第三章-水热与溶剂热合成法教学文案
第三章-水热和溶剂热法
水热、溶剂热反应的基本类型
(1)合成反应
通过数种组分在水热或溶剂热条件下直接化 合或经中间态发生化合反应。 利用此类反应可合成各种多晶或单晶材料。
Nd2O3 + H3PO4 NdP5O14 CaO· nAl2O3 + H3PO4 Ca(PO4)3OH + AlPO4 La2O3 + Fe2O3 + SrCl2 (La, Sr)FeO3 FeTiO3 + KOH K2O· nTiO2 (n = 4, 6)
例如
Cr + H2O Cr2O3 + H2 Zr + H2O ZrO2 + H2 M + n L MeLn (L = 有机配体) 使溶胶、凝胶(so1、gel)等非晶 态物质晶化的反应
(11)晶化反应 例如
CeO2· xH2O CeO2 ZrO2· H2O M-ZrO2 + T-ZrO2 硅铝酸盐凝胶 沸石
四、有机溶剂的性质标度
有机溶剂种类多,性质差异大,需进行溶剂 选择。 溶剂会使反应物溶解或部分溶解,生成溶剂 合物,这会影响化学反应速率。 在合成体系中,反应物在液相中的浓度、解 离程度,及聚合态分布等都会影响反应过程。
§3.2 水热、溶剂热体系的成核与晶体生长
(6)脱水反应
一定温度、压力下物质脱水结晶的反应 例如
(7)分解反应
分解化合物得到结晶的反应
例如 FeTiO FeO + TiO 3 2 ZrSiO4 + NaOH Na2SiO3 + ZrO2 FeTiO3 + K2O FeO + K2O· nTiO2 (n = 4, 6)
(8)提取反应
第三章 水热与溶剂热合成法
间,上半部(结晶区)在330-350°C之间
釜内压力约1500kg/cm2。 在反应釜的下半部是SiO2的饱和溶液,上升到上
半部时,因温度降低而使SiO2呈过饱和状态,而
导致α-SiO2单晶的生成。
51
四、复合氧化物的合成
降低反应温度,节省能源; 能够以单一反应步骤完成,不需要研磨和焙烧步
15
1.2 超临界流体的特点:
具有液体的溶解特性以及气体的传递特性
•
• • •
粘度约为普通液体的0.1~0.01;
扩散系数约为普通液体的10~100倍; 密度比常压气体大102~103倍。 电离常数 在不改变化学组成的情况下,SCF性质可由压
力来连续调节
16
二、超临界水(SCW)
温度高于临界温度374°C,
影响反应速度、产物结构、晶化机理
46
5. 搅拌与静止
搅拌能有效的改变扩散过程和晶化动力学。 搅拌体系合成的沸石晶体通常较小 搅拌有时可有选择性地晶化
47
二、纳米材料的水热、溶剂热合成
缺点:不能合成一些遇水分解或在水中不存在的物种
48
研究方向 (1)粉体颗粒形貌的控制;
(2)粉末颗粒度及分散度的控制;
流动性、渗透性和传递性能好,利于传质和热交换
20
三、超临界水的特点:
①完全溶解有机物
②完全溶解空气或氧气
③完全溶解气相反应的产物
④对无机物溶解度不高
⑤具有很好的传质、传热性能
总体来看,水在超临界区的行为更像一个 中等极性的有机溶剂
21
超临界水热合成无机功能材料
22
四、超临界水热合成技术的优点
水热溶剂热
3.1.3 介电常数的变化
水的介电常 数随温度的 升高而下降, 随压力的升 高而升高
介电常数下降对水作为溶剂时的能力和行为产生 影响。例如,在通常情况下,电解质在水溶液中 完全离解,而在水热条件下,随温度上升,水的 介电常数降低,电解质趋向于重新结合,不能更 为有效地分解,对于大多数物质,这种转变常常 在200~500 ˚C之间。
