第九章 线性回归和相关分析

合集下载

线性相关分析和线性回归

线性相关分析和线性回归

相关关系从单变量从发,在一个样本数据中想知道某一指标在样本中的离散程度用方差(样本偏离均值的平均距离的平方数,也叫总变差)或者标准差(样本偏离均值的平均距离)表示。

两个变量的时候,这两个变量在样本中的离散程度用协方差(类比于方差)表示。

协方差表示的是总变差,描述的是两个变量的总体误差(总体误差的期望)。

协方差:协方差:cov(X,Y)=E[(X−E[X])(Y−E[Y])]数据点的协方差:2数据点的协方差:(x1−ux)(y1−uy)+(x2−ux)(y2−uy)2如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值(用上图公式表示的是每一个点与均值的误差值都是正数);如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值(用上图公式表示的是每一个点与均值的误差值都是负数)。

协方差为正值,表示两个变量正相关;协方差为负值,表示两个变量负相关;协方差为0则表示不相关(每一个点与均值的误差值有正有负)。

相关系数协方差的数值可以衡量两个变量的关系,在同一物理量纲之下有一定的作用,但同样的两个量采用不同的量纲使它们的协方差在数值上表现出很大的差异。

(举个向量的栗子,两个向量的夹角大小表示相关关系,但是两向量的长度不影响夹角的大小,协方差的计算类似于计算向量的距离,向量的距离也可以表示向量之间的关系,但是会受到向量长度的影响)。

因此,相关关系需要去掉量纲的影响,使用协方差同时除以X 和Y的标准差,这就是相关系数(皮尔逊相关系数)相关系数:相关系数r:cov(X,Y)σxσy相关系数r的取值范围是[-1,1],正值表示正相关,负值表示负相关。

