高一物理典型例题

合集下载

高一物理习题课精选例题

高一物理习题课精选例题

高一物理习题课精选例题在高中物理教学中,习题课是非常重要的一个环节,通过刻意练习例题可以巩固知识,提高解题能力,提高学生对物理学科的兴趣和信心。

下面我列举几道高一物理习题课的精选例题,希望能对同学们的学习有所帮助。

1.一个碰撞实验:小球球速为 u1=2.0m/s,质量为 m1=0.3kg,大球球速为 u2=0.0m/s,质量为 m2=1.0kg,则碰撞后小球的运动状态及其速度大小为多少?解析:这是一个动量守恒的碰撞实验。

因为是弹性碰撞,所以动能也被保持。

根据动量定理和能量守恒定理,我们可以得到如下的方程:m1u1 + m2u2 = m1v1 + m2v21/2m1u1^2 + 1/2m2u2^2 = 1/2m1v1^2 + 1/2m2v2^2将数值代入方程式,可以得到小球反弹后的速度为3.2m/s。

这题需要细心,以免在处理式子时出现失误。

2.一车在匀加速过程中其行驶路程为225 m,行驶时间为15秒。

当行驶到一位置,速度已达 30m/s,则初速为多少?解析:这是一个匀变速直线运动问题。

首先可以根据路程和时间计算平均速度:v = s/t则 v = 15m/s。

因为是匀加速直线运动,所以可以应用以下公式求出初速:v = v0 + at其中 a 为加速度,t 为运动时间。

所以根据这个式子,可以求得初始速度 v0 等于 15m/s - 2m/s^2 * 15s = -15m/s。

由于物理量是矢量,需要注意正负方向。

3.一桶装有水的重量为 80N,具有 2.0升水。

另外一个装有石油的桶,重量为 70N。

则这个桶里装有多少升的石油?解析:这是一个密度的应用题,我们需要先知道水和石油的密度:水的密度:1000 kg/m³石油的密度:900 kg/m³知道密度后,就可以得出以下方程:80N + 2.0L * 1000kg/m³g = 70N + V* 900kg/m³g解出 V = 0.56L,即桶里面装了 0.56 升的石油。

高一物理力学典型例题

高一物理力学典型例题

以下是一些高一物理力学的典型例题:1. 一个物体在水平地面上做匀速直线运动,受到的摩擦力是20N,那么物体受到的拉力是()A. 大于20NB. 等于20NC. 小于20ND. 无法判断答案:B解析:物体做匀速直线运动时,处于平衡状态,受到的摩擦力和拉力是一对平衡力,所以拉力等于摩擦力等于20N。

2. 一辆汽车在平直的公路上行驶,从甲地经过乙地到达丙地,若汽车在甲、乙两地间的平均速度为v1,在乙、丙两地间的平均速度为v2,则汽车从甲地到丙地的平均速度为()A. (v1+v2)/2B. v1+v2C. v1v2/(v1+v2)D. v1v2/v1+v2答案:C解析:设甲、乙两地间的距离为s1,乙、丙两地间的距离为s2,则汽车从甲地到乙地的时间t1=s1/v1,从乙地到丙地的时间t2=s2/v2,则汽车从甲地到丙地的平均速度v=s1+s2/t1+t2=s1+s2/s1/v1+s2/v2=v1v2/v1+v2。

3. 一个物体在竖直方向上做自由落体运动,其在t时间内位移为x,在紧接着的t时间内位移为x\prime,则物体刚下落时离地面的高度为()A. x+x\prime/t\textsuperscript{2}B. x-x\prime/t\textsuperscript{2}C.x+x\prime/t\textsuperscript{2}-gt\textsuperscript{2}/4D.x+x\prime/t\textsuperscript{2}+gt\textsuperscript{2}/4 答案:C解析:根据自由落体运动的位移时间关系公式,有x=gt\textsuperscript{2}/2;x′=g(t+t\textsubscript{0})\textsuperscript{2}/2,其中t\textsubscript{0}=t,解得物体刚下落时离地面的高度h=x+x′/t\textsuperscript{2}-gt\textsuperscript{2}/4。

高一物理经典例题 (108)

高一物理经典例题 (108)

高一物理经典例题
33.2020年2月18日,我国发射的嫦娥四号着陆器和玉兔二号探测器再次启动,打破了探测器在月球上工作的世界纪录,并将开始第15个月昼的科学探测活动。

若着陆器与探测器总质量为1.5×103kg ,着陆过程简化如下:在距月面102m 处悬停,当发动机推力为F 1时,先竖直向下做匀加速直线运动;当发动机推力为F 2时,随即做匀减速直线运动,且两个阶段加速度大小相等,刚好在距离月面2m 时再次悬停,此过程总共用时600s ,此后关闭发动机做自由落体运动,直到接触月球表面。

月球表面重力加速度取g =l.6m/s 2,求:
(1)探测器接触月球表面时的速度大小;
(2)发动机施加推力的差值(F 2﹣F 1)的大小?
解:(1)探测器从距离月面2m 处自由下落,由v 2=2gx 得:
v =√2gx =√2×1.6×2m/s =45√10m/s
即探测器接触月球表面时的速度大小为45√10m/s 。

(2)设加速过程中的最大速度为v m 。

加速阶段有 v m 2=2ax 1
减速阶段有 v m 2=2ax 2
由题有 x 1+x 2=102m ﹣100m
加速阶段的时间 t 1=
v m a 减速阶段的时间 t 2=
v m a 由题有 t 1+t 2=600s
联立解得 v m =13m/s ,a =1900m/s 2
由牛顿第二定律得:
加速阶段:mg ﹣F 1=ma
减速阶段:F 2﹣mg =ma
解得 F 2﹣F 1=103N
答:(1)探测器接触月球表面时的速度大小是45√10m/s ;
(2)发动机施加推力的差值(F 2﹣F 1)的大小是
103N 。

高一必修一物理经典力学典型例题(有答案,含解析)

高一必修一物理经典力学典型例题(有答案,含解析)

高一必修一物理经典力学典型例题1.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC长L=6 m,始终以v0=6m/s的速度顺时针运动。

一个质量m=1 kg的物块从距斜面底端高度h1=5.4m的A点由静止滑下,物块通过B点时速度的大小不变。

物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面在距地面一定高度处,g取10m/s2。

(sin37°=0.6,cos37°=0.8)(1)求物块由A点运动到C点的时间;(2)求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D。

2.如图,倾斜的传送带向下匀加速运转,传送带与其上的物体保持相对静止。

那么关于传送带与物体间静摩擦力的方向,以下判断正确的是A.物体所受摩擦力为零B.物体所受摩擦力方向沿传送带向上C.物体所受摩擦力方向沿传送带向下D.上述三种情况都有可能出现3.(2018·江西师大附中)如图是工厂流水生产线包装线示意图,质量均为m=2.5 kg、长度均为l=0.36 m的产品在光滑水平工作台AB上紧靠在一起排列成直线(不粘连),以v0=0.6 m/s 的速度向水平传送带运动,设当每个产品有一半长度滑上传送带时,该产品即刻受到恒定摩擦力F f=μmg而做匀加速运动,当产品与传送带间没有相对滑动时,相邻产品首尾间距离保持2l(如图)被依次送入自动包装机C进行包装。

观察到前一个产品速度达到传送带速度时,下一个产品刚好有一半滑上传送带而开始做匀加速运动。

取g=10 m/s2。

试求:(1)传送带的运行速度v;(2)产品与传送带间的动摩擦因数μ:(3)满载工作时与空载时相比,传送带驱动电动机增加的功率∆P;(4)为提高工作效率,工作人员把传送带速度调成v'=2.4 m/s,已知产品送入自动包装机前已匀速运动,求第(3)问中的∆P′?第(3)问中在相当长时间内的等效∆P′′?4.如图所示,传送带AB段是水平的,长20 m,传送带上各点相对地面的速度大小是2 m/s,某物块与传送带间的动摩擦因数为0.1。

(完整版)高一物理力学典型例题

(完整版)高一物理力学典型例题

高中物理力学典型例题1、如图1—1所示,长为5米的细绳的两端分别系于竖立在地面上相距为4米的两杆顶端A、B。

绳上挂一个光滑的轻质挂钩。

它钩着一个重为12牛的物体.平衡时,绳中张力T=____分析与解:本题为三力平衡问题。

其基本思路为:选对象、分析力、画力图、列方程。

对平衡问题,根据题目所给条件,往往可采用不同的方法,如正交分解法、相似三角形等。

所以,本题有多种解法。

解法一:选挂钩为研究对象,其受力如图1-2所示,设细绳与水平夹角为α,由平衡条件可知:2TSinα=F,其中F=12牛,将绳延长,由图中几何条件得:Sinα=3/5,则代入上式可得T=10牛。

解法二:挂钩受三个力,由平衡条件可知:两个拉力(大小相等均为T)的合力F’与F大小相等方向相反。

以两个拉力为邻边所作的平行四边形为菱形.如图1-2所示,其中力的三角形△OEG与△ADC相似,则:得:牛.想一想:若将右端绳A 沿杆适当下移些,细绳上张力是否变化?(提示:挂钩在细绳上移到一个新位置,挂钩两边细绳与水平方向夹角仍相等,细绳的张力仍不变。

)2、如图2—1所示,轻质长绳水平地跨在相距为2L的两个小定滑轮A、B 上,质量为m的物块悬挂在绳上O点,O与A、B两滑轮的距离相等.在轻绳两端C、D分别施加竖直向下的恒力F=mg。

先托住物块,使绳处于水平拉直状态,由静止释放物块,在物块下落过程中,保持C、D两端的拉力F不变.(1)当物块下落距离h为多大时,物块的加速度为零?(2)在物块下落上述距离的过程中,克服C端恒力F做功W为多少?(3)求物块下落过程中的最大速度Vm和最大距离H?分析与解:物块向下先作加速运动,随着物块的下落,两绳间的夹角逐渐减小。

因为绳子对物块的拉力大小不变,恒等于F,所以随着两绳间的夹角减小,两绳对物块拉力的合力将逐渐增大,物块所受合力逐渐减小,向下加速度逐渐减小.当物块的合外力为零时,速度达到最大值。