3)能够使低熔点化合物、高蒸汽压且不能在熔 体中生成的物质、高温分解相在水热和溶剂热低 温条件下晶化生成。 4)水热和溶剂热的相对低温、等压、溶液条件, 有利于生长极少缺陷、取向好、完美的晶体,产 物结晶度高,而且易于控制产物晶体的粒度。 5)水热和溶剂热条件下的环境气氛易于调节(隔 绝空气),因此易于制得低价态、中间价态和特 殊价态的化合物,还能够进行均匀地掺杂。
Hale Waihona Puke 第三节水热与溶剂热条件下 介质的性质
在水热或溶剂热条件下,物质的化学行为 与该条件下的反应介质—水或非水溶剂的 物理化学性质(如蒸汽压、热扩散系数、 粘度、介电常数、表面张力等)有密切关 系。
3.1 水的性质
在高温高压的水热体系中,水的性质发生下列变化: 1)蒸汽压变高 2)密度变小 3)表面张力变小 4)粘度变小 5)离子积变高 6)介电常数随温度升高而下降,随压力增加而 升高。
简易高压反应釜实物图
带搅拌高压反应釜装置图
工艺流程
釜式
混合搅拌
取 釜
干燥
工艺流程
管式
反应物料选择 确定物料配方 优化配料序
连续泵入反应管
确定反应条件
混料搅拌
产物分离干燥
表征
水热法局限性
水热与溶剂热合成法的原理
水热与溶剂热合成法的原理水热合成是一种常用的溶剂热合成方法,其原理基于高温高压的条件下,溶剂中的溶质能够发生各种化学反应。
在水热条件下,水作为一种强溶剂,具有较高的介质极化能力和较高的溶解度,对于很多无机和有机物质都能够发挥溶剂作用。
通过水热合成方法,我们可以合成各种无机纳米颗粒、无机纤维、无机薄膜和无机杂化材料。
水热合成的原理主要涉及以下几个方面:1.高温高压条件下的介质极化效应:在高温高压条件下,水分子具有较高的极性和极大的介电常数,能够使得周围的溶质分子发生极化,达到更高的反应速度和较好的反应活性。
2.溶质溶剂间的相互作用:水作为一种强溶剂,对于溶质具有一定的溶解度,能够提高反应物质之间的接触程度,促进反应物质之间的相互作用,进而促进反应的进行。
3.溶液饱和度对反应速率的影响:在水热合成过程中,溶液中的反应物质往往在过饱和状态下存在,当反应物的浓度超过其在饱和溶液中的溶解度时,会发生结晶过程,从而生成所需的产物。
溶剂热合成是一种利用高温高压条件下的溶剂作用,促进反应物质之间发生化学反应的方法。
根据反应的需求,选择适当的溶剂,使得反应物质能够更好地溶解和混合在一起,以提高反应的速率和效率。
溶剂热合成的原理主要包括以下几个方面:1.溶液的扩散和混合效应:高温高压条件下,溶剂分子的动力学能够得到增强,分子的扩散和混合能力也会增强,有利于反应物之间的相互作用和反应的进行。
2.溶液中溶质的溶解度:溶剂作为一种溶解介质,能够使得溶质分子得到更好的散布和溶解,有利于反应物之间的接触程度和相互作用。
3.溶液中的离子活性:在高温高压条件下,溶剂分子能够极化溶质分子,使得溶质分子成为带电的离子,在反应过程中有助于离子的迁移和反应的发生。
4.溶液中的饱和度和过饱和度:在溶剂热合成的过程中,溶液的浓度往往超过了其在饱和状态下的溶解度,溶液处于过饱和状态。
当反应物质达到饱和状态时,会发生结晶过程,从而形成所需的产物。
水热法—溶剂热法合成一维纳米材料
该法往往只是 用于氧化物材 料及少数一些 对水不敏感的 硫化物的制备
溶剂 热法
2.1 介质的选择
反应物充分 溶解 产物不能同 溶剂作用 副反应尽量 少 溶剂与产物 易于分离 相似形容原理
反应物水解的不能用水作溶剂 与空气中氧发生反应的,在惰 性气氛中反应
介质 选择
3 文献阅读
3.1 水热法合成氯化磷酸锶纳米线
3.1.3
结 果 与 讨 论
三相:氯化磷酸锶 相,锶磷磷灰石相, 磷酸氢锶相
a.20% 1,4-二氧六环;b.未添加二氧六环
3.1.3结果与讨论
氯化磷酸锶纳米线长 约1.4370.6 mm 直径 约31712nm 长宽比 52.28729.41.
