六奥数经典题难题集粹华杯赛难度—附详细解答

合集下载

小学六年级经典奥数题

小学六年级经典奥数题

小学六年级经典奥数题(一)

1、这2005个自然数依次写下来自然数依次写下来得到一个多位数123456789.....2005,这个多位

数除以9余数是多少?

2、A和B是小于100的两个非零的不同自然数。求A+B分之A-B的最小值。

3、已知A.B.C都是非0自然数,A/2 + B/4 + C/16的近似值市6.4,那么它的准确值是多少?

4、一个三位数的各位数字之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数

字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数。

5、一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数。

6、把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的

平方,这个和是多少?

7、一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数。

8、有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百

位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数。

9、有一个两位数,如果用它去除以个位数字,商为9余数为6,如果用这个两位数除以个位数字与十

位数字之和,则商为5余数为3,求这个两位数。

10、如果现在是上午的10点21分,那么再经过28799┈99(共20个9)分钟之后是几点几分?

小学六年级经典奥数题(二)

1.今天是星期六,再过1000天是星期几?

2.已知两个自然数a和b(a>b),已知a和b除以13的余数分别是5和9,求a+b,a-b,a×b,a的平方-b平方各自除以13的余数。

(完整版)六年级华杯赛奥数竞赛模拟题(30套)

(完整版)六年级华杯赛奥数竞赛模拟题(30套)

六年级华杯赛奥数竞赛模拟题(30套)

小学奥数模拟试卷.1姓名得分一、填空题:1.用简便方法计算:2.某工厂,三月比二月产量高20%,二月比一月产量高20%,则三月比一月高______%.3.算式:-的结果是______.4.两个桶里共盛水40斤,若把第一桶里的水倒7斤到第2个桶里,两个桶里的水就一样多,则第一桶有______斤水.5.20名乒乓球运动员参加单打比赛,两两配对进行淘汰赛,要决出冠军,一共要比赛______场.6.一个六位数的各位数字都不相同,最左一位数字是3,且它能被11整除,这样的六位数中最小的是______.7.一个周长为20厘米的大圆内有许多小圆,这些小圆的圆心都在大圆的一个直径上.则小圆的周长之和为______厘

米.8.某次数学竞赛,试题共有10道,每做对一题得8分,每做错一题倒扣5分.小宇最终得41分,他做对______题.9.在下面16个6之间添上+、-、×、÷、,使下面的算式成立: 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 = 1997 二、解答题:1.如图中,三角形的个数有多少?2.某次大会安排代表住宿,若每间2人,则有12人没有床位;若每间3人,则多出2个空床位.问宿舍共有几间?代表共有几人?3.现有10吨货物,分装在若干箱内,每箱不超过一吨,现调来若干货车,每车至多装3吨,问至少派出几辆车才能保证一次运走?4.在九个连续的自然数中,至多有多少个质数?小学奥数模拟试卷.2姓名得分一、填空题:1.用简便方法计算下列各题:1997×19961996-1996×19971997=______;

小学奥数华杯赛的习题精选

小学奥数华杯赛的习题精选

小学奥数华杯赛的习题精选

试题一:

有一栋居民楼,每家都订2份不同的报纸,该居民楼共订了三种

报纸,其中北京日报34份,江海晚报30份,电视报22份。那么订江

海晚报和电视报的共有多少家?

试题二:

某幼儿园中班的小朋友平均身高115厘米,其中男孩比女孩多

1/5,女孩平均身高比男孩高10%,这个班男孩平均身高是多少?

试题三:

两根铁丝,第一根长度是第二根的3倍,两根各用去6米,第一

根剩下的长度是第二根剩下的长度的5倍,第二根原来有多少米?

【篇二】

•1、下面是两个具有一定的规律的数列,请你按规律补填出空缺

的项:

(1)1,5,11,19,29,________,55;(2)1,2,6,16,44,

________,328。

解答:(1)观察发现,后项减前项的差为:6、8、10、......所以,应填41(=29+12),41+14=55符合。

(2)观察发现,6=2*(2+1),16=2*(2+6),44=2*(16+6),所以,

应填120=2*(44+16),2*(120+44)=328符合。

2、有一列由三个数组成的数组,它们依次是(1,5,10);(2,10,20);(3,15,30);……。问第99个数组内三个数的和是多少?

