细胞生物学-各章小结和重点难点

合集下载

细胞生物学重点总结

细胞生物学重点总结

细胞生物学重点总结 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT细胞生物学期末复习资料整理第一章:1、细胞生物学cell biology:是研究细胞基本生命活动规律的科学,是在显微、亚显微和分子水平上,以研究细胞结构与功能,细胞增殖、分化、衰老与凋亡,细胞信号传递,真核细胞基因表达与调控,细胞起源与进化等为主要内容的一门学科。

P21、什么叫细胞生物学试论述细胞生物学研究的主要内容。

P3-5答:细胞生物学是研究细胞基本生命活动规律的科学,它是在三个水平(显微、亚显微与分子水平)上,以研究细胞的结构与功能、细胞增殖、细胞分化、细胞衰老开发商地亡、细胞信号传递、真核细胞基因表达与调控、细胞起源与进化等为主要内容的一门科学。

细胞生物学的主要研究内容主要包括两个大方面:细胞结构与功能、细胞重要生命活动。

涵盖九个方面的内容:⑴细胞核、染色体以及基因表达的研究;⑵生物膜与细胞器的研究;⑶细胞骨架体系的研究;⑷细胞增殖及其调控;⑸细胞分化及其调控;⑹细胞的衰老与凋亡;⑺细胞的起源与进化;⑻细胞工程;⑼细胞信号转导。

2、试论述当前细胞生物学研究最集中的领域。

P5-6答:当前细胞生物学研究主要集中在以下四个领域:⑴细胞信号转导;⑵细胞增殖调控;⑶细胞衰老、凋亡及其调控;⑷基因组与后基因组学研究。

人类亟待通过以上四个方面的研究,阐明当今主要威胁人类的四大疾病:癌症、心血管疾病、艾滋病和肝炎等传染病的发病机制,并采取有效措施达到治疗的目的。

3.细胞学说(cell theory) p9细胞学说是1838~1839年间由德国的植物学家施莱登和动物学家施旺所提出,直到1858年才较完善。

它是关于生物有机体组成的学说,主要内容有:①细胞是有机体,一切动植物都是由单细胞发育而来,即生物是由细胞和细胞的产物所组成;②所有细胞在结构和组成上基本相似;③新细胞是由已存在的细胞分裂而来;④生物的疾病是因为其细胞机能失常。

(完整版)细胞生物学知识点总结

(完整版)细胞生物学知识点总结

细胞生物学目录第一章绪论第二章细胞生物的研究方法和技术第三章质膜的跨膜运输第四章细胞与环境的相互作用第五章细胞通讯第六章核糖体和核酶第七章线粒体和过氧化物酶体第八章叶绿体和光合作用第九章内质网,蛋白质分选,膜运输第十章细胞骨架,细胞运动第十一章细胞核和染色体第十二章细胞周期和细胞分裂第十三章胚胎发育和细胞分化第十四章细胞衰老和死亡第一章绪论1.原生质体:被质膜包裹在细胞内的所有的生活物质,包括细胞核和细胞质细胞质:细胞内除核以外的原生质,即细胞中细胞核以外和细胞膜以内的原生质部分原生质体:除去细胞壁的细胞2.结构域:生物大分子中具有特异结构和独立功能的区域3.装配模型:模板组装,酶效应组装,自组装4.五级装配:第一级,小分子有机物的形成第二级,小分子有机物组装成生物大分子第三级,由生物大分子进一步组装成细胞的高级结构第四级,由生物大分子组装成具有空间结构和生物功能的细胞器第五级,由各种细胞器组装成完整细胞6.支原体:目前已知的最小的细胞第二章细胞生物的研究方法和技术1.显微镜技术:光镜标本制备技术、2.光镜标本制备技术步骤:样品固定、包埋与切片、染色3.电子显微镜种类:透射电子显微镜,扫描电镜,金属投影,冷冻断裂和冷冻石刻电镜,复染技术,扫描隧道显微镜4.细胞化学技术:酶细胞化学技术,免疫细胞化学技术,放射自显影5.细胞分选技术:流式细胞术6.分离技术:离心技术,层析技术,电泳技术第三章质膜的跨膜运输1.细胞功能:外界与通透性障碍,组织和功能定位,运输作用,细胞间通讯,信号检测2.膜化学组成:膜脂,膜糖,膜蛋白3.膜脂的三个种类:磷脂,糖脂,胆固醇4.脂质体用途:用作生物膜的研究模型,作为生物大分子与药物的运载体5.膜糖功能:细胞与环境的相互作用,接触抑制,信号转导,蛋白质分选,保护作用。

6.膜蛋白类型:整合蛋白,外周蛋白,脂锚定蛋白7.膜蛋白功能:运输蛋白,酶,连接蛋白,受体(信号接受和传递)8.不对称性的研究方法:冰冻断裂复型,冰冻蚀刻9.膜流动性研究方法:质膜融合,淋巴细胞的成斑成帽效应,荧光漂白恢复技术10.膜流动性的重要性:酶活性,信号转导,物质运输,能量转换,细胞周期11.影响膜脂流动性的因素:脂肪酸链,胆固醇,卵磷脂/鞘磷脂比值12.影响膜蛋白流动的因素:整合蛋白,膜骨架,细胞外基因,相邻细胞,细胞外配体、抗体、药物大分子13.膜骨架的主要蛋白:血影蛋白,肌动蛋白和原肌球蛋白,带4.1蛋白,锚定蛋白14.转运蛋白质包括:载体蛋白,通道蛋白15.协同运输的方向:同向协同,反向协同第四章细胞与环境的相互作用1.细胞表面结构:细胞外被、膜骨架、胞质溶胶2.细胞外被功能:连接,细胞保护,屏障3.糖萼:由细胞表面的碳水化合物形成的质膜保护层,又称为多糖包被。