加入20%的1,4-二氧己环制备纳米线的TEM分析
3.1.3结果与讨论
4 前景与展望
水热法溶剂热法拥有无毒、对环境无污染的优点, 因此,成为合成一维纳米材料的一个重要研究方向。但 是很多一维纳米材料的水热法溶剂热法制备研究还处于 阶段,其工艺参数还有待进一步完善。 水热法溶剂热法的研究必将对材料制备领域,航空 航天,生物医学等诸多领域产生重要的影响。
Thank you
3.1.1 本文研究意义
氯化磷酸锶在结构上和磷酸锶、锶羟磷灰石相似,磷酸锶类似 于磷酸钙,有很好的生物相容性,在外科,骨骼治疗和临床方面有 潜在的应用价值。而一维纳米材料又优异的机械性能和生物活性, 因此有广阔的应用前景。 本实验研究的是含锶的骨骼粘合剂,具有低毒性,低凝固温度, 刺激骨骼接缝处生长的作用。 目前,氯化磷酸锶已由:微乳液法、模板法、各向异性法合成。 模板法和微乳液法分别受铝和表面活性剂的污染;各向异性法产率 低。 本实验研究了一种新奇的方法合成氯化磷酸锶,并探究了1,4— 二氧己环对合成高深宽比纳米线的影响。对大规模生产骨高纯度骼 粘合剂有重要意义。
水热与溶剂热合成法
强烈对流,在生长区(低温
区)形成过饱和溶液
成核
形核
9
5.2 纳米晶粒的形成过程 (p7) (1)生长基元与晶核的形成
满足线度和几何构型要求时,生成晶核 (2)生长基元在固-液生长界面上的吸附与运动
生长基元运动到固-液生长界面并被吸附, 在界面上迁移运动 (3)生长基元在界面上的结晶或脱附
10
5.3 水热反应的成核特征 1、成核速率随着过冷程度即亚稳性的增加而增加 2、存在一个诱导期,在此期间不能检测出成核 3、组成的微小变化可引起诱导期的显著变化 4、成核反应的发生与体系的早期状态有关
单晶培育: 从籽晶培养大单晶。
7
【例】水热法制备Ag纳米粒子
5ml 0.02M AgNO3 ag和5mL 0.02M NaCl ag,加入到30mL 蒸馏水中,搅拌生成AgCl胶体,然后将0.2mmol的葡萄糖 溶在上述胶体溶液中,移入内衬Teflon的50mL合成弹中, 在加热炉中180°C下保持一段时间,空气中冷却至室温, 蒸馏水和酒精冲洗银灰色沉淀,真空60 °C干燥2小时。
第三章 水热与溶剂热合成法
1
第一节 水热合成法合成原理
p19
一、水热合成的概念 (Hydrothermal Synthesis)
1.1 原理
在特制的密闭反应容器里,采用水溶液作为反应
介质,对反应容器加热,创造一个高温、高压的
反应环境,使通常难溶或不溶的物质溶解并重结
晶。
2
1.2 水热合成的温度范围 常温~1100°C;压强范围: 1~500MPa
(1)低温水热合成:100°C以下; 沸石的合成
(2)中温水热合成:100—300°C; 经济有效的合成区域
(3)高温高压水热合成:300°C以上; 单晶生长、特种结构的化合物
水热合成_精品文档
主要原料
钛酸丁脂[Ti(OC4H9)4]、 氯氧化锆(ZrOCl2·8H2O)、 硝酸铅(Pb(NO3)2)或醋酸铅(PbAc2)、 氢氧化钠(NaOH)等.
由于扩散与溶液的粘度成正比,因此在水热溶液 中存在十分有效的扩散;
水热晶体生长较水溶液晶体生长具有更高的生长 速率,生长界面附近有更窄的扩散区,以及减少 出现组份过冷和枝晶生长的可能性等优点。
22
高温高压水的作用
① 压力传递介质; ② 无毒溶剂,提高物质的溶解度; ③ 反应和重排的促进剂; ④ 有时作为反应物,有时与容器反应; ⑤ 起低熔点物质的作用;
33
晶体生长步骤
① 溶解阶段:营养料在反应介质里溶解,以离子、分子 团的形式进入溶液;
② 输运阶段:体系存在有效热对流以及溶解区和生长区 之间的浓度差,离子/分子/离子团被输运到生长区;
③ 吸附、分解与脱附 : 离子/分子/离子团在生长界面上的吸附、分解与脱附;
④ 吸附物质在界面上的扩散;
⑤ 结晶生长。
然而,成核和晶体生长彼此竞争需求反应物,因 此伴随晶体生长可预料到新核形成所需的反应物 比例越来越少。成核反应速率通过极大值后开始 下降。
37
非自发成核体系晶化动力学
