医学图像分割方法综述
图像分割综述
摘要图像分割是把图像划分为有意义的若干区域的图像处理技术,分割技术在辅助医学诊断及运动分析、结构分析等领域都有着重要的研究价值和广泛的应用发展前景。
在阅读大量文献的基础上,本文对图像分割技术的理论基础、发展历程及图像分割方法的热点、难点问题进行了分类综述,对不同分割算法优缺点进行了总结和归纳,并对图像分割的发展趋势进行了初步的展望和预测。
在此基础上,为了对图像分割理论有更直观的认识,本文选取并行边界算法和分水岭算法这两种方法,用MATLAB软件进行了基础的仿真,并对结果进行了分析和总结,本文重点对一些近年来新兴的算法,比如水平集(Level-set)算法、马尔科夫随机场算法(Markov)、模糊算法、遗传算法、数学形态学算法等进行了概略性的探讨,对这些新兴算法的特点、原理、研究动态进行了分析和总结。
关键词:图像分割;边界;区域;水平集;马尔科夫AbstractImage segmentation is an image processing technology that divides the image into a number of regions. Image segmentation has very important significance in supporting medical diagnosis, motion analysis, structural analysis and other fields.Based on recent research, a survey on the theory and development of image segmentation, hot and difficult issues in image segmentation is given in this article. And describes the characteristics of each method as well as their respective advantages and disadvantages in image segmentation .This article introduces and analyzes some basic imaging and image segmentation methods in theory and describes the development trends of medical image segmentation. To have a better understanding of image segmentation, I use MATLAB software to stimulate on images about the parallel edge algorithms and watershed algorithm. And the analysis of the segmentation results is given in the article.This article introduces and analyzes the new algorithms in recent years such as Level-set algorithm, Markov algorithm, Fuzzy algorithm, Genetic algorithm and Morphological algorithm. In this paper, the features, theory and research trends of these algorithms are analyzed and summarized.Keywords: Image segmentation; Border; Area;Level-set;Markov第1章引言1.1 图像分割的背景和重要作用图像是传达信息的一种方式,图像中含有大量的有用信息,理解图像并从图像中抽取信息以用来完成其他工作是数字图像技术中一个重要的应用领域,而理解图像的第一步就是图像的分割。
医学图像分割方法综述
统计学要迭代运算,因此计算量相对较小。(2)能应用于多方法的实质是从统计学的角度出发对数字图像进行通道图像但是分类器同样没有考虑空间信息,因此建模,把图像中各个像素点的灰度值看作是具有一对灰度不均匀的图像分割效果不好分类器还要求定概率分布的随机变量从观察到的图像中恢复实由手工分类生成训练集,而手工分类的工作量很大。际物体或正确分割观察到的图像从统计学的角度看同时,用小量的训练集训练的分类器对大量的样本就是要找出最有可能,即以最大的概率得到该图像空间进行分类时会产生误差,因为它没有考虑人体的物体组合来。从贝叶斯定理的角度看,就是要求出解剖机构的个体差异具有最大后验概率的分布聚类算法与分类器算法极为类似,只是它不需MRF本身是一个条件概率模型,其中每个像素要训练样本,因此聚类是一种无监督的(概率只与相邻点相关。直观的理解是,在MRF假、统讨一方法。因为没有训练样本集,聚类算法迭设下。大多数像素和其邻近的像素属于同一类。
