分析动力学基础

合集下载

(完整版)动力学的两类基本问题

(完整版)动力学的两类基本问题

动力学的两类基本问题一、基础知识1、动力学有两类问题:⑴是已知物体的受力情况分析运动情况;⑵是已知运动情况分析受力情况,程序如下图所示。

2、根据受力情况确定运动情况,先对物体受力分析,求出合力,再利用__________________求出________,然后利用______________确定物体的运动情况(如位移、速度、时间等).3.根据运动情况确定受力情况,先分析物体的运动情况,根据____________求出加速度,再利用______________确定物体所受的力(求合力或其他力).其中,受力分析是基础,牛顿第二定律和运动学公式是工具,加速度是桥梁。

解题步骤(1)确定研究对象;(2)分析受力情况和运动情况,画示意图(受力和运动过程);(3)用牛顿第二定律或运动学公式求加速度;(4)用运动学公式或牛顿第二定律求所求量。

例1. 一个静止在水平面上的物体,质量是2kg ,在8N 的水平拉力作用下沿水平面向右运动,物体与水平地面间的动摩擦因数为0.25。

求物体4s 末的速度和4s 内的位移。

例2. 滑雪者以v 0=20m/s 的初速度沿直线冲上一倾角为30°的山坡,从刚上坡即开始计时,至3.8s 末,滑雪者速度变为0。

如果雪橇与人的总质量为m=80kg ,求雪橇与山坡之间的摩擦力为多少?g=10m/s 2 .运动学公式 a (桥梁) 运动情况:如v 、t 、x 等 受力情况:如F 、m 、μ m F a v = v o +atx= v o t + at 2 21v 2- v o 2 =2ax二、练习1、如图所示,木块的质量m=2 kg,与地面间的动摩擦因数μ=0.2,木块在拉力F=10 N作用下,在水平地面上从静止开始向右运动,运动5.2 m后撤去外力F.已知力F与水平方向的夹角θ=37°(sin 37°=0.6,cos 37°=0.8,g取10 m/s2).求:(1)撤去外力前,木块受到的摩擦力大小;(2)刚撤去外力时,木块运动的速度;(3)撤去外力后,木块还能滑行的距离为多少?(1)2.8N(2)5.2m/s (3)6.76m2、如图所示,一个放置在水平台面上的木块,其质量为2 kg,受到一个斜向下的、与水平方向成37°角的推力F=10 N 的作用,使木块从静止开始运动,4 s 后撤去推力,若木块与水平面间的动摩擦因数为 0.1.(取g=10 m/s2)求:(1)撤去推力时木块的速度为多大?(2)撤去推力到停止运动过程中木块的加速度为多大?(3)木块在水平面上运动的总位移为多少?3、如图5所示,在倾角θ=37°的足够长的固定的斜面上,有一质量为m=1 kg的物体,物体与斜面间动摩擦因数μ=0.2,物体受到沿平行于斜面向上的轻细绳的拉力F=9.6 N的作用,从静止开始运动,经2 s绳子突然断了,求绳断后多长时间物体速度大小达到22 m/s?(sin 37°=0.6,g取10 m/s2)4、如图所示,有一足够长的斜面,倾角α=37°,一小物块从斜面顶端A处由静止下滑,到B 处后,受一与小物块重力大小相等的水平向右的恒力作用,小物块最终停在C点(C点未画出).若AB长为2.25 m,小物块与斜面间动摩擦因数μ=0.5,sin 37°=0.6,cos 37°=0.8,g =10 m/s2.求:(1)小物块到达B点的速度多大?(2)B、C距离多大?5、如图所示,在倾角θ=30°的固定斜面的底端有一静止的滑块,滑块可视为质点,滑块的质量m=1kg,滑块与斜面间的动摩擦因数μ=36,斜面足够长.某时刻起,在滑块上作用一平行于斜面向上的恒力F=10N,恒力作用时间t1=3s后撤去.求:从力F开始作用时起至滑块返冋斜面底端所经历的总时间t及滑块返回底端时速度v的大小(g=10m/s2)6、(2013山东)如图所示,一质量m=0.4 kg的小物块,以v0=2 m/s的初速度,在与斜面成某一夹角的拉力F作用下,沿斜面向上做匀加速运动,经t=2 s的时间物块由A点运动到B点,A、B之间的距离L=10 m.已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g取10 m/s2.(1)求物块加速度的大小及到达B点时速度的大小;(2)拉力F与斜面夹角多大时,拉力F最小?拉力F的最小值是多少?7、如图所示,AB和CD为两条光滑斜槽,它们各自的两个端点均分别位于半径为R和r的两个相切的圆上,且斜槽都通过切点P.设有一重物先后沿两个斜槽,从静止出发,由A滑到B和由C滑到D,所用的时间分别为t1和t2,则t1与t2之比为()A.2∶1 B.1∶1 C.∶1 D.1∶8、如下图所示,光滑水平面上放置质量分别为m、2m的A、B两个物体,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,则拉力F的最大值为( )A.μmg B.2μmg C.3μmg D.4μmg9、物体A放在物体B上,物体B放在光滑的水平面上,已知m A=6kg,m B=2kg,A、B间动摩擦因数μ=0.2,如图所示.现用一水平向右的拉力F作用于物体A上,则下列说法中正确的是(g=10m/s2)()A.当拉力F<12N时,A相对B静止不动B.当拉力F>12N时,A一定相对B滑动C.无论拉力F多大,A相对B始终静止D.当拉力F=24N时,A对B的摩擦力等于6N10、物体A的质量m1=1kg,静止在光滑水平面上的木板B的质量为m2=0.5kg、长L=1m,某时刻A以v0=4m/s的初速度滑上木板B的上表面,为使A不致于从B上滑落,在A滑上B的同时,给B施加一个水平向右的拉力F,若A与B之间的动摩擦因数μ=0.2,试求拉力F大小应满足的条件。