当相关系r>0.6时,可以认为两个变量之前强相关,0.3<=r<=0.6时,可以认为是中等相关,当r<0.3时认为弱相关,r=0时表示不相关。

线性回归与相关分析

线性回归与相关分析

线性回归与相关分析一、引言线性回归和相关分析是统计学中常用的两种数据分析方法。

线性回归用于建立两个或多个变量之间的线性关系,而相关分析则用于衡量变量之间的相关性。

本文将介绍线性回归和相关分析的基本原理、应用场景和计算方法。

二、线性回归线性回归是一种建立自变量和因变量之间线性关系的统计模型。

它的基本思想是通过找到最佳拟合直线来描述自变量与因变量之间的关系。

线性回归模型可以表示为:Y = β0 + β1X + ε,其中Y表示因变量,X表示自变量,β0和β1分别表示截距和斜率,ε表示误差项。

线性回归的目标是最小化观测值与模型预测值之间的差异,常用的优化方法是最小二乘法。

线性回归的应用场景非常广泛。

例如,我们可以利用线性回归来分析广告费用和销售额之间的关系,或者分析学生学习时间和考试成绩之间的关系。

线性回归还可以用于预测未来趋势。

通过建立一个合适的线性回归模型,我们可以根据历史数据来预测未来的销售额或者股票价格。

在计算线性回归模型时,我们首先需要收集相关的数据。

然后,可以使用统计软件或者编程语言如Python、R等来计算最佳拟合直线的参数。

通过计算截距和斜率,我们可以得到一个最佳拟合线,用于描述自变量和因变量之间的关系。

此外,我们还可以借助评价指标如R 平方来衡量模型的拟合程度。

三、相关分析相关分析是一种用于衡量两个变量之间相关性的统计方法。

它可以帮助我们判断变量之间的线性关系的强度和方向。

相关系数是表示相关性的一个指标,常用的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。

皮尔逊相关系数适用于测量两个连续变量之间的线性关系,其取值范围在-1到1之间。

当相关系数接近1时,表示两个变量呈正相关,即随着一个变量增加,另一个变量也增加。

当相关系数接近-1时,表示两个变量呈负相关,即随着一个变量增加,另一个变量减小。

当相关系数接近0时,表示两个变量之间没有线性关系。

斯皮尔曼相关系数适用于测量两个有序变量之间的单调关系,其取值范围也在-1到1之间。

回归分析与相关分析

回归分析与相关分析

回归分析与相关分析导言回归分析与相关分析是统计学中常用的两种分析方法,用于研究变量之间的关系。

在本文中,我们将对回归分析和相关分析进行详细探讨,并介绍它们的原理、应用和实例。

一、回归分析回归分析是通过建立一个数学模型来描述一个或多个自变量与因变量之间的关系。

它可以帮助我们预测因变量的取值,并理解自变量对因变量的影响程度。

1.1 简单线性回归简单线性回归是回归分析中最常见的一种方法,它假设自变量和因变量之间存在线性关系。

通过最小二乘法,我们可以得到最佳拟合直线,从而预测因变量的取值。

1.2 多元线性回归多元线性回归是对简单线性回归的拓展,它可以同时考虑多个自变量对因变量的影响。

通过最小二乘法,我们可以得到最佳的多元回归方程,从而预测因变量的取值。

1.3 逻辑回归逻辑回归是回归分析在分类问题上的一种应用。

它能够根据自变量的取值,预测因变量的类别。

逻辑回归常用于预测二分类问题,如预测一个学生是否会被大学录取。

二、相关分析相关分析是研究两个或多个变量之间相关关系的一种方法。

它可以帮助我们了解变量之间的关联程度,以及一个变量是否能够作为另一个变量的预测因子。

2.1 皮尔逊相关系数皮尔逊相关系数是一种衡量两个连续变量之间线性相关程度的统计量。

它的取值范围在-1到1之间,当相关系数接近1时,表示两个变量正相关;当相关系数接近-1时,表示两个变量负相关;当相关系数接近0时,表示两个变量无相关关系。

2.2 斯皮尔曼相关系数斯皮尔曼相关系数是一种衡量两个变量之间的非线性相关程度的统计量。

它的取值范围也在-1到1之间,但它适用于衡量非线性关系和顺序关系。

斯皮尔曼相关系数广泛应用于心理学和社会科学领域。

应用实例为了更好地理解回归分析与相关分析的应用,让我们通过一个实际案例来说明。

假设我们想研究某个国家的人均GDP与教育水平之间的关系。

我们收集了10个州的数据,包括每个州的人均GDP和受教育程度指数。

我们可以利用回归分析来建立一个数学模型,从而预测人均GDP与受教育水平之间的关系。

概率论--线性回归

概率论--线性回归
2
i =1
=(6050.6-0.632×14047)/9=60.37 2. 一元线性回归的假设检验(相关系数法) 问题:变量Y与X间是否存在线性相关关系? 相关系数法:是基于试验数据检验变量间线性相关关系 是否显著的一种方法。
Chapter 9 回归分析
12
Mathematical Statistics

R =
l xz l xx l zz
=-0.996
︱R︱=0.996>0.765=R0.01(8), 可以认为X与Y存在显著的指数相关关系。
Chapter 9 回归分析
21
Mathematical Statistics
2 2 i i
∑xy
− 10 x y = − 24.554
19
Mathematical Statistics
Chapter 9 回归分析
ˆ ˆ a ′ = z − bx = 6.527 + 0.2976 × 5.5 = 8.1642
从而
ˆ z = 8 .1642 − 0 .2976 x
ˆ a′ ˆ bx
Chapter 9 回归分析
5
Mathematical Statistics
记 Y i 为 Y i 的估计值 , 则
Y
Y
i
i
= a + b xi + ε i = Y i + ε i
这可写成 :
ε = Y −Y = Y − ( a + b x ) 这表明 ε 是 Y的实际观测值与
i i i i i
估计值之差,即拟合误 差。
5.42 5.32
18
Mathematical Statistics

9 第九章 回归与相关

9 第九章   回归与相关

估计。
一)、加权最小二乘估计 假定各观测值的权重为Wi,求解回归方 程就要使得以下加权后的残差平方和最小
ss残W Wi Yi aw bw X
2
bw
aW
WX WY WXY W l l WX WX W WY b WX Y b W
二、直线回归方程的求法 直线方程为: a为Y轴上的截距;b为斜率,表示X 每改变一个单位,Y的变化的值,称为回 归系数; 表示在X值处Y的总体均数 估计值。为求a和b两系数,根据数学上 的最小二乘法原理,可导出a和b的算式 如下:
例9-1 某地方病研究所调查了8名正常 儿童的尿肌酐含量(mmol/24h)如表91。估计尿肌酐含量(Y)对其年龄(X) 的关系。
表14,rs界值表,P<0.01,故可认为当地居 民死因的构成和各种死因导致的潜在工作损 失年数WYPLL的构成呈正相关。 二、相同秩次较多时rs的校正 当X及Y中,相同秩次个数多时,宜用下式校 正
第四节
加权直线回归
在一些情况下,根据专业知识考虑 并结合实际数据,某些观察值对于估计 回归方程显得更“重要”,而有些不 “重要”,此时可以采用加权最小二乘
lYY的分析 如图9-4,p点的纵坐标被回归直线与均数 截成三个线段:
图9-4
平方和划分示意图
第一段 第二段
第三段
上述三段代数和为:
移项:
p点是散点图中任取一点,将所有的点子都
按上法处理,并将等式两端平方后再求和,
则有:
它们各自的自由度分别为: 可计算统计量F:
SS回 SS 残
2
F
回 残
表9-3某省1995年到1999年居民死因构成与WYPLL构成

