一个___________{123,,e e e },以123,,e e e 的公共起点O 为___________,分别以123,,e e e 的方向为x 轴、y 轴、z 轴的___________建立空间直角坐标系O —xyz.那么对于空间任意一个向量p ,一定可以把它平行移动,使它的起点___________,得到一个向量___________.由空间向量分解定理可知,_________________________________.我们把___________称作向量p (在单位正交基底123,,e e e 下)的坐标,记作___________.此时向量p 的坐标恰是点P 在空间直角坐标系O —xyz 中的坐标___________.6.空间向量的坐标表示向量在空间直角坐标系中的坐标的求法:设A 111(,,)x y z ,B 222(,,)x y z ,则AB =___________________________,AB =__________________________7. 向量的直角坐标运算:设 a =123(,,)a a a ,b =123(,,)b b b ,则⑴a b +=______________________; ⑵a b -=______________________;⑶λa =______________________; ⑷a b ∙______________________8. 两个向量共线或垂直的判定: a ∥b _______________________; a ⊥b _____________________.9.向量的模长及夹角的坐标公式设a =123(,,)a a a ,b =123(,,)b b b ,则 |a a a ⋅ =___________; cos 〈a , b 〉=||||a b a b ⋅ =______________________. 基础练习:1.已知,,i j k 是空间直角坐标系O —xyz 的坐标向量,并且=-i+j-k ,则B 点的坐标为( )A.(-1,1,-1)B.(-i,j,-k )C.(1,-1,-1)D.不确定 2.在空间直角坐标系O —xyz 中,已知点A 的坐标为(-1,2,1),点B 的坐标为(1,3,4),则( )A. =(-1,2,1 )B.=(1,3,4)C.=(2,1,3)D.=(-2,-1,-3)3.已知a =(2,-3,5),b =(-3,1,-4),则a b ∙的值为______________.4.已知A (3,3,3),B (6,6,6),O 为原点,则OA 与BO 的夹角是( ) B.π C. 23π D.2π5.已知a =(1,0,1),b =(-2,-1,1),c =(3,1,0),则|a -b +2c |等于( ) A.103 102 10 D.5例1如图,M,N 分别是四面体OABC 的边OA,BC 的中点,P,Q 是MN 的三等分点。
空间向量的正交分解及其坐标表示
3.1.4-3.1.5空间向量的正交分解及其坐标表示学习目标1掌握空间向量的正交分解及空间向量基本定理和坐标表示; 2.掌握空间向量的坐标运算的规律;3掌握空间向量的长度公式、夹角公式、两点间距离公式、中点坐标公式; 4会用这些公式解决有关问题. 学习过程复习1:平面向量基本定理:对平面上的任意一个向量P ,,a b 是平面上两个 向量,总是存在 实数对(),x y ,使得向量P 可以用,a b 来表示,表达式为 ,其中,a b 叫做 . 若a b ⊥,则称向量P 正交分解. 复习2:平面向量的坐标表示:平面直角坐标系中,分别取x 轴和y 轴上的 向量,i j 作为基底,对平面上任意向量a ,有且只有一对实数x ,y ,使得a xi y j =+,,则称有序对(),x y 为向量a 的 ,即a = . 复习3:设在平面直角坐标系中,A (1,3),B (1,2)-,则线段︱AB ︱= . 复习4:已知()()3,2,5,1,5,1a b =-=-,求:⑴a +B. ⑵3a -b ; ⑶6A. ; ⑷a ·b .二、新课导学探究任务一:空间向量的正交分解问题:对空间的任意向量a ,能否用空间的几个向量唯一表示?如果能,那需要几个向量?这几个向量有何位置关系? 