2012年广东省中考数学试卷分析报告
中考数学试卷分析报告
2011年中考数学试卷分析报告一、试卷概况(一)试卷结构2011年中考数学试卷共六大题25小题,满分120分,考试时间120分钟,考试内容为义务教育九年制七年级至九年级数学教材(人教版)各册涵盖知识。
全卷:数与代数占分值52分,空间与图形6分值53分,统计概率分值15分。
第一大题为选择了共8小题(8×3′=24分),第二大题为填空题共8小题(8×3′=24分),第三大题共3小题(3×6′=18分),第四大题共2小题(2×8′=16分),第五大题共2小题(2×9′=18分),第六大题共2小题(2×10′=20分)(二)试卷基本特点2011年中考数学试卷,在题目的设计提题量上与2010年大至相同,改2010年选择题10题,填空题6题为2011年选择题8题,填空题8题,仍为以答题卷形式答题,实施网上阅卷。
试卷难度适中,整卷难度分数为0.58左右。
试题反映了考生教育教学发展的要求,坚持从学生实际出发,该学生的发展与终身学习的需求,在重视基础知识和基本技能考查的同时,注重了数学思想与数学方法的考查,加强了学生应用数学知识和思维方法,分析解决现实问题的能力的考查,在创新知识和实践能力方面也体现的更加明显,反映了数学课程标准对数学的要求,体现了课程改革的精神。
表一:试卷结构成绩分析表试题难度分析(选择题除外)(9—16题)一、考查知识点(1)有理数运算法则(2) 分解因式 (3)函数自变量的取值范围(4)解二元一次方程组 (5) 三角形内角平分线的交点(6) 平面图形中有关分解的数量关系(7)h.旋转圆形的中心点(8)几何图形中角的关系、线段的关系的解答二、主要失分原因(1)分解因式未完整如:x3-x=x(x2-1)=x(x+1)(x-1)只分解到第二步(2) 解方程组答案缺括号 如: ⎩⎨⎧-==34y x 写成:x=4 y=-3 (3) 解析式中的量的关系 如:y=21x+90 写成y=21x+90o90 度 写成 90o 度三、教学建议(1) 基础教学中基本知识点应要求学生清晰地掌握;(2) 强调数学答案的规范化写作,并要求学生理解透彻应为什么这样写,从根本杜绝简单的错误,减少本来就不应该失去的分,如:更好地体现真实的数学水平。
益阳市2012年中考数学试卷分析报告
益阳市2012年初中毕业学业考试数学学科评价报告益师艺术实验学校李国强初中毕业数学学业考试(以下简称中考)是义务教育阶段数学学科的终结性考试,其目的是全面、准确地评估初中毕业生达到《全日制义务教育数学课程标准》(以下简称课标)所规定的数学学业水平的程度,同时又为高中阶段学校选拔招生提供重要的依据。
2012年我市共有32951名初中毕业生参加中考,现根据中考的实际情况评析如下:一、命题依据中考数学命题以《课标》为基本依据,以《2012年湖南省初中毕业学业考试标准》(以下简称考标)作为指导,结合我市2012年初中毕业生实际情况,体现考试的基础性、公平性、保证科学、有效,坚持平稳过渡,稳中有变。
中考数学命题的指导思想是:1. 要有利于引导和促进数学教学全面落实《课标》所设立的课程目标,有利于引导改善学生的数学学习方式,提高学生数学学习的效率,有利于高中阶段学校综合、有效地评价学生的数学学习状况;2. 重视对四基(基础知识、基本技能、基本思想、基本活动经验)过程和结果的评价,又要重视对学生在数学思考能力和解决问题能力方面发展状况的评价,重视对学生的数学认识水平的评价;3. 面向全体学生,公正、客观、全面、准确地评价学生,力求不同的学生在数学上有不同的发展,实现《课标》的评价理念。
二、试卷结构我市中考数学科考试采用闭卷笔试的方式,考试时间为90分钟,满分为120分。
全市统一采用电脑阅卷。
1.题型与题量全卷共有选择题、填空题、解答题三种题型,共21个小题。
其中选择题8个,填空题5个,解答题8个,三种题型所占分值分别为32、20、68分,与去年相同。
2.内容与范围从考查的内容来看,覆盖了初中数学《课标》《考标》所列的主要知识点的80%以上,并且对初中数学的主体内容作了重点考查。
数与代数62分,约占50%,图形与几何42分,约占35%,统计与概率16分,约占15%。
从考查的范围来看,试题及其解答均遵循《课标》《考标》的要求,无超标现象。
考试试卷分析与反思
考试试卷分析与反思考试试卷分析与反思1第一单元:小数乘法总体来说:卷面干净,整洁,认真读题、审题,计算准确,简算熟练,大部分学生对所学知识掌握较好,但少数学生太差。
具体分析如下:第一大题,基础知识填空,失分较少,错的最多的是第10小题,学生对积的变化规律没掌握好,造成失分。
第二大题,判断完成较好,失分较多的是第4小题,学生对计数单位不理解,判断错误。
第三大题选择题,完成较好,错的较多的是第6小题,学生没见过这种表达形式,不明白式子的含义。
第四、五大题计算题,学生计算不熟练,不知道乘法分配律和结合律怎样运用,简算题失分多,第六大题解决问题,大部分学生思维能力强,完成较好,错题原因:第2小题忘记写“≈”,第5小题学生对题意不理解,失分太多。
经过检测发现,本单元掌握存在以下不足:1、计算很差,积的末尾的“0”忘划掉,忘写“≈”。
2、减算掌握的不好,不会运用乘法分配律简便计算。
下步努力的方向:1、分析学生计算出错的地方,有针对性地加强学生的计算能力;2、进一步训练并加强学生的读题能力;3、培优补差。
一、命题特点及概况:本单元试卷包含五星种题型,填空,判断,选择,计算,,应用题,内容突出体现了基础性和普及性,体现了新课标的新理念,使数学教学面向全体学生,试题知识面覆盖广,取样有代表性。
注重于基础知识,同时又切合教材的重点、难点、疑点、有甩侧重地安排了试题,尤其在填空、选择、计算上都突出了这一点,避免了偏题、怪题、总体看来深浅适度,考查了学生对基础知识的掌握,同时培养了学生的计算能力和逻辑思想能力是一份切合教学实际,目标明确的有价值的试卷。
二、答卷情况:本次测试的是数学第二单元小数除法一章,这次测试的试卷共有五个大题,从试卷分析,这张试卷的试题比较简单,题型也都是我们平时所做过的,学生们做答中出现的错误也比较少。
这五个题,有一定的梯度,主要考查学生们对本单元的基础知识的掌握情况,比较适合我们的同学做答。
三、学生做题情况分析(一)学生存在的共性问题1.学生的计算能力在待提高,有很多同学的计算题没有算对结果,2.学生的试卷做得比较乱,书写不规范,3.有各别的知识点掌握不扎实,4.应用题方面发展很不平衡,有7名同学的应用题失分太多。
中考数学试卷质量分析报告三篇
中考数学试卷质量分析报告三篇为了让学生尽快进展自我调整,明确奋斗目标,进入最正确的学习状态。
因此,编辑教师为各位教师预备了这篇初三数学期中考试质量分析,期望可以帮助到您!一、试卷有如下特点:(1)单独考察根底的、重要的学问技能本卷考察根底学问和根本技能试题的比重都较大,留意考察通性通法,淡化考察特别技巧,较为有效地确保了试卷的内容效度.如选择题,学生得分率高。
(2)重点考察核心内容初中数学的核心内容是学生今后进一步学习的根底,本次试卷在留意内容掩盖的根底上,突出了对“特别的平行四边形”、“一元二次方程”、“图形的变换”等核心学问内容的考察.其中第6、9、10、17、20、22、24、25 题失分率高。
(3)突出考察主要的数学思想和方法数学思想和方法是数学学问在更高层次上的抽象与概括,它不仅蕴涵在数学学问形成、进展和应用的过程中,而且也渗透在数学教与学的过程中.本次考试突出了对数形结合、分类争论、函数与方程等数学思想和方法的考察. 其中6、9、10、17、20、22、24、25 题学生由于对学问不能敏捷运用、计算力量不强,耗时多,失分率高。
(4)突出考察以生活、劳动和学习为背景的问题本次试卷留意表达数学的工具性的理念,强调考试问题的真实性、情景性和开放性,以到达加强考察数学应用意识的目的。
从试题的呈现方式来看,带有实际背景,需要数学建模才能解决的问题题型正在成为中考追赶的热点。
如10、24 题。
二、得失分统计与缘由分析(1)选择题局部第3、4、6、9、10 小题失分率高,其余题目正确率高。
错误缘由:从学的角度分析,局部学生对根底学问把握不牢、对规律不能敏捷运用;从教的缘由分析,教学过程中无视了简洁学问的生成,起点过高。