第9章相关与回归分析ppt课件

第9章相关与回归分析ppt课件

9.1 相关关系
散点图的作用就是通过两个数值型变量之间在二维平面的直角坐标中 的分布图形,粗略地把握变量之间相关关系的基本态势。例如变量之间 的线性特征越显著,说明其相关关系越强,反之则越弱;两个变量之间 的数值呈同方向变化为正相关,否则为负相关。
借助散点图还可以概略地区分和识别变量之间的非线性相关的具体类 型,为回归分析确定回归方程的具体形式提供依据,这也是散点图的重 要功能。例如,通过散点图展示的图形特征,初步地分辨出相关关系是 直线,还是二次曲线、三次曲线、指数曲线、对数曲线、S曲线等。所 以,散点图不仅是相关分析,也是回归分析中经常使用的最简便的基本 分析工具。
2019年12月6日/*
《统计学教程》
第9章 相关与回归分析
9.2 一元线性回归
关于随机误差,线性回归理论模型具有以下三项假定。
(1) 0均值。剩余变动为不可观测的随机误差,其数学期望为0。
(2)方差齐性。对于所有的自变量x,随机误差的方差相同。
(3)独立性。各项随机误差之间,以及各项随机误差与对应的自变量 之间均不相关,即有
2019年12月6日/*
《统计学教程》
第9章 相关与回归分析
9.1 相关关系
相关系数的取值范围为 1r1。
当相关系数的取值为正时,说明变量和变量的数值变化是同方向的, 即为正相关;若相关系数的取值为负,则说明变量和变量的数值变化是 反方向的,即为负相关。
相关系数的正负取值取决于Lxy的正负。
E y01x
(9.9)
一元线性回归方程在直角坐标系中为一条直线,所以也称为直线回归 方程。
2019年12月6日/*
《统计学教程》
第9章 相关与回归分析
9.2 一元线性回归

回归分析与相关分析

回归分析与相关分析

回归分析与相关分析回归分析是通过建立一个数学模型来研究自变量对因变量的影响程度。

回归分析的基本思想是假设自变量和因变量之间存在一种函数关系,通过拟合数据来确定函数的参数。

回归分析可以分为线性回归和非线性回归两种。

线性回归是指自变量和因变量之间存在线性关系,非线性回归是指自变量和因变量之间存在非线性关系。

回归分析可用于预测、解释和控制因变量。

回归分析的应用非常广泛。

例如,在经济学中,回归分析可以用于研究收入与消费之间的关系;在医学研究中,回归分析可以用于研究生活方式与健康之间的关系。

回归分析的步骤包括确定自变量和因变量、选择合适的回归模型、拟合数据、检验模型的显著性和解释模型。

相关分析是一种用来衡量变量之间相关性的方法。

相关分析通过计算相关系数来度量变量之间的关系的强度和方向。

常用的相关系数有Pearson相关系数、Spearman相关系数和判定系数。

Pearson相关系数适用于连续变量,Spearman相关系数适用于顺序变量,判定系数用于解释变量之间的关系。

相关分析通常用于确定两个变量之间是否相关,以及它们之间的相关性强度和方向。

相关分析的应用也非常广泛。

例如,在市场研究中,相关分析可以用于研究产品价格与销量之间的关系;在心理学研究中,相关分析可以用于研究学习成绩与学习时间之间的关系。

相关分析的步骤包括确定变量、计算相关系数、检验相关系数的显著性和解释相关系数。

回归分析与相关分析的主要区别在于它们研究的对象不同。

回归分析研究自变量与因变量之间的关系,关注的是因变量的预测和解释;相关分析研究变量之间的关系,关注的是变量之间的相关性。

此外,回归分析通常是为了解释因变量的变化,而相关分析通常是为了量化变量之间的相关性。

综上所述,回归分析和相关分析是统计学中常用的两种数据分析方法。

回归分析用于确定自变量与因变量之间的关系,相关分析用于测量变量之间的相关性。

回归分析和相关分析在实践中有广泛的应用,并且它们的步骤和原理较为相似。

第九章 相关分析

第九章 相关分析
25
第九章 相关分析
( y y)2
=
( y yc )2
+
( yc y)2
由此可以推导出:
( y yc ) ( y y) ( yc y)
2 2
2
2
Lyy (a bx a b x) Lyy b ( x x)
2 2
Lyy b Lxx
表明两变量完全不相关。 (4)当计算相关系数的原始数据较多(如50项以 上)时,认为相关系数在0.3以下为无相关, 0.3以上为有相关;0.3-0.5为低度相关;0.5-0.8 为显著相关;0.8以上为高度相关。
9
第九章 相关分析
相关系数计算分析例题
生产费用
序 月产量 号 1 1.2 2 2.0 3 3.1 4 3.8 5 5.0 6 6.1 7 7.2 8 8.0 ∑ 36.4
2 2
x n y y
2

2

0.97
说明产量和生产费用之间存在高度正相关。
第九章 相关分析
第三节
回 归 分 析
一、回 归 分 析 的 意 义 回归分析是对具有相关关系的两个或两个以 上变量之间的数量变化的一般关系进行测定,确 立一个相应的数学表达式,以便从一个已知量来 推测另一个未知量,为估算预测提供一个重要的 方法。 二、回 归 的 种 类 按自变量的个数分 按回归线的形态分 一元回归 多元回归 线性回归 非线性回归
Lxx x b b y Lyy
y br r x
Lyy L21 xx
第九章 相关分析
五 回归分析与相关分析的特点
1、回归分析必须区分自变量和因变量,而相关 分析不必区分。 2、回归分析的两个变量一个是自变量,一个是 因变量,通过给定自变量的值来推算因变量 的可能值;而相关分析的两个变量都是随机 变量。 3、回归分析中对于因果关系不甚明确的两个变量, 可以建立两个回归方程;而相关分析只能计算 出一个相关系数。 4、一种回归方程只能做一种推算,即只能给出自 变量的值来推算因变量的值,不能逆推。