医学图像配准与分割算法评估指标研究综述
因此,对医学图像配准与分割算法进行评估和 比较,选择最适合特定应用的算法,具有重要 的理论意义和实践价值。
国内外研究现状及发展趋势
国内外学者在医学图像配准与分割算法方面开展了大量研究工作,提出了 许多优秀的算法和方法。
3
基于深度学习的分割算法
通过训练神经网络实现图像分割,能够处理复杂 的医学图像分割任务,分割精度高,但需要大量 训练数据。
配准与分割算法联合应用性能分析
01
配准算法对分割结果 的影响
准确的图像配准能够提高分割算法的 精度和稳定性,减少分割误差。
02
分割算法对配准结果 的影响
精确的图像分割能够为配准算法提供 准确的特征点和边界信息,提高配准 精度。
03
医学图像分割算法评估指标
区域一致性评估指标
01
Dice相似度系数(Dice Similarity Coefficient, DSC):用于衡 量两个样本的相似度,取值范围在0-1之间,值越大表示相似度 越高。在医学图像分割中,DSC通常用于评估分割结果与金标准 之间的区域一致性。
02
Jaccard相似度系数(Jaccard Similarity Coefficient, JSC ):与Dice相似度系数类似,用于衡量两个集合的相似度 。在医学图像分割中,JSC同样用于评估分割结果与金标 准之间的区域一致性。
信息变化指数(Information Variation Index, IVI):衡量分割结果相对于金标准的信 息变化程度。IVI越小,表示分割结果越准确。
标准化互信息(Normalized Mutual Information, NMI):衡量两个图像之间的互信 息程度。在医学图像分割中,NMI用于评估分割结果与金标准之间的综合性能。NMI
医学图像分割技术综述
2007年3月 阴 山 学 刊 Mar.2007 第21卷 第1期 YINSHAN ACADEMIC JOURNAL Vol.21 No.1收稿日期:作者简介:1 图像分割的目的和意义图像分割是按照某种特征(如灰度、频谱、纹理、彩色特征等)将图像分成一些有意义的区域。
在这些区域内部,其特征往往是相同的或相似的,而相邻区域彼此特征则不相同,区域之间存在边界。
图像分割技术是图像处理和分析中的关键技术。
医学图像分割从本质上来说也是一个根据区域内特征的相似性以及相邻区域间特征的不同把图像分割为若干区域的过程。
从图像中把感兴趣区分离出来是是制约医学图像处理中其它相关技术发展和应用的瓶颈。
医学图像分割是将原始的2D或3D图像划分成不同性质(如灰度、纹理等)的区域,从而把感兴趣的区域提取出来,为临床诊疗和病理学研究提供可靠的依据。
医学图像分割在临床诊断、病理分析以及治疗方面具有重要意义,具体表现为:(1)图像分割的结果常用于生物医学图像的分析;(2)用于测量人体器官、组织或病灶的体积;(3)用于医学图像的3D重建方面,便于可视化、以及放疗计划中的3D定位等;(4)图像分割结果可用于在不丢失有用信息的前提下进行数据的压缩和传输;(5)因为分割后的图像与噪声的关系减弱,所以具有降噪功能。
2 医学图像分割技术的发展随着计算机技术的发展和普及,医学图像分割技术也经历了一个从人工分割到半自动分割和自动分割的逐步发展过程。
早期的图像分割完全是靠人工完成的。
完成的方法是在原始图像上直接画出期望的边界。
这种方法费时费力,分割结果与分割者的解剖知识和经验有直接关联,分割结果不是特别理想。
半自动的分割方法把操作者的知识和计算机的数据处理能力有机地结合起来,从而完成对医学图像的交互分割。
它比人工分割法大大减少了人为因素的影响,而且分割速度快,分割精度高。
但分割结果在一定程度上还要依赖操作者的知识和经验。
近年来图像分割领域中也涌现出一些自动分割技术,它们脱离了人为干预,完全由计算机实现医学图像分割的全过程,但自动分割方法的运算量相当大。
多层次医学图像配准与分割技术综述
多层次医学图像配准与分割技术综述一、引言医学图像处理是医学领域中具有重要价值的核心技术之一。
在医学诊断、手术规划、治疗效果评估等方面,医学图像配准与分割技术已被广泛应用。
随着医学图像采集技术和存储设备的不断发展,逐渐形成了多层次医学图像数据,使得多层次医学图像配准与分割技术的研究成为医学图像处理领域的重要方向。
本综述将介绍多层次医学图像配准与分割技术的研究现状和发展趋势。
二、多层次医学图像配准技术1. 刚性配准技术对于同一患者所得到的多个医学图像,在进行医疗诊断分析时需要将不同图像上的相应结构对齐,这就需要配准技术。
