绝对值不等式,高考历年真题

合集下载

高考数学经典专题:绝对值不等式含参数成立问题(含详解答案)

高考数学经典专题:绝对值不等式含参数成立问题(含详解答案)

高考数学经典专题:绝对值不等式中含参数成立问题1.已知函数()|1||2|f x x x m m =-+-∈R ,.(1)当3m =时,解不等式()3f x ≥;(2)证明:当0m <时,总存在0x 使00()21f x x <-+成立2.已知函数()32f x x =-.(1)若不等式213f x t ⎛⎫+≥- ⎪⎝⎭的解集为11,,33⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭,求实数t 的值; (2)若不等式()3133y y f x x m -≤+++⋅对任意x ,y 恒成立,求实数m 的取值范围.3.已知函数()2f x x a =-,()|1|g x a x =-,a R ∈.(Ⅰ)若1a =,求满足()(1)1g x g x +->的实数x 的取值范围;(Ⅱ)设()()()h x f x g x =+,若存在12,[2,2]x x ∈-,使得()()216h x h x -≥成立,试求实数a 的取值范围.4.已知()|3|f x ax =-,不等式()6f x …的解集是{|13}x x -剟. (1)求a 的值;(2)若()()3f x f x k +-<存在实数解,求实数k 的取值范围. 5.已知函数f (x )=|2x ﹣a |+|x ﹣a +1|.(1)当a =4时,求解不等式f (x )≥8;(2)已知关于x 的不等式f (x )22a ≥在R 上恒成立,求参数a 的取值范围. 6.已知定义在R 上的函数2()|24|f x x a x a =-+-.(1)当1a =时,解不等式()5f x ≥;(2)若2()4f x a -≥对任意x ∈R 恒成立,求a 的取值范围.7.已知,a b 均为实数,且3410a b += .(Ⅰ)求22a b +的最小值;(Ⅱ)若2232x x a b +--≤+对任意的,a b ∈R 恒成立,求实数x 的取值范围.8.已知函数()|2||21|f x x x =+--.(1)求()5f x >-的解集(2)若关于x 的不等式2|2|||(|1|||)(0)b a b a a x x m a +--++-≠…能成立,求实数m 的取值范围.9.已知函数()2f x x a a =-+,()1g x x =+.(Ⅰ)当1a =时,解不等式()()3f x g x -≤;(Ⅱ)当x ∈R 时,()()4f x g x +≥恒成立,求实数a 的取值范围.10.已知函数()121f x ax x =++-(1)当1a =时,求不等式()3f x >的解集;(2)若02a <<,且对任意x ∈R ,3()2f x a≥恒成立,求a 的最小值. 11.函数()1f x x x a =-+-的图象关于直线2x =对称.(1)求a 的值;(2)若()2f x x m ≥+的解集非空,求实数m 的取值范围. 12.已知函数()|1||1|f x x x m =-+++.(1)当5m =-时,求不等式()2f x ≤的解集;(2)若二次函数2y x 2x 3=-++与函数()y f x =的图象恒有公共点,求实数m 的取值范围.13.已知函数()221f x x x =-++.(1)求不等式()9f x ≤的解集;(2)若对任意x ∈R ,不等式()f x a x b ≤+恒成立,求+a b 的最小值.14.已知()2221f x x x a =+-+ (1)当3a =-时,求不等式()2f x x x >+的解集; (2)若不等式()0f x ≥的解集为实数集R ,求实数a 的取值范围.15.已知函数(),f x x x a a R =-∈.(Ⅰ)当()()111f f +->,求a 的取值范围;。

绝对值不等式高考真题和典型题

绝对值不等式高考真题和典型题

绝对值不等式高考真题和典型题1.(2020·全国卷Ⅱ)已知函数f(x)=|x-a2|+|x-2a+1|.(1)当a=2时,求不等式f(x)≥4的解集;(2)若f(x)≥4,求a的取值范围.2.(2020·全国卷Ⅰ)已知函数f(x)=|3x+1|-2|x-1|.(1)画出y=f(x)的图象;(2)求不等式f(x)>f(x+1)的解集.3.已知函数f(x)=|x-a|+3x,其中a∈R.(1)当a=1时,求不等式f(x)≥3x+|2x+1|的解集;(2)若不等式f(x)≤0的解集为{x|x≤-1},求a的值.4.已知函数f(x)=|x-4|+|x-a|(a∈R)的最小值为a.(1)求实数a的值;(2)解不等式f(x)≤5.5.设函数f(x)=lg (|2x-1|+2|x+1|-a).(1)当a=4时,求函数f(x)的定义域;(2)若函数f(x)的定义域为R,求实数a的取值范围.参考答案1.解 (1)当a =2时,f (x )=|x -4|+|x -3|.当x ≤3时,f (x )=4-x +3-x =7-2x ,由f (x )≥4,解得x ≤32;当3<x <4时,f (x )=4-x +x -3=1,f (x )≥4无解;当x ≥4时,f (x )=x -4+x -3=2x -7,由f (x )≥4,解得x ≥112.综上所述,f (x )≥4的解集为⎩⎨⎧⎭⎬⎫x |x ≤32或x ≥112. (2)f (x )=|x -a 2|+|x -2a +1|≥|(x -a 2)-(x -2a +1)|=|-a 2+2a -1|=(a -1)2(当且仅当2a -1≤x ≤a 2时取等号),∴(a -1)2≥4,解得a ≤-1或a ≥3,∴a 的取值范围为(-∞,-1]∪[3,+∞).2.解 (1)f (x )=⎩⎪⎨⎪⎧ x +3,x ≥1,5x -1,-13<x <1,-x -3,x ≤-13,作出图象,如图所示.(2)将函数f (x )的图象向左平移1个单位,可得函数f (x +1)的图象,如图所示:由-x -3=5(x +1)-1,解得x =-76.所以不等式的解集为⎝ ⎛⎭⎪⎫-∞,-76. 3.解 (1)当a =1时,f (x )=|x -1|+3x ,由f (x )≥3x +|2x +1|,得|x -1|-|2x +1|≥0,当x >1时,x -1-(2x +1)≥0,得x ≤-2,无解;当-12≤x ≤1时,1-x -(2x +1)≥0,得-12≤x ≤0;当x <-12时,1-x -(-2x -1)≥0,得-2≤x <-12.所以不等式的解集为{x |-2≤x ≤0}.(2)由|x -a |+3x ≤0,可得⎩⎨⎧ x ≥a ,4x -a ≤0或⎩⎨⎧ x <a ,2x +a ≤0, 即⎩⎪⎨⎪⎧ x ≥a ,x ≤a 4或⎩⎪⎨⎪⎧ x <a ,x ≤-a 2. 当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≤-a 2. 由-a 2=-1,得a =2.当a =0时,不等式的解集为{x |x ≤0},不符合题意.当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≤a 4. 由a 4=-1,得a =-4.综上,a =2或a =-4.4.解 (1)f (x )=|x -4|+|x -a |≥|a -4|=a ,解得a =2.(2)由(1)知,f (x )=|x -4|+|x -2|=⎩⎪⎨⎪⎧ -2x +6,x ≤2,2,2<x ≤4,2x -6,x >4.故当x ≤2时,由-2x +6≤5,得12≤x ≤2,当2<x ≤4时,显然不等式成立,当x >4时,由2x -6≤5,得4<x ≤112,故不等式f (x )≤5的解集为⎩⎨⎧⎭⎬⎫x |12≤x ≤112. 5.解 (1)当a =4时,f (x )=lg (|2x -1|+2|x +1|-4),此时x 应满足|2x -1|+2|x +1|>4.当x ≤-1时,1-2x -2x -2>4,解得x <-54;当-1<x <12时,1-2x +2x +2>4,无解;当x ≥12时,2x -1+2x +2>4,解得x >34.综上所述,函数f (x )的定义域为⎩⎨⎧⎭⎬⎫x |x <-54或x >34. (2)函数f (x )的定义域为R ,即|2x -1|+2|x +1|-a >0在R 上恒成立,即a <(|2x -1|+2|x +1|)min .因为|2x -1|+2|x +1|=|2x -1|+|2x +2|≥|(2x -1)-(2x +2)|=3, 所以a <3,即实数a 的取值范围为(-∞,3).。

绝对值不等式(高考版)(含经典例题+答案)

绝对值不等式(高考版)(含经典例题+答案)

绝对值不等式(一) 绝对值不等式c b x a x c b x a x ≤-+-≥-+-绝对值的几何意义:a 的几何意义是:数轴上表示数轴上点a 到原点的距离;b a -的几何意义是:数轴上表示数轴上,a b 两点的距离。

b a +的几何意义是:数轴上表示数轴上,a b -的两点的距离。

x a x b -+-的几何意义是:数轴上表示点x 到,a b 的两点的距离和,故b a b x a x -≥-+- 利用图像和几何意义解c b x a x ≤-+-或c b x a x ≥-+-的解集。

分区间讨论:()()()⎪⎩⎪⎨⎧>--≤≤-<++-=-+-b x b a x b x a a b a x b a x b x a x 22c b ax ≤-的解法:I.当0>c 时,不等式解集为:c b ax c ≤+≤- II.当0<c 时,不等式解集为:空集 c b ax ≥+的解法:I.当0>c 时,不等式解集为:c b ax c b ax -≤+≥+或 II.当0<c 时,不等式解集为:全体实数解:由于|x +1|+|x -2|≥|(1-(-2)|=3,所以只需a ≤3即可.若本题条件变为“∃x ∈R 使不等式|x +1|+|x -2|<a 成立为假命题”,求a 的范围.解:由条件知其等价命题为对∀x ∈R ,|x +1|+|x -2|≥a 恒成立,故a ≤(|x +1|+|x -2|)min ,又|x +1|+|x -2|≥|(x +1)-(x -2)|=3,∴a ≤3.例2:不等式log3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则实数a 的取值范围是________. 解:由绝对值的几何意义知:|x -4|+|x +5|≥9,则log 3(|x -4|+|x +5|)≥2所以要使不等式log 3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则需a <2.解:当x >1时,原不等式等价于2x <3⇒x <32,∴1<x <32;当-1≤x ≤1时,原不等式等价于x +1-x +1<3,此不等式恒成立,∴-1≤x ≤1;当x <-1时,原不等式等价于-2x <3⇒x >-32,∴-32<x <-1.综上可得:-32<x <32。

