最新国家开放大学经济数学基础形考4-1答案
(完整版)经济数学基础形成性考核册答案
电大经济数学基础形成性核查册及参照答案(一)填空题 1. limx sin x__________ _________ .答案: 0x 0x2. 设 f ( x) x 2 1, x0 0 处连续,则 k________ .答案: 1k ,x,在 x3. 曲线 yx 在 (1,1) 的切线方程是.答案: y1 x 12 24. 设函数 f ( x 1) x 2 2x 5 ,则 f ( x)__________ __ .答案: 2x5. 设 f ( x)x sin x ,则 f ( π __________ . 答案:π) 22(二)单项选择题1. 函数 y x 1的连续区间是(D )x 2x 2A . (,1) (1, )B . ( , 2) ( 2,)C . ( , 2) ( 2,1) (1,)D . (, 2)( 2, ) 或( ,1) (1, )2. 以下极限计算正确的选项是(B )x1B. limx1A. limx xxx 011D. lim sin x 1C. lim x sinxxxx3. 设 ylg2 x ,则 d y( B ).A .1dxB .1 dx C .ln10dxD .1dx2xx ln10xx4. 若函数 f ( x)在点 x 0 处可导,则 (B )是错误的.A .函数 f (x)在点 x 0 处有定义B . limf ( x)A,但A f (x 0 )xx 0C .函数 f (x) 在点 x 0 处连续D .函数 f (x) 在点 x 0 处可微5. 当 x0 时,以下变量是无量小量的是(C) .A . 2xB . sin xC . ln(1x) D . cos xx ( 三)解答题 1.计算极限( 1) limx 22 3x21x 1x12原式 lim( x1)( x 2)x 1( x 1)( x 1)limx2 x 1 x1 12( 2) lim x25x 6 1 x 2x26x 8 2原式 = lim(x - 2)(x - 3) x 2(x - 2)(x - 4)limx3 x2x 4 12( 3)lim1 x 11x2x原式 =lim(1 x 1)( 1 x 1) xx( 1 x 1)1= limx 01 x 11 =2x 23x5 1 ( 4) lim2x3x 2x4 31 351xx 2原式 == 3 3 4 3x x 2( 5)limsin 3x3 xsin 5x53sin 3x3lim 3x原式 =sin 5x=5 x55xx 2 44( 6) limx2sin( x 2)原式 =limx 22)x2sin( xx 2lim ( x 2)x 2= 4=lim sin( x 2)x 2x 2x sin1b, x 02.设函数 f (x)xx 0 ,a,sin xx 0x问:(1)当 a, b 为何值时,f ( x) 在 x 0处有极限存在?(2)当 a, b 为何值时, f ( x) 在x0处连续 .解: (1) limf ( x) b , lim f ( x)1xx当a b 1时,有 lim f(x)f(0) 1x(2). 当ab 1时, 有lim f(x)f(0) 1x函数 f(x) 在 x=0 处连续 .3.计算以下函数的导数或微分:( 1)yx22xlog 2 x22 ,求 y答案: y2x 2 x ln 21x ln 2( 2)yax bcx ,求 yd答案:ya(cx d )c(ax b) ad bc (cxd) 2(cx d )2( 3)y1,求 y3x 53(3x3答案: y5) 22( 4) yx xe x ,求 y答案:y 1 (e x xe x ) = 1 e x xe x2 x 2 x( 5)y eax sin bx ,求 dyy (e ax ) (sin bx e ax (sin bx)答案:∵ax axae sin bx be cosbxe ax (sin bx bcosbx)∴ dy e ax (a sin bx bcosbx)dx 1( 6)y e x x x ,求 dy1 1 3答案:∵ y e x xx2 2( 311∴ dy x e x )dx2 x2( 7)y cos x e x2 ,求 dy答案:∵ y sin x ( x) e x 2 (= sin x 2xe x22 x∴ dy ( sin x 2xe x2 )dx2 x( 8)y sin n x sin nx ,求 y答案: y nsin n 1 x cos x n cosnx ( 9)y ln( x 1 x2 ) ,求y答案: y 1 ( x 1 x 2 )x 1 x 2=1 1 x2 x=x2 x 2x 1 1cot 1 1 3 x 2 2x( 10)y 2 x ,求 yx x 2 )=1 (1 x )1 x2 1 x2x11x2111 1cos( x 2 x 6y 2xln 2 (cos ) 2) 答案:x12 cos11 112 x ln 2 sinxx 2x 3 6 x 54.以下各方程中y 是 x 的隐函数,试求 y 或dy(1) 方程两边对 x 求导:2x 2 y y y xy 3 0(2 y x) yy 2x 3所以 dyy 2x3dx2y x(2) 方程两边对 x 求导:cos(x y)(1 y ) e xy ( y xy )4[cos(x y)xe xy ] y4 cos(x y) ye xy所以y4 cos(x y) ye xy cos(x y)xe xy5.求以下函数的二阶导数:( 1)yln(1x 2 ) ,求 y答案: (1)y2x1 x2y 2(1 x 2 ) 2x 2x2 2x 2(1 22(1 22x )x )(2)y (xy3x41 11 x 2x 2 )25 321x 243 21 1x 223 1 1y (1)4 4作业(二)(一)填空题1.若f (x)dx 2 x 2x c ,则 f ( x) __________ _________ .答案: 2x ln 2 22.(sinx) dx ________.答案: sin x c3. 若f ( x) dxF ( x) c ,则 xf (1 x 2 )dx.答案:1F (1 x 2 ) cd24.设函数eln(1 x 2)dx ___________ .答案: 0dx 15. 若 P(x) 01dt ,则 P ( x) __________ .答案:1x 2x1 t 21 (二)单项选择题1. 以下函数中,( D2)是 xsinx的原函数.A .1cosx 2B .2cosx 2C .- 2cosx2D . -1cosx 2222. 以低等式成立的是(C ).A . sinxdxd(cosx)B . ln xdxd( 1)xC . 2 xdx1 d(2 x )D .1 dx d xln 2x3. 以下不定积分中,常用分部积分法计算的是(C ).A . cos(2x1)dx ,B .x 1 x 2 dxC . xsin 2xdxD .x 2 dx1 x4. 以下定积分计算正确的选项是(D).12 d216B .dx15x x11C .23D . sin d( xx )dx 0x x5. 以下无量积分中收敛的是( B ).A .1(三)解答题1dx B .112dx C .e x dxD .sinxdxxx 011.计算以下不定积分3x( 1) 3xdx 原式 =3 x dx = (e )c3x ce x(e ) ln 3e x (ln 3 1)e( 2)(1x) 213dx 答案:原式 = (x 2 2 x x 2 )dxx=14 32 5 c2x 23 x 2x 25x 24 (x 2)dx1 x 22x c( 3)dx 答案:原式 =( 4)1 1 dx答案:原式 = 1 d (1 2x)1ln 1 2x c 2x 2 1 2x 21 13( 5)x 2 x2dx答案:原式 = 2 x 2 d (2 x 2 ) = ( 2 x2) 2 c2 3( 6)sinxdx 答案:原式=2 sin xd x 2 cos x c x( 7)xdx xsin2答案:∵ (+) x sinx2(-) 1 2 cosx2(+) 0 4 sinx2∴原式 = 2x cosx4 sinxc2 2(8) ln( x 1)dx答案:∵ (+) ln( x 1) 1(-)1x x 1∴原式 = x ln( x 1) x dxx 1= x ln( x 1) (1 1 )dxx 1 = x ln( x 1) x ln( x 1) c 2.