之后,因为两绳间夹角继续减小,物块所受合外力竖直向上,且逐渐增大,物块将作加速度逐渐增大的减速运动。

高一物理必修一经典题及答案解析

高一物理必修一经典题及答案解析

高一物理必修一经典题及答案解析高一物理必修一中的经典题有很多,下面将介绍其中一些,并附上详细解析。

1. 两个物体相对运动题目:火车以60km/h的速度向东行驶,在火车顶端上有只鸟,在水平方向上以35km/h的速度飞行,求在地面上看到的鸟的速度和方向。

解析:首先要明确,问题中给出的速度分别是相对于不同物体的速度,即火车速度是相对于地面的速度,而鸟的速度是相对于火车的速度。

所以,根据相对速度公式:相对速度 = 两速度之差,可以得到鸟在地面上的速度向东25km/h(60km/h - 35km/h),方向为东方。

2. 斜抛运动题目:球以20m/s的速度成45°角抛出,距离地面50m的地方有一个桶,求球与桶的碰撞点离桶底有多高。

解析:将球在水平方向和竖直方向上的运动分开考虑。

水平方向上,球匀速直线运动,时间为t = 50m / 20m/s = 2.5s。

竖直方向上,球做自由落体运动,沿y轴方向的位移为S = 1/2 * g * t² = 1/2 * 9.8m/s² *(2.5s)² = 30.6m。

所以球与桶的碰撞点离桶底的高度为50m - 30.6m = 19.4m。

3. 牛顿第二定律题目:质量为2kg的物体受到一力,其加速度为4m/s²,求力的大小。

解析:根据牛顿第二定律,力等于物体的质量乘以加速度,即F = m *a = 2kg * 4m/s² = 8N。

4. 动能定理题目:质量为1kg的物体静止不动,受到10J的作用力,求物体的速度。

解析:根据动能定理,物体的动能等于力所做的功,即1/2 * m * v² =10J,其中m为物体的质量,v为物体的速度。

解得v = 10m/s。

5. 弹性碰撞题目:质量分别为0.5kg和1.5kg的两个物体相向而行,碰撞后,质量为0.5kg的物体运动方向改变了90°,求两物体碰撞后的速度。

高一必修一物理经典力学典型例题(有答案,含解析)

高一必修一物理经典力学典型例题(有答案,含解析)

高一必修一物理经典力学典型例题1.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC长L=6 m,始终以v0=6m/s的速度顺时针运动。

一个质量m=1 kg的物块从距斜面底端高度h1=5.4m的A点由静止滑下,物块通过B点时速度的大小不变。

物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面在距地面一定高度处,g取10m/s2。

(sin37°=0.6,cos37°=0.8)(1)求物块由A点运动到C点的时间;(2)求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D。

2.如图,倾斜的传送带向下匀加速运转,传送带与其上的物体保持相对静止。

那么关于传送带与物体间静摩擦力的方向,以下判断正确的是A.物体所受摩擦力为零B.物体所受摩擦力方向沿传送带向上C.物体所受摩擦力方向沿传送带向下D.上述三种情况都有可能出现3.(2018·江西师大附中)如图是工厂流水生产线包装线示意图,质量均为m=2.5 kg、长度均为l=0.36 m的产品在光滑水平工作台AB上紧靠在一起排列成直线(不粘连),以v0=0.6 m/s 的速度向水平传送带运动,设当每个产品有一半长度滑上传送带时,该产品即刻受到恒定摩擦力F f=μmg而做匀加速运动,当产品与传送带间没有相对滑动时,相邻产品首尾间距离保持2l(如图)被依次送入自动包装机C进行包装。

观察到前一个产品速度达到传送带速度时,下一个产品刚好有一半滑上传送带而开始做匀加速运动。

取g=10 m/s2。

试求:(1)传送带的运行速度v;(2)产品与传送带间的动摩擦因数μ:(3)满载工作时与空载时相比,传送带驱动电动机增加的功率∆P;(4)为提高工作效率,工作人员把传送带速度调成v'=2.4 m/s,已知产品送入自动包装机前已匀速运动,求第(3)问中的∆P′?第(3)问中在相当长时间内的等效∆P′′?4.如图所示,传送带AB段是水平的,长20 m,传送带上各点相对地面的速度大小是2 m/s,某物块与传送带间的动摩擦因数为0.1。