第九章 相关与回归分析

第九章  相关与回归分析

第9章相关与回归分析【教学内容】相关分析与回归分析是两种既有区别又有联系的统计分析方法。

本章阐述了相关关系的概念与特点;相关关系与函数关系的区别与联系;相关关系的种类;相关关系的测定方法(直线相关系数的含义、计算方法与运用);回归分析的概念与特点;回归直线方程的求解及其精确度的评价;估计标准误差的计算。

【教学目标】1、了解相关与回归分析的概念、特点和相关分析与回归分析的区别与联系;2、掌握相关分析的定性和定量分析方法;3、掌握回归模型的拟合方法、对回归方程拟合精度的测定和评价的方法。

【教学重、难点】1、相关分析与回归分析的概念、特点、区别与联系;2、相关与回归分析的有关计算公式和应用条件。

第一节相关分析的一般问题一、相关关系的概念与特点(一)相关关系的概念在自然界与人类社会中,许多现象之间是相互联系、相互制约的,表现在数量上也存在着一定的联系。

这种数量上的联系和关系究其实质,可以概括为两种不同类型,即函数关系与相关关系。

相关关系:是指现象之间客观存在的,在数量变化上受随机因素的影响,非确定性的相互依存关系。

例如,商品销售额与流通费用率之间的关系就是一种相关关系。

(二)相关关系的特点1、相关关系表现为数量相互依存关系。

2、相关关系在数量上表现为非确定性的相互依存关系。

二、相关关系的种类1、相关关系按变量的多少,可分为单相关和复相关2、相关关系从表现形态上划分,可分为直线相关和曲线相关3、相关关系从变动方向上划分,可分为正相关和负相关4、按相关的密切程度分,可分为完全相关、不完全相关和不相关三、相关分析的内容相关分析是对客观社会经济现象间存在的相关关系进行分析研究的一种统计方法。

其目的在于对现象间所存在的依存关系及其所表现出的规律性进行数量上的推断和认识,以便为回归分析提供依据。

相关分析的内容和程序是:(1)判别现象间有无相关关系(2)判定相关关系的表现形态和密切程度第二节相关关系的判断与分析一、相关关系的一般判断(一)定性分析对现象进行定性分析,就是根据现象之间的本质联系和质的规定性,运用理论知识、专业知识、实际经验来进行判断和分析。

第9章 spss的相关分析和线性回归分析PPT课件

第9章 spss的相关分析和线性回归分析PPT课件
t nk2r (1 r2 )
r是相应的偏相关系数。n是观测个数,k是控 制变量的数目,n-k-2是自由度。 在SPSS的偏相关分析过程的输出中只给出偏相 关系数和假设成立的概率p值。
偏相关分析的操作
与简单相关分析操作类似,只不过菜单为
Analyze→Correlate→Partial
实例:利用数据相关回归分析(高校科研研 究).sav,分析发表立项课题数与论文数之间的 偏相关关系,其中投入高级职称的人数为控制变 量。
Pearson相关系数 Spearman 秩相关系数 Kendall t 相关系数
Pearson 相 关 系 数 ( Pearson’s correlation coefficient)又叫相 关系数或线性相关系数。它一般用
字母r表示。
r (xx)(yy) (xx)2 (yy)2
它是由两个变量的样本取值得到,这是一个描 述线性相关强度的量,取值于-1和1之间。当两 个变量有很强的线性相关时,相关系数接近于1 (正相关)或-1(负相关),而当两个变量不 那么线性相关时,相关系数就接近0。
Pearson 相 关 系 数 的 局 限 性 :
①要求变量服从正态分布 ②只能度量线性相关性,对于曲线相关等更为复杂的 情形,该相关系数的大小并不能代表相关性的强弱。 如果Pearson系数很低,只能说明两变量之间没有线 性关系,并不能说明两者之间没有相关关系。也就是 说,该指标只能度量线性相关性,而不是相关性。 (线性相关性隐含着相关性,而相关性并不隐含着线 性相关性)
这很难一概而论。但在计算机输出 中都有和这些相关度量相应的检验
和p-值;因此可以根据这些结果来
判断是否相关
简单相关分析菜单
画散点图
Graphs→Scatter 选择散点图的类型 根据所选择的散点图类型,单击Define对散点图作具体定

第九章 相关与简单线性回归分析

第九章  相关与简单线性回归分析

第九章相关与简单线性回归分析第一节相关与回归的基本概念一、变量间的相互关系现象之间存在的依存关系包括两种:确定性的函数关系和不确定性的统计关系,即相关关系。

二、相关关系的类型1、从相关关系涉及的变量数量来看:简单相关关系;多重相关或复相关。

2、从变量相关关系变化的方向看:正相关;负相关。

3、从变量相关的程度看:完全相关;不相关;不完全相关。

二、相关分析与回归分析概述相关分析就是用一个指标(相关系数)来表明现象间相互依存关系的性质和密切程度;回归分析是在相关关系的基础上进一步说明变量间相关关系的具体形式,可以从一个变量的变化去推测另一个变量的变化。