高三数学绝对值不等式试题

高三数学绝对值不等式试题

高三数学绝对值不等式试题1. (1).(不等式选做题)对任意,的最小值为()A.B.C.D.【答案】C【解析】因为,当且仅当时取等号,所以的最小值为,选C.【考点】含绝对值不等式性质2.集合A={x|<0},B={x||x-b|<a}.若“a=1”是“A∩B≠∅”的充分条件,则实数b的取值范围是______.【答案】(-2,2)【解析】A={x|<0}={x|-1<x<1},B={x||x-b|<a}={x|b-a<x<b+a},因为“a=1”是“A∩B≠∅”的充分条件,所以-1≤b-1<1或-1<b+1≤1,即-2<b<2.3.若关于x的不等式|x-2|+|x-a|≥a在R上恒成立,则a的最大值是()A.0B.1C.-1D.2【答案】B【解析】由于|x-2|+|x-a|≥|a-2|,∴等价于|a-2|≥a,解之得a≤1.故实数a的最大值为1,选B.4.设A={x∈Z||x-2|≤5},则A中最小元素为( )A.2B.-3C.7D.0【答案】B【解析】由|x-2|≤5,得-3≤x≤7,又x∈Z,∴A中的最小元素为-3,选B.5.解不等式:|x-1|>.【答案】{x|x<0或x>2}【解析】当x<0时,原不等式成立;当x≥1时,原不等式等价于x(x-1)>2,解得x>2或x<-1,所以x>2;当0<x<1时,原不等式等价于x(1-x)>2,这个不等式无解.综上,原不等式的解集是{x|x<0或x>2}.6.已知函数f(x)=|x+a|+|x-2|.(1)当a=-3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.【答案】(1)x≤1或x≥4(2)-3≤a≤0【解析】(1)当a=-3时,f(x)≥3,|x-3|+|x-2|≥3,或或解得x≤1或x≥4.(2)原命题f(x)≤|x-4|在[1,2]上恒成立|x+a|+2-x≤4-x在[1,2]上恒成立-2-x≤a≤2-x在[1,2]上恒成立,故-3≤a≤0.7.已知函数.(1)当时,解不等式;(2)若时,,求a的取值范围.【答案】(1);(2)[-7,7].【解析】本题主要考查绝对值不等式的解法、不等式恒成立等基础知识,考查学生分析问题解决问题的能力、转化能力、计算能力.第一问,先把a=-1代入,先写出的解析式,利用零点分段法去掉绝对值,解不等式组,得到不等式的解集;第二问,在已知的范围内的绝对值可去掉,解绝对值不等式,使之转化成2个恒成立.试题解析:(1)当a=-1时,不等式为|x+1|-|x+3|≤1.当x≤-3时,不等式化为-(x+1)+(x+3)≤1,不等式不成立;当-3<x<-1时,不等式化为-(x+1)-(x+3)≤1,解得;当x≥-1时,不等式化为(x+1)-(x+3)≤1,不等式必成立.综上,不等式的解集为. 5分(2)当x∈[0,3]时,f(x)≤4即|x-a|≤x+7,由此得a≥-7且a≤2x+7.当x∈[0,3]时,2x+7的最小值为7,所以a的取值范围是[-7,7]. 10分【考点】绝对值不等式的解法、不等式恒成立.8.不等式的解集为__________________.【答案】.【解析】,由,解得.【考点】绝对值不等式的解法.9.设(1)当时,,求a的取值范围;(2)若对任意,恒成立,求实数a的最小值【答案】(1);(2)【解析】本题主要考查绝对值不等式的解法、不等式的性质等基础知识,考查学生分析问题解决问题的能力,考查学生的转化能力和计算能力第一问,利用绝对值不等式的解法,先解出的解,再利用是的子集,列不等式组,求解;第二问,先利用不等式的性质求出的最小值,将恒成立的表达式转化为,再解绝对值不等式,求出的取值范围试题解析:(1),即依题意,,由此得的取值范围是[0,2] 5分(2)当且仅当时取等号解不等式,得故a的最小值为 10分【考点】1 绝对值不等式的解法;2 集合的子集关系;3 不等式的性质;4 恒成立问题10.解不等式:x+|2x-1|<3.【答案】{x|-2<x<}【解析】原不等式可化为或解得≤x<或-2<x<.所以不等式的解集是{x|-2<x<}.11.在实数范围内,不等式的解集为.【答案】【解析】不等式,由绝对值的几何意义知(如下图),当时,不等式成立.【考点】含绝对值不等式.12.(1)解关于的不等式;(2)若关于的不等式有解,求实数的取值范围.【答案】(1);(2).【解析】(1)解绝对值不等式的关键是去掉绝对号,如果有多个绝对号,可考虑零点分段的办法,该题只需分和分类讨论;(2)构造函数,只需函数.试题解析:(1)不等式等价于:,或,所以解集为;(2)记,则,∴实数的取值范围是.【考点】1、;绝对值不等式的解法;2、分段函数的最值.13.若关于x的不等式有解,则实数的取值范围是: .【答案】【解析】∵关于的不等式有解,表示数轴上的到和的距离之差,其最小值等于,最大值是,由题意,∴.【考点】绝对值不等式的解法.14.关于的不等式.(Ⅰ)当时,解此不等式;(Ⅱ)设函数,当为何值时,恒成立?【答案】(1)解集为;(2).【解析】本题考查绝对值不等式的解法和不等式的恒成立问题,考查学生的分类讨论思想和转化能力.第一问,先将代入,利用对数值得,利用零点分段法去绝对值解不等式;第二问,先将已知转化为,利用绝对值的几何意义得到的最大值,所以,即.试题解析:(1)当时,原不等式可变为,可得其解集为(2)设,则由对数定义及绝对值的几何意义知,因在上为增函数,则,当时,,故只需即可,即时,恒成立.【考点】1.解绝对值不等式;2.绝对值的几何意义;3.函数的最大值.15.已知函数.(1)若的解集为,求实数的值.(2)当且时,解关于的不等式.【答案】(1);(2)当时,原不等式的解集为,当时,原不等式的解集为.【解析】本题考查绝对值不等式的解法及利用解集求实数的值,考查学生的分类讨论思想和转化能力.第一问,利用绝对值不等式的解法求出的范围,让它和已知解集相同,列出等式,解出和的值;第二问,先将代入,得到解析式,再代入到所求不等式中,找到需要解的不等式,注意到当时,2个绝对值一样,所以先进行讨论,当时,按照解绝对值不等式的步骤,先列出不等式组,内部求交集,综合和的情况得到结论.试题解析:(Ⅰ)由得,所以解之得为所求. 4分(Ⅱ)当时,,所以当时,不等式①恒成立,即;当时,不等式或或,解得或或,即;综上,当时,原不等式的解集为,当时,原不等式的解集为. 10分【考点】1.绝对值不等式的解法.16.已知的最小值为,则二项式展开式中项的系数为 .【答案】15【解析】二项式展开式中含的项为其系数为.【考点】1、绝对值不等式的性质;2、二项式定理.17.已知函数f(x)=|x-2|+2|x-a|(a∈R).(I)当时,解不等式f(x)>3;(II)不等式在区间(-∞,+∞)上恒成立,求实数a的取值范围.【答案】(I) ;(II)或.【解析】(I) 分三种情况去掉绝对值解不等式;(II)分三种情况讨论,即得的最小值为,再得,解不等式得a的取值范围.试题解析:(Ⅰ)解得;解得;解得, 3分不等式的解集为. 5分(Ⅱ);;;的最小值为; 8分则,解得或. 10分【考点】1、绝对值不等式的解法.18.设函数.(Ⅰ)解不等式;(Ⅱ)若函数的解集为,求实数的取值范围.【答案】①②.【解析】(Ⅰ)把绝对值函数写出分段函数,然后分别解不等式. (Ⅱ)画出函数的图象,由图象知过定点的直线的斜率满足函数的解集为.试题解析:(Ⅰ),即解集为..5分(Ⅱ)如图,,故依题知,即实数的取值范围为 5分【考点】1.绝对值不等式;2.数形结合数学思想.19.设.(1)解不等式;(2)若对任意实数,恒成立,求实数a的取值范围.【答案】(Ⅰ)或;(Ⅱ)【解析】(Ⅰ)绝对值函数是分段函数,要分段考虑, (Ⅱ)对 ,恒成立等价于对,恒成立,等价于对,函数的最大值小于等于 , 利用函数在区间上是单调递增,求出最大值即可试题解析:解:, 2分(Ⅰ)画出函数的图像如图,的解为或. 4分的解集为或 5分(Ⅱ),即, 7分10分【考点】绝对值不等式,不等式恒成立.20.若关于的不等式的解集非空,则实数的取值范围是;【答案】【解析】根据题意,由于的不等式即可知实数的取值范围是。

高考数学含绝对值不等式专题训练(一)

高考数学含绝对值不等式专题训练(一)

1、(长葛市第三实验高中2012届高三数学调研)已知函数()|2|,()|3|.f x x g x x m =-=-++(1)解关于x 的不等式()10()f x a a R +->∈;(2)若函数()f x 的图象恒在函数()g x 图象的上方,求m 的取值范围。

【解析】(1)不等式()10f x a +->,即210x a -+->。

当1a =时,不等式的解集是(,2)(2,)-∞+∞ ;当1a >时,不等式的解集为R ;当1a <时,即21x a ->-,即21x a -<-或者21x a ->-,即1x a <+或者3x a >-,解集为(,1)(3,)a a -∞+-+∞ 。

(5分)(2)函数()f x 的图象恒在函数()g x 图象的上方,即23x x m ->-++对任意实数x 恒成立。

即23x x m -++>对任意实数x 恒成立。

由于23(2)(3)5x x x x -++≥--+=,故只要5m <。

所以m 的取值范围是(,5)-∞。

2、(濮阳市华龙区高级中学2012届高三数学上学期摸底)3、(哈尔滨市第六中学2011届高三数学第三次模拟)若关于x 的方程 243x x a a -++-=0有实根(1)求实数a 的取值集合A(2)若存在a A ∈,使得不等式22120t a t -+<成立,求实数t 的取值范围。

(1)0)3(416≥-+-=∆a a 即 2721≤≤-a所以 ⎥⎦⎤⎢⎣⎡-=27,21A ---------5分(2)令212)(t t a a f ++-= 即 0)(m in <a f 即可 430127)27(2<<∴<+-=t t t f所以 4334<<-<<-t t 或----10分4、已知关于x 的不等式a a x x 2|||2|≥-+-.(I )若1=a ,求不等式的解集;(II )若不等式的解集为R ,求实数a 的取值范围。