新知:⑴ 空间向量的正交分解:空间的任意向量a ,均可分解为不共面的三个向量11a λ、22a λ、33a λ,使112233a a a a λλλ=++. 如果123,,a a a 两两 ,这种分解就是空间向量的正交分解.(2)空间向量基本定理:如果三个向量,,a b c ,对空间任一向量p ,存在有序实数组{,,}x y z ,使得p xa yb zc =++. 把 的一个基底,,,a b c 都叫做基向量.反思:空间任意一个向量的基底有 个.⑶单位正交分解:如果空间一个基底的三个基向量互相 ,长度都为 ,则这个基底叫做单位正交基底,通常用{i ,j ,k }表示.⑷空间向量的坐标表示:给定一个空间直角坐标系O -xyz 和向量a ,且设i 、j 、k 为 x 轴、y 轴、z 轴正方向的单位向量,则存在有序实数组{,,}x y z ,使得a xi y j zk =++,则称有序实数组{,,}x y z 为向量a 的坐标,记着p = .⑸设A 111(,,)x y z ,B 222(,,)x y z ,则AB = .⑹向量的直角坐标运算:设a =123(,,)a a a ,b =123(,,)b b b ,则⑴a +b =112233(,,)a b a b a b +++; ⑵a -b =112233(,,)a b a b a b ---; ⑶λa =123(,,)a a a λλλ()R λ∈; ⑷a ·b =112233a b a b a b ++. 当堂练习1. 设23a i j k =-+,则向量a 的坐标为 .2. 若A (1,0,2),B (3,1,1)-,则AB = .3. 已知a =(2,3,5)-,b =(3,1,4)--,求a +b , a -b ,8a ,a ·b例1 已知向量,,a b c 是空间的一个基底,从向量,,a b c 中选哪一个向量,一定可以与向量,p a b =+ q a b =-构成空间的另一个基底?变式:已知O,A,B,C 为空间四点,且向量,,OA OB OC 不构成空间的一个基底,那么点O,A,B,C 是否共面?小结:判定空间三个向量是否构成空间的一个基底的方法是:这三个向量一定不共面. 探究任务二:空间向量坐标表示夹角和距离公式问题:在空间直角坐标系中,如何用坐标求线段的长度和两个向量之间的夹角? 新知:1. 向量的模:设a =123(,,)a a a ,则|a |=2. 两个向量的夹角公式:设a =123(,,)a a a ,b =123(,,)b b b , 由向量数量积定义: a ·b =|a ||b |cos <a ,b >,又由向量数量积坐标运算公式:a ·b = ,由此可以得出:cos <a ,b >=当堂练习① 当cos <a 、b >=1时,a 与b 所成角是 ; ② 当cos <a 、b >=-1时,a 与b 所成角是 ; ③ 当cos <a 、b >=0时,a 与b 所成角是 , 即a 与b 的位置关系是 ,用符合表示为 .反思:设a =123(,,)a a a ,b =123(,,)b b b ,则⑴ a //B. ⇔ a 与b 所成角是 ⇔ a 与b 的坐标关系为 ; ⑵ a ⊥b ⇔a 与b 的坐标关系为 ;3. 两点间的距离公式:在空间直角坐标系中,已知点111(,,)A x y z ,222(,,)B x yz ,则线段AB 的长度为:AB .4. 线段中点的坐标公式:在空间直角坐标系中,已知点111(,,)A x y z ,222(,,)B x y z ,则线段AB 的中点坐标为: . .例1. 如图,在正方体1111ABCD A B C D -中,点11,E F 分别是1111,A B C D 的一个四等分点,求1BE 与1DF 所成的角的余弦值.变式:如上图,在正方体1111ABCD A B C D -中,1111113A B B E D F ==,求1BE 与1DF 所成角的余弦值.例2. 如图,正方体1111ABCD A B C D -中,点E,F 分别是111,BB D B 的中点,求证:1EF DA ⊥.变式:如图,正方体1111ABCD A B C D -中,点M 是AB 的中点,求1DB 与CM 所成角的余弦值.。