计算以下定积分2xdx( 1) 111x)dx 2 1)dx = 2 ( 1x2 x)12 2 5 9答案:原式 = (1 (x1 12 2 212e x( 2) x2 dx11112e xx 2)d112答案:原式 =2 ( = ex e e 21xxe3( 3)1dx1x 1 ln xe3x d(1 ln x) = 2 1 ln xe 3 答案:原式 =1 ln x 21x1( 4)2x cos2xdx答案:∵ (+) xcos2x (-)11sin 2x2(+)01cos2x4∴ 原式 = (1x sin 2x1cos2x) 0224=1 1 1442e( 5) x ln xdx 1答案:∵ (+)ln xx(-)1x 2x21 2ln x e1e∴ 原式 =x 12 xdx21 =e 2 1 x 21e1 (e2 1)2 444 xxx(1( 6)答案:∵原式 = 44 xe xdx(-)1 -e x (+)0e x4e x ) 04∴xe xdx ( xex 0=5e 4 1故:原式 =55e4作业三(一)填空题10 4 51.设矩阵 A32 32 ,则 A 的元素 a 23 __________ ________ .答案: 321612.设 A, B 均为 3 阶矩阵,且 A B3,则2AB T = ________. 答案: 723. 设 A, B 均为 n 阶矩阵,则等式 ( AB) 2 A 2 2 ABB 2 成立的充分必要条件是.答案: AB BA4. 设 A, B 均为 n 阶矩阵, ( IB) 可逆,则矩阵 A BXX 的解 X__________ ____ .答案:( IB) 1 A1 01 0 0 5. 设矩阵 A020 ,则 A1__________ .答案:A0 10 0 032 10 03(二)单项选择题1. 以下结论或等式正确的选项是( C ).A .若 A,B 均为零矩阵,则有 A B B .若 AB AC ,且 A O ,则 BCC .对角矩阵是对称矩阵D .若 AO, B O ,则 AB O2. 设 A 为 34 矩阵, B 为5 2矩阵,且乘积矩阵 ACB T 有意义,则 C T 为(A )矩阵.A . 2 4B . 4 2C . 3 5D . 533. 设 A, B 均为 n 阶可逆矩阵,则以低等式成立的是(C ).`A . ( A B) 1A 1B 1 ,B . ( A B) 1 A 1 B 14. 以下矩阵可逆的是(A).1 2 31 01 A .2 3 B .10 1 0 0 3123C .1 11 1 0 0D .222 2 25. 矩阵 A3 3 3 的秩是(B ).4 44A . 0B . 1C .2D .3三、解答题 1.计算2 1 0 1 1 2( 1)3 1 0 =553( 2)( 3)2.计算0 2 1 1 0 0 03 0 00 0312 5 4= 0121 2 3 1 2 4 2 4 51 2 2 1 4 3 6 1 01 32 23 1 3 2 71 2 3 1 2 4 2 4 5 7 19 7 2 4 5 解1 221 4 3 6 17 12 0 6 1 013 223132 7 0 4 732 7515 2 =1 11 032142 31 12 33.设矩阵 A111 , B 1 12 ,求 AB 。
2022年国开电大《经济学基础形考 》形考任务1-4测验答案形考任务4
形考任务4(第十四章至第十七章)任务说明:本次形考任务包含填空题(21道,共20分),选择题(15道,共20分),判断题(15道,共20分),计算题(3道,共10分),问答题(3道,共30分)。
任务要求:下载任务附件,作答后再上传,由教师评分。
任务成绩:本次形考任务成绩占形成性考核成绩的30%,任务附件中题目是百分制。
教师在平台中录入的成绩=百分制成绩*30%一、填空题(21道,共20分)1.某银行吸收存款1000万元,按规定应留200万元作为准备金,这时的法定准备率为 20% ;通过银行的信贷活动,可以创造出的货币额为 5000 万元。
2.银行所创造的货币量与最初存款的比例称为简单货币乘数,货币供给量与基础货币两者之间的比例是货币乘数。
3.中央银行控制货币供给量的工具主要是:公布市场活动、贴现政策以及准备率政策。
4.LM曲线向右下方倾斜,表明在货币市场上国内生产总值与利率成同方向变动。
5.长期中存在的失业称为自然失业,短期中存在的失业是周期性失业。
7.如果把1995年作为基期,物价指数为100,200l年作为现期,物价指数为115,则从1995年到200l年期间的通货膨胀率为 15% 。
8.紧缩性缺口引起周期性失业,膨胀性缺口引起需求拉动的通货膨胀。
9.市场上具有垄断地位的企业为了增加利润而提高价格所引起的通货膨胀称为利润推动的通货膨胀。
10.菲利普斯曲线是用来表示失业和通货膨胀之间交替关系的曲线。
11.顶峰是繁荣的最高点,谷底是萧条的最低点。
12.在宏观经济政策工具中,常用的有需求治理、供给治理以及国际经济政策。
13.财政政策是通过政府支出和税收来调节经济的政策。
14.货币筹资是把债券卖给中央银行,债务筹资是把债券买给中央银行之外的其他人。
15.简单规则的货币政策就是根据经济增长的需要,按一固定比率增加货币供给需求。
16.反馈规则与固定规则之争的实质是要不要国家干预经济。
17.贸易赤字是指出口小于入口。
国家开放大学(电大)2022年金融基础形考任务1-4
形考任务一一、名词解释(共10道题,每题4分,共40分)1.劣币驱逐良币指当一个国家同时流通两种实际价值不同而法定比价不变的货币时,实际价值高的货币或银子(良币)必然要被熔化、收藏或输出而退出流通领域,而实际价值低的货币(劣币)反而充斥市场。
2.金银复本位制同时以金币和银币作为本位币,两种货币同时流通的货币制度3.布雷顿森林体系二战后以美元为中心的国际货币体系,因该体系是在1944年7月布雷顿森林会议上确立,故名。
其主要内容是:以黄金为基础,确立“两个挂钩”原则,即美元与黄金挂钩,资本主义各国货币与美元挂钩;建立两大金融机构,即国际货币基金组织和世界银行。
它的确立,奠定了美国在战后世界经济格局中的霸权地位4.特里芬难题是指以单一国别货币(如美元)充当世界货币时,该种货币将面临的保持币值稳定和提供充分的国际清偿力之间的矛盾:若美国国际收支长期保持逆差,国际储备资产就会发生过剩现象,造成美元泛滥,进而导致美元危机;相反若美国的国际收支长期保持顺差,国际储备资产就不能满足国际贸易发展的需要,就会发生美元短缺现象5.牙买加体系牙买加体系是20世纪70年代中期形成的、沿用至今的国际货币制度,主要内容是国际储备货币多元化、汇率安排多样化、多种渠道调节国际收支。
牙买加体系对维持国际经济运转和推动世界经济发展发挥了积极的作用,但仍存在着一些缺陷6.货币的时间价值:是指货币经历一定时间的投资和再投资所增加的价值7.收益资本化任何有收益的事物,都可以通过其所带来的收益和利息率之比求得相当于多大的资本金额即——收益的资本化。
8.基准利率:基准利率是指在多种利率并存的条件下起决定作用的利率。
9.无风险利率:无风险利率是指将资金投资于某一项没有任何风险的投资对象而能得到的利息率。
这是一种理想的投资收益10.实际利率实际利率是指物价不变从而货币购买力不变条件下的利率,是名义利率剔除通货膨胀因素以后的真实利率二、思考题(共6道题.每题10分.共60分)1.什么是货币的交易媒介职能? 货币为什么具有财富贮藏职能?参考答案:货币的交易媒介职能是指,当货币作为商品交换的媒介物时所发挥出的职能。
电大经济数学基础形成性考核册及参考答案