细胞生物学重点整理

细胞生物学重点整理

细胞生物学重点整理细胞生物学是研究细胞的结构、功能和发展的科学领域。

以下是细胞生物学的一些重点内容:1. 细胞结构:细胞由细胞膜、细胞质和细胞核组成。

细胞膜是细胞的外层保护膜,控制物质的进出。

细胞质是细胞内的液体,包含各种细胞器。

细胞核是细胞的控制中心,包含遗传信息。

细胞结构:细胞由细胞膜、细胞质和细胞核组成。

细胞膜是细胞的外层保护膜,控制物质的进出。

细胞质是细胞内的液体,包含各种细胞器。

细胞核是细胞的控制中心,包含遗传信息。

2. 细胞分裂:细胞分裂是细胞繁殖和生长的过程。

它包括有丝分裂和减数分裂两种形式。

有丝分裂发生在体细胞中,产生两个具有相同染色体数目的细胞。

减数分裂发生在生殖细胞中,产生四个具有一半染色体数目的细胞。

细胞分裂:细胞分裂是细胞繁殖和生长的过程。

它包括有丝分裂和减数分裂两种形式。

有丝分裂发生在体细胞中,产生两个具有相同染色体数目的细胞。

减数分裂发生在生殖细胞中,产生四个具有一半染色体数目的细胞。

3. 细胞器功能:细胞器是细胞内的各种功能结构。

其中,线粒体是细胞的能量中心,产生细胞需要的能量。

内质网和高尔基体负责物质合成和分泌。

溶酶体则参与细胞的分解和消化。

细胞器功能:细胞器是细胞内的各种功能结构。

其中,线粒体是细胞的能量中心,产生细胞需要的能量。

内质网和高尔基体负责物质合成和分泌。

溶酶体则参与细胞的分解和消化。

4. 细胞的生物调控:细胞通过一系列信号传导网络实现其功能调控。

这包括细胞外信号通过受体识别和细胞内信号传递的过程。

细胞周期调控是细胞生长和分裂的关键过程,包括有丝分裂和减数分裂阶段。

细胞的生物调控:细胞通过一系列信号传导网络实现其功能调控。

这包括细胞外信号通过受体识别和细胞内信号传递的过程。

细胞周期调控是细胞生长和分裂的关键过程,包括有丝分裂和减数分裂阶段。

5. 细胞的特殊功能:在细胞生物学中,还有一些细胞具有特殊的功能。

例如,神经元是传递神经信号的细胞,激活和控制身体各部分的活动。

细胞生物学第四版各章小结汇总.

细胞生物学第四版各章小结汇总.

第1章细胞生物学是研究细胞生命活动基本规律的学科,它是现代生命科学的基础学科之一。

细胞生物学研究的主要方面包括:①生物膜与细胞器;②细胞信号转导;③细胞骨架体系;④细胞核、染色体及基因表达;⑤细胞增殖及其调控;⑥细胞分化及干细胞;⑦细胞死亡;⑧细胞衰老;⑨细胞工程;⑩细胞的起源与进化。

本章回顾了细胞学与细胞生物学发展的简史,阐述了细胞学说的建立及其重要意义,分析了细胞生物学学科形成的基础与条件。

细胞学与细胞生物学发展的历史大致可以划分为以下几个阶段:①细胞的发现;②细胞学说的建立;③细胞学的经典时期;④实验细胞学时期;⑤细胞生物学学科的形成与发展。

当今的细胞生物学是以细胞作为生命活动的基本单位这一概念为出发点,在各层次上探索生命现象的最基本、最核心问题的一门重要的学科。

第2章细胞是一切生命活动的基本单位,包括以下几个方面的涵义:(1)一切有机体都由细胞构成,细胞是构成有机体的形态结构单位。

构成多细胞生物体的细胞虽然是“社会化”的细胞,但它们又保持着形态结构的独立性,每一个细胞具有自己完整的结构体系。

(2)细胞是有机体代谢与执行功能的基本单位,在细胞内的一切生化过程与试管内的生化过程的根本不同点,是细胞有严格自动控制的代谢体系,并且有保证完成生命过程有序性的独立的结构装置。

(3)有机体的生长与发育是依靠细胞增殖、分化与凋亡来实现的。

细胞是研究有机体生长与发育的基础。

(4)细胞是遗传的基本单位,每一个细胞都具有遗传的全能性(除少数特化细胞)。

构成各种生物机体的细胞的种类繁多,结构与功能各异,但它们都具有基本共性:细胞膜,两种核酸(DNA与RNA),蛋白质合成的机器——核糖体与一分为二的增殖方式,这些是细胞结构与生存不可缺少的基础。

种类繁多的细胞可以分为原核细胞与真核细胞两大类。

近年认为原核细胞并不是统一的一大类,建议将细胞划分为原核细胞、古核细胞与真核细胞三大类。

支原体是迄今发现的最小最简单的细胞,它已具备细胞的基本结构,并且有作为生命活动基本单位存在的主要特征。

细胞生物学各章重点难点1-9

细胞生物学各章重点难点1-9
• 难点: • 细胞黏着及其分子基础
• 主要词汇: • 锚定连接;通讯连接;细胞外基质;蛋白聚糖;细 胞外被
期末考试
• 一、单项选择题(20道题,每题1分,共20分) • 二、填空(20个空,每空1分,共20分) • 三、判断题(每题1分,共10分) • 四、名词解释(10个名词,每个2分,共20分) • 五、简答题(5道题,共30分)
• 钠钾泵;网格蛋白依赖的胞吞作用
• 主要词汇:
• 被动运输;主动运输;胞吞与胞吐作用;
第六酸化;光合作用;线粒体和叶绿体的半自主 性
• 难点:
• 线粒体内膜电子传递复合物的排列及电子和质子传 递
• 主要词汇:
• 氧化磷酸化;电子传递链;光反应;光合磷酸化; 半自主性细胞器
第七章 细胞质基质与内膜系统
• 重点:
• 细胞质基质的功能;内膜系统及其功能
• 难点:
• 内膜系统及其功能
• 主要词汇:
• 细胞质基质;分子伴侣;溶酶体
第八章 蛋白质分选与膜泡运输
• 重点: • 信号假说 • 蛋白质分选转运的基本途径与类型 • 蛋白质向线粒体、叶绿体的分选
• 难点: • 细胞内膜泡运输
第一章 绪论
• 重点:
• 细胞生物学主要研究内容
• 主要词汇:
• 细胞生物学
第二章 细胞的统一性与多样性
• 重点: • 细胞的基本特征;真核细胞的结构体系; 病毒的基本知识
• 难点: • 病毒在细胞内的增殖
• 主要词汇:
• 原核细胞;真核细胞;病毒
第三章 细胞生物学研究方法
• 重点:
• 主要工具和常用方法,及其基本原理和应用
• 主要词汇:
• 免疫荧光技术;流式细胞技术;原代细胞; 蛋白质组

