导体棒切割磁感线问题
导体棒切割磁感线问题分类解析
导体棒切割磁感线问题分类解析电磁感应中,“导体棒”切割磁感线问题是高考常见命题。
解此类型问题的一般思路是:先解决电学问题,再解决力学问题,即先由法拉第电磁感应定律求感应电动势,然后根据欧姆定律求感应电流,求出安培力,再往后就是按力学问题的处理方法,如进行受力情况分析、运动情况分析及功能关系分析等。
导体棒切割磁感线的运动一般有以下几种情况:匀速运动、在恒力作用下的运动、恒功率运动等,现分别举例分析。
一、导体棒匀速运动导体棒匀速切割磁感线处于平衡状态,安培力和外力等大、反向,给出速度可以求外力的大小,或者给出外力求出速度,也可以求出功、功率、电流强度等,外力的功率和电功率相等。
例1. 如图1所示,在一磁感应强度B=0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h=0.1m的平行金属导轨MN和PQ,导轨电阻忽略不计,在两根导轨的端点N、Q之间连接一阻值R=0.3Ω的电阻。
导轨上跨放着一根长为L=0.2m,每米长电阻r=2.0Ω/m的金属棒ab,金属棒与导轨正交放置,交点为c、d,当金属棒在水平拉力作用于以速度v=4.0m/s 向左做匀速运动时,试求:图1(1)电阻R中的电流强度大小和方向;(2)使金属棒做匀速运动的拉力;(3)金属棒ab两端点间的电势差;(4)回路中的发热功率。
解析:金属棒向左匀速运动时,等效电路如图2所示。
在闭合回路中,金属棒cd部分相当于电源,内阻r cd=hr,电动势E cd=Bhv。
图2(1)根据欧姆定律,R 中的电流强度为I E R r Bhv R hrcd cd =+=+=0.4A ,方向从N 经R 到Q 。
(2)使金属棒匀速运动的外力与安培力是一对平衡力,方向向左,大小为F =F安=BIh=0.02N 。
(3)金属棒ab 两端的电势差等于U ac 、U cd 与U db 三者之和,由于U cd =E cd -Ir cd ,所以U ab =E ab -Ir cd =BLv -Ir cd =0.32V 。
3导体棒切割磁感线的电磁感应
导体棒切割磁感线的电磁感应现象知识点1导体棒切割磁感线的电动势E= ______________ O 是瞬时感应电动势。
L 为有效长度。
E=n △①/ At 和 E=BLvsin 0 区别:知识点楞次定律,安培定则,左手定则,右手定则的综合运用 定则 安培定则(右手螺旋 定则)左手定则右手定则作用用法总结例1如图,在磁感应强度为 B 方向垂直纸面向里的匀强磁场中,金属杆 MN 在平行金属导 轨上以速度v 向右匀速滑动,MN 中产生的感应电动势为 E ;若磁感应强度增为 2B,其他条件h占*X X. XA X V XMXKsX有效长度=有效长度=/ CM i / Kv有效长度=X :出磁场最大的有效长度XX II XX■-A不变,MN 中产生的感应电动势变为为:( ) A.cf a, 2: 1 C.a f c, 1: 2 巳。
则通过电阻 R 的电流方向及 E i 与E 2之比E:E 2分别B. a f c, D ・c f a,2: 1 1: 2 练习1某地的地磁场磁感应强度的竖直分量方向向下, 大小为4.5 10 5 T 。
一灵敏电压表连 接在当地入海河段的两岸, 落潮时,海水自西向东流, A.河北岸的电势较高 C.电压表记录的电压为 河宽 流速为 B 9mV例2如图所示,平行导轨间距为 向垂直于平行金属导轨所在平面. 不计.当金属棒沿垂直于棒的方向以恒定的速度 是 100m 该河段涨潮和落潮时有海水(视为导体)流过。
设 2m/s 。
下列说法正确的是( ) •河南岸的电势较高D .电压表记录的电压为d , —端跨接一个电阻一根金属棒与导轨成5mV R,匀强磁场的磁感应强度为 B,方 0角放置,金属棒与导轨的电阻均 v 在金属导轨上滑行时,通过电阻R 的电流 ( B Bdvs in R Bdvcos C. ------- R D.宜 Rsi n 练习1长0.1m 的直导线在B = 1T 的匀强磁场中,以10m/s 的速度运动, 电动势() A. 一定是1V B.可能是0.5V C. 可能为零 D. 最大值为1V 练习2如图所示,一导线弯成半径为 a 的半圆形闭合回路. 虚线MN 右侧有磁感应强度为 B 的匀强磁场,方向垂直于回路所在的平面•回路以速度 v 向右匀速进入磁场,直径 与MN 垂直•从D 点到达边界开始到 C 点进入磁场为止,下列结论正确的是 A •感应电流方向不变 B. CD 段直导线始终不受安培力 C. 感应电动势最大值 E m = Bav;X X ix X 导线中产生的感应 CD 始终 ( ) XXX AXXXXXXXX X X 1 D .感应电动势平均值 E =「Bav 4 例3如图所示,ab 和cd 是位于水平面内的平行金属轨道,轨道间距为 I ,其电阻可忽略不 计。
