陕西省2017-2018学年高考数学全真模拟试卷(理科)(四) Word版含解析
极坐标方程和直角坐标方程的互化-2017-2018学年下学期高二理科数学复习题Word版含解析
极坐标方程和直角坐标方程的互化高考频度:★★★★☆难易程度:★★★☆☆学霸推荐1.若点的极坐标为,则的直角坐标为A.B.C.D.2.以直角坐标系的坐标原点为极点,轴正半轴为极轴建立极坐标系,则圆的圆心的平面直角坐标是A.B.C.D.3.在极坐标系中,方程表示的曲线是A.直线 B.圆C.椭圆 D.双曲线4.若点的直角坐标为,则它的极坐标可以是A.B.C.D.5.直线被圆所截得的弦长为A.1 B.C.2 D.46.以原点为极点,以轴正半轴为极轴且与直角坐标系取相同的长度单位建立极坐标系.若圆的极坐标方程为,则其直角坐标方程为__________.7.极坐标系中,点到直线的距离为___________.8.在直角坐标系中,直线的方程是,曲线的参数方程为(为参数),以为极点,轴的非负半轴为极轴建立极坐标系.(1)求直线和曲线的极坐标方程;(2)射线:(其中)与曲线交于,两点,与直线交于点,求的取值范围.9.已知直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为,直线与圆交于两点.(1)求圆的直角坐标方程及弦的长;(2)动点在圆上(不与重合),试求的面积的最大值.1.【答案】D【解析】设点,根据直角坐标与极坐标之间的互化公式,可得,即点的坐标为,故选D.4.【答案】C【解析】,,因为点在第二象限,故取,故选C.5.【答案】B【解析】化为直角坐标方程为,圆表示以坐标原点为圆心,1为半径的圆,则直线被圆截得的弦长为.选B. 6.【答案】【解析】极坐标方程,两边同乘以,得,∴,即.7.【答案】【解析】点化成直角坐标为(0,2),直线的直角坐标方程为x=1,所以点到直线的距离为2-1=1,故填1.(2)将分别代入,,得,,∴,∵,∴,∴,∴的取值范围是.9.【解析】(1)由得,所以,所以圆的直角坐标方程为将直线的参数方程代入圆,并整理得,解得.所以直线被圆截得的弦长为.当时,取最大值,且的最大值为,所以.即的面积的最大值为.。
2023届陕西省部分名校高三下学期高考仿真模拟理科数学试卷(word版)
2023届陕西省部分名校高三下学期高考仿真模拟理科数学试卷(word版)一、单选题(★★) 1. 已知集合,,则()A.B.C.D.(★) 2. 复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限(★★) 3. 在等差数列中,,则的公差()A.B.3C.D.4(★★★) 4. 若实数满足约束条件,则的取值范围为()A.B.C.D.(★) 5. 已知随机变量X的分布列为:m则()A.2B.C.D.1(★★★) 6. 函数在区间上的图象大致是()A.B.C.D.(★★★) 7. 在正方体中,,,分别为,,的中点,则异面直线与所成角的余弦值为()A.B.C.D.(★★) 8. 已知直线是函数()图象的一条对称轴,则在上的值域为()A.B.C.D.(★★) 9. 等比数列的各项均为正数,且,则()A.8B.6C.4D.3(★★★) 10. 设,,,则()A.B.C.D.(★★★) 11. 已知是坐标原点,是双曲线的左焦点,平面内一点满足是等边三角形,线段与双曲线交于点,且,则双曲线的离心率为()A.B.C.D.(★★★) 12. 在四棱锥P-ABCD中,底面ABCD为梯形,平面P AD⊥底面ABCD,,,,,则四棱锥P-ABCD外接球的表面积为()A.26πB.27πC.28πD.29π二、填空题(★★) 13. 已知向量,,若,则 ______ .(★★) 14. 南宋晚期的龙泉窑粉青釉刻花斗笠盏如图1所示,忽略杯盏的厚度,这只杯盏的轴截面如图2所示,其中光滑的曲线是抛物线的一部分,已知杯盏盛满茶水时茶水的深度为3cm,则该抛物线的焦点到准线的距离为 ______ cm.(★★) 15. 2023年杭州亚运会需招募志愿者,现从某高校的8名志愿者中任意选出3名,分别担任语言服务、人员引导、应急救助工作,其中甲、乙2人不能担任语言服务工作,则不同的选法共有 ___________ 种.(★★★★) 16. 已知函数,若恒成立,则的取值范围为 ______ .三、解答题(★★★) 17. 在中,内角,,所对的边分别为,,,已知,.(1)求的值;(2)若,求的面积.(★★★) 18. 赤霉素在幼芽、幼根、未成熟的种子中合成,其作用是促进细胞的生长,使得植株变高,每粒种子的赤霉素含量(单位:ng/g)直接影响该粒种子后天的生长质量.现通过生物仪器采集了赤霉素含量分别为10,20,30,40,50的种子各20粒,并跟踪每粒种子后天生长的情况,收集种子后天生长的优质数量(单位:粒),得到的数据如下表:赤霉素含量10后天生长的优2质数量(1)求关于的线性回归方程;(2)利用(1)中的回归方程,估计1000粒赤霉素含量为60ng/g的种子后天生长的优质数量. 附:回归直线的斜率和截距的最小二乘估计公式分别为,.(★★★) 19. 如图,在直三棱柱中,,,,D,E分别是棱,的中点.(1)证明:平面;(2)求二面角的余弦值.(★★★) 20. 已知函数.(1)设.①求曲线在点处的切线方程.②试问有极大值还是极小值?并求出该极值.(2)若在上恰有两个零点,求a的取值范围.(★★★) 21. 已知椭圆,斜率为2的直线l与椭圆交于A,B两点.过点B作AB的垂线交椭圆于另一点C,再过点C作斜率为-2的直线交椭圆于另一点D.(1)若坐标原点O到直线l的距离为,求△AOB的面积.(2)试问直线AD的斜率是否为定值?若是定值,求出此定值;若不是定值,说明理由.(★★★) 22. 在直角坐标系中,曲线的参数方程为(为参数).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线与极轴相交于,两点.(1)求曲线的极坐标方程及点的极坐标;(2)若直线的极坐标方程为,曲线与直线相交于,两点,求的面积. (★★) 23. 已知函数.(1)当时,求不等式的解集;(2)若不等式的解集非空,求的取值范围.。
高考数学理科模拟试卷及答案
高考数学理科模拟试卷及答案迎战高考,十年寒窗,今日出招。
早睡早起休息好,餐餐养分搭配好,生冷零食远离好,考试用具预备好,有备而战发挥好。
祝高考顺当,金榜题名!下面就是我给大家带来的高考数学理科模拟试卷及答案,盼望大家喜爱!第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项符合题目要求。
1.设全集,集合,则()A.{2,4}B.{2,4,6}C.{0,2,4}D.{0,2,4,6}2.若复数是纯虚数,则实数()A.±1B.C.0D.13.已知为等比数列,若,则()A.10B.20C.60D.1004.设点是线段BC的中点,点A在直线BC外,,则()A.2B.4C.6D.85.右图的算法中,若输入A=192,B=22,输出的是()A.0B.2C.4D.66.给出命题p:直线相互平行的充要条件是;命题q:若平面内不共线的三点到平面的距离相等,则∥。
对以上两个命题,下列结论中正确的是()A.命题“p且q”为真B.命题“p或q”为假C.命题“p且┓q”为假D.命题“p且┓q”为真7.若关于的不等式组表示的区域为三角形,则实数的取值范围是()A.(-∞,1)B.(0,1)C.(-1,1)D.(1,+∞)8.把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,不许有空盒且任意一个小球都不能放入标有相同标号的盒子中,则不同的(方法)有()A.36种B.45种C.54种D.84种9.设偶函数的部分图像如图所示,为等腰直角三角形,∠=90°,||=1,则的值为()A.B.C.D.10.已知点,动圆C与直线切于点B,过与圆C相切的两直线相交于点P,则P点的轨迹方程为()A.B.C.D.11.函数有且只有两个不同的零点,则b的值为()A.B.C.D.不确定12.已知三边长分别为4、5、6的△ABC的外接圆恰好是球的一个大圆,P为球面上一点,若点P到△ABC的三个顶点的距离相等,则三棱锥P-ABC的体积为()A.5B.10C.20D.30第Ⅱ卷二、填空题:本大题共4小题,每小题5分。
2018年高考理科数学模拟试卷(共三套)(含答案)
2018年高考理科数学模拟试卷(一)(考试时间120分钟满分150分)一、选择题(共12小题,每小题5分,满分60分)1.已知集合S={1,2},设S的真子集有m个,则m=()A.4 B.3 C.2 D.12.已知i为虚数单位,则的共轭复数为()A.﹣+i B. +i C.﹣﹣i D.﹣i3.已知、是平面向量,如果||=3,||=4,|+|=2,那么|﹣|=()A. B.7 C.5 D.4.在(x﹣)10的二项展开式中,x4的系数等于()A.﹣120 B.﹣60 C.60 D.1205.已知a,b,c,d都是常数,a>b,c>d,若f(x)=2017﹣(x﹣a)(x﹣b)的零点为c,d,则下列不等式正确的是()A.a>c>b>d B.a>b>c>d C.c>d>a>b D.c>a>b>d6.公元263年左右,我国古代数学家刘徽用圆内接正多边形的面积去逼近圆的面积求圆周率π,他从圆内接正六边形算起,令边数一倍一倍地增加,即12,24,48,…,192,…,逐个算出正六边形,正十二边形,正二十四边形,…,正一百九十二边形,…的面积,这些数值逐步地逼近圆面积,刘徽算到了正一百九十二边形,这时候π的近似值是3.141024,刘徽称这个方法为“割圆术”,并且把“割圆术”的特点概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽这种想法的可贵之处在于用已知的、可求的来逼近未知的、要求的,用有限来逼近无穷,这种思想及其重要,对后世产生了巨大影响,如图是利用刘徽的“割圆术”思想设计的一个程序框图,若运行改程序(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305),则输出n的值为()A.48 B.36 C.30 D.247.在平面区域内随机取一点(a,b),则函数f(x)=ax2﹣4bx+1在区间[1,+∞)上是增函数的概率为()A. B.C.D.8.已知△ABC的内角A、B、C的对边分别为a、b、c.若a=bcosC+csinB,且△ABC的面积为1+.则b的最小值为()A.2 B.3 C.D.9.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.12 B.18 C.24 D.3010.已知常数ω>0,f(x)=﹣1+2sinωxcosωx+2cos2ωx图象的对称中心得到对称轴的距离的最小值为,若f(x0)=,≤x0≤,则cos2x0=()A.B.C.D.11.已知三棱锥P﹣ABC的所有顶点都在表面积为16π的球O的球面上,AC为球O的直径,当三棱锥P﹣ABC的体积最大时,设二面角P﹣AB﹣C的大小为θ,则sinθ=()A. B.C.D.12.抛物线M的顶点是坐标原点O,抛物线M的焦点F在x轴正半轴上,抛物线M的准线与曲线x2+y2﹣6x+4y﹣3=0只有一个公共点,设A是抛物线M上的一点,若•=﹣4,则点A的坐标是()A.(﹣1,2)或(﹣1,﹣2)B.(1,2)或(1,﹣2)C.(1,2) D.(1,﹣2)二、填空题(共4小题,每小题5分,满分20分)13.某校1000名高三学生参加了一次数学考试,这次考试考生的分数服从正态分布N(90,σ2),若分数在(70,110]内的概率为0.7,估计这次考试分数不超过70分的人数为人.14.过双曲线﹣=1(a>0,b>0)的右焦点且垂直于x轴的直线与双曲线交于A,B两点,与双曲线的渐近线交于C,D两点,若|AB|≥|CD|,则双曲线离心率的取值范围为.15.计算=(用数字作答)16.已知f(x)=,若f (x﹣1)<f(2x+1),则x的取值范围为.三、解答题(共5小题,满分60分)17.设数列{a n}的前n项和为S n,a1=1,当n≥2时,a n=2a n S n﹣2S n2.(1)求数列{a n}的通项公式;(2)是否存在正数k,使(1+S1)(1+S2)…(1+S n)≥k对一切正整数n都成立?若存在,求k的取值范围,若不存在,请说明理由.18.云南省20XX年高中数学学业水平考试的原始成绩采用百分制,发布成绩使用等级制,各登记划分标准为:85分及以上,记为A等,分数在[70,85)内,记为B等,分数在[60,70)内,记为C等,60分以下,记为D等,同时认定等级分别为A,B,C都为合格,等级为D为不合格.已知甲、乙两所学校学生的原始成绩均分布在[50,100]内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]分别作出甲校如图1所示样本频率分布直方图,乙校如图2所示样本中等级为C、D的所有数据茎叶图.(1)求图中x的值,并根据样本数据比较甲乙两校的合格率;(2)在选取的样本中,从甲、乙两校C等级的学生中随机抽取3名学生进行调研,用X表示所抽取的3名学生中甲校的学生人数,求随机变量X的分布列和数学期望.19.如图,在四棱锥S﹣ABCD中,底面ABCD是矩形,平面ABCD⊥平面SBC,SB=SC,M是BC的中点,AB=1,BC=2.(1)求证:AM⊥SD;(2)若二面角B﹣SA﹣M的正弦值为,求四棱锥S﹣ABCD的体积.20.已知椭圆E的中心在原点,焦点F1、F2在y轴上,离心率等于,P 是椭圆E上的点,以线段PF1为直径的圆经过F2,且9•=1.(1)求椭圆E的方程;(2)做直线l与椭圆E交于两个不同的点M、N,如果线段MN被直线2x+1=0平分,求l的倾斜角的取值范围.21.已知e是自然对数的底数,实数a是常数,函数f(x)=e x﹣ax﹣1的定义域为(0,+∞).(1)设a=e,求函数f(x)在切点(1,f(1))处的切线方程;(2)判断函数f(x)的单调性;(3)设g(x)=ln(e x+x3﹣1)﹣lnx,若∀x>0,f(g(x))<f(x),求a 的取值范围.[选修4-4:坐标系与参数方程选讲]22.已知直线L的参数方程为(t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=.(Ⅰ)直接写出直线L的极坐标方程和曲线C的普通方程;(Ⅱ)过曲线C上任意一点P作与L夹角为的直线l,设直线l与直线L的交点为A,求|PA|的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|+|x﹣2|的定义域为实数集R.(Ⅰ)当a=5时,解关于x的不等式f(x)>9;(Ⅱ)设关于x的不等式f(x)≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3},如果A∪B=A,求实数a的取值范围.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.解:∵集合S={1,2},∴S的真子集的个数为:22﹣1=3.故选:B.2.解:∵=,∴的共轭复数为.故选:C.3.解:根据条件:==4;∴;∴=9﹣(﹣21)+16=46;∴.故选:A.==(﹣1)r x10﹣2r,4.解:通项公式T r+1令10﹣2r=4,解得r=3.∴x4的系数等于﹣=﹣120.故选:A5.解:由题意设g(x)=(x﹣a)(x﹣b),则f(x)=2017﹣g(x),所以g(x)=0的两个根是a、b,由题意知:f(x)=0 的两根c,d,也就是g(x)=2017 的两根,画出g(x)(开口向上)以及直线y=2017的大致图象,则与f(x)交点横坐标就是c,d,f(x)与x轴交点就是a,b,又a>b,c>d,则c,d在a,b外,由图得,c>a>b>d,故选D.6.解:模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:D.7.解:作出不等式组对应的平面区域如图:对应的图形为△OAB,其中对应面积为S=×4×4=8,若f(x)=ax2﹣4bx+1在区间[1,+∞)上是增函数,则满足a>0且对称轴x=﹣≤1,即,对应的平面区域为△OBC,由,解得,∴对应的面积为S1=××4=,∴根据几何概型的概率公式可知所求的概率为=,故选:B.8.解:由正弦定理得到:sinA=sinCsinB+sinBcosC,∵在△ABC中,sinA=sin[π﹣(B+C)]=sin(B+C),∴sin(B+C)=sinBcosC+cosBsinC=sinCsinB+sinBcosC,∴cosBsinC=sinCsinB,∵C∈(0,π),sinC≠0,∴cosB=sinB,即tanB=1,∵B∈(0,π),∴B=,=acsinB=ac=1+,∵S△ABC∴ac=4+2,由余弦定理得到:b2=a2+c2﹣2accosB,即b2=a2+c2﹣ac≥2ac﹣ac=4,当且仅当a=c时取“=”,∴b的最小值为2.故选:A.9.解:由已知中的三视图可得该几何体是一个以俯视图为底面的三棱锥,切去一个三棱锥所得的组合体,其底面面积S=×3×4=6,棱柱的高为:5,棱锥的高为3,故组合体的体积V=6×5﹣×6×3=24,故选:C10.解:由f(x)=﹣1+2sinωxcosωx+2cos2ωx,化简可得:f(x)=sin2ωx+cos2ωx=2sin(2ωx+)∵对称中心得到对称轴的距离的最小值为,∴T=π.由,可得:ω=1.f(x0)=,即2sin(2x0+)=∵≤x0≤,∴≤2x0+≤∴sin(2x0+)=>0∴cos(2x0+)=.那么:cos2x0=cos(2x0+﹣)=cos(2x0+)cos+sin(2x0+)sin=故选D11.解:如图所示:由已知得球的半径为2,AC为球O的直径,当三棱锥P﹣ABC的体积最大时,△ABC为等腰直角三角形,P在面ABC上的射影为圆心O,过圆心O作OD⊥AB于D,连结PD,则∠PDO为二面角P﹣AB﹣C的平面角,在△ABC△中,PO=2,OD=BC=,∴,sinθ=.故选:C12.解:x2+y2﹣6x+4y﹣3=0,可化为(x﹣3)2+(y+2)2=16,圆心坐标为(3,﹣2),半径为4,∵抛物线M的准线与曲线x2+y2﹣6x+4y﹣3=0只有一个公共点,∴3+=4,∴p=2.∴F(1,0),设A(,y0)则=(,y0),=(1﹣,﹣y0),由•=﹣4,∴y0=±2,∴A(1,±2)故选B.二、填空题(共4小题,每小题5分,满分20分)13.解:由X服从正态分布N(90,σ2)(σ>0),且P(70≤X≤110)=0.35,得P(X≤70)=(1﹣0.35)=.∴估计这次考试分数不超过70分的人数为1000×=325.故答案为:325.14.解:设双曲线﹣=1(a>0,b>0)的右焦点为(c,0),当x=c时代入双曲线﹣=1得y=±,则A(c,),B(c,﹣),则AB=,将x=c代入y=±x得y=±,则C(c,),D(c,﹣),则|CD|=,∵|AB|≥|CD|,∴≥•,即b≥c,则b2=c2﹣a2≥c2,即c2≥a2,则e2=≥,则e≥.故答案为:[,+∞).15.解:由===.故答案为:.16.解:∵已知f(x)=,∴满足f(﹣x)=f(x),且f(0)=0,故f(x)为偶函数,f(x)在[0,+∞)上单调递增.若f(x﹣1)<f(2x+1),则|x﹣1|<|2x+1|,∴(x﹣1)2<(2x+1)2,即x2+2x>0,∴x>0,或x<﹣2,故答案为:{x|x>0,或x<﹣2}.三、解答题(共5小题,满分60分)17.解:(1)∵当n≥2时,a n=2a n S n﹣2S n2,∴a n=,n≥2,∴(S n﹣S n﹣1)(2S n﹣1)=2S n2,∴S n﹣S n﹣1=2S n S n﹣1,∴﹣2,n≥2,∴数列{}是以=1为首项,以2为公差的等差数列,∴=1+2(n﹣1)=2n﹣1,∴S n=,∴n≥2时,a n=S n﹣S n﹣1=﹣=﹣,∵a1=S1=1,∴a n=,(2)设f(n)=,则==>1,∴f(n)在n∈N*上递增,要使f(n)≥k恒成立,只需要f(n)min≥k,∵f(n)min=f(1)=,∴0<k≤18.解:(1)由频率分布直方图可得:(x+0.012+0.056+0.018+0.010)×10=1,解得x=0.004.甲校的合格率P1=(1﹣0.004)×10=0.96=96%,乙校的合格率P2==96%.可得:甲乙两校的合格率相同,都为96%.(2)甲乙两校的C等级的学生数分别为:0.012×10×50=6,4人.X=0,1,2,3.则P(X=k)=,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.∴X的分布列为:X0123PE(X)=0+1×+2×+3×=.19.证明:(1)∵SB=SC,M是BC的中点,∴SM⊥BC,∵平面ABCD⊥平面SBC,平面ABCD∩平面SBC=BC,∴SM⊥平面ABCD,∵AM⊂平面ABCD,∴SM⊥AM,∵底面ABCD是矩形,M是BC的中点,AB=1,BC=2,∴AM2=BM2==,AD=2,∴AM2+BM2=AD2,∴AM⊥DM,∵SM∩DM=M,∴AM⊥平面DMS,∵SD⊂平面DMS,∴AM⊥SD.解:(2)∵SM⊥平面ABCD,∴以M为原点,MC为x轴,MS为y轴,过M作平面BCS的垂线为z轴,建立空间直角坐标系,设SM=t,则M(0,0,0),B(﹣1,0,0),S(0,t,0),A(﹣1,0,1),=(0,0,1),=(1,t,0),=(﹣1,0,1),=(0,t,0),设平面ABS的法向量=(x,y,z),则,取x=1,得=(1,﹣,0),设平面MAS的法向量=(a,b,c),则,取a=1,得=(1,0,1),设二面角B﹣SA﹣M的平面角为θ,∵二面角B﹣SA﹣M的正弦值为,∴sinθ=,cosθ==,∴cosθ===,解得t=,∵SM⊥平面ABCD,SM=,∴四棱锥S﹣ABCD的体积:V S﹣=== ABCD.20.解:(1)由题意可知:设题意的方程:(a>b>0),e==,则c=a,设丨PF1丨=m,丨PF2丨=n,则m+n=2a,线段PF1为直径的圆经过F2,则PF2⊥F1F2,则n2+(2c)2=m2,9m•n×cos∠F1PF2=1,由9n2=1,n=,解得:a=3,c=,则b==1,∴椭圆标准方程:;(2)假设存在直线l,依题意l交椭圆所得弦MN被x=﹣平分,∴直线l的斜率存在.设直线l:y=kx+m,则由消去y,整理得(k2+9)x2+2kmx+m2﹣9=0∵l与椭圆交于不同的两点M,N,∴△=4k2m2﹣4(k2+9)(m2﹣9)>0,即m2﹣k2﹣9<0①设M(x1,y1),N(x2,y2),则x1+x2=﹣∴=﹣=﹣,∴m=②把②代入①式中得()2﹣(k2+9)<0∴k>或k<﹣,∴直线l倾斜角α∈(,)∪(,).21.解:(1)a=e时,f(x)=e x﹣ex﹣1,f(1)=﹣1,f′(x)=e x﹣e,可得f′(1)=0,故a=e时,函数f(x)在切点(1,f(1))处的切线方程是y=﹣1;(2)f(x)=e x﹣ax﹣1,f′(x)=e x﹣a,当a≤0时,f′(x)>0,则f(x)在R上单调递增;当a>0时,令f′(x)=e x﹣a=0,得x=lna,则f(x)在(﹣∞,lna]上单调递减,在(lna,+∞)上单调递增.(3)设F(x)=e x﹣x﹣1,则F′(x)=e x﹣1,∵x=0时,F′(x)=0,x>0时,F′(x)>0,∴F(x)在[0,+∞)递增,∴x>0时,F(x)>F(0),化简得:e x﹣1>x,∴x>0时,e x+x3﹣1>x,设h(x)=xe x﹣e x﹣x3+1,则h′(x)=x(e x﹣ex),设H(x)=e x﹣ex,H′(x)=e x﹣e,由H′(x)=0,得x=1时,H′(x)>0,x<1时,H′(x)<0,∴x>0时,H(x)的最小值是H(1),x>0时,H(x)≥H(1),即H(x)≥0,∴h′(x)≥0,可知函数h(x)在(0,+∞)递增,∴h(x)>h(0)=0,化简得e x+x3﹣1<xe x,∴x>0时,x<e x+x3﹣1<xe x,∴x>0时,lnx<ln(e x+x3﹣1)<lnx+x,即0<ln(e x+x3﹣1)﹣lnx<x,即x>0时,0<g(x)<x,当a≤1时,由(2)得f(x)在(0,+∞)递增,得f(g(x))<f(x)满足条件,当a>1时,由(2)得f(x)在(0,lna)递减,∴0<x≤lna时,f(g(x))>f(x),与已知∀x>0,f(g(x))<f(x)矛盾,综上,a的范围是(﹣∞,1].[选修4-4:坐标系与参数方程选讲]22.解:(Ⅰ)直线L的参数方程为(t为参数),普通方程为2x+y﹣6=0,极坐标方程为2ρcosθ+ρsinθ﹣6=0,曲线C的极坐标方程为ρ=,即ρ2+3ρ2cos2θ=4,曲线C 的普通方程为=1;(Ⅱ)曲线C上任意一点P(cosθ,2sinθ)到l的距离为d=|2cosθ+2sinθ﹣6|.则|PA|==|2sin(θ+45°)﹣6|,当sin(θ+45°)=﹣1时,|PA|取得最大值,最大值为.[选修4-5:不等式选讲]23.解:(Ⅰ)当a=5时,关于x的不等式f(x)>9,即|x+5|+|x﹣2|>9,故有①;或②;或③.解①求得x<﹣6;解②求得x∈∅,解③求得x>3.综上可得,原不等式的解集为{x|x<﹣6,或x>3}.(Ⅱ)设关于x的不等式f(x)=|x+a|+|x﹣2|≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3}={x|﹣1≤x≤2 },如果A∪B=A,则B⊆A,∴,即,求得﹣1≤a≤0,故实数a的范围为[﹣1,0].2018年高考理科数学模拟试卷(二)(考试时间120分钟满分150分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.复数z满足方程=﹣i(i为虚数单位),则复数z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合A={x|x2+x﹣2<0},集合B={x|(x+2)(3﹣x)>0},则(∁R A)∩B 等于()A.{x|1≤x<3}B.{x|2≤x<3}C.{x|﹣2<x<1}D.{x|﹣2<x≤﹣1或2≤x<3}3.下列函数中,在其定义域内,既是奇函数又是减函数的是()A.f(x)=B.f(x)=C.f(x)=2﹣x﹣2x D.f(x)=﹣tanx 4.已知“x>2”是“x2>a(a∈R)”的充分不必要条件,则a的取值范围是()A.(﹣∞,4)B.(4,+∞)C.(0,4]D.(﹣∞,4]5.已知角α是第二象限角,直线2x+(t anα)y+1=0的斜率为,则cosα等于()A. B.﹣C.D.﹣6.执行如图所示的程序框图,若输入n的值为8,则输出s的值为()A.16 B.8 C.4 D.27.(﹣)8的展开式中,x的系数为()A.﹣112 B.112 C.56 D.﹣568.在△ABC中,∠A=60°,AC=3,面积为,那么BC的长度为()A.B.3 C.2D.9.记曲线y=与x轴所围成的区域为D,若曲线y=ax(x ﹣2)(a<0)把D的面积均分为两等份,则a的值为()A.﹣B.﹣C.﹣D.﹣10.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为m e,众数为m0,平均值为,则()A.m e=m0=B.m e=m0<C.m e<m0<D.m0<m e<11.已知矩形ABCD的顶点都在半径为5的球O的球面上,且AB=6,BC=2,则棱锥O﹣ABCD的侧面积为()A.20+8B.44 C.20 D.4612.函数f(x)=2sin(2x++φ)(|φ|<)的图象向左平移个单位后关于y轴对称,则以下判断不正确的是()A.是奇函数 B.为f(x)的一个对称中心C.f(x)在上单调递增D.f(x)在(0,)上单调递减二、填空题:本大题共4小题,每小题5分,共20分.13.若变量x,y满足约束条件,则z=2x﹣y的最大值为.14.如图所示是一个几何体的三视图,则这个几何体的体积为.15.已知抛物线y2=8x的焦点F到双曲线C:﹣=1(a>0,b>0)渐近线的距离为,点P是抛物线y2=8x上的一动点,P到双曲线C的上焦点F1(0,c)的距离与到直线x=﹣2的距离之和的最小值为3,则该双曲线的方程为.16.已知向量,的夹角为θ,|+|=2,|﹣|=2则θ的取值范围为.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知S n为等差数列{a n}的前n项和,S6=51,a5=13.(1)求数列{a n}的通项公式;(2)数列{b n}的通项公式是b n=,求数列{b n}的前n项和S n.18.袋中有大小相同的四个球,编号分别为1、2、3、4,从袋中每次任取一个球,记下其编号.若所取球的编号为偶数,则把该球编号改为3后放同袋中继续取球;若所取球的编号为奇数,则停止取球.(1)求“第二次取球后才停止取球”的概率;(2)若第一次取到偶数,记第二次和第一次取球的编号之和为X,求X的分布列和数学期望.19.在三棱椎A﹣BCD中,AB=BC=4,AD=BD=CD=2,在底面BCD内作CE ⊥CD,且CE=.(1)求证:CE∥平面ABD;(2)如果二面角A﹣BD﹣C的大小为90°,求二面角B﹣AC﹣E的余弦值.20.在平面直角坐标系xOy中,已知椭圆C: +=1(a>b>0)的离心率为.且过点(3,﹣1).(1)求椭圆C的方徎;(2)若动点P在直线l:x=﹣2上,过P作直线交椭圆C于M,N两点,使得PM=PN,再过P作直线l′⊥MN,直线l′是否恒过定点,若是,请求出该定点的坐标;若否,请说明理由.21.已知函数f(x)=m(x﹣1)2﹣2x+3+lnx(m≥1).(1)求证:函数f(x)在定义域内存在单调递减区间[a,b];(2)是否存在实数m,使得曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值;若不存在,请说明理由.[选修4-1:几何证明选讲]22.选修4﹣1:几何证明选讲如图,已知PA是⊙O的切线,A是切点,直线PO交⊙O于B、C两点,D是OC 的中点,连接AD并延长交⊙O于点E,若PA=2,∠APB=30°.(Ⅰ)求∠AEC的大小;(Ⅱ)求AE的长.[选修4-4:极坐标与参数方程]23.选修4﹣4:坐标系与参数方程在平面直角坐标系x0y中,动点A的坐标为(2﹣3sinα,3cosα﹣2),其中α∈R.在极坐标系(以原点O为极点,以x轴非负半轴为极轴)中,直线C的方程为ρcos (θ﹣)=a.(Ⅰ)判断动点A的轨迹的形状;(Ⅱ)若直线C与动点A的轨迹有且仅有一个公共点,求实数a的值.