高一物理力学例题经典

高一物理力学例题经典

高一物理力学例题经典第一章力例题1 把一个大小为10N的力沿相互垂直的两个方向分解,两个分力的大小可能为(A) 1N,9N (B)6N,8N(C)(99.99)1/2N,0.1N (D)11N,11N解:两个分力的平方和应等于102,等于100.选项(B)(C)正确.例题2 一个大小为1N的力可以分解为多大的两个力?(A) 0.2N,1.2N (B)1N,1N (C)100N,100N (D)1N,1000N解:大小为0.2N和1.2N的两个力方向相反时合力为1N,选项(A)正确;大小均为1N的两个力互成120°角时,合力为1N,选项(B)正确;大小均为100N的两个力互成适当小的角度时,合力可为1N,选项(C)正确;大小为1N和1000N的两个力的合力大小在999N与1001N之间,不可能为1N,选项(D)不对.总之选项(A)(B)(C)正确.例题3 作用于同一质点的三个力大小均为10N.(1)如果每两个力之间的夹角都是120°角,那么合力多大?(2)如果两两垂直,那么合力多大?解:(1)合力为零.(2)根据题意,可以设F1向东,F2向南,F3向上.F1、F2的合力F12,沿东南方向,大小为10N.F3与F12相垂直,所以三个力的合力大小为F=(102+(10)2)1/2=10N例题4 (1)大小为5N、7N、8N的三个共点力,合力最小值为____;(2)大小为5N、7N、12N的三个共点力,合力最小值为____;(3)大小为5N、7N、13N的三个共点力,合力最小值为____;(4)大小为5N、7N、40N的三个共点力,合力最小值为____.答:(1)0;(2)0;(3)1N;(4)28N.例题5 如图1-2所示,六个力在同一平面内,相邻的两个力夹角都等于60°,F1=11N,F2=12N,F3=13N,F4=14N,F5=15N,F6=16N.六个力合力的大小为___N.解:F1与F4的合力F14沿F4方向,大小为3N,F2与F5的合力F25沿F5方向,大小为3N,F3与F6的合力F36沿F6方向,大小为3N.所以六个力的合力等于图1-3中三个力的合力.F14与F36的合力F1436沿F25方向,大小为3N.F1436与F25的合力,沿F25方向,大小为6N.总之六个力的合力大小为6N,沿F5方向.例题6 质点受到五个力:F1、F2、F3、F4、F5,图1-4中作出了五个力的图示,两条实线和四条虚线正好构成一个正六边形.已知F3=10牛,求五个力的合力多大.解:容易看出,F1和F2的合力等于F3(大小和方向等于F3的大小和方向),F2和F5的合力等于F3,所以五个力的合力为F=3F3=30牛.例题7 图1-5(a)中三个力为共点力,平移后构成三角形,图1-5(b)也是这样.图1-5(a)中三个力的合力大小为____N;图1-5(b)中三个力的合力大小为____N.解:根据三角形定则,图(a)中,F2与F3的合力等于F1,所以三个力的合力等于2F1=40N(向左).根据三角形定则,图(b)中,F2与F3的合力向右,大小等于F1,所以三个力的合力等于零.从多边形定则可以直接得出这个结论.例题8 如图1-6所示,十三个力在同一平面内,大小均为1N,相邻的两个力夹角都是15°,求十三个力的合力.解:F1与F13的合力为零;F2与F12互成150°角,合力沿F7方向,利用余弦定理,可算出合力大小为(12+12+2×1×1cos150°)1/2N=(12+12-2×1×1cos30°)1/2N=(2-)1/2N;F3与F11互成120°角,合力沿F7方向,合力大小为1N;F4与F10互成90°角,合力沿F7方向,合力大小为N;F5与F9互成60°角,合力沿F7方向,合力大小为N;F6与F8互成30°角,合力沿F7方向,利用余弦定理,可算出合力大小为(12+12+2×1×1cos30°)1/2N=(2+)1/2N;所以十三个力的合力沿F7方向,大小为F=(2-)1/2N+1N+N+N+(2+)1/2N+1N=(2+(2+)1/2+(2-)1/2++)N.例题9 如图1-7,有同一平面内5个共点力,相邻的两个力之间的夹角都是72度.F1大小为90N,其余各力大小均为100N.求5个力的合力.解:F1可以分解为沿F1方向的大小为100N的分力F1a,和沿F1反方向的大小为10N的分力F1b.这样原题转化为求解F1a、F1b和F2、F3、F4、F5等6个力的合力.易知,其中F1a和F2、F3、F4、F5等5个力的合力为零.所以F1、F2、F3、F4、F5的合力等于F1b:大小为10N,沿F1的反方向.例题10 有n个大小为F的共点力,沿着顶角为120°的圆锥体的母线方向,如图1-8所示.相邻两个力的夹角都是相等的.这n个力的合力大小为_____.解:将每个力沿圆锥体的对称线方向和平行于底面的方向分解,得到n个沿着对称线方向的分力,和n个平行于底面方向的分力.每个沿着对称线方向的分力大小都等于F/2,所以n个沿着对称线方向的分力的合力,大小为nF/2.另一方面,n个平行于底面方向的分力的合力为零.所以本题所求n个力的合力大小等于nF/2.例题11 下面每组共点力,大小是确定的.试分别判断各组力之合力是否可能为零,如不可能为零,最小值多大.(A)1N,2N,3N,4N,15N(B)1N,2N,3N,4N,10N(C)1N,2N,3N,4N,5N(D)1N,2N,10N,100N,100N(E)1N,2N,……98N,99N,100N(F)1N,2N,……98N,99N,10000N解:(A)1+2+3+4=10,而10<15,这五个力不可能组成五边形,谈不上组成如图1-1(c)所示的五边形,因此合力不可能为零,最小值为:F min=15N-10N=5N.(B)1+2+3+4=10,所以五个力的合力可能为零.(C)1+2+3+4>5,这五个力可以组成图8所示的五边形,合力可能为零.(D)1+2+10+100>100,所以五个力的合力可能为零.(E)1+2+3+……+98+99>100,所以一百个力的合力可能为零.(F)1+2+3+……+98+99=(1+99)×99/2=4950<10000所以,一百个力的合力不可能为零,最小值为F min=10000N-4950N=5050N.第二章直线运动例题1 有一小孩掉进河里后抱住了一根圆木随水向下飘流,有三条船A、B、C在正对河岸P点的地方同时与圆木相遇,但三条船上的船员都没有注意到圆木上的小孩.A、B 两船逆水上行,C船顺水下行.相对水的速度,B船是A船的1.2倍,C船是B船的1.2倍. 当三条船离开P点行驶30分钟的时候, 船员们从收音机里听到圆木上有小孩需要救助的消息,三条船都立即调转船头,驶向圆木.在离P点6千米的地方,小孩被船员救起. 试回答三条船到达小孩和圆木的先后次序如何?_____.解:以流水为参照物.小孩和原木是静止的.船A上行时速度和下行时速度大小相等,船B也是这样,船C也是这样.船A、B、C 同时从小孩所处的位置向上游和下游行驶,速度不同,在30 分钟内行驶了不同的路程s1、s2、s3;在接下去的30分钟内, 三条船分别沿反方向行驶路程s1、s2、s3,回到小孩所处的位置.答:三条船同时到达小孩和原木.例题2 一列一字形队伍长120m,匀速前进. 通讯员以恒定的速率由队尾跑到队首,又跑回队尾,在此期间,队伍前进了288m. 求通讯员跑动的速率v是队伍前进的速率u的多少倍.分析:顺利解答本题的关键是, 找出通讯员的运动跟队首或队尾的运动的联系.解:设通讯员从队尾跑到队首所用的时间为t1, 从队首跑到队尾所用的时间为t2,那么u(t1+t2)=288 (1)在t1时间内,通讯员跑动的路程比队首移动的路程多120m:vt1-ut1=120 (2)在t2时间内,通讯员跑动的路程加上队尾移动的路程等于120m:vt2+ut2=120 (3)从(2)式中得出t1的表达式,从(3)式中得出t2的表达式,代入(1)式, 可算出:v=1.5u例题3 一物体作匀变速直线运动,某时刻速度的大小为4m/s, 1s后速度的大小变为10m/s.在这1s内(A)位移的大小可能小于4m(B)位移的大小可能大于10m(C)加速度的大小可能小于4m/s2(D)加速度的大小可能小于10m/s2 (1996年高考全国卷试题)解:取初速度方向为正方向,则v0=4m/s,v t=10m/s或-10m/s.由 s=v t=(v0+v t)t/2,得 s=7m或-3m所以位移的大小为7m或3m.选项(A)正确,(B)错误.由 a=(v t-v0)/t得 a=6m/s2或-14m/s2所以加速度的大小为6m/s2或14m/s2,选项(C)错误,(D)正确.总之,本题选(A)(D).例题4 在三楼的阳台上 ,一人伸出阳台的手上拿着一只小球, 小球下面由细绳挂着另一个小球.放手,让两小球自由下落,两小球相继落地的时间差为t.又站在四层楼的阳台上,同样放手让小球自由下落,两小球相继落地的时间差为t',则(A)t<t' (B)t=t' (C)t>t'解:从三楼阳台外自由下落,下面的小球着地时,两球具有的速度为v,从四楼阳台外自由下落,下面的小球着地时, 两球具有的速度为v',显然v<v'.下面的小球着地后,上面的小球以较小的初速度v和较大的初速度v',继续作加速度为g的匀加速运动, 发生一定的位移(等于绳长),所需的时间显然是不同的:t>t'.选项(C)正确.例题5 一质点由静止从A点出发,先作匀加速直线运动,加速度大小为a,后做匀减速直线运动,加速度大小为3a,速度为零时到达B 点.A、B间距离为s.求质点运动过程中的最大速度.解:设质点第一阶段做匀加速运动的的时间为t1,末速度为 v, 这就是运动过程中的最大速度;设第二阶段做匀减速运动的时间为t2.那么第一阶段的位移为vt1/2,第二阶段的位移为vt2/2, 两者之和应为全程位移: vt1/2+vt2=s (1)又根据加速度的定义式,有t1=v/a (2)t2=v/(3a) (3)将(2)(3)两式代入(1)式:v2/(2a)+v2/(6a)=s所以 v=(3as/2)1/2例题6 两辆完全相同的汽车 ,沿水平直路一前一后匀速行驶, 速度均为v0,若前车突然以恒定的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始刹车.已知前车在刹车过程中所行驶的路程为s,若要保证两车在上述情况下不相撞,则两车在匀速行驶时保持的距离至少应为(A)s (B)2s (C)3s (D)4s(1992年高考全国卷试题)解:汽车从开始刹车到停下这个期间,平均速度为v0/2.在前车开始刹车到停下这段时间内,后车以速度v0匀速行驶, 行驶的距离应为s的两倍,即为2s.从前车开始刹车到两车都停下,前车的位移为s;后车的位移为 (2s+s)=3s.设前车刹车前(匀速行驶期间)两车的距离为l,为使两车不相撞,应满足:l+s≥3s所以l≥2s本题选(B)例题7 某人离公共汽车尾部20m,以速度v向汽车匀速跑过去, 与此同时汽车以1m/s2的加速度启动,作匀加速直线运动.试问, 此人的速度v分别为下列数值时,能否追上汽车?如果能, 要用多长时间?如果不能,则他与汽车之间的最小距离是多少?(1)v=4m/s; (2)v=6m/s; (3)v=7m/s.思路:假设人不管是否在某一时刻追上了汽车,一直以速度v朝前跑,得出汽车跟人的距离y随时间t变化的函数式. 然后考察对于正值t,y是否可能取零,如果是的,那么能追上,如果不能,那么不能追上.解:假设人不管是否在某一时刻追上了汽车,一直以速度v朝前跑.在时间t内,人的位移等于vt;汽车的位移等于(1/2)at2=0.5t2.经过时间t时,汽车尾部跟人之间,距离为y=20+0.5t2-vt即 y=20+0.5(t2-2vt+v2)-0.5v2即 y=0.5(t-v)2+20-0.5v2 (*)上式中,y取正值时,表示汽车尾部在人前方y米,y取负值时,表示汽车的尾部在人后面│y│米(前面已假设人即使追上了汽车,也一直朝前跑).(甲)把v=4代入(*)式得y=0.5( t-4)2+12 (1)y恒大于零,y最小值为12.(乙)把v=6代入(*)式得y=0.5( t-6)2+2 (2)y恒大于零,y最小值为2.(丙)把v=7代入(*)式得y=0.5( t-7)2-4.5 (3)容易得出,当t=4,10时,y=0,这表示,如果人一直朝前跑, 那么经过4s时,人与汽车尾部平齐,经过10s时, 人又一次与汽车的尾部平齐.结论:(1)如v=4m/s,则人追不上汽车, 人跟汽车之间的最小距离为 12m.(2)如v=6m/s,则人追不上汽车, 人跟汽车之间的最小距离为 2m.(3)如v=7m/s,则人经过4s追上汽车.例题8 杂技演员表演一手抛接三球的游戏时, 三个球都抛过一次后,每一时刻手中最多只有一个球. 如果每只球上升的最大高度都为1.25m,那么每隔多长时间抛出一个球?g取10m/s2.(A)0.33s (B)0.33s到0.50s(C)0.50s (D)1.0s解:每个球做一次竖直上抛运动的时间是t=2(2h/g)1/2=2(2×1.25/10) 1/2=1.0s球从这一次被抛出到下一次被抛出,完成一个周期性运动, 设周期为T.如果每个球在手中停留的时间趋于零,那么T=t=1.0s;如果手中总停留着一个球,一个球停留的时间是t',那么T=t+t' ,且 t'=(1/3)T那么 T=(3/2)t=1.5s.以上考虑的是两个极端情况.实际上1.0s<T<1.5s在T时间内抛出三个球,每隔T/3的时间抛出一个球:0.33s<T/3<0.5s ,选项(B)正确.请读者考虑:如果每秒钟抛出三个球,那么应使每个球上升多高?(答案:0.56m到1.25m)例题9 小球A从地面上方H高处自由下落,同时在A的正下方,小球B从地面以初速度v竖直上抛.不计空气阻力.要使A、B 发生下述碰撞,v、H应满足什么条件?(甲)在B上升到最高点时相碰;(乙)在B上升的过程中相碰;(丙)在时间T内在空中相碰;(丁)经过时间T时在空中相碰.解:设经过时间t在地面上方h高处相碰.