导体棒在导轨上滑动切割磁感线
导体棒在导轨上滑动切割磁感线,产生感应电流,导体受到安培力的作用。
因此,这类问题实质上是电磁感应规律与力学、电学知识的综合应用。
这种类型的题目可涉及力的平衡、动能定理、动量定理、动量守恒定律、能量守恒定律等力学重要规律,考查的知识容量大,是高考的热点和难点。
常见的题型为选择题和计算题。
导体切割磁感线产生感应电动势的计算,常结合力学、电学知识。
法拉第电磁感应定律的应用是高考热点,常以综合性的大题出现,并结合电路、力学、能量转化与守恒等知识。
1.滑杆问题中的力学问题分析。
这类问题覆盖面广,题型也多种多样,应注意抓住安培力特点(如导体棒做切割运动时rR v L B LB r R E ILB F +=+==22)。
在匀强磁场中匀速运动的导体受到的安培力恒定,变速运动的导体受到的安培力随速度(电流)的变化而变化。
对于匀速运动可由平衡条件求解,变速运动的瞬时速度可用牛顿第二定律和运动学公式求解,并通过运动状态的分析准确寻找过程中的临界状态,如速度、加速度取最大值或最小值的条件等。
2.滑杆问题中的电路分析。
在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,则该导体或回路就相当于电源。
将它们接上电容器可以使电容器充电;将它们接上电阻或用电器可以对用电器供电,在回路中形成电流。
3. 滑杆问题中的能量分析。
电磁感应现象中,其他形式的能向电能转化是通过安培力的功来量度的,感应电流在磁场中受到的安培力做了多少功就有多少电能产生,而这些电能又通过电流做功转变成其他形式的能,如电阻上产生的内能、电动机产生的机械能等。
从能量的角度看,楞次定律就是能量转化和守恒定律在电磁感应现象中的具体表现。
电磁感应过程往往涉及多种能量形势的转化,因此从功和能的观点入手,分析清楚能量转化的关系,往往是解决电磁感应问题的重要途径。
在运用功能关系解决问题时,应注意能量转化的来龙去脉,顺着受力分析、做功分析、能量分析的思路严格进行,并注意功和能的对应关系。
高三物理电磁感应中切割类问题试题答案及解析
高三物理电磁感应中切割类问题试题答案及解析1.(17分)如图所示,置于同一水平面内的两平行长直导轨相距,两导轨间接有一固定电阻和一个内阻为零、电动势的电源,两导轨间还有图示的竖直方向的匀强磁场,其磁感应强度.两轨道上置有一根金属棒MN,其质量,棒与导轨间的摩擦阻力大小为,金属棒及导轨的电阻不计,棒由静止开始在导轨上滑动直至获得稳定速度v。
求:(1)导体棒的稳定速度为多少?(2)当磁感应强度B为多大时,导体棒的稳定速度最大?最大速度为多少?(3)若不计棒与导轨间的摩擦阻力,导体棒从开始运动到速度稳定时,回路产生的热量为多少?【答案】(1)10m/s;(2);18m/s;(3)7J.【解析】(1)对金属棒,由牛顿定律得:①②③当a=0时,速度达到稳定,由①②③得稳定速度为:(2)当棒的稳定运动速度当时,即时,V最大.得(3)对金属棒,由牛顿定律得:得即得由能量守恒得:得【考点】牛顿定律;法拉第电磁感应定律以及能量守恒定律.2.如图甲所示是某人设计的一种振动发电装置,它的结构是一个套在辐向形永久磁铁槽中的半径为r=0.1 m、匝数n=20的线圈,磁场的磁感线均沿半径方向均匀分布(其右视图如图乙所示)。
在线圈所在位置磁感应强度B的大小均为0.2 T,线圈的电阻为2 Ω,它的引出线接有8 Ω的小电珠L(可以认为电阻为定值)。
外力推动线圈框架的P端,使线圈沿轴线做往复运动,便有电流通过电珠。
当线圈向右的位移x随时间t变化的规律如图丙所示时(x取向右为正),求:(1)线圈运动时产生的感应电流I的大小,并在图丁中画出感应电流随时间变化的图像(在图甲中取电流由C向上流过电珠L到D为正);(2)每一次推动线圈运动过程中作用力F的大小;(3)该发电机的输出功率P(摩擦等损耗不计);【答案】(1)见下图;(2)0.5 N;(3)0.32 W【解析】(1)从图可以看出,线圈往返的每次运动都是匀速直线运动,其速度为线圈做切割磁感线E=2n(rBv=2(20(3.14(0.1(0.2(0.8 V=2 V 感应电流电流图像如上图(2)于线圈每次运动都是匀速直线运动,所以每次运动过程中推力必须等于安培力。