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣1|+|x﹣a|.(1)若a=2,解不等式f(x)≥2;(2)若a>1,∀x∈R,f(x)+|x﹣1|≥1,求实数a的取值范围.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.解:由=﹣i,得,即z=1+i.则复数z在复平面内对应的点的坐标为(1,1).位于第一象限.故选:A.2.解:∵集合A={x|x2+x﹣2<0}={x|﹣2<x<1},集合B={x|(x+2)(3﹣x)>0}={x|﹣2<x<3},∴(C R A)∩B={x|x≤﹣2或x≥1}∩{x|﹣2<x<3}={x|1≤x<3}.故选:A.3.解:A中,f(x)=是奇函数,但在定义域内不单调;B中,f(x)=是减函数,但不具备奇偶性;C中,f(x)2﹣x﹣2x既是奇函数又是减函数;D中,f(x)=﹣tanx是奇函数,但在定义域内不单调;故选C.4.解:由题意知:由x>2能得到x2>a;而由x2>a得不出x>2;∵x>2,∴x2>4;∴a≤4;∴a的取值范围是(﹣∞,4].故选:D.5.解:由题意得:k=﹣=,故tanα=﹣,故cosα=﹣,故选:D.6.解:开始条件i=2,k=1,s=1,i<8,开始循环,s=1×(1×2)=2,i=2+2=4,k=1+1=2,i<8,继续循环,s=×(2×4)=4,i=6,k=3,i<8,继续循环;s=×(4×6)=8,i=8,k=4,8≥8,循环停止,输出s=8;故选B:=(﹣2)r C8r x4﹣r,7.解:(﹣)8的展开式的通项为T r+1令4﹣r=1,解得r=2,∴展开式中x的系数为(﹣2)2C82=112,故选:B.8.解:在图形中,过B作BD⊥ACS△ABC=丨AB丨•丨AC丨sinA,即×丨AB丨×3×sin60°=,解得:丨AB丨=2,∴cosA=,丨AD丨=丨AB丨cosA=2×=1,sinA=,则丨BD丨=丨AB丨sinA=2×=,丨CD丨=丨AC丨﹣丨AD丨=3﹣1=2,在△BDC中利用勾股定理得:丨BC丨2=丨BD丨2+丨CD丨2=7,则丨BC丨=,故选A.9.解:由y=得(x﹣1)2+y2=1,(y≥0),则区域D表示(1,0)为圆心,1为半径的上半圆,而曲线y=ax(x﹣2)(a<0)把D的面积均分为两等份,∴=,∴(﹣ax2)=,∴a=﹣,故选:B.10.解:根据题意,由题目所给的统计图可知:30个得分中,按大小排序,中间的两个得分为5、6,故中位数m e=5.5,得分为5的最多,故众数m0=5,其平均数=≈5.97;则有m0<m e<,故选:D.11.解:由题意可知四棱锥O﹣ABCD的侧棱长为:5.所以侧面中底面边长为6和2,它们的斜高为:4和2,所以棱锥O﹣ABCD的侧面积为:S=4×6+2=44.故选B.12.解:把函数f(x)=2sin(2x++φ)(|φ|<)的图象向左平移个单位后,得到y=2sin(2x++φ+π)=﹣2sin(2x++φ)的图象,再根据所得关于y轴对称,可得+φ=kπ+,k∈Z,∴φ=,∴f(x)=2sin(2x++φ)=2cos2x.由于f(x+)=2cos(2x+)=﹣sin2x是奇函数,故A正确;当x=时,f(x)=0,故(,0)是f(x)的图象的一个对称中心,故B正确;在上,2x∈(﹣,﹣),f(x)没有单调性,故C不正确;在(0,)上,2x∈(0,π),f(x)单调递减,故D正确,故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.解:由约束条件作出可行域如图,联立,解得A(4,2),化目标函数z=2x﹣y为y=2x﹣z,由图可知,当直线y=2x﹣z过点A时,直线在y 轴上的截距最小,z有最大值为6.故答案为:6.14.解:由三视图得到几何体如图:其体积为;故答案为:15.解:抛物线y2=8x的焦点F(2,0),双曲线C:﹣=1(a>0,b >0)一条渐近线的方程为ax﹣by=0,∵抛物线y2=8x的焦点F到双曲线C:﹣=1(a>0,b>0)渐近线的距离为,∴,∴2b=a,∵P到双曲线C的上焦点F1(0,c)的距离与到直线x=﹣2的距离之和的最小值为3,∴FF1=3,∴c2+4=9,∴c=,∵c2=a2+b2,a=2b,∴a=2,b=1,∴双曲线的方程为﹣x2=1.故答案为:﹣x2=1.16.解:由|+|=2,|﹣|=2,可得:+2=12,﹣2=4,∴=8≥2,=2,∴cosθ=≥.∴θ∈.故答案为:.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.解:(1)设等差数列{a n}的公差为d,则∵S6=51,∴×(a1+a6)=51,∴a1+a6=17,∴a2+a5=17,∵a5=13,∴a2=4,∴d=3,∴a n=a2+3(n﹣2)=3n﹣2;(2)b n==﹣2•8n﹣1,∴数列{b n}的前n项和S n==(8n﹣1).18.解:(1)记“第二次取球后才停止取球”为事件A.∴第一次取到偶数球的概率为=,第二次取球时袋中有三个奇数,∴第二次取到奇数球的概率为,而这两次取球相互独立,∴P(A)=×=.(2)若第一次取到2时,第二次取球时袋中有编号为1,3,3,4的四个球;若第一次取到4时,第二次取球时袋中有编号为1,2,3,3的四个球.∴X的可能取值为3,5,6,7,∴P(X=3)=×=,P(X=5)=×+×=,P(X=6)=×+×=,P(X=7)=×=,∴X的分布列为:X3567P数学期望EX=3×+5×+6×+7×=.19.(1)证明:∵BD=CD=2,BC=4,∴BD2+CD2=BC2,∴BD⊥CD,∵CE⊥CD,∴CE∥BD,又CE⊄平面ABD,BD⊂平面ABD,∴CE∥平面ABD;(2)解:如果二面角A﹣BD﹣C的大小为90°,由AD⊥BD得AD⊥平面BDC,∴AD⊥CE,又CE⊥CD,∴CE⊥平面ACD,从而CE⊥AC,由题意AD=DC=2,∴Rt△ADC中,AC=4,设AC的中点为F,∵AB=BC=4,∴BF⊥AC,且BF=2,设AE中点为G,则FG∥CE,由CE⊥AC得FG⊥AC,∴∠BFG为二面角B﹣AC﹣E的平面角,连接BG,在△BCE中,∵BC=4,CE=,∠BCE=135°,∴BE=,在Rt△DCE中,DE==,于是在Rt△ADE中,AE==3,在△ABE中,BG2=AB2+BE2﹣AE2=,∴在△BFG中,cos∠BFG==﹣,∴二面角B﹣AC﹣E的余弦值为﹣.20.解:(1)∵椭圆C: +=1(a>b>0)的离心率为.且过点(3,﹣1),∴,解得a2=12,b2=4,∴椭圆C的方程为.(2)∵直线l的方程为x=﹣2,设P(﹣2,y0),,当y0≠0时,设M(x1,y1),N(x2,y2),由题意知x1≠x2,联立,∴,∴,又∵PM=PN,∴P为线段MN的中点,∴直线MN的斜率为,又l′⊥MN,∴l′的方程为,即,∴l′恒过定点.当y0=0时,直线MN为,此时l′为x轴,也过点,综上,l′恒过定点.21.(1)证明:令f′(x)=0,得mx2﹣(m+2)x+1=0.(*)因为△=(m+2)2﹣4m=m2+4>0,所以方程(*)存在两个不等实根,记为a,b (a<b).因为m≥1,所以a+b=>0,ab=>0,所以a>0,b>0,即方程(*)有两个不等的正根,因此f′(x)≤0的解为[a,b].故函数f(x)存在单调递减区间;(2)解:因为f′(1)=﹣1,所以曲线C:y=f(x)在点P(1,1)处的切线l为y=﹣x+2.若切线l与曲线C只有一个公共点,则方程m(x﹣1)2﹣2x+3+lnx=﹣x+2有且只有一个实根.显然x=1是该方程的一个根.令g(x)=m(x﹣1)2﹣x+1+lnx,则g′(x)=.当m=1时,有g′(x)≥0恒成立,所以g(x)在(0,+∞)上单调递增,所以x=1是方程的唯一解,m=1符合题意.当m>1时,令g′(x)=0,得x1=1,x2=,则x2∈(0,1),易得g(x)在x1处取到极小值,在x2处取到极大值.所以g(x2)>g(x1)=0,又当x→0时,g(x)→﹣∞,所以函数g(x)在(0,)内也有一个解,即当m>1时,不合题意.综上,存在实数m,当m=1时,曲线C:y=f(x)在点P(1,1)处的切线l与C 有且只有一个公共点.[选修4-1:几何证明选讲]22.解:(Ⅰ)连接AB,因为:∠APO=30°,且PA是⊙O的切线,所以:∠AOB=60°;∵OA=OB∴∠AB0=60°;∵∠ABC=∠AEC∴∠AEC=60°.(Ⅱ)由条件知AO=2,过A作AH⊥BC于H,则AH=,在RT△AHD中,HD=2,∴AD==.∵BD•DC=AD•DE,∴DE=.∴AE=DE+AD=.[选修4-4:极坐标与参数方程]23.解:(Ⅰ)设动点A的直角坐标为(x,y),则,利用同角三角函数的基本关系消去参数α可得,(x﹣2)2+(y+2)2=9,点A的轨迹为半径等于3的圆.(Ⅱ)把直线C方程为ρcos(θ﹣)=a化为直角坐标方程为+=2a,由题意可得直线C与圆相切,故有=3,解得a=3 或a=﹣3.[选修4-5:不等式选讲]24.解:(1)当a=2时,,由于f(x)≥2,则①当x<1时,﹣2x+3≥2,∴x≤;②当1≤x≤1时,1≥2,无解;③当x>2时,2x﹣3≥2,∴x≥.综上所述,不等式f(x)≥2的解集为:(﹣∞,]∪[,+∞);(2)令F(x)=f(x)+|x﹣1|,则,所以当x=1时,F(x)有最小值F(1)=a﹣1,只需a﹣1≥1,解得a≥2,所以实数a的取值范围为[2,+∞).2018年高考理科数学模拟试卷(三)(考试时间120分钟满分150分)一、选择题(共12小题,每小题5分,满分60分)1.已知复数z满足z(1﹣i)2=1+i(i为虚数单位),则z=()A. +i B.﹣i C.﹣+i D.﹣﹣i2.已知集合A={x|(x﹣1)2≤3x﹣3,x∈R},B={y|y=3x+2,x∈R},则A∩B=()A.(2,+∞)B.(4,+∞)C.[2,4]D.(2,4]3.甲、乙两类水果的质量(单位:kg)分别服从正态分布N(μ1,σ12)及N(μ2,σ22),其正态分布的密度曲线如图所示,则下列说法错误的是()A.乙类水果的质量服从的正态分布的参数σ2=1.99B.甲类水果的质量比乙类水果的质量更集中C.甲类水果的平均质量μ1=0.4kgD.甲类水果的平均质量比乙类水果的平均质量小4.已知数列{a n}的前n项和S n满足S n+S m=S n(n,m∈N*)且a1=5,则a8=()+mA.40 B.35 C.12 D.55.设a=(),b=(),c=ln,则a,b,c的大小关系是()A.a>b>c B.b>a>c C.b>c>a D.a>c>b6.执行如图所示的程序框图,则输出b的值为()A.2 B.4 C.8 D.167.若圆C:x2+y2﹣2x+4y=0上存在两点A,B关于直线l:y=kx﹣1对称,则k的值为()A.﹣1 B.﹣C.﹣D.﹣38.某同学在运动场所发现一实心椅子,其三视图如图所示(俯视图是圆的一部分及该圆的两条互相垂直的半径,有关尺寸如图,单位:m),经了解,建造该类椅子的平均成本为240元/m3,那么该椅子的建造成本约为(π≈3.14)()A.94.20元 B.240.00元C.282.60元D.376.80元9.当函数f(x)=sinx+cosx﹣t(t∈R)在闭区间[0,2π]上,恰好有三个零点时,这三个零点之和为()A.B. C. D.2π10.有5位同学排成前后两排拍照,若前排站2人,则甲不站后排两端且甲、乙左右相邻的概率为()A.B.C.D.11.某工厂拟生产甲、乙两种实销产品.已知每件甲产品的利润为0.4万元,每件乙产品的利润为0.3万元,两种产品都需要在A,B两种设备上加工,且加工一件甲、乙产品在A,B设备上所需工时(单位:h)分别如表所示.甲产品所需工时乙产品所需工时A设备23B设备41若A设备每月的工时限额为400h,B设备每月的工时限额为300h,则该厂每月生产甲、乙两种产品可获得的最大利润为()A.40万元B.45万元C.50万元D.55万元12.若函数g(x)满足g(g(x))=n(n∈N)有n+3个解,则称函数g(x)为“复合n+3解”函数.已知函数f(x)=(其中e是自然对数的底数,e=2.71828…,k∈R),且函数f(x)为“复合5解”函数,则k的取值范围是()A.(﹣∞,0)B.(﹣e,e)C.(﹣1,1)D.(0,+∞)二、填空题(共4小题,每小题5分,满分20分)13.在Rt△ABC中,D是斜边AB的中点,若BC=6,CD=5,则•=.14.有下列四个命题:①垂直于同一条直线的两条直线平行;②垂直于同一条直线的两个平面平行;③垂直于同一平面的两个平面平行;④垂直于同一平面的两条直线平行.其中正确的命题有(填写所有正确命题的编号).15.若等比数列{a n}的公比为2,且a3﹣a1=2,则++…+=.16.设抛物线C:y2=2px(p>0)的焦点为F,点A在C上,若|AF|=,以线段AF为直径的圆经过点B(0,1),则p=.三、解答题(共5小题,满分60分)17.在△ABC中,设内角A,B,C所对边分别为a,b,c,且sin(A﹣)﹣cos(A+)=.(1)求角A的大小;(2)若a=,sin2B+cos2C=1,求△ABC的面积.18.某大学有甲、乙两个图书馆,对其借书、还书的等待时间进行调查,得到下表:甲图书馆12345借(还)书等待时间T1(分钟)频数1500 1000 500 500 1500乙图书馆12345借(还)书等待时间T2(分钟)频数100050020001250250以表中等待时间的学生人数的频率为概率.(1)分别求在甲、乙两图书馆借书的平均等待时间;(2)学校规定借书、还书必须在同一图书馆,某学生需要借一本数学参考书,并希望借、还书的等待时间之和不超过4分钟,在哪个图书馆借、还书更能满足他的要求?19.如图所示,在Rt△ABC中,AC⊥BC,过点C的直线VC垂直于平面ABC,D、E分别为线段VA、VC上异于端点的点.(1)当DE⊥平面VBC时,判断直线DE与平面ABC的位置关系,并说明理由;(2)当D、E、F分别为线段VA、VC、AB上的中点,且VC=2BC时,求二面角B ﹣DE﹣F的余弦值.20.已知椭圆+=1(a>b>0)过点P(2,1),且离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设O为坐标原点,在椭圆短轴上有两点M,N满足=,直线PM、PN分别交椭圆于A,B.(i)求证:直线AB过定点,并求出定点的坐标;(ii)求△OAB面积的最大值.21.已知函数f(x)=lnx﹣2ax(其中a∈R).(Ⅰ)当a=1时,求函数f(x)的图象在x=1处的切线方程;(Ⅱ)若f(x)≤1恒成立,求a的取值范围;(Ⅲ)设g(x)=f(x)+x2,且函数g(x)有极大值点x0,求证:x0f(x0)+1+ax02>0.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,双曲线E的参数方程为(θ为参数),设E的右焦点为F,经过第一象限的渐进线为l.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求直线l的极坐标方程;(2)设过F与l垂直的直线与y轴相交于点A,P是l上异于原点O的点,当A,O,F,P四点在同一圆上时,求这个圆的极坐标方程及点P的极坐标.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|﹣2a,其中a∈R.(1)当a=﹣2时,求不等式f(x)≤2x+1的解集;(2)若x∈R,不等式f(x)≤|x+1|恒成立,求a的取值范围.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.解:∵z(1﹣i)2=1+i,∴,故选:C.2.解:集合A={x|(x﹣1)2≤3x﹣3,x∈R}={x|(x﹣1)(x﹣4)≤0}={x|1≤x ≤4}=[1,4];B={y|y=3x+2,x∈R}={y|y>2}=(2,+∞),则A∩B=(2,4].故选:D.3.解:由图象可知,甲类水果的平均质量μ1=0.4kg,乙类水果的平均质量μ2=0.8kg,故B,C,D正确;乙类水果的质量服从的正态分布的参数σ2=,故A 不正确.故选:A.4.解:数列{a n}的前n项和S n满足S n+S m=S n+m(n,m∈N*)且a1=5,令m=1,则S n+1=S n+S1=S n+5.可得a n+1=5.则a8=5.故选:D.5.解:b=()=>()=a>1,c=ln<1,∴b>a>c.故选:B.6.解:第一次循环,a=1≤3,b=2,a=2,第二次循环,a=2≤3,b=4,a=3,第三次循环,a=3≤3,b=16,a=4,第四次循环,a=4>3,输出b=16,故选:D.7.解:圆C:x2+y2﹣2x+4y=0的圆心(1,﹣2),若圆C:x2+y2﹣2x+4y=0上存在两点A,B关于直线l:y=kx﹣1对称,可知直线经过圆的圆心,可得﹣2=k﹣1,解得k=﹣1.故选:A.8.解:由三视图可知:该几何体为圆柱的.∴体积V=.∴该椅子的建造成本约为=×240≈282.60元.故选:C.9.解:f(x)=2sin(x+)﹣t,令f(x)=0得sin(x+)=,做出y=sin(x+)在[0,2π]上的函数图象如图所示:∵f(x)在[0,2π]上恰好有3个零点,∴=sin=,解方程sin(x+)=得x=0或x=2π或x=.∴三个零点之和为0+2π+=.故选:B.10.解:由题意得:p===,故选:B.11.C解:设甲、乙两种产品月的产量分别为x,y件,约束条件是目标函数是z=0.4x+0.3y由约束条件画出可行域,如图所示的阴影部分由z=0.4x+0.3y,结合图象可知,z=0.4x+0.3y在A处取得最大值,由可得A(50,100),此时z=0.4×50+0.3×100=50万元,故选:C.12.解:函数f(x)为“复合5解“,∴f(f(x))=2,有5个解,设t=f(x),∴f(t)=2,∵当x>0时,f(x)=,∴f(x)=,当0<x<1时,f′(x)<0,函数f(x)单调递减,当x>1时,f′(x)>0,函数f(x)单调递增,∴f(x)min=f(1)=1,∴t≥1,∴f(t)=2在[1,+∞)有2个解,当x≤0时,f(x)=kx+3,函数f(x)恒过点(0,3),当k≤0时,f(x)≥f(0)=3,∴t≥3∵f(3)=>2,∴f(t)=2在[3,+∞)上无解,当k>0时,f(x)≤f(0)=3,∴f(t)=2,在(0,3]上有2个解,在(∞,0]上有1个解,综上所述f(f(x))=2在k>0时,有5个解,故选:D二、填空题(共4小题,每小题5分,满分20分)13.解:在Rt△ABC中,D是斜边AB的中点,若BC=6,CD=5,可得AD=BD=5,即AB=10,由勾股定理可得AC==8,则•=﹣•=﹣||•||•cosA=﹣5×8×=﹣32.14.解:如图在正方体ABCD﹣A′B′C′D′中,对于①,AB⊥BB′,BC⊥BB′,AB、BC不平行,故错;对于②,两底面垂直于同一条侧棱,两个底面平面平行,故正确;对于③,相邻两个侧面同垂直底面,这两个平面不平行,故错;对于④,平行的侧棱垂直底面,侧棱平行,故正确.故答案为:②④15.解:∵等比数列{a n}的公比为2,且a3﹣a1=2,∴=2,解得a1=.∴a n==.∴=.则++…+=3×==1﹣.故答案为:1﹣.16.解:由题意,可得A(,),AB⊥BF,∴(,﹣1)•(,﹣1)=0,∴﹣+1=0,∴p(5﹣p)=4,∴p=1或4.三、解答题(共5小题,满分60分)17.解:(1)sin(A﹣)﹣cos(A+)=sin(A﹣)﹣cos(2π﹣A)=sin(A﹣)﹣cos(A+)=sinA﹣cosA﹣cosA﹣sinA=即cosA=,∵0<A<π,∴A=.(2)由sin2B+cos2C=1,可得sin2B=2sin2C,由正弦定理,得b2=2c2,即.a=,cosA==,解得:c=1,b=∴△ABC的面积S=bcsinA=.18.解:(1)根据已知可得T1的分布列:T1(分钟)12345P0.30.20.10.10.3T1的数学期望为:E(T1)=1×0.3+2×0.2+3×0.1+4×0.1+5×0.3=2.9.T2(分钟)12345P0.20.10.4 0.250.05T2的数学期望为:E(T1)=1×0.2+2×0.1+3×0.4+4×0.25+5×0.05=2.85.因此:该同学甲、乙两图书馆借书的平均等待时间分别为:2.9分钟,2.85分钟.(2)设T11,T12分别表示在甲图书馆借、还书所需等待时间,设事件A为“在甲图书馆借、还书的等待时间之和不超过4分钟”.T11+T12≤4的取值分别为:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1).。
高考理科数学模拟试卷(含答案)
高考理科数学模拟试卷(含答案)高考理科数学模拟试卷(含答案)本试卷共分为选择题和非选择题两部分,第Ⅰ卷(选择题)在1至2页,第Ⅱ卷(非选择题)在3至4页,共4页,满分150分,考试时间为120分钟。
注意事项:1.答题前,请务必填写自己的姓名和考籍号。
2.答选择题时,请使用2B铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,请使用橡皮擦擦干净后再选涂其他答案标号。
3.答非选择题时,请使用0.5毫米黑色签字笔,在答题卡规定位置上书写答案。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,请只将答题卡交回。
第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={-1.0.1.2.3.4},B={y|y=x,x∈A},则A2B=A){0.1.2}B){0.1.4}C){-1.0.1.2}D){-1.0.1.4}2.已知复数z=1/(1+i),则|z|=A)2B)1C)2D)23.设函数f(x)为奇函数,当x>0时,f(x)=x-2,则f(f(1))=A)-1B)-2C)1D)24.已知单位向量e1,e2的夹角为π/2,则e1-2e2=A)3B)7C)3D)75.已知双曲线2x^2-y^2=1(a>0,b>0)的渐近线方程为y=±3x,则双曲线的离心率是A)10B)10/10C)10D)3/96.在等比数列{an}中,a1>0,则“a1<a4”是“a3<a5”的A)充分不必要条件B)必要不充分条件C)充要条件D)既不充分也不必要条件7.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是A)i≤6?B)i≤5?C)i≤4?D)i≤3?8.已知a、b为两条不同直线,α、β、γ为三个不同平面,则下列命题中正确的是①若α//β,α//γ,则β//γ;②若a//α,a//β,则α//β;③若α⊥γ,β⊥γ,则α⊥β;④若a⊥α,XXXα,则a//b。
陕西省西安市第一中学2023-2024学年高三下学期高考考前模拟考试理科数学试题
陕西省西安市第一中学2023-2024学年高三下学期高考考前模拟考试理科数学试题一、单选题1.已知集合{}17A x x =-<<,{}09B x x =<<,则A B ⋃=( ) A .()1,0- B .()1,9-C .()0,7D .()0,92.若复数10i3i 13iz =+-,则z =( ) ABC .5D .103.已知直线0Ax By C ++=与直线23y x =-垂直,则( ) A .20A B =-≠ B .20A B =≠ C .20B A =-≠D .20B A =≠4.若0,a b ≥∈R,则化简2log 322+ ) A .3a b ++ B .3a b ++ C .2a b ++D .2a b ++5.在(92的展开式中,第8项的系数为( ) A .144-B .144C .1D .18-6.若x ,y 满足约束条件0,30,20,x x y x y ≥⎧⎪+-≤⎨⎪-≤⎩则2z x y =+得取值范围是( )A .[]0,3B .[)3,+∞C .[]0,5D .[)5,+∞7.已知函数()()cos 2210f x x x ωωω=+>的最小正周期为π,则()f x 的图象的一个对称中心为( ) A .π,012⎛⎫- ⎪⎝⎭B .π,012⎛⎫ ⎪⎝⎭C .π,112⎛⎫- ⎪⎝⎭D .π,112⎛⎫ ⎪⎝⎭8.小李到长途客运站准备乘坐客车去某地,有甲、乙两个公司的客车可以选择,已知甲公司的下一趟客车将在15分钟内的某个时刻发车,乙公司的下一趟客车将在20分钟内的某个时刻发车,则他等车时间不超过8分钟的概率为( )A .35B .1625C .1825 D .459.在长方体1111ABCD A B C D -中,1AC 与平面11ADD A 所成的角为1,AC α与AB 所成的角为β,则( )A .αβ=B .παβ+=C .π2αβ+=D .π4αβ-=10.如图所示,在六面体ABEDC 中,22CB CD CA ===,AB DE BE AD ===BD AE == )A .4πB .9πC .12πD .16π11.已知双曲线22:1169x y C -=的左、右顶点分别为12,,A A P 是C 右支上一点,直线12,PA PA 与直线2x =的交点分别为,M N ,记12,PA A PMN V V 的外接圆半径分别为12,R R ,则12R R 的最大值为( )ABCD12.下列不等式中正确的是( )A .11πeπe >B.1eπ>C .2e2ππe<⋅D .2π2e ln π>二、填空题13.已知椭圆C :()222104x y a a +=>的焦距为C 的离心率为.14.已知向量(),a m m =r,m ∈R ,()0,2b =r ,则a b +r r 的最小值为.15.如图,在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知60,45,3B A c a ==-=o o ,B ∠的平分线BD 交边AC 于点,D AB 边上的高为,CF BC 边上的高为,AE BD CF P ⋂=,,AE CF R BD AE Q ⋂=⋂=,则PQR ∠=;PQ =.16.已知(),,0,1x y z ∈,且x y z xy xz yz k ++---<,则k 的最小值为.三、解答题17.记n S 为等差数列{}n a 的前n 项和,已知315S =,535S =. (1)求{}n a 的通项公式; (2)设2nn na b =,求数列{}n b 的前n 项和n T . 18.多年统计数据表明如果甲、乙两位选手在决赛中相遇,甲每局比赛获胜的概率为23,乙每局比赛获胜的概率为13.本次世界大赛,这两位选手又在决赛中相遇.赛制为五局三胜制(最先获得三局胜利者获得冠军).(1)现在比赛正在进行,而且乙暂时以1:0领先,求甲最终获得冠军的概率;(2)若本次决赛最终甲以3:2的大比分获得冠军,求甲失分局序号之和X 的分布列和数学期望.19.如图所示,在四棱锥P ABCD -中,//AB CD ,2AD DC CB ===, 4AB =,PAD V 为正三角形.(1)证明:D 在平面PAC 上的射影H 为PAC △的外心(外接圆的圆心); (2)当二面角P AD C --为120o 时,求直线AD 与平面APB 所成角ϕ的正弦值.20.已知1,14P ⎛⎫ ⎪⎝⎭为抛物线C :()220y px p =>上的一点,直线x my n =+交C 于A ,B 两点,且直线PA ,PB 的斜率之积为2. (1)求C 的准线方程;(2)求34m n ⎛⎫- ⎪⎝⎭的最小值.21.已知函数()()()()22cos 4sin ,4sin 8cos f x ax x a x x g x a x x x x =--=--.(1)如果16a =,求曲线()()y f x g x =+在πx =处的切线方程;(2)如果对于任意的π0,2x ⎛⎫∈ ⎪⎝⎭都有()0f x >且()0g x >,求实数a 满足的条件.22.已知平面直角坐标系xOy 中,直线l 的参数方程为12,22x t y t =+⎧⎨=-⎩(t 为参数),以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ρθ=. (1)求l 的极坐标方程以及C 的参数方程;(2)已知直线m 的倾斜角为锐角α,m 与l 交于点M ,m 与C 交于O ,N 两点,若3OM ON ⋅=,求α.23.已知函数()263f x x x =-++. (1)求不等式()10f x >的解集;(2)记()f x 的最小值为m ,若a ,b ,c 为正数且1a b c ++=,。
高考数学陕西试题及答案
高考数学陕西试题及答案一、选择题(每题5分,共30分)1. 下列哪个选项不是正整数?A. 0B. 1C. 2D. 3答案:A2. 如果函数 \( f(x) = 2x - 1 \),那么 \( f(2) \) 的值是:A. 3B. 4C. 5D. 6答案:A3. 圆的半径为5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π答案:B4. 直线 \( y = 3x + 2 \) 与 \( x \) 轴的交点坐标是:A. (0, 2)B. (-2/3, 0)C. (2/3, 0)D. (0, -2)答案:D5. 以下哪个数列不是等差数列?A. 2, 4, 6, 8, ...B. 1, 3, 5, 7, ...C. 3, 6, 9, 12, ...D. 4, 7, 10, 13, ...答案:D6. 抛物线 \( y = x^2 \) 的顶点坐标是:A. (0, 0)B. (1, 1)C. (-1, -1)D. (0, 1)答案:A二、填空题(每题4分,共20分)7. 已知 \( a \) 和 \( b \) 是两个正整数,且 \( a + b = 10 \),若 \( a \) 和 \( b \) 的最大公约数为2,则 \( a \) 和 \( b \) 的值分别是________、________。
答案:4, 68. 一个直角三角形的两条直角边分别为3和4,那么斜边的长度是________。
答案:59. 圆心在原点,半径为7的圆的标准方程是________。
答案:\( x^2 + y^2 = 49 \)10. 若 \( \sin(\alpha) = \frac{3}{5} \) 且 \( \alpha \) 在第一象限,那么 \( \cos(\alpha) \) 的值是________。
答案:\( \frac{4}{5} \)11. 函数 \( y = \frac{1}{x} \) 的图像关于________对称。
【全真模拟】高考数学检测试卷含答案
(1)若 , ,求 的大小;
(2)若 的面积为 ,其外接圆半径为 ,求 的周长.