细胞生物学教学总结

细胞生物学教学总结

细胞生物学教学总结每一天的时间都特别宝贵,我们的教学工作又将续写新的篇章,是时候写一份具体的教学总结了,以便更好地开展接下来的教学工作,下面是由我给大家带来的细胞生物学教学总结5篇,让我们一起来看看!细胞生物学教学总结1一、教学目标学问方面:1、说明细胞的分化。

2、举例说明细胞的全能性。

力量方面:进行有关干细胞讨论进展与人类健康的资料搜集和分析。

二、教学重点、难点及解决方法1、教学重点:⑴细胞分化的概念和意义。

⑵细胞全能性的概念。

解决方法:联系学校学过的有关组织、器官、系统的学问;联系不同组织中的细胞形态、结构和功能的特点。

从个体发育过程中各种组织、器官、系统的建成让同学理解细胞分化的概念和意义。

2、教学难点:细胞全能性的概念及实例。

解决方法:从体细胞一般是受精卵通过有丝分裂繁殖而来的,已分化的细胞都有一套和受精卵相同的染色体,携带具有本物种特征的DNA分子的角度,得出细胞全能性。

三、课时支配:1课时四、教学方法:讲解法。

五、教具预备:课件六、同学活动1、通过详细实例,启发同学得到细胞全能性的概念。

2、指导同学阅读教材,找出细胞分化的相关学问点。

七、教学程序[问题探讨]1、为什么健康人的血细胞数量不会随着血细胞的死亡而削减?2、骨髓与血细胞的形成有什么关系?一、细胞分化及其意义出示教材P117、118相关图片讲解。

1、细胞分化的概念:略。

2、引导同学探讨以下问题:⑴细胞分化在生物界普遍存在的实例。

例如,在植物的胚根发育成根的过程中,分生区的细胞不断分裂,形成的细胞近似正方体。

随着细胞的生长,变成伸长区的长方体细胞,后来分化成成熟区的输导组织的导管细胞、根毛细胞、薄壁细胞等形态、结构、功能各异的细胞。

又如动物的胚胎细胞形成多细胞生物体。

干细胞再生出各种细胞等。

⑵细胞分化的过程。

在细胞外观尚未消失明显变化之前,细胞分化的前途就由遗传信息的执行状况打算了。

分化的细胞所呈现出的形态、结构和生理功能的变化,首先源于细胞内化学物质的变化,如结构蛋白和催化化学反应的酶,以后依次渐变,不能逆转。

细胞生物学各章要点(全)

细胞生物学各章要点(全)

第二章细胞的统一性和多样性一、细胞是生命活动的基本单位1.一切有机体都由细胞构成,细胞是构成有机体的基本单位。

2.细胞具有独立的、有序的自控代谢体系,是代谢与功能的基本单位。

3.细胞是有机体生长与发育的基础。

4.细胞是遗传的基本单位,具有遗传的全能性。

5.没有细胞就没有完整的生命。

二、细胞的基本共性1、所有的细胞都有相似的化学组成2、脂-蛋白体系的生物膜3、DNA-RNA的遗传装置4、蛋白质合成的机器—核糖体5、一分为二的分裂方式原核细胞因其没有典型的核结构而命名,即没有核膜将它的遗传物质与细胞质分开。

其基本特点有二:1.遗传信息量小,仅为一个环状DNA分子。

2.细胞内没有分化出以膜为基础的、具有专门结构与功能的细胞器和细胞核膜。

原核细胞的特征:1.体积一般很小,直径0.2-10μm不等。

2.进化地位比较原始,大约30~35亿年前就出现在地球上。

3.在地球上分布广,对生态环境的适应性强。

分为六大类:支原体、衣原体、立克次氏体、细菌、放线菌、蓝藻。

支原体结构:1.细胞膜,约10nm厚;2.一条环状双螺旋DNA—遗传信息载体;3.多聚核糖体(mRNA+核糖体)能指导合成700多种蛋白质;4.含40多种酶(已发现)。

繁殖方式:分裂繁殖(与病毒有根本区别)。

生活方式:①在培养基上生长;②寄生在细胞中。

特征:①具有多态性;②不能合成长链或不饱和脂肪酸;③DNA散在于细胞内,无核区;④有多聚核糖体。

大小:0.1~0.3μm为什么说支原体是最小最简单的细胞?1.支原体具备了一个细胞生存与增殖必须具备的结构装置与机能,即细胞膜、遗传信息载体DNA和RNA、进行蛋白质合成的一定数量的核糖体以及催化酶促反应所需要的酶。

2.支原体具备了保证一个细胞生命活动运转所必需的条件,即完成细胞功能估计至少需要100种酶,这些分子进行酶促反应必须占有的空间直径约50 nm,加上核糖体、细胞膜与核酸等,可以推算出一个细胞的最小极限直径不可能小于100 nm。

细胞生物学-各章小结和重点难点

细胞生物学-各章小结和重点难点

第四章细胞质膜本章小结•细胞膜与其他生物膜一样都是由膜脂与膜蛋白构成的。

•膜脂主要包括甘油磷脂、鞘脂和胆固醇。

甘油磷脂是构成膜的主要成分,主要包括磷脂酰胆碱、磷脂酰丝氨酸、磷脂酰乙醇胺和磷脂酰肌醇等;鞘脂是鞘氨醇的衍生物,主要包括神经鞘磷脂、脑苷脂和神经节苷脂等。

•膜蛋白可分为内在蛋白、外在蛋白和脂锚定蛋白3大类。

•内在蛋白可以α单次或多次螺旋、β折叠片或形成大复合物的方式与膜脂结合;外在蛋白靠离子键或其他弱键与膜内在蛋白或膜脂结合;脂锚定蛋白通过与之共价相连的脂肪酸(质膜内侧)或糖基磷脂酰肌醇(质膜外侧)锚定在质膜上。

•膜的流动性与膜的不对称性是生物膜的最基本特性。

•膜的流动性表现:膜脂分子具有侧向扩散、旋转运动、弯曲运动与翻转运动;膜蛋白具有侧向扩散和旋转运动,但不具备翻转运动。

•膜的不对称性表现:膜脂分布的不对称性(质膜外小页SM、PC多,质膜内小页PS、PE多);膜蛋白的不对称性(糖蛋白全部分布于质膜外小页面)。

•膜骨架是细胞质膜与膜内的细胞骨架纤维形成的复合结构,它参与维持细胞的形态、并协助细胞质膜完成多种的生理功能。

•各种不同的膜蛋白与膜脂分子的协同作用不仅为细胞的生命活动提供了稳定的内环境,而且还行驶着物质转运、信号传递、细胞识别等多种复杂的功能。

•胞膜窖是近年来发现的新的细胞质膜结构,可能是窖蛋白与脂筏结合形成的一种特殊结构。

在细胞的胞饮、蛋白质分选、胆固醇的发生、信号转导、肿瘤的发生中具有重要作用。

本章重点与难点•膜脂与膜蛋白的主要类型•不同膜蛋白与膜脂的结合方式•膜脂与膜蛋白的运动方式•膜的流动性与不对称性特征•细胞质膜的基本功能第五章物质的跨膜运输本章小结•细胞质膜具有选择通透性,是细胞与细胞外环境之间物质运输的屏障。