解答:观察每一组中对应位置上的数字,每组第一个是1、2、3、......的自然数列,第二个是5、10、15、......,分别是它们各

组中第一个数的5倍,第三个10、20、30、......,分别是它们各组

中第一个数的10倍;所以,第99组中的数应该是:99、99*5、99*10,三个数的和=99+99*5+99*10=1584。

六年级奥数竞赛题集锦(已整理)

六年级奥数竞赛题集锦(已整理)

小学数学竞赛题选(一)

1.迎春农机厂计划生产一批插秧机,现已完成计划的56%,如果再生产5040台,总量就就超过计划的16%。那么原计划生产插秧机()台。

2.如果把1到999这些自然数按照从小到大的顺序排成一排,这样就组成了一个多位数:12345678910111213…996997998999。

那么在这个数里,从左到右的第2000个数字是()。

3.从1999这个数里减去253以后,再加上244,然后在减去253,再加上244……这样一直算下去,减到()次,得数恰好等于0。

4.把一长2.4米的长方体的木料锯成5段,表面积比原来加了96平方厘米。这根木料原来的体积是()立方厘米。

5.师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个。那么,徒弟一共加工了()个零件。

6.A、B、C三人要从甲地到乙地,步行速度都是每小时5千米,骑车速度都是每小时20千米;A骑了一段后,换步行而把车放在途中,留给B接着骑;B骑了一段后,再换步行而把车放在途中,留给C接着骑到乙地。这样A、B、C 三人恰好同时到达乙地。已知甲地到乙地全长12千米,那么甲地到乙地他们用了()小时。

7.一辆大轿车与一辆小轿车都从甲地驶往乙地。大轿车的速度是小轿车的速度的80%。已知大轿车比小轿车早出发17分钟,但在两地重中点停了5分钟后,才继续驶往乙地;而小轿车出发中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地。又知大轿车是早上10时从甲地出发的。那么小轿车是在上午()时()分追上大轿车的。

六奥数经典题难题集粹华杯赛难度—附详细解答

六奥数经典题难题集粹华杯赛难度—附详细解答

一、工程问题

1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时

解:

1/20+1/16=9/80表示甲乙的工作效率

9/80×5=45/80表示5小时后进水量

1-45/80=35/80表示还要的进水量

35/80÷9/80-1/10=35表示还要35小时注满

答:5小时后还要35小时就能将水池注满;

2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成;如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九;现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天

解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/204/5+1/309/10=7/100,可知甲乙合作工效>甲的工效>乙的工效;

又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成;只有这样才能“两队合作的天数尽可能少”;

设合作时间为x天,则甲独做时间为16-x天

1/2016-x+7/100x=1

x=10

答:甲乙最短合作10天

3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成;现在先请甲、丙合做2小时后,余下的乙还需做6小时完成;乙单独做完这件工作要多少小时

解:

由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量

小学奥数6-1-8 和倍问题(二).专项练习及答案解析

小学奥数6-1-8 和倍问题(二).专项练习及答案解析

1. 学会分析题意并且熟练的利用线段图法能够分析和倍问题

2. 掌握寻找和倍的方法解决问题.

知识点说明: 和倍问题就是已知两个数的和以及它们之间的倍数关系,求这两个数各是多少的问题. 解答此类应用题时要根据题目中所给的条件和问题,画出线段图,使数量关系一目了然,从而找出解题规律,正确迅速地列式解答。

和倍问题的特点是已知两个数的和与大数是小数的几倍,要求两个数,一般是把较小数看作1倍数,大数就是几倍数,这样就可知总和相当于小数的几倍了,可求出小数,再求大数.

和倍问题的数量关系式是: 和÷(倍数+1)=小数

小数×倍数=大数 或 和一小数=大数

如果要求两个数的差,要先求1份数:

l 份数×(倍数-1)=两数差.