18.机动车行经人行横道时,应当减速慢行:遇行人正在通过人行横道,应当停车让行,俗称“礼让行人”.如表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让行人”行为统计数据:
④ , ,都有 .
其中正确的命题是()
A.①③B.②③C.②④D.③④
[答案]D
[解析]
[分析]直接利用函数的性质的应用,分段函数的应用,函数的导数的应用,函数的单调性和导数的关系判断①②③④的结论.
对于①,用代入法计算验证;
对于②,直接求出零点验证;
对于③,直接解不等式,求出解集;
对于④,用导数判断单调性,求出 的值域验证即可.
所以 时 取得最小值 ,且 时, ,
所以 ,
即 ,
当 时, ,
所以 在 上单调递增,在 上单调递减,
时, 取最大值 ,且 时, ,
所以 ,
所以 ,
所以 的值域为 .
故 , ,都有 ,故④正确.
故选:D.
[点睛]导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:
24
16
驾龄1年以上
16
14
能否据此判断有90%的把握认为“礼让行人”行为与驾龄有关?
参考公式: , .
(其中 )
0.15
0.10
0.05
0.025
0.010
2 072
2.706
3.841
5.024
6.635
19.在四棱锥 中, 平面 , , .四边形 为直角梯形, , , .
2023届高考理科数学模拟试卷四(含参考答案)
俯视图侧视图正视图2023届高考理科数学模拟试卷四(含参考答案)一、选择题:(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设全集U = R ,A =10xx ⎧⎫<⎨⎬⎩⎭,则U C A =( ) A .{x | x ≥0} B.{x | x > 0} C. 10x x ⎧⎫>⎨⎬⎩⎭ D.1x x ⎧⎨⎩≥0⎭⎬⎫2."1''=a 是“函数ax ax y 22sin cos -=的最小正周期为π”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.设0x 是方程ln 4x x +=的解,则0x 属于区间A. (0,1)B. (1,2)C. (2,3)D.(3,4) 4.按向量)2,6(π=a 平移函数()2sin()3f x x π=-的图象,得到函数()y g x =的图象,则 A. ()2cos 2g x x =-+ B. ()2cos 2g x x =-- C. ()2sin 2g x x =-+ D. ()2sin 2g x x =--5.已知实数x 、y 满足约束条件⎪⎩⎪⎨⎧≤+≥≥622y x y x ,则y x z 42+=的最大值为 ( )A. 24B. 20C. 16D. 126..若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为A.B. C.2 D. 67.一水池有2个进水口,1 个出水口,进出水速度如图甲、乙所示. 某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)(第15小题)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③ 4点到6点不进水不出水.则一定能确定正确的论断是A .①②③B .①② C.②③ D.①③ 8.定义在(-∞,+∞)上的偶函数f(x)满足f(x +1)=-f(x), 且f(x)在[-1,0]上是增函数, 下面五个关于f(x)的命题中: ① f(x)是周期函数 ② f(x) 的图象关于x=1对称 ③ f(x)在[0,1]上是增函数, ④f(x)在[1,2]上为减函数 ⑤ f(2)=f(0) 正确命题的个数是( ) A. 1个 B. 2个 C.3个 D.4个二、填空题:(本大题共6个小题,每小题5分,共30分,其中9-12题必做,在13,14,15题中选做两题,多选以前两题计分,把答案写在答题卷上). 9.已知0t >,若()021d 6tx x -=⎰,则t =10.sin168sin 72sin102sin198︒︒︒︒+= . 11.函数2234log ()y x x =--的单调增区间是______________;12.符号[]x 表示不超过x 的最大整数,如[][]208.1,3-=-=π,定义函数()[]f x x x =-, 那么下列命题中正确的序号是 .(1)函数()f x 的定义域为R ,值域为[]1,0; (2)方程()12f x =,有无数解; (3)函数()f x 是周期函数; (4)函数()f x 是增函数. 13、极坐标方程sin 2cos ρθθ=+所表示的曲线的直角坐标方程是 . 14、已知c b a ,,都是正数,且,12=++c b a 则cb a 111++15.已知圆O 的半径为3,从圆O 外一点A 引切线AD 和割线ABC ,圆心O 到AC 的距离为22,3AB =,则切线AD 的长为 _______.三、解答题:本大题共6小题,满分80分,解答应写出文字说明,证明过程或演算步骤. 16.(本题满分12分)已知02cos 22sin =-xx , (Ⅰ)求x tan 的值;(Ⅱ)求xx xsin )4cos(22cos ⋅+π的值.17.(本题满分12分)已知函数()f x 是定义在[]1,1-上的奇函数,在[0,1]上()()2ln 11xf x x =++-(Ⅰ)求函数()f x 的解析式;并判断()f x 在[]1,1-上的单调性(不要求证明) (Ⅱ)解不等式()()22110f x f x ++-≥.18.(本题满分14分)某“帆板”集训队在一海滨区域进行集训,该海滨区域的海浪高度y (米)随着时间(024,)t t ≤≤单位小时而周期性变化,每天各时刻t 的浪高数据的平均值如下表:(Ⅰ)试画出散点图;(Ⅱ)观察散点图,从,sin(),cos()y ax b y A t b y A t ωϕωϕ=+=++=+中选择一个合适的函数模型,并求出该拟合模型的解析式;(Ⅲ)如果确定在白天7时~19时当浪高不低于0.8米时才进行训练,试安排恰当的训练时间。
全国高中数学联赛模拟试题(四)
实用文档 AB全国高中数学联赛模拟试题(四)一、选择题1、 已知三点A (-2,1)、B (-3,-2)、C (-1,-3)和动直线l :y =kx .当点A 、B 、C 到直线l 的距离的平方和最小时,下列结论中,正确的是(A )点A 在直线l 上(B )点B 在直线l 上 (C )点C 在直线l 上(C )点A 、B 、C 均不在直线l 上2、 如图,已知正方体ABCD -A 1B 1C 1D 1,过顶点A 1在空间作直线l ,使l 与直线AC 和BC 1所成的角都等于60°.这样的直线l 可以做(A )4条(B )3条 (C )2条 (D )1条3、 若正整数a 使得函数()ax x x f y 213-+==的最大值也是整数,则这个最大值等于(A )3(B )4 (C )7 (D )8实用文档4、 在正整数数列中,由1开始依次按如下规则将某些数染成红色.先染1,再染2个偶数2、4;再染4后面最邻近的3个连续奇数5、7、9;再染9后面最邻近的4个连续偶数10、12、14、16;再染此后最邻近的5个连续奇数17、19、21、23、25.按此规则一直染下去,得到一红色子数列1,2,4,5,7,9,12,14,16,17,….则在这个红色子数列中,由1开始的第2003个数是(A )3844(B )3943 (C )3945 (D )40065、 函数()aa x x a x f -+-=22是奇函数的充要条件是 (A )-1≤a <0或0<a ≤1(B )a ≤-1或a ≥1 (C )a >0(D )a <0二、填空题6、已知点(a ,b )在曲线arcsin x =arccos y 上运动,且椭圆ax 2+by 2=1在圆x 2+y 2=32的外部(包括二者相切的情形).那么,arcsin b 的取值范围是 .7、在复平面上,Rt △ABC 的顶点A 、B 、C 分别对应于复数z +1、2z +1、(z +1)2,A 为直角顶点,且|z |=2.设集合M ={m |z m ∈R ,m ∈N +},P ={x |x =m21,m ∈M }.则集合P 所有元实用文档 素之和等于 .8、函数f (x )=|sin x |+sin 42x +|cos x |的最大值与最小值之差等于 .9、银行计划将某项资金的40%给项目M 投资一年,其余的60%给项目N .预计项目M 有可能获得19%到24%的年利润,N 有可能获得29%到34%的年利润.年终银行必须回笼资金,同时按一定的回扣率支付给储户.为使银行的年利润不少于给M 、N 总投资的10%而不大于总投资的15%,则给储户的回扣率的最小值是 .10、同底的两个正三棱锥内接于同一个球.已知两个正三棱锥的底面边长为a ,球的半径为R .设两个正三棱锥的侧面与底面所成的角分别为、,则tan(+)的值是 .11、关于x 的不等式()()074547422222222<-+--++-+-++a a x a a x a a x a x 的解集是一些区间的并集,且这些区间的长度的和小于4,则实数a 的取值范围是 .三、解答题12、有2002名运动员,号码依次为1,2,3,…,2002.从中选出若干名运动员参加仪仗队,但要使剩下的运动员中没有一个人的号码数等于另外两人的号码数的乘积.那么被选为仪仗队的运动员至少能有多少人?给出你的选取方案,并简述理由.13、.△ABC的三边长a、b、c(a≤b≤c)同时满足下列三个条件(i)a、b、c均为整数;(ii)a、b、c依次成等比数列;实用文档(iii)a与c中至少有一个等于100.求出(a,b,c)的所有可能的解.14、在三棱锥D-ABC中,AD=a,BD=b,AB=CD=c,且∠DAB+∠BAC+∠DAC=180°,∠DBA+∠ABC+∠DBC=180°.求异面直线AD与BC所成的角.15、设正系数一元二次方程ax2+bx+c=0有实根.证明:4(a+b+c);(1)max{a,b,c}≥91(a+b+c).(2)min{a,b,c}≤416、已知△ABC的外角∠EAC平分线与△ABC的外接圆交于D,以CD为直径的圆分别交BC、CA 于点P、Q.求证:线段PQ平分△ABC的周长.实用文档实用文档17、已知x 0=1,x 1=3,x n +1=6x n -x n -1(n ∈N +).求证:数列{x n }中无完全平方数.以下是答案一、选择题1、 D2、 B3、 A4、 C5、 C二、填空题6、 ⎥⎦⎤ ⎝⎛⎪⎭⎫⎢⎣⎡3,44,6ππππ7、 71;实用文档8、 29、 10%;10、 aR 334-11、[1,3];三、解答题12、43.13、可能解为(100,100,100),(100,110,121),(100,120,144),(100,130,169),(100,140,196),(100,150,225),(100,160,256),(49,70,100),(64,80,100),(81,90,100),(100,100,100).14、222arccos a c b -.15、 (1)证略(提示:令a +b +c =t ,分b ≥t 94和b <t 94讨论);(2)证略(提示:分a ≤t 41和a >t 41讨论);16、证略;实用文档 17、证略(提示:易由特征根法得x n =()()⎥⎦⎤⎢⎣⎡-++n n 22322321,设y n =()()⎥⎦⎤⎢⎣⎡--+n n 223223221,于是1222=-n n y x ,原结论等价于方程x 4-2y 2=1无整数解,由数论只是可证).。
历年真题:陕西高考理科数学试题含答案(Word版)
陕西高考数学试题(理)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|0},{|1,}M x x N x x x R =≥=<∈,则M N =( ).[0,1]A .[0,1)B .(0,1]C .(0,1)D 【答案】 B【解析】B N M N M 选,).1,0[),11-(),,0[=∩∴=+∞=2.函数()cos(2)6f x x π=-的最小正周期是( ).2A π .B π .2C π .4D π【答案】 B 【解析】B T 选∴,π2π2||π2===ω 3.定积分1(2)xx edx +⎰的值为( ).2Ae + .1B e + .C e .1De -【答案】 C 【解析】C e e e e x dx e x x x 选∴,-0-1|)()2(1001102∫=+=+=+4.根据右边框图,对大于2的整数N ,输出数列的通项公式是( ).2n A a n = .2(1)n B a n =- .2n n C a = 1.2n n D a -=【答案】 C 【解析】C q a a a a a n 选的等比数列是.2,2∴,8,4,21321=====5.已知底面边长为1则正四棱柱的各顶点均在同一个球面上,则该球的体积为( )32.3A π .4B π .2C π 4.3D π【答案】 D 【解析】D r r r r 选解得设球的半径为.π3434V ∴,1,4)2(11)2(,32222====++=π6.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )1.5A2.5B3.5C 4.5D 【答案】 C 【解析】C p 选反向解题.53C 4C 4-1.2525=== 7.下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( )(A )()12f x x =(B )()3f x x = (C )()12xf x ⎛⎫= ⎪⎝⎭(D )()3xf x =【答案】 D 【解析】D y f x f y x f D C y x y x y x 选而言,对不是递增函数只有.333)()(,3)(.++=•=•=+8.原命题为“若12,z z 互为共轭复数,则12z z =”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )(A )真,假,真 (B )假,假,真 (C )真,真,假 (D )假,假,假 【答案】 B 【解析】Bz z b a z b a z bi a z bi a z 选选择完成判断逆命题的真假即可逆否名称也为真,不需,原命题为真,则设,逆命题和否命题等价原命题和逆否名称等价.,||||∴,||||,-,.2122222111=+=+==+=设样本数据1210,,,x x x 的均值和方差分别为1和4,若i i y x a =+(a 为非零常数,1,2,,10i =),则12,10,y y y 的均值和方差分别为( )(A )1+,4a (B )1,4a a ++ (C )1,4 (D )1,4+a【答案】 A 【解析】A 选变均值也加此数,方差不样本数据加同一个数,.10.如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处下降, 已知下降飞行轨迹为某三次函数图像的一部分,则函数的解析式为( )(A )3131255y x x =- (B )3241255y x x =-(C )33125y x x =- (D )3311255y x x =-+【答案】 A【解析】AA f x f f x f A f x 选符合只有,,而言,对即为极值点且),三次奇函数过点..053-53)5(53-1253x )(2-3-1)5(∴x 53-x 1251)(.0)5(,5,2-5(),0,0(23==′=′====′= 第二部分(共100分)二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分).11.已知,lg ,24a x a==则x =________. 【答案】10【解析】.1010,21lg 12a ∴,lg ,224212aa========x a x a x 所以,12.若圆C 的半径为1,其圆心与点)0,1(关于直线x y =对称,则圆C 的标准方程为_______.【答案】11-(22=+)y x 【解析】.11-(1),1,0(∴)1,0()0,1(22=+=)的标准方程为半径为圆心为,的对称点关于点y x x y 设20πθ<<,向量()()sin 2cos cos 1a b θθθ==,,,,若b a //,则=θtan _______.【答案】 21【解析】.21t a n θθ,cos θcos θsin 2θcos θ2sin ∴//).1,θ(cos ),θcos ,θ2(sin 22=====解得即 14.猜想一般凸多面体中,E V F ,,所满足的等式是_________. 【答案】 2+=+E V F 【解析】.2+=+E V F 经观察规律,可得15.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分).A (不等式选做题)设,,,a b m n R ∈,且225,5a b ma nb +=+=的最小值为.B (几何证明选做题)如图,ABC ∆中,6BC =,以BC 为直径的半圆分别交,AB AC于点,E F ,若2AC AE =,则EF =.C (坐标系与参数方程选做题)在极坐标系中,点(2,)6π到直线sin()16πρθ-=的距离是 【答案】 A 5 B 3 C 1【解析】A5.≤5)φθsin(∴5)φθsin(5os θ5θsin 5,os θ5,θsin 5∴,52222222222的最小值为所以,,则设n m n m n m n m c n m nb ma c b a b a ++=++=++=+=+===+B.3,2,6∴Δ=∴===ΔEF AE AC BC CBEFAC AE ACB AEF ,且相似与 C1|1323-3|023-1,3(∴,2-3121os θρ-23θsin ρ)6π-θsin(ρ,1,3()6π,2(=++==+==••=d y x x y c 的距离)到直线点即对应直线)对应直角坐标点极坐标点 三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分) 16. (本小题满分12分)ABC ∆的内角C B A ,,所对的边分别为c b a ,,. (I )若c b a ,,成等差数列,证明:()C A C A +=+sin 2sin sin ; (II )若c b a ,,成等比数列,求B cos 的最小值. 【答案】 (1) 省略 (2)21【解析】(1)C)sin(A sinC sinA .∴C),sin(A sinB sinC.sinA 2sinB c,a b 2∴,,+=++=+=+= 即成等差,c b a(2).,21cosB 212ac ac -2ac 2ac b -2ac ≥2ac b -c a cosB ac.b ∴,,22222这时三角形为正三角形取最小值时,仅当又成等比,b c a c b a ====+==17. (本小题满分12分)四面体ABCD 及其三视图如图所示,过棱AB 的中点E 作平行于AD ,BC 的平面分 别交四面体的棱CA DC BD ,,于点H G F ,,.(I )证明:四边形EFGH 是矩形;(II )求直线AB 与平面EFGH 夹角 的正弦值.【答案】 (1) 省略 (2)510【解析】 (1).FG.⊥BCD ⊥,//∴,,AD//HG AD//EF,∴ADHG ADEF EFGH ⊂HG EF,EFGH,AD//HC AH EH//BC,∴EHBC EFGH,⊂EH EFGH,//B BCD⊥AD DC,⊥BD Δ,Δ为矩形所以,四边形,即面,且且共面和,面面同理且共面面面面且为等腰由题知,EHGF EF EF HG EF HG EF GC DG FB DF C RT BCD ====(2)510|,cos |sin 510252||||,cos ),0,1,1(0),,,()0,1-1(),2100(),1-20()0,0,1(),211,0(),0,1,0(),020(),100(,,,,(1)=><==<∴=======∴n AB n AB n FG n FE n z y x EHGF G E F B A z y x θ所以,,解得一个则法向量,设面,,,,,,,,,,轴建系,则为知,分别以由18.(本小题满分12分)在直角坐标系xOy 中,已知点)2,3(),3,2(),1,1(C B A ,点),(y x P 在ABC ∆三边围成的 区域(含边界)上(1)若=++,;(2)设),(R n m n m ∈+=,用y x ,表示n m -,并求n m -的最大值.【答案】 (1) 22 (2)m-n=y-x, 1【解析】 (1)22|OP |22|OP |,2,2,0-2-3-1,0-3-2-1(0,0))-2,-3()-3,-2()-1,-1(PC PB PA ∴),,(),2,3(),3,2(),11(22==+=∴===++=++∴=++=++所以,解得,y x y x y y y x x x y x y x y x y x P C B A (2)1---.1-)3,2(.,,-.--.2,2),1,2()2,1(y)x ,(∴,最大值为,所以,取最大值时,经计算在三个顶点求线性规划问题,可以代含边界内的最大值,属在三角形即求解得即n m x y n m x y B C B A ABC x y x y n m n m y n m x n m n m ==+=+=+=+= 19.(本小题满分12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上 的产量具有随机性,且互不影响,其具体情况如下表:(1)设X 表示在这块地上种植1季此作物的利润,求X 的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于...2000元 的概率.【答案】 (1)(800,0.2)(2000,0.5)(4000,0.3) (2) 0.896【解析】 (1)3.06.0*5.0)4000(,5.04.0*5.06.0*5.0)2000(,2.04.0*5.0)800(.4000,2000,80040001000-10*50020001000-6*50020001000-10*3008001000-6*300.-*====+==========X p X p X p X X 三个,即,,,可以取考虑产量和价格,利润成本价格产量利润(2)896.020*******.08.02.0*8.0*3)-1()-1(200023.8.03.05.02000)1(8001000-6*300.-*32333223的概率是季的利润不少于季中至少有所以,的概率季的利润不少于季中至少有则的概率知,一季利润不少于由,可以取考虑产量和价格,利润成本价格产量利润=+=+==+===p p C p p C P p X X20.(本小题满分13分)如图,曲线C 由上半椭圆22122:1(0,0)y x C a b y a b+=>>≥和部分抛物线22:1(0)C y x y =-+≤连接而成,12,C C 的公共点为,A B,其中1C 的离心率为2. (1)求,a b 的值;(2)过点B 的直线l 与12,C C 分别交于,P Q (均异于点,A B ),若AP AQ ⊥,求直线l的方程.【答案】 (1) a=2,b=1 (2) )1-(38-x y =【解析】 (1)14,3,1,2∴,23.1∴)0,1(),0,1-(1-2222222=+===+===+=x yc b a c b a a c b x y 椭圆方程为联立解得又,交于点抛物线 (2))1-(38-.38-,0)2(4-)2,1)(4-,(,0)2k -k - -k,()4k8- 1,44-(,0∴⊥),0,1-()2k --k ,1--k (,2k --k )1-(,1--k 0,1-k -:1-)4k8-,44-(,4k 8-)1-(,44-04-2-)4(,44)12x -(14),,(),,(),1-()0,1(222222222222222112212222222222211x y k k k k k k k k A Q x k y x kx x x y k k k P k x k y k k x k x k x k x x k x y y x Q y x P x k y B ===+=+=•+++=•====++=+++==+==++=++=+=所以,所求直线方程为解得即即即由韦达定理得联立得与即由韦达定理得,即联立得与的直线方程为设过21.(本小题满分14分) 设函数()ln(1),()'(),0f x x g x xf x x =+=≥,其中'()f x 是()f x 的导函数.(1)11()(),()(()),n n g x g x g x g g x n N ++==∈,求()n g x 的表达式;(2)若()()f x ag x ≥恒成立,求实数a 的取值范围;(3)设n N +∈,比较(1)(2)()g g g n +++与()n f n -的大小,并加以证明.【答案】 (1) nx x x g n +=1)((2),1](-∞ (3) 前式 > 后式【解析】 (1)+++++=++=+=++=+++=+==+=+++=+===+=+=′′=+=N n nx xx g xk xx g k n x k x kxx kx xx g kx x x g k n x xxx x xx g x x x g x g g x g x g x g xx x g x x f x x f x x g x x f n k k k n n ∈,1)(,.)1(1)(1∴)1(1111)(.1)(1≥21111)(1)(∴))(()()()(1)(,11)(∴,0≥),()(),1ln()(112111综上也成立时,当则时,假设当,,, (2),1](-a 1.a 0.≥-1),0[∈∃0≥(x)h ,0),,0[∈∃∴0≥0≥h(x),0h(0))1(-1)1()-1(-11(x)h ,0.≥,1-)1ln(h(x)0.≥,≥1-)1ln(∴1)(),(≥)(22∞∈≤+′>=++=+++=′++=+++=所以,解得,即使上恒成立在则令a x t x t t x x x ax x x x a x x x ax x x x axx x x x g x ag x f(3)+∈>++++>>++∴>∈++=+++++++++=+++++••••=++++=+++++=+=+=N n f(n)-n )()3()2()1(0)(,011-n 1n ln .0)()2(],1,0,1 -)1ln()((a) )11-n 1n (ln )311-34(ln )211-23(ln )111-12(ln 11--311-211-111-n 1n 342312ln 11--311-211-111-f(n)f(n)]-[n -)()3()2()1(∴11-11)(∴,1)(,所以,恒成立式恒成立恒成立知,则由(令)(n g g g g a nx h x xxx x h nnnn g g g g nn n n g x x x g。