今后措施:在教学过程中回归书本,重视根本学问点的建构与运用。
(2)填空题局部第13、15、17、20、21、22 题失分较高,其余题目正确率高。
错误缘由:从学的角度分析,学生对题目意思理解不清,对所学学问模糊不清,在加上题目敏捷性较大,造成此题失分率很高;从教的缘由分析,在教学过程中缺少题目的变式训练,缺少数学思想方法的有效渗透。
2012年广东省中考数学试卷-答案
广东省2012年初中毕业生学业考试数学答案解析 一、选择题1.【答案】A【解析】根据负数的绝对值等于它的相反数,得|5|5-=故选A【提示】根据绝对值的性质求解.【考点】绝对值2.【答案】B【解析】66400000 6.410=⨯【提示】科学记数法的形式为10n a ⨯,其中110a ≤<,n 为整数.【考点】科学记数法—表示较大的数3.【答案】C【解析】6出现的次数最多,故众数是6【提示】众数指一组数据中出现次数最多的数据,根据众数的定义即可求解.【考点】众数4.【答案】B【解析】从正面看,此图形的主视图有3列组成,从左到右小正方形的个数是:131, , ,故选:B . 【提示】主视图是从立体图形的正面看所得到的图形,找到从正面看所得到的图形即可.注意所有的看到的棱都应表现在主视图中.【考点】简单组合体的三视图5.【答案】C【解析】设此三角形第三边的长为x ,则104104x -<<+,即614x <<,四个选项中只有11符合条件.【提示】设此三角形第三边的长为x ,根据三角形的三边关系求出x 的取值范围,找出符合条件的x 的值即可.【考点】三角形三边关系二、填空题6.【答案】2(5)x x -【解析】原式2(5)x x =-【提示】首先确定公因式是2x ,然后提公因式即可.【考点】因式分解——提公因式法7.【答案】3x >【解析】移项得,39x >,系数化为1得:3x >.【提示】先移项,再将x 的系数化为1即可.【考点】解一元一次不等式8.【答案】50︒【解析】Q 圆心角AOC ∠与圆周角ABC ∠都对»AC ,2AOC ABC ∴∠=∠,又25ABC ∠=︒,则50AOC ∠=︒ 【提示】根据同弧所对的圆心角等于所对圆周角的2倍,由已知圆周角的度数,即可求出所求圆心角的度数.【考点】圆周角定理9.【答案】1【解析】根据题意得:3030x y -=⎧⎨-=⎩,解得:33x y =⎧⎨=⎩.则20122012313x y ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.【提示】根据非负数的性质列出方程求出x 、y 的值,代入所求代数式计算即可.【考点】非负数的性质:算术平方根,非负数的性质:绝对值10.【答案】13π3-【提示】过D 点作DF AB ⊥于点F ,可ABCD Y 和BCE △的高,观察图形可知阴影部分的面积为ABCD Y 的面积-扇形ADE 的面积-BCE △的面积,计算即可求解.【考点】扇形面积的计算,平行四边形的性质三、解答题(一)11.【答案】1-【提示】本题涉及零指数幂、负指数幂、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【考点】实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值12.【答案】1-【解析】解,原式222299x x x x -+=-=-,当4x =时,原式2491=⨯-=-.【提示】先把整式进行化简,再把4x =代入进行计算即可.【考点】整式的混合运算——化简求值13.【答案】51x y =⎧⎨=⎩【解析】解:①+②得,420x =,解得5x =,把5x =代入①得,54y -=,解得1y =,故此不等式组的解为:51x y =⎧⎨=⎩【提示】先用加减消元法求出x 的值,再用代入法求出y 的值即可.【考点】解二元一次方程组 2ABO CDO ∴△≌△,AB CD ∴=,∴四边形ABCD 是平行四边形.【提示】先根据AB CD ∥可知ABO CDO ∠=∠,再由BO DO AOB DOC =∠=∠,,即可得出ABO CDO △≌△,故可得出AB CD =,进而可得出结论.【考点】平行四边形的判定,全等三角形的判定与性质四、解答题(二)16.【答案】(1)20%(2)8640【解析】(1)设这两年我国公民出境旅游总人数的年平均增长率为x .根据题意得25000(1)7200x +=.解得120.220% 2.2x x ===-,(不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.(2)如果2012年仍保持相同的年平均增长率,则2012年我国公民出境旅游总人数为7200(1)7200120%8640x +=⨯=万人次.答:预测2012年我国公民出境旅游总人数约8640万人次.【提示】(1)设年平均增长率为x ,根据题意2010年公民出境旅游总人数为25000(1)x +万人次,2011年公民出境旅游总人数25000(1)x +万人次.根据题意得方程求解.(2)2012年我国公民出境旅游总人数约7200(1)x +万人次.【考点】一元二次方程的应用【提示】(1)先把(4,2)代入反比例函数解析式,易求k ,再把0y =代入一次函数解析式可求B 点坐. (2)假设存在,然后设C 点坐标是(,0)a ,借此无理方程,易得3a =或5a =,其中3a =和B 点重合,舍去,故C 点坐标可求.【考点】反比例函数综合题解得:300AB =米,答:小山岗的高度为300米.【提示】首先在直角三角形ABC 中根据坡角的正切值用AB 表示出BC ,然后在直角三角形DBA 中用BA 表示出BD ,根据BD 与BC 之间的关系列出方程求解即可.【考点】解直角三角形的应用——仰角俯角问题,解直角三角形的应用——坡度坡角问题19.【答案】(1)1911⨯ 1112911⎛⎫⨯- ⎪⎝⎭(2)1(21)(21)n n -+ 11122121n n ⎛⎫⨯- ⎪-+⎝⎭【解析】(1)根据观察知答案分别为1911⨯和1112911⎛⎫⨯- ⎪⎝⎭.(2)根据观察知答案分别为1(21)(21)n n -+和11122121n n ⎛⎫⨯- ⎪-+⎝⎭. (3)1234100a a a a a +++++L1111111111111112323525727921992011111111111123355779199201111220112002201100201⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-+⨯-+⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫=-+-+-+-++- ⎪⎝⎭⎛⎫=- ⎪⎝⎭=⨯=L L【提示】(1)观察知,找第一个等号后面的式子规律是关键:分子不变,为1.(2)分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1.(3)运用变化规律计算.【考点】规律型:数字的变化类【考点】列表法与树状图法,分式有意义的条件,分式的化简求值21.【答案】(1)证明:BDC 'Q △由BDC △翻折而成,90C BAG C D AB CD AGB DGC ABG ADE ∠=∠=︒'==∠=∠'∴∠=∠,,,,在:ABG C DG '△≌△中,BAD C AB C D ABG ADC '∠=∠⎧⎪'=⎨⎪'∠=∠⎩Q ,ABG C DG ∴'△≌△.(2)724(3)256【解析】(2)Q 由(1)可知ABG C DG ∴'△≌△,GD GB AG GB AD ∴=∴+=,,设AG x =,则8GB x =-,在22Rt ABG AB AG BG +=Q △中,2, 即2226(8)x x +=-,解得74x =, 747tan 624AG ABG AB ∴∠=== (3)AEF Q △是DEF △翻折而成,EF ∴垂直平分AD ,142HD AD ∴==, 7tan tan 24ABG ADE ∴∠=∠=, 777=424246EH HD ∴=⨯⨯=, EF Q 垂直平分AD ,AB AD ⊥,HF Q 是ABD △的中位线,116322HF AB ∴==⨯=,725366EF EH HF =+=+=. 