相关分析与回归分析的区别:目的不同:相关分析是用一定的数量指标度量变量间相互联系的方向和程度;回归分析是要寻求变量间联系的具体数学形式,要根据自变量的固定值去估计和预测因变量的值。

对变量的处理不同:相关分析不区分自变量和因变量,变量均视为随机变量;回归区分自变量和因变量,只有因变量是随机变量。

注意:相关和回归分析都是就现象的宏观规律/平均水平而言的。

第二节简单线性回归一、基本概念如果要研究两个数值型/定距变量之间的关系,以收入x与存款额y为例,对n个人进行独立观测得到散点图,如果可以拟合一条穿过这一散点图的直线来描述收入如何影响存款,即简单线形回归。

二、回归方程在散点图中,对于每一个确定的x值,y的值不是唯一的,而是符合一定概率分布的随机变量。

如何判断两个变量之间存在相关关系?要看对应不同的x,y的概率分布是否相同/y的总体均值是否相等。

在x=xi的条件下,yi的均值记作E(yi),如果它是x的函数,E(yi) =f(xi),即回归方程,就表示y和x之间存在相关关系,回归方程就是研究自变量不同取值时,因变量y的平均值的变化。

当y的平均值和x呈现线性关系时,称作线性回归方程,只有一个自变量就是一元线性回归方程。

一元线性回归方程表达式:E(yi )= α+βxi,其中α称为常数,β称为回归系数。

第九章 线性回归和相关分析

第九章  线性回归和相关分析

第九章 线性回归和相关分析9.1 什么叫做回归分析?直线回归方程和回归截距、回归系数的统计意义是什么,如何计算?如何对直线回归进行假设测验和区间估计?9.2 a s 、b s 、x y s /、y s 、y s ˆ各具什么意义?如何计算(思考各计算式的异同)? 9.3 什么叫做相关分析?相关系数、决定系数各有什么具体意义?如何计算?如何对相关系数作假设测验?9.4 什么叫做协方差分析?为什么要进行协方差分析?如何进行协方差分析(分几个步骤)?为什么有时要将i y 矫正到x 相同时的值?如何矫正?9.5 测得不同浓度的葡萄糖溶液(x ,mg /l )在某光电比色计上的消光度(y )如下表,试计算:(1)直线回归方程yˆ=a +bx ,并作图;(2)对该回归方程作假设测验;(3)测得某样品的消光度为0.60,试估算该样品的葡萄糖浓度。

x 0 5 10 15 20 25 30 y0.000.110.230.340.460.570.71[答案:(1)y ˆ=-0.005727+0.023429x ,(2)H0被否定,(3)25.85mg/l]9.6 测得广东阳江≤25oC 的始日(x)与粘虫幼虫暴食高峰期(y)的关系如下表(x 和y 皆以8月31日为0)。

试分析:(1)≤25oC 的始日可否用于预测粘虫幼虫的暴食期;(2)回归方程及其估计标准误;(3)若某年9月5日是≤25oC 的始日,则有95%可靠度的粘虫暴食期在何期间?年份 54 55 56 57 58 59 60 x 13 25 27 23 26 1 15 y50555047512948[答案:(1)r=0.8424;(2)y ˆ=33.2960+0.7456x ,x y s /=4.96;(3)9月22日~10月23日]9.7 研究水稻每一单茎蘖的饱粒重(y ,g)和单茎蘖重(包括谷粒)(x ,g)的关系,测定52个早熟桂花黄单茎蘖,得:SSx=234.4183,SSy=65.8386,SP=123.1724,b=0.5254,r=0.99;测定49个金林引单茎蘖,得SSx=65.7950,SSy=18.6334,SP=33.5905,b=0.5105,r=0.96。