电大经济数学基础形成性考核册及参考答案(一)填空题 1.___________________sin lim=-→xxx x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:13.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( D ) A .),1()1,(+∞⋃-∞ B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( B )A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设y x =l g 2,则d y =( B ). A .12d x x B .1d x x ln10 C .ln 10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5.当0→x 时,下列变量是无穷小量的是( C ).A .x2 B .xxsin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)21123lim 221-=-+-→x x x x 2112lim)1)(1()2)(1(lim11-=+-=+---=→→x x x x x x x x 原式 (2)218665lim 222=+-+-→x x x x x原式=4)-2)(x -(x 3)-2)(x -(x lim2x →2143lim2=--=→x x x (3)2111lim-=--→x x x 原式=)11()11)(11(lim 0+-+---→x x x x x=111lim+--→x x=21-(4)3142353lim22=+++-∞→x x x x x 原式=22433531xx x x +++-=31(5)535sin 3sin lim0=→x x x原式=xx x x x 55sin 33sin lim530→ =53(6)4)2sin(4lim 22=--→x x x原式=2)2sin(2lim2+++→x x x x=2)2sin(lim )2(lim 22--+→→x x x x x = 42.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续. 解:(1)1)(lim ,)(lim 00==+-→→x f b x f x x当 1f (0)f (x )lim 10x ====→有时,b a(2).1f(0)f(x)lim 1b a 0x ====→有时,当函数f(x)在x=0处连续.3.计算下列函数的导数或微分: (1)2222log 2-++=x x y x,求y '答案:2ln 12ln 22x x y x++=' (2)dcx bax y ++=,求y '答案:22)()()()(d cx bcad d cx b ax c d cx a y +-=++-+=' (3)531-=x y ,求y '答案:23)53(23---='x y(4)x x x y e -=,求y '答案:)(21x x xe e xy +-='=x x xe e x--21(5)bx y axsin e =,求y d答案:∵)cos (sin cos sin )(sin (sin )(bx b bx e bx be bx ae bx e bx e y ax ax ax ax ax +=+='+'=' ∴dx bx b bx a e dyax )cos sin (+=(6)x x y x+=1e ,求y d答案:∵x e x y x 23112+-=' ∴dx e xx dy x )123(12-= (7)2ecos x x y --=,求y d答案:∵)()(sin 22'-⋅-'⋅-='-x e x x y x=222sin x xe xx-+-∴dx xe xxdy x )22sin (2-+-= (8)nx x y nsin sin +=,求y '答案:nx n x x n y n cos cos sin1+⋅='-(9))1ln(2x x y ++=,求y '答案:)1(1122'++⋅++='x x x x y =)11(1122xx xx ++⋅++=2221111xx x xx +++⋅++ =211x+(10)xxx y x212321cot -++=,求y '答案:531cos 261211cos61211sin 2ln 21)2()1(cos 2ln 2x x x x x x xy x x+-⋅⋅-='-++'⋅⋅='- 4.下列各方程中y 是x 的隐函数,试求y '或y d(1) 方程两边对x 求导: 0322=+'--'⋅+y x y y y x32)2(--='-x y y x y所以 dx xy x y dy---=232(2) 方程两边对x 求导: 4)()1)(cos(='+⋅+'++y x y e y y x xyxy xy ye y x y xe y x -+-='++)cos(4])[cos(所以 xyxyxey x ye y x y ++-+-=')cos()cos(4 5.求下列函数的二阶导数: (1))1ln(2x y +=,求y '' 答案: (1) 212x xy +='222222)1(22)1(22)1(2x x x x x x y +-=+⋅-+='' (2) 212321212121)(-----='-='x x x xy23254143--+=''x x y14143)1(=+='y作业(二)(一)填空题 1.若c x x x f x ++=⎰22d )(,则___________________)(=x f .答案:22ln 2+x2.⎰='x x d )sin (________.答案:c x +sin 3. 若c x F x x f +=⎰)(d )(,则⎰=-x x xf d )1(2 .答案:c x F +--)1(212 4.设函数___________d )1ln(d d e12=+⎰x x x .答案:0 5. 若t tx P xd 11)(02⎰+=,则__________)(='x P .答案:211x+-(二)单项选择题1. 下列函数中,( D )是x sin x 2的原函数. A .21cos x 2 B .2cos x 2 C .-2cos x 2 D .-21cos x 2 2. 下列等式成立的是( C ).A .)d(cos d sin x x x =B .)1d(d ln xx x =C .)d(22ln 1d 2x x x =D .x x xd d 1=3. 下列不定积分中,常用分部积分法计算的是( C ).A .⎰+x x c 1)d os(2,B .⎰-x x x d 12C .⎰x x x d 2sin D .⎰+x x xd 124. 下列定积分计算正确的是( D ). A .2d 211=⎰-x x B .15d 161=⎰-xC .0)d (32=+⎰-x x xππ D .0d sin =⎰-x x ππ5. 下列无穷积分中收敛的是( B ). A .⎰∞+1d 1x x B .⎰∞+12d 1x x C .⎰∞+0de x xD .⎰∞+1d sin x x(三)解答题1.计算下列不定积分(1)⎰x x x d e 3原式=⎰dx e x )3( =c e c ee x xx +-=+)13(ln 33ln )3( (2)⎰+x xx d )1(2答案:原式=⎰++-dx x x x)2(2321=c x x x +++25232152342(3)⎰+-x x x d 242答案:原式=⎰+-=-c x x dx x 221)2(2 (4)⎰-x x d 211答案:原式=c x x x d +--=---⎰21ln 2121)21(21 (5)⎰+x x x d 22答案:原式=⎰++)2(22122x d x =c x ++232)2(31(6)⎰x xx d sin 答案:原式=⎰+-=c x x d x cos 2sin 2(7)⎰x xx d 2sin答案:∵(+) x 2sinx (-) 1 2cos2x - (+) 0 2sin4x - ∴原式=c x x x ++-2sin 42cos2 (8)⎰+x x 1)d ln(答案:∵ (+) )1ln(+x 1(-) 11+-x x ∴ 原式=⎰+-+dx x xx x 1)1ln( =⎰+--+dx x x x )111()1ln( =c x x x x +++-+)1ln()1ln( 2.计算下列定积分 (1)x x d 121⎰--答案:原式=⎰⎰-+--2111)1()1(dx x dx x =29252)21(2212=+=-+x x (2)x xxd e2121⎰答案:原式=⎰-212211)(xd x xe x=21211e e e x -=- (3)x xx d ln 113e 1⎰+答案:原式=⎰++31)ln 1(ln 1e x d x x x=21ln 123=+e x(4)x x x d 2cos 20⎰π答案:∵ (+)x x (+)0 cos 1-∴ 原式=20)2cos 412sin 21(πx x x +=214141-=-- (5)x x x d ln e1⎰答案:∵ (+) x ln x(-) x122x∴ 原式=⎰-e exdx x x 11221ln 21 =)1(414122122+=-e x e e(6)x x x d )e 1(4⎰-+答案:∵原式=⎰-+44dx xe x又∵ (+)x xe- (-)1 -xe - (+)0 xe -∴⎰-----=440)(x x x e xe dx xe =154+--e故:原式=455--e作业三(一)填空题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=161223235401A ,则A 的元素__________________23=a .