【提示】(1)根据翻折变换的性质可知90C BAG ∠=∠=︒,C D AB CD '==,AGB DGC '∠=∠,故可得出结论.(2)由(1)可知GD GB =,故AG GB AD +=,设AG x =,则8GB x =-,在Rt ABG △中利用勾股定理即可求出AG 的长,进而得出tan ABG ∠的值.(3)由AEF △是DEF △翻折而成可知EF 垂直平分AD ,故142HD AD ==,再根据tan ABG ∠即可得出EF 的长,同理可得HF 是ABD △的中位线,故可得出HF 的长,由EF EH HF =+即可得出结论.【考点】翻折变换(折叠问题),全等三角形的判定与性质,矩形的性质,解直角三角形22.【答案】(1)99AB OC ==,(2)21092s m m =<<() (3)118 729π52【提示】(1)已知抛物线的解析式,当0x =,可确定C 点坐标;当0y =时,可确定A B 、点的坐标,进而确定AB OC 、的长.(2)直线l BC ∥,可得出AED ABC △、△相似,它们的面积比等于相似比的平方,由此得到关于s m 、的函数关系式;根据题干条件:点E 与点A B 、不重合,可确定m 的取值范围.(3)第一小问、首先用m 列出AEC △的面积表达式,AEC AED △、△的面积差即为CDE △的面积,由此可的关于CDE S △、m 的函数关系式,根据函数的性质可得到CDE S △的最大面积以及此时m 的值.第二小问、过E 做BC 的垂线EF ,这个垂线段的长即为与BC 相切的E e 的半径,可根据相似三角形BEF △、BCO △得到的相关比例线段求得该半径的值,由此得解.【考点】二次函数综合题。
广东省2012年中考数学试卷及答案解析(精品真题)
广东省2012年中考数学试卷及答案解析(精品真题)学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2012年)实数3的倒数是()A.﹣B.C.﹣3 D.32.(2012年)将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)2 3.(2012年)一个几何体的三视图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱4.(2012年)下面计算正确的是()A.6a-5a=1 B.a+2a2=3a2C.-(a-b)=-a+b D.2(a+b)=2a+b5.(2012年)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是()A.26 B.25 C.21 D.20,则a+b=()6.(2012年)已知a1A.﹣8 B.﹣6 C.6 D.87.(2012年)在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A. B. C. D.8.(2012年)已知a>b,若c是任意实数,则下列不等式中总是成立的是()A.a-c>b-c B.a+c<b+c C.ac>bc D.ac<bc9.(2012年)在平面中,下列命题为真命题的是( )A .四边相等的四边形是正方形B .对角线相等的四边形是菱形C .四个角相等的四边形是矩形D .对角线互相垂直的四边形是平行四边形10.(2012年)如图,正比例函数y 1=k 1x 和反比例函数22k y =x的图象交于A (﹣1,2)、B (1,﹣2)两点,若y 1<y 2,则x 的取值范围是( )A .x <﹣1或x >1B .x <﹣1或0<x <1C .﹣1<x <0或0<x <1D .﹣1<x <0或x >1二、填空题11.(2012年)已知∠ABC =30°,BD 是∠ABC 的平分线,则∠ABD =________.12.(2012年)不等式x ﹣1≤10的解集是______.13.(2012年)分解因式:a 3﹣8a=____.14.(2012年)如图,在等边三角形ABC 中,AB=6,D 是BC 上一点,且BC=3BD ,ABD △绕点A 旋转后得到ACE △,则CE 的长度为___.15.(2012年)已知关于x 的一元二次方程x 2﹣有两个相等的实数根,则k 值为_____.16.(2012年)如图,在标有刻度的直线l 上,从点A 开始,以AB=1为直径画半圆,记为第1个半圆;以BC=2为直径画半圆,记为第2个半圆;以CD=4为直径画半圆,记为第3个半圆;以DE=8为直径画半圆,记为第4个半圆,…按此规律,继续画半圆,则第4个半圆的面积是第3个半圆面积的____倍,第n个半圆的面积为_____(结果保留π)三、解答题17.(2012年)解方程组8 312 x yx y-=⎧⎨+=⎩18.(2012年)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C.求证:BE=CD.19.(2012年)广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006﹣2010这五年各年的全年空气质量优良的天数,绘制折线图如图.根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是,极差是.(2)这五年的全年空气质量优良天数与它前一年相比,增加最多的是年(填写年份).(3)求这五年的全年空气质量优良天数的平均数.20.(2012年)已知)11a b a b+=≠,求()()a b b a b a a b ---的值. 21.(2012年)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为﹣7,﹣1,3.乙袋中的三张卡片所标的数值为﹣2,1,6.先从甲袋中随机取出一张卡片,用x 表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y 表示取出卡片上的数值,把x 、y 分别作为点A 的横坐标和纵坐标.(1)用适当的方法写出点A (x ,y )的所有情况.(2)求点A 落在第三象限的概率.22.(2012年)如图,⊙P 的圆心为P (﹣3,2),半径为3,直线MN 过点M (5,0)且平行于y 轴,点N 在点M 的上方.(1)在图中作出⊙P 关于y 轴对称的⊙P ′.根据作图直接写出⊙P ′与直线MN 的位置关系.(2)若点N 在(1)中的⊙P ′上,求PN 的长.23.(2012年)某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨1.9元收费.如果超过20吨,未超过的部分按每吨1.9元收费,超过的部分按每吨2.8元收费.设某户每月用水量为x 吨,应收水费为y 元.(1)分别写出每月用水量未超过20吨和超过20吨,y 与x 间的函数关系式.(2)若该城市某户5月份水费平均为每吨2.2元,求该户5月份用水多少吨.24.(2012年)如图,抛物线233y=x x+384--与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C(1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E (4,0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有三个时,求直线l 的解析式.25.(2012年)如图,在平行四边形ABCD 中,AB=5,BC=10,F 为AD 的中点,CE ⊥AB 于E ,设∠ABC=α(60°≤α<90°).(1)当α=60°时,求CE 的长;(2)当60°<α<90°时,①是否存在正整数k ,使得∠EFD=k ∠AEF ?若存在,求出k 的值;若不存在,请说明理由. ②连接CF ,当CE 2﹣CF 2取最大值时,求tan ∠DCF 的值.参考答案1.B【解析】据两个数乘积是1的数互为倒数的定义,因此求一个数的倒数即用1除以这个数.所以3的倒数为1÷3=13.故选B.2.A【解析】二次函数图象与平移变换.据平移变化的规律,左右平移只改变横坐标,左减右加.上下平移只改变纵坐标,下减上加.因此,将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为:y=x2﹣1.故选A.3.D【解析】由三视图判断几何体.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为三角形,可得为棱柱体.所以这个几何体是三棱柱.故选D.4.C【详解】试题分析:A.6a﹣5a=a,故此选项错误;B.a与22a不是同类项,不能合并,故此选项错误;C.﹣(a﹣b)=﹣a+b,故此选项正确;D.2(a+b)=2a+2b,故此选项错误;故选C.考点:1.去括号与添括号;2.合并同类项.5.C【解析】等腰梯形的性质,平行四边形的判定和性质。