广义的细胞物质运输包括跨膜运输、胞内运输与转细胞运输。

•几乎所有小的有机分子和带电荷的无机离子的跨膜运输都需要膜运输蛋白。

膜转运蛋白包括:载体蛋白、通道蛋白以及微生物分泌的离子载体。

《细胞生物学》章节重点难点

《细胞生物学》章节重点难点

绪论重点:1、原核细胞、真核细胞的结构。

2、真核细胞、原核细胞的结构特征比较。

难点:1、当前细胞生物学主要发展方向和总趋势。

2、细胞的装配。

细胞膜和细胞表面重点:1、细胞质膜的结构模型、膜蛋白种类及跨膜方式、膜的流动性和不对称性。

2、物质跨膜运输的方式。

难点:1、膜脂的种类、红细胞膜蛋白及膜骨架。

2、参与运输活动的蛋白分子之间相互作用的模式。

3、细胞外被和胞质溶胶;细胞表面的特化结构。

细胞信号传导重点:1、细胞通讯的基本概念和基本作用方式。

2、细胞识别和细胞信号通路的基本概念。

3、细胞信号分子的分类,细胞受体的分类,细胞表面受体三大家族。

4、第二信使与分子开关的概念与生理功能。

难点:1、细胞内受体的成分、结构组成及作用机理。

2、NO信号通路,离子通道耦联的受体、G-蛋白耦联的受体信号途径一般特征。

3、酶联受体参与的信号通路。

内膜系统目的要求重点:1、细胞内膜系统概念。

2、内质网的形态结构与两种基本类型及其功能。

3、高尔基体的结构特征及其主要功能。

4、溶酶体组成成分、膜结构特征、生理功能;难点:1、信号假说;共转移与后转移。

2、溶酶体发生过程。

3、细胞内的膜流和转换。

4、细胞内膜泡运输和参与的三种小泡类型及结构。

线粒体重点:1、线粒体的形态结构和生化特征。

2、线粒体遗传特性(半自主性细胞器)。

3、氧化磷酸化偶联机制(化学渗透假说)和ATP合成酶的作用机制(结合变化机制)。

4、生物氧化的步骤及细胞定位。

难点:1、氧化磷酸化的分子基础。

2、线粒体蛋白质的运送。

3、氧化磷酸化偶联机制(化学渗透假说)和ATP合成酶的作用机制(结合变化机制)。

核糖体重点:1、核糖体的化学组成。

2、两种基本类型的核糖体。

3、核糖体结构特征。

4、多聚核糖体的概念。

难点:1、核糖体的功能活性部位。

2、蛋白质合成的过程、步骤。

细胞骨架重点:1、细胞骨架的涵义。

2、微丝的结构成分、装配、功能。

3、微管的结构成分、装配、功能特征。

难点:1、kinesin和dynein与细胞内运输。

细胞生物学重点总结

细胞生物学重点总结

第一章绪论1、细胞生物学是研究细胞基本生命活动规律的科学,它在三个层次上(显微、亚显微、分子水平)研究比较低的结构与功能、细胞的生活史(细胞增殖、分化、衰老与凋亡)和各种生命活动规律(信号的传递、真核细胞基因的表达与调控、细胞的起源与进化等)的学科。

2、细胞生物学的主要研究内容包括:(1)细胞核、染色体及基因表达的研究(2)生物膜与细胞器的研究(3)细胞骨架体系的研究(4)细胞增殖及调控(5)细胞分化及调控(6)细胞的衰老与凋亡(7)细胞的起源与进化(8)细胞工程3、“细胞学说”包括三个内容:(1)细胞是多细胞生物的最小结构单位,对单细胞生物来说,一个细胞就是一个个体;(2)多细胞生物的每一个细胞为一个代谢活动单位,执行特定的功能;(3)细胞只能通过细胞分裂而来。

第十一章细胞核与染色质第一节核孔复合物1、核孔复合物(NPC):八对称圆柱形结构。

最中间是中央运输蛋白;从中央向外伸出8个环形辐条;在辐条的细胞质面有胞质环;辐条的核质面是核质环。

Fish-trap模型:2、核孔复合物主要有以下4中结构组成:胞质环、核质环、辐、栓3、NPC的功能:(1)被动运输:圆形亲水通道,离子、小分子及<10nm的物质原则上都可自由通过。

(2)主动运输,有三个特点:a.对运输颗粒大小有一定的限制,但孔的大小可调节;b.是信号识别与载体介导的过程,需要ATP;c.双向性(核输入与核输出)。

4、亲核蛋白:细胞质中合成,然后运到核中起作用的一类蛋白质。

如各种组蛋白、DNA合成酶类、RNA转录和加工酶类、起调控作用的蛋白因子等。

5、亲核蛋白一般含有特殊的氨基酸序列作为核孔输入的信号(NLS)。

可位于多肽序列的任何部分,无专一性,协助亲核蛋白进入核。

6、亲核蛋白入核过程:(1)通过NLS与可溶性NLS受体结合形成转运复合物,(2)转运复合物与核孔复合体的胞质纤维结合,(3)转运复合物转移到核质面,(4)复合物解离,亲核蛋白释放。

细胞生物学各章节重点内容整理

细胞生物学各章节重点内容整理

第一章细胞质膜1、被动运输是指通过简单扩散或协助扩散实现物质由高浓度向低浓度方向的跨膜转运。

转运的动力来自于物质的浓度梯度,不需要细胞代谢提供能量。

2、主动运输是由载体蛋白所介导的物质逆浓度梯度或电化学梯度由低浓度一侧向高浓度一侧进行跨膜转运的方式。

转运的溶质分子其自由能变化为正值,因此需要与某种释放能量的过程相耦连。

主动运输普遍存在于动植物细胞和微生物细胞中。

3、紧密连接是封闭连接的主要形式,一般存在于上皮细胞之间。

紧密连接有两个主要功能:一是紧密连接阻止可溶性物质从上皮细胞层一侧通过胞外间隙扩散到另一侧,形成渗透屏障,起重要封闭作用,二是形成上皮细胞质膜蛋白与质膜分子侧向扩散的屏障,从而维持上皮细胞的极性。