2017年陕西省渭南市高考数学一模试卷(理科)(解析版)
2017年陕西省渭南市高考数学一模试卷(理科)一、选择题1.已知复数z=,则=()A.﹣2i B.﹣i C.2i D.i2.若集合A={x|1≤2x≤8},B={x|(x﹣2)(x+1)>0},则A∩B=()A.(2,3] B.[2,3] C.(﹣∞,0)∪(0,2] D.(﹣∞,﹣1)∪(0,3]3.“x≥1”是“lgx≥0”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数,由以上规律,则这些三角形数从小到大形成一个数列{an},那么a10的值为()A.45 B.55 C.65 D.665.已知双曲线﹣=1(a>0,b>0)的离心率为,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±2x6.若数列{an}满足an+1=2an(an≠0,n∈N*),且a3与a5的等差中项是10,则a1+a2+…+an等于()A.2n B.2n﹣1 C.2n﹣1 D.2n﹣1﹣17.执行如图所示的程序框图,则输出的s的值是()A.7 B.6 C.5 D.38.某长方体的三视图如图,长度为的体对角线在主视图中的投影长度为,在左视图中的投影长度为,则该长方体的体积为()A.3+2 B.2C.6+4 D.109.函数y=2x﹣x2的图象大致是()A.B.C.D.10.下面四个命题中的真命题是()A.命题“?x≥2,均有x2﹣3x+2≥0”的否定是:“?x<2,使得x2﹣3x+2<0”B.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”C.采用系统抽样法从某班按学号抽取5名同学参加活动,学号为5、16、27、38、49的同学均被选出,则该班人数可能为60D.在某项测量中,测量结果X服从正态分布N(1,σ2)(σ>0),若X 在(0,1)内取值的概率为0.3,则X在(0,2)内取值的概率为0.611.已知=(cos2x,﹣1),=(1,sin2x+sin2x)(x∈R),若f(x)=?,则函数f(x)的最小值为()A.﹣2 B.0 C.﹣D.﹣112.在平行四边形ABCD中,AD=1,∠BAD=30°,E为CD的中点.若,则AB的长为()A.B.C.D.1二、填空题13.已知抛物线y=x2,则其准线方程是.14.在平面直角坐标系xOy上的区域D由不等式组给定,若M(x,y)为D上的动点,点A的坐标为(2,1),则的最大值为.15.已知f(x)=x+在区间[1,4]上的最小值为n,则二项式(x﹣)n展开式中x2的系数为.16.已知函数y=f(x)为奇函数,且对定义域内的任意x都有f(1+x)=﹣f (1﹣x).当x∈(2,3)时,f(x)=log2(x﹣1),给出以下4个结论:①函数y=f(x)的图象关于点(k,0)(k∈Z)成中心对称;②函数y=|f(x)|是以2为周期的周期函数;③当x∈(﹣1,0)时,f(x)=﹣log2(1﹣x);④函数y=f(|x|)在(k,k+1)(k∈Z)上单调递增.其中所有正确结论的序号为.三、解答题17.设△ABC的内角A、B、C的对边分别为a,b,c,且=(b,﹣a),=(sinA,cosB),⊥.(1)求角B的大小;(2)若b=3,c=2a,求a,c的值.18.如图,在三棱柱ABC﹣A1B1C1中,四边形AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(Ⅰ)求证:AA1⊥BC;(Ⅱ)求平面CA1B1与平面A1B1C1的夹角的大小.19.私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成如表:年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75] 频数 5 10 15 10 5 5赞成人数 4 6 9 6 3 4 (Ⅰ)完成被调查人员的频率分布直方图;(Ⅱ)若从年龄在[55,65),的被调查者中各随机选取2人进行追踪调查,记选中的2人中赞成“车辆限行”的人数为X,求随机变量X的分布列和数学期望.20.已知椭圆C:(a>b>0),其焦距为2,点P(1,)在椭圆C上.(Ⅰ)求椭圆C的标准方程;(Ⅱ)是否存在与椭圆C交于A,B两点的直线l:y=mx+t(m∈R),使得?=0成立?若存在,求出实数t的取值范围,若不存在,请说明理由.21.已知函数f(x)=lnx﹣x﹣3.(Ⅰ)求函数f(x)的最大值;(Ⅱ)求证:ln(22+1)+ln(32+1)+ln(42+1)+…ln(n2+1)<1+2lnn!(n≥2,n∈N*)请考生在22、23两题中任选一题作答,[选修4-4:坐标系与参数方程]22.已知在平面直角坐标系xOy中,直线l的参数方程是(t是参数),以原点O为极点,Ox为极轴建立极坐标系,圆C的极坐标方程为p=cos(θ+).(Ⅰ)求圆心C的直角坐标方程;(Ⅱ)由直线l上的点向圆C引切线,求切线长的最小值.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|.(Ⅰ)解不等式f(x)≥1;(Ⅱ)存在实数x,使不等式f(x)+|x+2|﹣m≤0有解,求实数m的取值范围.2017年陕西省渭南市高考数学一模试卷(理科)参考答案与试题解析一、选择题1.已知复数z=,则=()A.﹣2i B.﹣i C.2i D.i【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简复数z,则可求.【解答】解:z==,则=﹣i.故选:B.2.若集合A={x|1≤2x≤8},B={x|(x﹣2)(x+1)>0},则A∩B=()A.(2,3] B.[2,3] C.(﹣∞,0)∪(0,2] D.(﹣∞,﹣1)∪(0,3]【考点】交集及其运算.【分析】解不等式求出集合A、B,根据交集的定义写出A∩B.【解答】解:集合A={x|1≤2x≤8}={x|0≤x≤3},B={x|(x﹣2)(x+1)>0}={x|x<﹣1或x>2},则A∩B={x|2<x≤3}=(2,3].故选:A.3.“x≥1”是“lgx≥0”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】lgx≥0?x≥1.即可判断出结论.【解答】解:lgx≥0?x≥1.∴“x≥1”是“lgx≥0”的充要条件.故选:C.4.古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数,由以上规律,则这些三角形数从小到大形成一个数列{an},那么a10的值为()A.45 B.55 C.65 D.66【考点】归纳推理.【分析】根据已知中第1个图中黑点有1个,第2个图中黑点有1+2个,第3个图中黑点有1+2+3个,第4个图中黑点有1+2+3+4个,…归纳可得第n个图中黑点有1+2+3+…+n个,可得结论.【解答】解:由已知中:第1个图中黑点有1个,第2个图中黑点有3=1+2个,第3个图中黑点有6=1+2+3个,第4个图中黑点有10=1+2+3+4个,…故第10个图中黑点有a10=1+2+3+ (10)=55个,故选B.5.已知双曲线﹣=1(a>0,b>0)的离心率为,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±2x【考点】双曲线的简单性质.【分析】由题意可得=,从而可得=2,直接写出渐近线方程即可.【解答】解:∵双曲线﹣=1(a>0,b>0)的离心率为,∴=,∴=2,∴双曲线的渐近线方程为y=±2x,故选D.6.若数列{an}满足an+1=2an(an≠0,n∈N*),且a3与a5的等差中项是10,则a1+a2+…+an等于()A.2n B.2n﹣1 C.2n﹣1 D.2n﹣1﹣1【考点】等差数列与等比数列的综合.【分析】判断数列{an}是等比数列,由等差数列的中项的性质,结合等比数列的通项公式,列方程,解方程求出首项,然后运用等比数列的求和公式即可.【解答】解:数列{an}满足an+1=2an(an≠0,n∈N*),可知数列是等比数列,公比为2,a3与a5的等差中项是10,可得a3+a5=20,a3(1+q2)=20,解得a3=4,a1=1.则a1+a2+…+an==2n﹣1.故选:B.7.执行如图所示的程序框图,则输出的s的值是()A.7 B.6 C.5 D.3【考点】程序框图.【分析】模拟程序框图的运行过程,根据流程图所示的顺序,可知该程序的作用是累加并输出S>5时的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S=1+02+12+22+…+(k﹣1)2的值S=1+02+12+22=6>5输出S=6.故选:B8.某长方体的三视图如图,长度为的体对角线在主视图中的投影长度为,在左视图中的投影长度为,则该长方体的体积为()A.3+2 B.2C.6+4 D.10【考点】由三视图求面积、体积.【分析】设长方体的长,宽,高分别为a,b,c.由题意可得:a2+b2+c2=10,a2+c2=6,b2+c2=5,联立解出即可得出.【解答】解:设长方体的长,宽,高分别为a,b,c.由题意可得:a2+b2+c2=10,a2+c2=6,b2+c2=5,解得c=1,b=2,a=.∴该长方体的体积V=abc=2.故选:B.9.函数y=2x﹣x2的图象大致是()A.B.C.D.【考点】函数的图象.【分析】根据函数图象的交点的个数就是方程的解的个数,也就是y=0,图象与x轴的交点的个数,排除BC,再取特殊值,排除D【解答】解:分别画出函数f(x)=2x(红色曲线)和g(x)=x2(蓝色曲线)的图象,如图所示,由图可知,f(x)与g(x)有3个交点,所以y=2x﹣x2=0,有3个解,即函数y=2x﹣x2的图象与x轴由三个交点,故排除B,C,当x=﹣3时,y=2﹣3﹣(﹣3)2<0,故排除D故选:A10.下面四个命题中的真命题是()A.命题“?x≥2,均有x2﹣3x+2≥0”的否定是:“?x<2,使得x2﹣3x+2<0”B.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”C.采用系统抽样法从某班按学号抽取5名同学参加活动,学号为5、16、27、38、49的同学均被选出,则该班人数可能为60D.在某项测量中,测量结果X服从正态分布N(1,σ2)(σ>0),若X 在(0,1)内取值的概率为0.3,则X在(0,2)内取值的概率为0.6【考点】命题的真假判断与应用.【分析】写出命题“?x≥2,均有x2﹣3x+2≥0”的否定可判断A错误;写出命题“若x2=1,则x=1”的否命题可判断B错误;利用系统抽样原理及特点可判断C错误;利用正态密度曲线的性质,经过运算可判断D正确.【解答】解:对于A,命题“?x≥2,均有x2﹣3x+2≥0”的否定是:“?x≥2,使得x2﹣3x+2<0”,∴A错误;对于B,命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”,∴B错误;对于C,采用系统抽样法从某班按学号抽取5名同学参加活动,学号为5、16、27、38、49的同学均被选出,则该班人数不会超过55(分段间隔为11),不可能为60,∴C错误;对于D,在某项测量中,测量结果X服从正态分布N(1,σ2)(σ>0),若X在(0,1)内取值的概率为0.3,则由正态曲线关于x=1对称,故P(0<X<2)=2P(0<X<1)=2×0.3=0.6,即X在(0,2)内取值的概率为0.6,∴D正确.故选:D.11.已知=(cos2x,﹣1),=(1,sin2x+sin2x)(x∈R),若f(x)=?,则函数f(x)的最小值为()A.﹣2 B.0 C.﹣D.﹣1【考点】平面向量数量积的运算.【分析】运用向量数量积的坐标运算和二倍角的余弦公式,以及两角和的余弦公式,结合余弦函数的最值,即可得到所求最小值.【解答】解:由=(cos2x,﹣1),=(1,sin2x+sin2x)(x∈R),则f(x)=?=cos2x﹣sin2x﹣sin2x=cos2x﹣sin2x=2(cos2x﹣sin2x)=2cos(2x+),由x∈R,可得2x+=2kπ+π,即x=kπ+,k∈Z时,f(x)取得最小值﹣2.故选:A.12.在平行四边形ABCD中,AD=1,∠BAD=30°,E为CD的中点.若,则AB的长为()A.B.C.D.1【考点】向量在几何中的应用.【分析】用表示出,利用数量积运算公式列出方程即可求出AB.【解答】解:∵ABCD是平行四边形,E为CD的中点,∴,=,∴=()?()==1.又,=1×AB×cos30°=AB,=AB2,∴1﹣AB2+AB=1,解得AB=或AB=0(舍).故选C.二、填空题13.已知抛物线y=x2,则其准线方程是y=﹣2 .【考点】抛物线的简单性质.【分析】写出标准方程,然后求解准线方程即可.【解答】解:抛物线y=x2,的标准方程为:x2=8y,则其准线方程是:y=﹣2.故答案为:y=﹣2.14.在平面直角坐标系xOy上的区域D由不等式组给定,若M(x,y)为D上的动点,点A的坐标为(2,1),则的最大值为7 .【考点】简单线性规划.【分析】由约束条件作出可行域,把向量的数量积转化为线性目标函数,化为直线方程的斜截式,数形结合得到最优解,求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,令z==2x+y,化为y=﹣2x+z,由图可知,当直线y=﹣2x+z过B(2,3)时,z有最大值为2×2+3=7.故答案为:7.15.已知f(x)=x+在区间[1,4]上的最小值为n,则二项式(x﹣)n展开式中x2的系数为15 .【考点】二项式定理的应用;基本不等式.【分析】利用导数研究函数f(x)的单调性,即可得出最小值.再利用二项式定理的通项公式即可得出.【解答】解:f′(x)=1﹣=,x∈[1,4].令f′(x)=0,解得x=3.∴x∈[1,3]时,函数f(x)单调递减;x∈(3,4]时,函数f(x)单调递增.∴x=3时,函数f(x)取得最小值6.∴的通项公式:Tr+1==(﹣1)rx6﹣2r,令6﹣2r=2,解得r=2.∴二项式(x﹣)n展开式中x2的系数为=15.故答案为:15.16.已知函数y=f(x)为奇函数,且对定义域内的任意x都有f(1+x)=﹣f (1﹣x).当x∈(2,3)时,f(x)=log2(x﹣1),给出以下4个结论:①函数y=f(x)的图象关于点(k,0)(k∈Z)成中心对称;②函数y=|f(x)|是以2为周期的周期函数;③当x∈(﹣1,0)时,f(x)=﹣log2(1﹣x);④函数y=f(|x|)在(k,k+1)(k∈Z)上单调递增.其中所有正确结论的序号为①②③.【考点】抽象函数及其应用.【分析】根据奇函数的性质和f(1+x)=﹣f(1﹣x),求出函数的周期,再由所给的解析式和周期性,求出函数在一个周期性的解析式,再画出函数在R上的图象,由图象进行逐一判断.【解答】解:令x取x+1代入f(1+x)=﹣f(1﹣x)得,f(x+2)=﹣f(﹣x)∵函数y=f(x)为奇函数,∴f(x+2)=f(x),则函数是周期为2的周期函数,设0<x<1,则2<x+2<3,∵当x∈(2,3)时,f(x)=log2(x﹣1),∴f(x)=f(x+2)=log2(x+1),设﹣1<x<﹣0,则0<﹣x<1,由f(x)=﹣f(﹣x)得,f(x)=﹣log2(﹣x+1),根据奇函数的性质和周期函数的性质画出函数的图象:由上图得,函数y=f(x)的图象关于点(k,0)(k∈Z)成中心对称;且函数y=|f(x)|的图象是将y=f(x)的图象在x轴下方的部分沿x轴对称过去,其他不变,则函数y=|f(x)|是以2为周期的周期函数;故①②③正确,而函数y=f(|x|)=,则图象如下图:由图得,图象关于y轴对称,故y=f(|x|)在(k,k+1)(k∈Z)上不是单调递增的,故④不正确,故答案为:①②③.三、解答题17.设△ABC的内角A、B、C的对边分别为a,b,c,且=(b,﹣a),=(sinA,cosB),⊥.(1)求角B的大小;(2)若b=3,c=2a,求a,c的值.【考点】余弦定理;数量积判断两个平面向量的垂直关系.【分析】(1)利用⊥时?=0,列出等式,再利用正弦定理和同角的三角函数关系,求出B的值;(2)根据余弦定理,结合题意列出方程组,即可求出a、c的值.【解答】解:(1)=(b,﹣a),=(sinA,cosB),且⊥,∴?=bsinA﹣acosB=0,即bsinA=acosB;由正弦定理得sinBsinA= sinAcosB;又A∈(0,π),∴sinA≠0,∴sinB=cosB,∴tanB=;又B∈(0,π),∴B=;(2)由B=,且b=3,c=2a,根据余弦定理得b2=a2+c2﹣2accosB,即32=a2+4a2﹣2a?2a?cos,解得a=或a=﹣(不合题意,舍去);∴a=,c=2a=2.18.如图,在三棱柱ABC﹣A1B1C1中,四边形AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(Ⅰ)求证:AA1⊥BC;(Ⅱ)求平面CA1B1与平面A1B1C1的夹角的大小.【考点】二面角的平面角及求法;直线与平面垂直的性质.【分析】(Ⅰ)因为四边形AA1C1C为正方形,所以AA1⊥AC.因为平面ABC⊥平面AA1C1C,利用面面垂直的性质;(Ⅱ)推导出∠C1A1C是二面角C﹣A1B1﹣C1的平面角,由此能求出平面CA1B1与平面A1B1C1的夹角的大小.【解答】证明:(Ⅰ)因为四边形AA1C1C为正方形,所以AA1⊥AC.因为平面ABC⊥平面AA1C1C,且平面ABC∩平面AA1C1C=AC,所以AA1⊥平面ABC.解:(Ⅱ)因为AA1⊥平面ABC,所以AA1⊥AB.又因为AC⊥AB,所以AB⊥平面AA1C1C,所以A1B1⊥平面AA1C1C,所以A1B1⊥A1C1,A1B1⊥A1C,所以∠C1A1C是二面角C﹣A1B1﹣C1的平面角.由题意得tan∠C1A1C==1,所以二面角C﹣A1B1﹣C1的平面角为45°.19.私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成如表:年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75] 频数 5 10 15 10 5 5赞成人数 4 6 9 6 3 4 (Ⅰ)完成被调查人员的频率分布直方图;(Ⅱ)若从年龄在[55,65),的被调查者中各随机选取2人进行追踪调查,记选中的2人中赞成“车辆限行”的人数为X,求随机变量X的分布列和数学期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)由已知得各组的频率分别是:0.1,0.2,0.3,0.2,0.1,0.1,分别除以10可得图中各组的纵坐标,由此能作出被调查人员的频率分布直方图,如图.(Ⅱ)由表知年龄在[55,65)内的有5人,不赞成的有2人,因此X=0,1,2.根据P(X=k)=即可得出.【解答】解:(Ⅰ)由已知得各组的频率分别是:0.1,0.2,0.3,0.2,0.1,0.1,∴图中各组的纵坐标分别是:0.01,0.02,0.03,0.02,0.01,0.01,由此能作出被调查人员的频率分布直方图,如右图:(Ⅱ)由表知年龄在[55,65)内的有5人,不赞成的有2人,因此X=0,1,2.则P(X=k)=,可得P(X=0)=,P(X=1)=,P(X=0)=.可得X的分布列:X 0 1 2 PE(X)=0+=.20.已知椭圆C:(a>b>0),其焦距为2,点P(1,)在椭圆C上.(Ⅰ)求椭圆C的标准方程;(Ⅱ)是否存在与椭圆C交于A,B两点的直线l:y=mx+t(m∈R),使得?=0成立?若存在,求出实数t的取值范围,若不存在,请说明理由.【考点】直线与椭圆的位置关系;椭圆的标准方程.【分析】(Ⅰ)由题意可得c=1,再由点P(1,)在椭圆C上.,可得a=2,b=,进而得到a,即可得到椭圆方程;(Ⅱ)设A(x1,y1),B(x2,y2)联立得(3+4m2)x2+8tmx+4t2﹣12=0.由此利用根的判别式和韦达定理结合已知条件能求出实数t的取值范围.【解答】解:(Ⅰ)由椭圆C的焦距2c=2,解得c=1,∵点P(1,)在椭圆C上,∴,解得a2=4,b2=3∴椭圆C的标准方程:.(Ⅱ)设A(x1,y1),B(x2,y2)联立得(3+4m2)x2+8tmx+4t2﹣12=0.△=(8tm)2﹣4(3+4m2)(4t2﹣12)>0,化简得3+4m2>t2.x1+x2=,x1x2=,假设?=0成立,所以x1x2+y1y2=0.x1x2+(mx1+t)(mx2+t)=0,(1+m2)x1x2+tm(x1+x2)+m2=0,化简得7t2=12+12m2.代入3+4m2>t2中得.有∵7t2=12+12m2≥12,∴t2≥,即,或t.∴存在实数t,使得?=0成立,实数t的取值范围为(﹣]∪[,+∞).21.已知函数f(x)=lnx﹣x﹣3.(Ⅰ)求函数f(x)的最大值;(Ⅱ)求证:ln(22+1)+ln(32+1)+ln(42+1)+…ln(n2+1)<1+2lnn!(n≥2,n∈N*)【考点】导数在最大值、最小值问题中的应用.【分析】(I)判断f(x)的单调性,从而计算f(x)的最大值;(II)根据f(x)在(1,+∞)上单调递减可得f(x)<﹣4,化简得ln (x)<x﹣1,利用对数的运算性质计算ln(22+1)+ln(32+1)+ln(42+1)+…ln(n2+1)﹣2lnn!,根据f(x)的单调性化简,再使用不等式性质得出结论.【解答】解:(I)f′(x)=,令f′(x)=0得x=1,∴当0<x<1时,f′(x)>0,当x>1时,f′(x)<0,∴f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,∴f(x)的最大值为f(1)=﹣4.(II)证明:∵f(x)=lnx﹣x﹣3在(1,+∞)上单调递减,∴f(x)<f(1)=﹣4,即lnx﹣x﹣3<﹣4,∴lnx<x﹣1在(1,+∞)上恒成立,∴ln(+1)<,∴ln(22+1)+ln(32+1)+ln(42+1)+…+ln(n2+1)﹣2lnn!=ln=ln[(1+)(1+) (1))]=ln(1+)+ln(1+)+…+ln(1+)<+++…+<+++…+=1﹣+…+=1﹣<1.请考生在22、23两题中任选一题作答,[选修4-4:坐标系与参数方程] 22.已知在平面直角坐标系xOy中,直线l的参数方程是(t是参数),以原点O为极点,Ox为极轴建立极坐标系,圆C的极坐标方程为p=cos(θ+).(Ⅰ)求圆心C的直角坐标方程;(Ⅱ)由直线l上的点向圆C引切线,求切线长的最小值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)圆C的极坐标方程为ρ2=ρcosθ﹣ρsinθ,由此能求出圆C的直角坐标方程.(Ⅱ)直线l的直角坐标方程为y=x+,求出圆心C()到直线l的距离d和圆C的半径r,切线长的最小值为:.【解答】解:(Ⅰ)∵圆C的极坐标方程为ρ=cos(θ+)==cosθ﹣sinθ,∴ρ2=ρcosθ﹣ρsinθ,∴圆C的直角坐标方程为x2+y2=x﹣y,即(x﹣)2+(y+)2=.(Ⅱ)∵直线l的参数方程是(t是参数),∴直线l的直角坐标方程为y=x+,圆心C()到直线l的距离d==1,圆C的半径r=,∴切线长的最小值为:==.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|.(Ⅰ)解不等式f(x)≥1;(Ⅱ)存在实数x,使不等式f(x)+|x+2|﹣m≤0有解,求实数m的取值范围.【考点】绝对值不等式的解法.【分析】(Ⅰ)去掉绝对值号,求出不等式的解集即可;(Ⅱ)问题转化为m≥(|x﹣1)+|x+2|)min,根据绝对值的性质,求出|x﹣1|+|x+2|≥3,从而求出m的范围即可.【解答】解:(Ⅰ)f(x)≥1,即|x﹣1|≥1,故x﹣1≥1或x﹣1≤﹣1,解得:x≥2或x≤0,故不等式的解集是{x|x≥2或x≤0};(Ⅱ)不等式f(x)+|x+2|﹣m≤0有解,即m≥|x﹣1|+|x+2|有解,即m≥(|x﹣1)+|x+2|)min,而|x﹣1|+|x+2|≥|x﹣1﹣x﹣2|=3,故m≥3.2017年3月27日。
新课标高考理科数学模拟试题含答案
新课标高考理科数学模拟试题含答案The following text is amended on 12 November 2020.2017年普通高等学校招生全国统一考试理科数学模拟试卷(一)第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知命题:p x ∀∈R ,sin x ≤1,则( )A .:p x ⌝∃∈R ,sin x ≥1B .:p x ⌝∀∈R ,sin x ≥1C .:p x ⌝∃∈R ,sin x >1 不能D .:p x ⌝∀∈R ,sin x >12.已知平面向量a =(1,1),b (1,-1),则向量1322-=a b ( )A .(-2,-1)B .(-2,1)C .(-1,0)D .(-1,2)3.函数πsin 23y x ⎛⎫=- ⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是( )4.已知{a n }是等差数列,a 10=10,其前10项和S 10=70,则其公差d =( )A .23-B .13-C .13D .235.如果执行右面的程序框图,那么输出的S=( )A .2450B .2500 y x11-2π-3π-O6ππyx11-2π-3π-O 6ππy x11-2π-3πO 6π-πy xπ2π-6π-1O1-3π A.B.C .D .6.已知抛物线22(0)y px p =>的焦点为F ,点P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)在抛物线上,且2x 2=x 1+x 3, 则有( )A .123FP FP FP +=B .222123FP FP FP += C .2132FP FP FP =+ D .2213FPFP FP =· 7.已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则2()a b cd+的最小值是( )A .0B .1C .2D .48.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )A .34000cm 3 B .38000cm 3C .2000cm 3D .4000cm 3 9.若cos 22π2sin 4αα=-⎛⎫- ⎪⎝⎭,则cos sin αα+的值为( ) A .7.12- C .12D 7 10.曲线12e x y =在点(4,e 2)处的切线与坐标轴所围三角形的面积为( )A .29e 2年B .4e 2, C .2e 2 D .e 2s 1,s 2,s 3分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( )甲的成绩 环数7 8 9 10 频数 5 5 5 5 乙的成绩 环数7 8 9 1频数 6 4 4 6 丙的成绩 环数7 8 9 1频数4 6 6 412.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等。