汕头市2012年中考数学试题精析
2012年中考数学精析系列——汕头卷(本试卷满分150分,考试时间100分钟)一、选择题(本大题共8小题,每小题4分,共32分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.3.(2012广东汕头4分)数据8、8、6、5、6、1、6的众数是【】A. 1 B. 5 C. 6 D.8【答案】C。
【考点】众数。
【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是6,故这组数据的众数为6。
故选C。
4.(2012广东汕头4分)如图所示几何体的主视图是【】A.B.C.D.【答案】B。
【考点】简单组合体的三视图。
【分析】从正面看,此图形的主视图有3列组成,从左到右小正方形的个数是:1,3,1。
故选B。
5.(2012广东汕头4分)下列平面图形,既是中心对称图形,又是轴对称图形的是【】A.等腰三角形B.正五边形C.平行四边形D.矩形【答案】D。
【考点】中心对称图形,轴对称图形。
【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。
因此,A、∵等腰三角形不是中心对称图形,是轴对称图形,故此选项错误;B、∵正五边形形不是中心对称图形,是轴对称图形,故此选项错误;C、平行四边形图形是中心对称图形,但不是轴对称图形,故此选项错误;D、∵矩形既是中心对称图形,又是轴对称图形,故此选项正确。
故选D。
6.(2012广东汕头4分)下列运算正确的是【】2a=2aA.a+a=a2 B.(﹣a3)2=a5 C.3a•a2=a3 D.()22【答案】D。
【考点】合并同类项,幂的乘方与积的乘方,同底数幂的乘法。
【分析】根据合并同类项,幂的乘方与积的乘方,同底数幂的乘法运算法则逐一计算作出判断:A、a+a=2a,故此选项错误;B、(﹣a3)2=a6,故此选项错误;C、3a•a2=3a3,故此选项错误;2a=2a,故此选项正确。
2012年广东省数学中考试题及解析
2012年广东省中考数学试卷一.选择题(共5小题)1.(2012广东)﹣5的绝对值是()A. 5 B.﹣5 C. D.﹣2.(2012广东)地球半径约为6400000米,用科学记数法表示为()A.0.64×107B. 6.4×106C.64×105D.640×1043.(2012广东)数据8、8、6、5、6、1、6的众数是()A. 1 B.5 C.6 D.84.(2012广东)如图所示几何体的主视图是()A. B. C.D.5.(2012广东)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是() A. 5 B.6 C. 11 D.16二.填空题(共5小题)6.(2012广东)分解因式:2x2﹣10x=.7.(2012广东)不等式3x﹣9>0的解集是.8.(2012广东)如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是.9.(2012广东)若x,y为实数,且满足|x﹣3|+=0,则()2012的值是。
10.(2012广东)如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是(结果保留π).三.解答题(共12小题)11.(2012广东)计算:﹣2sin45°﹣(1+)0+2﹣1.12.(2012广东)先化简,再求值:(x+3)(x﹣3)﹣x(x﹣2),其中x=4.13.(2012广东)解方程组:.14.(2012广东)如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.15.(2012广东)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD相交于点O,BO=DO.求证:四边形ABCD是平行四边形.16.(2012广东)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?17.(2012广东)如图,直线y=2x﹣6与反比例函数y=的图象交于点A(4,2),与x轴交于点B.(1)求k的值及点B的坐标;(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.18.(2012广东)如图,小山岗的斜坡AC的坡度是tanα=,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,求小山岗的高AB(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).19.(2012广东)观察下列等式:第1个等式:a1==×(1﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a5==;(2)用含有n的代数式表示第n个等式:a n==(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.20.(2012广东)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片北背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)求使分式+有意义的(x,y)出现的概率;(3)化简分式+,并求使分式的值为整数的(x,y)出现的概率.21.(2012广东)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF 交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.22.(2012广东)如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).2012年数学中考考点及解答1、考点:绝对值。
2012年广东省中考数学试卷(含解析版)
2012年广东省中考数学试卷一、选择题(本大题共5小题,每小题3分,共15分)在每个小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)﹣5的绝对值是()A.5B.﹣5C.D.﹣2.(3分)地球半径约为6400000米,用科学记数法表示为()A.0.64×107B.6.4×106C.64×105D.640×1043.(3分)数据8、8、6、5、6、1、6的众数是()A.1B.5C.6D.84.(3分)如图所示的几何体的主视图是()A.B.C.D.5.(3分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11D.16二、填空题(每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.(4分)分解因式:2x2﹣10x=.7.(4分)不等式3x﹣9>0的解集是.8.(4分)如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是.9.(4分)若x,y为实数,且满足|x﹣3|+=0,则()2012的值是.10.(4分)如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是(结果保留π).三、解答题(一)(每小题6分,共30分)11.(6分)计算:﹣2sin45°﹣(1+)0+2﹣1.12.