则从开始运动到相碰, 小球A发生的位移大小为(H-h),小球B发生的位移大小为h,则:( H-h)=(1/2)gt2h=vt-(1/2)gt2由以上两式得 t=H/v (1)时间t应小于B球在空中运动的时间:t<2v/g (2)由(1)(2)得 2v2>gH (3)(甲)在最高点相碰:t=v/g (4)由(1)(4)得 v2=gH (5)所以v、H应满足(5)式.(乙)时间t应小于B球上升时间:t<v/g (6)由(1)(6)得 v2>gH (7)所以v、H应满足(7)式.(丙) t≤T (8)由(1)(8)得H≤vT (9)所以v、H应满足(3)(9)两式.(丁) t=T (10)由(1)(10)得 H=vT (11)所以v、H应同时满足(3)(11)两式.讨论: (11)代入(3):v>gT/2 (12)问题(丁)又可这样回答:v、H应满足(11)(12)两式.从(11)得出v=H/T,代入(3)或(12)可得H>gT2/2 (13)问题(丁)还可这样回答:v、H应满足(11)(13)两式.第三章牛顿运动定律例题1 某人在地面上最多能举起32Kg的重物,那么在以2m/s匀加速下降的电梯中,他最多能举起多少Kg的重物?g取10m/s2.解:此人能施加的向上的举力大小为F=m1g=32×10N=320N在匀加速下降的电梯中,设某人用举力F举起了质量为m2的物体.物体的加速度向下,所以合外力也向下. 对这个物体应用牛顿第二定律:m2g-F=m2a即 m2=F/(g-a)把举力大小F=320N,重力加速度大小g=10m/s2,物体加速度大小a=2m/s2代入上式,得m2=40Kg他最多能举起40Kg的物体.例题2 一个质量为200g的物体,以初速度v0=20m/s竖直上抛, 上升的最大高度为16m.没有风,且假设物体所受空气阻力的大小始终不变,求物体落回抛出点时的速度大小.g取10m/s2.解:物体受到的空气阻力跟物体相对空气的运动方向相反. 因此,在没有风的情况下, 物体受到的空气阻力跟物体相对地面的运动方向相反.物体上升时,受到的空气阻力向下;下降时, 受到的空气阻力向上.设空气阻力的大小始终为f.物体减速上升时,加速度向下,合外力也向下;加速下降时, 加速度向下,合外力也向下.由牛顿第二定律,物体减速上升时,加速度的大小为a1=(mg+f)/m即 a1=g+f/m (1)加速下降时,加速度的大小为a2=(mg-f)/m即 a2=g-f/m (2)由匀变速直线运动公式,上升阶段满足v02=2a1h (3)其中h=16m.下降阶段满足v2=2a2h (4)(1)+(2): a1+a2=2g (5)(3)+(4): v02+v2=2(a1+a2)h (6)(5)代入(6)得v02+v2=4gh (7)代入数据得 v=(240)1/2m/s=15.5m/s例题3 木块静止在光滑水平面上,子弹以较大的水平速度 v从木块左面射入,从右面射出,木块获得速度u. 设子弹对木块的作用力与速度无关.如v增大 ,则u(A)增大 (B)减小 (C)不变.思路:首先通过考察子弹相对木块的运动, 判断子弹穿行于木块的时间,与子弹的入射速度v有怎样的关系.解:子弹对木块的作用力向前,木块对子弹的作用力向后,这一对作用力是恒定的,在它们的作用下,子弹向前作匀减速直线运动, 木块向前作初速度为零的匀加速直线运动.子弹相对木块作匀加速运动.在子弹对木块的作用力与速度无关这个前提下,增大v以后,子弹匀减速运动的加速度仍为原来的值,木块作匀加速运动的加速度也仍为原来的值,从而子弹相对木块的加速度仍为原来的值.增大v以后,子弹穿行于木块期间,子弹相对木块运动的位移仍等于木块的长度.子弹相对木块运动的初速度等于v,增大v, 意味着增大子弹相对木块运动的初速度.所以增大v以后,子弹穿行于木块的时间减少.在较少的时间内,木块作初速度为零的匀加速运动, 获得的末速度u就较小.选项(B)正确.例题4 如图3-2所示,斜面的倾角为α.质量分别为m1、m2的两木块A、B,用细绳连接.它们与斜面之间的动摩擦因数μ相同 .现在A上施加一个沿斜面向上的拉力F,使A、B一起向上作匀加速运动.求证细绳上的拉力与μ和α无关.解:设A、B一起运动的加速度为a,对A、B组成的整体应用牛顿第二定律可得:F-(m1+m2)gsinα-μ(m1+m2)gcosα=(m1+m2)a即 F=(m1+m2)gsinα+μ(m1+m2)gcosα+(m1+m2)a (1)设细绳上的拉力大小为T,对B应用牛顿第二定律可得:T-m2gsinα-μm2gcosα=m2a即 T=m2gsinα+μm2gcosα+m2a (2)(1)式除以(2)式得F/T=(m1+m2)/m2 (3)由(3)式可见,细绳上的拉力决定于拉力F以及两个木块的质量, 与动摩擦因数μ以及斜面的倾角α无关.例题5 如图3-3所示,自由下落的小球,从它接触到竖直放置的轻弹簧开始,到弹簧被压缩到最短的过程中,(A)合力逐渐变小(B)合力先变小后变大(C)速度逐渐变小(D)速度先变小后变大解:小球刚接触到弹簧时,弹簧处于自然状态,弹簧对小球的作用力为零,小球受到的合力等于它受到的重力.在最初一段时间内,小球以自由落体运动的末速度为初速度,继续向下做加速运动. 小球向下运动一段适当的位移时(弹簧被压缩适当的长度时),小球弹簧对小球的向上的支持力大小正好等于重力,这时小球的合外力为零.由于小球已经具有了一定的速度,所以还要向下运动.弹簧被压缩的长度增加时,支持力也增大,支持力超过重力,合力向上, 所以从合外力为零的时刻以后向下的运动是减速运动.向下的减速运动进行到速度减为零为止.速度减为零时,弹簧被压缩到最短.再以后,小球向上运动,弹簧的长度增加.综上所述,小球从接触到弹簧开始, 到弹簧被压缩到最短的过程中,小球的合外力先是向下,逐渐减小,然后向上,逐渐增大;小球先作加速运动,然后作减速运动.选项(B)正确.例题6 如图3-4所示,在水平拉力F的作用下,物体A向右运动, 同时物体B匀速上升.可以判断(A)物体A的运动是匀速运动(B)绳子对物体A的拉力逐渐减小(C)水平地面对物体A的支持力逐渐增大(D)水平地面对物体A的摩擦力逐渐减小解:物体A的速度u跟物体B的速度v满足:v=ucosθ在v保持不变的情况下,u随着θ的变化而变化:物体A的运动不是匀速运动.由物体B匀速运动,可知绳子对物体B的拉力保持不变. 绳子对物体A的拉力T的大小总等于绳子对B的拉力,也是不变的.物体A的受力情况如图3-5所示,将 T沿水平方向和竖直方向分解为T x、T y,随着θ的减小,T x逐渐增大,T y逐渐减小.作用于物体A的T y、支持力N、重力G,三者满足:T y+N=GN随着Ty的减小而增大.根据f=μN水平地面对物体A的滑动摩擦力f随着N的增大而增大综上所述,选项(C)正确.例题7 一质点自倾角为α的斜面上方P点沿光滑的斜槽PB从静止开始下滑,如图3-6所示,为使质点在最短的时间内从P点到达斜面, 则斜槽与竖直方向的夹角β应等于______.解:如图3-6作PC垂直于斜面,垂足为C.则∠CPA=α,∠CPB=α- β.应用牛顿第二定律可得,质点从斜面上下滑时,加速度为a=gcosβ应用匀变速直线运动公式可得PB=(1/2)at2即 t2=2PB/a=2[PC/cos(α-β)]/(gcosβ)即 t2=2PC/[gcos(α-β)cosβ]当α-β=β ,即β=α/2 时 ,t2取最小值,t取最小值,质点在最短的时间内从P点到达斜面.例题8 图3-7中A为电磁铁,C为胶木秤盘,A和C(包括支架)的总质量为M,B为铁片,质量为m,整个装置用轻绳悬挂于O点. 当电磁铁通电,铁片被吸引上升的过程中,轻绳上拉力F的大小为( ).(A)F=Mg (B)Mg<F<(M+m)g(C)F=(M+m)g (D)F>(M+m)g (1992年高考上海卷试题)解:铁片离开秤盘时, 电磁铁对它的向上的拉力一定大于地球对它的重力mg.铁片在上升中,逐渐靠近电磁铁,电磁铁对它向上的吸引力逐渐增加,仍大于mg.根据牛顿牛顿第三定律,铁片对电磁铁向下的吸引力, 电磁铁对铁片的吸引力大小相等,大于mg.A和C组成的系统,受力平衡:绳子施加的拉力,等于系统的重力,与铁片对电磁铁向下的吸引力之和,大于(Mg+mg).选项(D)正确.例题9 把一个质量m=4Kg的长方体木块,分割成两个三棱柱形木块A和B,角α=30°,然后再对到一起,放在光滑的水平面上, 如图3-8所示.用大小为8N的水平力F沿图示方向推A, A、B 组成的长方体保持原来的形状,沿力的作用方向平动.(1)求A对B的作用力.(2)求A对B的静摩擦力.解:(1)A和B的加速度a,都是沿F方向.B的加速度是A对B的作用力Q产生的.所以,Q的方向跟F的方向相同,如图3-9所示.对A、B组成的系统应用牛顿第二定律:a=F/m=(8/4)m/s2=2m/s2对B应用牛顿第二定律:Q=(m/2)a=2×2N=4N(2)A对B的作用力Q是A对B的压力N和静摩擦力f的合力( 也可以说,Q可以分解为N和f),如图3-10(俯视图)所示.静摩擦力的大小为f=Q/2=2N例题10 如图3-11所示,A和B质量相等均为m,A与B之间的动摩擦因数为μ1,静摩擦因数为μ2,B与地面之间的动摩擦因数为μ3.原来在水平拉力F的作用下,A和B彼此相对静止 ,相对地面匀速运动(图3-11(a).撤消F后,A和B彼此保持相对静止,相对地面匀减速运动(图3-11(b).则A、B相对地面匀减速运动的过程中,A、B 之间的摩擦力的大小为(A)μ1mg (B)μ2mg (C)μ3mg (D)F/2解:B与地面之间的压力支持力大小始终等于A、B两个物体的总重力,因此地面对B的滑动摩擦力的大小始终为f=μ3(2mg)A、B匀速运动时,受力平衡:F=fA、B一起以加速度a做减速运动时,对于A、B组成的系统来说,地面对B的滑动摩擦力f就是合外力,等于(2ma);对于A来说,B对A的静摩擦力f1就是合力,等于(ma).于是f1=f/2综合以上三式得:f1=μ3mg和 f1=F/2本题选(C)(D).说明:因为A、B没有相对运动,所以A、B之间的动摩擦因数μ1用不到;因为B对A的静摩擦力不一定是最大静摩擦力,所以A、B 之间的静摩擦因数μ2用不到.例题11 如图3-12所示,质量为mA、mB的两个物体A和B 用跨过光滑滑轮的细绳相连.A沿倾角为θ的斜面向下加速下滑.A、B两物体加速度的大小相同,等于a.楔形物体C的下表面是光滑的.求台阶对C水平方向的作用力的大小.解:如图3-13,将物体A的加速度 a沿水平方向和竖直方向分解, 水平分加速度为ax=acosθ;物体B的加速度是向上的,没有水平分量;滑轮质心的加速度为零.在水平方向上,对由A、B、C以及滑轮,组成的系统,应用质点组牛顿第二定律,有F=m A a x.由以上两式得F=m A acosθ .例题12 如图3-14所示,三个质量相同,形状相同的楔形物体, 放在水平地面上.另有三个质量相同的小物体, 分别从斜面顶端沿斜面下滑.由于小物体跟斜面间的动摩擦因数不同, 第一个小物体匀加速下滑;第二个物体匀速下滑; 第三个小物体以一定的初速度匀减速下滑. 三个楔形物体都保持静止,水平面对它们的支持力分别为N1、N2、N3,则(A)N1=N2=N3 (B)N1<N2<N3 (C)N1>N2>N3解:楔形物体和小物体组成的系统受到的外力是: 水面地面对楔形物体的支持力,地球对楔形物体和小物体的重力, 以及水平地面施加于楔形物体的沿着接触面的静摩擦力.小物体匀加速下滑时,加速度沿斜面向下, 将加速度向水平方向和竖直方向分解时,竖直方向的分加速度是向下的. 根据质点组牛顿第二定律,竖直方向的作用力的合力向下,所以支持力N 1小于两者的重力之和.小物体匀速下滑时,加速度为零.支持力N 2等于两者的重力之和.小物体减速下滑时,加速度沿斜面向上, 将加速度沿水平方向和竖直方向分解时,竖直方向的分加速度向上. 根据质点组牛顿第二定律,竖直方向作用力的合力向上,支持力N 3大于两者的重力之和.本题选(B).例题13 如图3-15,光滑水平面上有一块木板,质量为M=4Kg, 长为L=1.4m.木板右端放着一个小滑块,小滑块质量为m=1Kg, 尺寸远小于L,与木板之间的动摩擦因数为μ=0.4.原来它们都静止,现在大小为F=28N的水平力向右拉木板,使滑块从木板左端掉下, 此力作用时间至少为多长?解:根据题意,水平力作用一段时间后,滑块会从左端掉下. 这暗示我们,水平力开始作用期间,木板向右的加速度较大,速度较大, 滑块向右的加速度较小,速度较小.在滑块尚未滑到木板左端时,如水平力停止作用,那么在一段时间内,木板向右的速度仍大于滑块,那么此后经一段时间滑块有可能从左端掉下,那时, 木板向右的速度应大于等于木板向右的速度.由此可知,水平力作用适当的一段时间t1后, 木板向右的速度比滑块向右的速度大,大适当的数值,然后撤去水平力,当两者的速度正好相等时,滑块从木板左端掉下.t 1就是水平力作用的最短时间.向右的水平力F开始作用后,木板除受到这个力外,还受到向左的滑块施加的滑动摩擦力f=μmg=4N木板的加速度向右,大小为(F-f)/M=6m/s2滑块受到向右的滑动摩擦力,加速度向右,大小为f/m=4m/s2经时间t1时,撤去水平力F.此后滑块的加速度仍向右,大小仍为f/m=4m/s2.木板在向左的滑动摩擦力作用下,加速度向左,大小为f/M=1m/s2木板相对于滑块始终向右运动,滑块相对于木板始终向左运动.下面以木板为参照物,考察滑块在木板上的运动(图3-16). 滑块第一阶段作初速度为零的匀加速运动,末速度的大小记为v,第二阶段作匀减速运动,末速度为零.第一阶段,加速度的大小为a1=6-4=2m/s第二阶段,加速度的大小为a2=4+1=5m/s2根据匀变速直线运动公式,有v=a1t1即 v=2t1 (1)v=a2t2=5t2即 v=5t2 (2)L=(v/2)(t1+t2) 即 2.8=v(t1+t2) (3)由(1)(2(3)得 t1=1s使滑块从木板左端掉下,水平力F作用时间至少为1s.例题14 如图3-17所示,A、B两个光滑的梯形木块质量均为m, 紧挨着并排放在光滑水平面上.倾角θ=60°.欲使A、B在水平推力F 作用下,一起加速运动(两者无相对滑动),F不能超过多少?。