空间向量及其运算的坐标表示(解析版)
第3讲 空间向量及其运算的坐标表示新课标要求①了解空间向量基本定理及其意义,掌握空间向量的正交分解及其坐标表示。
②掌握空间向量的线性运算及其坐标表示。
③掌握空间向量的数量积及其坐标表示。
知识梳理1.空间向量运算的坐标表示若a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则: (1)a +b =(a 1+b 1,a 2+b 2,a 3+b 3); (2)a -b =(a 1-b 1,a 2-b 2,a 3-b 3); (3)λa =(λa 1,λa 2,λa 3)(λ∈R ); (4)a ·b =a 1b 1+a 2b 2+a 3b 3;(5)a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ); (6)a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0; (7)|a |=a ·a =a 21+a 22+a 23;(8)cos 〈a ,b 〉=a ·b|a ||b |=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23. 2.空间中向量的坐标及两点间的距离公式在空间直角坐标系中,设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则: (1)AB →=(a 2-a 1,b 2-b 1,c 2-c 1);(2)d AB =|AB→|= (a 2-a 1)2+(b 2-b 1)2+(c 2-c 1)2 .名师导学【例1-1】(武汉期末)点(1P ,2,3)-关于xOz 平面对称的点的坐标是( ) A .(1,2,3)B .(1,2-,3)-C .(1-,2,3)-D .(1-,2-,3)【分析】点(1P ,2,3)-关于xOz 平面对称的点,即x ,z 不变,y 变为相反数. 【解答】解:点(1P ,2,3)-关于xOz 平面对称的点,即x ,z 不变,y 变为相反数,∴点(1P ,2,3)-关于xOz 平面对称的点的坐标是(1,2-,3).故选:B .【变式训练1-1】(河南月考)在空间直角坐标系Oxyz 中,点(1,2-,4)关于y 轴对称的点为( ) A .(1-,2-,4)- B .(1-,2-,4)C .(1,2,4)-D .(1,2,4)【分析】空间直角坐标系中,点关于y 轴对称,则y 值不变,x 和z 的值改变符号.【解答】解:空间直角坐标系Oxyz 中,点(1P ,2-,4)关于y 轴对称的点为(1P '-,2-,4)-. 故选:A .【例2-1】(钦州期末)已知(1a =,2,1),(2b =,4-,1),则2a b +等于( ) A .(4,2-,0)B .(4,0,3)C .(4-,0,3)D .(4,0,3)-【分析】利用向量坐标运算性质即可得出.【解答】解:22(1a b +=,2,1)(2+,4-,1)(4=,0,3), 故选:B .【例2-2】(济南模拟)已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.(1)求a 与b 夹角的余弦值;(2)若k a +b 与k a -2b 互相垂直,求k 的值; (3)设|c |=3,c ∥BC→,求c .【分析】对于(1)直接套两向量的夹角公式即可;对于(2)将向量垂直,转化为数量积为0求解;对于(3)利用共线向量求解.【解答】 (1)∵a =AB →=(1,1,0),b =AC →=(-1,0,2),∴a ·b =1×(-1)+1×0+0×2=-1,|a |=2,|b |=5,cos 〈a ,b 〉=a ·b |a ||b |=-1010. (2)k a +b =k (1,1,0)+(-1,0,2)=(k -1,k,2), k a -2b =k (1,1,0)-2(-1,0,2)=(k +2,k ,-4). ∵(k a +b )⊥(k a -2b ), ∴(k -1)(k +2)+k 2-8=0,即2k 2+k -10=0,得k =2或k =-52.