(1)在籽晶或稳定核上的沉积速率随过饱和程度 而增加,搅拌常会加速沉积,不易形成大的单晶, 除非在非常小的过饱和或过冷条件下进行。
40
自发成核体系晶化动力学
缺少籽晶条件下,晶体生长必定经历成核。 晶体产生与时间的关系曲线是典型的S形。
41
例:水热制备PZT陶瓷粉末
前驱物配比、反应温度、反应时间和矿化 剂浓度对合成粉体的影响。
在Pb/(Zr+Ti)=1 7,Zr/Ti=0.52/0.48,NaOH 的浓度为3mol/L,反应温度为200℃,反应时 间为2小时的条件下,得到了较好晶形的单一 相的PZT粉体。
第三章水热法.ppt
页面 9
与水热法相比,溶剂热法具有以下优点:
✓在有机溶剂中进行的反应能够有效地抑制产物的氧化过程或 水中氧的污染;
✓非水溶剂的采用使得溶剂热法可选择原料的范围大大扩大, 比如氟化物,氮化物,硫化合物等均可作为溶剂热反应的原 材料;同时,非水溶剂在亚临界或超临界状态下独特的物理 化学性质极大地扩大了所能制备的目标产物的范围;
2020/6/15
页面 8
➢另外,物相的形成,粒径的大小、形态也能够 有效控制,而且产物的分散性好。
➢更重要的是通过溶剂热合成出的纳米粉末,能 够有效的避免表面羟基的存在,使得产物能稳定 存在。
➢作为反应物的盐的结晶水和反应生成的水,相 对于大大过量的有机溶剂,水的量小得可以忽略。
2020/6/15
• 复 合 氧 化 物 : BaFe12O19 、 BaZrO3 、 CaSiO3 、 PbTiO3、LaFeO3、LaCrO3、NaZrP3O12等;
2020/6/15
页面 5
• 羟基化合物、羟基金属粉:Ca10(PO4)6(OH)2、羟 基铁、羟基镍;
• 复合材料粉体:ZrO2-C、ZrO2-CaSiO3、TiO2-C、 TiO2-Al2O3等。
2020/6/15
页面 14
超临界流体拥有一般溶剂所不具备的很多重要 特性。SCF的密度、溶剂化能力、粘度、介电常 数、扩散系数等物理化学性质随温度和压力的变 化十分敏感,即在不改变化学组成的情况下,其 性质可由压力来连续调节。能被用作SCF溶剂的 物质很多,如二氧化碳、水、一氧化氮、乙烷、 庚烷、氨等。超临界流体相图,如图2.2。
2020/6/15
页面 7
➢相应的,它不但使反应物(通常是固体)的溶 解、分散过程及化学反应活性大大增强,使得 反应能够在较低的温度下发生,而且由于体系 化学环境的特殊性,可能形成以前在常规条件 下无法得到的亚稳相。
《水热与溶剂热》课件
THANK YOU
对比分析
将实验结果与理论预测或相关文献数据进行对比 ,以验证实验结果的可靠性。
实验结果的应用
理论验证
通过实验结果验证水热与溶剂热相关理论的正确性。
应用研究
基于实验结果开展相关应用研究,如新材料的合成、催化剂的制备 等。
指导实践
为实际生产提供指导,如优化反应条件、提高产率等。
05
水热与溶剂热的未来 发展
溶剂热是指在一定的温度和压力 条件下,在有机溶剂或混合溶剂 中发生的化学反应或物质形成过 程。
水热与溶剂热的特点
高温高压环境
水热和溶剂热反应通常在高温高 压环境下进行,有利于促进化学
反应的进行和物质的合成。
高效能量利用
水热和溶剂热反应可以充分利用反 应过程中的热量,实现能量的高效 利用。
环保安全
水热和溶剂热反应通常使用水或有 机溶剂作为反应介质,相对于传统 的高温冶炼等工艺更为环保安全。
定义
应用领域
溶剂热反应是指在高温高压环境下, 利用有机溶剂或其他非水溶剂进行的 化学反应。
溶剂热反应在有机合成、高分子合成 、纳米材料制备等领域有广泛应用。
特点
溶剂热反应可以提供一种温和的反应 条件,促进有机化合物的合成和改性 ,同时可以避免高温下水的蒸发和分 离。
水热与溶剂热的比较
相似之处
水热和溶剂热反应都是在高温高压环境下进行的,都可以促进化学反应的进行和提高产物的纯度和结晶度。
实验现象描述
对实验过程中观察到的现 象进行详细描述,如沉淀 物生成、颜色变化等。
实验结果图表
通过图表展示实验结果, 如温度与时间的关系图、 压力随时间的变化曲线等 。
结果分析方法
数据分析
水热与溶剂热法
成核的一般特性:
(一)成核速率随着过冷程度即亚稳性的 增加而增加。然而,粘性也随温度降低而 快速增大。因此,过冷程度与粘性在影响 成核速率方面具有相反的作用。这些速率 随温度降低有一个极大值。
(二)存在一个诱导期,在此期间不能 检测出成核。即使在过饱和的籽晶溶液中也 形成置亚稳态区域,在此区域里仍不能检测 出成核。
橄榄石 → 蛇纹石
蛇纹石的化学组成是Mg6[Si4O10](OH)2,是一族层状结构 的硅酸盐矿物的总称。单体少见,多呈致密块状、层状或纤维 状集合体。具有各种色调的绿色、浅黄色,常呈似蛇皮的绿黑 相间的花纹,故称蛇纹石。条痕白色,块状蛇纹石呈油脂光泽 或蜡状光泽,纤维状石膏具丝绢光泽。摩氏硬度2.5-3.5,比重 2.5-2.65。 蛇纹石主要是超基性岩或镁质碳酸岩中的富镁的矿物经热 液交代变质而成。蛇纹石可作为耐火材料和生产钙镁磷肥的原 料。绿色不透明者称岫玉,因辽宁岫岩县出产而得名,是著名 的玉石。
(3)由于晶化反应速率整体上是增加的, 在各面上的不同增长速率倾向于消失。 (4)缺陷表面的生长比无缺陷的光滑 平面快。
(5)在特定表面上无缺陷生长的最大 速率随着表面积的增加而降低,此种性质对 在适当的时间内无缺陷单晶的生长大小提出 了限制。
晶体生长所需的反应物种类将限制此反应 物有效地生成新核,进而新核提供的表面积与 相对大的籽晶所提供的表面积相比是小的。籽 晶为线性生长速率的测定提供适当的条件。在 籽晶存在下,晶化过程没有诱导期,在籽晶上 的沉积速率随着有效沉积表面增加而增加。为 了减少或消除诱导期进而缩短整个反应物所需 时间,在混合液中加入籽晶是熟知的手段。
其中,MCM48为立方结构,含有2条相互独立 的三维孔道体系,且满足最小面螺旋结构,其孔 径约为2.6nm,相对于一维孔道体系的MCM41及 两维的MCM15来说,MCM48具有三维网状结构 和可通性较高的孔道,更有利于反应分子的扩散, 其应用前景更为广阔。 但MCM48的合成条件比较苛刻,各种合成因 素如硅源、温度、碱度、反应物配比等微小差别 都会对结果造成很大的影响,在相似的反应体系 中可能合成出性质差别很大的产物。
水热法与溶剂热法培训课件
合成新材料、新结构和亚稳相
制备超细(纳米)粉末
1/26/2021
水热法与溶剂热法 14
14
2.4水热与溶剂热合成存在的问题
无 法 观察 晶 体生 长 和材 料 合成 的 过程 , 不 直 观。
设 备 要求 高 耐高 温 高压 的 钢材 , 耐腐 蚀 的 内 衬、技术难度大温压控制严格、成本高。
安 全 性差 , 加热 时 密闭 反 应釜 中 流体 体 积 膨 胀,能够产生极大的压强,存在极大的安全隐 患。
8
并非所有晶体都适合在水热环境生长。判明适合采 用水热法的一般原则是:
结晶物质各组分的一致性溶解(在不同的温度压力 下不会发生过大的改变);
结晶物质足够高的溶解度(可溶);
溶解度的温度系数有足够大的绝对值(溶解度随温 度变化明显);
中间产物通过改变温度较容易分解(降温时杂质少)。
1/26/2021
压釜中利用非水溶剂合成沸石的方法,拉开了溶剂热合成 的序幕。
到目前为止,溶剂热合成法已得到很快的发展,并在纳米
材料制备中具有越来越重要的作用。
1/26/2021
水热法与溶剂热法 3
3
1/26/2021
水热法与溶剂热法 4
4
2.1水热与溶剂热合成方法的概念
水热法(Hydrothermal Synthesis),是指在特制的 密闭反应器(高压釜)中,采用水溶液作为反应 体系,通过对反应体系加热、加压(或自生蒸气 压),创造一个相对高温、高压的反应环境,使 得通常难溶或不溶的物质溶解,并且重结晶而进 行无机合成与材料处理的一种有效方法。
年已制备出约80种矿物,其中经鉴定确定有石英,长石, 硅灰石等 ;
1900年以后,G.W. Morey和他的同事在华盛顿地球物理
水热法与溶剂热法PPT课件
第47页/共48页
感谢您的观看!
48
第48页/共48页
目
录
Hale Waihona Puke 1. 水热与溶剂热合成方法的发展 2. 水热与溶剂热合成方法原理
水热与溶剂热合成工艺
3.
水热与溶剂热合成方法应用实例
4.