(6分)先化简,再求值:(x+3)(x﹣3)﹣x(x﹣2),其中x=4.13.(6分)解方程组:.14.(6分)如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.15.(6分)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD相交于点O,BO =DO.求证:四边形ABCD是平行四边形.四、解答题(二)(本大题共4小题,每小题7分,共28分)16.(7分)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?17.(7分)如图,直线y=2x﹣6与反比例函数y=的图象交于点A(4,2),与x 轴交于点B.(1)求k的值及点B的坐标;(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.18.(7分)如图,小山岗的斜坡AC的坡度是tanα=,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,求小山岗的高AB(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).19.(7分)观察下列等式:第1个等式:a1==×(1﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a5=;(2)用含有n的代数式表示第n个等式:a n==(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.五、解答题(三)(本大题共3小题,每小题9分,共27分)20.(9分)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片北背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)求使分式+有意义的(x,y)出现的概率;(3)化简分式+,并求使分式的值为整数的(x,y)出现的概率.21.(9分)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD 于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.22.(9分)如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).2012年广东省中考数学试卷参考答案与试题解析一、选择题(本大题共5小题,每小题3分,共15分)在每个小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)﹣5的绝对值是()A.5B.﹣5C.D.﹣【考点】15:绝对值.【分析】根据绝对值的性质求解.【解答】解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.【点评】此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)地球半径约为6400000米,用科学记数法表示为()A.0.64×107B.6.4×106C.64×105D.640×104【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的形式为a×10n,其中1≤a<10,n为整数.【解答】解:6400000=6.4×106.故选:B.【点评】此题考查用科学记数法表示较大的数,其规律为1≤|a|<10,n为比原数的整数位数小1的正整数.3.(3分)数据8、8、6、5、6、1、6的众数是()A.1B.5C.6D.8【考点】W5:众数.【分析】众数指一组数据中出现次数最多的数据,根据众数的定义即可求解.【解答】解:6出现的次数最多,故众数是6.故选:C.【点评】本题主要考查了众数的概念,注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的,比较简单.4.(3分)如图所示的几何体的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】1:常规题型.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:几何体的主视图是:故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.(3分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11D.16【考点】K6:三角形三边关系.【专题】2B:探究型.【分析】设此三角形第三边的长为x,根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.【解答】解:设此三角形第三边的长为x,则10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选:C.【点评】本题考查的是三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.二、填空题(每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.(4分)分解因式:2x2﹣10x=2x(x﹣5).【考点】53:因式分解﹣提公因式法.【分析】首先确定公因式是2x,然后提公因式即可.【解答】解:原式=2x(x﹣5).故答案是:2x(x﹣5).【点评】本题考查了提公因式法,正确确定公因式是关键.7.(4分)不等式3x﹣9>0的解集是x>3.【考点】C6:解一元一次不等式.【分析】先移项,再将x的系数化为1即可.【解答】解:移项得,3x>9,系数化为1得,x>3.故答案为:x>3.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.8.(4分)如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是50°.【考点】M5:圆周角定理.【专题】11:计算题.【分析】根据同弧所对的圆心角等于所对圆周角的2倍,由已知圆周角的度数,即可求出所求圆心角的度数.【解答】解:∵圆心角∠AOC与圆周角∠ABC都对,∴∠AOC=2∠ABC,又∠ABC=25°,则∠AOC=50°.故答案为:50°.【点评】此题考查了圆周角定理的运用,熟练掌握圆周角定理是解本题的关键.9.(4分)若x,y为实数,且满足|x﹣3|+=0,则()2012的值是1.【考点】16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可【解答】解:根据题意得:,解得:.则()2012=()2012=1.故答案是:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.(4分)如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是3﹣π(结果保留π).【考点】L5:平行四边形的性质;MO:扇形面积的计算.【专题】16:压轴题.【分析】过D点作DF⊥AB于点F.可求▱ABCD和△BCE的高,观察图形可知阴影部分的面积=▱ABCD的面积﹣扇形ADE的面积﹣△BCE的面积,计算即可求解.【解答】解:过D点作DF⊥AB于点F.∵AD=2,AB=4,∠A=30°,∴DF=AD•sin30°=1,EB=AB﹣AE=2,∴阴影部分的面积:4×1﹣﹣2×1÷2=4﹣π﹣1=3﹣π.故答案为:3﹣π.【点评】考查了平行四边形的性质,扇形面积的计算,本题的关键是理解阴影部分的面积=▱ABCD的面积﹣扇形ADE的面积﹣△BCE的面积.三、解答题(一)(每小题6分,共30分)11.(6分)计算:﹣2sin45°﹣(1+)0+2﹣1.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】本题涉及零指数幂、负指数幂、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣2×﹣1+=﹣.