(3)∵c ∥BC→,又BC →=(-2,-1,2),∴设c =(-2λ,-λ,2λ),又|c |=3, ∴(-2λ)2+(-λ)2+(2λ)2=9,得λ=±1. ∴c =(-2,-1,2)或c =(2,1,-2).【变式训练2-1】(菏泽期末模拟)已知a =(2,-1,3),b =(0,-1,2).求:(1)a +b ; (2)2a -3b ; (3)a ·b ;(4)(a +b )·(a -b ).【分析】利用空间向量坐标运算公式计算即可. 【解答】(1)∵a =(2,-1,3),b =(0,-1,2).∴a +b =(2+0,-1-1,3+2)=(2,-2,5).(2)2a -3b =2(2,-1,3)-3(0,-1,2)=(4,-2,6)+(0,3,-6)=(4,1,0). (3)a ·b =(2,-1,3)·(0,-1,2)=2×0+(-1)×(-1)+3×2=7. (4)∵|a |=22+(-1)2+32=14, |b |=02+(-1)2+22=5, ∴(a +b )·(a -b )=a 2-b 2=14-5=9.【变式训练2-2】(烟台期末)已知A (1,0,0),B (0,-1,1),若OA →+λOB →与OB →(O 为坐标原点)的夹角为120°,则λ的值为( )A.66 B .-66C .±66D .±6【分析】利用向量数量积的计算公式变形和已知条件,将坐标带代入计算即可. 【解答】∵OA →+λOB →=(1,-λ,λ),OB →=(0,-1,1),∴cos 120°=(OA →+λOB →)·OB →|OA →+λOB →||OB →|=2λ2λ2+1×2=-12,可得λ<0,解得λ=-66. 【例3-1】(淄博调研)已知△ABC 的三个顶为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为( )A .2B .3C .4D .5【分析】先求出BC 中点D 的坐标,再代入两点间距离公式即可计算. 【解答】∵B (4,-3,7),C (0,5,1),∴BC 边上的中点D (2,1,4).又A (3,3,2), ∴|AD |=(2-3)2+(1-3)2+(4-2)2=3.【变式训练3-1】(温州期中)点(1M -,2,3)是空间直角坐标系Oxyz 中的一点,点M 关于x 轴对称的点的坐标为 ,||OM = .【分析】点(a ,b ,)c 关于x 轴对称的点的坐标为(a ,b -,)c -,利用两点间距离公式能求出||OM . 【解答】解:点(1M -,2,3)是空间直角坐标系Oxyz 中的一点, 点M 关于x 轴对称的点的坐标为(1-,2-,3)-,||(OM =-.故答案为:(1-,2-,3)-名师导练A 组-[应知应会]1.(安徽期末)空间直角坐标系中,点(2P ,1-,3)关于点(1M -,2,3)的对称点Q 的坐标为(( ) A .(4,1,1)B .(4-,5,3)C .(4,3-,1)D .(5-,3,4)【分析】利用对称的性质和中点坐标公式直接求解.【解答】解:设空间直角坐标系中,点(2P ,1-,3)关于点(1M -,2,3)的对称点Q 的坐标为(a ,b ,)c , 则212122332abc +⎧=-⎪⎪-+⎪=⎨⎪+⎪=⎪⎩,解得4a =-,5b =,3c =, Q ∴点坐标为(4-,5,3).故选:B .2.(金牛区校级期中)点(3A ,2,1)关于xOy 平面的对称点为( ) A .(3-,2-,1)- B .(3-,2,1)C .(3,2-,1)D .(3,2,1)-【分析】根据点(A a ,b ,)c 关于xOy 平面的对称点为(A a ',b ,)c -,写出即可. 【解答】解:点(3A ,2,1)关于xOy 平面的对称点为(3A ',2,1)-.3.(东阳市校级月考)已知点(1A ,2-,3),则点A 关于原点的对称点坐标为( ) A .(1-,2,3)B .(1-,2,3)-C .(2,1-,3)D .(3-,2,1)-【分析】点(a ,b ,)c 关于原点对称的点的坐标为(a -,b -,)c -. 【解答】解:点(1A ,2-,3),∴点A 关于原点的对称点坐标为(1-,2,3)-.故选:B .4.(茂名期末)已知向量(1,1,2)a =--及(4,2,0)b =-则a b +等于( ) A .