1
第1页/共48页
1.1水热合成方法的发展
最 早 采 用 水 热 法 制 备 材 料 的 是 1845 年 K.F. Eschafhautl以硅酸为原料在水热条件下制备石英晶体 ;
30
第30页/共48页
加入PAM的量不同的Pd/C核壳结构在200的TEM图(a)0, (b)0.1, (c)0.3, (d)0.4g
31
第31页/共48页
加入PdCl2的量不同的Pd/C核壳结构在200的TEM图 (a) 10*105, (b) 15*105mol
32
第32页/共48页
在不同的反应时间下的Pd/C核 壳结构在200的TEM图 (a) 1, (b) 2,(c)3h
无法观察晶体生长和材料合成的过程,不直观。 设备要求高耐高温高压的钢材,耐腐蚀的内衬、 技术难度大温压控制严格、成本高。 安全性差,加热时密闭反应釜中流体体积膨胀, 能够产生极大的压强,存在极大的安全隐患。
15
第15页/共48页
16
第16页/共48页
水热与溶剂热合成的生产设备
高压釜是进行高温高压水热与溶剂热合成的 基本设备;
高压容器一般用特种不锈钢制成,釜内衬有化学惰性 材料,如Pt、Au等贵金属和聚四氟乙烯等耐酸碱材 料。
17
第17页/共48页
简易高压反应釜实物图
18
第18页/共48页
《水热与溶剂热合成》课件
在化学中的应用
01
02
03
合成有机分子
水热与溶剂热合成可用于 合成有机分子,如药物分 子、染料分子等。
合成无机纳米材料
利用水热与溶剂热合成技 术,可以制备各种无机纳 米材料,如金属纳米粒子 、氧化物纳米粒子等。
合成功能性配合物
通过水热与溶剂热合成, 可以制备具有特殊功能的 配合物,如荧光配合物、 电致变色配合物等。
。
反应机制与动力学研究
02
深入了解水热与溶剂热合成的反应机制和动力学过程,为优化
反应条件提供理论支持。
新型合成方法的开发
03
结合其他合成方法,如微波合成、超声合成等,开发出更高效
、环保的水热与溶剂热合成方法。
新的应用领域探索
新材料的合成
利用水热与溶剂热合成方法探索合成具有特殊性能和功能的新材 料。
溶剂热合成是指在密封的压力容器中,以有机溶剂为反应介 质,在一定的温度和压力条件下进行的化学反应过程。
详细描述
溶剂热合成利用高温高压的有机溶剂作为反应介质,使物质 在高温高压下发生化学反应,从而合成所需的物质。溶剂热 合成具有反应温度高、压力大、反应条件温和、产物纯净等 优点。
水热与溶剂热合成的基本原理
水热合成的定义
总结词
水热合成是指在密封的压力容器中,以水为溶剂,在一定的温度和压力条件下 进行的化学反应过程。
详细描述
水热合成利用高温高压的水环境作为反应介质,使物质在高温高压下发生化学 反应,从而合成所需的物质。水热合成具有反应温度高、压力大、反应条件温 和、产物纯净等优点。
溶剂热合成的定义
总结词
04
对未来学习的建议
建议1
深入学习相关理论,掌握基本 概念和原理
稀土材料的水热合成与溶剂热合成法
稀土材料的水热合成与溶剂热合成法引言稀土材料是一类具有重要物理和化学性质的材料,具有独特的电子结构和能带能级分布。
由于其特殊的性质,稀土材料在能源、电子器件、催化剂等领域有着广泛的应用。
其中,水热合成和溶剂热合成是常见的制备稀土材料的方法。
本文将介绍水热合成和溶剂热合成法的原理、特点以及在稀土材料合成中的应用。
水热合成法水热合成,顾名思义,是指在高温下使用水作为溶剂,通过调节反应条件合成材料的一种方法。
该方法有以下几个主要步骤:1.反应前处理:首先,将所需的反应物按照一定的比例加入到一个密封的容器中,并加入适量的水溶液。
然后,将容器密封,并移至高温高压反应釜中。
2.水热反应:将反应釜加热到设定的温度,并保持一定的时间,使反应物在高温高压的条件下发生反应。
在水的溶解度随温度的变化,水热合成的反应能够更加充分的进行。
3.冷却和分离:待反应结束后,将反应釜冷却至室温,然后打开反应釜,将其中的产物与溶剂进行分离,并进行进一步的处理和表征。
水热合成法的优点有:•适用性广:水作为溶剂可以与大多数化学反应物相容,有利于反应物的传质和反应速率的提高。
•温度和压力可控:通过调节反应瓶和反应器的温度和压力可以精确控制反应条件,以获得所需的产物。