4、通讯连接一种特殊的细胞连接方式,位于特化的具有细胞间通讯作用的细胞。

介导相邻细胞间的物质转运、化学或电信号的传递,主要包括间隙连接、神经元间的化学突触和植物细胞间的胞间连丝。

动物与植物的通讯连接方式是不同的,动物细胞的通讯连接为间隙连接,而植物细胞的通讯连接则是胞间连丝5、桥粒是一种常见的细胞连接结构,位于中间连接的深部。

一个细胞质内的中间丝和另一个细胞内的中间丝通过桥粒相互作用,从而将相邻细胞形成一个整体,在桥粒处内侧的细胞质呈板样结构,汇集很多微丝,这种结构和加强桥粒的坚韧性有关。

物质跨膜运输的方式和特点Ⅰ、被动运输是指物质由高浓度向低浓度方向的跨膜转运。

转运的动力来自于物质的浓度梯度,不需要细胞代谢提供能量。

主要分为两种类型:(1)简单扩散②不需要提供能量;③没有(2)协助扩散②存在最大转运速率;在一定限度内运输速率同物质浓度成正比。

如超过一定限度,浓度不再增加,④不需要提供能量。

属于这种运输方式的物质有某些离子和一些较大的分子如葡萄糖等物质Ⅱ、主动运输物质从浓度梯度从低浓度的一侧向高浓度的一侧方向跨膜运输的过程。

此过程中需要消耗细胞生产的能量,也需要膜上载体协助。

属于这种运输方式的物质有离子和一些较大的分子如葡萄糖、氨基酸等物质。

细胞生物学-总结-重点框架及理解知识(上)

细胞生物学-总结-重点框架及理解知识(上)

一、绪论(一)细胞生物学(cell biology): 从细胞整体水平、亚显微结构水平和分子水平三个层面来研究细胞的结构及其生命活动规律的科学。

形态研究:光镜、电镜功能研究:新陈代谢、相互关系(二)细胞生物学的发展阶段①英国,Robert Hooke,发现细胞,cell。

②德国,Schleiden和Schwann,提出细胞学说(cell theory):一切生物都是由细胞组成的,细胞是生物形态结构和功能的基本单位。

(三)真核生物(Eukaryocyte)与原核生物(Prokaryocyte)的比较二、细胞膜膜脂——磷脂、胆固醇、糖脂膜蛋白——膜内在蛋白、膜外在蛋白、脂锚定蛋白糖脂和糖蛋白化学组成流动性不对称性生物膜的特征细胞膜的分子结构模型片层结构模型单位膜模型液态镶嵌模型脂筏模型细胞膜的结构(一)膜相结构:细胞中由膜参与组成的结构,如细胞膜、内质网、高尔基复合体、线粒体、溶酶体、核膜等。

生细胞质膜物膜内膜系统(endomembrane system):细胞内在结构和功能上为连续统一体的细胞内膜单位膜 (unit membrane):在透射电镜下,生物膜呈现“两暗夹一明”的三层结构,内外两个电子致密的“暗”层中间夹着电子密度低的“亮”层,这种结构称为单位膜。

(二)细胞膜的分子结构及特性细胞表面:细胞外被、质膜和表层胞质溶液磷脂:双亲性(双分子层,球状分子团,脂质体 liposome )胆固醇:双亲性,能够稳定膜和调节膜流动性膜脂 糖脂:与细胞识别有关,主要位于质膜的非胞质面,(基本骨架)整合蛋白:跨膜蛋白、贯穿,胞外、胞质和跨膜三个结构域 膜蛋白 外周蛋白:非共价键,容易分离 ,温和方法可去除(PH,离子强度) 锚定蛋白:共价键,只能用去垢剂分离(SDS )糖蛋白:糖同氨基酸连接方式:O —连接,N —连接膜糖类 糖 脂 : 膜糖(细胞外被)的功能:保护作用、分子识别、蛋白质进行正确的运输和定位、免疫原性,ABO 血型生物膜的特征:流动性:膜脂、膜蛋白处于不断运动中 方向性:运输,识别不对称性:细胞膜各种成分的分布不均匀性功能特异性影响膜流动性的因素:脂肪酸链的饱和程度(饱和度大,流动性弱)与其长度(短,流动性强)、胆固醇的含量(多,弱)、卵磷脂和鞘磷脂的比值(高,强)、膜蛋白量(多,弱)(三)生物膜的分子结构模型:片层结构模型 、单位膜模型、流动镶嵌模型(强调了膜的流动性和不对称性)、脂筏模型(蛋白质相互作用、参与信号转导、蛋白质运输)(四)小分子细胞膜跨膜运输( 重点)细胞膜具有半透过性(选择性透过);扩散率取决于分子量大小、脂溶性、极性、电荷。