(3-,1,2)-B .(5,5,2)-C .(3,1-,2)D .(5-,5-,2)【分析】根据空间向量的坐标运算,求和即可. 【解答】解:由向量(1,1,2)a =--,(4,2,0)b =-, 所以(3a b +=-,1,2)-. 故选:A .5.(高安市校级期末)已知空间向量()()()1,,1,3,1,,,0,0,,(a x b y c z a b c xyz =-==+=则的值为 ) A .2±B .2-C .2D .0【分析】利用空间向量运算法则、向量相等的性质直接求解.【解答】解:空间向量(1a =-,x ,1),(3b =,1,)y ,(c z =,0,0),a b c +=, (2∴,1x +,1)(y z +=,0,0),∴21010z x y =⎧⎪+=⎨⎪+=⎩,解得1x =-,1y =-,2z =, (1)(1)22xyz ∴=-⨯-⨯=.故选:C .6.(丰台区期末)已知(2AB =,3,1),(4AC =,5,3),那么向量(BC = ) A .(2-,2-,2)- B .(2,2,2) C .(6,8,4)D .(8,15,3)【分析】利用向量BC AC AB =-即可得出.【解答】解:向量(4BC AC AB =-=,5,3)(2-,3,1)(2=,2,2),7.(多选)(三明期末)如图,在长方体1111ABCD A B C D -中,5AB =,4AD =,13AA =,以直线DA ,DC ,1DD 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则( )A .点1B 的坐标为(4,5,3)B .点1C 关于点B 对称的点为(5,8,3)- C .点A 关于直线1BD 对称的点为(0,5,3) D .点C 关于平面11ABB A 对称的点为(8,5,0) 【分析】利用空间点的对称性即可得出.【解答】解:由图形及其已知可得:点1B 的坐标为(4,5,3),点1(0C ,5,3)关于点B 对称的点为(4-,5,3)-,点A 关于直线1BD 对称的点为1(0C ,5,3),点(0C ,5,0)关于平面11ABB A 对称的点为(8,5,0). 因此ACD 正确. 故选:ACD .8.(公安县期末)在空间直角坐标系中,已知两点(5P ,1,)a 与(5Q ,b ,4)关于坐标平面xOy 对称,则a b += .【分析】根据空间直角坐标系坐标的对称的结论:点(x ,y ,)z 关于平面xoy 对称的点坐标为(x ,y ,)z -,可知答案.【解答】解:在空间直角坐标系中,两点(5P ,1,)a 与(5Q ,b ,4)关于坐标平面xOy 对称,1b ∴=,4a =-, 413a b ∴+=-+=-. 故答案为:3-.9.(温州期末)在平面直角坐标系中,点(1,2)A -关于x 轴的对称点为(1,2)A '--,那么,在空间直角坐标系中,(1B -,2,3)关于x 轴的对称轴点B '坐标为 ,若点(1C ,1-,2)关于xOy 平面的对称点为点C ',则||B C ''= .【分析】在空间直角坐标系中,(1B -,2,3)关于x 轴的对称轴点B '坐标为横坐标不变,纵坐标和竖坐标变为原不的相反数,若点(1C ,1-,2)关于xOy 平面的对称点为点C ',横、纵坐标均不变,竖坐标变为原不的相反数,再由两点间距离公式能求出||B C ''.【解答】解:在空间直角坐标系中,(1B -,2,3)关于x 轴的对称轴点B '坐标为(1-,2-,3)-, 若点(1C ,1-,2)关于xOy 平面的对称点为点C ', 则(1C ',1-,2)-,||B C ''∴故答案为:(1-,2-,3)-.10.(浙江期中)空间直角坐标系O xyz -中,点(1M ,1-,1)关于x 轴的对称点坐标是 ;||OM = .【分析】根据空间直角坐标系中,点(M x ,y ,)z 关于x 轴的对称点坐标是(M x ',y -,)z -; 以及两点间的距离公式,计算即可.【解答】解:空间直角坐标系O xyz -中,点(1M ,1-,1)关于x 轴的对称点坐标是(1M ',1,1)-;||OM .故答案为:(1,1,1)-11.