高三数学绝对值不等式试题

高三数学绝对值不等式试题

高三数学绝对值不等式试题1. (1).(不等式选做题)对任意,的最小值为()A.B.C.D.【答案】C【解析】因为,当且仅当时取等号,所以的最小值为,选C.【考点】含绝对值不等式性质2.设函数.(1)求不等式的解集;(2)若存在实数,使得成立,求实数的取值范围.【答案】(1);(2)【解析】(1)由函数的零点为或.所以将x分为三类即可得到不等式的解集.(2)存在实数,使得成立,即等价于函数的最大值大于.由柯西不等式放缩即可求得到的最大值,从而求得实数的取值范围,即可得结论.(1)当时,由得,所以;当时,由得,所以;当时,由得,所以. 2分综上不等式的解集. 3分(2), 4分由柯西不等式得,, 5分当且仅当时取“=”,的取值范围是. 7分【考点】1.绝对值不等式.2.柯西不等式.3.若存在实数使成立,则实数的取值范围_______【答案】【解析】由又因为存在实数使成立则,则【考点】绝对值不等式;存在性问题.4.已知f(x)=|x+1|+|x-1|,不等式f(x)的解集为M.(1)求M;(2)当a,b M时,证明:2|a+b|<|4+ab|.【答案】(1);(2)证明过程详见解析.【解析】本题主要考查绝对值不等式、不等式的证明等基础知识,意在考查考生的运算求解能力、利用综合法、分类讨论思想的解题能力.第一问,利用零点分段法分别去掉绝对值,解不等式;第二问,可先用分析法由所求证的结论入手,分析需要证明什么,再用综合法证明,要证2|a+b|<|4+ab|,需证明,展开,需证明,由已知入手,找到,,从而证出.试题解析:(1)由,即,当时,则,得,∴;当时,则,得,恒成立,∴;当时,则,得,∴;综上,. 5分(2)当时,则,.即:,,∴,∴,即,也就是,∴,即:,即. 10分【考点】绝对值不等式、不等式的证明.5.若不等式恒成立,则实数的取值范围为 _______;【答案】【解析】因为函数,不等式恒成立,即,所以实数的取值范围为.【考点】绝对值不等式的最值问题.6.设.(1)当时,,求a的取值范围;(2)若对任意,恒成立,求实数a的最小值.【答案】(1);(2).【解析】本题主要考查绝对值不等式的解法、不等式的性质等基础知识,考查学生分析问题解决问题的能力,考查学生的转化能力和计算能力.第一问,利用绝对值不等式的解法,先解出的解,再利用是的子集,列不等式组,求解;第二问,先利用不等式的性质求出的最小值,将恒成立的表达式转化为,再解绝对值不等式,求出的取值范围.试题解析:(1),即.依题意,,由此得的取值范围是[0,2] .5分(2).当且仅当时取等号.解不等式,得.故a的最小值为. 10分【考点】1.绝对值不等式的解法;2.集合的子集关系;3.不等式的性质;4.恒成立问题.7.已知函数.(1)若不等式的解集为,求实数的值;(2)在(Ⅰ)的条件下,若存在实数使成立,求实数的取值范围.【答案】(1);(2)【解析】(1)由|2x a|+a≤6得|2x a|≤6 a,再利用绝对值不等式的解法去掉绝对值,结合条件得出a值;(2)由(1)知f(x)="|2x" 1|+1,令φ(n)=f(n)+f(n),化简φ(n)的解析式,若存在实数n使f(n)≤m f( n)成立,只须m大于等于φ(n)的最小值即可,从而求出实数m的取值范围.试题解析:(1)由解得则所以 5分(2)由(1)知则原不等式为+2所以 10分【考点】绝对值不等式的解法8.不等式的解集为_______________.【答案】【解析】当时,原不等式为恒成立;当时,原不等式为,解得,所以;当时,原不等式为,无解.综上可知,不等式的解集为.【考点】绝对值不等式的解法9.已知函数(1)求不等式的解集;(2)若关于x的不等式的解集非空,求实数的取值范围.【答案】(1);(2)或.【解析】本题考查绝对值不等式的解法和不等式的有解问题,考查学生运用函数零点分类讨论的解题思路和问题的转化能力.第一问,利用零点分段法进行分段,分别去掉绝对值,列出不等式组,求出每一个不等式的解,通过求交集、求并集得到原不等式的解集;第二问,先将不等式的解集非空,转化为,利用绝对值的运算性质,求出函数的最小值4,所以,再解绝对值不等式,得到的取值范围.试题解析:(Ⅰ)原不等式等价于或或 3分解得或或即不等式的解集为 5分(Ⅱ) 8分∴或. 10分【考点】1.绝对值的运算性质;2.绝对值不等式的解法.10.不等式对任意实数恒成立,则实数的取值范围是____________.【答案】或.【解析】,故的值域为,不等式对任意实数恒成立,即,解得或.【考点】绝对值不等式的解法,恒成立问题.11.若关于实数的不等式的解集是空集,则实数的取值范围是____________.【答案】【解析】使关于实数的不等式的解集是空集,则,由绝对值的几何意义可知,故,解得.【考点】极坐标系、绝对值不等式.12.不等式组的解集为 .【答案】【解析】,或,所以不等式组的解集为.【考点】1.绝对值不等式的解法;2.分式不等式的解法;3.集合的交集运算.13.若不等式对于一切非零实数均成立,则实数的取值范围是()A.B.C.D.【答案】C【解析】因为,要使对于一切非零实数,恒成立,则,即,选C.【考点】1.函数最值;2.绝对值不等式.14.给出下列四个命题:①命题,则.②当时,不等式的解集为非空.③当时,有.④设复数z满足(1-i)z="2" i,则z=1-i其中真命题的个数是A.1B.2C.3D.4【答案】A.【解析】命题,则,故①错;当时,不等式的解集不是非空,②错;当时,,由均值不等式有,当且仅当时等号成立,③正确;复数z满足(1-i)z="2" i,设,则,所以,④错.所以真命题个数为1个,选A.【考点】1.否命题;2.绝对值不等式;3.均值不等式;4.复数的运算.15.已知函数.(Ⅰ)当a = 3时,求不等式的解集;(Ⅱ)若对恒成立,求实数a的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)将a = 3代入解绝对值不等式即可;(Ⅱ)由题知恒成立令,画出图象求解.试题解析:(Ⅰ)时,即求解①当时,②当时,③当时,综上,解集为(Ⅱ)即恒成立令则函数图象为,【考点】1.绝对值不等式;2.分段函数图象.16.已知实数组成的数组满足条件:①;②.(Ⅰ)当时,求,的值;(Ⅱ)当时,求证:;(Ⅲ)设,且,求证:.【答案】(1)或;(2)详见解析;(3)详见解析.【解析】(1)列出方程组求解;(2)应用绝对值不等式进行证明;(3)应用绝对值不等式可以证明.试题解析:(Ⅰ)解:由(1)得,再由(2)知,且.当时,.得,所以 2分当时,同理得 4分(Ⅱ)证明:当时,由已知,.所以. 9分(Ⅲ)证明:因为,且.所以,即. 11分). 14分.【考点】绝对值不等式.17.若不等式对一切实数恒成立,则实数的取值范围是 .【答案】【解析】有图像可知: 时,的图像的图像恒在的图像的下面.【考点】不等式恒成立问题.18.设(1)当,解不等式;(2)当时,若,使得不等式成立,求实数的取值范围.【答案】(I);(II).【解析】(I)绝对值不等式的解法,易知不等式的等价不等式组解出不等式解集; (II)存在性问题转化为函数最值问题,含绝对值的函数式去绝对值化为分段函数求得最值即可.试题解析:(I)时原不等式等价于即,所以解集为.(II)当时,,令,由图像知:当时,取得最小值,由题意知:,所以实数的取值范围为.【考点】1、绝对值不等式的解法; 2、函数最值问题.19.已知函数,.(Ⅰ)解不等式;(Ⅱ)若,试求的最小值.【答案】(Ⅰ)原不等式的解集为或;(Ⅱ)的最小值为.【解析】(Ⅰ)将原不等式表示出来,借助含绝对值不等式的解法进行求解;(Ⅱ)先将不等式配成柯西不等式的相关形式,然后利用柯西不等式求的最小值.试题解析:(Ⅰ)原不等式化为,或,即或,原不等式的解集为或. 3分(Ⅱ)由已知,得,由柯西不等式,得,, 5分当且仅当即时等号成立, 6分所以,的最小值为. 7分【考点】含绝对值不等式、柯西不等式20.(Ⅰ)(坐标系与参数方程)直线与圆相交的弦长为.(Ⅱ)(不等式选讲)设函数>1),且的最小值为,若,则的取值范围【答案】,3≤x≤8【解析】即,即,配方得,,所以,直线与圆相交的弦长为。

高三数学绝对值不等式试题答案及解析

高三数学绝对值不等式试题答案及解析

高三数学绝对值不等式试题答案及解析1.已知函数(Ⅰ)a=-3时,求不等式的解集;(Ⅱ)若关于x的不等式恒成立,求实数a的取值范围【答案】(Ⅰ) [-1,2] ;(Ⅱ) (-,]【解析】(Ⅰ) 当a="-3" 时,即为≤6,将分成,和三种情况,通过分类讨论去掉绝对值,将原不等式等价转化为三个一元一次不等式组,解这些不等式组即可得到原不等式的解集; (Ⅱ)利用绝对值不等式性质:求出的最小值,由关于x的不等式恒成立及不等式恒成立的知识知,<,解这个不等式,即可得到实数的取值范围.试题解析:(Ⅰ) 当a="-3" 时,为≤6,等价于或或,解得或或,所以不等式的解集为[-1,2];(5分)(Ⅱ) 因为=,所以<,解得实数a的取值范围(-,].(10分)【考点】含绝对值不等式解法,绝对值不等式性质,恒成立问题2.已知实数,且,若恒成立.(1)求实数m的最小值;(2)若对任意的恒成立,求实数x的取值范围.【答案】(1)3;(2)或.【解析】本题主要考查基本不等式、恒成立问题、绝对值不等式的解法等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用基本不等式先求函数的最大值,再利用恒成立问题得到的最小值为;第二问,由,先将“对任意的恒成立”转化为“”,利用零点分段法求去掉绝对值,解绝对值不等式,得到x的取值范围.(1)∴,∴∴(当且仅当时取等号)又,故,即的最小值为. 5分(2)由(1)若对任意的恒成立,故只需或或解得或. 10分【考点】基本不等式、恒成立问题、绝对值不等式的解法.3.设函数.(1)求不等式的解集;(2)若存在实数,使得成立,求实数的取值范围.【答案】(1);(2)【解析】(1)由函数的零点为或.所以将x分为三类即可得到不等式的解集.(2)存在实数,使得成立,即等价于函数的最大值大于.由柯西不等式放缩即可求得到的最大值,从而求得实数的取值范围,即可得结论.(1)当时,由得,所以;当时,由得,所以;当时,由得,所以. 2分综上不等式的解集. 3分(2), 4分由柯西不等式得,, 5分当且仅当时取“=”,的取值范围是. 7分【考点】1.绝对值不等式.2.柯西不等式.4.若存在实数使成立,则实数的取值范围_______【答案】【解析】由又因为存在实数使成立则,则【考点】绝对值不等式;存在性问题.5.已知不等式|2x-t|+t-1<0的解集为,则t=()A.0B.-1C.-2D.-3【答案】A【解析】∵|2x-t|<1-t,∴t-1<2x-t<1-t,即2t-1<2x<1,,∴t=0,选A.6.设A={x∈Z||x-2|≤5},则A中最小元素为( )A.2B.-3C.7D.0【答案】B【解析】由|x-2|≤5,得-3≤x≤7,又x∈Z,∴A中的最小元素为-3,选B.7.已知函数f(x)=|x+a|+|x-2|.(1)当a=-3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.【答案】(1)x≤1或x≥4(2)-3≤a≤0【解析】(1)当a=-3时,f(x)≥3,|x-3|+|x-2|≥3,或或解得x≤1或x≥4.(2)原命题f(x)≤|x-4|在[1,2]上恒成立|x+a|+2-x≤4-x在[1,2]上恒成立-2-x≤a≤2-x在[1,2]上恒成立,故-3≤a≤0.8.已知函数.(1)当时,解不等式;(2)若时,,求a的取值范围.【答案】(1);(2)[-7,7].【解析】本题主要考查绝对值不等式的解法、不等式恒成立等基础知识,考查学生分析问题解决问题的能力、转化能力、计算能力.第一问,先把a=-1代入,先写出的解析式,利用零点分段法去掉绝对值,解不等式组,得到不等式的解集;第二问,在已知的范围内的绝对值可去掉,解绝对值不等式,使之转化成2个恒成立.试题解析:(1)当a=-1时,不等式为|x+1|-|x+3|≤1.当x≤-3时,不等式化为-(x+1)+(x+3)≤1,不等式不成立;当-3<x<-1时,不等式化为-(x+1)-(x+3)≤1,解得;当x≥-1时,不等式化为(x+1)-(x+3)≤1,不等式必成立.综上,不等式的解集为. 5分(2)当x∈[0,3]时,f(x)≤4即|x-a|≤x+7,由此得a≥-7且a≤2x+7.当x∈[0,3]时,2x+7的最小值为7,所以a的取值范围是[-7,7]. 10分【考点】绝对值不等式的解法、不等式恒成立.9.设函数.(1)若不等式的解集为,求的值;(2)若存在,使,求的取值范围.【答案】(1);(2)【解析】(1)根据绝对值不等式公式可得的解集,根据其解集与集合可得的值。