•单一产物合成:水热合成通常能够获得高纯度、单一相的产物,避免了其他合成方法中常见的杂相问题。
•确定的晶体形态:水热合成有利于稀土材料形成特定的晶体结构,对于某些应用来说,晶体形态的控制是非常重要的。
溶剂热合成法溶剂热合成是指在高温下使用有机溶剂作为媒介,通过溶解和反应来合成材料的一种方法。
该方法的步骤和水热合成类似,但是使用的溶剂不同。
主要步骤包括:1.反应前处理:同样地,将所需的反应物按照一定的比例加入到一个密封容器中,并加入适量的有机溶剂。
然后密封容器,并移至高温高压反应釜中。
2.溶剂热反应:将反应釜加热到设定的温度,并保持一定的时间,使反应物在高温高压的条件下溶解和反应。
水热法与溶剂热法上课讲义
在水热条件下,水既作为溶剂又作为矿化剂,在 液态或气态还是传递压力的媒介,同时由于在高 压下绝大多数反应物均能部分溶解于水,从而促 使反应在液相或气相中进行。水热法近年来已广 泛应用于纳米材料的合成,与其它粉体制备方法 相比,水热合成纳米材料的纯度高、晶粒发育 好,避免了因高温煅烧或者球磨等后处理引起的 杂质和结构缺陷。
年已制备出约80种矿物,其中经鉴定确定有石英,长石, 硅灰石等 ;
1900年以后,G.W. Morey和他的同事在华盛顿地球物理
实验室开始进行相平衡研究,建立了水热合成理论,并 研究了众多矿物系统。
3
1.2溶剂热合成方法的发展
1985年,Bindy首次在“Nature”杂志上发表文章报道了高
压釜中利用非水溶剂合成沸石的方法,拉开了溶剂热合成 的序幕。
7
但是水热法也有严重的局限性,最明显的一个 缺点就是,该法往往只适用于氧化物或少数对 水不敏感的硫化物的制备,而对其他一些对水 敏 感 的 化 合 物 如 III-V 族 半 导 体 , 新 型 磷 ( 或 砷)酸盐分子筛骨架结构材料的制备就不适用 了。正是在这种背景下,溶剂热技术就应运而 生。
8
13
2.2.3 反应机理-“原位结晶’’”
前驱物脱去 羟基或脱水 原子原位重排
结晶态
14
2.3水热与溶剂热合成方法的适用范围
低温生长单晶 制备薄膜
合成新材料、新结构和亚稳相
制备超细(纳米)粉末
15
2.4水热与溶剂热合成存在的问题
无 法 观察 晶 体生 长 和材 料 合成 的 过程 , 不 直 观。 设 备 要求 高 耐高 温 高压 的 钢材 , 耐腐 蚀 的 内 衬、技术难度大温压控制严格、成本高。 安 全 性差 , 加热 时 密闭 反 应釜 中 流体 体 积 膨 胀,能够产生极大的压强,存在极大的安全隐 患。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五、水热法合成原理
5.1 反应过程的驱动力
可溶的前驱体(中间产物)与最终稳定产物之间
的溶解度差
反应物质溶解后以离子、分 子团的形式进入溶液
17
2.1 SCW的密度:
是f(T,p)
压强的微小变化引起密度的大幅度改变
2.2 SCW的介电常数ɛ
p T
有利于溶解一些低挥发性物质 18
2.3 SCW的离子积常数kw
1kwf(T,)
超临界态水的离子积常数是10-6
2.4 SCW的粘度η
1T
与普通条件下空气的粘度系数接近
强烈对流,在生长区(低温
区)形成过饱和溶液
成核
形核
9
5.2 纳米晶粒的形成过程 (p7) (1)生长基元与晶核的形成
满足线度和几何构型要求时,生成晶核 (2)生长基元在固-液生长界面上的吸附与运动
生长基元运动到固-液生长界面并被吸附, 在界面上迁移运动 (3)生长基元在界面上的结晶或脱附
10
5.3 水热反应的成核特征 1、成核速率随着过冷程度即亚稳性的增加而增加 2、存在一个诱导期,在此期间不能检测出成核 3、组成的微小变化可引起诱导期的显著变化 4、成核反应的发生与体
D 1
高密度水 T: D, pD 低密度水 T: D, pD
SCW的扩散系数比普通水高10~100倍 流动性、渗透性和传递性能好,利于传质和热交换
20
三、超临界水的特点: ①完全溶解有机物 ②完全溶解空气或氧气 ③完全溶解气相反应的产物 ④对无机物溶解度不高 ⑤具有很好的传质、传热性能
第三章 水热与溶剂热合成法
1
第一节 水热合成法合成原理
p19
一、水热合成的概念 (Hydrothermal Synthesis)