(兴庆区校级期末)已知(2a =,3-,1),(2b =,0,3),(1c =,0,2),则68a b c +-= . 【分析】进行向量坐标的加法和数乘运算即可.【解答】解:68(2,3,1)6(2,0,3)8(1a b c +-=-+-,0,2)(6=,3-,3). 故答案为:(6,3-,3).12.(辽阳期末)已知向量(2,3,1)a =-,(1,2,4)b =-,则a b += . 【分析】利用空间向量坐标运算法则直接求解. 【解答】解:(2,3,1)a =-,(1,2,4)b =-,∴(1a b +=-,1,5).故答案为:(1-,1,5).13.(越秀区期末)已知点(1A ,2,0)和向量(3a =,4,12)-,若2AB a =,则点B 的坐标是 . 【分析】设(B x ,y ,)z ,由向量坐标运算法则和向量相等的定义得(1x -,2y -,)(6z =,8,24)-,由此能求出B 点坐标.【解答】解:点(1A ,2,0)和向量(3a =,4,12)-,2AB a =, 设(B x ,y ,)z ,则(1x -,2y -,)(6z =,8,24)-, 解得7x =,10y =,24z =-,∴点B 的坐标(7,10,24)-.故答案为:(7,10,24)-.14.(黄浦区校级月考)已知向量(7,1,5),(3,4,7)a b =-=-,则||a b += 【分析】先利用向量坐标运算法则求出a b +,由此能求出||a b +. 【解答】解:向量(7,1,5),(3,4,7)a b =-=-,∴(4a b +=,3,12), ∴||16913a b +=+.故答案为:13.15.(青铜峡市校级月考)已知点A ,B 关于点(1P ,2,3)的对称点分别为A ',B ',若(1A -,3,3)-,(3A B ''=,1,5),求点B 的坐标.【分析】由题意可知AB B A A B ''''==-,且P 是线段AA '和BB '的中点,根据向量坐标运算性质即可得出. 【解答】解:由题意可知AB B A A B ''''==-,且P 是线段AA '和BB '的中点, 设(B x ,y ,)z ,则(1,3,3)(3,1,5)(3,1,5)AB x y z =+-+=-=--- 所以133135x y z +=-⎧⎪-=-⎨⎪+=-⎩,解得428x y z =-⎧⎪=⎨⎪=-⎩.∴点B 的坐标为(4-,2,8)-.16.(福建期中)已知空间三点(1A -,2,1),(0B ,1,2)-,(3C -,0,2) (1)求向量AB AC 与的夹角的余弦值,(2)若向量3AB AC AB k AC -+与向量垂直,求实数k 的值.【分析】(1)(1AB =,1-,3)-,(2AC =-,2-,1),计算可得cos ,||||AB ACAB AC AB AC <>=.(2)向量3AB AC AB k AC-+与向量垂直,可得22(3)()3(31)0AB AC AB k AC AB k AB AC k AC -+=+--=,即可得出.【解答】解:(1)(1AB =,1-,3)-,(2AC =-,2-,1),2||1AB ==||3AC =.2233AB AC =-+-=-.∴cos ,||||3AB AC AB AC AB AC -<>===.(2)向量3AB AC AB k AC -+与向量垂直,∴22(3)()3(31)0AB AC AB k AC AB k AB AC k AC -+=+--=,311(31)(3)90k k ⨯+-⨯--=,解得2k =.17.(扶余县校级月考)(Ⅰ)设向量(3a =,5,4)-,(2b =,0,3),(0c =,0,2),求:()a b c -+、68a b c +-. (Ⅱ)已知点(1A ,2-,0)和向量(1a =-,2,3)求点B 坐标,使向量AB 与a 同向,且||214AB =. 【分析】(Ⅰ)利用空间向量运算法则能求出()a b c -+、68a b c +-.(Ⅱ)点(1A ,2-,0)和向量(1a =-,2,3),设点(B x ,y ,)z ,由向量AB 与a 同向,且||214AB =列出方程组能求出点B 坐标.