有限元分析-动力学分析PPT课件

有限元分析-动力学分析PPT课件
有限元分析-动力学分析ppt课件
目录
• 引言 • 有限元分析基础 • 动力学分析基础 • 有限元分析在动力学中的应用 • 案例分析 • 结论与展望
01 引言
目的和背景
01
介绍有限元分析在动力学分析中 的应用和重要性。
02
阐述本课件的目标和内容,帮助 读者了解有限元分析在动力学分 析中的基本概念、方法和应用。
随着工程复杂性和精确度要求的提高,有限元分析在动力学分析中的 应用将更加重要和必要。
02
未来需要进一步研究有限元分析算法的改进和优化,以提高计算效率 和精度。
03
未来需要加强有限元分析与其他数值计算方法的结合,如有限差分、 有限体积等,以实现更复杂的动力学模拟和分析。
04
未来需要加强有限元分析在多物理场耦合和多尺度模拟中的应用,以 更好地解决工程实际问题。
有限元分析的优点和局限性
• 精确性:对于某些问题,可以得到相当精确的结 果。
有限元分析的优点和局限性
数值误差
由于离散化的近似性,结果存在一定的数值误 差。
计算成本
对于大规模问题,计算成本可能较高。
对模型简化的依赖
结果的准确性很大程度上依赖于模型的简化程度。
03 动力学分析基础
动力学简介
动力学是研究物体运 动过程中力与运动关 系的科学。
THANKS FOR WATCHING
感谢您的观看
ห้องสมุดไป่ตู้
求解等。
02 有限元分析基础
有限元方法概述
01
有限元方法是一种数值分析方法,通过将复杂的物理系统离散化为有 限个简单元(或称为元素)的组合,来模拟和分析系统的行为。
02
它广泛应用于工程领域,如结构分析、流体动力学、热传 导等领域。

动力学的基本原理和公式

动力学的基本原理和公式

动力学的基本原理和公式动力学是研究物体运动规律的学科,它是物理学中的一个重要分支。

在物理学和工程学中,动力学常被用来研究物体的运动及其背后的力学原理。

本文将讨论动力学的基本原理和公式,并且探讨它们的应用。

一、牛顿第一定律牛顿第一定律,也被称为惯性定律,是动力学的基础。

它表明一个物体如果处于力的作用下保持静止或匀速运动,那么该物体的质量的大小会影响这个运动的性质。

这个定律可以用公式表示为:F = ma其中,F为物体所受到的力,m为物体的质量,a为物体的加速度。

二、牛顿第二定律牛顿第二定律是动力学中最为重要的定律之一。

它表明一个力作用在一个物体上时,物体将发生加速度的变化。

其数学表达式为:F = ma根据牛顿第二定律,如果一个力作用在一个物体上,那么物体的质量越大,所产生的加速度就越小;而如果力不变,质量越小,所产生的加速度就越大。

三、牛顿第三定律牛顿第三定律表明对于任何两个物体之间的相互作用,力的大小相等,方向相反。

换句话说,如果一个物体对另一个物体施加了一个力,那么另一个物体也会产生一个大小相等、但方向相反的力。

这个定律可以用以下公式表示:F₁₂ = -F₂₁其中,F₁₂代表物体1对物体2施加的力,F₂₁代表物体2对物体1施加的力。

四、动能公式动能是物体具有的由于运动而产生的能力。

根据动力学的原理,动能可以用以下公式计算:K = 1/2mv²其中,K代表动能,m代表物体的质量,v代表物体的速度。

五、动量公式动量是物体运动的性质之一,它表示物体在运动中具有的一种量。

动量可以用以下公式计算:p = mv其中,p代表动量,m代表物体的质量,v代表物体的速度。

六、引力公式引力是动力学中另一个重要的概念,它是地球或其他天体对物体的吸引力。

引力可以用以下公式计算:F =G × (m₁m₂)/r²其中,F代表引力的强度,G代表万有引力常数,m₁和m₂代表两个物体的质量,r代表两个物体之间的距离。

热分析动力学基础知识

热分析动力学基础知识
u u 2 3 2 E / RT
(26)
式中:
u 2 1 2 P (u ) e e 1 u u u 并设 f ( ) (1 ) ,则有 d A RT 2 RT 1 e (1 ) β E E
d (1 ) dt
n
( E ) dT (1) Ae RT dt d E dT d Ae n(1 ) dt RT dt dt dT E d dt An ( 1 ) e dt RT A(1 ) e
热分析动力学
一、 基本方程
对于常见的固相反应来说,其反应方程可以表示为
A ( s ) B( s ) C( g )
其反应速度可以用两种不同形式的方程表示: 微分形式 和 积分形式
(1)
d k f ( ) dt
(2)
G ( ) k t
(3)
式中:α――t 时物质 A 已反应的分数; t――时间; k――反应速率常数; f(α)—反应机理函数的微分形式; G(α)――反应机理函数的积分形式。 由于 f(α)和 G(α)分别为机理函数的微分形式和积分形式,它们之间的 关系为:
(10)
由式(11)可以看出,方程两边成线性关系。 通过试探不同的反应机理函数、不同温度 T 时的分解百分数,进行线性回 归分析,就可以试解出相应的反应活化能 E、指前因子 A 和机理函数 f(α).
2.2
Kissinger 法
Kissinger 在动力学方程时,假设反应机理函数为 的动力学方程表示为:
Y[E, f( )] ( B C D )e A
式中:
2 EU
2 RT E 0 RT 1