高考数学十年真题专题解析—不等式选讲

高考数学十年真题专题解析—不等式选讲

不等式选讲年份题号考点考查内容2011文理24不等式选讲绝对值不等式的解法2012文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法2013卷1文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷2文理24不等式选讲多元不等式的证明2014卷1文理24不等式选讲基本不等式的应用卷2文理24不等式选讲绝对值不等式的解法2015卷1文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷2文理24不等式选讲不等式的证明2016卷1文理24不等式选讲分段函数的图像,绝对值不等式的解法卷2文理24不等式选讲绝对值不等式的解法,绝对值不等式的证明卷3文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法2017卷1文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷2文理23不等式选讲不等式的证明卷3文理23不等式选讲绝对值不等式的解法,绝对值不等式解集非空的参数取值范围问题2018卷1文理23不等式选绝对值不等式的解法,不等式恒成立参数取值范围问题的解法讲卷2文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷3文理23不等式选讲绝对值函数的图象,不等式恒成立参数最值问题的解法2019卷1文理23不等式选讲三元条件不等式的证明卷2文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷3文理23不等式选讲三元条件最值问题的解法,三元条件不等式的证明2020卷1文理23不等式选讲绝对值函数的图像,绝对值不等式的解法卷2文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷3文理23不等式选讲三元条件不等式的证明考点出现频率2021年预测考点120绝对值不等式的求解23次考4次2021年主要考查绝对值不等式的解法、绝对值不等式的证明,不等式恒成立参数取值范围问题的解法等.考点121含绝对值不等式的恒成立问题23次考12次考点122不等式的证明23次考7次考点120绝对值不等式的求解1.(2020全国Ⅰ文理22)已知函数()3121f x x x =+--.(1)画出()y f x =的图像;(2)求不等式()()1f x f x >+的解集.【解析】(1)∵()3,1151,1313,3x x f x x x x x ⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图像,如图所示:(2)将函数()f x 的图像向左平移1个单位,可得函数()1f x +的图像,如图所示:由()3511x x --=+-,解得76x =-,∴不等式的解集为7,6⎛⎫-∞- ⎪⎝⎭.2.(2020江苏23)设x ∈R ,解不等式2|1|||4x x ++≤.【答案】22,3⎡⎤-⎢⎥⎣⎦【思路导引】根据绝对值定义化为三个不等式组,解得结果.【解析】1224x x x <-⎧⎨---≤⎩ 或10224x x x -≤≤⎧⎨+-≤⎩或0224x x x >⎧⎨++≤⎩,21x ∴-≤<-或10x -≤≤或203x <≤,∴解集为22,3⎡⎤-⎢⎥⎣⎦.3.(2016全国I 文理)已知函数()|1||23|f x x x =+--.(I)在图中画出()y f x =的图像;(II)求不等式|()|1f x >的解集.【解析】(1)如图所示:(2)()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥,()1f x >.当1x -≤,41x ->,解得5x >或3x <,1x -∴≤;当312x -<<,321x ->,解得1x >或13x <,113x -<<∴或312x <<;当32x ≥,41x ->,解得5x >或3x <,332x <∴≤或5x >.综上,13x <或13x <<或5x >,()1f x >∴,解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭ ,,,.4.(2014全国II 文理)设函数()f x =1(0)x x a a a++->(Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的取值范围.【解析】(I)由0a >,有()f x 111()2x x a x x a a a a a=++-≥+--=+≥,∴()f x ≥2.(Ⅱ)1(3)33f a a=++-.当时a >3时,(3)f =1a a+,由(3)f <5得3<a <5212;当0<a ≤3时,(3)f =16a a-+,由(3)f <5得12<a ≤3.综上:a 的取值范围是(152+,5212+).5.(2011新课标文理)设函数()3f x x a x =-+,其中0a >.(Ⅰ)当1a =时,求不等式()32f x x ≥+的解集;(Ⅱ)若不等式()0f x ≤的解集为{}|1x x ≤-,求a 的值.【解析】(Ⅰ)当1a =时,()32f x x ≥+可化为|1|2x -≥,由此可得3x ≥或1x ≤-.故不等式()32f x x ≥+的解集为{|3x x ≥或1}x ≤-.(Ⅱ)由()0f x ≤得30x a x -+≤,此不等式化为不等式组30x ax a x ≥⎧⎨-+≤⎩或30x aa x x ≤⎧⎨-+≤⎩,即4x a a x ⎧⎪⎨⎪⎩≥≤或2x aax ⎧⎪⎨-⎪⎩≤≤,因为0a >,∴不等式组的解集为{}|2a x x ≤-,由题设可得2a-=1-,故2a =.考点121含绝对值不等式的恒成立问题6.(2020全国Ⅱ文理22)已知函数()221f x x a x a =-+-+.(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞ .【思路导引】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果.【解析】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥;综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x ax a a a a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞ .7.(2019全国II 文理23)[选修4-5:不等式选讲](10分)已知()|||2|().f x x a x x x a =-+--(1)当1a =时,求不等式()0f x <的解集;(2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围.【解析】(1)当a=1时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥,∴不等式()0f x <的解集为(,1)-∞.(2)因为()=0f a ,∴1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x -----∴a 的取值范围是[1,)+∞.8.(2018全国Ⅰ文理)已知()|1||1|f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围.【解析】(1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.--⎧⎪=-<<⎨⎪⎩≤≥x f x x x x 故不等式()1f x >的解集为1{|}2x x >.(2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立.若0≤a ,则当(0,1)x ∈时|1|1-≥ax ;若0a >,|1|1ax -<的解集为20x a <<,∴21≥a,故02<≤a .综上,a 的取值范围为(0,2].9.(2018全国Ⅱ文理)设函数()5|||2|=-+--f x x a x .(1)当1a =时,求不等式()0≥f x 的解集;(2)若()1≤f x ,求a 的取值范围.【解析】(1)当1=a 时,24,1,()2,12,26, 2.+-⎧⎪=-<⎨⎪-+>⎩≤≤x x f x x x x 可得()0≥f x 的解集为{|23}-≤≤x x .(2)()1≤f x 等价于|||2|4++-≥x a x .而|||2||2|++-+≥x a x a ,且当2=x 时等号成立.故()1≤f x 等价于|2|4+≥a .由|2|4+≥a 可得6-≤a 或2≥a ,∴a 的取值范围是(,6][2,)-∞-+∞ .10.(2018全国Ⅲ文理)设函数()|21||1|f x x x =++-.(1)画出()y f x =的图像;(2)当[0,)x ∈+∞时,()f x ax b +≤,求a b +的最小值.【解析】(1)13,,21()2,1,23, 1.x x f x x x x x ⎧-<-⎪⎪⎪=+-<⎨⎪⎪⎪⎩≤≥()y f x =的图像如图所示.(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a ≥且2b ≥时,()f x ax b +≤在[0,)+∞成立,因此a b +的最小值为5.11.(2018江苏)若x ,y ,z 为实数,且226x y z ++=,求222x y z ++的最小值.【解析】由柯西不等式,得2222222()(122)(22)x y z x y z ++++++≥.因为22=6x y z ++,∴2224x y z ++≥,当且仅当122x y z ==时,不等式取等号,此时244333x y z ===,,,∴222x y z ++的最小值为4.12.(2017全国Ⅰ文理)已知函数2()4f x x ax =-++,()|1||1|g x x x =++-.(1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[1,1]-,求a 的取值范围.【解析】(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.①当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而11712x -+<≤,∴()()f x g x ≥的解集为117{|1}2x x -+-<≤.(2)当[1,1]x ∈-时,()2g x =,∴()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.又()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,∴(1)2f -≥且(1)2f ≥,得11a -≤≤,∴a 的取值范围为[1,1]-.13.(2017全国Ⅲ文理)已知函数()|1||2|f x x x =+--.(1)求不等式()1f x ≥的解集;(2)若不等式2()f x x x m -+≥的解集非空,求m 的取值范围.【解析】(1)3,1()21,123,2x f x x x x -<-⎧⎪=--⎨⎪>⎩≤≤,当1x <-时,()f x 1≥无解;当x -12≤≤时,由()f x 1≥得,x -211≥,解得x 12≤≤;当>2x 时,由()f x 1≥解得>2x .∴()f x 1≥的解集为{}x x 1≥.(2)由()f x x x m -+2≥得m x x x x +---+212≤,而x x x x x x x x +---+--+2212+1+2≤x ⎛⎫ ⎪⎝⎭2355=--+244≤,且当32x =时,2512=4x x x x +---+,故m 的取值范围为5-,4⎛⎤∞ ⎥⎝⎦.14.(2016全国III 文理)已知函数()|2|f x x a a =-+(Ⅰ)当a=2时,求不等式()6f x ≤的解集;(Ⅱ)设函数()|21|g x x =-,当x ∈R 时,()()3f x g x +≥,求a 的取值范围.【解析】(Ⅰ)当2a =时,()|22|2f x x =-+.解不等式|22|26x -+ ,得13x - ,因此()6f x ≤的解集为{|13}x x - .(Ⅱ)当x R ∈时,()()|2||12|f xg x x a a x +=-++-|212|x a x a -+-+ |1|a a =-+,当12x =时等号成立,∴当x R ∈时,()()3f x g x + 等价于|1|3a a -+ .①当1a 时,①等价于13a a -+ ,无解.当1a >时,①等价于13a a -+ ,解得2a .∴a 的取值范围是[2,)+∞.15.(2015全国I 文理)已知函数()|1|2||f x x x a =+--,0a >.(Ⅰ)当1a =时,求不等式()1f x >的解集;(Ⅱ)若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.【解析】(Ⅰ)当1a =时,不等式()1f x >化为|1|2|1|10x x +--->,当1x -≤时,不等式化为40x ->,无解;当11x -<<时,不等式化为320x ->,解得213x <<;当1x ≥时,不等式化为20x -+>,解得12x <≤.∴()1f x >的解集为2{|2}3x x <<.(Ⅱ)有题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--⎨⎪-++>⎩≤≤,∴函数()f x 图象与x 轴围成的三角形的三个顶点分别为21(,0),(21,0),(,1)3a A B a C a a -++,ABC ∆的面积为22(1)3a +.有题设得22(1)63a +>,故2a >.∴a 的取值范围为(2,)+∞.16.(2014全国I 文理)若0,0ab >>,且11a b +=.(Ⅰ)求33a b +的最小值;(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由.【解析】(I)11a b =+≥,得2ab ≥,且当a b ==时取等号.故33ab+≥≥,且当a b ==∴33a b +的最小值为(II)由(I)知,23a b +≥.由于6>,从而不存在,a b ,使得236a b +=.16.(2013全国I 文理)已知函数()f x =|21||2|x x a -++,()g x =3x +.(Ⅰ)当a =-2时,求不等式()f x <()g x 的解集;(Ⅱ)设a >-1,且当x ∈[2a -,12)时,()f x ≤()g x ,求a 的取值范围.【解析】(Ⅰ)当a =-2时,不等式()f x <()g x 化为|21||22|30x x x -+---<,设函数y =|21||22|3x x x -+---,y =15, 212, 1236, 1x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩,其图像如图所示,从图像可知,当且仅当(0,2)x ∈时,y <0,∴原不等式解集是{|02}x x <<.(Ⅱ)当x ∈[2a -,12)时,()f x =1a +,不等式()f x ≤()g x 化为13a x ++≤,∴2x a -≥对x ∈[2a -,12)都成立,故2a -≥2a -,即a ≤43,∴a 的取值范围为(-1,43].17.(2012新课标文理)已知函数|2|||)(-++=x a x x f .(Ⅰ)当|3-=a 时,求不等式()3f x 的解集;(Ⅱ)若()|4|f x x - 的解集包含]2,1[,求a 的取值范围.【解析】(1)当3a =-时,()3323f x x x ⇔-+- 2323x x x ⎧⇔⎨-+-⎩ 或23323x x x <<⎧⇔⎨-+-⎩ 或3323x x x ⎧⇔⎨-+-⎩ 1x ⇔ 或4x .(2)原命题()4f x x ⇔- 在[1,2]上恒成立24x a x x ⇔++-- 在[1,2]上恒成立22x a x ⇔--- 在[1,2]上恒成立30a ⇔- .考点122不等式的证明18.(2020全国Ⅲ文理23)设,,,0,1a b c a b c abc ∈++==R .(1)证明:0ab bc ca ++<;(2)用{}max ,,a b c 表示,,a b c 的最大值,证明:{}3max ,,4a b c ≥【答案】(1)证明见解析(2)证明见解析.【思路导引】(1)根据题设条件,0=++c b a 两边平方,再利用均值不等式证明即可;(2)思路一:不妨设max{,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c bc a a a bc bc+++=⋅==,结合基本不等式,即可得出证明.思路二:假设出c b a ,,中最大值,根据反证法与基本不等式推出矛盾,即可得出结论.【解析】(1)证明:().0,02=++∴=++c b a c b a ,0222222=+++++∴ca ac ab c b a 即()222222c b a ca bc ab ++-=++.0,0222<++∴<++∴ca bc ab ca bc ab (2)证法一:不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--= ,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=,当且仅当b c =时,取等号,a ∴≥,即max{,,}a b c .证法二:不妨设403<<<≤c b a ,则,4,41133>=-->=c b a c ab而1132a b ->--≥>==矛盾,∴命题得证.19.(2019全国I 文理23)已知a ,b ,c 为正数,且满足abc=1.证明:(1)222111a b c a b c++≤++;(2)333()()()24a b b c c a +++≥++.【解析】(1)因为2222222,2,2a b ab b c bc c a ac +≥+≥+≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c ++++≥++==++,∴222111a b c a b c++≤++.(2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥=3(+)(+)(+)a b b c ac 3≥⨯⨯⨯=24.∴333()()()24a b b c c a +++++≥.20.(2019全国III 文理23)设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-.【解析】(1)由于2[(1)(1)(1)]x y z -++++222(1)(1)(1)2[(1)(1)(1)(1)(1)(1)]x y z x y y z z x =-+++++-++++++-2223(1)(1)(1)x y z ⎡⎤≤-++++⎣⎦,故由已知得2224(1)(1)(1)3x y z -++++≥,当且仅当x=53,y=–13,13z =-时等号成立.∴222(1)(1)(1)x y z -++++的最小值为43.(2)由于2[(2)(1)()]x y z a -+-+-222(2)(1)()2[(2)(1)(1)()()(2)]x y z a x y y z a z a x =-+-+-+--+--+--2223(2)(1)()x y z a ⎡⎤-+-+-⎣⎦ ,故由已知2222(2)(2)(1)()3a x y z a +-+-+- ,当且仅当43a x -=,13a y -=,223a z -=时等号成立,因此222(2)(1)()x y z a -+-+-的最小值为2(2)3a +.由题设知2(2)133a + ,解得3a - 或1a - .21.(2017全国Ⅱ文理)已知0a >,0b >,332a b +=,证明:(1)()()554a b a b ++≥;(2)2a b +≤.【解析】(1)556556()()a b a b a ab a b b ++=+++3323344()2()a b a b ab a b =+-++()22244ab a b =+-≥.(2)∵33223()33a b a a b ab b +=+++23()ab a b =++23()2()4a b a b +≤++33()24a b +=+,∴3()8a b +≤,因此2a b +≤.22.(2017江苏)已知a ,b ,c ,d 为实数,且224a b +=,2216c d +=,证明8ac bd +≤.【解析】证明:由柯西不等式可得:22222()()()ac bd a b c d +++≤,因为22224,16,a b c d +=+=∴2()64ac bd +≤,因此8ac bd +≤.23.(2016全国II 文理)已知函数()1122f x x x =-++,M 为不等式()2f x <的解集.(I)求M ;(II)证明:当a ,b M ∈时,1a b ab +<+.【解析】(I)当12x <-时,()11222f x x x x =---=-,若112x -<<-;当1122x -≤≤时,()111222f x x x =-++=<恒成立;当12x >时,()2f x x =,若()2f x <,112x <<.综上可得,{}|11M x x =-<<.(Ⅱ)当()11a b ∈-,,时,有()()22110a b -->,即22221a b a b +>+,则2222212a b ab a ab b +++>++,则()()221ab a b +>+,即1a b ab +<+,证毕.24.(2015全国II 文理)设,,,a b c d 均为正数,且a b c d +=+,证明:(Ⅰ)若ab >cd ,则a b c d +>+;(Ⅱ)a b c d +>+是||||a b c d -<-的充要条件.【解析】(Ⅰ)∵2()2a b a b ab +=++,2()c d c d cd +=++由题设a b c d +=+,ab cd >得22()a b c d >+a b c d +>(Ⅱ)(ⅰ)若||||a b c d -<-,则22()()a b c d -<-,即22()4()4a b ab c d cd +-<+-.因为a b c d +=+,∴ab cd >,由(Ⅰ)得a b c d >(ⅱ)a b c d +>则22(a b c d >+,即a b ab c d cd ++>++因为a b c d +=+,∴ab cd >,于是2222()()4()4()a b a b ab c d cd c d -=+-<+-=-.因此||||a b c d -<-.a b c d +>||||a b c d -<-的充要条件.25.(2013全国II 文理)设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤;(Ⅱ)2221a b c b c a++≥.【解析】(Ⅰ)2222222,2,2a b ab b c bc c a ca +≥+≥+≥得222a b c ab bc ca ++≥++,由题设得()21a b c ++=,即2222221a b c ab bc ca +++++=,∴()31ab bc ca ++≤,即13ab bc ca ++≤.(Ⅱ)∵2222,2,2a b c b a c b a c b c a +≥+≥+≥,∴222()2()a b c a b c a b c b c a +++++≥++,即222a b c a b c b c a ++≥++,∴2221a b c b c a ++≥.。