答案:3 2.设B A ,均为3阶矩阵,且3-==B A ,则TAB 2-=________. 答案:72-3. 设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是 .答案:BA AB =4. 设B A ,均为n 阶矩阵,)(B I -可逆,则矩阵X BX A =+的解______________=X .答案:A B I 1)(--5. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020001A ,则__________1=-A .答案:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=31000210001A (二)单项选择题1. 以下结论或等式正确的是( C ).A .若B A ,均为零矩阵,则有B A = B .若AC AB =,且O A ≠,则C B = C .对角矩阵是对称矩阵D .若O B O A ≠≠,,则O AB ≠2. 设A 为43⨯矩阵,B 为25⨯矩阵,且乘积矩阵T ACB 有意义,则TC 为( A )矩阵. A .42⨯ B .24⨯ C .53⨯D .35⨯3. 设B A ,均为n 阶可逆矩阵,则下列等式成立的是( C ). ` A .111)(---+=+B A B A , B .111)(---⋅=⋅B A B AC .BA AB =D .BA AB = 4. 下列矩阵可逆的是( A ).A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300320321B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--321101101 C .⎥⎦⎤⎢⎣⎡0011 D .⎥⎦⎤⎢⎣⎡2211 5. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=444333222A 的秩是( B ). A .0 B .1 C .2 D .3三、解答题1.计算 (1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-01103512=⎥⎦⎤⎢⎣⎡-5321 (2)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-00113020⎥⎦⎤⎢⎣⎡=0000 (3)[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--21034521=[]02.计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--723016542132341421231221321解 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--72301654274001277197723016542132341421231221321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423011121553.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=110211321B 110111132,A ,求AB 。
2024年度(最新)国开电大《金融基础》形考任务及答案
2024年度(最新)国开电大《金融基础》形考任务及答案学校:________班级:________姓名:________考号:________一、单选题(15题)1.()是一国居民与非居民之间在一定时期内(通常为1年)进行的全部交易的货币价值记录,是一国对外经济活动的综合反映。
A.外汇B.国际投资C.国际收支D.国际储备2.当名义利率高于通货膨胀率时,实际利率为()A.无穷大B.负利率C.正利率D.零3.名义利率、实际利率和通货膨胀率三者之间的关系可表述为()。
A.名义利率=实际利率—通货膨胀率B.名义利率=实际利率+通货膨胀率C.实际利率=通货膨胀率—名义利率D.实际利率=名义利率+通货膨胀率4.持票人通过向商业银行转让票据而获得资金的行为,其实质是持票人在票据到期前将票据卖给商业银行,从而提前收回垫付于商业信用活动中的资金。
这种商业票据的行为是指()A.票据贴现B.票据背书C.票据签发D.票据抵押5.由商业银行发放贷款等资产业务活动衍生而来的存款称为()。
A.派生存款B.商业银行存款C.原始存款D.中央银行存款6.()是以追求资本的长期增值为目标的投资基金,主要投资于具有良好发展潜力、但目前盈利水平不高的企业股票。
A.收入型基金B.成长型基金C.契约型基金D.平衡型基金7.()是指赋予其购买方在规定期限内按买卖双方约定的价格(简称协议价格或执行价格)购买或出售一定数量某种金融资产的权利的合约。
A.金融期货合约B.金融远期合约C.金融互换D.金融期权8.()是从事金融活动的组织,也被称为金融中介。
A.金融制度B.金融市场C.金融机构D.金融体系9.在不考虑交易成本的条件下,以同一货币衡量的不同国家的某种可贸易商品的价格应该是相同的。
这个定律称为()A.国际借贷说B.购买力平价理论C.一价定律D.利率平价理论10.()是货币时间价值的具体体现。
A.收益率B.汇率C.股息D.利息11.与投资实物、购买股票和债券等财富贮藏形式相比,贮藏货币的最大优势在于它的()。
经济数学基础形考答案
电大【经济数学基础】形成性考核册参考答案《经济数学基础》形成性考核册(一)一、填空题1. limxsin x__________ _________ .答案: 1xx2.设 f ( x) x 2 1, x0 ,在 x0 处连续,则 k________ .答案 1k,x3.曲线 y x +1 在 (1,1) 的切线方程是. 答案 :y=1/2X+3/24.设函数 f (x 1) x 2 2x 5 ,则 f (x)____________ .答案 2x5.设 f ( x)x sin x ,则 f ( π__________ .答案 :)22二、单项选择题1. 当 x时,下列变量为无穷小量的是(D )x 21D . sin xA . ln(1x)B .C . e x 2x 1x2. 下列极限计算正确的是( B)A. lim x1B. lim x1C. lim xsin11D. limsin x1x 0xx 0xx 0xxx3. 设 y lg2 x ,则 d y ( B).A .1dxB .1 dxC . ln10dxD .1dx2xxln10xx4. 若函数 f (x)在点 x 0 处可导,则(B)是错误的.0 处有定义B . lim f ( x )A ,但 A f ( x 0 )A .函数 f (x)在点 xx x 0C .函数 f (x)在点 x 0 处连续D .函数 f (x)在点 x 0 处可微5.若 f ( 1)x ,则 f ( x)( B) .1 x111A .B .C .D .x 2xxx 2三、解答题1.计算极限 本类题考核的知识点是求简单极限的常用方法。
它包括:⑴利用极限的四则运算法则;⑵利用两个重要极限;⑶利用无穷小量的性质 ( 有界变量乘以无穷小量还是无穷小量)⑷利用连续函数的定义。
( 1) limx 2 3x 2 x2 1x 1分析:这道题考核的知识点是极限的四则运算法则。
具体方法是:对分子分母进行因式分解,然后消去零因子,再利用四则运算法则限进行计算解:原式 = lim ( x1)( x 2) = limx2 = 1 2 1x 1(x 1)( x 1)x 1x11 12( 2) lim x 2 5x6 x 2x 2 6x8分析:这道题考核的知识点主要是利用函数的连续性求极限。
2023国家开放大学《经济学基础》形考任务1-4参考答案
形考任务1(第一章至第五章)任务说明:本次形考任务包含填空题(22道,共20分),选择题(15道,共20分),判断题(15道,共20分),计算题(3道,共10分),问答题(3道,共30分)。
任务要求:下载任务附件,作答后再上传,由教师评分。
任务成绩:本次形考任务成绩占形成性考核成绩的20%,任务附件中题目是百分制。
教师在平台中录入的成绩=百分制成绩*20%一、填空题(20分)1.“生产什么”、“如何生产”和“为谁生产”是人类社会所必须解决的基本问题,这三个问题被称为资源配置问题。