高一必修一物理经典力学典型例题(有问题详解,含解析汇报)

高一必修一物理经典力学典型例题(有问题详解,含解析汇报)

高一必修一物理经典力学典型例题1.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC长L=6 m,始终以v0=6m/s的速度顺时针运动。

一个质量m=1 kg的物块从距斜面底端高度h1=5.4m的A点由静止滑下,物块通过B点时速度的大小不变。

物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面在距地面一定高度处,g取10m/s2。

(sin37°=0.6,cos37°=0.8)(1)求物块由A点运动到C点的时间;(2)求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D。

2.如图,倾斜的传送带向下匀加速运转,传送带与其上的物体保持相对静止。

那么关于传送带与物体间静摩擦力的方向,以下判断正确的是A.物体所受摩擦力为零B.物体所受摩擦力方向沿传送带向上C.物体所受摩擦力方向沿传送带向下D.上述三种情况都有可能出现3.(2018·江西师大附中)如图是工厂流水生产线包装线示意图,质量均为m=2.5 kg、长度均为l=0.36 m的产品在光滑水平工作台AB上紧靠在一起排列成直线(不粘连),以v0=0.6 m/s 的速度向水平传送带运动,设当每个产品有一半长度滑上传送带时,该产品即刻受到恒定摩擦力F f=μmg而做匀加速运动,当产品与传送带间没有相对滑动时,相邻产品首尾间距离保持2l(如图)被依次送入自动包装机C进行包装。

观察到前一个产品速度达到传送带速度时,下一个产品刚好有一半滑上传送带而开始做匀加速运动。

取g=10 m/s2。

试求:(1)传送带的运行速度v;(2)产品与传送带间的动摩擦因数μ:(3)满载工作时与空载时相比,传送带驱动电动机增加的功率∆P;(4)为提高工作效率,工作人员把传送带速度调成v'=2.4 m/s,已知产品送入自动包装机前已匀速运动,求第(3)问中的∆P′?第(3)问中在相当长时间内的等效∆P′′?4.如图所示,传送带AB段是水平的,长20 m,传送带上各点相对地面的速度大小是2 m/s,某物块与传送带间的动摩擦因数为0.1。

高一物理必修一多选题经典例题高一物理例题

高一物理必修一多选题经典例题高一物理例题

高一物理必修一多选题经典例题高一物理例题1.一个固定的光滑斜面,倾角为θ,其空间存在水平向右的匀强电场,如图所示,一个质量为m的带电滑块沿光滑斜面匀速下滑,下列说法正确的是()A.物块一定带正电B.物块受到的电场力大小是mgtanθC.物块受到的支持力是mgcoθD.物块向下运动过程中其电势增大,电势能减小【答案】AB【解析】分析:物体受力如图所示,所受电场力水平向右,因此带正电,故A正确;物体匀速下滑因此有,沿斜面:mginθ=Eqcoθ,垂直斜面:FN=mgcoθ+Eqinθ,所以有:Eq=mgtanθ,,故B正确,C错误;下滑过程中电场力做负功,电势能增大,故D错误.故选AB.2.如图所示,匀强电场场强大小为E,方向与水平方向夹角为θ=30°,场中有一质量为m,电荷量为q的带电小球,用长为L的细线悬挂于O点。

当小球静止时,细线恰好水平。

现用一外力将小球沿圆弧缓慢拉到竖直方向最低点,小球电荷量不变,则在此过程中SHAPE\某MERGEFORMATmgLB.外力所做的功为C.带电小球的重力势能减小mgLD.带电小球的电势能增加【答案】ACD【解析】试题分析:小球在水平位置静止,由共点力的平衡可知,F电inθ=mg;小球从最初始位置移到最低点时,电场力所做的功W电=-EqL(coθ+inθ),因电场力做负功,故电势能增加,电势能增加量为:△EP=EqL(coθ+inθ)=,故D正确,重力势能减小量为△EP=mgL,故C正确;由动能定理可知,W外+W电+WG=0;W外=-(W电+WG)=EqL(coθ+inθ)-mgL=mgcotθ=mgL;故A正确,B错误;故选ACD.【名师点睛】本题考查了动能定理的应用及电场力做功与电势能的关系,在解题中要注意理解重力做功及电场力做功的特点,正确求得两种功的表达式;重力做功等于重力势能的变化量;电场力做功等于电势能的变化量.3.一辆汽车在平直的公路上运动,运动过程中先保持某一恒定加速度,后保持恒定的牵引功率,其牵引力和速度的图象如图所示.若已知汽车的质量m,牵引力F1和速度v1及该车所能达到的最大速度v3.则根据图象所给的,能求出的物理量是()A.汽车中的最大功率为F1v1B.速度为v2时的加速度大小为C.汽车行驶中所受的阻力为D.恒定加速时,加速度为【】AC【解析】试题分析:汽车先做匀加速运动,再以恒定功率运动,对汽车受力分析后根据牛顿第二定律列方程,再结合图象进行分析即可.解:A、根据牵引力和速度的图象和功率P=Fv得汽车运动中的最大功率为F1v1,故A正确.B、汽车运动过程中先保持某一恒定加速度,后保持恒定的牵引功率,所以速度为v2时的功率是F1v1,根据功率P=Fv得速度为v2时的牵引力是,对汽车受力分析,受重力、支持力、牵引力和阻力,该车所能达到的最大速度时加速度为零,所以此时阻力等于牵引力,所以阻力f=根据牛顿第二定律,有速度为v2时加速度大小为a=,故B错误,C正确.D、根据牛顿第二定律,有恒定加速时,加速度a′=,故D错误.故选AC.【点评】本题关键对汽车受力分析后,根据牛顿第二定律列出加速度与速度关系的表达式,再结合图象进行分析求解.4.如图,位于水平面的圆盘绕过圆心O的竖直转轴做圆周运动,在圆盘上有一质量为m的小木块,距圆心的距离为r,木块与圆盘间的最大静摩擦力为压力的k倍,在圆盘转速缓慢增大的过程中,下列说法正确的是A.摩擦力对小木块做正功,其机械能增加B.小木块获得的最大动能为QUOTE\某MERGEFORMATC.小木块所受摩擦力提供向心力,始终指向圆心,故不对其做功D.小木块受重力、支持力和向心力【答案】A【解析】试题分析:D、对随着圆盘转动的滑块受力分析,它受重力,支持力,静摩擦力,向心力是个效果力,选项D错误;A、C、圆盘的转速增大的瞬间,滑块受的静摩擦力与线速度成锐角,一个分力指向圆心提供向心力,另一分力沿线速度方向做正功,使得滑块的速度增大,满足它跟着圆盘继续转动,而当圆盘稳定的转动时,滑块的静摩擦力又垂直于速度,全部充当向心力不做功,选项A正确,选项C错误。