专题 导体棒转动切割磁感线产生的动生电动势
专题 导体棒转动切割磁感线产生的动生电动势【高考真题】1.(2020浙江卷)如图所示,固定在水平面上的半径为r 的金属圆环内存在方向竖直向上、磁感应强度大小为B 的匀强磁场。
长为l 的金属棒,一端与圆环接触良好,另一端固定在竖直导电转轴OO ’上,随轴以角速度ω匀速转动。
在圆环的A 点和电刷间接有阻值为R 的电阻和电容为C 、板间距为d 的平行板电容器,有一带电微粒在电容器极板间处于静止状态。
已知重力加速度为g ,不计其它电阻和摩擦,下列说法正确的是( ) A .棒产生的电动势为12Bl 2ωB .微粒的电荷量与质量之比为2gdBr 2ωC .电阻消耗的电功率为πB 2r 4ω2RD .电容器所带的电荷量为CBr 2ω2.(2021广东卷)(多选)如图所示,水平放置足够长光滑金属导轨abc 和de ,ab 与de 平行,bc 是以O 为圆心的圆弧导轨,圆弧be 左侧和扇形Obc 内有方向如图的匀强磁场,金属杆OP 的O 端与e 点用导线相接,P 端与圆弧bc 接触良好,初始时,可滑动的金属杆MN 静止在平行导轨上,若杆OP 绕O 点在匀强磁场区内从b 到c 匀速转动时,回路中始终有电流,则此过程中,下列说法正确的有( ) A .杆OP 产生的感应电动势恒定 B .杆OP 受到的安培力不变 C .杆MN 做匀加速直线运动 D .杆MN 中的电流逐渐减小3.(2016全国卷)(多选)法拉第圆盘发电机的示意图如图所示。
铜圆盘安装在竖直的铜轴上,两铜片P 、Q 分别于圆盘的边缘和铜轴接触,圆盘处于方向竖直向上的匀强磁场B 中,圆盘旋转时,关于流过电阻R 的电流,下列说法正确的是( ) A .若圆盘转动的角速度恒定,则电流大小恒定B .若从上往下看,圆盘顺时针转动,则电流沿a 到b 的方向流动C .若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化D .若圆盘转动的角速度变为原来的2倍,则电流在R 上的热功率也变为原来的2倍【巩固提升】1.某国产直升机在我国某地上空悬停,长度为L的导体螺旋桨叶片在水平面内顺时针匀速转(俯视),转动角速度为ω。
电磁感应导体棒切割磁感线题型
电磁感应导体棒切割磁感线题型引言电磁感应是指导体内的电荷受到磁场变化的影响而发生运动的现象。
当导体与磁场相互作用时,导体内部将产生感应电流。
本文将讨论关于电磁感应导体棒切割磁感线的题型,并探讨有关问题。
电磁感应基础知识回顾在讨论电磁感应导体棒切割磁感线的题型之前,我们首先回顾一些基础知识。
电磁感应定律电磁感应定律是描述电磁感应现象的基本定律。
它可以用以下公式表达:ε=−dΦdt其中,ε表示产生的感应电动势,Φ表示磁通量,t表示时间。
该定律表明,当磁场发生变化时,导体内部将产生感应电动势,通过闭合回路可以产生感应电流。
磁感线磁感线是描述磁场分布的线条。
磁感线的方向表示磁场的方向,磁感线的密度表示磁场强度。
在磁场的分布中,磁感线形成一个封闭的回路。
电磁感应导体棒切割磁感线问题在实际问题中,我们经常遇到关于电磁感应导体棒切割磁感线的题型。
这类问题要求计算感应电动势、感应电流或导体受到的力等。
我们将通过以下几个方面来探讨这类问题。
导体切割磁感线产生的感应电动势当导体切割磁感线时,根据电磁感应定律,导体内将产生感应电动势。
感应电动势的大小可以根据切割磁感线的速度、磁感线的密度和导体的长度等因素来计算。
根据右手定则,我们可以确定感应电动势的方向。
导体切割磁感线产生的感应电流如果导体是一个闭合回路,切割磁感线产生的感应电动势将产生感应电流。
根据欧姆定律,我们可以计算产生的感应电流的大小,并根据导体形状和电源方向确定感应电流的方向。
感应电流会产生磁场,与外部磁场相互作用。
导体受到的力通过切割磁感线产生的感应电流,导体将受到一个力,称为洛伦兹力。
洛伦兹力的大小与感应电流、磁感线的强度以及导体的长度和形状等有关。
根据洛伦兹力的方向规则,我们可以确定导体受到的力的方向。