届汉中市高三理科数学模拟试卷题目及答案
届汉中市高三理科数学模拟试卷题目及答案2018届汉中市高三理科数学模拟试卷题目及答案要想在高考数学中取得好,就要在最短的时间内拟定解决问题的最佳方案,实现答题效率最优化。
我们可以多做一些数学模拟试卷来提升这方面的能力,以下是店铺为你整理的2018届汉中市高三理科数学模拟试卷,希望能帮到你。
2018届汉中市高三理科数学模拟试卷题目一、选择题(本大题共12小题,每小题5分)1.已知集合A={x|(x﹣2)(x+3)<0},B={x|y= },则A∩(∁RB)=( )A.[﹣3,﹣1]B.(﹣3,﹣1]C.(﹣3,﹣1)D.[﹣1,2]2.已知复数z满足z( +3i)=16i(i为虚数单位),则复数z的模为( )A. B.2 C.4 D.83.已知两个随机变量x,y之间的相关关系如表所示:x ﹣4 ﹣2 1 2 4y ﹣5 ﹣3 ﹣1 ﹣0.5 1根据上述数据得到的回归方程为 = x+ ,则大致可以判断( )A. >0, >0B. >0, <0C. <0, >0D. <0, <04.已知向量 =(2,﹣4), =(﹣3,x), =(1,﹣1),若(2 + )⊥ ,则| |=( )A.9B.3C.D.35.已知等比数列{an}的前n项积为Tn,若log2a2+log2a8=2,则T9的值为( )A.±512B.512C.±1024D.10246.执行如图所示的程序框图,则输出的i的值为( )A.5B.6C.7D.87.已知三棱锥A﹣BCD的四个顶点在空间直角坐标系O﹣xyz中的坐标分别为A(2,0,2),B(2,1,2),C(0,2,2),D(1,2,0),画该三棱锥的三视图中的俯视图时,以xOy平面为投影面,则得到的俯视图可以为( )A. B. C. D.8.已知过点(﹣2,0)的直线与圆O:x2+y2﹣4x=0相切与点P(P 在第一象限内),则过点P且与直线x﹣y=0垂直的直线l的方程为( )A.x+ y﹣2=0B.x+ y﹣4=0C. x+y﹣2=0D.x+ y﹣6=09.函数f(x)=( ﹣1)•sinx的图象大致形状为( )A. B. C. D.10.已知函数f(x)= sinωx﹣cosωx(ω<0),若y=f(x+ )的图象与y=f(x﹣ )的图象重合,记ω的最大值为ω0,函数g(x)=cos(ω0x﹣ )的单调递增区间为( )A.[﹣π+ ,﹣+ ](k∈Z)B.[﹣ + ,+ ](k∈Z)C.[﹣π+2kπ,﹣+2kπ](k∈Z)D.[﹣+2kπ,﹣+2kπ](k∈Z)11.已知双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1、F2,点F2双曲线C的一条渐近线的对称点A在该双曲线的左支上,则此双曲线的离心率为( )A. B. C.2 D.12.定义在R上的函数f(x)的图象关于y轴对称,且f(x)在[0,+∞)上单调递减,若关于x的不等式f(2mx﹣lnx﹣3)≥2f(3)﹣f(﹣2mx+lnx+3)在x∈[1,3]上恒成立,则实数m的取值范围为( )A.[ , ]B.[ , ]C.[ , ]D.[ , ]二、填空题(本大题共4小题,每小题5分)13.(2x﹣1)5的展开式中,含x3项的系数为(用数字填写答案)14.已知实数x,y满足则z= 的取值范围为.15.已知各项均为正数的数列{an}的前n项和为Sn,且Sn满足n(n+1)Sn2+(n2+n﹣1)Sn﹣1=0(n∈N*),则S1+S2+…+S2017=.16.如图所示,三棱锥P﹣ABC中,△ABC是边长为3的等边三角形,D是线段AB的中点,DE∩PB=E,且DE⊥AB,若∠EDC=120°,PA= ,PB= ,则三棱锥P﹣ABC的外接球的表面积为.三、解答题17.(12分)已知在△ABC中,角A,B,C所对的边分别是a,b,c,且a、b、c成等比数列,c= bsinC﹣ccosB.(Ⅰ)求B的大小;(Ⅱ)若b=2 ,求△ABC的周长和面积.18.(12分)每年的4月23日为世界读书日,为调查某高校学生(学生很多)的读书情况,随机抽取了男生,女生各20人组成的一个样本,对他们的年阅读量(单位:本)进行了统计,分析得到了男生年阅读量的频率分布表和女生阅读量的频率分布直方图.男生年阅读量的频率分布表(年阅读量均在区间[0,60]内):本/年 [0,10) [10,20) [20,30) [30,40) [40,50) [50,60]频数 3 1 8 4 2 2(Ⅰ)根据女生的频率分布直方图估计该校女生年阅读量的中位数;(Ⅱ)在样本中,利用分层抽样的方法,从男生年与度量在[20,30),[30,40)的两组里抽取6人,再从这6人中随机抽取2人,求[30,40)这一组中至少有1人被抽中的概率;(Ⅲ)若年阅读量不小于40本为阅读丰富,否则为阅读不丰富,依据上述样本研究阅读丰富与性别的关系,完成下列2×2列联表,并判断是否有99%的把握认为月底丰富与性别有关.性别阅读量丰富不丰富合计男女合计P(K2≥k0) 0.025 0.010 0.005k0 5.024 6.635 7.879附:K2= ,其中n=a+b+c+d.19.(12分)已知矩形ABCD中,E、F分别是AB、CD上的点,BE=CF=1,BC=2,AB=CD=3,P、Q分别为DE、CF的中点,现沿着EF翻折,使得二面角A﹣EF﹣B大小为 .(Ⅰ)求证:PQ∥平面BCD;(Ⅱ)求二面角A﹣DB﹣E的余弦值.20.(12分)已知椭圆C: + =1(a>b>0)的离心率为,点B是椭圆C的上顶点,点Q在椭圆C上(异于B点).(Ⅰ)若椭圆V过点(﹣, ),求椭圆C的方程;(Ⅱ)若直线l:y=kx+b与椭圆C交于B、P两点,若以PQ为直径的圆过点B,证明:存在k∈R, = .21.(12分)已知函数f(x)=lnx﹣ax+ ,其中a>0.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)证明:(1+ )(1+ )(1+ )…(1+ )四、选修4-4:极坐标与参数方程22.(10分)已知平面直角坐标系中,曲线C1的参数方程为(φ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2cosθ.(Ⅰ)求曲线C1的极坐标方程与曲线C2的直角坐标方程;(Ⅱ)若直线θ= (ρ∈R)与曲线C1交于P,Q两点,求|PQ|的长度.选修4-5:不等式选讲23.(10分)已知函数f(x)=|3x﹣4|.(Ⅰ)记函数g(x)=f(x)+|x+2|﹣4,在下列坐标系中作出函数g(x)的图象,并根据图象求出函数g(x)的最小值;(Ⅱ)记不等式f(x)<5的解集为M,若p,q∈M,且|p+q+pq|<λ,求实数λ的取值范围.2018届汉中市高三理科数学模拟试卷答案一、选择题(本大题共12小题,每小题5分)1.已知集合A={x|(x﹣2)(x+3)<0},B={x|y= },则A∩(∁RB)=( )A.[﹣3,﹣1]B.(﹣3,﹣1]C.(﹣3,﹣1)D.[﹣1,2]【考点】交、并、补集的混合运算.【分析】求出A,B中不等式的解集确定出B,找出B的补集,求出A与B补集的交集即可.【解答】解:A={x|(x﹣2)(x+3)<0}=(﹣3,2),B={x|y= }=(﹣1,+∞),∴∁RB=(﹣∞,﹣1]∴A∩(∁RB)=(﹣3,﹣1].故选:B.【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.已知复数z满足z( +3i)=16i(i为虚数单位),则复数z的模为( )A. B.2 C.4 D.8【考点】复数求模;复数代数形式的混合运算.【分析】利用复数运算法则、共轭复数的定义、模的计算公式即可得出.【解答】解:z( +3i)=16i(i为虚数单位),∴z( +3i)( ﹣3i)=16i( ﹣3i),∴16z=16i( ﹣3i),∴z=3+ i.则复数|z|= =4.故选:C.【点评】本题考查了复数运算法则、共轭复数的定义、模的计算公式,考查了推理能力与计算能力,属于基础题.3.已知两个随机变量x,y之间的相关关系如表所示:x ﹣4 ﹣2 1 2 4y ﹣5 ﹣3 ﹣1 ﹣0.5 1根据上述数据得到的回归方程为 = x+ ,则大致可以判断( )A. >0, >0B. >0, <0C. <0, >0D. <0, <0【考点】线性回归方程.【分析】利用公式求出,,即可得出结论.【解答】解:样本平均数 =0.2, =﹣1.7,∴ = = >0,∴ =﹣1.7﹣×0.2<0,故选:C.【点评】本题考查线性回归方程的求法,考查最小二乘法,属于基础题.4.已知向量 =(2,﹣4), =(﹣3,x), =(1,﹣1),若(2 + )⊥ ,则| |=( )A.9B.3C.D.3【考点】平面向量数量积的运算.【分析】利用向量垂直关系推出等式,求出x,然后求解向量的模.【解答】既然:向量 =(2,﹣4), =(﹣3,x), =(1,﹣1),2 + =(1,x﹣8),(2 + )⊥ ,可得:1+8﹣x=0,解得x=9.则| |= =3 .故选:D.【点评】本题考查平面向量的数量积的运算,向量的模的求法,考查计算能力.5.已知等比数列{an}的前n项积为Tn,若log2a2+log2a8=2,则T9的值为( )A.±512B.512C.±1024D.1024【考点】等比数列的性质.【分析】利用已知条件求出a2a8的值,然后利用等比数列的性质求解T9的值.【解答】解:log2a2+log2a8=2,可得log2(a2a8)=2,可得:a2a8=4,则a5=±2,等比数列{an}的前9项积为T9=a1a2…a8a9=(a5)9=±512.故选:A.【点评】本题考查的等比数列的性质,数列的应用,考查计算能力.6.执行如图所示的程序框图,则输出的i的值为( )A.5B.6C.7D.8【考点】程序框图.【分析】模拟执行程序的运行过程,即可得出程序运行后输出的i 值.【解答】解:模拟执行程序的运行过程,如下;S=1,i=1,S<30;S=2,i=2,S<30;S=4,i=3,S<30;S=8,i=4,S<30;S=16,i=5,S<30;S=32,i=6,S≥30;终止循环,输出i=6.故选:B【点评】本题主要考查了程序框图的应用问题,模拟程序的运行过程是解题的常用方法.7.已知三棱锥A﹣BCD的四个顶点在空间直角坐标系O﹣xyz中的坐标分别为A(2,0,2),B(2,1,2),C(0,2,2),D(1,2,0),画该三棱锥的三视图中的俯视图时,以xOy平面为投影面,则得到的俯视图可以为( )A. B. C. D.【考点】简单空间图形的三视图.【分析】找出各点在xoy平面内的投影得出俯视图.【解答】解:由题意,A(2,0,2),B(2,1,2),C(0,2,2),D(1,2,0)在xOy平面上投影坐标分别为A(2,0,0),B(2,1,0),C(0,2,0),D(1,2,0).故选:C.【点评】本题考查了三视图的定义,简单几何体的三视图,属于基础题.8.已知过点(﹣2,0)的直线与圆O:x2+y2﹣4x=0相切与点P(P 在第一象限内),则过点P且与直线x﹣y=0垂直的直线l的方程为( )A.x+ y﹣2=0B.x+ y﹣4=0C. x+y﹣2=0D.x+ y﹣6=0【考点】圆的切线方程.【分析】求出P的坐标,设直线l的方程为x+ y+c=0,代入P,求出c,即可求出直线l的`方程.【解答】解:由题意,切线的倾斜角为30°,∴P(1, ).设直线l的方程为x+ y+c=0,代入P,可得c=﹣4,∴直线l的方程为x+ y﹣4=0,故选B.【点评】本题考查直线与圆的位置关系,考查直线方程,考查学生的计算能力,属于中档题.9.函数f(x)=( ﹣1)•sinx的图象大致形状为( )A. B. C. D.【考点】函数的图象.【分析】先判断函数的奇偶性,再取特殊值验证.【解答】解:∵f(x)=( ﹣1)•sinx,∴f(﹣x)=( ﹣1)•sin(﹣x)=﹣( ﹣1)sinx=( ﹣1)•sinx=f(x),∴函数f(x)为偶函数,故排除C,D,当x=2时,f(2)=( ﹣1)•sin2<0,故排除B,故选:A【点评】本题考查了函数图象的识别,关键掌握函数的奇偶性和函数值的特点,属于基础题.10.已知函数f(x)= sinωx﹣cosωx(ω<0),若y=f(x+ )的图象与y=f(x﹣ )的图象重合,记ω的最大值为ω0,函数g(x)=cos(ω0x﹣ )的单调递增区间为( )A.[﹣π+ ,﹣+ ](k∈Z)B.[﹣ + ,+ ](k∈Z)C.[﹣π+2kπ,﹣+2kπ](k∈Z)D.[﹣+2kπ,﹣+2kπ](k∈Z)【考点】函数y=Asin(ωx+φ)的图象变换;余弦函数的单调性.【分析】利用三角恒等变换化简f(x)的解析式,利用正弦函数的周期性求得ω的值,再利用余弦函数的单调性,求得函数g(x)的增区间.【解答】解:函数f(x)= sinωx﹣cosωx(ω<0)=2sin(ωx﹣ ),若y=f(x+ )的图象与y=f(x﹣ )的图象重合,则为函数f(x)的周期,即=k•| |,∴ω=±4k,k∈Z.记ω的最大值为ω0,则ω0=﹣4,函数g(x)=cos(ω0x﹣ )=cos(﹣4x﹣ )=cos(4k+ ).令2kπ﹣π≤4x+ ≤2kπ,求得﹣≤x≤ ﹣,故函数g(x)的增区间为[ ﹣,﹣ ],k∈Z.故选:A.【点评】本题主要考查三角恒等变换,正弦函数的周期性,余弦函数的单调性,属于中档题.11.已知双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1、F2,点F2关于双曲线C的一条渐近线的对称点A在该双曲线的左支上,则此双曲线的离心率为( )A. B. C.2 D.【考点】双曲线的简单性质.【分析】设F(﹣c,0),渐近线方程为y= x,对称点为F'(m,n),运用中点坐标公式和两直线垂直的条件:斜率之积为﹣1,求出对称点的坐标,代入双曲线的方程,由离心率公式计算即可得到所求值.【解答】解:设F(﹣c,0),渐近线方程为y= x,对称点为F'(m,n),即有 =﹣,且•n= • ,解得m= ,n=﹣,将F'( ,﹣ ),即( ,﹣ ),代入双曲线的方程可得﹣ =1,化简可得﹣4=1,即有e2=5,解得e= .故选:D.【点评】本题考查双曲线的离心率的求法,注意运用中点坐标公式和两直线垂直的条件:斜率之积为﹣1,以及点满足双曲线的方程,考查化简整理的运算能力,属于中档题.12.定义在R上的函数f(x)的图象关于y轴对称,且f(x)在[0,+∞)上单调递减,若关于x的不等式f(2mx﹣lnx﹣3)≥2f(3)﹣f(﹣2mx+lnx+3)在x∈[1,3]上恒成立,则实数m的取值范围为( )A.[ , ]B.[ , ]C.[ , ]D.[ , ]【考点】函数恒成立问题.【分析】由条件利用函数的奇偶性和单调性,可得0≤2mx﹣lnx≤6对x∈[1,3]恒成立,2m≥ 且2m≤ 对x∈[1,3]恒成立.求得相应的最大值和最小值,从而求得m的范围.【解答】解:∴定义在R上的函数f(x)的图象关于y轴对称,∴函数f(x)为偶函数,∵函数数f(x)在[0,+∞)上递减,∴f(x)在(﹣∞,0)上单调递增,若不等式f(2mx﹣lnx﹣3)≥2f(3)﹣f(﹣2mx+lnx+3)对x∈[1,3]恒成立,即f(2mx﹣lnx﹣3)≥f(3)对x∈[1,3]恒成立.∴﹣3≤2mx﹣lnx﹣3≤3对x∈[1,3]恒成立,即0≤2mx﹣lnx≤6对x∈[1,3]恒成立,即2m≥ 且2m≤ 对x∈[1,3]恒成立.令g(x)= ,则g′(x)= ,在[1,e)上递增,(e,3]上递减,∴g(x)max= .令h(x)= ,h′(x)= <0,在[1,3]上递减,∴h(x)min= .综上所述,m∈[ , ].故选D.【点评】本题主要考查函数的奇偶性和单调性的综合应用,函数的恒成立问题,体现了转化的数学思想,属于中档题.二、填空题(本大题共4小题,每小题5分)13.(1+x﹣30x2)(2x﹣1)5的展开式中,含x3项的系数为﹣260 (用数字填写答案)【考点】二项式定理的应用.【分析】分析x3得到所有可能情况,然后得到所求.【解答】解:(1+x﹣30x2)(2x﹣1)5的展开式中,含x3项为﹣30x2 =80x3﹣40x3﹣300x3=﹣260x3,所以x3的系数为﹣260;故答案为:﹣260.【点评】本题考查了二项式定理;注意各种可能.14.已知实数x,y满足则z= 的取值范围为[ ] .【考点】简单线性规划.【分析】由约束条件作出可行域,再由z= 的几何意义,即可行域内的动点与定点P(﹣2,﹣1)连线的斜率求解.【解答】解:由约束条件作出可行域如图:A(2,0),联立,解得B(5,6),z= 的几何意义为可行域内的动点与定点P(﹣2,﹣1)连线的斜率,∵ ,∴z= 的取值范围为[ ].故答案为:[ ].【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.已知各项均为正数的数列{an}的前n项和为Sn,且Sn满足n(n+1)Sn2+(n2+n﹣1)Sn﹣1=0(n∈N*),则S1+S2+…+S2017=.【考点】数列递推式;数列的求和.【分析】n(n+1)Sn2+(n2+n﹣1)Sn﹣1=0(n∈N*),可得[n(n+1)Sn﹣1](Sn+1)=0,Sn>0.可得Sn= = ﹣ .利用“裂项求和”方法即可得出.【解答】解:∵n(n+1)Sn2+(n2+n﹣1)Sn﹣1=0(n∈N*),∴[n(n+1)Sn﹣1](Sn+1)=0,Sn>0.∴n(n+1)Sn﹣1=0,∴Sn= = ﹣ .∴S1+S2+…+S2017= +…+ = .故答案为: .【点评】本题考查了数列递推关系、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.16.如图所示,三棱锥P﹣ABC中,△ABC是边长为3的等边三角形,D是线段AB的中点,DE∩PB=E,且DE⊥AB,若∠EDC=120°,PA= ,PB= ,则三棱锥P﹣ABC的外接球的表面积为13π.【考点】球内接多面体;球的体积和表面积.【分析】由题意得PA2+PB2=AB2,即可得D为△PAB的外心,在CD上取点O1,使O1为等边三角形ABC的中心,在△DEC中,过D作直线与DE垂直,过O1作直线与DC垂直,两条垂线交于点O,则O为球心,在△DEC中求解OC,即可得到球半径,【解答】解:由题意,PA2+PB2=AB2,因为,∴AD⊥面DEC,∵AD⊂PAB,AD⊂ABC,∴面APB⊥面DEC,面ABC⊥面DEC,在CD上取点O1,使O1为等边三角形ABC的中心,∵D为△PAB斜边中点,∴在△DEC中,过D作直线与DE垂直,过O1作直线与DC垂直,两条垂线交于点O,则O为球心.∵∠EDC=90°,∴ ,又∵ ,∴OO1= ,三棱锥P﹣ABC的外接球的半径R= ,三棱锥P﹣ABC的外接球的表面积为4πR2=13π,故答案为:13π.【点评】本题考查了几何体的外接球的表面积,解题关键是要找到球心,求出半径,属于难题.三、解答题17.(12分)(2017•内蒙古模拟)已知在△ABC中,角A,B,C所对的边分别是a,b,c,且a、b、c成等比数列,c= bsinC﹣ccosB.(Ⅰ)求B的大小;(Ⅱ)若b=2 ,求△ABC的周长和面积.【考点】正弦定理;三角形中的几何计算.【分析】(Ⅰ)根据题意,由正弦定理可得sinC= sinBsinC﹣sinCcosB,进而变形可得1= sinC﹣cosB,由正弦的和差公式可得1=2sin(B﹣ ),即可得B﹣的值,计算可得B的值,即可得答案;(Ⅱ)由余弦定理可得(a+c)2﹣3ac=12,又由a、b、c成等比数列,进而可以变形为12=(a+c)2﹣36,解可得a+c=4 ,进而计算可得△ABC的周长l=a+b+c,由面积公式S△ABC= acsinB= b2sinB计算可得△ABC的面积.【解答】解:(Ⅰ)根据题意,若c= bsinC﹣ccosB,由正弦定理可得sinC= sinBsinC﹣sinCcosB,又由sinC≠0,则有1= sinC﹣cosB,即1=2sin(B﹣ ),则有B﹣ = 或B﹣ = ,即B= 或π(舍)故B= ;(Ⅱ)已知b=2 ,则b2=a2+c2﹣2accosB=a2+c2﹣ac=(a+c)2﹣3ac=12,又由a、b、c成等比数列,即b2=ac,则有12=(a+c)2﹣36,解可得a+c=4 ,所以△ABC的周长l=a+b+c=2 +4 =6 ,面积S△ABC= acsinB= b2sinB=3 .【点评】本题考查正弦、余弦定理的应用,关键利用三角函数的恒等变形正确求出B的值.18.(12分)(2017•汉中一模)每年的4月23日为世界读书日,为调查某高校学生(学生很多)的读书情况,随机抽取了男生,女生各20人组成的一个样本,对他们的年阅读量(单位:本)进行了统计,分析得到了男生年阅读量的频率分布表和女生阅读量的频率分布直方图.男生年阅读量的频率分布表(年阅读量均在区间[0,60]内):本/年 [0,10) [10,20) [20,30) [30,40) [40,50) [50,60]频数 3 1 8 4 2 2(Ⅰ)根据女生的频率分布直方图估计该校女生年阅读量的中位数;(Ⅱ)在样本中,利用分层抽样的方法,从男生年与度量在[20,30),[30,40)的两组里抽取6人,再从这6人中随机抽取2人,求[30,40)这一组中至少有1人被抽中的概率;(Ⅲ)若年阅读量不小于40本为阅读丰富,否则为阅读不丰富,依据上述样本研究阅读丰富与性别的关系,完成下列2×2列联表,并判断是否有99%的把握认为月底丰富与性别有关.性别阅读量丰富不丰富合计男女合计P(K2≥k0) 0.025 0.010 0.005k0 5.024 6.635 7.879附:K2= ,其中n=a+b+c+d.【考点】独立性检验.【分析】(Ⅰ)求出前三组频率之和,即可根据女生的频率分布直方图估计该校女生年阅读量的中位数;(Ⅱ)确定基本事件的个数,即可求[30,40)这一组中至少有1人被抽中的概率;(Ⅲ)根据所给数据得出2×2列联表,求出K2,即可判断是否有99%的把握认为月底丰富与性别有关.【解答】解:(Ⅰ)前三组频率之和为0.1+0.2+0.25=0.55,∴中位数位于第三组,设中位数为a,则 = ,∴a=38,∴估计该校女生年阅读量的中位数为38;(Ⅱ)利用分层抽样的方法,从男生年与度量在[20,30),[30,40)的两组里抽取6人,从这6人中随机抽取2人,共有方法 =15种,各组分别为4人,2人,[30,40)这一组中至少有1人被抽中的概率1﹣= ;(Ⅲ)性别阅读量丰富不丰富合计男 4 16 20女 9 11 20合计 13 27 40K2= ≈2.849<6.635,∴没有99%的把握认为月底丰富与性别有关.【点评】本题考查频率分布直方图,考查概率的计算,考查独立性检验知识的运用,属于中档题.19.(12分)(2017•内蒙古模拟)已知矩形ABCD中,E、F分别是AB、CD上的点,BE=CF=1,BC=2,AB=CD=3,P、Q分别为DE、CF 的中点,现沿着EF翻折,使得二面角A﹣EF﹣B大小为 .(Ⅰ)求证:P Q∥平面BCD;(Ⅱ)求二面角A﹣DB﹣E的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(Ⅰ)取EB的中点M,连接PM,QM,证明:平面PMQ∥平面BCD,即可证明PQ∥平面BCD;(Ⅱ)建立坐标系,利用向量方法,即可求二面角A﹣DB﹣E的余弦值.【解答】(Ⅰ)证明:取EB的中点M,连接PM,QM,∵P为DE的中点,∴PM∥BD,∵PM⊄平面BCD,BD⊂平面BCD,∴PM∥平面BCD,同理MQ∥平面BCD,∵PM∩MQ=M,∴平面PMQ∥平面BCD,∵PQ⊂平面PQM,∴PQ∥平面BCD;(Ⅱ)解:在平面DFC内,过F作FC的垂线,则∠DFC= ,建立坐标系,则E(2,0,0),C(0,1,0),B(2,1,0),D(0,﹣1,﹣),A(2,﹣1, ),∴ =(﹣2,﹣2, ), =(0,2,﹣ ), =(0,1,0),设平面DAB的一个法向量为 =(x,y,z),则,取 =(0,, ),同理平面DBE的一个法向量为 =( ,0, ),∴cos< , >= = ,∴二面角A﹣DB﹣E的余弦值为 .【点评】本题考查线面平行的证明,考查二面角的大小的求法,考查向量方法的运用,是中档题.20.(12分)(2017•内蒙古模拟)已知椭圆C:+ =1(a>b>0)的离心率为,点B是椭圆C的上顶点,点Q在椭圆C上(异于B点).(Ⅰ)若椭圆V过点(﹣, ),求椭圆C的方程;(Ⅱ)若直线l:y=kx+b与椭圆C交于B、P两点,若以PQ为直径的圆过点B,证明:存在k∈R, = .【考点】直线与椭圆的位置关系.【分析】(Ⅰ)由椭圆的离心率公式求得a和b的关系,将(﹣,)代入椭圆方程,即可求得a和b的值,求得椭圆方程;(Ⅱ)将直线方程代入椭圆方程,求得P的横坐标,求得丨BP丨,利用直线垂直的斜率关系求得丨BQ丨,由= ,根据函数零点的判断即可存在k∈R, = .【解答】解:(Ⅰ)椭圆的离心率e= = = ,则a2=2b2,将点(﹣, )代入椭圆方程,解得:a2=4,b2=2,∴椭圆的标准方程为:,(Ⅱ)由题意的对称性可知:设存在存在k>0,使得 = ,由a2=2b2,椭圆方程为:,将直线方程代入椭圆方程,整理得:(1+2k2)x2+4kbx=0,解得:xP=﹣,则丨BP丨= × ,由BP⊥BQ,则丨BQ丨= ×丨丨= • ,由 = .,则2 × = • ,整理得:2k3﹣2k2+4k﹣1=0,设f(x)=2k3﹣2k2+4k﹣1,由f( )<0,f( )>0,∴函数f(x)存在零点,∴存在k∈R, = .【点评】本题考查椭圆的标准方程及椭圆的离心率,考查直线与椭圆的位置关系,弦长公式,考查函数零点的判断,考查计算能力,属于中档题.21.(12分)(2017•内蒙古模拟)已知函数f(x)=lnx﹣ax+ ,其中a>0.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)证明:(1+ )(1+ )(1+ )…(1+ )【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(Ⅱ)求出lnx< x﹣,令x=1+ (n≥2),得到ln(1+ )< ( ﹣ ),累加即可证明结论.【解答】解:(Ⅰ)函数f(x)的定义域是(0,+∞),f′(x)= ,令h(x)=﹣ax2+x﹣a,记△=1﹣4a2,当△≤0时,得a≥ ,若a≥ ,则﹣ax2+x﹣a≤0,f′(x)≤0,此时函数f(x)在(0,+∞)递减,当0显然x1>x2>0,故此时函数f(x)在( , )递增,在(0, )和( ,+∞)递减;综上,0在(0, )和( ,+∞)递减,a≥ 时,函数f(x)在(0,+∞)递减;(Ⅱ)证明:令a= ,由(Ⅰ)中讨论可得函数f(x)在区间(0,+∞)递减,又f(1)=0,从而当x∈(1,+∞)时,有f(x)<0,即lnx< x﹣,令x=1+ (n≥2),则ln(1+ )< (1+ )﹣ == ( + )< = ( ﹣ ),从而:ln(1+ )+ln(1+ )+ln(1+ )+…+ln(1+ )< (1﹣ + ﹣ + ﹣+…+ ﹣ + ﹣ + ﹣ )= (1+ ﹣﹣ )< (1+ )= ,则有ln(1+ )+ln(1+ )+ln(1+ )+…+ln(1+ )< ,可得(1+ )(1+ )(1+ )…(1+ )【点评】本题考查了函数的单调性问题,考查不等式的证明以及导数的应用,是一道中档题.四、选修4-4:极坐标与参数方程22.(10分)(2017•内蒙古模拟)已知平面直角坐标系中,曲线C1的参数方程为(φ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2cosθ.(Ⅰ)求曲线C1的极坐标方程与曲线C2的直角坐标方程;(Ⅱ)若直线θ= (ρ∈R)与曲线C1交于P,Q两点,求|PQ|的长度.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(I)曲线C1的参数方程为(φ为参数),利用平方关系消去φ可得普通方程,展开利用互化公式可得极坐标方程.曲线C2的极坐标方程为ρ=2cosθ,即ρ2=2ρcosθ,利用互化公式可得直角坐标方程.(II)把直线θ= (ρ∈R)代入ρcosθ+2ρsinθ﹣5=0,整理可得:ρ2﹣2ρ﹣5=0,利用|PQ|=|ρ1﹣ρ2|= 即可得出.【解答】解:(I)曲线C1的参数方程为(φ为参数),利用平方关系消去φ可得: +(y+1)2=9,展开为:x2+y2﹣2 x+2y﹣5=0,可得极坐标方程:ρcosθ+2ρsinθ﹣5=0.曲线C2的极坐标方程为ρ=2cosθ,即ρ2=2ρcosθ,可得直角坐标方程:x2+y2=2x.(II)把直线θ= (ρ∈R)代入ρcosθ+2ρsinθ﹣5=0,整理可得:ρ2﹣2ρ﹣5=0,∴ρ1+ρ2=2,ρ1•ρ2=﹣5,∴|PQ|=|ρ1﹣ρ2|= = =2 .【点评】本题考查了直角坐标方程化为极坐标方程及其应用、参数方程化为普通方程、弦长公式,考查了推理能力与计算能力,属于中档题.选修4-5:不等式选讲23.(10分)(2017•内蒙古模拟)已知函数f(x)=|3x﹣4|.(Ⅰ)记函数g(x)=f(x)+|x+2|﹣4,在下列坐标系中作出函数g(x)的图象,并根据图象求出函数g(x)的最小值;(Ⅱ)记不等式f(x)<5的解集为M,若p,q∈M,且|p+q+pq|<λ,求实数λ的取值范围.【考点】函数的图象.【分析】(Ⅰ)根据函数解析式作出函数g(x)的图象,并根据图象求出函数g(x)的最小值;(Ⅱ)记不等式f(x)<5的解集为M,可得p,q∈(﹣,3),若p,q∈M,且|p+q+pq|<λ,利用绝对值不等式,即可求实数λ的取值范围.【解答】解:(Ⅰ)函数g(x)=f(x)+|x+2|﹣4=|3x﹣4|+|x+2|﹣4,图象如图所示,由图象可得,x= ,g(x)有最小值﹣ ;(Ⅱ)由题意,|3x﹣4|<5,可得﹣∴|p+q+pq|≤|p|+|q|+|pq|<3+3+3×3=15,∴λ≥15.【点评】本题考查函数的图象,考查绝对值不等式的运用,考查数形结合的数学思想,属于中档题.【2018届汉中市高三理科数学模拟试卷题目及答案】。