解决和倍问题,关键是学会画线段图,这样可以帮助我们更好的弄清各数量之间的关系。

【例 1】 一家三口人,三人年龄之和是72岁,妈妈和爸爸同岁,妈妈的年龄是孩子的4倍,

三人各是多少岁?

【考点】和倍问题 【难度】2星 【题型】填空

【解析】 妈妈的年龄是孩子的4倍,爸爸和妈妈同岁,那么爸爸的年龄也是孩子的4倍,把

孩子的年龄作为1倍数,已知三口人年龄和是72岁,那么孩子的年龄为:

72(144=8

)÷++(岁),妈妈的年龄是:8432⨯=(岁),爸爸和妈妈同岁为32岁. 【答案】孩子的年龄为8岁,爸爸妈妈的年龄为32岁

【例 2】 三只小猫去钓鱼,它们共钓上36条鱼,其中黑猫和花猫钓到的鱼的条数是白猫钓

到的鱼的条数的5倍,花猫钓到的鱼比另外两只猫钓到的鱼的条数的2倍少9条。黑猫钓上 条鱼。

【考点】和倍问题 【难度】3星 【题型】填空

小学奥数6-1-21 鸡兔同笼问题(一).专项练习及答案解析

小学奥数6-1-21 鸡兔同笼问题(一).专项练习及答案解析

1. 熟悉鸡兔同笼的“砍足法”和“假设法”.

2. 利用鸡兔同笼的方法解决一些实际问题,需要把多个对象进行恰当组合以转化成两个

对象.

一、鸡兔同笼

这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了

这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?

你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?

二、解鸡兔同笼的基本步骤

解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,

每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即473512-=(只).显然,鸡的只数就是351223-=(只)了.

这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡

兔同笼”问题的经典思路“假设法”.

假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只

脚,和脚总数做比较,做差除二兔找到.

解鸡兔同笼问题的基本关系式是:

如果假设全是兔,那么则有:

鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数) 兔数=鸡兔总数-鸡数

如果假设全是鸡,那么就有:

兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数) 知识精讲

小学华杯赛试题及答案

小学华杯赛试题及答案

小学华杯赛试题及答案

【篇一:各届华杯赛真题集锦-含答案哦!】

届“华罗庚金杯”少年数学邀请赛初赛试卷 (3)

2002年第9届“华罗庚金杯”少年数学邀请赛初赛试

卷 (5)

2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷 (11)

2004年第1届“华罗庚金杯”少年数学邀请赛初赛试卷 (13)

2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (19)

2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (23)

2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (31)

2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (33)

2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (39)

2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (41)

2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (47)

2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (49)

2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (55)

2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (57)

2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (63)

2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (66)

2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (73)

2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (75)

2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (82)

2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (84)

六年级下册数学试题-奥数专题:第7讲-应用题全国通用

六年级下册数学试题-奥数专题:第7讲-应用题全国通用

应用题

本讲针对应用题模块的高频考点和难点,进行讲解巩固。

考察难度

应用题题作为华杯赛的必考点之一,整体难度适中,一般情况下在 3★左右。

备考建议

孩子在复习的时候,诸如年龄、周期、平均数等应用题需要秒杀,在分数、百分数、比列和工程这些部分注重结合列表、画图等方法分析问题,务必熟练掌握代数和方程在解应用题中的使用。

课前预习

21)一个分数约分后是 3 .如果这个分数的分子减去 18,分母减去 22,约分后就可以得到一

个新的分数 5 .那么,原来的分数在约分前是 。

3某种长方体形的集装箱,它的长宽高的比是 4∶3∶2,如果用甲等油漆喷涂它的表面,每

平方米的费用是 0.9 元,如果改用乙等油漆,每平方米的费用降低为 0.4 元,一个集装箱可以节省 6.5 元,则集装箱总的体积是 立方米.(第 10 届华杯复赛)

2)六年级下册数学试题-奥数专题:第7讲-应用题全国通用

3)

现有甲、乙、丙三个容量相同的水池.一台A 型水泵单独向甲水池注水,一台B 型水泵单独向乙水池注水,一台 A 型和一台 B 型水泵一起向丙水池注水.已知注满乙水池

则比注满丙水池所需时间多4 个小时,注满甲水池比注满乙水池所需时间多5 个小时,注满丙水池的三分之二需要个小时.(第19 届华杯复赛)

模块一列方程解应用题

要点复习

列方程解应用题

是用字母来代替未知数,根据等量关系列出含有未知数的等式,然后解出未知数的值.这个含有未知数的等式就是方程.列方程解应用题的优点在于可以使未知数直接参加运算.解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程.