刚性配准属于传统的医学图像配准方法。
刚性包括平移、旋转、缩放三个自由度,即3*3矩阵,可以保持原有图像图像的形状不变。
常用的刚性配准方法有基于特征点的配准、基于灰度直方图的配准和基于归一化互相关系数的配准等。
2. 非刚性配准技术随着科技的发展,非刚性配准技术的研究得到了极大的发展。
相比于刚性配准,非刚性配准有更高的自由度,能够更好的解决医学图像形变出现的问题。
非刚性配准技术涵盖了形变模型配准、基于图像弹性力学的配准和基于变形网格模型的配准等。
三、多层次医学图像分割技术多层次医学图像分割技术是指将医学图像划分成一系列像素或区域的过程,其中,每个像素或区域可以被赋予一个特定的标记。
精确的分割结果对于医学图像的诊断和治疗非常重要。
常用的多层次医学图像分割技术有如下几种:1. 基于像素的分割技术基于像素的方法最早应用于医学图像分割。
这种方法通过计算每个像素与周围像素的差异性,将像素划分为不同的类别,从而实现图像的分割。
像素为基础的方法有阈值分割、区域生长、边界检测等。
2. 基于边缘的分割技术基于边缘的分割方法也很早被应用于医学图像处理领域。
这种方法通过分析图像中的边缘信息,将边缘与背景之间判别出来。
它不但可以处理二维图像,而且还可以处理三维体积数据。
基于边缘的方法包括边缘检测、轮廓检测和基于水平卷积的分割方法等。
关于医学图像分割的综述
关于医学图像分割的综述Review of Medical Image Segmentation郭敬*秦茂玲赵文莉GUO Jing QIN Mao-ling ZHAO Wen-lidoi:10.3969/j.issn.1672-9528.2010.05.16Abstract Medical image segmentation medical image processing is the most basic and most important tech-nology of medical image processing.The aim is to segment image space into some interesting areas.Medical im-age segmentation determines the development of other related technologies of medical image processing.Based on a lot of reading at home and abroad recent literature,a rather complete survey on medical image segmentation methods is given in this article.Keywords Medical image segmentation Image segmentation evaluation*山东师范大学信息科学与工程学院,山东省分布式计算机软件新技术重点实验室山东济南250014在医学图像处理中,医学图像分割主要以各种细胞、组织与器官的图像来作为处理的对象或内容[1]。
由于医学图像的成像原理和组织本身的特性差异,医学图像与普通图像比较,具有模糊、不均匀性等特点,这使得医学图像更加困难。
因此,我们有必要针对医学应用这个领域,对图像分割方法进行研究。
医学图像处理技术综述
医学图像处理技术综述一、背景介绍医学图像处理技术是指将医学图像数据进行数字化,并通过计算机技术对其进行处理、分析和展示的一种技术。
自20世纪60年代开始,医学图像处理技术就已经开始应用于医学领域,如今已成为医学领域研究和临床诊断中不可或缺的重要技术之一。
二、医学图像处理技术的分类医学图像处理技术主要可分为预处理、分割、配准、重建、识别与分析等几个方面。
下面将一一进行介绍。
1. 预处理预处理是医学图像处理技术中非常重要的一个环节。
预处理主要是针对图像进行预处理,以提高图像的质量和精度。
常见的预处理方法包括滤波、增强、去噪等。
滤波是对图像进行平滑处理,以去除图像中的噪声。
滤波方法较多,如均值滤波、高斯滤波、中值滤波等。
而图像增强则是对图像进行亮度、对比度、色彩等方面进行调整,以增强图像的信息内容。
常见的增强方法包括直方图均衡化、Wiener滤波等。
2. 分割分割是指对医学图像中代表不同组织和器官的像素进行区分,以便对不同的组织或器官进行分析和诊断。
常见的分割方法包括阈值分割、区域生长方法等。
阈值分割是指在图像中设定阈值,将像素根据其灰度值的高低分为不同的区域。
而区域生长方法则是根据像素之间的相似性,将图像分为多个区域。
3. 配准配准是指将不同的医学图像进行对齐,以实现不同图像之间的比较和分析。
常见的配准方法包括刚体变换、非刚体变换、弹性变形等。