导体切割磁感线的应用导体切割磁感线的现象广泛应用于发电机、电动机和变压器等电磁设备中。
通过切割磁感线产生感应电流,可以实现能量转换和能量传输。
各种电磁设备的工作原理都涉及到导体切割磁感线的现象。
导体棒切割磁感线问题
导体棒切割磁感线问题1、如图所示,在一磁感应强度B=0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h=0.1m的平行金属导轨MN和PQ,导轨电阻忽略不计,在两根导轨的端点N、Q之间连接一阻值的电阻。
导轨上跨放着一根长为,每米长电阻的金属棒ab,金属棒与导轨正交放置,交点为c、d,当金属棒在水平拉力作用下以速度向左做匀速运动时,试求:(1)电阻R中的电流强度大小和方向;(2)使金属棒做匀速运动的拉力;(3)金属棒ab两端点间的电势差;(4)回路中的发热功率。
2、如图所示,水平平行放置的导轨上连有电阻R,并处于垂直轨道平面的匀强磁场中,今从静止起用力拉金属棒ab(ab与导轨垂直),若拉力恒定,经时间后ab的速度为v,加速度为,最终速度可达;若拉力的功率恒定,经时间后ab的速度也为v,加速度为,最终速度可达。
求和满足的关系。
例1:金属棒长为l,电阻为r,绕o 点以角速度ω做匀速圆周运动,a 点与金属圆环光滑接触,如图5 所示,图中定值电阻的阻值为R,圆环电阻不计,求Uoa。
拓展其他条件同例题,空间存在的匀强磁场随时间作周期性变化,B=B0sinAt,其中A 为正的常数,以垂直纸面向里为正方向,求Uoa。
例2:如图所示,一金属圆环和一根金属辐条构成的轮子,可绕垂直于圆环平面的水平轴自由转动,金属环与辐条的电阻不计,质量忽略,辐条长度为L0,轮子处在与之垂直的磁感应强度为B 匀强磁场中,磁场方向垂直纸面向里,一阻值为R 的定值电阻通过导线与轮子的中心和边缘相连,轮子外缘同时有绝缘绳绕着,细绳下端挂着质量为m 的重物,求重物下落的稳定速度。
变式1:如果把原题中的辐条由一根变成四根,如图10所示,且相邻两根辐条的夹角是90°,辐条电阻不计,求重物最终下落的稳定速度。
变式(2):如果把变式(1)中的四根辐条变成一金属圆盘,且不计金属圆盘内阻,求重物最终下落的稳定速度?(如图11 所示)变式(3):如果变式(1)中的四根辐条的电阻都是r,则重物下落的最终稳定速度为多少?欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。
导体棒切割磁感线问题分析
导体棒切割磁感线问题分析上海师范大学附属中学 李树祥上海市高中物理学科教学基本要求中的学习水平要求分为ABCD 四个等级,其中最高要求D 级(综合,能以某一知识内容为重点,综合其他相关内容,分析、解决新情境下的简单物理问题)只有一个,就是导体棒切割磁感线时产生的感应电动势。
因此实行等级考后这三年中,每年最后的两道综合题中都有一道是导体棒切割磁感线的题目。
那么,导体棒切割磁感线主要考查哪些问题呢?一、电路问题:由于导体棒切割磁感线产生感应电动势形成电源,所以就出现了电路问题。
此类问题的解题步骤是:(1)确定电源:切割磁感线产生感应电动势的那部分导体就是电源;利用E =BLV (B 、L 、V 两两垂直时)求感应电动势的大小,利用右手定则或楞次定律判断电流方向;(2)分析电路结构:内电路是切割磁感线的导体,此导体棒的电阻就是内阻,两端的电压就是电源的路端电压(电源外压);外电路是除电源之外的由电阻等电学元件组成的电路。
在外电路中,电流从高电势处流向低电势处;在内电路中,电流则从低电势处流向高电势处。
(3)画出等效电路图;(4)应用闭合电路欧姆定律和部分电路欧姆定律及串、并联电路的基本性质等列方程求解。
例1、如图1所示,两根足够长的光滑金属导轨水平平行放置,间距为l =1 m ,cd 间、de 间、cf 间分别接着阻值R =10Ω的电阻.一阻值R =10Ω的导体棒ab 以速度v =4 m/s 匀速向左运动,导体棒与导轨接触良好;导轨所在平面存在磁感应强度大小B =0.5T 、方向竖直向下的匀强磁场.下列说法中正确的是( )A .导体棒ab 中电流的流向为由b 到aB .cd 两端的电压为1VC .de 两端的电压为1VD .fe 两端的电压为1V解析:导体棒ab 为电源,由右手定则可知ab 中电流方向为a →b ,A 错误;ab 切割磁感线产生的感应电动势E =Blv ,cd 间电阻R 为外电路负载,de 和cf 间电阻中无电流,de和cf 间无电压,因此cd 和fe 两端电压相等,即U =E 2R ×R =Blv2=1V ,B 、D 正确,C 错误。