高三数学绝对值不等式试题答案及解析

高三数学绝对值不等式试题答案及解析

高三数学绝对值不等式试题答案及解析1.不等式有实数解的充要条件是_____.【答案】.【解析】记,则不等式有实数解等价于,因为,故【考点】绝对值三角不等式.2.(2013•重庆)若关于实数x的不等式|x﹣5|+|x+3|<a无解,则实数a的取值范围是_________.【答案】(﹣∞,8]【解析】由于|x﹣5|+|x+3|表示数轴上的x对应点到5和﹣3对应点的距离之和,其最小值为8,再由关于实数x的不等式|x﹣5|+|x+3|<a无解,可得a≤8,故答案为:(﹣∞,8].3.若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是()A.[3,+∞)B.(-∞,3]C.(-1,2)D.(-2,3]【答案】B【解析】当x≤-1时,|x+1|+|x-2|=-x-1-x+2=-2x+1≥3;当-1<x≤2时,|x+1|+|x-2|=x+1-x+2=3;当x>2时,|x+1|+|x-2|=x+1+x-2=2x-1>3;综上可得|x+1|+|x-2|≥3,所以只要a≤3.即实数a的取值范围是(-∞,3],故选B.4.解不等式:|2x-1|-|x-2|<0.【答案】{x|-1<x<1}.【解析】原不等式等价于不等式组①无解;②解得<x<1;③解得-1<x≤.综上得-1<x<1,所以原不等式的解集为{x|-1<x<1}.5.解不等式:|x+3|-|2x-1|<+1.【答案】{x|x<-或x>2}【解析】①当x<-3时,原不等式化为-(x+3)-(1-2x)<+1,解得x<10,∴x<-3.②当-3≤x<时,原不等式化为(x+3)-(1-2x)<+1,解得x<-,∴-3≤x<-.③当x≥时,原不等式化为(x+3)-(2x-1)<+1,解得x>2,∴x>2.综上可知,原不等式的解集为{x|x<-或x>2}.6.若不等式|3x-b|<4的解集中整数有且只有1,2,3,求实数b的取值范围.【答案】5<b<7【解析】由|3x-b|<4,得-4<3x-b<4,即<x<.因为解集中整数有且只有1,2,3,所以解得所以5<b<7.7.已知函数f(x)=|x+a|+|x-2|.(1)当a=-3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.【答案】(1)x≤1或x≥4(2)-3≤a≤0【解析】(1)当a=-3时,f(x)≥3,|x-3|+|x-2|≥3,或或解得x≤1或x≥4.(2)原命题f(x)≤|x-4|在[1,2]上恒成立|x+a|+2-x≤4-x在[1,2]上恒成立-2-x≤a≤2-x在[1,2]上恒成立,故-3≤a≤0.8. A.(坐标系与参数方程)已知直线的参数方程为(为参数),圆的参数方程为(为参数),则圆心到直线的距离为_________.B.(几何证明选讲)如右图,直线与圆相切于点,割线经过圆心,弦⊥于点,,,则_________.C.(不等式选讲)若存在实数使成立,则实数的取值范围是_________.【答案】A.;B.;C.【解析】A.先把直线l和圆C的参数方程化为普通方程y=x+1,(x-2)2+y2=1,再利用点到直线的距离公式求出即可.B.在圆中线段利用由切割线定理求得PA,进而利用直角三角形PCO中的线段,结合面积法求得CE即可.C.由绝对值的基本不等式得:,解得-3≤m≤1.【考点】(1)参数方程;(2)圆的性质;(3)绝对值不等式.9.不等式的解集是【答案】【解析】解答本题可利用“分段讨论法”,也可利用“几何法”,根据绝对值的几何意义,结合数轴得,不等式的解集是.【考点】绝对值不等式的解法10.设函数f(x)=|2x+1|-|x-4|.(1)解不等式f(x)>2;(2)求函数y=f(x)的最小值.【答案】(1)(2)-【解析】(1)f(x)=|2x+1|-|x-4|=当x<-时,由f(x)=-x-5>2得x<-7,∴x<-7;当-≤x<4时,由f(x)=3x-3>2得x>,∴<x<4;当x≥4时,由f(x)=x+5>2,得x>-3,∴x≥4.故原不等式的解集为.(2)画出f(x)的图象如图:∴f(x)=-.min11.已知关于x的不等式|ax-2|+|ax-a|≥2(a>0).(1)当a=1时,求此不等式的解集;(2)若此不等式的解集为R,求实数a的取值范围.【答案】(1)(2)a≥4【解析】(1)当a=1时,不等式为|x-2|+|x-1|≥2,由绝对值的几何意义知,不等式的意义可解释为数轴上的点x到1、2的距离之和大于等于2. ∴x≥或x≤.∴不等式的解集为.注:也可用零点分段法求解.(2)∵|ax-2|+|ax-a|≥|a-2|,∴原不等式的解集为R等价于|a-2|≥2,∴a≥4或a≤0.又a>0,∴a≥4.12.关于x的不等式的解集不为空集,则实数a的取值范围是 .【答案】【解析】由于表示数轴上的对应点到的距离减去它到对应点的距离,它的最小值为,要使不等式的解集为非空集合,则实数,解得,,故答案为.【考点】绝对值不等式的解法.13.若关于x的不等式的解集为空集,则实数a的取值范围是。