2.市场经济与计划经济的差别主要表现在三个基本问题上,一是决策机制不同,二是协调机制不同,三是激励机制不同。
3.微观经济学解决的问题是资源配置,宏观经济学解决的问题是资源利用。
4.是否以一定的价值判断为依据,是实证方法与规范方法的重要区别之一。
5.两种互补商品之间价格与需求成反方向变动,两种替代商品之间价格与需求成同方向变动。
6.需求定理表明的商品价格与需求量反方向变动的关系是__替代_效应和__收入效应共同作用的结果。
7.在供给与供给量的变动中,价格变动引起供给量变动,而生产技术的变动引起供给的变动。
8.需求的变动引起均衡价格与均衡数量同方向变动。
9.市场经济就是一种用价格机制来决定资源配置的经济体制。
10.当某商品的价格上升5%,而需求量减少8%时,该商品属于需求富有弹性。
当某商品的价格下降5%而需求量增加2%时,该商品属于需求缺乏弹性。
11.如果交叉弹性为负值,则两种商品为互补关系。
12.能够做到薄利多销的商品是需求富有弹性的商品。
13.如果某种商品需求缺乏弹性而供给富有弹性,则税收就主要落在消费者身上。
14.基数效用论采用的是边际效用分析法,序数效用论采用的是无差异曲线分析法。
15.如果把无差异曲线与消费可能线合在一个图上,那么消费可能线必定与无数条无差异曲线中的一条相切于一点,在这个切点上就实现了消费者均衡。
16.消费者愿意对某种物品所支付的价格与他实际支付的价格的差额称为消费者剩余。
最新国家开放大学经济数学基础形考4-1答案
1.设,求. 解:2.已知,求. 解:方程两边关于求导:,3.计算不定积分.解:将积分变量x 变为22x +, =⎰++)2(22122x d x =c x ++232)2(31 4.计算不定积分. 解:设2sin,x v x u ='=, 则2cos 2,x v dx du -==, 所以原式=C x x x x d x x x dx x x x ++-=+-=---⎰⎰2sin 42cos 222cos 42cos 22cos 22cos 25.计算定积分解:原式=2121211211)(1d e e e e e e x x x -=--=-=-⎰6.计算定积分解:设x v x u ='=,ln ,则221,1x v dx x du ==, 原式=41)4141(21141021211ln 212222212+=--=--=-⎰e e e e x e xdx e x x e7.设 ,求.解:[](1,2);(2,3)013100105010105010120001120001013100I A I ⎡⎤⎡⎤⎢⎥⎢⎥+=−−−−→-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦(3)2(2)(2)(1)1(2)1105010105010025001025001013100001200⋅++⨯-⋅-⎡⎤⎡⎤⎢⎥⎢⎥−−−−→--−−−−→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦所以110101()502200I A --⎡⎤⎢⎥⎢⎥+=--⎢⎥⎢⎥⎣⎦。
8.设矩阵 , , 求解矩阵方程.解: → →→→ 由XA=B,所以9.求齐次线性方程组 的一般解.解:原方程的系数矩阵变形过程为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=+-⨯++000011101201111011101201351223111201)2(②③①③①②A由于秩(A )=2<n=4,所以原方程有无穷多解,其一般解为:⎩⎨⎧-=+-=4324312x x x x x x (其中43x x ,为自由未知量)。
2020年最新电大《经济数学基础》考试题及答案 完整版
经济数学基础形成性考核册及参考答案作业(一)(一)填空题 1.___________________sin lim=-→xxx x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( )答案:D A .),1()1,(+∞⋃-∞ B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( )答案:B A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设,则( ).答案:BA .B .C .D .4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:BA .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5.当0→x 时,下列变量是无穷小量的是( ). 答案:C A .x2 B .xxsin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)21123lim221-=-+-→x x x x (2)218665lim 222=+-+-→x x x x x(3)2111lim0-=--→x x x (4)3142353lim 22=+++-∞→x x x x x (5)535sin 3sin lim 0=→x x x (6)4)2sin(4lim22=--→x x x 2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。
最新国开电大《经济数学基础12》形考作业一至四、学习活动一至四答案
形考作业一至四、学习活动一至四题目随机抽题,可用快捷方式Ctrl+F查询,查询技巧:以“中文字”作为关键字查询,公式符号无法查询复制(Ctrl+C)题目,粘贴(Ctrl+V)形考作业一题目1函数的定义域为().选择一项:A.B.C.D.正确答案是:函数的定义域为().选择一项:A.B.C.D.反馈正确答案是:函数的定义域为().选择一项:A.B.C.D.反馈正确答案是:下列函数在指定区间上单调增加的是().选择一项:A.B.C.D.反馈正确答案是:下列函数在指定区间上单调增加的是().选择一项:A.B.C.D.反馈正确答案是:下列函数在指定区间上单调减少的是().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则=().选择一项:A.B.C.D.反馈正确答案是:当时,下列变量为无穷小量的是().选择一项:A.B.C.D.反馈正确答案是:当时,下列变量为无穷小量的是().选择一项:A.B.C.D.反馈正确答案是:下列极限计算正确的是().选择一项:A.B.C.D.反馈正确答案是:下列极限计算正确的是().选择一项:A.B.C.D.反馈正确答案是:下列极限计算正确的是().选择一项:A.B.C.D.反馈正确答案是:下列极限计算正确的是().选择一项:A.B.C.D.反馈正确答案是:().选择一项:A. 0B. -1C. 1D. 2反馈正确答案是:-1().选择一项:A. 2B. 1C. 0D. -1反馈正确答案是:1().选择一项:A. 2B.C. -2D.反馈正确答案是:().选择一项:A. 5B.C.D. -5反馈正确答案是:().选择一项:A. -1B. -2C. 1D. 2反馈正确答案是:-1().选择一项:A.B.C. 0D.反馈正确答案是:().选择一项:A.B.C.D.反馈正确答案是:().选择一项:A.B. 0C.D.反馈正确答案是:().选择一项:A. 1B. 4C. 2D. 0反馈正确答案是:4().选择一项:A. 0B. -4C. 1D. 4反馈正确答案是:-4().选择一项:A. 0B. 1C. -2D. 2反馈正确答案是:2设在处连续,则().选择一项:A. -1B. 1C. 0D.反馈正确答案是:1设在处连续,则().选择一项:A. 1B. -1C.D. 0反馈正确答案是:1设在处连续,则().选择一项:A. 1B. 2C. 0D. -2反馈正确答案是:2当(),()时,函数在处连续.选择一项:A.B.C.D.反馈正确答案是:当(),()时,函数在处连续.选择一项:A.B.C.D.反馈正确答案是:(),()时,函数在处连续.选择一项:A.B.C.D.反馈正确答案是:曲线在点的切线方程是().选择一项:A.B.C.D.反馈正确答案是:曲线在点的切线方程是().选择一项:A.B.C.D.反馈正确答案是:曲线在点的切线方程是().选择一项:A.B.C.D.反馈正确答案是:若函数在点处可导,则()是错误的.选择一项:A. ,但B. 函数在点处可微C. 函数在点处连续D. 