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数值、绝对值等考点的运算.12.(6分)先化简,再求值:(x+3)(x﹣3)﹣x(x﹣2),其中x=4.【考点】4J:整式的混合运算—化简求值.【专题】2B:探究型.【分析】先把整式进行化简,再把x=4代入进行计算即可.【解答】解:原式=x2﹣9﹣x2+2x=2x﹣9,当x=4时,原式=2×4﹣9=﹣1.【点评】本题考查的是整式的混合运算﹣化简求值,在有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.13.(6分)解方程组:.【考点】98:解二元一次方程组.【分析】先用加减消元法求出x的值,再用代入法求出y的值即可.【解答】解:①+②得,4x=20,解得x=5,把x=5代入①得,5﹣y=4,解得y=1,故此方程组的解为:.【点评】本题考查的是解二元一次方程组,熟知解二元一次不等式组的加减消元法和代入消元法是解答此题的关键.14.(6分)如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.【考点】KH:等腰三角形的性质;N2:作图—基本作图.【专题】2B:探究型.【分析】(1)根据角平分线的作法利用直尺和圆规作出∠ABC的平分线即可;(2)先根据等腰三角形的性质及三角形内角和定理求出∠A的度数,再由角平分线的定义得出∠ABD的度数,再根据三角形外角的性质得出∠BDC的度数即可.【解答】解:(1)①一点B为圆心,以任意长长为半径画弧,分别交AB、BC于点E、F;②分别以点E、F为圆心,以大于EF为半径画圆,两圆相交于点G,连接BG角AC于点D即可.(2)∵在△ABC中,AB=AC,∠ABC=72°,∴∠A=180°﹣2∠ABC=180°﹣144°=36°,∵BD是∠ABC的平分线,∴∠ABD=∠ABC=×72°=36°,∵∠BDC是△ABD的外角,∴∠BDC=∠A+∠ABD=36°+36°=72°.【点评】本题考查的是基本作图及等腰三角形的性质,熟知角平分线的作法是解答此题的关键.15.(6分)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD相交于点O,BO =DO.求证:四边形ABCD是平行四边形.【考点】KD:全等三角形的判定与性质;L6:平行四边形的判定.【专题】14:证明题;16:压轴题.【分析】先根据AB∥CD可知∠ABO=∠CDO,再由BO=DO,∠AOB=∠DOC即可得出△ABO≌△CDO,故可得出AB=CD,进而可得出结论.【解答】证明:∵AB∥CD,∴∠ABO=∠CDO,在△ABO与△CDO中,∵,∴△ABO≌△CDO(ASA),∴AB=CD,∴四边形ABCD是平行四边形.【点评】本题考查的是平行四边形的判定、全等三角形的判定与性质,熟知平行四边形的判定定理是解答此题的关键.四、解答题(二)(本大题共4小题,每小题7分,共28分)16.(7分)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?【考点】AD:一元二次方程的应用.【专题】123:增长率问题.【分析】(1)设年平均增长率为x.根据题意2010年公民出境旅游总人数为5000(1+x)万人次,2011年公民出境旅游总人数5000(1+x)2 万人次.根据题意得方程求解;(2)2012年我国公民出境旅游总人数约7200(1+x)万人次.【解答】解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x.根据题意得:5000(1+x)2 =7200,解得x1 =0.2=20%,x2 =﹣2.2 (不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.(2)如果2012年仍保持相同的年平均增长率,则2012年我国公民出境旅游总人数为7200(1+x)=7200×(1+20%)=8640(万人次).答:预测2012年我国公民出境旅游总人数约8640万人次.【点评】此题考查一元二次方程的应用,根据题意寻找相等关系列方程是关键,难度不大.17.(7分)如图,直线y=2x﹣6与反比例函数y=的图象交于点A(4,2),与x 轴交于点B.(1)求k的值及点B的坐标;(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.【考点】GB:反比例函数综合题.【专题】31:数形结合.【分析】(1)先把(4,2)代入反比例函数解析式,易求k,再把y=0代入一次函数解析式可求B点坐标;(2)假设存在,然后设C点坐标是(a,0),然后利用两点之间的公式可得=,借此无理方程,易得a=3或a=5,其中a=3和B点重合,舍去,故C点坐标可求.【解答】解:(1)把(4,2)代入反比例函数y=,得k=8,把y=0代入y=2x﹣6中,可得x=3,故k=8;B点坐标是(3,0);(2)假设存在,设C点坐标是(a,0),∵AB=AC,∴=,即(4﹣a)2+4=5,解得a=5或a=3(此点与B重合,舍去)故点C的坐标是(5,0).【点评】本题考查了反比函数的知识,解题的关键是理解点与函数的关系,并能灵活使用两点之间的距离公式.18.(7分)如图,小山岗的斜坡AC的坡度是tanα=,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,求小山岗的高AB(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).【考点】T9:解直角三角形的应用﹣坡度坡角问题;TA:解直角三角形的应用﹣仰角俯角问题.【分析】首先在直角三角形ABC中根据坡角的正切值用AB表示出BC,然后在直角三角形DBA中用BA表示出BD,根据BD与BC之间的关系列出方程求解即可.【解答】解:∵在直角三角形ABC中,=tanα=,∴BC=∵在直角三角形ADB中,∴=tan26.6°=0.50即:BD=2AB∵BD﹣BC=CD=200∴2AB﹣AB=200解得:AB=300米,答:小山岗的高度为300米.【点评】本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并求解.19.(7分)观察下列等式:第1个等式:a1==×(1﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a5==;(2)用含有n的代数式表示第n个等式:a n==(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.【考点】37:规律型:数字的变化类.【分析】(1)(2)观察知,找第一个等号后面的式子规律是关键:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1.(3)运用变化规律计算.【解答】解:根据观察知答案分别为:(1);;(2);;(3)a1+a2+a3+a4+…+a100=×(1﹣)+×(﹣)+×(﹣)+×(﹣)+…+×=(1﹣+﹣+﹣+﹣+…+﹣)=(1﹣)=×=.【点评】此题考查寻找数字的规律及运用规律计算.寻找规律大致可分为2个步骤:不变的和变化的;变化的部分与序号的关系.五、解答题(三)(本大题共3小题,每小题9分,共27分)20.(9分)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片北背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)求使分式+有意义的(x,y)出现的概率;(3)化简分式+,并求使分式的值为整数的(x,y)出现的概率.【考点】62:分式有意义的条件;6D:分式的化简求值;X6:列表法与树状图法.【分析】(1)根据题意列出图表,即可表示(x,y)所有可能出现的结果;(2)根据(1)中的树状图求出使分式+有意义的情况,再除以所有情况数即可;(3)先化简,再找出使分式的值为整数的(x,y)的情况,再除以所有情况数即可.