六年级华杯赛奥数竞赛考前模拟题(后20套)

六年级华杯赛奥数竞赛考前模拟题(后20套)

小学奥数模拟试卷.38 姓名得分

一、填空题:

1.[240-(0.125×76+12.5%×24)×8]÷14=______.

2.下面的加法算式中,不同的汉字代表不同的数字,相同的汉字

代表相同的数字。那么这些不同的汉字代表的数字之和

是______.

3.如图,长方形ABCD的面积是1,E是BC边的中点,F是CD边的中点。那么阴影部分的面积等于______.

4.一个数除以9余8,除以6余5,这个数加上1就能被5整除,则符合条件的最小自然数是______.

5.印刷某一本书的页码时,所用数码的个数是975个(如第23

页用2个数码,第100页用3个数码),那么这本书应有的页数是______.6.将1至1997的自然数,分成A、B、C三组:

A组:1,6,7,12,13,18,19,…

B组:2,5,8,11,14,17,20,…

C组:3,4,9,10,15,16,21,…

则(1)B组中一共有______个自然数;(2)A组中第600个数是______;

(3)1000是______组里的第______个数.

则(1)2*(6*7)=______;(2)如果x*(6*7)=109,那么x=______.9.用等长的火柴棍为边长,在桌上摆大小相同的三角形(如图).摆6个三角形至少用12根,那么摆29个三角形,至少要用______根.

10.一个长方体的体积是1560,它的长、宽、高均为自然数,它的棱长之和最少是______.

二、解答题:

1.小明妈妈比他大26岁,去年小明妈妈的年龄是小明年龄的3倍,小明今年多少岁?

六年级奥数竞赛题集锦(已整理)

六年级奥数竞赛题集锦(已整理)

小学数学竞赛题选(一)

1.迎春农机厂计划生产一批插秧机,现已完成计划的56%,如果再生产5040台,总量就就超过计划的16%。那么原计划生产插秧机()台。

2.如果把1到999这些自然数按照从小到大的顺序排成一排,这样就组成了一个多位数:12345678910111213…996997998999。

那么在这个数里,从左到右的第2000个数字是()。

3.从1999这个数里减去253以后,再加上244,然后在减去253,再加上244……这样一直算下去,减到()次,得数恰好等于0。

4.把一长2.4米的长方体的木料锯成5段,表面积比原来加了96平方厘米。这根木料原来的体积是()立方厘米。

5.师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个。那么,徒弟一共加工了()个零件。

6.A、B、C三人要从甲地到乙地,步行速度都是每小时5千米,骑车速度都是每小时20千米;A骑了一段后,换步行而把车放在途中,留给B接着骑;B骑了一段后,再换步行而把车放在途中,留给C接着骑到乙地。这样A、B、C 三人恰好同时到达乙地。已知甲地到乙地全长12千米,那么甲地到乙地他们用了()小时。

7.一辆大轿车与一辆小轿车都从甲地驶往乙地。大轿车的速度是小轿车的速度的80%。已知大轿车比小轿车早出发17分钟,但在两地重中点停了5分钟后,才继续驶往乙地;而小轿车出发中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地。又知大轿车是早上10时从甲地出发的。那么小轿车是在上午()时()分追上大轿车的。

小学奥数6-1-16 盈亏问题(二).专项练习及答案解析

小学奥数6-1-16 盈亏问题(二).专项练习及答案解析

1. 熟练掌握盈亏问题的本质.

2. 运用盈亏问题的解题方法解决一些生活实际问题.

盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”.

可以得出盈亏问题的基本关系式:

(盈+亏)÷两次分得之差=人数或单位数

(盈-盈)÷两次分得之差=人数或单位数

(亏-亏)÷两次分得之差=人数或单位数

物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种

情况,都是属于按两个数的差求未知数的“盈亏问题”.