细胞生物学重点总结

细胞生物学重点总结

细胞生物学重点总结引言细胞是生命的基本单位,细胞生物学是研究细胞结构和功能的学科。

通过对细胞的研究,我们可以了解生命的基本机制以及疾病的发生机制。

本文将重点总结细胞生物学的主要内容,包括细胞的基本结构和组成、细胞代谢、细胞分裂、细胞信号传导等方面。

细胞的基本结构和组成细胞主要由细胞膜、细胞质和细胞核组成。

细胞膜是细胞的外层包裹结构,具有选择性通透性,起到维持细胞内外环境稳定的作用。

细胞质是细胞内的胶体溶液,包含各种细胞器和细胞骨架。

细胞核是细胞内的控制中心,含有遗传物质DNA,并通过转录和翻译过程控制细胞的生命活动。

细胞代谢细胞代谢是指细胞内各种化学反应的总和。

细胞代谢包括两个基本过程:储能(合成)和能量释放(分解)。

储能过程主要通过合成有机物来储存能量,并且消耗ATP;能量释放过程主要通过分解有机物来释放能量,并产生ATP。

其中,三磷酸腺苷(ATP)是细胞内最重要的能量源,它的合成和分解是细胞代谢的关键过程。

细胞分裂细胞分裂是细胞生物学中最基本的生命现象之一,它是细胞增殖和生长的基础。

细胞分裂包括有丝分裂和减数分裂两种类型。

有丝分裂是指细胞的染色体在分裂过程中以一定的顺序减半,并分成两个相同的子细胞;减数分裂是在有丝分裂的基础上进行的,产生四个非常不同的子细胞,用于生殖细胞的形成。

细胞信号传导细胞信号传导是指细胞内外信息的传递和响应过程。

细胞信号分为内源性信号和外源性信号。

内源性信号主要通过细胞内信号通路传递,包括细胞膜受体、第二信使和转录因子等。

外源性信号主要通过细胞外分子信号(例如激素)和细胞外信号通路传递。

结论细胞生物学是研究细胞结构和功能的学科,通过对细胞的研究,我们可以了解生命的基本机制,以及疾病的发生和发展机制。

本文总结了细胞生物学的几个重点内容,包括细胞的基本结构和组成、细胞代谢、细胞分裂和细胞信号传导等。

希望这些知识能够帮助读者更好地理解细胞生物学的基本概念和原理。

细胞学各章重点总结

细胞学各章重点总结

细胞学各章重点总结细胞学是研究生物体的基本单位——细胞的结构、功能和发育的学科。

本文对细胞学各章的重点进行总结。

第一章:细胞的组成- 细胞是由细胞膜包围的。

细胞膜由磷脂双分子层组成,具有选择性通透性。

- 细胞内含有细胞质,其中包括细胞器和细胞基质。

- 细胞器包括核、内质网、高尔基体、线粒体和溶酶体等,它们各司其职,共同维持细胞的正常功能。

第二章:细胞核的结构和功能- 细胞核是细胞的控制中心,其中包含遗传物质DNA。

- 细胞核由核膜、染色质和核仁组成。

- DNA通过染色质和染色体形式存在于细胞核中,起到存储遗传信息的作用。

- 核仁是合成和组装核糖体的地方,参与蛋白质合成过程。

第三章:细胞的分裂- 细胞的分裂是细胞生命周期的重要阶段,包括有丝分裂和减数分裂。

- 在有丝分裂中,细胞经历一系列的步骤,包括有丝分裂前期、有丝分裂中期、有丝分裂后期和细胞质分裂。

- 减数分裂是生殖细胞的分裂方式,经历一次DNA复制和两次分裂步骤,最终产生四个单倍体细胞。

第四章:细胞的生物合成- 细胞通过生物合成过程合成各种生物大分子,包括蛋白质、核酸、脂类和糖类等。

- 蛋白质合成通过转录和翻译两个步骤完成,分别在细胞核和细胞质中进行。

- 核酸合成包括DNA复制和RNA合成,分别在细胞核和细胞质中进行。

- 脂类和糖类合成在细胞质中进行,参与细胞膜和细胞器的构建和功能维持。

第五章:细胞的运动- 细胞的运动主要包括细胞内物质的运输和整个细胞的运动。

- 细胞内物质的运输包括胞浆流动、细胞器的移动和囊泡的转运等。

- 细胞的运动主要通过细胞骨架和马达蛋白驱动,例如微管和肌动蛋白等。

以上是对细胞学各章重点的简要总结,希望对你的学习有所帮助。

如需深入了解,请参考相关教材或查阅更多资料。

细胞生物学小结

细胞生物学小结

真核细胞内膜系统●细胞内膜系统指结构、功能乃至生物发生上相互关联、由膜包被的细胞器或细胞结构,主要包括内质网、高尔基体、溶酶体、过氧化物体、分泌泡和胞内体等。

●内质网可分为rER和sER两大类。

rER的主要功能包括合成分泌性蛋白、膜蛋白及细胞器留驻蛋白,蛋白质的修饰加工(主要为N-糖基化)和多肽链的折叠;sER的主要功能是合成脂类,并具有解毒等功能。

●高尔基体是一个极性细胞器,由高尔基体顺面网状结构(CGN)、顺面膜囊、中间膜囊、反面膜囊、反面网状结构(TGN) 5部分组成,是蛋白质加工(主要发生O-连接的糖基化)、分选、包装与运输的中心,在膜流中起枢纽的作用。

●溶酶体中含有多种酸性水解酶,主要的功能是进行细胞内的消化作用。

溶酶体的发生是蛋白质分选的典型代表,其分选信号是M6P,是在信号斑指导下发生的特异位点的磷酸化。

通过高尔基体网格蛋白有被小泡分选入特定的分泌泡。

●过氧化物体是一种异质性的细胞器,其发生是通过已有过氧化物体的分裂形成的。

●蛋白质分选主要分为三条途径:共翻译转运、共翻译插入和翻译后转运。

从细胞内合成的蛋白质运输方式看,蛋白质可分为四类:跨膜转运、膜泡运输、选择性门控转运和细胞质基质中的留驻蛋白的转运。

蛋白质一级结构上的信号肽及停止转移序列决定不同蛋白质通过不同途径分选入特定的细胞器或细胞位置,执行各自功能(信号假说)。

●膜泡运输是细胞内分泌蛋白分泌(胞吐)和细胞摄取物质的重要途径。

膜泡运输中有三种有被小泡参与:COP II、COP I和网格蛋白有被小泡。

COPII有被小泡负责rER→Gol的正向运输;COPI有被小泡负责Gol→rER的反向运输;网格蛋白有被小泡负责高尔基体TGN向质膜、胞内体、溶酶体的出芽及细胞的内吞作用。

运输小泡的形成、转运及与靶膜的融合是一个特异性的过程,由运输泡上的v-SNARE和靶膜上的t-SNARE间特异性识别负责,Rab蛋白在此过程中起辅助作用。

本章重点及难点●认识内质网、高尔基体的功能;●溶酶体的的生物发生过程;●信号肽假说、蛋白质分选的基本途径及类型;●COP II、COP I及网格蛋白有被小泡形成的机理;●小泡的定向运输和融合机理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章细胞质膜本章小结•细胞膜与其他生物膜一样都是由膜脂与膜蛋白构成的。

•膜脂主要包括甘油磷脂、鞘脂和胆固醇。

甘油磷脂是构成膜的主要成分,主要包括磷脂酰胆碱、磷脂酰丝氨酸、磷脂酰乙醇胺和磷脂酰肌醇等;鞘脂是鞘氨醇的衍生物,主要包括神经鞘磷脂、脑苷脂和神经节苷脂等。

•膜蛋白可分为内在蛋白、外在蛋白和脂锚定蛋白3大类。

•内在蛋白可以α单次或多次螺旋、β折叠片或形成大复合物的方式与膜脂结合;外在蛋白靠离子键或其他弱键与膜内在蛋白或膜脂结合;脂锚定蛋白通过与之共价相连的脂肪酸(质膜内侧)或糖基磷脂酰肌醇(质膜外侧)锚定在质膜上。