导体棒切割磁感线的综合问题(单棒、含容和双棒)
F(m1m2)a
1
2
FB m1a FB BIl
v
有外力等距双棒
v2
I Bl( v2 v1 ) R1 R2
v2
v1
(R1R2 )m1F B2l2(m1m2 )
O
v1 t
有外力等距双棒
4.变化
(1)两棒都受外力作用
F1
F2
1
2
(2)外力提供方式变化
有外力不等距双棒
运动分析:
F
某时刻两棒速度分别为v1、 v2
加速度分别为a1、a2
a1
F
FB1 m1
a2
FB2 m2
经极短时间t后其速度分别为:
F F
B B
1
1 l1 2 l2 v1 v1 a1t v2 v2 a2t
2
此时回路中电流为: IB l1(v1a1t)B l2(v2a2t)
R 1R 2
当 l1a1 l2a2 时
B(l1v1l2v2)B(l1a1l2a2)t R1R2
导体棒切割磁感线的综合问题(单棒、含容 和双棒)
细述
一、单棒问题 二、含容式单棒问题 三、无外力双棒问题 四、有外力双棒问题
阻尼式单棒
1.电路特点
v0
导体棒相当于电源。
2.安培力的特点
安培力为阻力,并随速
B2l2v
度减小而减小。
FB BIl R r
3.加速度特点
加速度随速度减小而减小
v
a FB B2l2v m m(Rr)
m
B
M
m
FB
h
v0
1
2
(3)两棒都有初速度
v1
v2
(4)两棒位于不同磁场中
导体棒切割磁感线问题
导体切割磁感线问题电磁感应中,“导体棒”切割磁感线问题是高考常见命题。
解此类型问题的一般思路是:先解决电学问题,再解决力学问题,即先由法拉第电磁感应定律求感应电动势,然后根据欧姆定律求感应电流,求出安培力,再往后就是按力学问题的处理方法,如进行受力情况分析、运动情况分析及功能关系分析等。
(如果学生能力足够,完全可以力学和电学同时分析,找到中间那个联系点,一般联系点都是合力,之后运用牛二定律很容易解题。
)导体棒切割磁感线的运动一般有以下几种情况:匀速运动、在恒力作用下的运动、恒功率运动等。
一、导体棒匀速运动导体棒匀速切割磁感线处于平衡状态,安培力和外力等大、反向,给出速度可以求外力的大小,或者给出外力求出速度,也可以求出功、功率、电流强度等,外力的功率和电功率相等。
例1. 如图1所示,在一磁感应强度B=0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h=0.1m的平行金属导轨MN和PQ,导轨电阻忽略不计,在两根导轨的端点N、Q 之间连接一阻值R=0.3Ω的电阻。
导轨上跨放着一根长为L=0.2m,每米长电阻r=2.0Ω/m的金属棒ab,金属棒与导轨正交放置,交点为c、d,当金属棒在水平拉力作用于以速度v=4.0m/s向左做匀速运动时,试求:图1(1)电阻R中的电流强度大小和方向;(2)使金属棒做匀速运动的拉力;(3)金属棒ab两端点间的电势差;(4)回路中的发热功率。
解析:金属棒向左匀速运动时,等效电路如图2所示。
在闭合回路中,金属棒cd部分相当于电源,内阻r cd=hr,电动势E cd=Bhv。
图2(1)根据欧姆定律,R中的电流强度为0.4A,方向从N经R到Q。
(2)使金属棒匀速运动的外力与安培力是一对平衡力,方向向左,大小为F=F安=BIh=0.02N。
(3)金属棒ab两端的电势差等于U ac、U cd与U db三者之和,由于U cd=E cd-Ir cd,所以U ab =E ab-Ir cd=BLv-Ir cd=0.32V。
导体棒切割磁感线产生感应电动势公式
导体棒切割磁感线产生感应电动势公式
当导体棒切割磁感线时,会在导体内部产生感应电动势。
这是基
于法拉第电磁感应定律的原理,即磁通量的变化会导致感应电动势的
产生。
具体来说,当导体棒以速度v沿着磁场方向运动时,磁感线就会
随着导体棒的运动而切割导体棒,这样就会导致磁通量发生变化。
而
根据法拉第电磁感应定律,这个磁通量的变化就会在导体内部产生一
个感应电动势E,其大小与磁通量变化速率的乘积成正比。
具体来说,根据电动势的定义公式E=Blv,其中B代表磁场强度,
l代表导体棒的长度,v代表导体棒相对于磁场的运动速度。
因此,可
以发现,当导体棒的速度越大或者导体棒越长,磁场强度越大时,感