统计学(本科)教学课件第九章相关分析和回归分析

统计学(本科)教学课件第九章相关分析和回归分析
物与其他事物之间有没有联系,以及存在何种类型的联系。
(二)相关表 将相关变量的观察值依次对应排列而形成的统计表
称为相关表。 1.简单相关表 2.分组相关表 (三)相关图 (四)相关系数
四、相关分析的主要内容
(1)分析现象之间是否存在相关关系 并确定其相关形式;
(2)研究现象间相关关系的密切程度; (3)建立回归模型; (4)分析因变量估计值误差的程度;
第九章 相关分析和回归分析
第一节 相关分析 第二节 回归分析
第一节 相关分析
一、相关关系的含义 客观世界中,任何事物或现象都不是孤立存
在的,它总是和其他事物或现象相互联系、 相互制约的,事物之间的依存关系,根据其 相互依存和制约的程度不同可以概括为以下 两种:确定性的数量关系(函数关系)和随 机性的数量关系(相关关系):
对现象间存在的相关关系可从不同角度进行 分类:
1.按相关因素多少分为单相关和复相关; 2.按相关的表现形式分为线性相关和非线性
相关; 3.按相关的方向分为正相关和负相关; 4.按相关的程度分为完全相关、不相关和不
完全相关;
三、相关关系的判断
(一)定性判断 通过对这种质的规定性的认识,即定性认识,来判断一个事
步骤
(一)建立回归方程; (二)利用回归方程进行预测; (三)估计标准误差;
第二节 回归分析
一、回归分析的概念
回归分析是指对具有相关关系的现象, 根据其相关形态,选择一个合适的数 学模型(回归方程),用来近似地表示 两个变量之间平均变化关系,并利用 这种关系进行推算和预测的一种统计 分析方法。
二、回归分析与相关分析的关系
1.两者的区别 (1)相关分析的两个变量的地位对等,不做因果变
(2)回归分析是相关分析的延续。相关分析 仅仅帮助我们认识了两变量之间的相关方 向和程度。而回归分析则是在此基础上将 两变量相关关系的方向和形态,以近似的 数学模型描绘出来,然后用此模型指导我 们进行线性回归模型是根据两变量的相关 方向和线性形态拟合地反映两个变量之 间平均变化关系的标准直线。当两变量 之间为单向因果关系时,线性回归模型 为=a+bx;当两变量之间互为因果关系 时,线性回归模型有两个:一是yx型, 即=a+bx;另一是xy型,即=c+dy。

统计学第九章 相关与回归分析

统计学第九章  相关与回归分析

第九章相关与回归分析Ⅰ. 学习目的和要求本章所要学习的相关与回归分析是经济统计分析中最常重要的统计方法之一。

具体要求:1.掌握有关相关与回归分析的基本概念;2.掌握单相关系数的计算与检验的方法,理解标准的一元线性回归模型,能够对模型进行估计和检验并利用模型进行预测;3.理解标准的多元线性回归模型,掌握估计、检验的基本方法和预测的基本公式,理解复相关系数和偏相关系数及其与单相关系数的区别;4.了解常用的非线性函数的特点,掌握常用的非线性函数线性变换与估计方法,理解相关指数的意义;5.能够应用Excel软件进行相关与回归分析。

Ⅱ. 课程内容要点第一节相关与回归分析的基本概念一、函数关系与相关关系当一个或几个变量取一定的值时,另一个变量有确定值与之相对应,这种关系称为确定性的函数关系。

当一个或几个相互联系的变量取一定数值时,与之相对应的另一变量的值虽然不确定,但仍按某种规律在一定的范围内变化。

这种关系,称为具有不确定性的相关关系。

变量之间的函数关系和相关关系,在一定条件下是可以互相转化的。

116117二、相关关系的种类按相关的程度可分为完全相关、不完全相关和不相关。

按相关的方向可分为正相关和负相关。

按相关的形式可分为线性相关和非线性相关。

按所研究的变量多少可分为单相关、复相关和偏相关。

三、相关分析与回归分析相关分析是用一个指标来表明现象间相互依存关系的密切程度。

回归分析是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。

通过相关与回归分析虽然可以从数量上反映现象之间的联系形式及其密切程度,但是无法准确地判断现象内在联系的有无,也无法单独以此来确定何种现象为因,何种现象为果。

只有以实质性科学理论为指导,并结合实际经验进行分析研究,才能正确判断事物的内在联系和因果关系。

四、相关图相关图又称散点图。

它是以直角坐标系的横轴代表变量X ,纵轴代表变量Y,将两个变量间相对应的变量值用坐标点的形式描绘出来,用来反映两变量之间相关关系的图形。

第九章 相关与回归分析 《统计学原理》PPT课件

第九章  相关与回归分析  《统计学原理》PPT课件

[公式9—4]
r xy n • xy
x y
[公式9—5]
返回到内容提要
第三节 回归分析的一般问题
一、回归分析的概念与特点
(一)回归分析的概念
现象之间的相关关系,虽然不是严格 的函数关系,但现象之间的一般关系值, 可以通过函数关系的近似表达式来反映, 这种表达式根据相关现象的实际对应资料, 运用数学的方法来建立,这类数学方法称 回归分析。
单相关是指两个变量间的相关关系,如 自变量x和因变量y的关系。
复相关是指多个自变量与因变量间的相关 关系。
(二)相关关系从表现形态上划分,可分为 直线相关和曲线相关
直线相关是指两个变量的对应取值在坐标 图中大致呈一条直线。
曲线相关是指两个变量的对应取值在坐 标图中大致呈一条曲线,如抛物线、指数曲线、 双曲线等。
0.578
a y b x 80 0.578 185 3.844
n
n7
7
yˆ 3.844 0.578x
二、估计标准误差 (一)估计标准误差的概念与计算 估计标准误差是用来说明回归直线方程 代表性大小的统计分析指标。其计算公式为:
Syx
y yˆ 2
n
[公式9—8]
实践中,在已知直线回归方程的情况下, 通常用下面的简便公式计算估计标准误差:
[例9—2] 根据相关系数的简捷公式计算有:
r
n xy x y
n x2 x2 n y2 y2
7 218018580
0.978
7 5003 1852 7 954 802
再求回归直线方程:
yˆ a bx
b
n xy x y
n x2 x2
7 2180 18580 7 50031852