高三数学绝对值不等式试题

高三数学绝对值不等式试题

高三数学绝对值不等式试题1.,若,则的取值范围为__________.【答案】【解析】因为,当且仅当取等号,所以,又,所以,因此的取值范围为.【考点】含绝对值不等式的性质2.设A={x∈Z||x-2|≤5},则A中最小元素为( )A.2B.-3C.7D.0【答案】B【解析】由|x-2|≤5,得-3≤x≤7,又x∈Z,∴A中的最小元素为-3,选B.3.解不等式|2x-4|<4-|x|.【答案】【解析】原不等式等价于①或②或③不等式组①无解.由②0<x≤2,③2<x<,得不等式的解集为.4.已知f(x)=.(1)当a=1时,求f(x)≥x的解集;(2)若不存在实数x,使f(x)<3成立,求a的取值范围.【答案】(1);(2)【解析】(1)根据绝对值的几何意义分类去掉绝对值符号,化为几个整式不等式,然后求解,最后求它们的并集即可.(2)由题意可知恒成立,由绝对值不等式的性质可得,即,解出a即可.试题解析:(1)当a=1时,,解得;当时,解得,无解,解得; 3分综上可得到解集. 5分(2)依题意,,则, 8分(舍),所以 10分【考点】解绝对值不等式的解法.5.设,若关于的不等式有解,则参数的取值范围为________.【答案】[0,3]【解析】由知,不等式有解等价于,解得.【考点】绝对值不等式的解法、转化思想.6.若存在实数使成立,则实数的取值范围是 .【答案】【解析】为使存在实数使成立,只需的最小值满足不大于.在数轴上,表示横坐标为的点到横坐标为a的点A距离,就表示点到横坐标为1的点B的距离,所以,从而,解得.故答案为.【考点】绝对值的几何意义,绝对值不等式的解法.7.不等式的解集是________.【答案】【解析】,当即时,则或,所以,故此时不成立;当即时,显然恒成立,故答案为.【考点】绝对值不等式的解法.8.定义:关于的不等式的解集叫的邻域.已知的邻域为区间,其中、分别为椭圆的长半轴和短半轴.若此椭圆的一焦点与抛物线的焦点重合,则椭圆的方程为()A.B.C.D.【答案】B【解析】由题中的定义知,的邻域为区间,则关于不等式的解集为,解关于不等式得,解得,所以,又由于椭圆的一焦点与抛物线的焦点重合,则,即,所以,解得,,故此椭圆的方程为,故选B.【考点】1.新定义;2.含绝对值的不等式的解法;3.椭圆的方程9.已知函数,若不等式的解集为,则的值为__________.【答案】.【解析】当且时,.【考点】不等式选讲.10.已知的最小值为,则二项式展开式中项的系数为 .【答案】15【解析】二项式展开式中含的项为其系数为.【考点】1、绝对值不等式的性质;2、二项式定理.11.解不等式.【答案】【解析】先构造函数,去绝对值,将函数的解析式利用分段函数的形式求出,将问题转化为分段不等式进行求解.令,当时,,,则,此时恒成立; 3分当时,,,则,令,即,解得,由于,则有; 6分当时,,,则,此时不成立, 9分综上所述,不等式的解集为. 10分【考点】含绝对值不等式的解法、分段函数12.设函数(Ⅰ)若,解不等式;(Ⅱ)若函数有最小值,求实数的取值范围.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)分类去掉绝对值符号,化为整式不等式再解,最后取并集即可.(Ⅱ)把函数f(x)化为分段函数,然后再找出f(x)有最小值的充要条件解之即可.试题解析:(Ⅰ)a=1时,f(x)=+x+3当x≥时,f(x)≤5可化为3x-1+x+3≤5,解得≤x;当x<时,f(x)≤5可化为-3x+1+x+3≤5,解得-,综上可得,原不等式的解集为(Ⅱ)f(x)= +x+3=函数有最小值的充要条件是,解得【考点】1.绝对值不等式;2.分段函数及其求函数值.13.已知函数,(Ⅰ)已知常数,解关于的不等式;(Ⅱ)若函数的图象恒在函数图象的上方,求实数的取值范围.【答案】(1)不等式的解集为(2)【解析】解:(Ⅰ)由得,或或故不等式的解集为 3分(Ⅱ)∵函数的图象恒在函数图象的上方∴恒成立,即恒成立 5分∵,∴的取值范围为. 7分【考点】绝对值不等式点评:主要是考查了绝对值不等式的定义,以及不等式的恒成立问题转化为最值来处理的运用,属于中档题。

高三数学绝对值不等式试题答案及解析

高三数学绝对值不等式试题答案及解析

高三数学绝对值不等式试题答案及解析1.(不等式选讲题)对于任意实数和不等式恒成立,则实数x的取值范围是_________.【答案】【解析】依题意可得恒成立,等价于小于或等于的最小值.因为.所以.【考点】1绝对值不等式的性质.2.恒成立问题.3.最值问题.2.关于x的不等式|x-3|+|x-4|<a的解集不是空集,求a的取值范围.【答案】(1,+∞)【解析】∵|x-3|+|x-4|≥|(x-3)-(x-4)|=1,∴a>1.即a的取值范围是(1,+∞).3.设函数f(x)=|2x-1|+|2x-3|,x∈R.(1)求关于x的不等式f(x)≤5的解集.(2)若g(x)=的定义域为R,求实数m的取值范围.【答案】(1) x∈[-,] (2) m>-2【解析】(1)或或不等式的解集为x∈[-,].(2)若g(x)=的定义域为R.则f(x)+m≠0恒成立,即f(x)+m=0在R上无解,又f(x)=|2x-1|+|2x-3|≥|2x-1-2x+3|=2,f(x)的最小值为2,所以m>-2.4.若存在实数x使|x-a|+|x-1|≤3成立,则实数a的取值范围是________.【答案】[-2,4]【解析】|x-a|+|x-1|≥|a-1|,则只需要|a-1|≤3,解得-2≤a≤4.5.若关于实数x的不等式|x-5|+|x+3|<a无解,则实数a的取值范围是________.【答案】(-∞,8]【解析】因为|x-5|+|x+3|表示数轴上的动点x到数轴上的点-3,5的距离之和,而(|x-5|+|x+=8,∴当a≤8时,|x-5|+|x+3|<a无解,3|)min故实数a的取值范围为(-∞,8].6.已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈时,f(x)≤g(x),求a的取值范围.【答案】(1){x|0<x<2}(2)【解析】(1)当a=-2时,不等式f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0.设函数y=|2x-1|+|2x-2|-x-3,则y=其图象如图所示,由图象可知,当且仅当x∈(0,2)时,y<0.所以原不等式的解集是{x|0<x<2}.(2)当x∈时,f(x)=1+a,不等式f(x)≤g(x)化为1+a≤x+3,所以x≥a-2对x∈都成立,应有-≥a-2,则a≤,从而实数a的取值范围是.7.若不等式的解集为,则实数的取值范围是____.【答案】【解析】不等式的解集为,所以.,所以,.【考点】不等式8.设函数.(Ⅰ)当时,解不等式;(Ⅱ)当时,不等式的解集为,求实数的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)原不等式的解集等价于不等式组或的解集的并集;(Ⅱ)当时,不等式的解集为,恒成立问题,对分类讨论,①,②.试题解析:(Ⅰ)当时,,或或,∴不等式的解集是. 5分[(Ⅱ)不等式可化为,∴,由题意,时恒成立,当时,可化为,,,,综上,实数的取值范围是. 10分【考点】绝对值不等式,恒成立问题.9.(本题满分10分)《选修4-5:不等式选讲》已知函数(1)证明:(2)求不等式:的解集【答案】(1);(2)【解析】(1)对于x进行分三类讨论,得到关于x的分段函数,进而分别求解得到解集取其并集得到。

绝对值不等式高考题

绝对值不等式高考题
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足: ⑴对于任意的x∈I,都有f(x)≤M; ⑵存在x0∈I,使得f(x0) = M 那么,称M是函数y=f(x)的最大值(Maximum Value).
2006浙江文10 2006浙江理12

2015高考理18
已知函数 f x x 2 ax ba, b R ,记Ma,b是
当a一般地设函数yห้องสมุดไป่ตู้x的定义域为i如果存在实数m满足

2015高考理18
已知函数 f x x 2 ax ba, b R ,记Ma,b是
f x 在区间[-1,1]上的最大值.
(Ⅰ)证明:当|a| 2时,M(a,b) 2;
2014高考理8
2014高考理8
2015高考理18(1)
(Ⅱ)当 a, b满足 Ma,b 2时,求|a|+|b|
的最大值.
已知函数 f x x 2 ax ba, b R ,记Ma,b是
f x 在区间[-1,1]上的最大值.
(Ⅰ)证明:当|a| 2时,M(a,b) 2;
(Ⅱ)当 a, b满足 Ma,b 2时,求|a|+|b|
的最大值.
1996全国高考理25
已知a、b、c是实数,函数f(x)=ax2+bx+c, g(x)=ax+b,当-1≤x≤1时,│f(x)│≤1.
(Ⅰ)证明:│c│≤l; (Ⅱ)证明:当-1≤x≤1时,│g(x)│≤2; (Ⅲ)设a>0,当-1≤x≤1时,g(x)的最大值为
2,求f(x)
f x 在区间[-1,1]上的最大值.
(Ⅰ)证明:当|a| 2时,M(a,b) 2;

高三数学绝对值不等式试题答案及解析

高三数学绝对值不等式试题答案及解析

高三数学绝对值不等式试题答案及解析1.已知,不等式的解集是(Ⅰ)求a的值;(Ⅱ)若存在实数解,求实数的取值范围。

【答案】(Ⅰ)-2;(Ⅱ)【解析】(Ⅰ)由含绝对值不等式解法转化为关于的一元一次不等式组求解,因为一次项系数含参数,故需要分类讨论解出解决与已知原不等式解集比较,列出关于的方程,从而求出的值;(Ⅱ)由(Ⅰ)知的值,将的解析式具体化,利用含绝对值不等式性质,求出的最小值,存在实数解,故,解此不等式得出不等式的解集就是实数的取值范围.试题解析:(Ⅰ)由得:即当时,原不等式的解集是,无解;当时,原不等式的解集是,得(5分)(Ⅱ)由题:因为存在实数解,只需大于的最小值由绝对值的几何意义,,所以解得:(10分)【考点】含绝对值不等式解法,含绝对值不等式性质,分类整合思想,含参数不等式有解问题2.对于x∈R,不等式|x-1|+|x-2|≥2+2恒成立,试求2+的最大值。