函数在点处有定义反馈正确答案是:,但若函数在点处可微,则()是错误的.选择一项:A. ,但B. 函数在点处连续C. 函数在点处可导D. 函数在点处有定义反馈正确答案是:,但若函数在点处连续,则()是正确的.选择一项:A. 函数在点处可微B. 函数在点处有定义C. ,但D. 函数在点处可导反馈正确答案是:函数在点处有定义若,则().选择一项:A.B.C.D.反馈正确答案是:若,则().选择一项:A.B.C. 1D. -1反馈正确答案是:1若,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设函数,则().选择一项:A.B.C.D.反馈正确答案是:设函数,则().选择一项:A.B.C.D.反馈正确答案是:设函数,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C. 2D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,方程两边对求导,可得().选择一项:A.B.C.D.反馈正确答案是:设,方程两边对求导,可得().选择一项:A.B.C.D.反馈正确答案是:设,方程两边对求导,可得().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B. -1C.D. 1反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C. -2D. -1反馈正确答案是:-2函数的驻点是().选择一项:A.B.C.D.反馈正确答案是:函数的驻点是().选择一项:A.B.C.D.反馈正确答案是:函数的驻点是().选择一项:A.B.C.D.反馈正确答案是:设某商品的需求函数为,则需求弹性().选择一项:A.B.C.D.反馈正确答案是:设某商品的需求函数为,则需求弹性().选择一项:A.B.C.D.反馈正确答案是:设某商品的需求函数为,则需求弹性().选择一项:A.B.C.D.反馈正确答案是:形考作业二下列函数中,()是的一个原函数.选择一项:A.B.C.D.反馈正确答案是:下列函数中,()是的一个原函数.选择一项:A.B.C.D.反馈正确答案是:下列函数中,()是的一个原函数.选择一项:A.B.C.D.反馈正确答案是:若,则().选择一项:A.B.C.D.反馈正确答案是:若,则().选择一项:A.B.C.D.反馈正确答案是:若,则().选择一项:A.B.C.D.反馈正确答案是:().选择一项:A.B.C.D.反馈正确答案是:().选择一项:A.B.C.D.反馈正确答案是:().选择一项:A.B.C.D.反馈正确答案是:().选择一项:A.B.C.D.反馈正确答案是:().选择一项:A.B.C.D.反馈正确答案是:().选择一项:A.B.C.D.反馈正确答案是:下列等式成立的是().选择一项:A.B.C.D.反馈正确答案是:下列等式成立的是().选择一项:A.B.C.D.反馈正确答案是:下列等式成立的是().选择一项:A.B.C.D.反馈正确答案是:若,则().选择一项:A.B.C.D.反馈正确答案是:若,则().选择一项:A.B.C.D.反馈正确答案是:若,则().选择一项:A.B.C.D.反馈正确答案是:用第一换元法求不定积分,则下列步骤中正确的是().选择一项:A.B.C.D.反馈正确答案是:用第一换元法求不定积分,则下列步骤中正确的是().选择一项:A.B.C.D.反馈正确答案是:用第一换元法求不定积分,则下列步骤中正确的是().选择一项:A.B.C.D.反馈正确答案是:下列不定积分中,常用分部积分法计算的是().选择一项:A.B.C.D.反馈正确答案是:下列不定积分中,常用分部积分法计算的是().选择一项:A.B.C.D.反馈正确答案是:下列不定积分中,常用分部积分法计算的是().选择一项:A.B.C.D.反馈正确答案是:用分部积分法求不定积分,则下列步骤中正确的是().选择一项:A.B.C.D.反馈正确答案是:用分部积分法求不定积分,则下列步骤中正确的是().选择一项:A.B.C.D.反馈正确答案是:用分部积分法求不定积分,则下列步骤中正确的是().选择一项:A.B.C.D.反馈正确答案是:().选择一项:A. 1B.C.D. 0反馈正确答案是:0().选择一项:A. 1B.C. 0D.反馈正确答案是:0().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C. 0D.反馈正确答案是:设,则().选择一项:A.B. 0C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:下列定积分计算正确的是().选择一项:A.B.C.D.反馈正确答案是:下列定积分计算正确的是().选择一项:A.B.C.D.反馈正确答案是:下列定积分计算正确的是().选择一项:A.B.C.D.反馈正确答案是:下列定积分计算正确的是().选择一项:A.B.C.D.反馈正确答案是:下列定积分计算正确的是().选择一项:A.B.C.D.反馈正确答案是:下列定积分计算正确的是().选择一项:A.B.C.D.计算定积分,则下列步骤中正确的是().选择一项:A.B.C.D.反馈正确答案是:().选择一项:A.B.C. 1D.反馈正确答案是:().选择一项:A.B.C.D.反馈正确答案是:用第一换元法求定积分,则下列步骤中正确的是().选择一项:A.B.C.D.反馈正确答案是:用第一换元法求定积分,则下列步骤中正确的是().选择一项:A.B.C.D.反馈正确答案是:用第一换元法求定积分,则下列步骤中正确的是().选择一项:A.B.C.D.反馈正确答案是:用分部积分法求定积分,则下列步骤正确的是().选择一项:A.B.C.D.反馈正确答案是:用分部积分法求定积分,则下列步骤正确的是().选择一项:A.B.C.D.反馈正确答案是:用分部积分法求定积分,则下列步骤正确的是().选择一项:A.B.C.D.反馈正确答案是:下列无穷积分中收敛的是().选择一项:A.B.C.D.反馈正确答案是:下列无穷积分中收敛的是().选择一项:A.B.C.D.反馈正确答案是:下列无穷积分中收敛的是().选择一项:A.B.C.D.反馈正确答案是:求解可分离变量的微分方程,分离变量后可得().选择一项:A.B.C.D.反馈正确答案是:求解可分离变量的微分方程,分离变量后可得().选择一项:A.B.C.D.反馈正确答案是:求解可分离变量的微分方程,分离变量后可得().选择一项:A.B.C.D.反馈正确答案是:根据一阶线性微分方程的通解公式求解,则下列选项正确的是().选择一项:A.B.C.D.反馈正确答案是:根据一阶线性微分方程的通解公式求解,则下列选项正确的是().选择一项:A.B.C.D.反馈正确答案是:根据一阶线性微分方程的通解公式求解,则下列选项正确的是().选择一项:A.B.C.D.反馈正确答案是:微分方程满足的特解为().选择一项:A.B.C.D.反馈正确答案是:微分方程满足的特解为().选择一项:A.B.C.D.反馈正确答案是:微分方程满足的特解为().选择一项:A.B.C.D.反馈。
2020年秋季国家开放大学《经济数学基础12》形考任务(1-4)试题答案解析
2020年秋季国家开放大学《经济数学基础12》形考任务(1-4)试题答案解析形考任务一(红色标注选项为正确选项)单项选择题(每题4分,共100分)题目1正确获得4.00分中的4.00分标记题目题干函数的定义域为().选择一项:A.B.C.D.反馈你的回答正确题目2正确获得4.00分中的4.00分标记题目题干下列函数在指定区间上单调增加的是().选择一项:A.B.C.D.反馈你的回答正确题目3不正确获得4.00分中的0.00分标记题目题干设,则=().选择一项:A.B.C.D.反馈你的回答不正确题目4正确获得4.00分中的4.00分标记题目题干当时,下列变量为无穷小量的是().选择一项:A.B.C.D.反馈你的回答正确题目5正确获得4.00分中的4.00分标记题目题干下列极限计算正确的是().选择一项:A.B.C.D.反馈你的回答正确题目6正确获得4.00分中的4.00分标记题目题干().选择一项:A. 2B. 1C. 0D. -1反馈你的回答正确题目7正确获得4.00分中的4.00分标记题目题干().选择一项:A. 1B. 2C. -2D. -1反馈你的回答正确题目8正确获得4.00分中的4.00分标记题目题干().选择一项:A. 0B.C.D.反馈你的回答正确题目9正确获得4.00分中的4.00分标记题目题干().选择一项:A. 0B. 1C. 2D. 4反馈你的回答正确题目10正确获得4.00分中的4.00分标记题目题干设在处连续,则().