应电动势也会相对更大。
此外,还需要注意的是,运动方向所产生的电势方向由电磁感应
定律中的楞次定律确定。
如果导体在平行磁场中运动,则电势方向与
磁场线方向垂直,且当导体运动速度越大时,感应电动势也会相对更大;如果导体垂直于磁场运动,则感应电动势的大小与导体的速度有关,且其方向按右手定则决定。
这些细微的区别需要我们在实际使用时加
以注意。
总之,导体棒切割磁感线产生感应电动势公式是一个重要的基本
物理公式,我们需要在实际运用时灵活掌握,以便更好地应用于实际
问题中,从而使我们的研究和应用更具成效。
导体棒切割磁感线问题分类解析(新、选)
导体棒切割磁感线问题分类解析电磁感应中,“导体棒”切割磁感线问题是高考常见命题。
解此类型问题的一般思路是:先解决电学问题,再解决力学问题,即先由法拉第电磁感应定律求感应电动势,然后根据欧姆定律求感应电流,求出安培力,再往后就是按力学问题的处理方法,如进行受力情况分析、运动情况分析及功能关系分析等。
导体棒切割磁感线的运动一般有以下几种情况:匀速运动、在恒力作用下的运动、恒功率运动等,现分别举例分析。
一、导体棒匀速运动导体棒匀速切割磁感线处于平衡状态,安培力和外力等大、反向,给出速度可以求外力的大小,或者给出外力求出速度,也可以求出功、功率、电流强度等,外力的功率和电功率相等。
例1. 如图1所示,在一磁感应强度B=0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h=0.1m的平行金属导轨MN和PQ,导轨电阻忽略不计,在两根导轨的端点N、Q之间连接一阻值R=0.3Ω的电阻。
导轨上跨放着一根长为L=0.2m,每米长电阻r=2.0Ω/m的金属棒ab,金属棒与导轨正交放置,交点为c、d,当金属棒在水平拉力作用于以速度v=4.0m/s 向左做匀速运动时,试求:图1(1)电阻R中的电流强度大小和方向;(2)使金属棒做匀速运动的拉力;(3)金属棒ab两端点间的电势差;(4)回路中的发热功率。
解析:金属棒向左匀速运动时,等效电路如图2所示。
在闭合回路中,金属棒cd部分相当于电源,内阻r cd=hr,电动势E cd=Bhv。
图2(1)根据欧姆定律,R 中的电流强度为I E R r Bhv R hrcd cd =+=+=0.4A ,方向从N 经R 到Q 。
(2)使金属棒匀速运动的外力与安培力是一对平衡力,方向向左,大小为F =F安=BIh=0.02N 。
(3)金属棒ab 两端的电势差等于U ac 、U cd 与U db 三者之和,由于U cd =E cd -Ir cd ,所以U ab =E ab -Ir cd =BLv -Ir cd =0.32V 。
导体棒切割磁感线问题分类解析
多物理场耦合效应的研究
在导体棒切割磁感线的过程中,除了电磁感应外,还可能涉及到热传导、力学等多种物理 场的耦合效应,未来可以开展多物理场耦合效应的研究,更全面地揭示该过程的物理机制 。
解题思路
本题主要考察法拉第电磁感应定律的应用,需要掌握感应电动势的计算 公式和判断感应电流方向的方法。
双棒切割典型例题
题目描述
两根导体棒在匀强磁场中做匀速切割磁感线运动,求两根导体棒之间的感应电动势和感应电流。
解析过程
根据法拉第电磁感应定律和欧姆定律,可以分别求出两根导体棒产生的感应电动势和感应电流。通过比较两根导体棒 的运动状态和电路连接方式,可以确定感应电动势和感应电流的大小和方向。
解题思路
本题主要考察法拉第电磁感应定律和欧姆定律的应用,需要掌握感应电动势和感应电流的计算方法,同 时注意分析电路的连接方式和导体棒的运动状态。
多棒切割典型例题
01
题目描述
多根导体棒在匀强磁场中做匀速切割磁感线运动,求多根 导体棒之间的感应电动势和感应电流。
02 03
解析过程
根据法拉第电磁感应定律和欧姆定律,可以分别求出每根 导体棒产生的感应电动势和感应电流。通过比较各根导体 棒的运动状态和电路连接方式,可以确定多根导体棒之间 的感应电动势和感应电流的大小和方向。
双棒切割问题
两导体棒以相同速度在匀强磁场中做切割磁感线运动
此时两导体棒产生的感应电动势相同,感应电流也相同,两导体棒受到的安培力大小相 等、方向相反,系统动量守恒。
两导体棒以不同速度在匀强磁场中做切割磁感线运动
此时两导体棒产生的感应电动势不同,感应电流也不同,两导体棒受到的安培力大小不 相等、方向相反,系统动量不守恒。