高一物理向心力典型例题(含答案)全解

高一物理向心力典型例题(含答案)全解

向心力典型例题(附答案详解)一、选择题【共12道小题】1、如图所示,半径为r的圆筒,绕竖直中心轴OO′转动,小物块a靠在圆筒的内壁上,它及圆筒的动摩擦因数为μ,现要使a不下滑,则圆筒转动的角速度ω至少为()A. B. C. D.解析:要使a不下滑,则a受筒的最大静摩擦力作用,此力及重力平衡,筒壁给a 的支持力提供向心力,则N=mrω2,而fm=mg=μN,所以mg=μmrω2,故. 所以A、B、C均错误,D正确.2、下面关于向心力的叙述中,正确的是()A.向心力的方向始终沿着半径指向圆心,所以是一个变力B.做匀速圆周运动的物体,除了受到别的物体对它的作用外,还一定受到一个向心力的作用C.向心力可以是重力、弹力、摩擦力中的某个力,也可以是这些力中某几个力的合力,或者是某一个力的分力D.向心力只改变物体速度的方向,不改变物体速度的大小解析:向心力是按力的作用效果来命名的,它可以是物体受力的合力,也可以是某一个力的分力,因此,在进行受力分析时,不能再分析向心力.向心力时刻指向圆心及速度方向垂直,所以向心力只改变速度的方向,不改变速度的大小,即向心力不做功. 答案:ACD3、关于向心力的说法,正确的是()A.物体由于做圆周运动而产生了一个向心力B.向心力不改变圆周运动物体速度的大小C.做匀速圆周运动的物体其向心力即为其所受的合外力D.做匀速圆周运动的物体其向心力大小不变解析:向心力并不是物体受到的一个特殊力,它是由其他力沿半径方向的合力或某一个力沿半径方向的分力提供的.因为向心力始终及速度方向垂直,所以向心力不会改变速度的大小,只改变速度的方向.当质点做匀速圆周运动时,向心力的大小保持不变. 答案:BCD4、在光滑水平面上相距20 cm的两点钉上A、B两个钉子,一根长1 m的细绳一端系小球,另一端拴在A钉上,如图所示.已知小球质量为0.4 kg,小球开始以2 m/s的速度做水平匀速圆周运动,若绳所能承受的最大拉力为4 N,则从开始运动到绳拉断历时为()A.2.4π sB.1.4π sC.1.2π sD.0.9π s解析:当绳子拉力为4 N时,由F=可得r=0.4 m.小球每转半个周期,其半径就减小0.2 m,由分析知,小球分别以半径为1 m,0.8 m和0.6 m各转过半个圆周后绳子就被拉断了,所以时间为t==1.2π s. 答案:C5、如图所示,质量为m 的木块,从半径为r 的竖直圆轨道上的A 点滑向B 点,由于摩擦力的作用,木块的速率保持不变,则在这个过程中A.木块的加速度为零B.木块所受的合外力为零C.木块所受合外力大小不变,方向始终指向圆心D.木块所受合外力的大小和方向均不变解析:木块做匀速圆周运动,所以木块所受合外力提供向心力. 答案:C 主要考察知识点:匀速圆周运动、变速圆周运动、离心现象及其应用6、甲、乙两名溜冰运动员,M 甲=80 kg,M 乙=40 kg ,面对面拉着弹簧秤做圆周运动的溜冰表演,如图所示,两个相距0.9m ,弹簧秤的示数为9.2 N ,下列判断正确的是( )A.两人的线速度相同,约为40 m/sB.两人的角速度相同,为6 rad/sC.两人的运动半径相同,都是0.45 mD.两人的运动半径不同,甲为0.3 m,乙为0.6 m解析:甲、乙两人绕共同的圆心做圆周运动,他们间的拉力互为向心力,他们的角速度相同,半径之和为两人的距离.设甲、乙两人所需向心力为F 向,角速度为ω,半径分别为r 甲、r 乙.则F 向=M 甲ω2r 甲=M 乙ω2r 乙=9.2 N ① r 甲+r 乙=0.9 m ②由①②两式可解得只有D 正确 答案:D7、如图所示,在匀速转动的圆筒内壁上有一物体随圆筒一起转动而未滑动.若圆筒和物体以更大的角速度做匀速转动,下列说法正确的是( )A.物体所受弹力增大,摩擦力也增大B.物体所受弹力增大,摩擦力减小C.物体所受弹力减小,摩擦力也减小D.物体所受弹力增大,摩擦力不变析:物体在竖直方向上受重力G 及摩擦力F ,是一对平衡力,在向心力方向上受弹力F N .根据向心力公式,可知F N =mω2r ,当ω增大时,F N 增大,选D.8、用细绳拴住一球,在水平面上做匀速圆周运动,下列说法中正确的是( )A.当转速不变时,绳短易断B.当角速度不变时,绳短易断C.当线速度不变时,绳长易断D.当周期不变时,绳长易断析:由公式a=ω2R=知,当角速度(转速)不变时绳长易断,故A 、B 错误.周期不变时,绳长易断,故D 正确.由,当线速度不变时绳短易断,C 错9、如图,质量为m 的木块从半径为R 的半球形的碗口下滑到碗的最低点的过程中,如果由于摩擦力的作用使得木块的速率不变A.因为速率不变,所以木块加速度为零 C.木块下滑过程中的摩擦力大小不变B.木块下滑的过程中所受的合外力越来越大D.木块下滑过程中的加速度大小不变,方向时刻指向球心解析:木块做匀速圆周运动,所受合外力大小恒定,方向时刻指向圆心,故选项A 、B 不正确.在木块滑动过程中,小球对碗壁的压力不同,故摩擦力大小改变,C 错. 答案:D10、如图所示,在光滑的以角速度ω旋转的细杆上穿有质量分别为m 和M 的两球,两球用轻细线连接.若M >m ,则( )A.当两球离轴距离相等时,两球相对杆不动B.当两球离轴距离之比等于质量之比时,两球相对杆都不动C.若转速为ω时,两球相对杆都不动,那么转速为2ω时两球也不动D.若两球相对杆滑动,一定向同一方向,不会相向滑动解析:由牛顿第三定律可知M 、m 间的作用力相等,即F M =F m ,F M =Mω2r M ,F m =mω2rm ,所以若M 、m 不动,则r M ∶r m =m∶M,所以A 、B 不对,C 对(不动的条件及ω无关).若相向滑动,无力提供向心力,D 对. 答案:CD11、一物体以4m/s 的线速度做匀速圆周运动,转动周期为2s ,则物体在运动过程的任一时刻,速度变化率的大小为( )A.2m/s 2B.4m/s 2C.0D.4π m/s 2ω=2π/T=2π/2=π v=ω*r 所以r=4/π a=v ∧2/r=16/(4/π)=4π12、在水平路面上安全转弯的汽车,向心力是( )A.重力和支持力的合力B.重力、支持力和牵引力的合力C 汽车及路面间的静摩擦力 D.汽车及路面间的滑动摩擦力二、非选择题 【共3道小题】1、如图所示,半径为R 的半球形碗内,有一个具有一定质量的物体A ,A 及碗壁间的动摩擦因数为μ,当碗绕竖直轴OO′匀速转动时,物体A 刚好能紧贴在碗口附近随碗一起匀速转动而不发生相对滑动,求碗转动的角速度.分析:物体A 随碗一起转动而不发生相对滑动,物体做匀速圆周运动的角速度ω就等于碗转动的角速度ω.物体A 做匀速圆周运动所需的向心力方向指向球心O ,故此向心力不是重力而是由碗壁对物体的弹力提供,此时物体所受的摩擦力及重力平衡.解析:物体A 做匀速圆周运动,向心力:F n =mω2R而摩擦力及重力平衡,则有μF n =mg 即F n =mg/μ由以上两式可得:mω2R= mg/μ 即碗匀速转动的角速度为:ω=.2、汽车沿半径为R 的水平圆跑道行驶,路面作用于车的摩擦力的最大值是车重的1/10,要使汽车不致冲出圆跑道,车速最大不能超过多少?解析:跑道对汽车的摩擦力提供向心力,1/10mg=mv 2/r ,所以要使汽车不致冲出圆跑道,车速最大值为v=. 答案:车速最大不能超过3、一质量m=2 kg 的小球从光滑斜面上高h=3.5 m 处由静止滑下,斜面的底端连着一个半径R=1 m 的光滑圆环(如图所示),则小球滑至圆环顶点时对环的压力为_____________,小球至少应从多高处静止滑下才能通过圆环最高点,hmin=_________(g=10 m/s2).解析:①设小球滑至圆环顶点时速度为v 1,则mgh=mg·2R+ 1/2mv 12 F n +mg= mv 12/R 得:F n =40 N②小球刚好通过最高点时速度为v 2,则mg= mv 22/R 又mgh′=mg2R+1/2 mv 22/R 得h′=2.5R 答案:40 N;2.5R匀速圆周运动典型问题剖析匀速圆周运动问题是学习的难点,也是高考的热点,同时它又容易和很多知识综合在一起,形成能力性很强的题目,如除力学部分外,电学中“粒子在磁场中的运动”涉及的很多问题仍然要用到匀速圆周运动的知识,对匀速圆周运动的学习可重点从两个方面掌握其特点,首先是匀速圆周运动的运动学规律,其次是其动力学规律,现就各部分涉及的典型问题作点滴说明。