刚体变换是指通过旋转、平移、缩放等变换方式,将不同图像进行对齐。
而非刚体变换和弹性变形则更适合对不同形状、尺寸差异较大的图像进行对齐。
4. 重建重建是指将2D的医学图像转化为3D的模型,以更好地进行分析和诊断。
常见的重建方法包括层次重建、投影重建等。
层次重建是通过对2D图像进行横向和纵向的重叠拼接,将其重建为3D模型。
而投影重建则是通过CT等技术,将多个2D图像进行堆叠并投影,最终重建为3D模型。
5. 识别和分析医学图像处理技术的最终目的是对不同的组织和器官进行诊断和分析。
医学图像分割方法综述
医学图像分割方法综述随着计算机技术的发展,图像分割在很多领域都得到发展并被广泛应用,在医学临床上的应用更是越来越明显和重要。
找到合适的医学图像分割方法对临床诊断和治疗都具有重大意义。
文章针对近年来提出的图像分割方法进行了总结。
标签:图像分割;区域生长;聚类;水平集;图割1 概述图像分割是图像处理和计算机视觉领域的基础。
分割结果直接影响着后续任务的有效性和效率[1]。
图像分割的目的就是把目标从背景中提取出来,分割过程主要基于图像的固有特征,如灰度、纹理、对比度、亮度、彩色特征等将图像分成具有各自特性的同质区域[2]。
医学图像分割是医学图像进行后续操作的必要前提,学者通过大量的研究得到了很多自动快速的分割方法。
2 图像分割方法分类医学图像有各种成像模态,比如CT、MRI、PET、超声等。
由于医学图像本身的复杂性和多样性,如灰度不均匀、低分辨率、弱边界和严重的噪声,准确分割是个相当棘手的问题,分割过程中在目标区域里出现的一些问题都将导致图像分割结果不准确。
近年来,众多图像分割方法中没有任何一种算法能适用于所有图像。
图像分割方法一般是基于图像的,即利用图像梯度、亮度或者纹理等就能从图像中获得信息进而对图像进行分割,主要有聚类法、区域生长、水平集、图割等算法。
2.1 聚类法聚类算法简单的包括K-Means算法和Fuzzy C-Means(FCM)。
K-Means算法是基于距离的硬聚类算法,通常采用误差平方和函数作为优化的目标函数,定义误差平方和函数如下:其中,K代表聚类的个数,Cj(j=1,2,…,K)表示聚类的第j类簇,x 表示类簇Cj中的任意一个数据对象,mi表示簇Ci的均值。
从公式中看出,J是数据样本与簇中心差异度平方的总和,K个类聚类中心点决定了J值的大小。
显然,J越小表明聚类效果越好。
K-Means算法的核心思想为:给定一组含有n个数据对象的数据集,从其中隨机选取K个数据对象作为初始中心,然后计算剩余的所有数据对象到各个初始中心之间的距离,根据最近邻原则,把所有数据对象都划分到离它最近的那个初始中心的那一类簇,再分别计算这些新生成的各个类簇中数据对象的均值,以此作为新类簇的中心,比较新的中心和初始中心的误差平方和函数J的大小,上述过程反复迭代,直到J收敛到一定值算法就结束,此时每个簇中的中心点和均值也不再发生改变。
医学图像分割方法综述
医学图像分割方法综述作者:李兰兰来源:《科技创新与应用》2017年第14期摘要:随着计算机技术的发展,图像分割在很多领域都得到发展并被广泛应用,在医学临床上的应用更是越来越明显和重要。
找到合适的医学图像分割方法对临床诊断和治疗都具有重大意义。
文章针对近年来提出的图像分割方法进行了总结。
关键词:图像分割;区域生长;聚类;水平集;图割1 概述图像分割是图像处理和计算机视觉领域的基础。
分割结果直接影响着后续任务的有效性和效率[1]。
图像分割的目的就是把目标从背景中提取出来,分割过程主要基于图像的固有特征,如灰度、纹理、对比度、亮度、彩色特征等将图像分成具有各自特性的同质区域[2]。
医学图像分割是医学图像进行后续操作的必要前提,学者通过大量的研究得到了很多自动快速的分割方法。
2 图像分割方法分类医学图像有各种成像模态,比如CT、MRI、PET、超声等。
由于医学图像本身的复杂性和多样性,如灰度不均匀、低分辨率、弱边界和严重的噪声,准确分割是个相当棘手的问题,分割过程中在目标区域里出现的一些问题都将导致图像分割结果不准确。
近年来,众多图像分割方法中没有任何一种算法能适用于所有图像。
图像分割方法一般是基于图像的,即利用图像梯度、亮度或者纹理等就能从图像中获得信息进而对图像进行分割,主要有聚类法、区域生长、水平集、图割等算法。
2.1 聚类法聚类算法简单的包括K-Means算法和Fuzzy C-Means(FCM)。
K-Means算法是基于距离的硬聚类算法,通常采用误差平方和函数作为优化的目标函数,定义误差平方和函数如下:其中,K代表聚类的个数,Cj(j=1,2,…,K)表示聚类的第j类簇,x表示类簇Cj中的任意一个数据对象,mi表示簇Ci的均值。
从公式中看出,J是数据样本与簇中心差异度平方的总和,K个类聚类中心点决定了J值的大小。
显然,J越小表明聚类效果越好。