滚动轴承故障机理的动力学分析基础阅读札记

滚动轴承故障机理的动力学分析基础阅读札记

《滚动轴承故障机理的动力学分析基础》阅读札记一、内容描述本书《滚动轴承故障机理的动力学分析基础》围绕滚动轴承的故障机理进行了深入而详尽的阐述。

在阅读过程中,我对于书中内容进行了详细的札记记录,对理解轴承故障机理的动力学分析过程起到了很大的帮助。

本书的主要内容可以概括为以下几个方面:滚动轴承的基本结构和工作原理:对滚动轴承的基本构造,如内圈、外圈、滚动体及保持架等进行了介绍,并对其工作原理进行了简要说明。

这是理解后续故障机理分析的基础。

滚动轴承的力学特性分析:对滚动轴承的力学特性进行了深入的分析,包括其动力学模型、载荷分布、应力分布等,为理解滚动轴承的故障产生提供了理论基础。

滚动轴承的故障类型及原因:详细介绍了滚动轴承可能出现的各种故障类型,如磨损、疲劳、断裂等,并对这些故障产生的原因进行了深入剖析。

这些内容为后续的动力学分析提供了重要的依据。

故障机理的动力学分析:重点介绍了滚动轴承故障机理的动力学分析方法,包括振动分析、温度场分析、油膜动力学分析等,这些分析方法为滚动轴承的故障诊断提供了重要的理论依据。

在阅读过程中,我对每个部分的内容都进行了详细的札记记录,包括对一些重要概念的理解、对一些复杂问题的思考等。

这些内容不仅帮助我深入理解了滚动轴承的故障机理及其动力学分析过程,也为我后续的研究工作提供了重要的参考。

《滚动轴承故障机理的动力学分析基础》是一本对滚动轴承故障研究非常有价值的书籍。

二、滚动轴承基本概念及结构滚动轴承作为一种重要的机械基础元件,广泛应用于各种机械设备中,其主要功能在于支撑旋转部件并减少其摩擦。

本节主要介绍了滚动轴承的基本概念及其结构。

滚动轴承的核心组成部分是内外滚道及滚动的球体或圆柱体,这些组件之间通过接触表面进行相互作用,形成一个稳定的承载结构。

滚动轴承的主要作用是支撑旋转部件,并使其运转平稳,同时降低摩擦和磨损。

其工作原理基于滚动摩擦原理,相较于滑动摩擦,滚动摩擦具有更低的摩擦系数,从而减少了能量的损失和磨损的产生。

carsim的动力学模型基础方程

carsim的动力学模型基础方程

汽车动力学模型基础方程在汽车工程中,动力学模型是一个重要的概念,它描述了汽车在运动过程中的力学特性和行为。

其中,汽车动力学模型的基础方程起着至关重要的作用,它们是描述汽车动力学特性的数学表达式,是汽车工程中的核心理论基础。

一、运动方程汽车在运动中受到多种力的作用,这些力包括牵引力、阻力、重力等。

通过牛顿第二定律,可以得到描述汽车运动的基本方程:F = ma其中,F是受到的合外力,m是汽车的质量,a是汽车的加速度。

根据牵引力、阻力和重力的关系,可以得到更加细致的运动方程:F_traction - F_drag - F_roll - F_grade = ma其中,F_traction是牵引力,F_drag是阻力,F_roll是滚动阻力,F_grade是上坡或下坡时产生的力。

这些力可以通过具体的公式计算得到,从而得到汽车的加速度。

二、转向方程在汽车运动中,转向是一个重要的问题。

汽车的转向能力与转向系的设计和轮胎的特性有关。

描述汽车转向行为的基础方程可以通过转向角速度、侧向力和横摆刚度等参数建立,具体方程如下:Mz = Iz * ωz + Fy * a其中,Mz是横摆力矩,Iz是车辆绕垂直轴的惯性矩,ωz是车辆的横摆角速度,Fy是轮胎的侧向力,a是车辆的横向加速度。

这个方程描述了汽车在转向过程中受到的各种力的平衡关系。

三、刹车方程刹车是汽车行驶中不可或缺的部分,汽车刹车性能与刹车系统、轮胎和路面特性等有关。

汽车刹车性能的基础方程可以描述如下:Fbrake = μ * Fz其中,Fbrake是刹车力,μ是刹车系数,Fz是轮胎受力。

刹车系数与刹车系统和轮胎的摩擦特性有关,它是刹车性能的一个重要参数。

总结通过以上的分析可以看出,汽车动力学模型的基础方程是汽车工程中的核心内容,它涉及到多个力学和运动学的概念,并且需要深入的数学和物理知识。

汽车动力学模型的基础方程不仅对汽车设计和优化具有重要意义,对于理解汽车行驶过程中的各种力学特性也有着重要意义。

动力学与静力学的比较分析

动力学与静力学的比较分析
机械结构
轨道交通系 统
优化列车行驶速 度,增强运输效

飞行器设计
预测飞行器飞行 轨迹,提高飞行
效率
静力学在工程中的应用
建筑物结构 设计
确保建筑物稳定 性和安全性
机械设计
优化机械结构设 计,提高工作效

桥梁支撑结 构分析
分析桥梁结构应 力,延长使用寿

工程实例分享
通过分享具体工程实 例,展示动力学与静 力学在实际工程项目 中的应用。例如,高 楼建筑结构设计中的 静力学分析可以确保 大楼稳定性,而动力 学分析则可以优化建 筑物的结构设计,实 现更高效的使用。运 动器械设计中的动力 学分析可以提高器械 的运动效率,静力学
动力学与静力学的应用
01 工程
研究机械运动、飞行器设计
02 物理
研究物体受力情况
03 航空航天
设计飞行器结构
动力学与静力学的学习意义
解决实际工程问题
培养工程师能力
通过学习动力学与静力学, 可以更好地理解物体在不 同状态下的受力情况,有 助于解决实际工程问题。
掌握动力学与静力学的知 识,有利于培养工程师的 分析问题、解决问题的能 力。
● 05
第5章 动力学与静力学在工 程中的应用
动力学在工程中的应用
动力学在工程中扮演着至关重要的角色,它涉及 机械运动分析、飞行器设计、轨道交通系统等广 泛领域。通过动力学分析,工程师可以预测物体 的运动轨迹、速度变化等情况,为工程设计提供 重要参考。
动力学在工程中的应用
机械运动分 析
通过分析物体的 运动规律,优化
● 06
第六章 总结与展望
动力学与静力学 的比较分析
在工程学中,动力学 和静力学是两个重要 的力学领域。动力学 研究物体的运动规律 和相互作用力,而静 力学则研究物体的平 衡状态和受力情况。 比较分析二者的特点 和作用有助于更好地 理解力学领域的知识。