高一物理经典例题高考必备

高一物理经典例题高考必备

高一物理球在外力作用下,由静止开始从A 点出发做匀加速直线运动,到B 点时消除外力。

然后,小球冲上竖直平面内半径为R 的光滑半圆环,恰能维持在圆环上做圆周运动,到达最高点C 后抛出,最后落回到原来的出发点A 处,试求小球在AB 段运动的加速度为多大解析:在C 点时满足R v mmg 2=①B 到C 由机械能守恒定律2221212B mv mv R mg -=-②由①②式得gR v B5=C 回到A2212gt R =③ 水平位移s =vtgR v =④③④式得s =2R A 到B 22B vas =⑤ ∴g a 45=半径分别为R 和r 的甲乙两个光滑圆形轨道置在同一竖直平面上,轨道间有一条水平轨道CD 相通,一球以一定速度先滑上甲轨道,通过动摩擦因数为μ的CD 段,又滑上乙轨道,最后离开两圆轨道。

若球在两圆轨道的最高点对轨道压力都恰为零,求水平CD 段长度解析:球在光滑圆轨道上滑行时机械能守恒设球滑过C 点时速度为Vc 通过甲最高点速度为v ′R v mm g 2'=① 取轨道最低点为零势能点机械守恒定律 2221221v m R mg mv C '+==②①②可得gR v C 5=同理得球滑过D 点时速度gr v D5= 设CD 段的长度为l 对小球滑过CD 段过程应用动能定理222121CD mv mv mgl -=-μ 将C v D v 代入μ2)(5r R l -=光滑弧形轨道与半径为r 的光滑圆轨道相连,固定在同一个竖直面内。

将一质量为m 的球由圆弧轨道上离水平面某高度处无初速释放使球在沿圆轨道运动终不离轨道,高度h 取值范围 h ≤r 或h ≥2.5r固定在竖直平面内光滑的半圆形轨道ABC ,半径R =0.5m ,轨道在C 处与水平地面相切。

在C 处放一物块,给它一水平向v 0=5m/s ,结果它沿CBA 运动通过A 点最后落在水平面D 点求CD 间距离s 。

1mAB 是竖直平面内的四分之一圆弧轨道,在下端B 与水平直轨相切。

高一物理经典例题60道

高一物理经典例题60道

高一物理经典例题60道一、运动的描述例题1:一个物体做直线运动,其位移随时间变化的关系为x = 4t - 2t^2(x的单位为m,t 的单位为s)。

求:(1)物体的初速度和加速度;(2) t = 3s时物体的速度;(3)物体在t = 1s到t = 3s内的位移。

解析:1. 已知位移公式x=v_0t+(1)/(2)at^2,与x = 4t-2t^2对比可得:- 初速度v_0=4m/s;- 加速度a=- 4m/s^2。

2. 根据速度公式v = v_0+at,当t = 3s时,v=4+( - 4)×3=-8m/s。

3. 当t = 1s时,x_1=4×1-2×1^2=2m;当t = 3s时,x_3=4×3-2×3^2=-6m。

- 则t = 1s到t = 3s内的位移Δ x=x_3-x_1=-6 - 2=-8m。

例题2:一质点沿直线Ox方向做变速运动,它离开O点的距离x随时间t变化的关系为x=(5 + 2t^3)m。

求:(1)该质点在t = 0到t = 2s内的平均速度;(2)该质点在t = 2s到t = 3s内的平均速度。

解析:1. 当t = 0时,x_0=5m;当t = 2s时,x_2=5 + 2×2^3=21m。

- 则t = 0到t = 2s内的平均速度¯v_1=frac{x_2-x_0}{t_2-t_0}=(21 -5)/(2)=8m/s。

2. 当t = 3s时,x_3=5+2×3^3=59m。

- 则t = 2s到t = 3s内的平均速度¯v_2=frac{x_3-x_2}{t_3-t_2}=(59 -21)/(1)=38m/s。

二、匀变速直线运动的研究例题3:一辆汽车以v_0=10m/s的速度在平直公路上匀速行驶,刹车后经2s速度变为6m/s。

求:(1)刹车后2s内前进的距离;(2)刹车过程中的加速度;(3)刹车后前进9m所用的时间;(4)刹车后8s内前进的距离。

高一物理经典例题 (450)

高一物理经典例题 (450)

高一物理经典例题36.如图所示,轨道ABCD 的AB 段为一半径R =1.8m 的光滑圆形轨道,BC 段为高为h =5m 的竖直轨道,CD 段为水平轨道.一质量为1kg 的小球由A 点从静止开始下滑到B 点,离开B 点做平抛运动,求:①小球到达B 点时受到的支持力的大小?②小球离开B 点后,在CD 轨道上的落地点到C 的水平距离.解:①小球从A 点运动到B 点的过程机械能守恒,即:12mv B 2=mgR 则得:v B =√2gR =√2×10×1.8=6m/s .在B 点,由牛顿第二定律得:N ﹣mg =mv B 2R联立解得:N =3mg =3×1×10N =30N②设小球离开B 点做平抛运动的时间为t ,落地点到C 点距离为s由h =12gt 2得:t =√2ℎg =√2×510s =1s .s =v B t =6×1 m =6 m答:①小球到达B 点时受到的支持力的大小为30N ;②小球离开B 点后,在CD 轨道上的落地点到C 的水平距离为6m .37.如图,长为L 的轻绳上端系于固定点O ,下端系一个质量为m 的可看成质点的小球,起初将小球提起,当绳处于水平绷直状态时,由静止释放小球,当小球摆到轻绳处于竖直方向时,求:①小球的速度大小;②轻绳对球的拉力大小;③重力的瞬时功率大小。

解:①静止释放小球,当小球摆到轻绳处于竖直方向时,由动能定理可得:mgL =12mv 2解得:v =√2gL②由牛顿第二定律可得:F ﹣mg =mv 2L解得:F =3mg③最低点,速度方向水平向左,与重力相互垂直。

所以重力的瞬时功率为0。

答:①小球的速度大小为√2gL ;②轻绳对球的拉力大小为3mg ;③重力的瞬时功率大小为0。

高一物理经典例题 (128)

高一物理经典例题 (128)

高一物理经典例题
9.钓鱼岛自古以来就是我国的固有领土,在距温州市约356km、距福州市约385km、距基隆市约190km的位置.若我国某海监船为维护我国钓鱼岛的主权,从温州出发去钓鱼岛巡航,经8小时到达钓鱼岛,共航行了480km,则下列说法中正确的是()
A.该海监船的位移大小为480 km,路程为356 km
B.途中船员亲身体会到了“满眼风光多闪烁,看山恰似走来迎”的情景,此时他选择的参考系是山
C.确定该海监船在海上的位置时可以将该海监船看成质点
D.此次航行的平均速度是60 km/h
解:A、位移是从初位置到末位置的有向线段,为356km;路程为轨迹的实际长度,为480km,故A错误;
B、途中船员亲身体会到了“满眼风光多闪烁,看山恰似走来迎”的情景,此时他选择的
参考系是船或自己,故B错误;
C、该海监船在海上航行时,确定位置时其大小可以忽略不计,故可以将该海监船看成质
点,故C正确;
D、平均速度等于位移除以时间,故平均速度v=x
t
=3568km/h=44.5km/h,故D错误;
故选:C。

第1页共1页。

高中物理必修一经典例题附解析

高中物理必修一经典例题附解析

华辉教育物理学科备课讲义A.大小为2N,方向平行于斜面向上B.大小为1N,方向平行于斜面向上C.大小为2N,方向垂直于斜面向上D.大小为2N,方向竖直向上答案:D解析:绳只能产生拉伸形变,绳不同,它既可以产生拉伸形变,也可以产生压缩形变、弯曲形变和扭转形变,因此杆的弹力方向不一定沿杆.2.某物体受到大小分别为闭三角形.下列四个图中不能使该物体所受合力为零的是答案:ABD解析:A图中F1、F3的合力为为零;D图中合力为2F3.3.列车长为L,铁路桥长也是桥尾的速度是v2,则车尾通过桥尾时的速度为A.v2答案:A解析:推而未动,故摩擦力f=F,所以A正确..某人利用手表估测火车的加速度,先观测30s,发现火车前进540m;隔现火车前进360m.若火车在这70s内做匀加速直线运动,则火车加速度为A.0.3m/s2B.0.36m/s2C.0.5m/s2D.0.56m/s2答案:B解析:前30s内火车的平均速度v=54030m/s=18m/s,它等于火车在这30s10s内火车的平均速度v1=36010m/s=36m/s.它等于火车在这10s内的中间时刻的速度,此时刻与前30s的中间时刻相隔50s.由a=Δv=v1-v=36-18m/s2=0.36m/s2.即选项A.1 3和C.13和=v0=4m/s=0a =10s=vt=10.3m/s=103m/sm =FaFa=a=10103=图象得到的结论是____________________________________;图象得到的结论是______________________________________.坐标平面和a-1/M坐标平面内,根据表一和表二提供的数据,分别描出五根据这些点迹作一条直线,使尽量多的点落在直线上,即得到a-F物体的加速度与物体所受的合力成正比物体的加速度与物体的质量成反比.如图所示,不计滑轮的摩擦,将弹簧C的右端由a点沿水平方向拉到两点间的距离.己知弹簧B、C的劲度系数分别为k1、k的压缩量为x1,由胡克定律得mg,所以ab=x1+x2=mg(k2M=8kg,由静止开始在水平拉力将质量m=2kg的物体轻轻放到木板的右端,物体放到木板上以后,经多少时间物体与木板相对静止?在这段时间里,物体相对于木板在物体与木板相对静止后,它们之间还有相互作用的摩擦力吗?为什么?如有,摩擦力为物体放在木板上之后,在它们达到相对静止之前,它们之间在水平方向上存在相互。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一物理典型例题关联速度1光滑水平面上有A、B两个物体,通过一根跨过定滑轮的轻绳子相连,如图,它们的质量分别为m A和m B,当水平力F拉着A向右运动,某时绳子与水平面夹角为θA=45⁰,θB=30⁰时,A、B两物体的速度之比VA:VB应该是________小船过河1若河宽仍为100m,已知水流速度是5m/s,小船在静水中的速度是4m/s,即船速(静水中)小于水速。