K-Means算法的核心思想为:给定一组含有n个数据对象的数据集,从其中随机选取K个数据对象作为初始中心,然后计算剩余的所有数据对象到各个初始中心之间的距离,根据最近邻原则,把所有数据对象都划分到离它最近的那个初始中心的那一类簇,再分别计算这些新生成的各个类簇中数据对象的均值,以此作为新类簇的中心,比较新的中心和初始中心的误差平方和函数J的大小,上述过程反复迭代,直到J收敛到一定值算法就结束,此时每个簇中的中心点和均值也不再发生改变。
医学图像分割综述
医学图像分割综述郭爱心安徽大学摘要:图像分割是图像处理和分析的关键。
随着影像医学的发展,图像分割在医学应用中具有重要意义。
本文从医学应用的角度出发,对医学图像分割的意义、方法、评估标准和发展前景做出了简单综述。
关键字:医学图像分割意义方法评估标准发展前景A Review of Medical Image SegmentationAi-Xin GuoAnhui UniversityAbstract:Image segmentation is the key of image processing and analysis.With the development of medical image,image segmentation is of great significance in medical applications.From the perspective of medical applications,this paper made a simple review of the medical image segmentation on it’s significance、methods、evaluation standards and development prospects. Key words:medical image,segmentation,significance,methods,evaluation standards,development prospects1.医学图像分割的意义图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。
它是由图像处理到图像分析的关键步骤。
医学图像包括CT、正电子放射层析成像技术(PET)、单光子辐射断层摄像(SPECT)、MRI(磁共振成像技术)、Ultrasound(超声)及其它医学影像设备所获得的图像[2]。
医学图像分割与分类算法综述
医学图像分割与分类算法综述医学图像在现代医疗影像诊断中起着重要的作用。
为了提高医疗诊断的准确性和效率,医学图像分割与分类算法成为研究的热点之一。
本文将综述医学图像分割与分类算法的研究进展,并介绍一些经典的算法方法。
1. 医学图像分割算法医学图像分割是根据医学图像中的不同区域或结构的特征进行像素级的分类。
常用的医学图像分割算法包括阈值法、区域生长法、边缘检测法、基于模型的方法和深度学习方法。
阈值法是最简单和直观的图像分割方法之一。
它基于像素灰度值的阈值将图像分成不同的区域。
但是,阈值选择的准确性对分割结果影响较大,容易受到噪声、光照变化等因素的影响。
区域生长法是基于图像的局部相似性进行分割的方法。
它从一个种子点开始,根据像素的相似性将相邻的像素聚类成一个区域。
区域生长法可以在一定程度上克服阈值法的缺点,但是对于具有复杂结构的图像分割仍然存在一定的挑战。
边缘检测法通过检测图像中各个区域间的边缘信息进行分割。
常用的边缘检测算法包括Canny算法、Sobel算法等。
边缘检测法在图像分割中得到了广泛的应用,但是对于边缘不明显或存在噪声的图像,其准确性和稳定性有待进一步提高。
基于模型的方法是利用已知的医学图像模型进行分割。
这些模型可以是基于统计学的模型,如高斯模型、概率密度模型等,也可以是基于形状的模型,如活动轮廓模型、水平集模型等。
基于模型的方法可以较好地处理具有特定结构或形状的医学图像,但是对于复杂的医学图像分割仍然存在一定的局限性。
深度学习方法是近年来医学图像分割的研究热点。
深度学习算法可以自动学习医学图像的特征表示,从而实现更准确的分割。
常用的深度学习网络包括卷积神经网络(CNN)、循环神经网络(RNN)等。
深度学习方法在医学图像分割领域取得了很大的突破,但是其训练过程复杂,需要大量的训练数据和计算资源。
2. 医学图像分类算法医学图像分类是根据医学图像中的特征将其归类为不同的疾病或病态。
常用的医学图像分类算法包括基于特征的方法和基于深度学习的方法。
医学影像处理中的图像分割方法综述
医学影像处理中的图像分割方法综述概述医学影像处理在现代医学中扮演着重要的角色,它为医生提供了获取、分析和解释医学影像的工具。
图像分割是医学影像处理中的一个核心任务,它的目标是将医学影像中的不同组织和结构分割出来,以便医生能够更准确地进行疾病诊断和治疗。