统计学中的线性回归与相关系数

统计学中的线性回归与相关系数

统计学中的线性回归与相关系数统计学是一门研究数据收集、分析和解释的学科,而线性回归和相关系数则是统计学中两个重要的概念与方法。

线性回归和相关系数可以帮助我们理解和解释数据之间的关系,从而作出准确的预测和结论。

本文将详细介绍统计学中的线性回归和相关系数,并讨论它们的应用和限制。

一、线性回归分析线性回归是一种用来建立两个变量之间关系的统计模型。

其中一个变量被称为“自变量”,另一个变量被称为“因变量”。

线性回归假设自变量和因变量之间存在着线性关系,通过拟合一条直线来描述这种关系。

线性回归模型可以用公式表示为:Y = β0 + β1X + ε,其中Y表示因变量,X表示自变量,β0和β1表示回归系数,ε表示误差。

利用线性回归模型,我们可以估计回归系数的值,并通过回归系数来解释自变量对因变量的影响程度。

回归系数β1表示自变量对因变量的平均改变量,β0表示当自变量为0时,因变量的平均值。

线性回归模型的拟合程度可以通过R方值来衡量,R方值越接近1,表明模型拟合程度越好。

线性回归的应用广泛,例如经济学中的GDP与人口增长率之间的关系,医学研究中的药物剂量与治疗效果之间的关系等等。

通过线性回归,我们可以从大量的数据中提取有用的信息,并利用这些信息做出合理的预测和决策。

二、相关系数分析相关系数是衡量两个变量之间相关关系强度的指标。

相关系数的取值范围为-1到1,-1表示完全负相关,1表示完全正相关,0表示无相关关系。

相关系数可以用来描述变量之间的线性关系,并判断这种关系的强度和方向。

常见的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。

皮尔逊相关系数适用于连续变量且呈线性分布的情况,而斯皮尔曼相关系数适用于顺序变量或非线性关系的情况。

相关系数的计算方法涉及到协方差和标准差的概念,具体计算方法可以参考统计学教材或统计学软件。

相关系数的应用广泛,可以用来进行变量筛选、研究变量之间的关系、评估模型拟合程度等。

在金融领域,相关系数可以用来衡量股票之间的关联性,帮助投资者进行风险控制和资产配置。

回归分析与相关分析

回归分析与相关分析

回归分析与相关分析回归分析是一种通过建立数学模型来预测或解释因变量与自变量之间关系的方法。

它的核心思想是通过对已有数据建立一个函数,通过这个函数可以推断其他未知数据的值。

常见的回归模型包括线性回归、多项式回归、逻辑回归等。

线性回归是最为常见的回归模型之一,其基本原理是通过拟合一条直线来描述自变量与因变量之间的关系。

在线性回归中,常常使用最小二乘法来确定最佳拟合直线。

最小二乘法通过使得残差平方和最小来确定回归系数。

回归系数表示了自变量与因变量之间的关系强度和方向。

除了线性回归,还有多项式回归可以拟合非线性关系。

逻辑回归则适用于因变量为二元分类变量的情况。

相关分析是一种用来研究变量之间相关性的方法。

它可以帮助我们判断两个变量之间是否存在其中一种关系,并且能够量化这种关系的强度和方向。

常见的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。

皮尔逊相关系数是一种用来测量两个连续变量之间线性相关程度的指标。

它的取值范围为-1到+1之间,-1表示完全负相关,0表示无相关,+1表示完全正相关。

斯皮尔曼相关系数则是一种非参数的相关系数,适用于两个变量之间的关系非线性的情况。

回归分析和相关分析可以相互配合使用,用来探索和解释变量之间的关系。

首先,通过相关分析,可以初步判断两个变量之间是否存在相关性。

然后,如果判断出存在相关性,可以使用回归分析来建立一个数学模型,以解释自变量对因变量的影响。

总之,回归分析和相关分析是统计学中常用的两种数据分析方法。

它们可以帮助我们研究和解释变量之间的关系,并用于预测和控制因变量的变化。

了解和掌握这两种方法,对于研究者和决策者来说都是非常重要的。

第九章 直线回归与相关分析

第九章 直线回归与相关分析

ˆ L1 = y − t0.05 s y = 19.0645 − 2.447 × 2.1603 = 13.7782 ˆ L2 = y + t0.05 s y = 19.0645 + 2.447 × 0.8559 = 24.3508
第三节 直线相关
一、相关系数和决定系数 如果两个变量间呈线性关系,又不需要由x来估计 如果两个变量间呈线性关系,又不需要由 来估计 y,只需了 和y相关以及相关的性质,可通过计算 相关以及相关的性质, ,只需了x和 相关以及相关的性质 x和y相关程度和性质的统计数-相关系数来进行 相关程度和性质的统计数- 和 相关程度和性质的统计数 研究。 研究。 相关系数r为 相关系数 为: SP
ˆ L1 = y − t0.05 s y = 19.0645 − 2.447 × 0.8559 = 16.9701 ˆ ˆ L2 = y + t0.05 s y = 19.0645 + 2.447 × 0.8559 = 21.1589 ˆ
(四)单个y值的置信区间