【解答】解:(1)用列表法表示(x,y)所有可能出现的结果如下:﹣2﹣11﹣2(﹣2,﹣2)(﹣1,﹣2)(1,﹣2)﹣1(﹣2,﹣1)(﹣1,﹣1)(1,﹣1)1(﹣2,1)(﹣1,1)(1,1)(2)∵使分式+有意义的(x,y)有(﹣1,﹣2)、(1,﹣2)、(﹣2,﹣1)、(﹣2,1)4种情况,∴使分式+有意义的(x,y)出现的概率是,(3)∵+=(x≠±y),使分式的值为整数的(x,y)有(1,﹣2)、(﹣2,1)2种情况,∴使分式的值为整数的(x,y)出现的概率是.【点评】此题考查了树状图法与列表法求概率.此题难度不大,解题的关键是根据题意画出树状图或列出表格,注意树状图法与列表法可以不重不漏地表示出所有等可能的结果,注意用到的知识点为:概率=所求情况数与总情况数之比.21.(9分)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD 于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.【考点】KD:全等三角形的判定与性质;LB:矩形的性质;PB:翻折变换(折叠问题);T7:解直角三角形.【专题】16:压轴题;2B:探究型.【分析】(1)根据翻折变换的性质可知∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,故可得出结论;(2)由(1)可知GD=GB,故AG+GB=AD,设AG=x,则GB=8﹣x,在Rt△ABG中利用勾股定理即可求出AG的长,进而得出tan∠ABG的值;(3)由△AEF是△DEF翻折而成可知EF垂直平分AD,故HD=AD=4,再根据tan∠ABG即可得出EH的长,同理可得HF是△ABD的中位线,故可得出HF的长,由EF=EH+HF即可得出结论.【解答】(1)证明:∵△BDC′由△BDC翻折而成,∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,∴∠ABG=∠ADE,在△ABG与△C′DG中,∵,∴△ABG≌△C′DG(AAS);(2)解:∵由(1)可知△ABG≌△C′DG,∴GD=GB,∴AG+GB=AD,设AG=x,则GB=8﹣x,在Rt△ABG中,∵AB2+AG2=BG2,即62+x2=(8﹣x)2,解得x=,∴tan∠ABG===;(3)解:∵△AEF是△DEF翻折而成,∴EF垂直平分AD,∴HD=AD=4,∴tan∠ABG=tan∠ADE=,∴EH=HD×=4×=,∵EF垂直平分AD,AB⊥AD,∴HF是△ABD的中位线,∴HF=AB=×6=3,∴EF=EH+HF=+3=.【点评】本题考查的是翻折变换、全等三角形的判定与性质、矩形的性质及解直角三角形,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.22.(9分)如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).【考点】HF:二次函数综合题.【专题】16:压轴题.【分析】(1)已知抛物线的解析式,当x=0,可确定C点坐标;当y=0时,可确定A、B 点的坐标,进而确定AB、OC的长.(2)直线l∥BC,可得出△AED、△ABC相似,它们的面积比等于相似比的平方,由此得到关于s、m的函数关系式;根据题干条件:点E与点A、B不重合,可确定m的取值范围.(3)①首先用m列出△AEC的面积表达式,△AEC、△AED的面积差即为△CDE的面积,由此可得关于S△CDE、m的函数关系式,根据函数的性质可得到S△CDE的最大面积以及此时m的值;②过E做BC的垂线EM,这个垂线段的长即为与BC相切的⊙E的半径,可根据相似三角形△BEF、△BCO得到的相关比例线段求得该半径的值,由此得解.【解答】解:(1)已知:抛物线y=x2﹣x﹣9;当x=0时,y=﹣9,则:C(0,﹣9);当y=0时,x2﹣x﹣9=0,得:x1=﹣3,x2=6,则:A(﹣3,0)、B(6,0);∴AB=9,OC=9.(2)∵ED∥BC,∴△AED∽△ABC,∴=()2,即:=()2,得:s=m2(0<m<9).(3)解法一:∵S△ACE=AE•OC=m×9=m,∴S△CDE=S△ACE﹣S△ADE=m﹣m2=﹣(m﹣)2+.∵0<m<9,∴当m=时,S△CDE取得最大值,最大值为.此时,BE=AB﹣AE=9﹣=.记⊙E与BC相切于点M,连接EM,则EM⊥BC,设⊙E的半径为r.在Rt△BOC中,BC===3.∵∠OBC=∠MBE,∠COB=∠EMB=90°.∴△BOC∽△BME,∴=,∴=,∴r==.∴所求⊙E的面积为:π()2=π.解法二:∵S△AEC=AE•OC=m×9=m,∴S△CDE=S△AEC﹣S△ADE=m﹣m2=﹣(m﹣)2+.∵0<m<9,∴当m=时,S△CDE取得最大值,最大值为.此时,BE=AB﹣AE=9﹣=.∴S△EBC=S△ABC=.如图2,记⊙E与BC相切于点M,连接EM,则EM⊥BC,设⊙E的半径为r.在Rt△BOC中,BC==.∵S△EBC=BC•EM,∴×r=,∴r==.∴所求⊙E的面积为:π()2=π.【点评】该题主要考查了二次函数的性质、相似三角形的性质、图形面积的求法等综合知识.在解题时,要多留意图形之间的关系,有些时候将所求问题进行时候转化可以大大的降低解题的难度.。
广东省2012年中考数学试题精析
2012年中考数学精析系列——广东卷(本试卷满分120分,考试时间100分钟)一.选择题(共5小题,每小题3分,共15分)3.(2012广东省3分)数据8、8、6、5、6、1、6的众数是【】A. 1 B. 5 C. 6 D.8【答案】C。
【考点】众数。
【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是6,故这组数据的众数为6。
故选C。
4.(2012广东省3分)如图所示几何体的主视图是【】A.B.C.D.【答案】B。
【考点】简单组合体的三视图。
【分析】从正面看,此图形的主视图有3列组成,从左到右小正方形的个数是:1,3,1。
故选B。
5.(2012广东省3分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是【】A. 5 B. 6 C. 11 D.16【答案】C。
【考点】三角形三边关系。
【分析】设此三角形第三边的长为x,则根据三角形两边之和大于第三边,两边之差小于第三边的构成条件,得10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件。
故选C。
二.填空题(共5小题,每小题4分,共20分)6.(2012广东省4分)分解因式:2x2﹣10x=▲ .【答案】2x(x﹣5)。
【考点】提公因式法因式分解。
【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式。
因此,直接提取公因式2x即可:2x2﹣10x==2x(x﹣5)。
7.(2012广东省4分)不等式3x﹣9>0的解集是▲ .【答案】x>3。
【考点】解一元一次不等式。
【分析】移项得,3x>9,系数化为1得,x>3。
故答案为:x>3.8.(2012广东省4分)如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是▲ .【答案】50°。
【考点】圆周角定理。
【分析】∵圆心角∠AOC 与圆周角∠ABC 都对弧 AC, ∴根据同弧所对圆周角是圆心角一半的性质,得∠AOC =2∠ABC , 又∵∠ABC =25°,∴∠AOC =50°。
2012年广东省中考数学试卷分析报告
2012年广东省中考数学试卷分析报告坦洲实验中学邓凯通过市平均分来判断,2012年的中考数学试题比前几年的数学试题难度有所降低,但是题型没有改变,整章试卷力求稳定,基本没有创新。
而且改编试题较多,有点让人失望。
不过,反过来想,对我们中考备考也不一定是件坏事。
因此,本报告分三个部分,第一部分是试题的传承在哪里?第二部分是试题的创新在哪里?第三部分是给2013年中考备考的个人不成熟的建议。
此分析为个人意见,不当之处,恳请各位同事、领导和专家批评指正。