【解答】解:(Ⅰ)向量(3a =,5,4)-,(2b =,0,3),(0c =,0,2),∴()(3a b c -+=,5,4)(2--,0,5)(1=,5,9)-.68(3a b c +-=,5,4)(12-+,0,18)(0-,0,16)(15=,5,2)-.(Ⅱ)点(1A ,2-,0)和向量(1a =-,2,3),设点(B x ,y ,)z , 向量AB 与a 同向,且||214AB =,∴120123x y z -+⎧==>⎪-=, 解得1x =-,2y =,6z =,∴点B 坐标为(1-,2,6).B 组-[素养提升]1.(襄阳期中)已知向量a ,b ,c 是空间的一个单位正交基底,向量a b +,a b -,c 是空间的另一个基底,若向量p 在基底a ,b ,c 下的坐标为(3,2,1),则它在a b +,a b -,c 下的坐标为( ) A .15(,,1)22B .51(,1,)22C .15(1,,)22D .51(,,1)22【分析】可设向量(1a =,0,0),(0b =,1,0),(0c =,0,1);由此求出向量a b +、a b -,再设()()p x a b y a b zc =++-+,列方程组求出x 、y 和z 即可.【解答】解:设向量(1a =,0,0),(0b =,1,0),(0c =,0,1); 则向量(1a b +=,1,0),(1a b -=,1-,0), 又向量(3p =,2,1),不妨设()()p x a b y a b zc =++-+, 则(3,2,1)(x y =+,x y -,)z , 即321x y x y z +=⎧⎪-=⎨⎪=⎩, 解得52121x y z ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩,所以向量p 在a b +,a b -,c 下的坐标为5(2,12,1).故选:D .2. (安庆质检)已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).(1)若AP →∥BC →,且|AP →|=214,求点P 的坐标;11 / 11 (2)求以AB →,AC →为邻边的平行四边形的面积.【解析】(1)∵AP →∥BC →,∴设AP →=λBC →,又BC →=(3,-2,-1),∴AP →=(3λ,-2λ,-λ),又|AP →|= 9λ2+4λ2+λ2=214,得λ=±2, ∴AP →=(6,-4,-2)或AP →=(-6,4,2). 又A (0,2,3),设P (x ,y ,z ),∴⎩⎪⎨⎪⎧x -0=6,y -2=-4,z -3=-2或⎩⎪⎨⎪⎧ x -0=-6,y -2=4,z -3=2,得⎩⎪⎨⎪⎧ x =6,y =-2,z =1或⎩⎪⎨⎪⎧x =-6,y =6,z =5.∴P (6,-2,1)或(-6,6,5).(2)∵AB →=(-2,-1,3),AC →=(1,-3,2), cos 〈AB →,AC →〉=AB →·AC →|AB →||AC →|=-2+3+614×14=12,∴∠BAC =60°.∴以AB →,AC →为邻边的平行四边行的面积 S =|AB →||AC →|sin 60°=14×32=7 3.。
空间向量的正交分解及其坐标表示、运算PPT优秀课件
|A B |A BA B(x 2x 1)2 (y2y 1)2 (z2 z1 )2
d A ,B(x 2 x 1 )2 (y 2y 1 )2 (z2 z1 )2
2.两个向量夹角公式
五、距离与夹角
1.距离公式 (1)向量的长度(模)公式
|a |2 a a a 1 2 a 2 2 a 3 2
|b |2 b b b 1 2 b 2 2 b 3 2
注意:此公式的几何意义是表示长方体的对 角线的长度。
(2)空间两点间的距离公式
在空间直角坐标系中,已知 A(x1 , y1 , z1)、
a b(a1 b 1,a2b 2,a3b 3);
a(a 1,a2,a 3),( R );
aba1b1a2b2a3b3 ;
a//b a 1 b 1 ,a 2 b 2 ,a 3 b 3 ( R );
a 1/b 1a2/b 2a2/b 2 . a b a1b1a2b2a3b30;
x, y, z ,使得 p xa yb zc ,而这种表示式是唯一的.
把 a, b,c 叫做空间的一个基底, a, b, c 叫做基向量.