选择一项:A. 0B.C. -1D. 1反馈你的回答正确题目11正确获得4.00分中的4.00分标记题目题干当(),()时,函数在处连续.选择一项:A.B.C.D.反馈你的回答正确题目12正确获得4.00分中的4.00分标记题目题干曲线在点的切线方程是().选择一项:A.B.C.D.反馈你的回答正确题目13正确获得4.00分中的4.00分标记题目题干若函数在点处可导,则()是错误的.选择一项:A.,但B. 函数在点处可微C. 函数在点处连续D. 函数在点处有定义反馈你的回答正确题目14正确获得4.00分中的4.00分标记题目题干若,则().选择一项:A.C.D. -1反馈你的回答正确题目15正确获得4.00分中的4.00分标记题目题干设,则().选择一项:A.B.C.D.反馈你的回答正确题目16正确获得4.00分中的4.00分标记题目题干设函数,则().选择一项:A.B.C.D.你的回答正确题目17正确获得4.00分中的4.00分标记题目题干设,则().选择一项:A.B.C.D.反馈你的回答正确题目18正确获得4.00分中的4.00分标记题目题干设,则().选择一项:A. 2B.C.D.反馈你的回答正确题目19正确获得4.00分中的4.00分标记题目题干设,则().选择一项:A.B.C.D.反馈你的回答正确题目20正确获得4.00分中的4.00分标记题目题干设,则().选择一项:A.B.C.D.反馈你的回答正确题目21正确获得4.00分中的4.00分标记题目题干设,则().选择一项:A.B.C.D.反馈你的回答正确题目22正确获得4.00分中的4.00分标记题目题干设,方程两边对求导,可得().选择一项:A.B.C.D.反馈你的回答正确题目23正确获得4.00分中的4.00分标记题目题干设,则().选择一项:A.B.C.D.反馈你的回答正确题目24正确获得4.00分中的4.00分标记题目题干函数的驻点是().选择一项:A.B.C.D.反馈你的回答正确题目25正确获得4.00分中的4.00分标记题目题干设某商品的需求函数为,则需求弹性().选择一项:A.B.C.D.反馈你的回答正确形考任务二(红色标注选项为正确选项)单项选择题(每题4分,共100分)单项选择题(每题5分,共100分)题目1正确获得5.00分中的5.00分标记题目题干下列函数中,()是的一个原函数.选择一项:A.B.C.D.反馈你的回答正确题目2正确获得5.00分中的5.00分标记题目题干若,则().选择一项:A.B.C.D.反馈你的回答正确题目3正确获得5.00分中的5.00分标记题目题干().选择一项:A.B.C.D.反馈你的回答正确题目4正确获得5.00分中的5.00分标记题目题干().选择一项:A.B.C.D.反馈你的回答正确题目5正确获得5.00分中的5.00分标记题目题干下列等式成立的是().选择一项:A.B.C.D.反馈你的回答正确题目6正确获得5.00分中的5.00分标记题目题干若,则().选择一项:A.B.C.D.你的回答正确题目7正确获得5.00分中的5.00分标记题目题干用第一换元法求不定积分,则下列步骤中正确的是().选择一项:A.B.C.D.反馈你的回答正确题目8正确获得5.00分中的5.00分标记题目题干下列不定积分中,常用分部积分法计算的是().选择一项:A.B.C.D.反馈你的回答正确题目9获得5.00分中的5.00分标记题目题干用分部积分法求不定积分,则下列步骤中正确的是().选择一项:A.B.C.D.反馈你的回答正确题目10正确获得5.00分中的5.00分标记题目题干().选择一项:A. 0B.C. 1D.反馈你的回答正确题目11正确获得5.00分中的5.00分标记题目题干设,则().选择一项:A.B.C.D.反馈你的回答正确题目12正确获得5.00分中的5.00分标记题目题干下列定积分计算正确的是().选择一项:A.B.C.D.反馈你的回答正确题目13正确获得5.00分中的5.00分标记题目题干下列定积分计算正确的是().选择一项:A.B.C.D.反馈你的回答正确题目14正确获得5.00分中的5.00分标记题目题干().选择一项:A. 1B.C.D.反馈你的回答正确题目15正确获得5.00分中的5.00分标记题目题干用第一换元法求定积分,则下列步骤中正确的是().选择一项:A.B.C.D.反馈你的回答正确题目16正确获得5.00分中的5.00分标记题目题干用分部积分法求定积分,则下列步骤正确的是().选择一项:A.B.C.D.反馈你的回答正确题目17正确获得5.00分中的5.00分标记题目题干下列无穷积分中收敛的是().选择一项:A.B.C.D.反馈你的回答正确题目18正确获得5.00分中的5.00分标记题目题干求解可分离变量的微分方程,分离变量后可得().选择一项:A.B.C.D.反馈你的回答正确题目19正确获得5.00分中的5.00分标记题目题干根据一阶线性微分方程的通解公式求解,则下列选项正确的是().选择一项:A.B.C.D.反馈你的回答正确题目20正确获得5.00分中的5.00分标记题目题干微分方程满足的特解为().选择一项:A.B.C.D.反馈你的回答正确形考任务三(红色标注选项为正确选项)单项选择题(每题4分,共100分)单项选择题(每题5分,共100分)题目1正确获得5.00分中的5.00分标记题目题干设矩阵,则的元素().选择一项:A. 2B. -2C. 1D. 3反馈你的回答正确题目2正确获得5.00分中的5.00分标记题目题干设,,则().选择一项:A.B.C.D.反馈你的回答正确题目3正确获得5.00分中的5.00分标记题目题干设A为矩阵,B为矩阵,且乘积矩阵有意义,则为()矩阵.选择一项:A.B.C.D.反馈你的回答正确题目4正确获得5.00分中的5.00分标记题目题干设,为单位矩阵,则(A - I)T=().选择一项:A.B.C.D.反馈你的回答正确题目5正确获得5.00分中的5.00分标记题目题干设均为阶矩阵,则等式成立的充分必要条件是().选择一项:A.B.C.D.反馈你的回答正确题目6正确获得5.00分中的5.00分标记题目题干下列关于矩阵的结论正确的是().选择一项:A. 数量矩阵是对称矩阵B. 若均为零矩阵,则有C. 若,,则D. 若,且,则反馈你的回答正确题目7正确获得5.00分中的5.00分标记题目题干设,,则().选择一项:A. 0B. 2C. -2D. 4反馈你的回答正确题目8正确获得5.00分中的5.00分标记题目题干设均为阶可逆矩阵,则下列等式成立的是().选择一项:A.B.C.D.反馈你的回答正确题目9正确获得5.00分中的5.00分标记题目题干下列矩阵可逆的是().选择一项:A.B.C.D.反馈你的回答正确题目10正确获得5.00分中的5.00分标记题目题干设矩阵,则().选择一项:A.B.C.D.反馈你的回答正确题目11正确获得5.00分中的5.00分标记题目题干设均为阶矩阵,可逆,则矩阵方程的解().选择一项:A.B.C.D.反馈你的回答正确题目12正确获得5.00分中的5.00分标记题目题干矩阵的秩是().选择一项:A. 1B. 3C. 2D. 0反馈你的回答正确题目13正确获得5.00分中的5.00分标记题目题干设矩阵,则当()时,最小.选择一项:A. 0B. 1C. 2D. -2反馈你的回答正确题目14正确获得5.00分中的5.00分标记题目题干对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量.选择一项:A.B.C.D.反馈你的回答正确题目15正确获得5.00分中的5.00分标记题目题干设线性方程组有非0解,则().选择一项:A. 1B. -1C. 2D. 0反馈你的回答正确题目16正确获得5.00分中的5.00分标记题目题干设线性方程组,且,则当且仅当()时,方程组有唯一解.选择一项:A.B.C.D.反馈你的回答正确题目17正确获得5.00分中的5.00分标记题目题干线性方程组有唯一解的充分必要条件是().选择一项:A.B.C.D.反馈你的回答正确题目18正确获得5.00分中的5.00分标记题目题干设线性方程组,则方程组有解的充分必要条件是().选择一项:A.B.C.D.反馈你的回答正确题目19正确获得5.00分中的5.00分标记题目题干对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组无解.选择一项:A.且B.且C.且D.且反馈你的回答正确题目20正确获得5.00分中的5.00分标记题目题干若线性方程组有无穷多解,则线性方程组().选择一项:A. 只有零解B. 有无穷多解C. 解不能确定D. 