动力学基本方程-PPT

动力学基本方程-PPT

解:(1)研究M (2)受力分析如图:
拉力F,重力mg (3)运动分析:M在平面上
作圆周运动,a , an , v
速度沿M点切线方向
大家好
ቤተ መጻሕፍቲ ባይዱ
40
(4)建立运动微分方程并求解 因M点的轨迹已知为圆周,故可采用自然
坐标形式的运动微分方程
m
dv dt
F
0
m
v2 r
Fn
FT
sin 600
0
Fb
mg
FT
动力学基本方程
一、绪论:
1.研究对象
动力学是研究物体机械运动状态的变化与 作用于物体上的力之间的关系的一门学科,将 物体的运动和力加以统一考虑,研究机械运动 所具有的普遍规律。
大家好
1
2.动力学与静力学,运动学之间的关系
静力学——只研究物体的力系的合成与平衡问题, 不考虑其运动,即不考虑力系的不平 衡状态。
大家好
23
特殊形式:质点沿平面曲线运动:
z 0, z o, z 0 FZ O
质点沿直线运动:(力系在y,z方向上均平衡)
y 0, z 0 Fy 0, Fz 0
大家好
24
(4)自然轴(坐标)形式的运动DE 若已知质点运动的轨迹,则可将矢量形式
的运动微分方程两端的投影到自然坐标轴。
利用以上三种形式的直线运动微分方程, 原则上就能解决有关质点运动学的所以问题, 至于在具体应用时宜选取什么形式的运动微分 方程,则需要根据具体的问题而定。
大家好
27
质点动力学的问题分为两类:
第一类问题:(微分问题) 已知质点的运动,即已知质点的运动方程,
或已知质点在某瞬时的速度或加速度,求作用于 质点的未知力。

动力学基础知识(惯性力、阻尼等)

动力学基础知识(惯性力、阻尼等)

惯性力惯性系:相对于地球静止或作匀速直线运动的物体非惯性系:相对地面惯性系做加速运动的物体平动加速系:相对于惯性系作变速直线运动,但是本身没有转动的物体.例如:在平直轨道上加速运动的火车转动参考系:相对惯性系转动的物体.例如:转盘在水平面匀速转动惯性力:指当物体加速时,惯性会使物体有保持原有运动状态的倾向,若是以该物体为坐标原点,看起来就彷佛有一股方向相反的力作用在该物体上,因此称之为惯性力。

因为惯性力实际上并不存在,实际存在的只有原本将该物体加速的力,因此惯性力又称为假想力。

当系统存在一加速度a时,则惯性力的大小遵从公式:F=-ma例如,当公车煞车时,车上的人因为惯性而向前倾,在车上的人看来彷佛有一股力量将他们向前推,即为惯性力。

然而只有作用在公车的煞车以及轮胎上的摩擦力使公车减速,实际上并不存在将乘客往前推的力,这只是惯性在不同坐标系统下的现象注意:惯性力和离心力一样,是没有施力物体的,所以从力的要素来看,是不存在这样的力的。

那么为什么要有这样一个概念呢?简单一点讲是为了满足牛顿运动定律在非惯性系中的数学表达形式不变而引入的。

所谓非惯性系,简单一点将就是做变速运动的参考系。

所以说到底,所谓惯性力和离心力就是在一个加速运动的参考系中观察到的物体惯性的表达形式,是为了计算方便而人为引入的一个概念。

ANSYS中的动力学分析1动力学分析是用来确定惯性(质量效应)和阻尼起重要作用时的结构或构件动力学特性的技术。

2“动力学特性”可能指的是下面的一种或几种类型-振动特性:结构振动方式和振动频率-随时间变化载荷的效应(例如:对结构位移和应力的效应)-周期(振动)或随机载荷的效应3动力学分析类型-模态分析:确定结构的振动特性-瞬态动力学分析:计算结构对时间变化载荷的响应-谐响应分析:确定结构对稳态简谐载荷的响应-谱分析:确定结构对地震载荷的响应-随机振动分析:确定结构对随机震动的影响动力学基本概念和术语包括:通用运动方程;求解方法;建模要考虑的因素;质量矩阵;阻尼1 通用运动方程其中:[M]=结构质量矩阵[C]=结构阻尼矩阵[K]=结构刚度矩阵{F}=随时间变化的载荷函数{u}=节点位移矢量{u}=节点速度矢量{u}=节点加速度矢量-模态分析:设定F(t)=0,而矩阵[C]通常被忽略-谐响应分析:假设F(t)和u(t)都是谐函数,如X*sin(ωt),其中X是振幅,ω是单位为弧度/秒的频率-瞬态动力学分析:方程保持上述的形式2 求解方法-模态叠加法:确定结构的固有频率和模态,乘以正则化坐标,然后加起来用以计算位移解。