注意:1.条件转换; 2.关系互换.

利用条件关系转换解盈亏问题——转化分配单位数(接受分配的人数)

【例 1】 小鸣用48元钱按零售价买了若干练习本。如果按批发价购买,每本便宜2元,

恰好多买4本。问:零售价每本多少元?

【考点】盈亏问题 【难度】3星 【题型】解答

【关键词】华杯赛,初赛,第9题

【解析】 见下图,以横线表示本数,纵线表示单价,因为黄色部分面积与绿色部分面积

相等,所以黄色的宽是绿色高的2倍,设批发价为x 元(图中绿色长方形的高),

知识精讲

教学目标

6-1-7.盈亏问题(二)

则有:x×(2x+4)=48,即x×(x+2)=24=4×6=4×(4+2),所以,

x=4(元),零售价为x+2=6(元)

【答案】6元

【例2】春节前夕,一富翁想丐帮帮众施舍一笔钱财,一开始他准备给每人100元,结果剩下350元,他决定每人多给20元。这时从其它地方又闻讯赶来了5个乞丐,

六年级华杯赛奥数竞赛考前模拟题(后20套)

六年级华杯赛奥数竞赛考前模拟题(后20套)

小学奥数模拟试卷.38 姓名得分

一、填空题:

1.[240-(0.125×76+12.5%×24)×8]÷14=______.

2.下面的加法算式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字。那么这些不同的汉字代表的数字之和是

______.

3.如图,长方形ABCD的面积是1,E是BC边的中点,F是CD边的中点。那么阴影部分的面积等于______.

4.一个数除以9余8,除以6余5,这个数加上1就能被5整除,则符合条件的最小自然数是______.

5.印刷某一本书的页码时,所用数码的个数是975个(如第23页用2个数码,第100页用3个数码),那么这本书应有的页数是______.

6.将1至1997的自然数,分成A、B、C三组:

A组:1,6,7,12,13,18,19,…

B组:2,5,8,11,14,17,20,…

C组:3,4,9,10,15,16,21,…

则(1)B组中一共有______个自然数;(2)A组中第600个数是______;

(3)1000是______组里的第______个数.

则(1)2*(6*7)=______;(2)如果x*(6*7)=109,那么x=______.

9.用等长的火柴棍为边长,在桌上摆大小相同的三角形(如图).摆6个三角形至少用12根,那么摆29个三角形,至少要用______根.

10.一个长方体的体积是1560,它的长、宽、高均为自然数,它的棱长之和最少是______.

二、解答题:

1.小明妈妈比他大26岁,去年小明妈妈的年龄是小明年龄的3倍,小明今年多少岁?

“华杯赛”初赛试题(附详细答案),能做全对的直接上重点中学!

“华杯赛”初赛试题(附详细答案),能做全对的直接上重点中学!

“华杯赛”初赛试题(附详细答案),能做全对的直接上重点

中学!

一、什么是华杯赛?

华罗庚金杯少年数学邀请赛(简称“华杯赛”)是为了纪念我国杰出数学家华罗庚教授,于1986年始创的全国性大型少年数学竞赛活动。华杯赛堪称国内小学阶段规模最大、最正式也是难度最高的比赛。华杯赛”是以教育广大青少年从小学习和弘扬华罗庚教授的爱国主义思想、刻苦学习的品质、热爱科学的精神;激发广大中小学生学习数学的兴趣、开发智力、普及数学科学为宗旨的活动。

二、为什么报名参加各大数学杯赛的考试?