本文将综述几种在医学影像处理中常用的图像分割方法。
常用的图像分割方法1. 基于阈值的分割方法阈值分割是一种简单而常用的图像分割方法。
该方法根据像素值与预先设定的阈值进行比较,将像素分为不同的类别。
阈值可以手动设定,也可以通过自适应阈值和基于统计学方法的阈值选择来确定。
该方法适用于对比较明显的灰度不同的组织和结构进行分割。
2. 区域生长法区域生长法是一种基于灰度的分割方法,它从种子点出发,通过分析像素之间的相似性来生长一个区域。
这种方法可以根据像素之间的灰度、纹理、形状和空间位置等特征来确定相似性。
区域生长法适用于边界不明显、纹理复杂的医学影像分割。
3. 基于边缘的分割方法边缘是医学影像中不同组织和结构之间的边界,因此边缘检测是图像分割的关键步骤。
基于边缘的分割方法通过检测图像中的边缘来实现分割。
常用的边缘检测算法包括Sobel算子、Canny算子和拉普拉斯算子等。
这些算法可以识别出图像中的边缘,但在存在噪声的情况下容易导致边缘不连续或错过边缘。
4. 模型驱动的分割方法模型驱动的图像分割方法使用数学模型来描述图像中的组织和结构,通过对模型进行求解来实现分割。
常见的模型驱动方法包括基于统计学的方法、基于形态学的方法和基于图论的方法。
这些方法具有较好的分割准确性,但在计算复杂度和参数选择上具有一定挑战。
5. 基于机器学习的分割方法机器学习方法可以通过训练样本来学习医学影像中的组织和结构特征,从而实现图像分割。
例如,支持向量机(SVM)和随机森林(Random Forest)等分类器可以用于像素级别的分类分割。
深度学习方法,尤其是卷积神经网络(CNN),在医学影像分割中取得了显著的进展。
医学图像分割方法综述
医学图像分割算法综述
医学图像分割算法综述随着技术的不断进步,医学图像在临床应用中扮演着越来越重要的角色。
医学图像分割算法是将图像中的信息分离为不同的区域的过程,可用于亚像素级别的图像分析和诊断,被广泛应用于医学影像处理中。
本文将介绍几种常见的医学图像分割算法,包括:阈值分割算法、区域生长算法、边缘检测算法、水平线算法、聚类算法和机器学习算法。
1. 阈值分割算法阈值分割算法是医学图像分割中最简单的方法之一,它将图像像素按其灰度级别分为两部分。
如果像素的灰度值高于特定的阈值,则将其分配给一个分割类别,否则分配给另一个分割类别。
阈值可以手动或自动设置。
手动设置阈值通常可以得到较好的分割结果,自动设置阈值则需要先对图像进行预处理,如直方图均衡化和变换,以使其更适合自动阈值选择算法。
2. 区域生长算法区域生长算法基于像素之间相似性的概念,在开始的时候选定一个种子点,它被包括在一个区域中。
然后,算法在种子点周围的像素上进行迭代,在迭代过程中,对于那些与种子点相似的像素,将它们添加到该区域中。
该算法对于像素数量较少的图像比较有效,但对于包含许多较小的目标的图像较差,因为在这些情况下,算法容易陷入误判。
3. 边缘检测算法边缘检测算法采用像素点在灰度空间中的梯度和目标周围的反差来检测图像的边缘。
梯度表示像素值发生变化的方向和速率,既可以用于检测目标的轮廓,也可以用于检测目标内部。
边缘检测算法对于图像中有大量的灰度变化和边缘的情况效果比较好,但对于像素变化不明显的图像效果较差。
4. 水平线算法水平线算法基于连续像素的行为,可以用于检测相邻像素之间的物体或组织。
算法从顶部或底部的一个像素开始,检测到一个物体或组织的边界。
然后,该算法继续扫描相邻像素,以便检测到相同的物体或组织。
该算法适用于平滑的轮廓和渐变变化的图像,但不适用于存在复杂形状的图像。
5. 聚类算法聚类算法通过对相似像素进行分类,将图像分割成若干个区域。
这些像素通常具有相似的物理或几何属性,如颜色,亮度和形状等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
医学图像分割方法综述林瑶,田捷1北京,中国科学院自动化研究所人工智能实验室,100080摘要: 图像分割是一个经典难题,随着影像医学的发展,图像分割在医学应用中具有特殊的重要意义。
本文从医学应用的角度出发,对医学图像分割方法,特别是近几年来图像分割领域中出现的新思路、新方法或对原有方法的新的改进给出了一个比较全面的综述,最后总结了医学图像分割方法的研究特点。
关键词:医学图像分割 综述1.背景介绍医学图像包括CT 、正电子放射层析成像技术(PET )、单光子辐射断层摄像(SPECT )、MRI (磁共振成像技术)、Ultrasound (超声)及其它医学影像设备所获得的图像。
随着影像医学在临床医学的成功应用,图像分割在影像医学中发挥着越来越大的作用[1]。
图像分割是提取影像图像中特殊组织的定量信息的不可缺少的手段,同时也是可视化实现的预处理步骤和前提。