动力学基础知识

动力学基础知识

动力学基础知识动力学是研究物体运动及其产生的原因和规律的学科。

它是力学的一个重要分支,主要研究物体在力的作用下的运动规律。

了解动力学的基础知识对于理解物体的运动行为和解决实际问题具有重要意义。

本文将介绍动力学的基本概念、Newton定律以及重要的运动学公式。

一、动力学基本概念1. 力与质量在动力学中,力是导致物体运动变化的原因。

力的大小和方向决定了物体的运动状态。

常见的力包括重力、摩擦力、弹力等。

质量是物体所固有的属性,代表物体对于外力改变运动状态的抵抗能力。

质量越大,物体对力的抵抗能力越大。

2. 加速度与力的关系根据Newton第二定律,力的大小与物体的质量和加速度有关。

力的大小等于质量乘以加速度,即F=ma,其中F表示力,m表示质量,a表示加速度。

根据这个定律,当力增大时,物体的加速度也会增大,反之亦然。

3. 动量守恒定律动量是描述物体运动状态的物理量,是质量和速度的乘积。

动量守恒定律指出,在没有外力作用下,一个系统的总动量保持不变。

这意味着在碰撞等过程中,物体的总动量在碰撞前后保持相等。

二、Newton定律Newton定律是描述物体运动规律的基本原理,共有三条:1. Newton第一定律(惯性定律):一个物体如果没有外力作用,将保持静止或匀速直线运动的状态。

这意味着物体的速度将保持不变,或者保持匀速直线运动。

2. Newton第二定律(动力学定律):物体受到的合力等于物体的质量乘以加速度,即F=ma。

这个定律揭示了力对物体运动状态的影响,描述了力与物体运动和加速度的关系。

3. Newton第三定律(作用-反作用定律):所有相互作用的物体之间都会产生相等大小、方向相反的作用力。

这意味着对于任何一个物体施加的力,都会受到同样大小、方向相反的反作用力。

三、运动学公式运动学公式描述了物体运动的规律,其中包括位移、速度和加速度的关系。

1. 位移和速度的关系位移是物体从初始位置到最终位置的位移变化量。

工程力学课件ppt

工程力学课件ppt
机器人的动力学分析
机器人需要精确控制其运动状态,通过动力学分析可以优化其运动性能和操作精度。
05
工程实际应用
工程实际中力学的重要性
确保建筑安全
工程力学对于建筑物的设计、施工和结构安全至关重要,它确保 建筑物在各种环境条件下保持稳定和安全。
优化结构成本
通过合理应用工程力学,可以优化结构设计,降低材料成本和施 工成本,提高建筑的经济效益。
04
动力学分析
动力学分析的基本原理
动静力学平衡原理
物体在力的作用下,其运动状态会发生改变,但整体 上仍保持平衡状态。
牛顿运动定律
物体在力的作用下,其加速度与作用力成正比,与物 体质量成反比。
动能定理和势能定理
动能和势能是描述物体运动状态的两种基本方式,动 能定理和势能定理分别描述了它们的变化规律。
机械设计
在机械设计中,工程力学被用于分析机器部件的受力情况、疲劳寿命 和稳定性,以确保机器的安全运行。
工程实际中力学的未来发展趋势
新材料与新工艺
随着新材料和新工艺的发展 ,工程力学将更加注重研究 材料和工艺的本质性能和最 佳组合方式,以实现更高效
、更经济的结构设计。
数值模拟与智能化
随着计算机技术和数值模拟 技术的发展,工程力学将更 加注重通过数值模拟来预测 结构和系统的性能,实现智
动量方程
力等于动量变化率。
能量方程
力等于能量变化率。
03
材料力学
材料力学的基本概念
要点一
材料力学的发展历史
材料力学作为工程力学的一个分支, 有着长久的发展历史,最早可以追溯 到16世纪,而到了19世纪,材料力学 已经发展成为一门独立的学科。
要点二
材料力学的定义

结构动力学(克拉夫) 第二章 分析动力学基础

结构动力学(克拉夫) 第二章 分析动力学基础

第二章 分析动力学基础2.1 基本概念 2.1.1 约束• 定义:对非自由系各质点的位置和速度所加的几何或 运动学的限制。

N 个质点的约束方程: → → 为mi 的位置向量及速度 **弹簧支座不是约束。

• 约束的分类:*稳定(不含t → 左图) 与非稳定(含t → 右图)* 完整(不含 → )几何约束(有限约束) 与非完整(含 → )运动约束(微分约束) • 约束条件:zc=a (水平面绝对光滑)一个完整约束 *水平面粗糙,仅滚动无滑动,A 点速度为零 。

两个完整约束*若为刚性圆球,三个约束(A点两个水平方向速度为零,可证明约束微分方程不能积分成有限形式)非完整约束单向(约束方程为不等式):柔索 与双向(约束方程为等式):刚杆 工程力学中研究对象:稳定的、完整的、双 向约束• 质点系约束方程:→ (N :质点数;M 约束数) 2.1.2 自由度与广义坐标 广义坐标定义:能决定体系几何位置的、彼此独立的量广义坐标个数→空间质点系:n=3N-k;平面质点系: n=2N-k0),,,,,,(11=⋅⋅⋅⋅⋅⋅N N r r r r t f 0),,(=i i r r t f i i r r ,0),(=i i rr f 0),,(=i i rr t f Ai r0),(=i r t f i r 0),,(=i i rr t f ϕϕa x a x v C C A =⇒=−=)(0积分 lr ≤l r =0),,(1=⋅⋅⋅N k r r f )~1;~1(0)(M k N i r f i k ===x双连刚杆双质点系的约束方程:广义坐标数:广义坐标:独立参数→角度→ 振型等(见下页) 梁的挠度曲线用三角级数表示: 广义坐标→*自由度定义:在固定时刻,约束许可条件下能自由变更的 独立的坐标数目(对完整约束=广义坐标数)• 自由度数→空间质点系:n=3N-k 平面质点系:n=2N-k (N :质点数;k: 约束数) 非完整约束:(广义坐标数>系统自由度数)2.1.3 功的定义元功:A →B 过程中力作的功:对摩擦传动轮的例,由于力未移动,位移=? • 功的新定义:(传动齿轮)• 功率:2.1.4 有势力和体系的势能有势力:(1)大小和方向只决定于体系质点的位置(2)体系从位置A 移动到位置B ,力作功只决定于位置而与路径无关取体系的任意位置为“零位置O ”,从位置A 移动到零位置O 各力作的功为体系在位置A 时的势能UA(位能)。