1、检验学习效果

通过奥数的学习,能培养良好的思维习惯,有利于智力的开发,且对以后数理化各科的学习也都非常有帮助。杯赛考试是检测学习效果最好的方式。

2、锻炼思维能力

各大奥数杯赛不仅仅是一种考试,其举办宗旨更多的是致力于学生独立思考、科学探索、创造性地解决问题和创新思维能力的培养。

3、助升学一臂之力

通过杯赛证书增加升学砝码,突出简历亮点,进而拿到参加重点中学升学选拔的机会。

三、华杯赛作用

华杯赛作为目前全国最权威的初中数学比赛,备受北京市各重点中学的认可。2007年华杯赛北京赛区一、二、三等奖的获奖同学受到了人大附中、北京四中、实验中学、清华附中、101中学等名校的青睐。甚至单凭优异的华杯赛获奖成绩就可以顺利进入这些名校。

今天的分享就到这儿了。您有什么问题或建议可以在评论栏留言或给小编发私信,小编一定会在看到留言后第一时间给您回复。

六年级华杯赛历届试题揭秘六年级一等奖华杯赛

六年级华杯赛历届试题揭秘六年级一等奖华杯赛

六年级华杯赛历届试题揭秘六年级一等奖华杯赛

随着春季的开学,我们即将迎来希望杯和华杯。这两大杯赛也是比较重要的竞赛,为了帮助大家在最后的关头做好冲刺,老师给大家简单介绍一下这两个杯赛的信息。接下来小编为你带来六年级华杯赛历届试题揭秘,希望对你有帮助。

华杯赛试题揭秘——行程:

行程问题与数论问题都是学生们最头疼的知识点。在解题时,行程问题与数论问题大致相同,都需要将各个已知条件合理的组合到一起并最终得到结论,这也是这两类问题相对的难点所在。行程问题虽然难,但是它的出镜率并不高,平均每个杯赛出现1次。

在几个杯赛中,希望杯对行程题目考查数量在3-5题,但是难度不大。其它杯赛均是1道题,难度都是中等偏上的题目。不管是哪个年级,解决行程问题必须先要熟练掌握三个要素之间的关系(路程、速度、时间)。其实行程问题也可以分为相遇问题与追及问题两大类,那么相遇与追及的基本公式也是必须要掌握的。

对于四年级的学生来说,还需要掌握几个基本类型,如多次相遇与追及问题、流水型船问题、、火车过桥问题、猎狗追兔问题、环形跑道问题等。下面我们看一下20XX年走美杯的一道题,题目如下:早晨,小张骑车从甲地出发去乙地。下午1点,小王开车也从甲地出发,前往乙地。下午2点时两人之间的距离是l5千米。下午3点时,两人之间的距离还是l5千米.下午4点时小王到达乙地,晚上7点小张到达乙地.小张是早晨出发。

分析:本题的第一个突破口就是“下午2点时两人之间的距离是l5千米.下午3点时,两人之间的距离还是l5千米”,由这个条件我们可以得到两人的速度差是每小时30千米。

六年级下册数学试题-超难奥数题:综合拼数感(练习含解析)全国通用综合拼数感

六年级下册数学试题-超难奥数题:综合拼数感(练习含解析)全国通用综合拼数感

综合拼数感

【例1】

从Tom 和Jerry 说起。

【例2】

从(“华杯赛”总决赛)圆周上放置有3000 枚棋子,按顺时针方向依次编号为1,2,3,…,2999,3000。首先取走3 号棋子,然后按顺时针方向,每隔2 枚棋子就取

走1 枚棋子,…,直到1 号棋子被取走为止。问:此时,

⑴圆周上还有多少枚棋子?

⑵在圆周上剩下的棋子中,从编号最小的一枚棋子按顺时针方向开始数,第181 枚棋子的编

号是多少?

【例3】(“华杯赛”总决赛)

小华玩某种游戏,每局可随意玩若干次,每次的得分是8、a、0 这三个自然数中的一个,每局各次的得分的总和叫做这一局的总积分。小华曾得到过这样的总积分:103、104、105、106、107、108、109、110,又知道他不可能得到“83 分”这个总积分。问a 是多少?

【例4】

有4 个互不相同的3 位数,他们的首位数字相同,并且他们的和能被他们中的3 个数分别整除,请写出这四个数。

测试题

1.请你将1、2 、3 、……、2006 这2006 个数重新排成一列,使得:第1个数能被第2 个数整除,前2 个数的和能被第3个数整除,前3 个数的和能被第4 个数整除,……,前2004 个数的和能被第2005 个数整除,前2005 个数的和能被最后一个数整除。

2.华罗庚爷爷在一首诗文中勉励青少年:“猛攻苦战是第一,熟练生成百巧来,勤能补拙是良训,一分辛劳一分才。”现在将诗文中不同的汉字对应不同的自然数,相同的汉字对应相同的自然数,并且不同汉字所对应的自然数可以排列成一串连续的自然数。如果这

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级奥数经典题、难题集粹(华杯赛难度)—附详细解答

一、工程问题

1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?