全国普通高等学校高考数学模拟试卷(理科)及答案
全国普通高等学校高考数学模拟试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的•1. (5 分)已知集合A={x| - x2+4x> 0},片&|占<3玄丈歼} , C=(x|x=2n, n€81N},贝U(A U B)n C=()A. {2,4}B. {0,2}C. {0,2,4}D. {x|x=2n, n € N}2. (5分)设i是虚数单位,若-- ' ― ,x,y€ R,则复数x+yi的共轭复数2^1是()A. 2 - iB.- 2 - iC. 2+iD.- 2+i3. (5分)已知等差数列{a n}的前n项和是S h,且%+a5+a6+a z=18,贝U下列命题正确的是()A. a5是常数B. S5是常数C. a i0是常数D. Si o是常数4. (5分)七巧板是我们祖先的一项创造,被誉为东方魔板”它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,贝吐匕点取自黑色部分的概率是()BCD2 25. (5分)已知点F为双曲线C: = 一一(a>0,b>0)的右焦点,直线x=aa b与双曲线的渐近线在第一象限的交点为A,若AF的中点在双曲线上,贝U双曲线的离心率为()A. "B. I ■:C. I」订D. - % -6. (5分)已知函数f&)二sinx, K E [-冗50]诋(0t i]A . 7 .nJTD.——-74 一(5分)执行如图所示的程序框图,则输出的S的值为()2+ n B. C.盒2*出£产〔筠棗)*>201A.二7B. 「」C.. - 厂D. +-8 (5分)已知函数f仗)二sin 3葢X^\/3C^OS23(3> 0) 的相邻两个零点差的绝对值为二,则函数f (x)的图象(4A . 可由函数(X)=cos4x的图象向左平移个单位而得B. 可由函数(X)=cos4x的图象向右平移C. 可由函数(X)=cos4x的图象向右平移D . 可由函数(X)=cos4x的图象向右平移丄个单位而得24丄个单位而得245兀个单位而得9. (5 分)(羽-3)(1的展开式中剔除常数项后的各项系数和为(A . —73 B.—61 C.—55 D.—6310. (5分)某几何体的三视图如图所示,其中俯视图中六边形ABCDEF是边长为1的正六边形,点G为AF的中点,则该几何体的外接球的表面积是(nanA . 317£~6~B.31兀C.481K D丑価兀. ■:6411. (5分)已知抛物线C: y 2=4x 的焦点为F ,过点F 分别作两条直线l i , I 2,直 线l i 与抛物线C 交于A 、B 两点,直线12与抛物线C 交于D 、E 两点,若l i 与12 的斜率的平方和为1,则|AB|+| DE 的最小值为( )A . 16 B. 20 C. 24 D . 3212. (5分)若函数y=f (x ), x € M ,对于给定的非零实数a ,总存在非零常数T , 使得定义域M 内的任意实数x ,都有af (x ) =f (x+T )恒成立,此时T 为f (x ) 的类周期,函数y=f (x )是M 上的a 级类周期函数.若函数y=f (x )是定义在 区间[0 , + %)内的2级类周期函数,且T=2,当x € [0 , 2 )时,zg ■-2,,1 ©卄比)二戈函数.若? X 1€ [6, 8] , ?X 2€L<Y <2’二、填空题(每题5分,满分20分,将答案填在答题纸上) 13 . ( 5分)已知向量, ^占口),-1),且旦丄1,则1)-=为 ______ .15. (5分)在等比数列{a n }中,a 2?a 3=2a 1,且a 4与2a 7的等差中项为17,设b n =a 2n -1- a 2n , n € N*,则数列{b n }的前2n 项和为 ______ .16.(5分)如图,在直角梯形 ABCD 中,AB 丄BC, AD // BC,一二亍「二,点14. ( 5分)已知x , y 满足约束条件(0, +x ),使g (X 2)- f (X 1)w 0成立,则实数m 的取值范围是( 的最小值E是线段CD上异于点C, D的动点,EF丄AD于点^将厶DEF沿EF折起到△ PEF 的位置,并使PF丄AF,则五棱锥P-ABCEF勺体积的取值范围为________ .三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (12分)已知△ ABC的内角A, B, C的对边a, b, c分别满足c=2b=2.2bcosA+acosC+ccosA=Q 又点D 满足■ /(1)求a及角A的大小;18. (12分)在四棱柱ABCD- A i B i C i D i中,底面ABCD是正方形,且匚-:-,/ A1AB=Z A1AD=6C°.(1)求证:BD丄CG;(2)若动点E在棱C1D1上,试确定点E的位置,使得直线DE与平面BDB所成角的正弦值为I .19. (12分)过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数「(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z服从正态分布N (卩,d2),利用该正态分布,求Z落在(14.55, 38.45)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这 4 包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为^=V142. 75^11-95;②若〜N — b 2 ),贝U P (卩―crV Z< p+ o)=0.6826,P (卩―2 o< Z< (J+2 C)=0.9544.0e030 ・-0-025 ・*0.020 - 0.0150.01010 2030 4050各水饺质量指标丄一,且以两焦点为直20. (12分)已知椭圆C: 亏〔呂0)的离心率为径的圆的内接正方形面积为2.(1)求椭圆C的标准方程;(2)若直线I: y=kx+2与椭圆C相交于A,B两点,在y轴上是否存在点D,使直线AD与BD的斜率之和k AD+k BD为定值?若存在,求出点D坐标及该定值,若不存在,试说明理由.21. (12分)已知函数f (x) =e x- 2 (a- 1) x- b,其中e为自然对数的底数.(1)若函数f (x)在区间[0,1]上是单调函数,试求实数a的取值范围;(2)已知函数g (x) =e x-(a- 1) x2- bx- 1,且g (1) =0,若函数g (x)在区间[0,1]上恰有3个零点,求实数a的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22. (10分)在平面直角坐标系xOy中,圆C i的参数方程为\ K-_Uacos® ( 0ty=-l+asin9为参数,a是大于0的常数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C2的极坐标方程为p =2^2^05 ( .(1)求圆C i的极坐标方程和圆C2的直角坐标方程;(2)分别记直线I: ^吕,P€ R与圆C i、圆C2的异于原点的焦点为A,B,若圆C i与圆C2外切,试求实数a的值及线段AB的长.[选修4-5:不等式选讲]23. 已知函数f (x) =|2x+1| .(1)求不等式f (x)< 10-| x-3|的解集;(2)若正数m,n 满足m+2n=mn,求证:f (m) +f (- 2n)》16.2018年全国普通高等学校高考数学模拟试卷(理科)(一)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的•1. (5 分)已知集合A={x| - x2+4x> 0}, B二丘|丄<罗<27} , C={x|x=2n, n€31N},贝U(A U B)n C=()A. {2,4}B. {0,2}C. {0,2,4}D. {x|x=2n, n € N}【解答】解:A={x| - x2+4x> 0} ={x| 0< x< 4},駐〔兀I去V3y 27} ={x| 3-4v 3x v 33}={x| - 4<x< 3},oJL则A U B={x| - 4< x<4},C={x| x=2n, n € N},可得(A U B)n C={0, 2, 4},故选C.2. (5分)设i是虚数单位,若' ,x, y€ R,则复数x+yi的共轭复数2-1是()A. 2 - iB.- 2 - iC. 2+iD.- 2+i【解答】解:由一「2-1得x+yi= — -i —-! ■=2+i得x+yi= =2+i,•••复数x+yi的共轭复数是2 -i.3(5分)已知等差数列{a n}的前n项和是S,且a4+a5+a e+a7=18,则下列命题正确的是()A. a5是常数B. S5是常数C. a10是常数D. Si0是常数故选:A.【解答】解:•••等差数列{a n }的前n 项和是S n ,且a 4+a 5+a 6+a 7=18, 二 a 4+a 5+a 6+a 7=2 (a i +a io ) =18, --a i +a io =9, …Sg 二乎(有十^10)=45- 故选:D .4. (5分)七巧板是我们祖先的一项创造,被誉为 东方魔板”它是由五块等腰 直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形) 、- 块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,贝吐匕点取自黑色部分的概率是()【解答】解:设AB=2,则BC=CD=DE=EF=1V B —订,S 平行四边形EFG 阳2S BC =2 X — , •••所求的概率为口 +S 平行四边形EPGH g 正方形AB5 =2x7故选:A .2 25. (5分)已知点F 为双曲线C : 云丄尹1 (a >0, b >0)的右焦点,直线x=a 与双曲线的渐近线在第一象限的交点为 A ,若AF 的中点在双曲线上,贝U 双曲线 的离心率为()16BCDA. . 1B. I ■:C.「'.打D. I 口2 2【解答】解:设双曲线C:青冬二1的右焦点F (c, 双曲线的渐近线方程为y丄x,a由x=a代入渐近线方程可得y=b,则A(a,b),可得AF的中点为(誓,寺b),代入双曲线的方程可得卄J -丄=1,可得4a2- 2ac- c2=0,由e*,可得e2+2e- 4=0,a解得e= !.- 1 (- 1 —汀舍去),故选:D. 0),6. (5分)已知函数f&)二则.A. 2+ nB. JT T-2J Ql-/dK=/ cOSdt= J 1 址齐t芒1 2+',J 2开£(只),xE [-TT , 0]2,址© 1]^rcsinx *兀4+ (- COSX:=(2. 故选:D.7. (5分)执行如图所示的程序框图,则输出的 S 的值为()A ...工7B .C.. -厂 D . m【解答】解:第1次循环后,S=-,不满足退出循环的条件,k=2; 第2次循环后,S= -;,不满足退出循环的条件,k=3; 第3次循环后,S= =2,不满足退出循环的条件,k=4;第n 次循环后,S= ,不满足退出循环的条件,k=n+1 ; 第2018次循环后,S=,3.「儿 不满足退出循环的条件,k=2019第2019次循环后,S==2「|「,满足退出循环的条件, 故输出的S 值为2厂「, 故选:C& (5分)已知函数f (瓷)sin® xug®負7勺(3> 0)的相邻两个 零点差的绝对值为「则函数f (x )的图象()A. 可由函数g (x ) =cos4x 的图象向左平移卑匚个单位而得B. 可由函数g (x ) =cos4x 的图象向右平移2二个单位而得24C. 可由函数g (x ) =cos4x 的图象向右平移丄?个单位而得D. 可由函数g (x ) =cos4x 的图象向右平移一个单位而得O【解答】 解:函数 f (7) =sinseesxVsccs5 工=寺 sin7T=sin (2^)-—)(3>0)的相邻两个零点差的绝对值为才?爲=:,二①=2 f (x ) =sin (4x -中=cos[(2 3X )]=cos (4x普).故把函数g (x ) =cos4x 的图象向右平移竺个单位,可得f (X )的图象,24 故选:B.9・(5分)©-3)(代/的展开式中剔除常数项后的各项系数和为( )A .- 73B .- 61C.- 55D .- 63【解答】解:丄广展开式中所有各项系数和为(2- 3) (1+1) 6=- 64; ⑵-3)(1 丄)社(2x -3) (1忑碍+•••),工工/其展开式中的常数项为-3+12=9,• ••所求展开式中剔除常数项后的各项系数和为 -64 - 9=- 73.故选:A . 6【解答】解:如图,可得该几何体是六棱锥 P -ABCDEF 底面是正六边形,有一 PAF 侧面垂直底面,且P 在底面的投影为AF 中点,过底面中心N 作底面垂线, 过侧面PAF 的外心M 作面PAF 的垂线,两垂线的交点即为球心 0, 设厶PAF 的外接圆半径为r ,/二(2P )牛(寺严,解得r #,•価二0昨茅6 (5分)某几何体的三视图如图所示,其中俯视图中六边形ABCDEF 是边长为 1的正六边形,点G 为AF 的中点,则该几何体的外接球的表面积是()A .B .312Z8 C.鋁1叽64D.48MAS11. (5分)已知抛物线C: y 2=4x 的焦点为F ,过点F 分别作两条直线11, 12,直 线11与抛物线C 交于A 、B 两点,直线12与抛物线C 交于D 、E 两点,若11与12 的斜率的平方和为1,则|AB|+| DE 的最小值为()A . 16 B. 20 C. 24 D . 32【解答】解:抛物线C: y 2=4x 的焦点F (1, 0),设直线11: y=k i (x- 1),直线 12: y=k 2 (x - 1),由题意可知,贝U 叭Jk 『二1,设 A (X 1 , y 1), B (X 2 , y 2),贝 U X 1+X 2= -------k l 4设 D (X 3 , y 3), E (X 4 , y 4),同理可得:X 3+X 4=2+ ° ,k2由抛物线的性质可得:丨AB | =X 1+x 2+p=4+则该几何体的外接球的半径•••表面积是则该几何体的外接球的表面积是7 V4M+1 FS=4冗 R =°*l 兀.64联立丿y=k] (i-lj,整理得:k 12x 2-( 2k 12+4) x+k 12=0,R= I :. 故选:C.C,| DE | =X 3+X 4+pk l=84 ,当且仅当k®目时,上式“我立• ••• | AB|+| DE 的最小值 24, 故选:C.12. (5分)若函数y=f (x ), x € M ,对于给定的非零实数a ,总存在非零常数T , 使得定义域M 内的任意实数x ,都有af (x )=f (x+T )恒成立,此时T 为f (x ) 的类周期,函数y=f (x )是M 上的a 级类周期函数.若函数y=f (x )是定义在区间[0 , + %)内的2级类周期函数,且T=2,当x € [0 , 2 )时,f(2-Kb 1<X<2(0 , +x),使g (x 2)- f (X 1)w 0成立,贝U 实数m 的取值范围是(【解答】解:根据题意,对于函数f(x ),当x € [0 , 2)时,f k)弓2fCE-s), Kx<2-2,有最大值f (0)二,最小值f (1)2,当1v x v 2时,f (x ) =f (2 -x ),函数f (x )的图象关于直线x=1对称,则此时 有-一v f (x )v又由函数y=f (x )是定义在区间[0, +7 内的2级类周期函数,且T=2; 则在€ [6, 8) 上, f (x ) =23?f (x -6),则有—12<f (x )w 4,则 f (8) =2f (6) =4f (4) =8f (2) =16f (0) =8,则函数f (x )在区间[6 , 8]上的最大值为8,最小值为-12;A .—] B. (a, 13 ] C. 〔a,32 J2」2」D .[普g| AB|+| DE =8+1 k 24(ki 2+k 2Z ) 8P4、412 J一 _ _ •若? xi € [ 6, 8] , ? X 2 €函数 =-21nx分析可得:当O w x < 1时,f (x) --=84 ,对于函数山)二-加4^5切,有g'(x) =-Z +X+1」®之-炉1)3切L x x x分析可得:在(0 , 1)上,g (x)v0,函数g (x)为减函数,在(1 , +x)上,g r (x)>0,函数g (x)为增函数,则函数g (x )在(0, +x )上,由最小值f (1) =_ +m ,2若? x i € [6, 8] , ? X 2 €(0, +x ),使 g (X 2)— f (x i )< 0 成立, ,即一+m < 8, ,即m 的取值范围为(-x,必有 g (x ) min < f (x ) max 故选:B. 解可得m 13 2 、填空题(每题5分,满分20分,将答案填在答题纸上) 13. (5 分)已知向重.I _ d •二二「,,| 丄---,且-一、,则! . I I ]【解答】解:根据题意,向重 丁(2営cgd ),b=(l, -1), 若;丄卞,则 ^?b=2sin a cos a =0 则有 tan a又由 sin 2 a +COS 2 a=1 则有 则 则 |..|-: 2^5sina=^ a" COS Cl - !_ 亍),或 = sin a 二芈^ 5 n _砸 C0S 或(— 5则崙丄)2=3品2- 21?工半 5故答案为: 14. (5分)已知x , y 满足约束条件 的最小值为L_. 【解答】解:由约束条件作出可行域如图,X = — 22n -4,联立fxWQ ,解得A (2, 4), J 23<2,令t=5x -3y ,化为y 专富诗,由图可知,当直线宾耳过A 时, 」 J "J 直线在y 轴上的截距最大,t 有最小值为-2. •••目标函数 玄二彳; 的最小值为2~^-^. 故答案为:丄.15. (5分)在等比数列{a n }中,a 2?a 3=2a i ,且a 4与2a 7的等差中项为17,设b n =a 2n -1- a 2n , n € N*,则数列{b n }的前2n 项和为—亠〕/" _.丄ka【解答】解:等比数列{a n }中,a 2?a 3=2a i ,且a 4与2a 7的等差中项为17, 设首项为a 1,公比为q , 则:整理得:+血]<1 二 34解得: 则: 所以:b n =a 2n -1 — a 2n =屯一」116. (5分)如图,在直角梯形 ABCD 中,AB 丄BC, AD // BC,上-二一二-_,点 E 是线段CD 上异于点C , D 的动点,EF 丄AD 于点^将厶DEF 沿 EF 折起到△ PEF 的位置,并使PF 丄AF ,则五棱锥P -ABCEF 的体积的取值范围为【解答】 解:T PF 丄AF , PF 丄EF, AF G EF=F 二PF 丄平面ABCD 设 PF=x 贝U O v x v 1, 且 EF=DF=x•五棱锥P-ABCEF 的体积V 丄 丄(3-x 2) x 设 f (x ) (3x - x 3),贝U f ' (x) — (3 - 3x 2)6 6•••当 O v x v 1 时,f'(x )>0,则:T 2n = I' 1-4 故答案为: 討护). (0,丄) •五边形ABCEF 的面积为S=S 弟形ABCD - x( 1+2)x 1-—X 2丄(3-x 2). (3x — x 3), (1-x 2),••• f(x)在(0, 1)上单调递增,又f (0)=0, •五棱锥P-ABCEF的体积的范围是(0,丄).故答案为:三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (12分)已知△ ABC的内角A, B, C的对边a, b, c分别满足c=2b=2.2bcosA+acosC+ccosA=Q 又点 D 满足 【解答】 解:(1)由2bcosA+acosC+ccosA=0及正弦定理得-2sinBcosA=sinAcos&osAsinC 即—2si nBcosA=si n( A+C ) =s inB, 在厶 ABC 中,sinB >0,所以一”二二. 在厶 ABC 中,c=2b=2,由余弦定理得 a 2=b 2+c 2 - 2bccosA=k J +c 2+bc=7, 18. (12分)在四棱柱ABCD — A i B i C i D i 中,底面ABCD 是正方形,且匚-■-,/ A 1AB=Z A 1AD=6C °.(1) 求证:BD 丄CG ;(2) 若动点E 在棱C 1D 1上,试确定点E 的位置,使得直线DE 与平面BDB 所成 角的正弦值为….又A €(0, n),所以(1)求a 及角A 的大小; C所以一 I【解答】解:(1)连接A i B, A i D, AC,因为AB=AA=AD,/ A i AB=Z A i AD=60,所以△ A i AB和厶A i AD均为正三角形,于是A i B=A i D.设AC与BD的交点为0,连接A i O,则A i O丄BD,又四边形ABCD是正方形,所以AC丄BD, 而A i O n AC=O,所以BD丄平面A i AC.又AA i?平面A i AC,所以BD丄AA i, 又CG // AA i,所以BD丄CG.(2)由,及BDW2AB=2,知A i B丄A i D,结合A i O丄BD, AO n AC=O 得A i O丄底面ABCD, 所以OA、OB、OA i两两垂直.如图,以点O为坐标原点,| &的方向为x轴的正方向,建立空间直角坐标系 -xyz 则A (i, 0, 0), B (0 , i , 0), D (0 , - i , 0), A i (0 , 0 , i) , C(- i , 0 , DB=(O, 2, 0),瓦二瓯二(一1・ 0, 1), D]C[二磋(T, 1;",由i 丨,得Di (- i, - i , i).设:,I- ■:.:'(疋[0 , i]),则(X E+i , y E+i , Z E- i)=入(-i , i , 0),即 E (-入—i,入—i , i), 所以;「―■•亠.设平面B i BD的一个法向量为|• • •'!,O 0),B,从而A i O丄AO,设直线DE 与平面BDB 所成角为9, 则血*k^<运,(—'—D+oy m 丨申, V2XV X 2+(-1-\)£+1 14 解得二二或•,二丄(舍去),2 3所以当E 为D i C i 的中点时,直线DE 与平面BDBi 所成角的正弦值为「.19. ( 12分)过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节 前夕,A 市某质检部门随机抽取了 100包某种品牌的速冻水饺,检测其某项质量 指标,(1) 求所抽取的100包速冻水饺该项质量指标值的样本平均数■:(同一组中的 数据用该组区间的中点值作代表);(2) ①由直方图可以认为,速冻水饺的该项质量指标值 Z 服从正态分布N(卩, ;),利用该正态分布,求Z 落在(14.55, 38.45)内的概率;②将频率视为概率,若某人从某超市购买了 4包这种品牌的速冻水饺,记这 4 包速冻水饺中这种质量指标值位于(10, 30)内的包数为X ,求X 的分布列和数 学期望. 附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为②若(卩,^ ),贝U P (卩―eV Z w p+ o ) =0.6826, P (卩―2 eV Z w (J +2 o ) =0.9544.得n=(l, 0, 1),n ・ E6=0 {十…… n • &B-i =0 L得 产。
陕西省学林2024届高考全真模拟考试数学(理科)试题