动力学的基本原理和应用

动力学的基本原理和应用

动力学的基本原理和应用动力学是研究物体的运动规律的学科,主要包括牛顿力学和拉格朗日力学。

它是自然界万物运动的基本理论,也是工程科学和生物科学等领域中的重要基础。

本文将介绍动力学的基本原理以及它在实际应用中的重要性。

一、动力学的基本原理1. 牛顿力学的三大定律牛顿力学是经典力学的基石,它由三大定律组成。

第一定律是惯性定律,它表明物体在没有外力作用下会保持静止或匀速直线运动。

第二定律是力的定义定律,它描述了物体的运动与作用于物体上的力之间的关系。

第三定律是作用-反作用定律,它说明力是成对存在的,两个力相互作用,并且大小相等、方向相反。

2. 拉格朗日力学拉格朗日力学是一种更为普适的力学理论,它从能量角度出发,引入了广义坐标和拉格朗日函数的概念。

通过拉格朗日方程,可以得到系统在任意坐标下的运动方程,并且避免了之前运用牛顿定律所需要的繁琐计算。

二、动力学的应用1. 工程应用动力学在工程领域有着广泛的应用。

例如,在建筑结构设计中,通过动力学分析可以确定建筑物在地震等外力作用下的响应,从而保证结构的安全性。

此外,动力学还可应用于机械设计、工业自动化等领域,为工程实践提供理论支持。

2. 车辆运动学动力学对于汽车、火车等交通工具的运动学研究具有重要意义。

通过动力学分析,可以优化车辆的悬挂系统、减少能源消耗和改善行驶稳定性。

此外,动力学还可以帮助解决交通流量控制、路径规划等实际问题,提高交通运输效率。

3. 生物力学动力学在生物学研究中扮演着重要角色。

生物力学研究物体在力的作用下的运动规律,从而揭示了生物体内部结构和运动的关系,对于理解人体运动、仿生工程等具有深远的影响。

动力学在运动生理学、人体运动分析等方面的应用不断拓展。

4. 自然科学研究动力学在自然科学领域中也有广泛应用。

例如,在天体力学中,动力学研究星体的运动规律、行星轨道等,有助于揭示宇宙的演化。

此外,动力学还在化学、物理等领域中有重要贡献,推动了科学研究的发展。

分析动力学基础及运动方程的建立

分析动力学基础及运动方程的建立

刚度法 取每一运动质量为隔离体, 取每一运动质量为隔离体,通过分析所受的全部 外力,建立质量各自由度的瞬时力平衡方程, 外力,建立质量各自由度的瞬时力平衡方程,得 运动方程。 到体系的运动方程 到体系的运动方程。
柔度法 以结构整体为研究对象, 以结构整体为研究对象,通过分析所受的全部外 利用结构静力分析中计算位移的方法, 力,利用结构静力分析中计算位移的方法,根据 位移协调条件建立体系的运动方程。 运动方程 位移协调条件建立体系的运动方程。
& FD = − cy
c 为阻尼系数,& 为质量的速度。 为阻尼系数, 为质量的速度。 y
数学模型
承受动力荷载的结构体系的主要物理特性: 承受动力荷载的结构体系的主要物理特性: 质量、弹性特性、阻尼特性、 质量、弹性特性、阻尼特性、外荷载 在最简单的单自由度体系模型中, 在最简单的单自由度体系模型中,所有特性都假定集结于 一个简单的基本动力体系模型 基本动力体系模型内 一个简单的基本动力体系模型内,每一个特性分别由一个 具有相应物理特性的元件表示: 具有相应物理特性的元件表示:
结构的自由振动与受迫振动 结构的自由振动与受迫振动
y
y
t
t
定义
结构受外部干扰后发生振动,而在干扰消失后继续振动, 结构受外部干扰后发生振动,而在干扰消失后继续振动, 这种振动称为结构的自由振动 自由振动。 这种振动称为结构的自由振动。 如果结构在振动过程中不断地受到外部干扰力作用, 如果结构在振动过程中不断地受到外部干扰力作用,这种 振动称为结构的强迫振动 又称受迫振动 强迫振动, 振动称为结构的强迫振动,又称受迫振动 。
惯性力: 根据d’Alembert原理,等于质量与加速度的乘积: 惯性力: 根据 原理,等于质量与加速度的乘积: 原理

动力学基础

动力学基础

37
动力学
第十二章 动量矩定理
动量矩定理的应用 应用动量矩定理,一般可以处理下列一些问题:
(对单轴传动系统尤为方便)
1.已知质点系的转动运动,求系统所受的外力或外力矩。 2.已知质点系所受的外力矩是常力矩或时间的函数,求刚体 的角加速度或角速度的改变。 3.已知质点系所受到的外力主矩或外力矩在某轴上的投影代 数和等于零,应用动量矩守恒定理求角速度或角位移。
38
例2 高炉运送矿石的卷扬机如图。已知鼓轮的半径为R,质量 为m1,绕O轴转动。小车和矿石的总质量为m2。作用在鼓轮上
的力偶矩为M,鼓轮对转轴的转动惯量为J,轨道倾角为。
设绳质量和各处摩擦不计,求小车的加速度a。
解:以系统为研究对象,受力如图。
以顺时针为正,则
LO J m2vR
Nv
MO (F (e) ) M m2 g sin R
7
第二类:已知作用在质点上的力,求质点的运动 (积分问题)
解题步骤如下: ①正确选择研究对象。 ②正确进行受力分析,画出受力图。判断力是什么性质的力 (应放在一般位置上进行分析,对变力建立力的表达式)。 ③正确进行运动分析。(除应分析质点的运动特征外,还要确 定出其运动初始条件)。 ④选择并列出适当的质点运动微分方程。 ⑤求解未知量。根据力的函数形式决定如何积分,并利用运动 的初始条件,求出质点的运动。
Fa
Fb
FR