1.1 原理
在特制的密闭反应容器里,采用水溶液作为反应
介质,对反应容器加热,创造一个高温、高压的
反应环境,使通常难溶或不溶的物质溶解并重结
晶。
2
1.2 水热合成的温度范围 常温~1100°C;压强范围: 1~500MPa
单晶培育: 从籽晶培养大单晶。
7
【例】水热法制备Ag纳米粒子
5ml 0.02M AgNO3 ag和5mL 0.02M NaCl ag,加入到30mL 蒸馏水中,搅拌生成AgCl胶体,然后将0.2mmol的葡萄糖 溶在上述胶体溶液中,移入内衬Teflon的50mL合成弹中, 在加热炉中180°C下保持一段时间,空气中冷却至室温, 蒸馏水和酒精冲洗银灰色沉淀,真空60 °C干燥2小时。
内螺旋塞式 大螺帽式 杠杆压机式 3.按压强产生分类 : 内压釜 外压釜 4.按加热条件分类: 外热高压釜 内热高压釜
25
玻璃反应釜: 化学稳定性优良 热传导能力差
不锈钢反应釜 优良的热传导能力 对强酸强碱的抵抗能力差
26
两种不同的实验环境 密闭静态 密闭动态
27
二、装满度 反应混合物占密闭反应釜空间的体积分数
总体来看,水在超临界区的行为更像一个
中等极性的有机溶剂
21
超临界水热合成无机功能材料
22
四、超临界水热合成技术的优点
工艺简单易行,能量消耗相对较低; 产品微粒的粒径易于控制 “绿色环保” 反应时间很短
23
反应装置
第三节 水热法合成工艺
24
一、反应釜 1.按密封方式:
自紧式高压釜 外紧式高压釜 2.按密封的机械结构分类:
作为化学组分起化学反应; 反应和重排的促进剂; 起压力传递介质的作用; 起溶剂作用; 起低熔点物质的作用; 提高物质的溶解度; 有时与容器反应
14
第二节 超临界水热合成 一、超临界水热合成
1.1超临界流体(SCF) 温度及压力都处于临界温度(Tc)和临界压力(pc)之上 的流体。
二氧化碳、水、一氧化氮、乙烷、庚烷、氨等
加快成核速率有以下两条途径:
升高温度、增加成核反应物浓度
11
六、反应介质的性质
(1)随着温度的升高水的性质将产生下列变化:
1.蒸汽压变高; 2.密度变小;
3.表面张力变低; 4.粘度变低;
5.离子积变高
6.热扩散系数变高
水的温度与饱和蒸汽压的关系
温 度 100 150 200 250 300 (oC)
压 强 0.101 0.476 1.555 3.977 8.593 ( Mpa)
350 374.15
16.535 22.120
12
(2)离子积变高的影响
离子反应
化学反应
自由基反应
dlnk E
dT RT2
导致水热反应加剧的主要原因是水的电离常数随水 热反应温度的上升而增加
13
(3)高温高压下水的作用:
15
1.2 超临界流体的特点:
具有液体的溶解特性以及气体的传递特性
•
粘度约为普通液体的0.1~0.01;
•
扩散系数约为普通液体的10~100倍;
•
密度比常压气体大102~103倍。
•
电离常数
在不改变化学组成的情况下,SCF性质可由压 力来连续调节
16
二、超临界水(SCW) 温度高于临界温度374°C, 压力高于临界压力22.1MPa 密度高于临界密度0.32g/cm3
反应机理 界面扩散
液相
合成温度 高 低
反应时间 短 长
4
三、水热法的特点:
相对低的温度 加速重要离子间的反应 制备具有亚稳态结构的材料
(体系高于平衡态自由能的一种非平衡状态)
5
四、典型水热反应类型
6
其他反应类型:
热处理反应: 一般晶体
特定性能晶体。
转晶反应:物质热力学和动力学的差异。
晶化反应: 非晶态物质晶化。
安全: 装满度不要过高 通常在50%-80%为宜
不同填充度下水的压强—温度图(FC-p-T图)
28
三、合成程序 选择反应物料 确定合成物料的配方 配料序摸索及混料搅拌 装釜封釜 确定反应温度、时间与状态 取釜冷却 开釜取样 过滤干燥
(1)低温水热合成:100°C以下; 沸石的合成
(2)中温水热合成:100—300°C; 经济有效的合成区域
(3)高温高压水热合成:300°C以上; 单晶生长、特种结构的化合物
3
二、水热合成与固相合成的比较 反应机理上的差异: 固相反应的反应机理:以界面扩散为其特点 水热反应:以液相反应为其特点
固相反应 水热反应