【答案】【解析】本题主要考查恒成立问题、函数的最值、绝对值的运算性质、柯西不等式等基础知识,考查学生的转化能力、计算能力.先将“对于x∈R,不等式|x-1|+|x-2|≥2+2恒成立”转化为“”,利用绝对值的运算性质求出最小值,得到,再利用柯西不等式求出,注意公式应用时等号成立的条件.试题解析:|-1|+|-2|=|-1|+|2-|≥|-1+2-|="1" , 2分故2+2≤1. 3分(2+)2≤(22+12)( 2+2) ≤5. 5分由 ,即取=,时等号成立.故(2+)=. 7分max【考点】恒成立问题、函数的最值、绝对值的运算性质、柯西不等式.3.不等式的解集为 .【答案】.【解析】令,则,(1)当时,由得,解得,此时有;(2)当时,,此时不等式无解;(3)当时,由得,解得,此时有;综上所述,不等式的解集为.【考点】本题考查含绝对值不等式的求解,属于中等题.4.集合A={x|<0},B={x||x-b|<a}.若“a=1”是“A∩B≠∅”的充分条件,则实数b的取值范围是______.【答案】(-2,2)【解析】A={x|<0}={x|-1<x<1},B={x||x-b|<a}={x|b-a<x<b+a},因为“a=1”是“A∩B≠∅”的充分条件,所以-1≤b-1<1或-1<b+1≤1,即-2<b<2.5.解不等式:|x+1|>3.【答案】(-∞,-4)∪(2,+∞).【解析】由|x+1|>3得x+1<-3或x+1>3,解得x<-4或x>2.所以解集为(-∞,-4)∪(2,+∞).6.求函数y=|x-4|+|x-6|的最小值.【答案】2【解析】y=|x-4|+|x-6|≥|x-4+6-x|=2.所以函数的最小值为2.7.已知函数.(1)当时,解不等式;(2)若时,,求a的取值范围.【答案】(1);(2)[-7,7].【解析】本题主要考查绝对值不等式的解法、不等式恒成立等基础知识,考查学生分析问题解决问题的能力、转化能力、计算能力.第一问,先把a=-1代入,先写出的解析式,利用零点分段法去掉绝对值,解不等式组,得到不等式的解集;第二问,在已知的范围内的绝对值可去掉,解绝对值不等式,使之转化成2个恒成立.试题解析:(1)当a=-1时,不等式为|x+1|-|x+3|≤1.当x≤-3时,不等式化为-(x+1)+(x+3)≤1,不等式不成立;当-3<x<-1时,不等式化为-(x+1)-(x+3)≤1,解得;当x≥-1时,不等式化为(x+1)-(x+3)≤1,不等式必成立.综上,不等式的解集为. 5分(2)当x∈[0,3]时,f(x)≤4即|x-a|≤x+7,由此得a≥-7且a≤2x+7.当x∈[0,3]时,2x+7的最小值为7,所以a的取值范围是[-7,7]. 10分【考点】绝对值不等式的解法、不等式恒成立.8. A.(坐标系与参数方程)已知直线的参数方程为 (为参数),圆的参数方程为(为参数), 则圆心到直线的距离为_________.B.(几何证明选讲)如右图,直线与圆相切于点,割线经过圆心,弦⊥于点,,,则_________.C.(不等式选讲)若存在实数使成立,则实数的取值范围是_________.【答案】A. ; B.; C.【解析】A. 先把直线l和圆C的参数方程化为普通方程y=x+1,(x-2)2+y2=1,再利用点到直线的距离公式求出即可.B.在圆中线段利用由切割线定理求得PA,进而利用直角三角形PCO中的线段,结合面积法求得CE即可.C. 由绝对值的基本不等式得:,解得-3≤m≤1.【考点】(1)参数方程;(2)圆的性质;(3)绝对值不等式.9.已知f(x)=|x+1|+|x-1|,不等式f(x)的解集为M.(1)求M;(2)当a,b M时,证明:2|a+b|<|4+ab|.【答案】(1);(2)证明过程详见解析.【解析】本题主要考查绝对值不等式、不等式的证明等基础知识,意在考查考生的运算求解能力、利用综合法、分类讨论思想的解题能力.第一问,利用零点分段法分别去掉绝对值,解不等式;第二问,可先用分析法由所求证的结论入手,分析需要证明什么,再用综合法证明,要证2|a+b|<|4+ab|,需证明,展开,需证明,由已知入手,找到,,从而证出.试题解析:(1)由,即,当时,则,得,∴;当时,则,得,恒成立,∴;当时,则,得,∴;综上,. 5分(2)当时,则,.即:,,∴,∴,即,也就是,∴,即:,即. 10分【考点】绝对值不等式、不等式的证明.10.设函数(1)若时,解不等式;(2)若不等式的对一切恒成立,求实数的取值范围【答案】(1) (2)【解析】(1)可以采用零点分段法或者绝对值的定义来解决该绝对值不等式,其中零点分段法即把x分为三段讨论去掉绝对值来求的该不等式的解集,而绝对值的定义,即表示在数轴上点x到-1和a的距离之和,利用数轴即可得到相应的解集(2)首先由区间的a,再根据x的范围去掉绝对值,剩下即为恒成立问题,再利用分离参数法分离x与a,求出x一边的最值即可.解得a的范围.试题解析:(1)由题得a=2,法一.利用绝对值的定义,即|x+1|即为在数轴上x与-1之间的距离,|x-2|是x与2之间的距离.故利用数轴法可以求的,综上的解集为.法二.零点分段法,分为一下三种情况当x>2时,当-1x2时,当x<-1时,综上的解集为.(2)由题得,所以且,即在区间上恒成立,所以,综上a的取值范围为.【考点】绝对值不等式恒成立问题11.设函数.(1)若不等式的解集为,求的值;(2)若存在,使,求的取值范围.【答案】(1);(2)【解析】(1)根据绝对值不等式公式可得的解集,根据其解集与集合可得的值。

绝对值不等式,高考历年真题

绝对值不等式,高考历年真题

温馨提示:高考题库为 Word 版,请按住Ctrl ,滑动鼠标滚轴,调节合适的 观看比例,点击右上角的关闭按钮可返回目录。

2009年考题故选择D 。

1 a2 3a 对任意实数x 恒成立,则实数a 的取值范围为(,1]U[2,1、(2009全国I )不等式V 1的解集为((A) {x 0 x 1 U{x x 1 (B) x 0 x (C ) x 1 x 0(D) x xw.w.w.k.s.5.u.c.o.m【解析】选D. 1 |x1| |x1| (x 1)2 (x 1)2 0 4x 0 x 0,(,1]U[4,B . (,2]U[5,【考点35】 绝对值不等式2、(2009重庆高考)不等式[1,2]【解析】选A.因为4 3a 对任意x 恒成立,所以a 2 3a 4即 a 2 3a0, 解得a1.3、(2009广东咼考)不等式1的实数解为【解析】(x 1)2 (x x 22)22.4、(2009山东高考)不等式2x 2 0的解集为【解析】原不等式等价于不等式组或② 22x 1 (x 2)0 2x 1 (x 2) 0答案:{x| 1 x 1}答案: 3,16、(2009福建高考)解不等式I 2x-1 I < I x I +1【解析】当x<0时,原不等式可化为 2x 1 x 1,解得x 0又Q x 0, x 不存在;1当0 x 丄时,原不等式可化为2x 1 x 1,解得x 02p1 1又 Q 0 x ,0 x ;2 211 1当x,原不等式可化为2x 1 x 1,解得x 2又Q xx 222 2综上,原不等式的解集为 x|0 x 2.表示C 与原点的距离,y 表示C 到A 距离4倍与C 到B 距离的6倍的和.(1) 将y 表示成x 的函数; (2)要使y 的值不超过70, x或③1x -2(2x 1) (x 2)1不等式组①无解,由②得丄x 1,由③得11 x,综上得1 x 1,所以原不等式的解集为{x|1 x 1} . w.w.w.k.s.5.u.c.o.m5、( 2009北京高考)若函数 f (x)(y,x 0则不等式I f(x)| -的解集为3【解析】主要考查分段函数和简单绝对值不等式的解法 .属于基础知识、基本运算的考查1(1)由 I f(x)i 33x0.1(2)由 |f(X )| 13x 01 x1 0x1.33•••不等式| f(x)| 1的解集为3x| 3 x 1,•应填3,17、(2009海南宁夏高考)如图,O 为数轴的原点,A,B,M 为数轴上三点,C 为线段OM 上的动点,设x应该在什么范围内取值?w.w.w.k.s.5.u.c.o.m【解析】(I) y 4|x 101 6|x 201,0 x 30.(n )依题意,x 满足4|x 10| 6|x 20| 70, 0 x 30.解不等式组,其解集为[9, 23],所以x [9, 23].8、( 2009辽宁高考)设函数 f(x) | x 1| | x a |。

高考理科数学真题练习题绝对值不等式理含解析

高考理科数学真题练习题绝对值不等式理含解析

高考数学复习 课时作业73 绝对值不等式1.设函数f (x )=|2x -3|.(1)求不等式f (x )>5-|x +2|的解集;(2)若g (x )=f (x +m )+f (x -m )的最小值为4,求实数m 的值.解:(1)∵f (x )>5-|x +2|可化为|2x -3|+|x +2|>5,∴当x ≥32时,原不等式化为(2x -3)+(x +2)>5,解得x >2,∴x >2; 当-2<x <32时,原不等式化为(3-2x )+(x +2)>5,解得x <0,∴-2<x <0; 当x ≤-2时,原不等式化为(3-2x )-(x +2)>5,解得x <-43,∴x ≤-2. 综上,不等式f (x )>5-|x +2|的解集为(-∞,0)∪(2,+∞).(2)∵f (x )=|2x -3|,∴g (x )=f (x +m )+f (x -m )=|2x +2m -3|+|2x -2m -3|≥|(2x +2m -3)-(2x -2m -3)|=|4m |,∴依题意有4|m |=4,解得m =±1.2.(2018·全国卷Ⅱ)设函数f (x )=5-|x +a |-|x -2|.(1)当a =1时,求不等式f (x )≥0的解集;(2)若f (x )≤1,求a 的取值范围.解:(1)当a =1时,f (x )=⎩⎪⎨⎪⎧ 2x +4,x ≤-1,2,-1<x ≤2,-2x +6,x >2.可得f (x )≥0的解集为{x |-2≤x ≤3}.(2)f (x )≤1等价于|x +a |+|x -2|≥4.而|x +a |+|x -2|≥|a +2|,且当x =2时等号成立.故f (x )≤1等价于|a +2|≥4.由|a +2|≥4可得a ≤-6或a ≥2.所以a 的取值范围是(-∞,-6]∪[2,+∞).3.(2019·开封高三定位考试)已知函数f (x )=|x -m |,m <0.(1)当m =-1时,求解不等式f (x )+f (-x )≥2-x ;(2)若不等式f (x )+f (2x )<1的解集非空,求m 的取值范围.解:(1)设F (x )=|x -1|+|x +1|=⎩⎪⎨⎪⎧ -2x x <-1,2-1≤x <1,2x x ≥1,G (x )=2-x ,由F (x )≥G (x )解得{x |x ≤-2或x ≥0}.(2)f (x )+f (2x )=|x -m |+|2x -m |,m <0.设g (x )=f (x )+f (2x ),当x ≤m 时,g (x )=m -x +m -2x =2m -3x ,则g (x )≥-m ;当m <x <m 2时,g (x )=x -m +m -2x =-x ,则-m 2<g (x )<-m ;当x ≥m 2时,g (x )=x -m +2x -m =3x -2m ,则g (x )≥-m 2.则g (x )的值域为[-m 2,+∞),不等式f (x )+f (2x )<1的解集非空,即1>-m 2,解得m >-2,由于m <0,则m 的取值范围是(-2,0).4.(2018·全国卷Ⅲ)设函数f (x )=|2x +1|+|x -1|.(1)画出y =f (x )的图象;(2)当x ∈[0,+∞)时,f (x )≤ax +b ,求a +b 的最小值.解:(1)f (x )=⎩⎪⎨⎪⎧ -3x ,x <-12,x +2,-12≤x <1,3x ,x ≥1.y =f (x )的图象如图所示.(2)由(1)知,y =f (x )的图象与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当a ≥3且b ≥2时,f (x )≤ax +b 在[0,+∞)成立,因此a +b 的最小值为5.5.(2019·河南新乡二模)已知函数f (x )=|x -4|+|x -1|-3.(1)求不等式f (x )≤2的解集;(2)若直线y =kx -2与函数f (x )的图象有公共点,求k 的取值范围.解:(1)由f (x )≤2,得⎩⎪⎨⎪⎧ x ≤1,2-2x ≤2或 ⎩⎪⎨⎪⎧ 1<x <4,0≤2或⎩⎪⎨⎪⎧ x ≥4,2x -8≤2,解得0≤x ≤5,故不等式f (x )≤2的解集为[0,5].(2)f (x )=|x -4|+|x -1|-3=⎩⎪⎨⎪⎧ 2-2x ,x ≤1,0,1<x <4,2x -8,x ≥4,作出函数f (x )的图象,如图所示,易知直线y =kx -2过定点C (0,-2),当此直线经过点B (4,0)时,k =12;当此直线与直线AD 平行时,k =-2.故由图可知,k ∈(-∞,-2)∪⎣⎢⎡⎭⎪⎫12,+∞.6.(2019·成都诊断性检测)已知函数f (x )=|x -2|+k |x +1|,k ∈R .(1)当k =1时,若不等式f (x )<4的解集为{x |x 1<x <x 2},求x 1+x 2的值;(2)当x ∈R 时,若关于x 的不等式f (x )≥k 恒成立,求k 的最大值. 解:(1)由题意,得|x -2|+|x +1|<4.当x >2时,原不等式可化为2x <5,∴2<x <52;当x <-1时,原不等式可化为-2x <3,∴-32<x <-1;当-1≤x ≤2时,原不等式可化为3<4,∴-1≤x ≤2.综上,原不等式的解集为{x |-32<x <52},即x 1=-32,x 2=52.∴x 1+x 2=1.(2)由题意,得|x -2|+k |x +1|≥k .当x =2时,即不等式3k ≥k 成立,∴k ≥0.当x ≤-2或x ≥0时,∵|x +1|≥1,∴不等式|x -2|+k |x +1|≥k 恒成立.当-2<x ≤-1时,原不等式可化为2-x -kx -k ≥k ,可得k ≤2-x x +2=-1+4x +2,∴k ≤3. 当-1<x <0时,原不等式可化为2-x +kx +k ≥k ,可得k ≤1-2x,∴k <3. 综上,可得0≤k ≤3,即k 的最大值为3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温馨提示:高考题库为Word 版,请按住Ctrl ,滑动鼠标滚轴,调节合适的观看比例,点击右上角的关闭按钮可返回目录。