无解反馈你的回答正确形考任务四(红色标注选项为正确选项)单项选择题(每题4分,共100分)一、计算题(每题6分,共60分)(如果以附件形式提交,请在在线输入框中,输入“见附件”)题目1完成获得60.00分中的60.00分未标记标记题目题干1.设,求.2.已知,求.3.计算不定积分.4.计算不定积分.5.计算定积分.6.计算定积分.7.设,求.8.设矩阵,,求解矩阵方程.9.求齐次线性方程组的一般解.10.求为何值时,线性方程组答案:评论评语:未标记标记题目信息文本二、应用题(每题10分,共40分)(如果以附件形式提交,请在在线输入框中,输入“见附件”)题目2完成获得40.00分中的40.00分未标记标记题目题干1.设生产某种产品个单位时的成本函数为(万元),求:①时的总成本、平均成本和边际成本;②产量为多少时,平均成本最小.2.某厂生产某种产品件时的总成本函数为(元),单位销售价格为(元/件),问产量为多少时可使利润达到最大?最大利润是多少?3.投产某产品的固定成本为36(万元),边际成本为(万元/百台).试求产量由4百台增至6百台时总成本的增量,及产量为多少时,可使平均成本达到最低.4.生产某产品的边际成本为(万元/百台),边际收入为(万元/百台),其中为产量,求:①产量为多少时利润最大;②在最大利润产量的基础上再生产2百台,利润将会发生什么变化.答案:。
2020国家开放大学《经济数学基础12》形考作业1-4参考答案
国家开放大学(电大)《经济数学12》形考作业1-4参考答案形考任务 11、函数的定义域为().函数的定义域为().函数的定义域为().2、下列函数在指定区间上单调增加的是().下列函数在指定区间上单调增加的是().下列函数在指定区间上单调减少的是().3、4、5、7、8、9、10、12、13、14、15、16、17、18、19、21、22、23、24、形考任务2 1、2、3、4、6、7、8、9、10、0 11、12、13、14、15、16、17、18、19、20、形考任务3 1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、形考任务4一、计算题(每题6分,共60分)1、解:y′=(e−x2)′+(cos2x)′=(−x2)′·e−x2-2sin2x=-2 xe−x2-2sin2x2、解:方程两边关于x求导:2 x+2 yy′- y- xy+3=0(2 y- x) y′= y-2 x-3dy=y−3−2x2 y−xdx3、解:原式=∫√2+x2d(12 x2)=12∫√2+x2d(2+x2)=13(2+x2)32+c4、解:原式=2∫xd(−cos x2)= −2xcos x2+2∫cos x2dx=-2x cos x2+4sin x2+c5、解:原式=∫e 1 x2 1d(-1x)=- e1x∣12=- e12+ e6、解:∫ln xd(12x2)e 1=12x2 lnx∣1e-∫12x2e1(lnx)′dx=12e2-14x2∣1e=14e2+147、解:I+A=013 105 1−20(I+A,I)= 0131051−20100010001→1050131−20010100001→1050130−2−50101000−11→105013001010100211→100010001−106−5−53−32−11(I+A)-1= −106−5−53−3 2−118、解:(A I)=12−332−42−10100010001→12−30−450−56100−310−201→12−301−10−56100−11−1−201→12−301−1001100−11−1−754→100010001−43−2−86−5−75−4A-1=−43−2−86−5−75−4X=B A-1= 1−30027−43−2−86−5−75−4=20−1513−6547−389、解:A=10−112−12−1−325−3→10010−12−1−111−1→1001002−1−1100所以,方程的一般解为x1=−2x3+x4x2=x3−x4(其中x1,x2是自由未知量)10、解:将方程组的增广矩阵化为阶梯型1−12−13−242−113λ→1−1010142−9−3−9λ−6→100100−5−1−9−30λ−3由此可知当λ≠3时,方程组无解。
电大《经济数学基础》参考答案
电大【经济数学基础】形成性考核册参考答案《经济数学基础》形成性考核册(一)一、填空题 1.___________________sin lim=-→xxx x .答案:1 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案13.曲线x y =+1在)1,1(的切线方程是 . 答案:y=1/2X+3/24.设函数52)1(2++=+x x x f ,则____________)(='x f .答案x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案: 2π-二、单项选择题1. 当+∞→x 时,下列变量为无穷小量的是( D )A .)1ln(x +B . 12+x x C .1x e - D . x x sin2. 下列极限计算正确的是( B ) A.1lim=→xx x B.1lim 0=+→xx x C.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =lg2,则d y =( B ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.若x xf =)1(,则=')(x f ( B ). A .21x B .21x- C .x 1 D .x 1-三、解答题 1.计算极限本类题考核的知识点是求简单极限的常用方法。
它包括: ⑴利用极限的四则运算法则; ⑵利用两个重要极限;⑶利用无穷小量的性质(有界变量乘以无穷小量还是无穷小量)⑷利用连续函数的定义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.设,求. 解:
2.已知,求. 解:方程两边关于求导:
,
3.计算不定积分
.
解:将积分变量x 变为22x +, =⎰++)2(22
122x d x =c x ++232)2(3
1 4.计算不定积分. 解:设2sin
,x v x u ='=, 则2cos 2,x v dx du -==, 所以原式
=C x x x x d x x x dx x x x ++-=+-=---⎰⎰2
sin 42cos 222cos 42cos 22cos 22cos 2
5.计算定积分
解:原式=2121211211)(1d e e e e e e x x x -=--=-=-
⎰
6.计算定积分
解:设x v x u ='=,ln ,
则22
1,1x v dx x du ==, 原式=4
1)4141(21141021211ln 212222212+=--=--=-⎰e e e e x e xdx e x x e
7.设 ,求
.
解:[](1,2);(2,3)013100105010105010120001120001013100I A I ⎡⎤⎡⎤⎢⎥⎢⎥+=−−−−→-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦
(3)2(2)(2)(1)1(2)1105010105010025001025001013100001200⋅++⨯-⋅-⎡⎤⎡⎤⎢⎥⎢⎥−−−−→--−−−−→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦
所以110101()502200I A --⎡⎤⎢⎥⎢⎥+=--⎢⎥⎢⎥⎣⎦。
8.设矩阵 , , 求解矩阵方程
.
解: → →
→→
由XA=B,所以
9.求齐次线性方程组 的一般解.
解:原方程的系数矩阵变形过程为:
⎥⎥⎥⎦⎤⎢⎢
⎢⎣⎡--−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎦⎤
⎢⎢⎢⎣⎡-----=+-⨯++0000
1110
1201
111011101201351223111201)2(②③①③①②A
由于秩(A )=2<n=4,所以原方程有无穷多解,其一般解为:
⎩⎨⎧-=+-=4
324312x x x x x x (其中43x x ,为自由未知量)。
10.求为何值时,线性方程组
解:将方程组的增广矩阵化为阶梯形 →→
由此可知当 时,方程组无解。
当 时,方程组有解。
且方程组的一般解为 (其中 为自由未知量)。