•膜的流动性与膜的不对称性是生物膜的最基本特性。

•膜的流动性表现:膜脂分子具有侧向扩散、旋转运动、弯曲运动与翻转运动;膜蛋白具有侧向扩散和旋转运动,但不具备翻转运动。

•膜的不对称性表现:膜脂分布的不对称性(质膜外小页SM、PC多,质膜内小页PS、PE多);膜蛋白的不对称性(糖蛋白全部分布于质膜外小页面)。

•膜骨架是细胞质膜与膜内的细胞骨架纤维形成的复合结构,它参与维持细胞的形态、并协助细胞质膜完成多种的生理功能。

•各种不同的膜蛋白与膜脂分子的协同作用不仅为细胞的生命活动提供了稳定的内环境,而且还行驶着物质转运、信号传递、细胞识别等多种复杂的功能。

•胞膜窖是近年来发现的新的细胞质膜结构,可能是窖蛋白与脂筏结合形成的一种特殊结构。

在细胞的胞饮、蛋白质分选、胆固醇的发生、信号转导、肿瘤的发生中具有重要作用。

本章重点与难点•膜脂与膜蛋白的主要类型•不同膜蛋白与膜脂的结合方式•膜脂与膜蛋白的运动方式•膜的流动性与不对称性特征•细胞质膜的基本功能第五章物质的跨膜运输本章小结•细胞质膜具有选择通透性,是细胞与细胞外环境之间物质运输的屏障。

广义的细胞物质运输包括跨膜运输、胞内运输与转细胞运输。

•几乎所有小的有机分子和带电荷的无机离子的跨膜运输都需要膜运输蛋白。

膜转运蛋白包括:载体蛋白、通道蛋白以及微生物分泌的离子载体。

•载体蛋白是多次跨膜的整合蛋白,每种载体蛋白能与特定的溶质分子结合,通过构象改变介导溶质分子的被动或主动跨膜运转。

•通道蛋白形成跨膜的亲水性通道,介导溶质的被动跨膜运输。

可分为离子通道与水通道。

•根据应答信号的不同,离子通道可分为:电压门通道、配体门通道和压力激活通道。

离子通道具有3个显著特征:①具有离子选择性;②不与转运离子结合,转运速率高且无饱和性;③非连续性开放而是门控的。

•水通道是细胞膜上四个相同水通道蛋白亚基构成的四聚体,每个亚基为6次跨膜蛋白,特异性被动转运水。

•P-型离子泵包括:Na+/K+-泵、Ca2+-泵、P-型H+泵等。

在转运离子过程中,P-型离子泵发生磷酸化与去磷酸化引起构象改变,实现离子跨膜转运。

•Na+/K+-泵每个循环消耗1个ATP泵出3个Na+泵入2个K+。

动物细胞借助Na+/K+-泵维持细胞渗透平衡;同时利用胞外高浓度的Na+所储存的能量,通过协同运输从胞外摄取营养。

植物细胞、真菌和细菌质膜上没有Na+/K+-泵而具有P-型H+泵,将H+泵出细胞,建立跨膜H+的电化学势,驱动细胞的协同运输。

Ca2+-泵每消耗1分子ATP泵出2个Ca2+。

Ca2+-泵将Ca2+-泵出细胞或泵入细胞内钙库(内质网、线粒体等),维持细胞内低浓度的Ca2+。

•离子载体大多是微生物合成的小的疏水分子,溶于膜的脂双层中,能保护带电离子被动通过脂双层。

可分为通道形成离子载体(短杆菌肽)和可动离子载体(缬氨霉素)。

•物质的跨膜运输分为简单扩散、被动运输与主动运输。

简单扩散是小分子物质以热自由运动方式顺电化学梯度或浓度梯度通过脂双层进出细胞。

•被动运输(协助扩散)指溶质在膜蛋白协助下,顺电化学梯度或浓度梯度通过细胞膜进出细胞。

需载体蛋白参与,具有运输物质的选择性和转运饱和性,比简单扩散高几个数量级。

•主动运输是由载体蛋白所介导的物质逆浓度梯度或电化学梯度由浓度低的一侧向浓度高的一侧进行跨膜转运的方式。

主动运输需要与某种释放能量的过程相耦联,主动运输可分为ATP直接提供能量(ATP驱动泵)、ATP间接提供能量(协同运输)和光能驱动3种类型。

•ATP直接提供能量的主动运输可分为4类:P-型离子泵、V-型离子泵、F-型离子泵和ABC超家族。

前3种只转运离子,后一种主要转运小分子。

•P-型离子泵包括:Na+/K+-泵、Ca2+-泵、P-型H+泵等。

在转运离子过程中,P-型离子泵发生磷酸化与去磷酸化引起构象改变,实现离子跨膜转运。

•Na+/K+-泵每个循环消耗1个ATP泵出3个Na+泵入2个K+。

动物细胞借助Na+/K+-泵维持细胞渗透平衡;同时利用胞外高浓度的Na+所储存的能量,通过协同运输从胞外摄取营养。

植物细胞、真菌和细菌质膜上没有Na+/K+-泵而具有P-型H+泵,将H+泵出细胞,建立跨膜H+的电化学势,驱动细胞的协同运输。

Ca2+-泵每消耗1分子ATP泵出2个Ca2+。

Ca2+-泵将Ca2+-泵出细胞或泵入细胞内钙库(内质网、线粒体等),维持细胞内低浓度的Ca2+。

•V-型离子泵、F-型离子泵结构相似但功能不同。

V-型离子泵分布于动物细胞胞内体、溶酶体和植物细胞液泡膜上等,是利用ATP水解供能从细胞质基质中逆H+电化学梯度泵出H+进入细胞器,以维持基质pH中性和细胞器内pH酸性;F-型离子泵又称为H+-ATP合酶,分布于细菌质膜、线粒体内膜和叶绿体类囊体膜上,利用H+顺浓度梯度运动所释放的能量合成ATP。