分割后的图像正被广泛应用于各种场合,如组织容积的定量分析,诊断,病变组织的定位,解剖结构的学习,治疗规划,功能成像数据的局部体效应校正和计算机指导手术[2]。
所谓图像分割是指将图像中具有特殊涵义的不同区域区分开来,这些区域是互相不交叉的,每一个区域都满足特定区域的一致性。
定义 将一幅图像,其中g x y (,)0≤≤x Max x _,0≤≤y Max y _,进行分割就是将图像划分为满足如下条件的子区域...:g 1g 2g 3 (a) ,即所有子区域组成了整幅图像。
(b) 是连通的区域。
g k (c) ,即任意两个子区域不存在公共元素。
(d) 区域满足一定的均一性条件。
均一性(或相似性)一般指同一区域内的像素点之间的灰度值差异较小或灰度值的变化较缓慢。
g k 如果连通性的约束被取消,那么对像素集的划分就称为分类(pixel classification),每一个像素集称为类(class)。
在下面的叙述中,为了简单,我们将经典的分割和像素分类通称为分割。
医学图像分割到今天仍然没有获得解决,一个重要的原因是医学图像的复杂性和多样性。
由于医学图像的成像原理和组织本身的特性差异,图像的形成受到诸如噪音、场偏移效应、局部体效应和组织运动等的影响,医学图像与普通图像比较,不可避免的具有模糊、不均匀性等特点。
另外,人体的解剖组织结构和形状复杂,而且人与人之间有相当大的差别。
这些都给医学图像分割的分割带来了困难。
传统的分割技术或者完全失败,或者需要一些特殊的处理技术。
因此,我们有必要针对医学应用这个领域,对图像分割方法进行研究。
为了解决医学图像的分割问题,近几年来,很多研究人员做了大量的工作,提出了很多实用的分割算法[2][3][4],随着统计学理论、模糊集理论、神经网络、形态学理论、小波理论等在图像分割中的应用日渐广泛,遗传算法、尺度空间、多分辨率方法、非线性扩散方程等近期涌现的新方法和新思想也不断被用于解决分割问题,国内外学者提出了不少有针对性的好分割方法。
本文将主要介绍近几年这一领域中研究人员提出的新方法或对原有方法的新改进。
需要指出的是,由于从不同的角度将得到不同的分类结果,本文中所涉及方法的分类并不是绝对的,而且许多分割方法还是多种简单方法的综合体,我们只能大致将它们分为属于最能反映其特点 1x x g N k k =),(),(y g y =∪φ=(y y g j k ∩),(),xg x 1 联系人:田捷 电话:82618465 E-mail:tian@的某一类。
2.基于区域的分割方法图像分割通常会用到不同对象间特征的不连续性和同一对象内部的特征相似性。
基于区域的算2.1 法是最常见的并行的直接检测区域的分割方法[5]。
如果只用选取一个阈值称为单阈值分同类的物体灰度值或其他特征值相差很大时,它能很有效大的图像,对于图像中不存在明显的灰的困难所在。
至今仍有.2 区域生长和分裂合并两种典型的串行区域分割方法。
其特点是将分割过程分解为顺序的多个,该方法需要先选取一个种子用者必须在每个需要抽取出的区域中法测重于利用区域内特征的相似性。
阈值阈值分割割,它将图像分为目标和背景两大类;如果用多个阈值分割称为多阈值方法,图像将被分割为多个目标区域和背景,为区分目标,还需要对各个区域进行标记。
阈值分割方法基于对灰度图像的一种假设:目标或背景内的相邻像素间的灰度值是相似的,但不同目标或背景的像素在灰度上有差异,反映在图像直方图上,不同目标和背景则对应不同的峰。
选取的阈值应位于两个峰之间的谷,从而将各个峰分开。
阈值分割的优点是实现简单,对于不的对图像进行分割。
阈值分割通常作为医学图像的预处理,然后应用其他一系列分割方法进行后处理。
它也常被用于CT 图像中皮肤、骨骼的分割。
阈值分割的缺点是不适用于多通道图像和特征值相差不度差异或各物体的灰度值范围有较大重叠的图像分割问题难以得到准确的结果。
另外,由于它仅仅考虑了图像的灰度信息而不考虑图像的空间信息,阈值分割对噪声和灰度不均匀很敏感。
针对阈值分割方法的缺点,不少学者提出了许多改进方法,如基于过渡区的方法[6],还有利用像素点空间位置信息的变化阈值法[7],结合连通信息[8]的阈值方法。
对于多目标的图像来讲,如何选取合适的阈值实在是基于阈值分割方法不少学者针对该问题进行深入的研究,提出了许多新方法。
在近年来的自动选取阈值方法中,基于最大熵原则选择阈值是最重要的方法之一,由T.Pun 首先在[9]中提出。
这种方法的目的在于将图像的灰度直方图分成两个或多个独立的类,使得各类熵的总值最大,从信息论角度来说就是使这样选择阈值获得的信息量最大。
J.N.Kapur 等人进一步发展了这种方法[10],P.Sahoo等人提出了用Renyi熵代替常规熵的最大熵原则[11]。
Jui-Cheng Yen等人提出用最大相关性原则选择阈值[12],这种方法其实只是用他们定义的一个最大相关性原则取代了一般用的最大熵原则。