解:

1/20+1/16=9/80表示甲乙的工作效率

9/80×5=45/80表示5小时后进水量

1-45/80=35/80表示还要的进水量

35/80÷(9/80-1/10)=35表示还要35小时注满

答:5小时后还要35小时就能将水池注满。

2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?

解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。

又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。

设合作时间为x天,则甲独做时间为(16-x)天

1/20*(16-x)+7/100*x=1

x=10

答:甲乙最短合作10天

3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时?

解:

由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量

(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。

根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。

所以1-9/10=1/10表示乙做6-4=2小时的工作量。

1/10÷2=1/20表示乙的工作效率。

1÷1/20=20小时表示乙单独完成需要20小时。

答:乙单独完成需要20小时。

4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?

解:由题意可知

1/甲+1/乙+1/甲+1/乙+……+1/甲=1

1/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1

(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)

1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)

得到1/甲=1/乙×2

又因为1/乙=1/17

所以1/甲=2/17,甲等于17÷2=8.5天

5.师徒俩人加工同样多的零件。当师傅完成了1/2时,徒弟完成了120个。当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?

答案为300个

120÷(4/5÷2)=300个

可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。

6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。单份给男生栽,平均每人栽几棵?

答案是15棵

算式:1÷(1/6-1/10)=15棵

7.一个池上装有3根水管。甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?

答案45分钟。

1÷(1/20+1/30)=12 表示乙丙合作将满池水放完需要的分钟数。

1/12*(18-12)=1/12*6=1/2 表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进的水。

1/2÷18=1/36 表示甲每分钟进水

最后就是1÷(1/20-1/36)=45分钟。

8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?

答案为6天

解:

由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:

乙做3天的工作量=甲2天的工作量

即:甲乙的工作效率比是3:2

甲、乙分别做全部的的工作时间比是2:3

时间比的差是1份

实际时间的差是3天

所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期

方程方法:

[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1

解得x=6

9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?

答案为40分钟。

解:设停电了x分钟

根据题意列方程

1-1/120*x=(1-1/60*x)*2

解得x=40

二.鸡兔同笼问题

10.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?

解:

4*100=400,400-0=400 假设都是兔子,一共有400只兔子的脚,那么鸡的脚为0只,鸡的脚比兔子的脚少400只。

400-28=372 实际鸡的脚数比兔子的脚数只少28只,相差372只,这是为什么?

4+2=6 这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少4只(从400只变为396只),鸡的总脚数就会增加2只(从0只到2只),它们的相差数就会少4+2=6只(也就是原来的相差数是400-0=400,现在的相差数为396-2=394,相差数少了400-394=6)

372÷6=62 表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从400改为28,一共改了372只

100-62=38表示兔的只数

六.抽屉原理、奇偶性问题

26.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的?

解:可以把四种不同的颜色看成是4个抽屉,把手套看成是元素,要保证有一副同色的,就是1个抽屉里至少有2只手套,根据抽屉原理,最少要摸出5只手套。这时拿出1副同色的后4个抽屉中还剩3只手套。再根据抽屉原理,只要再摸出2只手套,又能保证有一副手套是同色的,以此类推。

把四种颜色看做4个抽屉,要保证有3副同色的,先考虑保证有1副就要摸出5只手套。这时拿出1副同色的后,4个抽屉中还剩下3只手套。根据抽屉原理,只要再摸出2只手套,又能保证有1副是同色的。以此类推,要保证有3副同色的,共摸出的手套有:5+2+2=9(只)

答:最少要摸出9只手套,才能保证有3副同色的。

27.有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样?

答案为21

解:

每人取1件时有4种不同的取法,每人取2件时,有6种不同的取法.

当有11人时,能保证至少有2人取得完全一样:

相关文档
最新文档