FR Q(vb va ) (P Fa Fb )
静反力 FR (P Fa Fb ) ,动反力 FR Q(vb va )
计算 FR 时,常采用投影形式
FRx Q(vbx vax )
FRy Q(vby vay )
与FR 相反的力就是管壁上受到的流体作用的动压力. 26

动力学的基础与原理研究

动力学的基础与原理研究

动力学的基础与原理研究动力学是物理学中重要的一个分支,涉及到运动的物理特性和力学规律。

其研究对象包括质点、刚体等物体在运动过程中的性质和规律。

动力学不仅能够用于解释宏观世界中的运动和变化,也可以应用于微观领域的分子动力学模拟等研究。

本文将从动力学的基础和原理两个方面入手,深入探讨动力学研究的意义以及其应用领域。

一、动力学的基础动力学的基础主要建立在我们对物体运动的观察和实验基础之上。

在运动过程中,物体的运动可以通过其速度、加速度等相关参数进行描述。

同时,我们通过实验也可以观察运动物体之间的相互作用和影响,如牛顿第三定律所描述的相互作用力的平衡等。

动力学在这些基础上,通过分析和理论推导,建立了一系列数学模型和公式,可以用于预测和计算物体的运动轨迹和运动参数。

动力学的基础还包括能量守恒和动量守恒定律。

能量守恒定律表明,在物体间的相互作用和运动过程中,能量总量保持不变。

这意味着能量可以从一种形态转化为另一种形态,但总量不会发生改变。

动量守恒定律则表明,物体间的相互作用和运动过程中,动量总量也保持不变。

这两个定律为我们理解物体运动的过程和规律提供了重要的理论依据。

二、动力学的原理动力学的基础为我们提供了理论框架,而其原理则深入探讨了物体间的相互作用和影响。

对于单个物体的运动,我们可以应用牛顿定律进行描述。

这包括质点在均匀直线运动和匀变速直线运动中的情况,以及自由落体运动等。

对于多个物体之间的相互作用,我们需要应用牛顿定律中的相互作用力和相互作用加速度进行分析和计算。

动力学的原理还包括牛顿引力定律和万有引力定律。

前者是指两个物体之间存在的万有引力,其大小与两个物体间的距离和质量有关。

后者则是指物体间引力的普遍性规律,涉及到所有物体间的万有引力相互作用。

这两个定律为我们理解宏观天体和星系间的相互作用和运动,提供了重要的理论依据。

三、动力学研究的意义和应用动力学的研究对于我们理解物体运动的过程和规律具有重要的意义。

无机及分析化学(第三章化学动力学基础)

无机及分析化学(第三章化学动力学基础)

反应机理
讨论的问题:一个反应是如何进行的? 1)基元反应与复杂反应(非基元反应) ▲ 反应物分子直接碰撞而发生的化学反应 称为基元反应,它是一步完成的反应。 • 由一个基元反应构成的化学反应称为简单 反应。 • ▲ 由两个或两个以上的基元反应构成的 化学反应称为非基元反应或复合反应。 • ▲ 由一个基元反应构成的化学反应并不 多,因此,一个化学反应方程式,除非特别 注明,都属于化学计量方程式,而不代表基 元反应。 • 例如:
基元反应的化学反应速率方程:
式中:k为反应速度常数 CA、CB为物质A、B的浓度 a为A物质的反应级数 b为B物质的反应级数 a + b则为整个反应的级数。 当: a = 1时,对A物质是1级反应 b = 1时,对为B物质是1级反应 a+b = n时,则整个反应为n级反应。
1)速率常数k
▲上式中的比例系数k称为速率常数。 ▲ k的物理意义:单位浓度时的反应速率。 ▲速率常数 k 取决于反应的本性,其它条 件相同时快反应通常有较大的速率常数; ▲速率常数k与浓度无关; ▲ k 是温度的函数,温度升高, k 值增大。
• 解:求Ea,已知k1 、k2 T1和T2,利用下式:
即可求得Ea;同理,利用给定的条件和求得的 Ea,则可求得速度常数k。
4 反应速率理论和反应机理简介
定量地描述温度、浓度对反应速率影响的速率方程式和 Arrehenius方程都是实验事实的总结,反应为什么能进行,活化 能的本质和物理意义是什么,等等问题靠实验事实不能解决,需 要我们讨论反应速率理论。
可见,总反应(或一般的化学计量反应是由若 干个基元反应组成的。
2)反应的控速步骤(Rate - contralling step)
任何一个复杂反应都是由多个基元反应组成的,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a1
G2 g
O
r
G2
r
G2 g
a1
G1
G1 g
a1