2区域生长和分裂合并是步骤,其中后续步骤要根据前面步骤的结果进行判断而确定。
区域生长的基本思想是将具有相似性质的像素集合起来构成区域点,然后依次将种子像素周围的相似像素合并到种子像素所在的区域中。
区域生长算法的研究重点一是特征度量和区域增长规则的设计,二是算法的高效性和准确性。
区域增长方式的优点是计算简单。
与阈值分割类似,区域增长也很少单独使用,往往是与其他分割方法一起使用,特别适用于分割小的结构如肿瘤和伤疤[13]。
区域生长的缺点是它需要人工交互以获得种子点,这样使植入一个种子点。
同时,区域增长方式也对噪声敏感,导致抽取出的区域有空洞或者在局部体效应的情况下将分开的区域连接起来。
为解决这些问题,J.F. Mangin 等提出了一种同伦的(homotopic )区域生长方式[14],以保证初始区域和最终抽取出的区域的拓扑结构相同。
Shu-Yen Wan 等提出的对称区域增长算法[15]有效地弥补了原算法对种子点敏感和占用内存多的弱点,而且对3D 连接对象标记和删除空洞的算法效率较高。
另外,模糊连接度方法与区域增长相结合也是一个发展方向[16]。
在区域生长或合并方法中,输入图像往往被分为多个相似的区域。
然后类似的相邻区域根据某种判断准则迭代地进行合并。
在分裂技术中,整个图像先被看成一个区域,然后区域不断被分裂为四个矩形区域,直到每个区域内部都是相似的。
分裂合并方法中[17],区域从整幅图像进行分裂,然后将相邻的区域进行合并。
分裂合并方法不需要预先指定种子点,它的研究重点是分裂和合并规则的设计。
但是,分裂技术可能会使分割区域的边界被破坏。
2.3分类器和聚类分类是模式识别领域中一种基本的统计分析方法。
分类的目的利用已知的训练样本集在图像的特征空间找到点(1D)、曲线(2D)、曲面(3D)或超曲面(高维),从而实现对图像的划分。
用分类器[2]进行分割是一种有监督的统计方法,它需要手工分割得到的样本集作为对新的图像进行自动分割的参考。
分类器又分为两种:非参数(nonparametric)分类器和参数(parametric)分类器。
典型的非参数分类器包括K近邻(KNN)以及Parzen窗(一种投票分类器)。
它们对图像数据的统计结构没有要求。
参数分类器的代表是Bayes分类器,它假定图像的密度函数符合高斯独立分布。
分类器的有两个优点:(1) 不需要迭代运算,因此计算量相对较小。
(2) 能应用于多通道图像。
但是分类器同样没有考虑空间信息,因此对灰度不均匀的图像分割效果不好。
分类器还要求由手工分类生成训练集,而手工分类的工作量很大。
同时,用小量的训练集训练的分类器对大量的样本空间进行分类时会产生误差,因为它没有考虑到人体的解剖机构的个体差异。
聚类算法与分类器算法极为类似,只是它不需要训练样本,因此聚类是一种无监督的(unsupervised) 统计方法。
因为没有训练样本集,聚类算法迭代的执行对图像分类和提取各类的特征值。
从某种意义上说,聚类是一种自我训练的分类。
其中,K均值、模糊C均值(Fuzzy C-Means)、EM(Expectation-Maximization)和分层聚类方法[18][19]是常用的聚类算法。
K均值算法先对当前的每一类求均值,然后按新生成的均值对像素进行重新分类(将像素归入均值最近的类),对新生成的类再迭代执行前面的步骤。
模糊C均值算法从模糊集合理论的角度对K均值进行了推广。
EM算法把图像中每一个像素的灰度值看作是几个概率分布(一般用Gaussian分布)按一定比例的混合,通过优化基于最大后验概率的目标函数来估计这几个概率分布的参数和它们之间的混合比例。
分层聚类方法通过一系列类别的连续合并和分裂完成,聚类过程可以用一个类似树的结构来表示。
聚类分析不需要训练集,但是需要有一个初始分割提供初始参数,初始参数对最终分类结果影响较大。
另一方面,聚类也没有考虑空间关联信息,因此也对噪声和灰度不均匀敏感[2]。
八十年代以来,聚类方法开始被用于核磁图像多参数特性空间的分类,如脑白质和灰质的分割。
随着近十年来像数据保真度的提高,这类方法逐渐发展成熟起来,出现了一系列方法来提高聚类算法对图像灰度不均匀和噪声的鲁棒性,并在磁共振图像上取得了成功[1]。
不均匀的医学图像可以先用校正算法消除偏场效应,再运用标准的分割算法[20] [21]。
还有一些方法在分类的同时补偿偏场效应[22][23][24],其中最有名的方法是Wells等提出的自适应分割方法[25],在分类同时采用EM算法估计图像偏场。
用此方法能够得到基于后验概率的模糊分割,但对大多数数据集仍需要一些人工交互提供训练数据。
当然,并非所有人承认该方法是最好的解决方案,不少学者仍在继续研究其他解决方法。
2.4基于随机场的方法统计学方法中最常用的一种是将图像看作一个马尔科夫随机场MRF。