陕西省学林2024届高考全真模拟考试数学(理科)试题一、单选题1.已知R 为实数集,集合211A xx ⎧⎫=<⎨⎬-⎩⎭,1242x B x ⎧⎫=<<⎨⎬⎩⎭,则图中阴影部分表示的集合为( )A .{}13x x -<≤B .{}23x x <≤C .{}12x x ≤<D .{}12x x -<<2.已知复数1i z a =+,21i z a =-,a ∈R ,若122z z ⋅=,则在复平面内1z 对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.古希腊数学家阿波罗尼斯在《圆锥曲线论》中,记载了用平面截圆锥得到圆锥曲线的办法.如图,已知圆锥的高与底面半径均为2,过轴1OO 的截面为平面OAB ,平行于平面OAB 的平面α与圆锥侧面的交线为双曲线C 的一部分.若双曲线C 的两条渐近线分别平行于,OA OB ,则建立恰当的坐标系后,双曲线C 的方程可以为( )A .2214x y -=B .2214y x -=C .221y x -=D .2212y x -=4.若()201221nn n x a a x a x a x +=++++L 的展开式中的各项系数和为243,则122222n na a a +++=L ( )A .32B .31C .16D .155.已知ππ,24α⎛⎫∈-- ⎪⎝⎭,若3tan 2tan 24παα⎛⎫=-+ ⎪⎝⎭,则2sin 22cos tan ααα+=( ) A .185- B .25- C .25 D .1856.若点(),P x y 在平面区域22021020x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩上,则2222x y x +-+的最小值是( )A .45B .95C .1D .27.在平行六面体1111ABCD A B C D -中,已知11AB AD AA ===,1160A AB A AD BAD ∠=∠=∠=︒,则下列选项中错误的一项是( )A .直线1AC 与BD 所成的角为90°B .线段1ACC .直线1AC 与1BB 所成的角为90°D .直线1AC 与平面ABCD8.今年两会期间,“新质生产力”被列为了2024年政府工作十大任务之首.某中学为了让高三同学对“新质生产力”有更多的了解,利用周五下午课外活动时间同时开设了四场有关“新质生产力”方面的公益讲座.已知甲、乙、丙、丁四位同学从中一共选择两场去学习,则甲、乙两人不参加同一个讲座的不同方法共有( ) A .48种B . 84种C .24种D .12种9.在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c ,()()()sin sin sin sin c A C a b A B -=-+,若ABC V3b ,则AC 边上的高为( ) ABCD.10.设O 为坐标原点,直线)2y x -过抛物线2:2C y px =(0p >)的焦点,且与C 交于,M N 两点,l 为C 的准线,则( )A .2p =B .163MN =C .OMN VD .以MN 为直径的圆与l 有两个交点11.将一个体积为36π的铁球切割成一个正三棱锥的机床零件,则该零件体积的最大值为( )A .B .C .D .12.已知函数()222cos x x f x x x -=+++,若()π5ln 4a f =,()π4ln 5b f =,()45ln πc f =,则( )A .c b a <<B .b<c<aC .c<a<bD .b a c <<二、填空题13.如图是某人设计的正八边形八角窗,若O 是正八边形ABCDEFGH 的中心,1AB =u u u r,则AC CD ⋅u u u r u u u r .14.圆()()22239x a y a -+--=上总存在两个点到()2,3的距离为1,则a 的取值范围是.15.已知函数()πsin 23f x x ω⎛⎫=+ ⎪⎝⎭(0ω>)在区间()0,π上有且仅有3个极值点,则ω的取值范围是.16.已知函数()log log 2xa a f x x =--(1a >)仅有一个零点,则实数a 的值为.三、解答题17.已知数列{}ln n a 是等差数列,记n S 为{}n a 的前n 项和,{}1n S a +是等比数列,11a =. (1)求n a ;(2)记22122log log n n n b a a -=+,求数列{}2(1)n n b -⋅的前10项和.18.体育运动是强身健体的重要途径,随着“中国儿童青少年体育健康促进行动方案(2020-2030)”的发布,体育运动受到各地中小学的高度重视,众多青少年的体质健康得到很大的改善.我们把每周体育锻炼时间超过8小时的学生称为“运动达人”,为了了解“运动达人”与性别是否有关系,我们对随机抽取的80名学生的性别进行了统计,其中女生与男生的人数之比为1:3,男生中“运动达人”占12,女生中“运动达人”占34.(1)根据所给数据完成下面的22⨯列联表,并判断能否有90%的把握认为“运动达人”与性别有关?(2)现从抽取的“运动达人”中,按性别采用分层抽样抽取3人参加体育知识闯关比赛,已知其中男、女生独立闯关成功的概率分别为34与23,在恰有两人闯关成功的条件下,求有女生闯关成功的概率. 附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.19.如图,在五面体ABCDE 中,已知AC BC ⊥,ED AC ∥,且22AC BC AE ED ====,DC DB =(1)求证:平面BCD ⊥平面ABC ;(2)线段BC 上是否存在点F ,使得二面角B AE F --,若存在,求CF 的长度;若不存在,请说明理由.20.已知动圆M经过定点1(F,且与圆222:(16F x y +=内切. (1)求动圆圆心M 的轨迹C 的方程;(2)设轨迹C 与x 轴从左到右的交点为点A ,B ,点P 为轨迹C 上异于A ,B 的动点,设直线PB 交直线4x =于点T ,连接AT 交轨迹C 于点Q ;直线AP ,AQ 的斜率分别为AP k ,AQ k . (i )求证:AP AQ k k ⋅为定值;(ii )设直线:PQ x ty n =+,证明:直线PQ 过定点.21.已知函数()ln 1f x a x x =-+(a ∈R ),()s i ng x x x =-.(1)讨论函数()f x 的单调性;(2)证明:101g n ⎛⎫< ⎪+⎝⎭(*n ∈N ); (3)证明:1111ln 2sin sin sin sin 1232n n n n>+++++++L (*n ∈N ). 22.在平面直角坐标系xOy 中,曲线1C 的参数方程为cos 1sin x y γγ=⎧⎨=+⎩(γ为参数),曲线2C 的参数方程为1121s x ss y s -⎧=⎪⎪+⎨⎪=⎪+⎩(s 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知点A 的极坐标为(1,π),直线π:4l θ=(R ρ∈). (1)求曲线1C 的极坐标方程以及曲线2C 的普通方程;(2)过点A 且平行于l 的直线m 与1C 交于M 、N 两点,求MN 的值.23.已知函数()|22|2||f x x a x b =+++-(0a >,0b >). (1)当4a =,1b =时,解不等式()10f x <; (2)若()f x 的最小值为6,求22a b +的最小值.。
2017届高考全真模拟预测考试(第3次考试)---全国卷理科数学试题
2017届高考全真模拟预测考试(第3次考试)理科数学试题命题:tangzhixin 时量120分钟.满分150分.一、选择题:共12题1.已知全集U={1,2,3,4,5},∁U A={1,2},则集合A的真子集的个数为A.8B.7C.6D.32.若复数z满足(1+i)z=2i(i是虚数单位),则在复平面内,复数z对应的点的坐标为A.(1,1)B.(1,2)C.(1,-1)D.(-1,1)3.命题“存在φ0∈R,使得函数f(x)=tan(πx+φ0)的图象关于点(,0)对称”的否定是A.存在φ0∈R,使得函数f(x)=tan(πx+φ0)的图象都不关于点(,0)对称B.对任意的φ∈R,函数f(x)=tan(πx+φ0)的图象都不关于点(,0)对称C.对任意的φ∈R,函数f(x)=tan(πx+φ0)的图象都关于点(,0)对称D.存在φ0∈R,使得函数f(x)=tan(πx+φ0)的图象关于点(,0)不对称4.已知平面向量a,b满足b=(-,1),b·(a-b)=-3,a为单位向量,则向量b在向量a方向上的投影为A.4B.1C.-4D.-105.已知直线l:x-y+4=0与圆C:(x-1)2+(y-1)2=2,则圆C上的点到直线l的距离的最小值为A. B. C.1 D.36.设等比数列{a n}的前n项和为S n,且满足S2=3,S3-S1=6,则a6=A.16B.32C.35D.467.已知某几何体的三视图如图所示,其中正视图和侧视图完全相同,则该几何体的体积是A.πB.3πC.2πD.8.已知x,y满足约束条件,若目标函数z=ax+y的最大值为2a+6,最小值为2a-2,则实数a 的取值范围是A.[-1,1]B.(0,1]C.[-1,0)D.[-1,0)∪(0,1]9.已知函数f(x)=3sin(ωx+φ)(ω>0,|φ|≤)的部分图象如图所示,A、B两点之间的距离为10,且f(2)=0,若将函数f(x)的图象向右平移t(t>0)个单位长度后所得函数图象关于y轴对称,则t的最小值为A.1B.2C.3D.410.如图所示,在边长为2的正方形ABCD中,圆心为B,半径为1的圆与AB、BC分别交于E、F,则阴影部分绕直线BC旋转一周形成几何体的体积等于A.πB.6πC.D.4π11.已知数列{a n}满足(3-a n+1)(3+a n)=9,且a1=3,则数列{}的前6项和S6=A.6B.7C.8D.912.已知函数f(x)=|ln x|-a x(x>0,0<a<1)的两个零点是x1,x2,则A.0<x1x2<1B.x1x2=1C.1<x1x2<eD.x1x2>e二、填空题:共4题13.执行如图所示的程序框图,若输出的结果是,则整数N=.14.设m∈N且0≤m<5,若192 016+m能被5整除,则m=.15.已知定义在(0,+∞)上的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)-log3x]=4,则函数f(x)的图象在x=处的切线的斜率为.16.已知抛物线y2=2px(p>0)的焦点为F,过F的直线l与抛物线交于A,B两点,且|AF|=4|FB|,O为坐标原点,若△AOB的面积S△AOB=,则p=.三、解答题:共8题17.已知在△ABC中,内角A,B,C的对边分别为a,b,c,且2sin2B-2sin2A=sin2C,tan (A+B)=.(1)求sin C的值;(2)若△ABC的面积为3,求b的值.18.为了解某校高三甲、乙两个小组每天的平均运动时间,经过长期统计,抽取10天的数据作为样本,得到甲、乙两组每天的平均运动时间(单位:min)的茎叶图如图所示.(1)假设甲、乙两个小组这10天的平均运动时间分别为t1,t2,方差分别为,.(i)比较t1,t2的大小;(ii)比较,的大小(只需写出结果);(2)设X表示未来3天内甲组同学每天的平均运动时间超过30 min的天数,以茎叶图中平均运动时间超过30 min的频率作为概率,求X的分布列和数学期望.19.如图,在平行四边形ABCD中,BC=2AB,∠ABC=60°,四边形BEFD是矩形,且BE=BA,平面BEFD⊥平面ABC D.(1)求证:AE⊥CF;(2)求二面角A-EF-C的平面角的余弦值.20.在平面直角坐标系xOy中,已知点A(x1,y1),B(x2,y2)是椭圆E:+y2=1上的非坐标轴上的点,且4k OA·k OB+1=0(k OA,k OB分别为直线OA,OB的斜率).(1)证明:+,+均为定值;(2)判断△OAB的面积是否为定值,若是,求出该定值;若不是,请说明理由.21.已知函数f(x)=x2+mx+ln x.(1)若函数f(x)不存在单调递减区间,求实数m的取值范围;(2)若f(x)有两个极值点x1,x2(x1<x2),且m≤-,求f(x1)-f(x2)的最小值.22.如图,E为圆O的直径AB上一点,OC⊥AB交圆O于点C,延长CE交圆O于点D,圆O在点D处的切线交AB的延长线于点F.(1)证明:EF2=FA·FB;(2)若AD=2BD,BF=2,求圆O的直径.23.在平面直角坐标系xOy中,已知圆C的参数方程为(α为参数).以坐标原点为极点,x 轴的非负半轴为极轴,并取相同的长度单位建立极坐标系,直线l的极坐标方程为ρcos(θ-)=m(m∈R).(1)求直线l的直角坐标方程与圆C的普通方程;(2)若圆C上到直线l的距离为1的点有3个,求m的值.24.已知函数f(x)=|x|+|x-a|的最小值为3.(1)求实数a的值;(2)若a>0,求不等式f(x)≤5的解集.参考答案1.B【解析】本题考查集合的补运算、真子集的概念.求解时先求出集合A,再计数即可.注意试题所求的是真子集的个数.由全集U={1,2,3,4,5},∁U A={1,2}知,A={3,4,5},所以集合A的子集有8个,真子集有7个.2.A【解析】本题考查复数的除法运算及其几何意义,属于基础题.求解时先求出复数z的代数形式,再找复数z在复平面内对应的点.解法一由(1+i)z=2i得,z==i(1-i)=1+i,故在复平面内,复数z对应的点的坐标为(1,1),选A.解法二设z=a+b i(a,b∈R),由(1+i)z=2i得,a-b+(a+b)i=2i,所以a-b=0,且a+b=2,解得a=b=1,所以z=1+i,故在复平面内,复数z对应的点的坐标为(1,1),选A.3.B【解析】本题考查特称命题的否定,属于基础题.所给命题是特称命题,因此其否定一方面要把“特称”改“全称”,另一方面要否定结论,故其否定应该为“对任意的φ∈R,函数f(x)=tan(πx+φ)的图象都不关于点(,0)对称”.4.B【解析】本题考查向量的数量积以及投影的求法,属于基础题.解题时,根据坐标求出向量b的模及向量a,b的数量积,然后求投影.因为b=(-,1),b·(a-b)=-3,所以|b|=2,a·b=1.又a为单位向量,则向量b在向量a方向上的投影为=1.5.A【解析】由题意知,圆C上的点到直线l的距离的最小值等于圆心(1,1)到直线l的距离减去圆的半径,即-.6.B【解析】本题主要考查等比数列的通项公式等知识,意在考查考生的基本运算能力.熟练掌握等比数列的通项公式是解决此类问题的关键.设等比数列{a n}的公比为q,由S2=3,S3-S1=6,得a1+a2=3,a2+a3=6,则q==2,代入a1+a1q=3得a1=1,所以a n=2n-1,a6=25=32.7.D【解析】本题考查几何体的三视图与直观图、柱体的体积公式等.由三视图可知,该几何体是一个半径分别为2和的同心圆柱,即大圆柱内挖掉了小圆柱.两个圆柱的高均为1,所以该几何体的体积为4π×1-()2π×1=,选D.8.A【解析】本题考查线性规划的相关知识.求解时先根据约束条件画出可行域,再根据题意列出不等式组进行求解.画出可行域如图中阴影部分所示,易知A(2,6),B(2,-2),C(-2,2),由于z=ax+y的最大值为2a+6,最小值为2a-2,故,从而-1≤a≤1,故选A.9.B【解析】本题考查三角函数的图象与性质以及三角函数图象的平移变换等.首先利用函数图象确定函数解析式中各个参数的取值,然后根据平移后函数的性质确定平移的单位长度.由图可设A(x1,3),B(x2,-3),所以|AB|==10,解得|x1-x2|=8,所以T=2|x1-x2|=16,故=16,解得ω=.所以f(x)=3sin(x+φ),由f(2)=0得3sin(+φ)=0,又-≤φ≤,所以φ=-.故f(x)=3sin(x-),将f(x)的图象向右平移t(t>0)个单位长度,所得图象对应的函数解析式为g(x)=f(x-t)=3sin[(x-t)-]=3sin[x-(t+)].由题意得,函数g(x)的图象关于y轴对称,所以t+=kπ+(k∈Z),解得t=8k+2(k∈Z),故正数t的最小值为2,选B.10.B【解析】本题考查旋转体的体积的求解等,考查考生的空间想象能力和基本的运算能力.由旋转体的定义可知,阴影部分绕直线BC旋转一周形成的几何体为圆柱中挖掉一个半球和一个圆锥.该圆柱的底面半径R=BA=2,母线长l=AD=2,故该圆柱的体积V1=π×22×2=8π,半球的半径为1,其体积V2=π×13=,圆锥的底面半径为2,高为1,其体积V3=π×22×1=,所以阴影部分绕直线BC 旋转一周形成几何体的体积V=V1-V2-V3=6π.11.B【解析】本题考查数列的通项公式及前n项和,考查考生的运算求解能力,属于中档题.解题时,通过(3-a n+1)(3+a n)=9可知数列{}为等差数列,计算即得结论.因为(3-a n+1)(3+a n)=9-3a n+1+3a n-a n+1a n=9,所以3a n+1-3a n=-a n+1a n,两边同时除以3a n+1a n得-=-,即+.又a1=3,所以数列{}是以为首项,为公差的等差数列,所以S n=n+·,故S6==7.12.A【解析】本题考查基本初等函数的图象与性质、函数零点的概念等,考查考生的数形结合思想.求解时将函数零点问题转化为两个函数图象的交点问题进行求解.因为f(x)=|ln x|-a x=0⇔|ln x|=a x,作出函数y=|ln x|,y=a x的图象如图所示,不妨设x1<x2,则0<x1<1<x2,从而ln x1<0,ln x2>0,因此|ln x1|==-ln x1,|ln x2|==ln x2.故ln x1x2=ln x1+ln x2=-<0,所以0<x1x2<1.13.15【解析】本题考查算法等基础知识,重点考查程序框图的阅读与应用.本题的算法事实上刻画的是裂项相消法求和.通解当k=1时,S=,当k=2时,S=++-,当k=3时,S=++-,当k=4时,S=++-,……当k=14时,S=++-,当k=15时,S=++-,此时输出S,由题意知框图中N=15.优解由程序框图可知,输出的S=++…+=1-,令1-,解得N=15.14.4【解析】本题考查二项式定理在解决数学问题中的应用.求解问题的关键是通过建立19与5的数量关系以及运用二项式定理将该关系式展开.由题意得192 016+m=(-1+20)2 016+m=×200×(-1)2 016+×20×(-1)2 015+×202×(-1)2 014+…+×202016×(-1)0+m=5M+1+m,其中M∈N*,又5M+1+m能被5整除,0≤m<5,故m=4.15.1【解析】本题考查函数解析式的求解、导数的几何意义,考查考生分析问题、解决问题的能力.由题意,设f(x)-log3x=m>0,则f(x)=log3x+m,由f[f(x)-log3x]=4可得f(m)=log3m+m=4,即m=34-m,解得m=3,所以f(x)=log3x+3,f'(x)=,从而f'()=1,即所求切线的斜率为1.16.1【解析】本题考查了抛物线的方程和性质、直线与抛物线的位置关系等.解题的思路是先利用|AF|=4|FB|得到直线l的斜率,从而得到AB的长以及点O到直线AB的距离,再通过面积建立关于p的方程,即可求解.抛物线y2=2px的焦点F(,0),准线x=-.如图,过A,B作准线的垂线AA',BB',垂足分别为A',B'.过点B作BH⊥AA',交AA'于H,则|BB'|=|HA'|.设|FB|=t,则|AF|=4t,∴|AH|=|AA'|-|A'H|=4t-t=3t.又|AB|=5t,∴在Rt△ABH中,cos∠A'AB=,∴tan∠A'AB=.则可得直线AB的方程为y=(x-),由得8x2-17px+2p2=0,设A(x1,y1),B(x2,y2),则|AB|=x1+x2+p=+p=.又点O到直线AB的距离为d=|OF|sin ∠A'AB=.∴S△AOB=,又S△AOB=,故p2=1,又p>0,∴p=1.17.(1)在△ABC中,0<A<π,0<B<π,由tan(A+B)==tan(B+),得A=.从而由2sin2B-2sin2A=sin2C得2sin2B-1=sin2C,即cos 2B+sin2C=0.将B=-C代入上式,化简得tan C=2,从而sin C=.(2)由(1)知,cos C=.所以sin B=sin(A+C)=sin(+C)=.由正弦定理知c=b,又bc sin A=3,所以b·b·=3,故b=3.【解析】本题主要考查两角和的三角公式、诱导公式、二倍角公式、同角三角函数之间的关系、正弦定理等基础知识,考查考生对基础知识的掌握程度和运算求解能力.【备注】在新课标全国卷Ⅱ中,解答题第一题往往是数列或三角,而三角的考查一般与三角形有关,重点考查三角形中的三角恒等变换,三角函数的基础知识在解三角形中的应用,正、余弦定理等.复习时要重点把握三角恒等变换、三角函数的图象和性质、解三角形三大主流题型.18.(1)(i)由已知得,t1=(2×10+5×20+3×30+5+2+2+6+3+2+1+5+1+2)=23.9,t2=(3×10+2×20+3×30+5+8+3+5+5+2+ 5+0+1+3)=19.7,所以t1>t2.(ii)由茎叶图可知,甲组的数据较集中,乙组的数据较离散,所以.(2)由茎叶图可知,样本中甲组同学每天的平均运动时间超过30 min的人数为3,所以频率为=0.3.由题意得X的所有可能取值为0,1,2,3,X~B(3,0.3),所以P(X=0)=×0.30×0.73=0.343,P(X=1)=×0.31×0.72=0.441,P(X=2)=×0.32×0.71=0.189,P(X=3)=×0.33×0.70=0.027,所以X的分布列为X0 1 2 3P 0.3430.4410.1890.027EX=0×0.343+1×0.441+2×0.189+3×0.027=0.9.【解析】本题考查平均数和方差的大小比较,考查离散型随机变量的分布列和数学期望的求法,是中档题.(1)(i)由茎叶图分别求出t1,t2的值,进而比较大小;(ii)由茎叶图得到甲组的数据较集中,乙组的数据较离散,由此能比较,的大小.(2)由题意得X的所有可能取值,分别求出相应的概率,进而得分布列和数学期望.【备注】新课标全国卷Ⅱ中,概率与统计解答题往往将统计与概率结合在一起考查,大都与频率分布直方图、茎叶图和离散型随机变量的分布列有关,复习时应熟练掌握统计的基础知识和基本思想,熟悉统计数据的处理方法,准确理解各种分布图表的意义,掌握常见概率模型的计算,牢记数学期望和方差的计算公式.19.(1)解法一连接AC,分别取EC,EF,BD的中点为G,M,N,连接GM,GN,MN,则GM∥FC,GN∥AE,如图1.由题意,易证BE⊥AB,不妨设AB=1,则GM=GN=,MN=BE=1,由勾股定理的逆定理知GM⊥GN.故AE⊥CF.解法二不妨设AB=1,则·=(+)·(+)=·+·=-1+1=0.因此AE⊥CF.解法三如图2,将原几何体补成直四棱柱,则依题意,其侧面ABEG为正方形,对角线AE,BG显然垂直,故AE⊥CF.解法四连接AC,根据题意易证AB⊥AC,BE⊥平面ABCD,如图3,建立空间直角坐标系,不妨设AB=1,则A(0,0,0),E(1,0,1),C(0,,0),F(-1,,1),所以=(1,0,1),=(-1,0,1),从而·=(1,0,1)·(-1,0,1)=0,故AE⊥CF.(2)连接AC,根据题意易证AB⊥AC,BE⊥平面ABCD,如图3,建立空间直角坐标系,不妨设AB=1,则A(0,0,0),E(1,0,1),C(0,,0),F(-1,,1),所以=(1,0,1),=(-1,,1),=(1,-,1),=(-1,0,1),设平面AEF的法向量为n1=(x1,y1,z1),由n1·=0,且n1·=0,得,取x1=,则y1=2,z1=-,得平面AEF的一个法向量为n1=(,2,-),同理可求得平面CEF的一个法向量为n2=(,2,).记二面角A-EF-C的平面角为α,由图可知,α为锐角,则cosα=.【解析】本题考查线线垂直的证明、二面角余弦值的求解,考查考生的空间想象能力和运算求解能力.【备注】立体几何解答题主要围绕线面位置关系的证明以及空间角的计算展开,在线面位置关系中,垂直关系是核心,也是新课标高考命题的热点,空间角主要考查二面角,可利用传统法和向量法求解.20.(1)依题意,x1,x2,y1,y2均不为0,则由4k OA·k OB+1=0,得+1=0,化简得y2=-,因为点A,B在椭圆上,所以+4=4①,+4=4②,把y2=-代入②,整理得(+4)=16.结合①得=4,同理可得=4,从而+=4+=4,为定值,++=1,为定值.(2)S△OAB=|OA|·|OB|sin∠AOB=··=··==|x1y2-x2y1|.由(1)知=4,=4,易知y2=-,y1=或y2=,y1=-,S△OAB=|x1y2-x2y1|=|+2|==1,因此△OAB的面积为定值1.【解析】本题主要考查椭圆的几何性质、直线与椭圆的位置关系等.(1)可通过已知条件“4k OA·k OB+1=0”以及椭圆上点的坐标关系确定x1,y1,x2,y2之间的数量关系,进而进行定值的证明;(2)先求出三角形面积的表达式,通过合理变形,再结合点在椭圆上进行求解.21.(1)依题意,x>0,且f'(x)=x+m+.记g(x)=x2+mx+1,①若Δ=m2-4≤0,即-2≤m≤2,则g(x)≥0恒成立,f'(x)≥0恒成立,符合题意;②若Δ=m2-4>0,即m>2或m<-2,当m>2时,x2+mx+1=0有两个不等的负根,符合题意,当m<-2时,x2+mx+1=0有两个不等的正根,则在两根之间函数f(x)单调递减,不符合题意.综上可得m≥-2.(2)由题意得x1,x2为g(x)=x2+mx+1的两个零点,由(1)得x1+x2=-m,x1x2=1, 则f(x1)-f(x2)=+mx1+ln x1-(+mx2+ln x2)=(-)+m(x1-x2)+ln x1-ln x2=(-)-(x1+x2)(x1-x2)+ln x1-ln x2=ln-(-)=ln-·=ln-(-).记=t,由x1<x2且m≤-知0<t<1,且f(x1)-f(x2)=ln t-(t-),记φ(t)=ln t-(t-),则φ'(t)=<0,故φ(t)在(0,1)上单调递减.由m≤-知(x1+x2)2≥,从而+≥,即≥,故t+≥,结合0<t<1,解得0<t≤,从而φ(t)的最小值为φ()=-ln 2,即f(x1)-f(x2)的最小值为-ln 2.【解析】本题考查函数的单调性、极值,导数在研究函数性质中的应用.第(1)问对m分情况讨论来求解;第(2)问可先对f(x1)-f(x2)进行变形,再将问题转化为单变量函数问题来解决.【备注】利用导函数的符号判断函数的单调性,进而求解函数的极值与最值及含参问题的讨论一直是近几年高考的重点,尤其是含参数的函数的单调性是近几年命题的热点.导数与函数、不等式的综合问题多涉及恒成立与含参问题的求解,主要方法是利用导数将原问题转化为函数的单调性和最值问题.22.(1)由题意得,OC=OD,所以∠OCE=∠ODE,又OC⊥AB,FD是圆O的切线,所以∠COE=∠ODF=90°,故∠OEC=∠EDF,又∠OEC=∠FED,所以∠FED=∠FDE,所以FD=FE.由切割线定理得,FD2=FA·FB,故EF2=FA·FB.(2)由于FD是切线,所以∠FDB=∠A,又∠DFB=∠AFD,所以△FBD∽△FDA.所以,从而FD=4,FA=8,又BF=2,所以AB=FA-FB=8-2=6,即圆O的直径为6.【解析】本题主要考查圆的基本性质、切割线定理、三角形相似等.(1)关键是EF=FD的证明,可从角度关系入手;(2)利用三角形相似来求解.【备注】几何证明选讲主要围绕四点共圆的判定、三角形相似、直角三角形中的射影定理、圆周角定理、弦切角定理、相交弦定理、切割线定理等展开,一般与圆有关,因此圆的相关性质及三角形相似的判定定理等是复习的重点.23.(1)由(α为参数)得(x-1)2+(y-2)2=9,而ρcos(θ-)=m⇔ρcosθ+ρsinθ=m,即x+y=m.所以直线l的直角坐标方程为x+y=m,圆C的普通方程为(x-1)2+(y-2)2=9.(2)由于圆C的半径为3,根据题意,若圆C上到直线l的距离为1的点有3个,则圆心C(1,2)到直线l的距离为2,可得=2,解得m=3+2或m=3-2.【解析】本题考查极坐标方程与直角坐标方程的互化、参数方程与普通方程的互化、直线与圆的位置关系等.24.(1)解法一显然a=0不符合题意;若a>0,则f(x)=|x|+|x-a|=,此时函数f(x)的最小值为a,故a=3;若a<0,则f(x)=|x|+|x-a|=,此时函数f(x)的最小值为-a,故a=-3.综上可得,a=±3.解法二f(x)=|x|+|x-a|=|x|+|a-x|≥|x+a-x|=|a|,因此|a|=3,a=±3,经验证均符合题意.故实数a的值为±3.(2)若a>0,则a=3,f(x)≤5⇔|x|+|x-3|≤5,若x≥3,则|x|+|x-3|≤5⇔2x-3≤5,解得3≤x≤4;若0≤x<3,则|x|+|x-3|≤5⇔3≤5恒成立,所以此时的解集为{x|0≤x<3};若x<0,则|x|+|x-3|≤5⇔3-2x≤5,解得-1≤x<0.综上,所求解集为{x|-1≤x≤4}.【解析】本题主要考查绝对值不等式的求解,考查考生的运算求解能力和分类讨论思想.【备注】在高考中,不等式选讲的考查方向主要有解绝对值不等式(一般是两个绝对值的和或差)和不等式的证明问题等.求解这类问题的关键是去绝对值,不等式的证明大多是利用基本不等式或柯西不等式来实现.。