这样空间的有关问题就转化为了三个基向量的运算问 题,这将会使问题更容易处理,而且方向性强.
四、向量的直角坐标运算
设 a (a 1 ,a 2 ,a 3 )b , (b 1 ,b 2 ,b 3 )则 a b(a1 b 1,a 2 b 2,a 3 b 3);
例2 如图,在正方体 A B C DA 1B 1C 1D 1中,B1 E1
D1F1
A1B1 4
3空间向量的正交分解及其坐标表示
例2
B1 E1 如图,在正方体 ABCD A1B1C1 D1 中,
A1B1 4
D1F1
,求 BE1 与 DF1 所成的角的余弦值。
解:设正方体的棱长为1,如图建
z
D1 A1 F1 E1 B1 C1
立空间直角坐标系 O xyz ,则
3 B(1,1, 0) , E1 1, ,1 , 4
数量积运算的证明:
设i, j, k为单位正交基底,则
所以a b (a1 i a2 j a3 k ) (b 1 i b2 j b 3 k)
利用向量数量积的分配律及
a a1i a2 j a3 k , b b1i b2 j b3 k
(0,0,0) (x,0,0) (0,y,0) (0,0,z)
X Y面内 Y Z面内 Z X面内
点P的位置
坐标形式
(x,y,0) (0,y,z) (x,0,z)
z
(1)坐标平面内的点: •
1 E
•
F
C
•
x
1
O
•
•
D
B y
xoy平面上的点竖坐标为0 yoz平面上的点横坐标为0 xoz平面上的点纵坐标为0
设M=(x,y,z),若M是线段AB的中点, x1 x 2 +x 3 y1 y 2 y3 z1 z 2 x ,y ,z 2 2 2
z3
2.平面向量的数量积、距离与夹角
设a (a1, a2 ), b (b1, b2 ), A ( x1, y1), B ( x2 , y2 )则
设M=(x,y),若M是线段AB的中点,
3.1.4空间向量的正交分解及其坐标表示 (2)
3. 1.4 空间向量的正交分解及其坐标表示教学目标1.能用坐标表示空间向量,掌握空间向量的坐标运算。
2.会根据向量的坐标判断两个空间向量平行。
重、难点1.空间向量的坐标表示及坐标运算法则。
2.坐标判断两个空间向量平行。
教学过程1.情景创设:平面向量可用坐标表示,空间向量能用空间直角坐标表示吗? 2.建构数学:如图:在空间直角坐标系O xyz -中,分别取与x 轴、y 轴、z 轴方向相同的单位向量,,i j kr r r作为基向量,对于空间任一向量a r,由空间向量基本定理,存在唯一的有序实数组(x ,y ,z ),使a xi y j zk =++r r r r ;有序实数组(x ,y ,z )叫做向量a r 的空间直角坐标系O xyz -中的坐标,记作a r=(x ,y ,z )。
在空间直角坐标系O -xyz 中,对于空间任意一点A (x ,y ,z ),向量OA u u u r是确定的,容易得到OA =u u u rxi y j zk ++r r r 。
因此,向量OA u u u r 的坐标为OA =u u u r (x ,y ,z )。
这就是说,当空间向量a 的起点移至坐标原点时,其终点的坐标就是向量a 的坐标。
类似于平面向量的坐标运算,我们可以得到空间向量坐标运算的法则。
设a =(123,,a a a ),b =(123,,b b b ),则 a +b =(112233,,a b a b a b +++), a -b =(112233,,a b a b a b ---),λa =(123,,a a a λλλ)λ∈R 。
空间向量平行的坐标表示为a ∥b (a ≠0)112233,,()b a b a b a λλλλ⇔===∈R 。
例题分析:例1:已知a =(1,-3,8),b =(3,10,-4),求a +b ,a -b ,3a 。
例2:已知空间四点A (-2,3,1),B (2,-5,3),C (10,0,10)和D (8,4,9),求证:四边形ABCD 是梯形。