•ABC超家族由2个跨膜结构域(T)和2个胞质侧ATP结合域(A)构成,T结构域形成运输分子的跨膜通道。

正常生理条件下,ABC蛋白是细菌质膜上糖、氨基酸、磷脂和肽的转运蛋白;是哺乳类细胞亲脂性药物、胆固醇和其他小分子的转运蛋白。

•协同转运是一类由Na+/K+泵(或H+-泵)与载体蛋白协同作用,靠间接消耗ATP所完成的主动运输方式。

可分为同向转运和反向转运。

•真核细胞通过胞吞作用和胞吐作用完成大分子与颗粒性物质的跨膜运输,又称为批量运输。

•胞吞作用又可分为吞噬作用和胞饮作用。

吞噬作用是某些特化的细胞具有的信号触发过程,摄入大的颗粒性物质,需要微丝及其结合蛋白的帮助。

胞饮作用是所有真核细胞都具有的一个连续发生的过程,摄入溶液和分子;主要有网格蛋白依赖的胞吞、胞膜窖依赖的胞吞、大型胞饮作用及非网格蛋白/胞膜窖依赖的胞吞作用等类型。

胞吐作用是将细胞内的分泌泡或其他某些膜泡中的物质通过细胞质膜运出细胞的过程,可分为组成型胞吐途径和调节型胞吐途径。

组成型胞吐是所有真核细胞都有的胞吐,其缺省途径是:粗面内质网→高尔基体→分泌泡→细胞表面。

调节型胞吐是特化的分泌细胞受到信号刺激是,储存于细胞内的分泌泡与质膜融合释放内含物的途径。

•胞吞作用与胞吐作用均涉及膜的融合,需要细胞提供为此提供能量,因此属于主动运输。

•胞吞作用与胞吐作用的动态过程对质膜更新(膜流)和维持细胞的生存与生长是必要的。

难点与重点•膜转运蛋白的类型和功能•被动运输的主要类型和各自特点•主动运输的3种主要类型•ATP驱动泵的类型及其作用机制•协同运输的两种主要类型•胞饮作用与吞噬作用的联系与区别•组成型胞吐与调节型胞吞的联系与区别第六章线粒体与叶绿体本章小结•线粒体和叶绿体都具有双层膜结构,都具有内外膜、膜间隙和基质;外膜含有通透性高的孔蛋白;内膜通透性低,线粒体向内折叠形成嵴;叶绿体内膜并不向内折叠成嵴,但具有膜结构的类囊体;•线粒体是氧化代谢的中心,糖酵解生成的丙酮酸进入线粒体基质,经TCA生成CO2、NADH或FADH2,电子进入呼吸链进行氧化磷酸化,最后生成ATP和水。

•线粒体内膜上分布有由黄素蛋白、细胞色素、泛醌、铁硫蛋白和铜原子组成的4种电子传递复合物(I、II、III、IV);由复合物I、III、IV组成NADH (主)呼吸链,由复合物II、III、IV组成FADH2(次)呼吸链;•叶绿体的类囊体膜上分布有由细胞色素、黄素蛋白、质体醌、质体蓝素和铁氧还蛋白等构成的电子传递复合物,主要包括PS II、PS I 及细胞色素bf复合物。

•叶绿体的主要功能是进行光合作用。

光合作用分为“光反应”和“碳固定”两个过程。

•线粒体和叶绿体都为半自主性细胞器。

•线粒体和叶绿体的增殖主要是通过分裂进行的,成熟的线粒体可以进行分裂,但成熟的叶绿体不能分裂。

线粒体的融合与分裂及叶绿体的分裂与一类大分子GTPase蛋白密切相关。

•有关线粒体和叶绿体的起源主要有内共生学说和非内共生学说。

难点与重点•膜转运蛋白的类型和功能•被动运输的主要类型和各自特点•主动运输的3种主要类型•ATP驱动泵的类型及其作用机制•协同运输的两种主要类型•胞饮作用与吞噬作用的联系与区别•组成型胞吐与调节型胞吞的联系与区别第七章细胞基质与内膜系统本章小结●细胞内膜系统指结构、功能乃至生物发生上相互关联、由膜包被的细胞器或细胞结构,主要包括内质网、高尔基体、溶酶体、分泌泡和胞内体等。

●内质网可分为rER和sER两大类。

rER的主要功能包括合成分泌性蛋白、膜蛋白及细胞器留驻蛋白,蛋白质的修饰加工(主要为N-糖基化)和多肽链的折叠;sER的主要功能是合成脂类,并具有解毒等功能。

●高尔基体是一个极性细胞器,由高尔基体顺面网状结构(CGN)、顺面膜囊、中间膜囊、反面膜囊、反面网状结构(TGN) 5部分组成,是蛋白质加工(主要发生O-连接的糖基化)、分选、包装与运输的中心,在膜流中起枢纽的作用。

●溶酶体中含有多种酸性水解酶,主要的功能是进行细胞内的消化作用。

溶酶体的发生是蛋白质分选的典型代表,其分选信号是M6P,是在信号斑指导下发生的特异位点的磷酸化。

通过高尔基体网格蛋白有被小泡分选入特定的囊泡。

●过氧化物体是一种异质性的细胞器,其发生是通过已有过氧化物体的分裂形成的。

本章重点及难点1. 内质网的主要功能2. 内质网应激及其信号调控3. 高尔基体的结构特征及其生理功能4. 溶酶体的的生物发生过程第八章蛋白质分选与膜泡运输本章小结●蛋白质分选主要分为2条途径:后翻译转运途径和共翻译转运途径。

从细胞内合成的蛋白质转运方式或机制不同,蛋白质转运可分为4类:蛋白质的跨膜转运、膜泡运输、选择性的门控转运和细胞质基质中的蛋白质的转运。

●蛋白质一级结构上的信号肽及停止转移序列决定不同蛋白质通过不同途径分选入特定的细胞器或细胞位置,执行各自功能(信号假说)。

●细胞质中合成的线粒体、叶绿体和过氧化物酶体蛋白,其特有的靶向序列决定了蛋白质的归宿。

膜泡运输是细胞内分泌蛋白分泌(胞吐)和细胞摄取物质的重要途径。

膜泡运输中有三种有被小泡参与:COP II、COP I和网格蛋白/接头蛋白包被膜泡。

COP II包被膜泡负责rER→Gol的顺向运输;COP I包被膜泡负责Gol→rER的逆向运输;网格蛋白/接头蛋白包被膜泡负责高尔基体TGN 向质膜、胞内体、溶酶体的出芽及细胞的内吞作用。

相关文档
最新文档