单个y观测值的标准误为: 单个 观测值的标准误为: 观测值的标准误为
2
ˆ L1 = y − t a s y ˆ ˆ L2 = y + t a s y ˆ
根据例1,估计出黏虫孵化历期平均温度为 ℃ 根据例 ,估计出黏虫孵化历期平均温度为15℃时, 历期天数为多少( 置信区间)。 历期天数为多少(取95%置信区间)。 置信区间
x = 15 df = n − 2 = 8 − 2 = 6 ˆ y = a + bx = 57.04 + (−2.5317) × 15 = 19.0645 sy = sy / x ˆ 1 ( x − x )2 1 (15 − 16.8375) 2 + = 1.9835 × + = 0.8559 n SS x 8 55.1788
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章 线性回归和相关分析
9.1 什么叫做回归分析?直线回归方程和回归截距、回归系数的统计意义是什么,如何计算?如何对直线回归进行假设测验和区间估计?
9.2 a s 、b s 、x y s /、y s 、y s ˆ各具什么意义?如何计算(思考各计算式的异同)? 9.3 什么叫做相关分析?相关系数、决定系数各有什么具体意义?如何计算?如何对相关系数作假设测验?
9.4 什么叫做协方差分析?为什么要进行协方差分析?如何进行协方差分析(分几个步骤)?为什么有时要将i y 矫正到x 相同时的值?如何矫正?
9.5 测得不同浓度的葡萄糖溶液(x ,mg /l )在某光电比色计上的消光度(y )如下表,试计算:(1)直线回归方程y
ˆ=a +bx ,并作图;(2)对该回归方程作假设测验;(3)测得某样品的消光度为0.60,试估算该样品的葡萄糖浓度。

x 0 5 10 15 20 25 30 y
0.00
0.11
0.23
0.34
0.46
0.57
0.71
[答案:(1)y ˆ
=-0.005727+0.023429x ,(2)H0被否定,(3)25.85mg/l]
9.6 测得广东阳江≤25oC 的始日(x)与粘虫幼虫暴食高峰期(y)的关系如下表(x 和y 皆以8月31日为0)。

试分析:(1)≤25oC 的始日可否用于预测粘虫幼虫的暴食期;(2)回归方程及其估计标准误;(3)若某年9月5日是≤25oC 的始日,则有95%可靠度的粘虫暴食期在何期间?
年份 54 55 56 57 58 59 60 x 13 25 27 23 26 1 15 y
50
55
50
47
51
29
48
[答案:(1)r=0.8424;(2)y ˆ
=33.2960+0.7456x ,x y s /=4.96;(3)9月22日~10月23日]
9.7 研究水稻每一单茎蘖的饱粒重(y ,g)和单茎蘖重(包括谷粒)(x ,g)的关系,测定52个早熟桂花黄单茎蘖,得:SSx=234.4183,SSy=65.8386,SP=123.1724,b=0.5254,r=0.99;测定49个金林引单茎蘖,得SSx=65.7950,SSy=18.6334,SP=33.5905,b=0.5105,r=0.96。

试对两回归系数和相关系数的差异作假设测验,并解释所得结果的意义。

[答案:
2
1b b s -=0.0229,t <1;
2
1z z s -=0.2053,t=3.413]
9.8 下表为1963、1964、1965三年越冬代棉红铃虫在江苏东台的化蛹进度的部分资料,试作协方差分析。

x 日 期
(以6月10日为0)
y 化 蛹 进 度(%) 1963年
1964年
1965年
5 8 11 14 17 20 23 2
6 1
7 24 35 4
8 58 65 72 75 24 35 41 52 61 70 7
9 82 22 32 42 53 59 66 75 82
[答案:化蛹进度依日期的直线回归极显著,b=2.88(%/天);化蛹进度平均数间差异极显著,F=13.31,其中1963年显著落后]
9.9 下表为玉米品比试验的每区株数(x)和产量(y)的资料,试作协方差分析,并计算各品种在小区株数相同时的矫正平均产量。



区 组
总 和 平 均 I
Ⅱ Ⅲ IV
x
y
x
y
x
y
x y
x
y
x
y
A B C D E
10 12 17 14 12
18
36 40 21
42 8
13 15
14
10
17
38 36 23
36 6
8 13
17
10
14
28 35 24
38 8
11 11
15
16
15
30 29 20
52 32
44 56
60
48
64 132 140 88 168
8
11 14 15
12
16 33 35 22 42
总 和 65
157 60
150 54
139 61
146 240
592 总平均12 29.6
[答案:误差项回归的F=50.89,矫正平均数间F=90.15,各品种的矫正平均数依次为:)
(x x A y ==23.7,
)
(x x B y ==34.9,
)
(x x C y ==31.2,
)
(x x D y ==16.2,
)
(x x E y ==42.0]。

相关文档
最新文档