电磁感应导体棒切割磁感线题型
电磁感应导体棒切割磁感线题型一、概述电磁感应是指导体内部电荷的运动状态发生改变时,会产生磁场,从而在导体周围形成磁感线。
当导体与磁场相对运动时,磁感线会被切割,产生感应电动势和感应电流。
这就是电磁感应现象。
二、导体棒切割磁感线题型在考试中,常见的关于电磁感应的题型之一就是导体棒切割磁感线题型。
这类题目通常给定一个导体棒在某个时间段内移动的速度和一个垂直于其运动方向的恒定磁场。
要求求出在该时间段内导体棒中所产生的感应电动势或者感应电流大小。
三、切割磁感线产生的电动势公式根据法拉第电磁感应定律,当导体棒与恒定磁场相对运动时,在其两端会产生一个由负极向正极流动的闭合回路中的电荷移动,从而形成一个环路。
根据欧姆定律,该回路中会有一定大小的电流I通过。
根据基尔霍夫第二定律,该回路中所产生的电动势E等于回路中电势差之和,即:E = ε - IR其中,ε表示感应电动势大小,I表示回路中的电流强度,R表示回路中的总电阻。
根据楞次定律,感应电动势的方向与导体棒运动方向垂直,并且遵循右手定则。
具体而言,当右手握住导体棒,并将拇指指向运动方向时,四指所指方向就是感应电动势的方向。
四、切割磁感线产生的感应电流公式当导体棒闭合成环路时,在环路中会有一定大小的电流通过。
根据欧姆定律,该环路中电流I等于环路中总电压V除以总电阻R:I = V/R其中,V等于由导体棒切割磁场所产生的感应电动势ε。
五、影响切割磁感线产生的感应电动势或者感应电流大小因素1. 磁场强度:磁场强度越大,则切割磁感线所产生的感应电动势或者感应电流越大。
2. 导体长度:导体长度越长,则切割磁感线所产生的感应电动势或者感应电流越大。
3. 导体速度:导体速度越快,则切割磁感线所产生的感应电动势或者感应电流越大。
4. 磁场方向:磁场方向与导体棒运动方向垂直时,切割磁感线所产生的感应电动势或者感应电流最大。
六、实际应用导体棒切割磁感线的现象在实际生活中有着广泛的应用。
导体棒切割磁感线问题分析 - 副本
导体棒切割磁感线问题分析上海师范大学附属中学 李树祥上海市高中物理学科教学基本要求中的学习水平要求分为ABCD 四个等级,其中最高要求D 级(综合,能以某一知识内容为重点,综合其他相关内容,分析、解决新情境下的简单物理问题)只有一个,就是导体棒切割磁感线时产生的感应电动势。
因此实行等级考后这三年中,每年最后的两道综合题中都有一道是导体棒切割磁感线的题目。
那么,导体棒切割磁感线主要考查哪些问题呢?一、电路问题:由于导体棒切割磁感线产生感应电动势形成电源,所以就出现了电路问题。
此类问题的解题步骤是:(1)确定电源:切割磁感线产生感应电动势的那部分导体就是电源;利用E =BLV (B 、L 、V 两两垂直时)求感应电动势的大小,利用右手定则或楞次定律判断电流方向;(2)分析电路结构:内电路是切割磁感线的导体,此导体棒的电阻就是内阻,两端的电压就是电源的路端电压(电源外压);外电路是除电源之外的由电阻等电学元件组成的电路。
在外电路中,电流从高电势处流向低电势处;在内电路中,电流则从低电势处流向高电势处。
(3)画出等效电路图;(4)应用闭合电路欧姆定律和部分电路欧姆定律及串、并联电路的基本性质等列方程求解。
例1、如图1,由某种粗细均匀的总电阻为3R 的金属条制成的矩形线框abcd ,固定在水平面内且处于方向竖直向下的匀强磁场B 中.一接入电路电阻为R 的导体棒PQ ,在水平拉力作用下沿ab 、dc 以速度v 匀速滑动,滑动过程PQ 始终与ab 垂直,且与线框接触良好,不计摩擦.在PQ 从靠近ad 处向bc 滑动的过程中( )A .PQ 中电流先增大后减小B .PQ 两端电压先减小后增大C .PQ 上拉力的功率先减小后增大D .线框消耗的电功率先减小后增大解析:导体棒PQ 为电源,设PQ 左侧电路的电阻为R x ,则右侧电路的电阻为3R -R x ,所以外电路的总电阻为R ′=,当R x =3R -R x 时外电路电阻最大,故外电路电阻先增大后减小,所以路端电压先增大后减小,B 错误;根据闭合电路的欧姆定律可得PQ 中的电流:I =先减小后增大,故A 错误;由于导体棒做匀速运动,拉力等于安培力,即F =BIL ,拉力的功率P =BILv ,先减小后增大,所以C 正确;外电路的总电阻R ′=最大为,小于电源内阻R ,又外电阻先增大后减小,而外电阻越接近内阻时电源输出功率越大,所以外电路消耗的功率先增大后减小,故D 错误。