2017—2018学年度第二学期期末考试高二数学理科(带答案
2017—2018学年度第二学期期末考试高二数学(理)试题一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设集合A={4,5,7,9},B={3,4,7,8,9},全集U A B =U ,则集合)(B A C U I 中的元素共有( ) A .3个 B. 4个C.5个D.6个2. 复数3223ii+=-( ) A.1 B.1-C.iD.i -3.已知)1,1(),2,(a n a m -=-=,且n m //,则a=( ) A .﹣1B .2或﹣1C .2D .﹣24. 在区间[]1,1-上随机选取一个实数x ,则事件"210"x -< 的概率为( )A .12B .34C .23D .145. 已知tan a =4,cot β=13,则tan(a+β)=( )A.711B.711-C. 713D.713-6.在6)2(y x -的展开式中,含24y x 的项的系数是( ) A .15 B .-15C .60D . -607.执行如图所示的程序框图,若输入的a 为2,则输出 的a 值是( )A. 2B. 1C.21D.1-8. 设非零向量a 、b 、c 满足c b a c b a =+==|,|||||,则>=<b a ,( ) A.150°B.120°C.60°D.30°9. 甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学,若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( ) A.150种B.180种C.300种D.345种10.下列四个结论中正确的个数是(1)对于命题,:0R x p ∈∃使得0120≤-x ,则,:R x p ∈∀⌝都有012>-x ; (2)已知),2(~2σN X ,则 (2)0.5P X >=(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为32ˆ-=x y; (4)“1≥x ”是“21≥+xx ”的充分不必要条件. A .1B .2C .3D .411.正方体1111ABCD A B C D -中,若1D AC △外接圆半径为26,则该正方体外接球的表面积为( ) A.2πB.8πC.12πD.16π12.已知奇函数()f x 的导函数为()f x ',当0x ≠时,()()0f x f x x'+>,若11(),()a f b ef e e e==--,()1c f =,则,,a b c 的大小关系正确的是( ) A .a b c << B .b c a << C .c a b << D .a c b <<二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年陕西省高考数学全真模拟试卷(理科)(四)一、选择题(共12小题,每小题5分,满分60分)1.集合A={x|lnx≥0},B={x|x2<9},则A∩B=()A.(1,3)B.[1,3)C.[1,+∞)D.[e,3)2.若复数(1﹣ai)2(i为虚数单位,a∈R)是纯虚数,则a=()A.1 B.﹣1 C.0 D.±13.如图所示,当输入a,b分别为2,3时,最后输出的M的值是()A.1 B.2 C.3 D.44.设,是两个非零向量,若p:•>0,q:,夹角是锐角,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.若tanα=2,则sin2α﹣cos2α的值为()A.B.﹣C.D.﹣6.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,87.一个体积为8的正三棱柱的三视图如图所示,则该三棱柱的俯视图的面积为()A.4B.4 C.6D.68.等差数列{a n}和等比数列{b n}的首项都是1,公差公比都是2,则b b b=()A.64 B.32 C.256 D.40969.如图,若在矩阵OABC中随机撒一粒豆子,则豆子落在图中阴影部分的概率为()A.1﹣B.C. D.1﹣10.已知实数x,y满足,若目标函数z=x﹣y的最大值为a,最小值为b,则(a﹣bt)6展开式中t4的系数为()A.200 B.240 C.﹣60 D.6011.双曲线的一个焦点F与抛物线C2:y2=2px(p>0)的焦点相同,它们交于A,B两点,且直线AB过点F,则双曲线C1的离心率为()A.B.C.D.212.定义在[0,+∞)的函数f(x)的导函数为f′(x),对于任意的x≥0,恒有f′(x)>f (x),a=e3f(2),b=e2f(3),则a,b的大小关系是()A.a>b B.a<b C.a=b D.无法确定二、填空题(共4小题,每小题5分,满分20分)13.已知随机向量X服从正态分布N(3,1),且P(X>2c﹣1)=P(X<c+3),则c=______.14.P是棱长为2的正四面体内任意一点,则它到该正四面体各个面的距离之和等于______.15.函数f(x)=,对任意x∈R恒有f(x)≥f(0),则实数a的取值范围是______.16.在△ABC中,O是外接圆的圆心,若•=﹣,∠A=60°,则△ABC周长的最大值______.三、解答题(共5小题,满分60分)17.设数列{a n}的前n项和S n满足S n=2a n﹣2.(1)求数列{a n}的通项公式;(2)求数列{na n}的前n项和T n.18.如图,梯形ABEF中,AF∥BE,AB⊥AF,且AB=BC=AD=DF=2CE=2,沿DC将梯形CDFE折起,使得平面CDFE⊥平面ABCD.(1)证明:AC∥平面BEF;(2)求平面BEF和平面ABCD所成锐角二面角的余弦值.19.某校体育教研组研发了一项新的课外活动项目,为了解该项目受欢迎程度,在某班男女(2)根据题目要求,完成2×2列联表,并判断是否有95%的把握认为“喜欢该活动项目与性别有关”?20.已知椭圆C: +=1(a>b>0)的短轴的一个顶点与两个焦点构成正三角形,且该三角形的面积为.(1)求椭圆C的方程;(2)设F1,F2是椭圆C的左右焦点,若椭圆C的一个内接平行四边形的一组对边过点F1和F2,求这个平行四边形的面积最大值.21.已知函数f(x)=x﹣a﹣lnx(a∈R).(1)若f(x)≥0恒成立,求实数a的取值范围;(1)证明:若0<x1<x2,则<.[选修4-1:几何证明选讲]22.如图,AB,CD是圆O的两条互相垂直的直径,E是圆O上的点,过E点作圆O的切线交AB的延长线于F,连结CE交AB于G点.(1)求证:FG2=FA•FB;(2)若圆O的半径为2,OB=OG,求EG的长.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知曲线C1的极坐标方程为:ρ2cos2θ+3ρ2sin2θ=3,曲线C2的参数方程是(t为参数).(1)求曲线C1和C2的直角坐标方程;(1)设曲线C1和C2交于两点A,B,求以线段AB为直径的圆的直角坐标方程.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣a|﹣|x﹣4|(x∈R,a∈R)的值域为[﹣2,2].(1)求实数a的值;(2)若存在x0∈R,使得f(x0)≤m﹣m2,求实数m的取值范围.2016年陕西省高考数学全真模拟试卷(理科)(四)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.集合A={x|lnx≥0},B={x|x2<9},则A∩B=()A.(1,3)B.[1,3)C.[1,+∞)D.[e,3)【考点】交集及其运算.【分析】求出A与B中不等式的解集确定出A与B,找出两集合的交集即可.【解答】解:由A中lnx≥0=ln1,得到x≥1,即A=[1,+∞);由B中的不等式解得:﹣3<x<3,即B=(﹣3,3),则A∩B=[1,3).故选:B.2.若复数(1﹣ai)2(i为虚数单位,a∈R)是纯虚数,则a=()A.1 B.﹣1 C.0 D.±1【考点】复数代数形式的乘除运算.【分析】利用复数代数形式的乘法运算化简,再由实部为0且虚部不为0求得a值.【解答】解:∵(1﹣ai)2=(1﹣a2)﹣2ai为纯虚数,∴,解得a=±1.故选:D.3.如图所示,当输入a,b分别为2,3时,最后输出的M的值是()A.1 B.2 C.3 D.4【考点】选择结构.【分析】由题意,程序的功能是输出两数中的较大数,从而可得结论.【解答】解:由题意,程序的作用是输出两数中的较大数,所以当输入a,b分别为2,3时,最后输出的m的值是3.故选:C.4.设,是两个非零向量,若p:•>0,q:,夹角是锐角,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】利用数量积运算性质、三角函数求值即可判断出结论.【解答】解:设,夹角是θ,p:•>0,则cosθ>0,∴θ是锐角或0,则p是q成立的必要不充分条件.故选:B.5.若tanα=2,则sin2α﹣cos2α的值为()A.B.﹣C.D.﹣【考点】三角函数的化简求值.【分析】利用二倍角公式,同角三角函数基本关系式化简所求,即可利用已知条件计算求值.【解答】解:∵tanα=2,∴sin2α﹣cos2α===.故选:C.6.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,8【考点】茎叶图.【分析】求乙组数据的平均数就是把所有乙组数据加起来,再除以5.找甲组数据的中位数要把甲组数据按从小到大的顺序排列,位于最中间的一个数为中位数.据此列式求解即可.【解答】解:乙组数据平均数=(9+15+18+24+10+y)÷5=16.8;∴y=8;甲组数据可排列成:9,12,10+x,24,27.所以中位数为:10+x=15,∴x=5.故选:C.7.一个体积为8的正三棱柱的三视图如图所示,则该三棱柱的俯视图的面积为()A.4B.4 C.6D.6【考点】由三视图求面积、体积.【分析】由侧视图可知:底面正三角形的高为2,可得底面边长a,可得:该三棱柱的俯视图为边长为a的正三角形,即可得出面积.【解答】解:由侧视图可知:底面正三角形的高为2,可得底面边长=×2=4,∴该三棱柱的俯视图为边长为4的正三角形,其面积===4.故选:A.8.等差数列{a n}和等比数列{b n}的首项都是1,公差公比都是2,则b b b=()A.64 B.32 C.256 D.4096【考点】等差数列与等比数列的综合.【分析】由等差数列和等比数列的通项公式可得a n=2n﹣1,b n=2n﹣1.求得b b b=b1•b5•b9,代入计算即可得到所求值.【解答】解:等差数列{a n}和等比数列{b n}的首项都是1,公差公比都是2,可得a n=1+2(n﹣1)=2n﹣1,b n=1•2n﹣1=2n﹣1.可得b b b=b1•b5•b9=1•24•28=212=4096.故选:D.9.如图,若在矩阵OABC中随机撒一粒豆子,则豆子落在图中阴影部分的概率为()A.1﹣B.C. D.1﹣【考点】几何概型.【分析】分别求出矩形和阴影部分的面积.即可求出豆子落在图中阴影部分的概率.=π,sinxdx=﹣cosx|=﹣(cosπ﹣cos0)=2,【解答】解:S矩形=π﹣2,∴S阴影故豆子落在图中阴影部分的概率为=1﹣,故选:A.10.已知实数x,y满足,若目标函数z=x﹣y的最大值为a,最小值为b,则(a﹣bt)6展开式中t4的系数为()A.200 B.240 C.﹣60 D.60【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数求得a、b的值,代入(a﹣bt)6,写出展开式的通项,由x的指数等于4求得r值,则答案可求.【解答】解:由约束条件作出可行域如图,A(2,0),B(0,1),化目标函数z=x﹣y为y=x﹣z,由图可知,当直线y=x﹣z过A时,直线在y轴上的截距最小,z有最大值为2;当直线y=x﹣z过B时,直线在y轴上的截距最大,z有最小值为﹣1.∴a=2,b=﹣1.则(a﹣bt)6即为(2+t)6.由,取r=4,可得展开式中t4的系数为.故选:D.11.双曲线的一个焦点F与抛物线C2:y2=2px(p>0)的焦点相同,它们交于A,B两点,且直线AB过点F,则双曲线C1的离心率为()A.B.C.D.2【考点】双曲线的简单性质.【分析】求得抛物线的焦点,可得p=2c,将x=c代入双曲线的方程,可得=2p=4c,由a,b,c的关系和离心率公式,解方程即可得到所求.【解答】解:抛物线C2:y2=2px(p>0)的焦点为(,0),由题意可得c=,即p=2c,由直线AB过点F,结合对称性可得AB垂直于x轴,令x=c,代入双曲线的方程,可得y=±,即有=2p=4c,由b2=c2﹣a2,可得c2﹣2ac﹣a2=0,由e=,可得e2﹣2e﹣1=0,解得e=1+,(负的舍去),故选:C.12.定义在[0,+∞)的函数f(x)的导函数为f′(x),对于任意的x≥0,恒有f′(x)>f (x),a=e3f(2),b=e2f(3),则a,b的大小关系是()A.a>b B.a<b C.a=b D.无法确定【考点】函数的单调性与导数的关系.【分析】构造新函数,研究其单调性即可.【解答】解:令g(x)=f(x)•e5﹣x则,=对任意的x≥0,f′(x)>f(x),e x>0,∴g′(x)>0,即g(x)在定义域上是增函数,∴g(2)<g(3)故答案选:B二、填空题(共4小题,每小题5分,满分20分)13.已知随机向量X服从正态分布N(3,1),且P(X>2c﹣1)=P(X<c+3),则c=.【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据正态曲线关于x=3对称,得到两个概率相等的区间关于x=3对称,得到关于c 程,解方程即可.【解答】解:∵随机变量X服从正态分布N(3,1),∵P(X>2c﹣1)=P(X<c+3),∴2c﹣1+c+3=6,∴c=,故答案为:.14.P是棱长为2的正四面体内任意一点,则它到该正四面体各个面的距离之和等于.【考点】点、线、面间的距离计算.【分析】先求出正四面体的体积,利用正四面体的体积相等,求出它到四个面的距离.【解答】解:因为正四面体的体积等于四个三棱锥的体积和,设它到四个面的距离分别为a,b,c,d,由于棱长为1的正四面体,故四个面的面积都是×2×2×sin60°=.又顶点到底面的投影在底面的中心,此点到底面三个顶点的距离都是高的,又高为2×sin60°=,故底面中心到底面顶点的距离都是:.由此知顶点到底面的距离是=.此正四面体的体积是××=××(a+b+c+d).所以:a+b+c+d=.故答案为:.15.函数f(x)=,对任意x∈R恒有f(x)≥f(0),则实数a的取值范围是[0,2] .【考点】函数恒成立问题.【分析】讨论可得a≥0,故恒成立问题可化为x++a≥a2恒成立,从而解得.【解答】解:若a<0,则f(a)=0<f(0),故不成立;故a≥0,而f(0)=a2,故若对任意x∈R恒有f(x)≥f(0),则x++a≥a2恒成立,故a2﹣a﹣2≤0,故0≤a≤2,故答案为:[0,2].16.在△ABC中,O是外接圆的圆心,若•=﹣,∠A=60°,则△ABC周长的最大值3.【考点】平面向量数量积的运算.【分析】由条件可得外接圆的半径为r=1,BC=,再利用余弦定理、基本不等式求得△ABC周长的最大值.【解答】解:△ABC中,∵O是外接圆的圆心,设外接圆的半径为r,∵∠A=60°,∴∠BOC=120°,由•=﹣,可得r•r•cos120°=﹣•r2=﹣,∴r=1,∴BC==.△ABC中,由余弦定理可得BC2=3=CA2+AB2﹣2CA•AB•cos60°=AC2+AB2﹣CA•CB=(AB+AC)2﹣3AB•AC≥(AB+AC)2﹣3,求得(AB+AC)2≤12,∴AB+AC≤2,∴△ABC周长AB+AC+BC≤3,故△ABC周长的最大值为,故答案为:3.三、解答题(共5小题,满分60分)17.设数列{a n}的前n项和S n满足S n=2a n﹣2.(1)求数列{a n}的通项公式;(2)求数列{na n}的前n项和T n.【考点】数列的求和;数列递推式.【分析】(1)利用递推关系、等比数列的通项公式即可得出.(2)利用等比数列的前n项和公式、“错位相减法”即可得出.【解答】解:(1)∵S n=2a n﹣2.当n=1时,a1=2a1﹣2,得a1=2;当n≥2时,S n﹣1=2a n﹣1﹣2,可得a n=S n﹣S n﹣1=2a n﹣2a n﹣1,即a n=2a n﹣1(n≥2),可知:数列{a n}是以2为首项,2为公比的等比数列,故a n=2n.(2)na n=n•2n,由已知得:T n=1×2+2×22+…+(n﹣1)•2n﹣1+n•2n,∴2T n=22+2×23+…+(n﹣1)•2n+n•2n+1,两式相减得:﹣T n=2+22+…+2n﹣n•2n+1=﹣n•2n+1=(1﹣n)•2n+1﹣2,∴T n=(n﹣1)•2n+1+2.18.如图,梯形ABEF中,AF∥BE,AB⊥AF,且AB=BC=AD=DF=2CE=2,沿DC将梯形CDFE折起,使得平面CDFE⊥平面ABCD.(1)证明:AC∥平面BEF;(2)求平面BEF和平面ABCD所成锐角二面角的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(Ⅰ)法一:记BF中点为M,AC与BD交点为O,连结MO,ME,推导出四边形OCEM为平行四边形,由此能证明AC∥平面BEF.法2:以D为原点,DA,DC,DF为x,y,z轴,建立空间直角坐标系D﹣xyz,利用向量法能证明AC∥平面BEF.(Ⅱ)求出平面BEF的法向量和平面ABCD 的一个法向量,利用向量法能求出平面BEF 和平面ABCD所成锐二面角的余弦值.【解答】证明:(Ⅰ)证法1:如图,记BF中点为M,AC与BD交点为O,连结MO,ME,由题设知,CE,MO,即CE MO,∴四边形OCEM为平行四边形,∴EM∥CO,即EM∥AC,又AC⊄平面BFE,EM⊂平面BFE,∴AC∥平面BEF.…证法2:由题设知,DA,DA,DC两两相互垂直,如图,以D为原点,DA,DC,DF为x,y,z轴,建立空间直角坐标系D﹣xyz,则D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),E(0,2,1),F(0,0,2).设平面BEF的一个法向量为=(x,y,z),则,又,∴,取x=1,得=(1,1,2),又=(﹣2,2,0),∴=0,即,又AC⊄平面BEF,∴AC∥平面BEF.…解:(Ⅱ)由(Ⅰ)知,平面BEF的法向量=(1,1,2),平面ABCD 的一个法向量为=(0,0,1),则cos<>===,平面BEF和平面ABCD所成锐二面角的余弦值为.…19.某校体育教研组研发了一项新的课外活动项目,为了解该项目受欢迎程度,在某班男女20(2)根据题目要求,完成2×2列联表,并判断是否有95%的把握认为“喜欢该活动项目与性别有关”?【考点】独立性检验.【分析】(Ⅰ)根据古典概型的概率,求出对应的概率;(Ⅱ)填写列联表,计算K2的值,对照数表得出概率结论.【解答】解:(Ⅰ)依题意知,喜欢这项活动的男生有8人,女生有15人,从中选一人有23种选法,其中选到男生有8种,所求概率为.…将,,,代入K2=中,得K2=≈5.013>3.841,所以,有95%的把握认为“喜欢该活动项目与性别有关”.20.已知椭圆C: +=1(a>b>0)的短轴的一个顶点与两个焦点构成正三角形,且该三角形的面积为.(1)求椭圆C的方程;(2)设F1,F2是椭圆C的左右焦点,若椭圆C的一个内接平行四边形的一组对边过点F1和F2,求这个平行四边形的面积最大值.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(1)由椭圆的短轴的一个顶点与两个焦点构成正三角形,且该三角形的面积为,列出方程组,求出a,b,由此能求出椭圆C的方程.(2)设过椭圆右焦点F2的直线l:x=ty+1与椭圆交于A,B两点,由,得:(3t2+4)y2+6ty﹣9=0,由此利用韦达定理、弦长公式、平行四边形面积、函数单调性,能求出平行四边形面积的最大值.【解答】20.(本小题满分12分)解:(1)∵椭圆C: +=1(a>b>0)的短轴的一个顶点与两个焦点构成正三角形,且该三角形的面积为,∴依题意,解得a=2,b=,c=1,∴椭圆C的方程为:.…(2)设过椭圆右焦点F2的直线l:x=ty+1与椭圆交于A,B两点,则,整理,得:(3t2+4)y2+6ty﹣9=0,由韦达定理,得:,,∴|y1﹣y2|===,∴==,椭圆C的内接平行四边形面积为S=4S△OAB=,令m=≥1,则S=f(m)==,注意到S=f(m)在[1,+∞)上单调递减,∴S max=f(1)=6,当且仅当m=1,即t=0时等号成立.故这个平行四边形面积的最大值为6.…21.已知函数f(x)=x﹣a﹣lnx(a∈R).(1)若f(x)≥0恒成立,求实数a的取值范围;(1)证明:若0<x1<x2,则<.【考点】不等式的证明;函数恒成立问题.【分析】(Ⅰ)解法1、求出f(x)的导数,求得单调区间,可得极小值且为最小值,解得a的范围;解法2、运用参数分离,求得右边韩寒说的最小值,即可得到a的范围;(II)取a=1,知f(x)=x﹣1﹣lnx,ln<﹣1(0<x1<x2)可得lnx2﹣lnx1<,即有<,再由不等式的性质,即可得证.【解答】解:(Ⅰ)解法1:f(x)=x﹣a﹣lnx的导数为f′(x)=1﹣=,令f′(x)>0,得x>1;令f′(x)<0,得0<x<1,即f(x)在(0,1)单调递减,在(1,+∞)上单调递增,可知f(x)min=f(1)=1﹣a≥0,解得a≤1.解法2:f(x)≥0,即a≤x﹣lnx(x>0),令g(x)=x﹣lnx(x>0),则g′(x)=1﹣=(x>0),令g′(x)>0,得x>1;令g′(x)<0,得0<x<1,即g(x)在(0,1)单调递减,在(1,+∞)上单调递增,可知g(x)min=g(1)=1,可得a≤1.(II)证明:取a=1,知f(x)=x﹣1﹣lnx,由(Ⅰ)知lnx﹣x+1≤0,即lnx≤x﹣1,ln<﹣1(0<x1<x2)可得lnx2﹣lnx1<,即有<,则==﹣1<﹣1<==<.[选修4-1:几何证明选讲]22.如图,AB,CD是圆O的两条互相垂直的直径,E是圆O上的点,过E点作圆O的切线交AB的延长线于F,连结CE交AB于G点.(1)求证:FG2=FA•FB;(2)若圆O的半径为2,OB=OG,求EG的长.【考点】与圆有关的比例线段.【分析】(1)连接OE,DE,由弦切角定理知∠FEG=∠D,证明FG=FE,由切割线定理得FE2=FA•FB,即可证明:FG2=FA•FB;(2)由相交弦定理得:BG•AG=EG•CG,即可求EG的长.【解答】(1)证明:连接OE,DE,由弦切角定理知∠FEG=∠D.∵∠C+∠D=90°,∴∠C+∠FEG=90°又∠C+∠CGO=90°,∠CGO=∠FGE∴∠C+∠FGE=90°,∴∠FGE=∠FEG即FG=FE …由切割线定理得FE2=FA•FB,所以FG2=FA•FB;(Ⅱ)解:由OB=OG=2知,OG=2,∴AG=2+2,BG=2﹣2,在Rt△OCG中,由OC=2,OG=2得,CG=4.由相交弦定理得:BG•AG=EG•CG,即(2+2)(2﹣2)=4EG,∴EG=2.…[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知曲线C1的极坐标方程为:ρ2cos2θ+3ρ2sin2θ=3,曲线C2的参数方程是(t为参数).(1)求曲线C1和C2的直角坐标方程;(1)设曲线C1和C2交于两点A,B,求以线段AB为直径的圆的直角坐标方程.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(I)把x=ρcosθ,y=ρsinθ,代入曲线ρ2cos2θ+3ρ2sin2θ=3即可化为直角坐标方程.曲线C2参数方程是(t为参数)消去参数化为直角坐标方程.(II)直线方程与椭圆方程联立可得交点坐标,利用中点坐标公式、圆的标准方程即可得出.【解答】解:(I)曲线ρ2cos2θ+3ρ2sin2θ=3化为直角坐标方程为:x2+3y2=3,即=1;曲线C2参数方程是(t为参数)化为直角坐标方程为:x=﹣(y﹣1),即x+y﹣=0.(II),解得,即A(0,1),B(,0),线段AB的中点为M,则以线段AB为直径的圆的直角坐标方程为=1.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣a|﹣|x﹣4|(x∈R,a∈R)的值域为[﹣2,2].(1)求实数a的值;(2)若存在x0∈R,使得f(x0)≤m﹣m2,求实数m的取值范围.【考点】绝对值不等式的解法.【分析】(1)问题转化为:|a﹣4|=2,解出即可;(2)求出f(x)的最小值,得到﹣2≤m ﹣m2,解出即可.【解答】解:(1)对于任意x∈R,f(x)=|x﹣a|﹣|x﹣4|∈[﹣|a﹣4|,|a﹣4|],可知|a﹣4|=2,解得:a=2或a=6;(2)依题意有﹣2≤m﹣m2,即m2﹣m﹣2≤0,解得:m∈[﹣1,2].2016年9月20日。