【考点35】绝对值不等式2009年考题1、(2009全国Ⅰ)不等式11X X +-<1的解集为( )(A ){x }}01{1x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈 【解析】选 D.0040)1()1(|1||1|11122<⇔<⇔<--+⇔-<+⇔<-+x x x x x x x x , 故选择D 。

2、(2009重庆高考)不等式2313x x a a +--≤-对任意实数x 恒成立,则实数a 的取值范围为 A .(,1][4,)-∞-+∞ B .(,2][5,)-∞-+∞ C .[1,2]D .(,1][2,)-∞+∞【解析】选A.因为24314313x x x x a a -≤+--≤+--≤-对对任意x 恒成立,所以223434041a a a a a a -≥--≥≥≤-即,解得或.3、(2009广东高考)不等式112x x +≥+的实数解为 . 【解析】112x x +≥+2302)2()1(022122-≤⇔⎩⎨⎧≠++≥+⇔⎩⎨⎧≠++≥+⇔x x x x x x x 且2-≠x . 答案:32x ≤-且2-≠x .4、(2009山东高考)不等式0212<---x x 的解集为 .【解析】原不等式等价于不等式组①221(2)0x x x ≥⎧⎨---<⎩或②12221(2)0x x x ⎧<<⎪⎨⎪-+-<⎩或③12(21)(2)0x x x ⎧≤⎪⎨⎪--+-<⎩不等式组①无解,由②得112x <<,由③得112x -<≤,综上得11x -<<,所以原不等式的解集为{|11}x x -<<.答案:{|11}x x -<<5、(2009北京高考)若函数1,0()1(),03x x xf x x ⎧<⎪⎪=⎨⎪≥⎪⎩ 则不等式1|()|3f x ≥的解集为________.【解析】主要考查分段函数和简单绝对值不等式的解法. 属于基础知识、基本运算的考查.(1)由01|()|301133x f x x x <⎧⎪≥⇒⇒-≤<⎨≥⎪⎩.(2)由001|()|01111133333x xx x f x x ≥⎧≥⎧⎪⎪≥⇒⇒⇒≤≤⎨⎨⎛⎫⎛⎫≥≥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎩⎩.∴不等式1|()|3f x ≥的解集为{}|31x x -≤≤,∴应填[]3,1-. 答案:[]3,1-6、(2009福建高考)解不等式∣2x -1∣<∣x∣+1【解析】当x<0时,原不等式可化为211,0x x x -+<-+>解得 又0,x x <∴不存在;当102x ≤<时,原不等式可化为211,0x x x -+<+>解得 又110,0;22x x ≤<∴<<当111,211,22222x x x x x x ≥-<+<≥∴≤<原不等式可化为解得又综上,原不等式的解集为|0 2.x x <<7、(2009海南宁夏高考)如图,O 为数轴的原点,A,B,M 为数轴上三点,C 为线段OM 上的动点,设x 表示C 与原点的距离,y 表示C 到A 距离4倍与C 到B 距离的6倍的和.(1)将y 表示成x 的函数;(2)要使y 的值不超过70,x 应该在什么范围内取值【解析】(Ⅰ)4|10|6|20|,030.y x x x =-+-≤≤ (Ⅱ)依题意,x 满足4|10|6|20|70,030.x x x -+-≤⎧⎨≤≤⎩解不等式组,其解集为[9,23],所以[9,23].x ∈ 8、(2009辽宁高考)设函数()|1|||f x x x a =-+-。

(1) 若1,a =-解不等式()3f x ≥;(2)如果x R ∀∈,()2f x ≥,求a 的取值范围。

【解析】(1)当1a =-时,()|1||1|f x x x =-++,由()3f x ≥得:|1||1|3x x -++≥, (法一)由绝对值的几何意义知不等式的解集为33{|}22x x x ≤-≥或。

(法二)不等式可化为123x x ≤-⎧⎨-≥⎩或1123x -<≤⎧⎨≥⎩或123x x >⎧⎨≥⎩,∴不等式的解集为33{|}22x x x ≤-≥或。

-------------5分 (2)若1a =,()2|1|f x x =-,不满足题设条件;若1a <,21,()()1,(1)2(1),(1)x a x a f x a a x x a x -++≤⎧⎪=-<<⎨⎪-+≥⎩,()f x 的最小值为1a -;若1a >,21,(1)()1,(1)2(1),()x a x f x a x a x a x a -++≤⎧⎪=-<<⎨⎪-+≥⎩,()f x 的最小值为1a -。

所以对于x R ∀∈,()2f x ≥的充要条件是|1|2a -≥,从而a 的取值范围(,1][3,)-∞-+∞。

…………………………………………………………………………………………………………10分2008年考题1、(2008湖南高考)“|1|2x -<”是“3x <”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选A.由|1|2x -<得13x -<<,所以易知选A .2、(2008湖南高考)“|1|2x -<成立”是“(3)0x x -<成立”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选B.由|1|2x -<得13x -<<,由(3)0x x -<得03x <<,所以易知选B . 3、(2008四川高考)不等式2||2x x -<的解集为( )(A )(1,2)- (B )(1,1)- (C )(2,1)- (D )(2,2)- 【解析】选A.∵2||2x x -< ∴222x x -<-< 即222020x x x x ⎧-+>⎨--<⎩, 12x R x ∈⎧⎨-<<⎩,∴(1,2)x ∈- 故选A .4、(2008天津高考)设集合{||2|3},{|8},S x x T x a x a S T R =->=<<+=,则a 的取值范围是(A) 31a -<<- (B) 31a --(C) 3a-或1a - (D) 3a <-或1a >-【解析】选A.{|15}S x x x =<->或,所以{13185a a a <-⇒-<<-+>,选A . 5、(2008山东高考)若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围为 . 【解析】本题考查绝对值不等式401443,433343b b b x b -⎧≤<⎪-+⎪<<⎨+⎪<≤⎪⎩,解得57b << 答案:(5,7)6、(2008广东高考)已知a ∈R ,若关于x 的方程2104x x a a ++-+=有实根,则a 的取值范围是 .【解析】方程即214a a x x -+=--,左边14a a -+ 在数轴上表示点a 到原点和14的距离的和,易见1144a a -+≥(1[0,]4a ∈等号成立),而右边2x x --的最大值是14,所以方程有解当且仅当两边都等于14,可得实数a 的取值范围为10,4⎡⎤⎢⎥⎣⎦答案:10,4⎡⎤⎢⎥⎣⎦7、(2008上海高考)不等式|1|1x -<的解集是 .【解析】由11102x x -<-<⇒<<. 答案:(0,2)2007年考题1、(2007安徽高考)若对任意∈x R,不等式x ≥ax 恒成立,则实数a 的取值范围是 (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1【解析】选B .若对任意∈x R,不等式x ≥ax 恒成立,当x≥0时,x≥ax,a≤1,当x<0时,-x≥ax,∴a≥-1,综上得11a -≤≤,即实数a 的取值范围是a ≤1,选B 。

2、(2007安徽高考)若}{2228xA x -=∈Z ≤<,{2R |log |1}B x x =∈>,则)(C R B A ⋂的元素个数为(A )0(B )1(C )2(D )3【解析】选C . }{2228xA x -=∈Z ≤<={0,1},{2R |log |1}B x x =∈>=1{|20}2x x x ><<或, ∴ )(C R B A ⋂={0,1},其中的元素个数为2,选C 。

3、(2007福建高考)“|x |<2”是“x 2-x -6<0”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件【解析】选A .由|x|<2得-2<x<2,由 x 2-x -6<0得-2<x<3,选A.4、(湖北高考)设P 和Q 是两个集合,定义集合{}|P Q x x P x Q -=∈∉,且,如果{}2|log 1P x x =<,{}|21Q x x =-<,那么P Q -等于( )A.{}|01x x <<B.{}|01x x <≤C.{}|12x x <≤D.{}|23x x <≤【解析】选B .先解两个不等式得{}02P x x =<<,}{13Q x x =<<。

由P Q -定义,故选B. 5、(2007辽宁高考)设p q ,是两个命题:21251:log (||3)0:066p x q x x ->-+>,,则p 是q 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【解析】选A .p :344||313||0-<<-⇒<<⇒<-<x x x 或43<<x ,q :),21()31,(+∞-∞ ,结合数轴知p 是q 的充分而不必要条件,选A.6、(2007辽宁高考)设p q ,是两个命题:251:||30:066p x q x x ->-+>,,则p 是q 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【解析】选A .p :),3()3,(+∞--∞ ,q :),21()31,(+∞-∞ ,结合数轴知p 是q 的充分而不必要条件,选A.7、(2007福建高考)已知f(x)为R 上的减函数,则满足f(|x1|)<f(1)的实数x 的取值范围是 A (-1,1) B (0,1) C (-1,0)(0,1) D (-,-1)(1,+)【解析】选C .由已知得1||1>x 解得01<<-x 或0<x<1,选C. 8、(2007山东高考)当(12)x ∈,时,不等式240x mx ++<恒成立,则m 的取值范围是 . 【解析】构造函数:2()4,f x x mx =++12x ∈(,)。

相关文档
最新文档