G1 g
a1
δ
x
G2 g
r cos
δ
x
G2 g
a1
δ
x
0

G1 G2 a1 G2r cos
(a)
又由 δWF 0, δ 0,δ x 0 , 有
2021年4月14日
9
1 2
G2 g
r2
δ
G2 g
r
r
δ
G2 g
a1
cos
r
δ
G2
sin
r
不计摩擦与滑轮质量,求铰盘的角加速度。
解:本系统为完整约束,主动力非有
势,采用基本形式的拉氏方程求解。
q1
①判断系统的自由度,
取广义坐标。
m1
本题中, k 2,取 q1, q2 为广义坐标,
2021年4月14日
M
q2
R
m2
19
则有 R q1 2q2 , Rδ δq1 2δq2
R q1 2q2, R q1 2q2
m2 g 2
vC r1 r2 , aC r1 r2
令 δ1 0,δ2 0 ,由 δWF(2 ) 0
有 (m2 g m2aC )rδ2 JC2δ2 0
2021年4月14日
(a)
(b)
12
将式(a)及 JC m2r2 代入(b)式,
JO1
得 r(1 22 ) g (c) 再令 δ1 0,δ2 0
FQ j
F* Qj
0
j 1, 2,...k
F* Qj
不便计算,拉格朗日方程利用两个经典
微分关系。将
F* Qj
能量化
从而导出拉氏方程。
1)
ri ri “同时消点”
qj qj
2)
d dt
ri qj
ri qj
“交换关系”(求导)
2021年4月14日
15
一、拉氏方程的一般形式
d T T
dt
q j
q j
2021年4月14日
2
§9-1 动力学普遍方程
一. 方程的一般形式
1.矢量形式:
F i F Ii ri 0
动力学普遍方程或 达朗贝尔-拉格朗日原理
理想约束,不论约束完整,定常与否均适用
2.直角坐标形式:
[(Fix mi xi ) δxi (Fiy mi yi ) δyi (Fiz mi zi ) δzi ] 0
FQj
j 1, 2,...k
第二类拉氏方程,以t为自变量,q j (t)为未知函数的
二阶常微分方程组,2k个积分常量,须2k个初始条

2021年4月14日
16
例1 均质杆OA质量为m1、可绕轴O转动,
大齿轮半径为R,小齿轮质量为m2,半
径为r ,其上作用一常力偶M,设机构处 于水平面。 求:该杆的运动方程。
A
M
r
O
R
答:
(2m1
3M 9m2 )(R
r)2
t2
0t
0
2021年4月14日
17
例2 已知: m1 , m2 , R, f , F 。 求: 板的加速度a。
CR
答:
O
F
x
x
a
F
f (m1 m2 ) g
m1
m2 3
2021年4月14日
18
例3. 如图所示,铰盘半径为R,转动惯量为J, 其上作用力偶矩为M的力偶,重物质量分别为 m1, m2
δ
0

3 2
G2 g
r
G2 g
a1
cos
gG2
sin
0
(b)
式(a)代入(b),可得
注意:
a1
G2g sin2 3G1 G2 2G2 sin2

δx
0
时,牵连惯性力
G2 g
a1
并不为零;
令 δ 0时,相对惯性力 G2 r 并不为零,
g 两者相互独立。
2021年4月14日
10
例4 均质圆柱1与薄壁圆筒2用绳相连,并多圈缠绕
2021年4月14日
4
例1 图示为离心式调速器
已知:m1, m2 , l , , 求:(θ) 的关系。
答:
2 (m1 m2 )g m1lcos
l θθ l
A B
m1g l
C
l m1g
m2g
2021年4月14日
5
例2 已知 P1, P2,, r, J 求a?
答:
a
2P1 P2 r2 sin 2P1 P2 r2 2Jg
g
2021年4月14日
a p1
p2 p1
6
2021年4月14日
7
例3 已知重量 G1,G2 ,及 ,r, 轮纯滚,水平面光滑, 求三棱柱加速度。
O
G2 r
G1
2021年4月14日
8
解:加惯性力,受力如图。
选 x,广义坐标。
δx
由 δWFx = 0,δ 0,δ x 0
δ
1 2
G2 g
r 2
圆筒(绳与滑轮A的重量不计)。已知 m1,m2 ,r,
试求运动过程中轮心C与轮心O的加速度大小。
1 m1 r
O
图(a)
2021年4月14日
A m2
rC 2
11
解:自由度k=2
取两轮转角 1,2 为 广义坐标,其受力与运
JO1
1m1a0
O 1
m1 g
图(b)
动分析,如图(b)所示,
A
m2aC JC2 C 2
1m1a0
O 1
m1 g

δWF(1) 0 有
图(b)
m1a0rδ1 J01δ1 (m2aC m2 g)rδ1 0

(3 2
m1r
m2r)1
m2r2
m2 g
联立 (c)和(d)式,可得
2021年4月14日
a0
r1
m2 g 3m1 m2
,
aC
(2m2 3m1)g 2(3m1 m2 )
动力学普遍方程 拉格朗日方程 拉格朗日方程的首次积分
2021年4月14日
1
运用矢量力学分析非自由质点系,必然会 遇到约束力多,方程数目多,求解烦琐,能否 建立不含未知约束力的动力学方程?
将达朗贝尔原理与虚位移原理相结合,建 立动力虚功方程,广义坐标化,能量化,化为 第二类拉氏方程,实现用最少数目方程,描述 动力系统。
②计算系统的T与FQj
T
1 2
m1q12
1 2
m2q22
1 2
J ( q1
2q2 R
)2
q1
T q1 T q2
FQ1
F 2021年4月14日Q2
m1q1
J R2
(q1
2q2 ),
T q1
0
2J m2q2 R2
i
2021年4月14日
3
3.广义坐标形式
设完整约束系统有K个自由度,可取 q1,q2 ,q3...qk ,广义坐标.
k
(FQj
*
FQj
)
q
j
0
j 1
注意: 包含了惯性力虚功!
广义主动力 广义惯性力
n
r FQj
i 1
Fi
q
i j
*
r FQj
n
i 1
miai
q
i j
*
FQj FQj 0
j 1,2,k
A m2aC
JC2 C 2
m2 g 2
(d)
13
思考 1.本题中如何求绳的张力及圆柱纯滚的条件?
2.用动力学普遍定理如何求解?
3.计入滑轮A质量,结果有何变化?
JO1
1m1a0
O 1
m1 g
图(b)
A
m2aC JC2 C 2
m2 g 2
2021年4月14日
14
§9-2 拉格朗日方程
对于完整的约束系统,动力学普遍方程的广义坐标形式为
相关文档
最新文档