高考物理全真复习- 导体棒切割磁感线问题分类解析
导体棒切割磁感线问题分类解析电磁感应中,“导体棒”切割磁感线问题是高考常见命题。
解此类型问题的一般思路是:先解决电学问题,再解决力学问题,即先由法拉第电磁感应定律求感应电动势,然后根据欧姆定律求感应电流,求出安培力,再往后就是按力学问题的处理方法,如进行受力情况分析、运动情况分析及功能关系分析等。
导体棒切割磁感线的运动一般有以下几种情况:匀速运动、在恒力作用下的运动、恒功率运动等,现分别举例分析。
一、导体棒匀速运动导体棒匀速切割磁感线处于平衡状态,安培力和外力等大、反向,给出速度可以求外力的大小,或者给出外力求出速度,也可以求出功、功率、电流强度等,外力的功率和电功率相等。
例1. 如图1所示,在一磁感应强度B=0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h=0.1m的平行金属导轨MN和PQ,导轨电阻忽略不计,在两根导轨的端点N、Q之间连接一阻值R=0.3Ω的电阻。
导轨上跨放着一根长为L=0.2m,每米长电阻r=2.0Ω/m的金属棒ab,金属棒与导轨正交放置,交点为c、d,当金属棒在水平拉力作用于以速度v=4.0m/s向左做匀速运动时,试求:图1(1)电阻R 中的电流强度大小和方向;(2)使金属棒做匀速运动的拉力;(3)金属棒ab 两端点间的电势差;(4)回路中的发热功率。
解析:金属棒向左匀速运动时,等效电路如图2所示。
在闭合回路中,金属棒cd 部分相当于电源,内阻r cd =hr ,电动势E cd =Bhv 。
图2(1)根据欧姆定律,R 中的电流强度为I E R r Bhv R hrcd cd =+=+=0.4A ,方向从N 经R 到Q 。
(2)使金属棒匀速运动的外力与安培力是一对平衡力,方向向左,大小为F =F 安=BIh =0.02N 。
(3)金属棒ab 两端的电势差等于U ac 、U cd 与U db 三者之和,由于U cd =E cd -Ir cd ,所以U ab =E ab -Ir cd =BLv -Ir cd =0.32V 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导体棒切割磁感线问题
1、如图所示,在一磁感应强度B=0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h=0.1m的平行金属导轨MN和PQ,导轨电阻忽略不计,在两根导轨的端点N、Q之间连接
一阻值的电阻。
导轨上跨放着一根长为,每米长电阻的金属棒ab,金属棒与导轨正交放置,交点为c、d,当金属棒在水平拉力作用下以速度向左做匀速运动时,试求:
(1)电阻R中的电流强度大小和方向;
(2)使金属棒做匀速运动的拉力;
(3)金属棒ab两端点间的电势差;
(4)回路中的发热功率。
2、如图所示,水平平行放置的导轨上连有电阻R,并处于垂直轨道平面的匀强磁场中,今从静止起用力拉金属棒ab(ab与导轨垂直),若拉力恒定,经时间
后ab的速度为v,加速度为,最终速度可达;若拉力的功
率恒定,经时间后ab的速度也为v,加速度为,最终速度可达。
求和满足的关系。
例1:金属棒长为l,电阻为r,绕o 点以角速度ω做匀速圆周运动,a 点与金属圆环光滑接触,如图5 所示,图中定值电阻的阻值为R,圆环电阻不计,求Uoa。
拓展其他条件同例题,空间存在的匀强磁场随时间作周期性变化,B=B0sinAt,其中A 为正的常数,以垂直纸面向里为正方向,求Uoa。
例2:如图所示,一金属圆环和一根金属辐条构成的轮子,可绕垂直于圆环平面的水平轴自由转动,金属环与辐条的电阻不计,质量忽略,辐条长度为L0,轮子处在与之垂直的磁感应强度为B 匀强磁场中,磁场方向垂直纸面向里,一阻值为R 的定值电阻通过导线与轮子的中心和边缘相连,轮子外缘同时有绝缘绳绕着,细绳下端挂着质量为m 的重物,求重物下落的稳定速度。
变式1:如果把原题中的辐条由一根变成四根,如图10所示,且相邻两根辐条的夹角是90°,辐条电阻不计,求重物最终下落的稳定速度。
变式(2):如果把变式(1)中的四根辐条变成一金属圆盘,且不计金属圆盘内阻,求重物最终下落的稳定速度?(如图11 所示)
变式(3):如果变式(1)中的四根辐条的电阻都是r,则重物下落的最终稳定速度为多少?。