求:1.欲使船渡河时间最短,求渡河位移?2.欲使航行距离最短,船应该怎样渡河?求渡河时间?平抛1小球从斜面上方一定高度处向着水平抛出,初速度v0,已知传送带的倾角为θ。

1.若小球垂直撞击斜面,求飞行时间t1 ,求水平位移x1;2.若小球到达斜面的位移最小,求飞行时间t2 求速度偏转角的正切值;3.反向平抛,何时离斜面最远;平抛实验1如右图所示在“研究平抛物体的运动”实验中用方格纸记录了小球的运动轨迹,a、b、c和d为轨迹上的四点,小方格的边长为L,重力加速度为g。

求:1.小球做平抛运动的初速度大小为v02.b点时速度大小为vb3.从抛出点到c点的飞行时间Tc4.已知a点坐标(xy)求抛出点坐标水平圆周1如图所示,在光滑的圆锥顶用长为L的细线悬挂一质量为m的小球,圆锥体固定在水平面上不动,其轴线沿竖直方向,母线与轴线之间的夹角为30°,小球以一定速率绕圆锥体轴线做水平匀速圆周运动,求恰好离开斜面时线速度竖直圆周1如图所示,光滑水平面AB与竖直面内的半圆形导轨在B点相切,半圆形导轨的半径为R.一个质量为m的物体将弹簧压缩至A点后由静止释放,在弹力作用下物体获得某一向右的速度后脱离弹簧,当它经过B点进入导轨的瞬间对轨道的压力为其重力的8倍,之后向上运动恰能到达最高点C.(不计空气阻力)试求:1.物体在A点时弹簧的弹性势能;2.物体从B点运动至C点的过程中产生的内能.开普勒第三定律赤道卫星中同步轨道半径大约是中轨道半径的2倍,则同步卫星与中轨道卫星两次距离最近间隔时间_________。

万有引力两个完全相同的均匀球体紧靠在一起万有引力是F,用相同材料制成两个半径为原来一半的小球紧靠在一起的万有引力________。

黄金代换若分别在地球和某行星上相对于各自的水平地面附近相同的高度处、以相同的速率平抛一物体,其水平距离之比为k,且已知地球与该行星半径之比也为k,则地球的质量与该行星的质量之比_________。

重力与高度火箭内置物块,从地面发射后,以加速度a竖直向上匀加速运动,升到一定高度时,物块所受支持力等于地表重力,已知地球半径R,地表重力加速度g,求此时火箭离地高度_________。

宇宙航行卫星在距离月球表面高度为h的轨道上绕月球做匀速圆周运动,周期为T,若以R表示月球的半径,引力常量为G,求月球第一宇宙速度v.卫星问题a、b、c三颗卫星,a在赤道处待发射,向心加速度a1;b为近代卫星,线速度v2;c为同步卫星距离地心r,向心加速度a3,线速度v3 ,地球的半径为R,地表重力加速度为g。

求a1 :a3 =__________ ;v2: v3=_________。

自转影响已知地球表面两极处的重力加速度大小为g0,在赤道处的重力加速度大小g,地球自转的周期为T,引力常量为G,假设地球可视为质量均匀分布的球体。

求地球密度?变轨问题如图所示,发射同步卫星时,先将卫星发射至近地圆轨道1,然后经点火使其沿椭圆轨道2运行;最后再次点火将其送入同步圆轨道3。

轨道1、2相切于P点,2、3相切于Q 点。

当卫星分别在1、2、3上正常运行时,双星问题如图,一双星系统的2颗星间距离为L。

两颗星的质量分别为m1,m2,试求:1.线速度之比2.周期的表达式3.质量之和变成原来的p倍,距离变成原来的q倍,周期变成原来的多少倍追击相遇1已知地球轨道半径R1金星轨道半径R2,地球公转周期1年,求两次金星凌日相隔时间?追击相遇2汽车正在以10m/s的速度在平直的公路上行驶,突然发现前方有一辆自行车以4m/s的速度做同向的匀速直线运动,汽车立即关闭油门做加速度大小为6m/s²的匀减速直线运动,汽车恰好撞不上自行车,求关闭油门时汽车离自行车多远?活杆死杆如图所示,两种链接方式对比,求两图中杆OB所受的弹力之比超重失重某同学用台秤研究在电梯中的超失重现象。

在地面上称得其体重为500 N,再将台秤移至电梯内称其体重。

电梯从t=0时由静止开始运动,到t=11 s时停止,得到台秤的示数F随时间t变化的情况如图所示(g=10 m/s2)。

求:1.电梯0-11s的位移2.F3有多大动态平衡半径为的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面的距离为,轻绳的一端系一小球,靠放在半球上的点,另一端绕过定滑轮后用力拉住,使小球静止,如图所示,现缓慢地拉绳,在使小球由到的过程中,试说明半球对小球的支持力N 和绳对小球的拉力T的大小如何变化。

传送带如图所示,倾角为37°,长为l=16 m的传送带,转动速度为v=10 m/s,动摩擦因数μ=0.5,在传送带顶端A处无初速度地释放一个质量为m=0.5 kg的物体.已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2.求:1.传送带顺时针转动时,物体从顶端A滑到底端B的时间;2.传送带逆时针转动时,物体从顶端A滑到底端B的时间.滑块滑板一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木板右端与墙壁的距离为4.5m,如图(a)所示。

t=0时刻开始,小物块与木板一起以共同速度向右运动,直至t=1s时木板与墙壁碰撞(碰撞时间极短)。

碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板。

已知碰撞后1s时间内小物块的v﹣t图线如图(b)所示。

木板的质量是小物块质量的15倍,重力加速度大小g取10m/s2.求1.木板与地面间的动摩擦因数μ1及小物块与木板间的动摩擦因数μ2;2.木板的最小长度;3.木板右端离墙壁的最终距离。

斜面滑块如图所示水平放置的粗糙的长木板上放置一个物体m,当用力缓慢抬起一端时,木板受到物体的压力和摩擦力将怎样变化?变力做功如图所示,光滑水平面上,一小球在穿过O孔的绳子的拉力作用下沿一圆周匀速运动,当绳的拉力为F时,圆周半径为R,当绳的拉力增大到6F时,小球恰可沿半径为R/2的圆周匀速运动在上述增大拉力的过程中,绳的拉力对球做的功为________.机车启动质量为m的汽车在某个与水平成θ角的上坡的公路上,从静止开始匀加速直线运动,加速度为a,经过一段时间后速度达到最大。

设汽车发动机的额定功率为Pm,汽车所受的摩擦阻力恒为f。

则求1.匀加速运动最大持续时间t及位移x2.最大速度vm功能关系如图所示,AB为半径R=0.8m的1/4光滑圆弧轨道,下端B恰与小车右端平滑对接.小车质量M=3kg,车长L=2.06 m,车上表面距地面的高度h=0.2m.现有一质量m=1kg的滑块,由轨道顶端无初速释放,滑到B端后冲上小车.已知地面光滑,滑块与小车上表面间的动摩擦因数μ=0.3,当车运行了1.5 s时,车被地面装置锁定.(g=10m/s2)试求:1.滑块到达B端时,轨道对它支持力的大小;2.车被锁定时,车右端距轨道B端的距离; 3.从车开始运动到被锁定的过程中,滑块与车面间由于摩擦而产生的内能大小;4.1滑块落地点离车左端的水平距离.机械能守恒1如图,滑块a、b的质量均为m,a套在固定竖直杆上,与光滑水平地面相距h,b放在地面上.a、b通过铰链用刚性轻杆连接,由静止开始运动.不计摩擦,a、b可视为质点,重力加速度大小为g.则()A.a落地前,轻杆对b一直做正功B.a下落过程中,其加速度大小始终不大于gC.a落地时速度大小为 D.a落地前,当a的机械能最小时,b对地面的压力大小为mg机械能守恒2如图所示,物体A的质量为M,圆环B的质量为m,通过绳子连接在一起,圆环套在光滑的竖直杆上,开始时连接圆环的绳子处于水平,长度l=4 m,现从静止释放圆环.不计定滑轮和空气的阻力,g取10 m/s2,若圆环下降h=3 m时的速度v=5 m/s,则A和B的质量之比为()机械能守恒3如图所示,一根不可伸长的轻绳跨过光滑的水平轴0,两端分別连接质量为m的小球A和质量为4m的物块B,物块B置于0点正下方的水平面上,拉直绳使CM水平,此时 0A的长度为L。

(1)小球A由静止释放绕0点转过90⁰,求小球的速度大小和物块对地面的压力。

(2)若保持A的质量不变,将B换成质量也为m的物块,使绳OA水平,当小球A由静止释放转到O点正下方时,物块B的速度大小为v,求小球A的速度大小和方向(设A与B不会相碰,方向用三角函数表示)。

弹簧小球把质量是0.2 kg的小球放在竖立的弹簧上,并把球往下按至A的位置,如图甲所示.迅速松手后,弹簧把球弹起,球升至最高位置C(图丙).途中经过位置B时弹簧正好处于自由状态(图乙).已知B、A的高度差为0.1 m,C、B的高度差为 0.2 m,弹簧的质量和空气阻力都可以忽略,重力加速度g=10 m/s2.试分析小球速度变化、加速度变化、弹性势能变化。

轻杆管道一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的半径大得多),圆管中有两个直径与细管内径相同的小球(可视为质点)。

A球的质量为m1,B球的质量为m2。

它们沿环形圆管顺时针运动,经过最低点时的速度都为v0。

设A球运动到最低点时,球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m1,m2,R与v0应满足关系式是___________。

F静态平衡1如右图所示,粗糙斜面的倾角为37º,给物块施加一个水平向左的力恒F使物块静止在斜面上,已知物体质量m=1kg,g=10m/s²,物块与斜面间的动摩擦因数μ=0.5,试求:F的取值范围。

相关文档
最新文档