一、试题的传承在哪里?(一)关于“数”的试题,题型连续三年基本相同。
(二)关于“式”的试题,题型与前两年相比,有同有异,加强了化简求值与分式计算。
(三)关于“方程”的试题,题型连续三年没有改变。
(四)关于“应用题”的试题,题型连续10年基本相同,题序基本不变,但方程模型每年有变化。
(五)关于“函数”的试题,题型连续10年基本相同。
(六)关于“三角形”的试题,年年都是几何试题的重点,今年也不例外。
(七)关于“四边形”的试题,题型连续10年基本相同。
今年略有减少(八)关于“圆”的试题,年年都有变化。
(九)关于“图形基本变换”的试题,今年仍然考了尺规作图,而且由连续几年的“旋转”改为“轴对称”。
(十)关于“相似”的试题,今年没有考查。
(十一)关于“图形与证明”的试题,今年单独考查了平行四边形的判定。
(十二)关于“统计与概率”的试题,两个考点,题型一小一大,交替考查。
二、|试题的创新在哪里?广东省以及中山市的中考数学试卷,基本是通过改编达成创新。
创新的类型包括:背景创新,例如第15题;材料创新,例如第16题、第20题、第22题等;设问创新,例如第19题。
由此,给我们的感觉是:改编的试题即使创新,也基本上是没有新意。
这给了我们比较有利的提示——备考有章可循;同时,我们要通过2012年试题的传承与创新,得到一种宝贵经验,即要注意把题讲活,即要注意重点题型的训练以及重要数学思想方法的训练。
数学质量分析报告(精选11篇)
数学质量分析报告(精选11篇)数学质量分析报告篇1一、试卷的基本情况1、试卷结构试卷整体结构合理,贴近教材的呈现方式,层次清楚,重点突出,同时注意结合具体问题背景考察学生解决实际问题的能力。
试题满分100分。
2、试卷特点(1)全卷试题覆盖面广,重视对基础知识、基本技能的考核。
重视考查“必备”的基础知识和基本技能,关注学生的学习兴趣,改变了课堂上过分注重机械的技能训练。
(2)试卷层次分明,难易有度。
全卷试题考察学生的知识面较广,试题形式多样灵活,一年级学生想得100分不容易,能较好的反映教师在日常教学中优势与不足,体现一定的坡度,能较好的体现学生的整体素质。
(3)试卷具有人文特点。
试卷注意了学生的情感和心理,具有人文的特点。
试卷改变了过去“冷、硬”的面孔,卷首给出了激发学生兴趣和调节心理的语言,还提供了生活中图片,图文并茂。
(4)关注数学应用的社会价值。
(5)考查学生对数据、图表的处理能力和表达能力。
要求学生正确地获取、理解信息,并通过处理数据、图表所表达的信息去表达解决问题。
(6)设计了考查数学思想方法的问题。
二、效果全班31人经过统计,此次考试的及格率达100%,优秀率都在75%以上,平均分是84分。
三、体会1、学生的思维受定势的影响比较严重。
具体反映在比较简单的与例题类似的典型题目学生解答正确率高,对于比较陌生的题目解答则不太理想,正确率较低。
2、学生综合运用知识及分析、判断的能力较差。
四、学生感想经调查,大部分学生走出考场时,自我感觉良好,认为很好考,可是有少数平时读题认真的学生认为很难,在检查时发现很多错误,如果不仔细很容易犯错。
还有学生说题目的字太小,太密集,很难认。
大部分字平时都已经认识了,也没必要写拼音了。
五、教学建议(1)从统计的数据和学生解题时暴露出问题可以发现教师用新理念实施新课程的教学是有效的,每一位教师都认识到必须进一步认真学习新课标,更新旧的教学观,领悟新教材的呈现方式对教学的要求,关注学生的学习过程。
广东省中考数学科试题分析及教学建议
六、考试方式和试卷结构
考试时间为100分钟.全卷满分120分 (在120分中代数约占60分;几何约占50分;统计与概率约占
10分.)
选择题
10道
共30分
(四选一型 的单项选择
题)
填空题
6道
共24分
(只要求直 接填写结果)
解 (一)
3题
答
题 (二)
3题
每题6分,共18分 每题7分,共21分
(三)
3题
4. 思想方法 (2)数形结合思想 第22题:
第23题:
(二) 2019年省中考题试题分析
4. 思想方法 (3)整体思想 第14题:
第23题:
(二) 2019年省中考题试题分析
4. 思想方法 (4)函数与方程思想 第21题:
第23题:
(二) 2019年省中考题试题分析
4. 思想方法 (5)化归与转化思想 第21题:转化为方程和不等式 第22题: 转化图形求面积 第23题:转化为方程求表达式和点的坐标 第24题: AB=BG 第25题:转化为方程求点的坐标
五、考试内容 第一部分 数与代数
数
1. 数与式
与 代 2. 方程与不等式
数
3. 函数
有理数 实数 代数式 整式与分式 方程与方程组 不等式与不等式组
函数 一次函数 反比例函数 二次函数
五、考试内容 第二部分 空间与图形
点、线、面、角
空 间
1. 图形的性质
与
相交线与平行线 三角形 四边形 圆 尺规作图
1. 全面 考查内容涉及代数、几何、统计与
概率;
其分值分布代数约占60分;几何 约占50分;统计与概率约占10分.
(二) 2019年省中考题试题分析
广东数学中考命题分析
题号
题型
分值
总分值
1--10
选择题
3分/题
30
11--16
填空题
4分/题
24
17--19
解答题(一)
6分/题
18
20--22
解答题(二)
7分/题
21
23--25
解答题(三)
9分/题
27
4
2016加 油!
一、广东省中考数学试题特点
2、试题的难易程度 中考主要考查的内容包括:数学的基本知识和基本技能;数学 的活动经验;数学思考;对数学的基本认识;解决问题的能力 等。 以近年中考题为例:试题紧扣课标,很多试题源于课本(如: 2014年省题7题,2015省题5题 ),
(2015年广东3分)如图7图,□ABCD中,下列说法一定
正确的是( )
A
A、AC=BD B、AC⊥BD
C、AB=CD D、AB=BC
题7图
B
【答案】C.
D C
5
2016加 油!
一、广东省中考数学试题特点
(2015年广东3分)下列所述图形中,既是中心对称图形,又是轴对称图形的是 【】 A. 矩形 B. 平行四边形 C. 正五边形 D. 正三角形 【答案】A. 【分析】这些题选用的是同学们课本中最常见、最特殊的几种图形,紧扣课本.
35
2016加 油!
二、近年中考数学试题考点分布及趋势
(二)近年广东省中考题按单元知识点分布统计及考点预测 2.第二单元:方程与不等式
36
2016加 油!
二、近年中考数学试题考点分布及趋势
(二)近年广东省中考题按单元知识点分布统计及考点预测 2.第二单元:方程与不等式
37
中考分析报告
中考分析报告(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如工作计划、工作总结、演讲稿、合同范本、心得体会、条据文书、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical sample essays for everyone, such as work plans, work summaries, speech drafts, contract templates, personal experiences, policy documents, emergency plans, teaching materials, complete essays, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!中考分析报告中考分析报告(精选4篇)中考分析报告篇1一、试卷质量分析。
七年级数学试卷分析报告
七年级数学试卷分析报告试卷分析是七年级数学考试过程中的重要环节。
评价一套试卷是否达到预期的效果,必须对试卷进行详尽地分析。
下面是小编为大家精心整理的七年级数学试卷的分析报告,仅供参考。
七年级数学试卷分析报告篇一一、基本情况1、题型与题量全卷共有三种题型,分别为选择题、填空题和解答题。
其中选择题有8小题,每题3分,共24,空题有8个小题,每题3分,共24分;解答题有5个大题,共72分,全卷合计26题,满分120分,考试用时120分。
2、内容与范围从考查内容看,几乎覆盖了湘教版七年级上册册数学教材中所有主要的知识点,而且试题偏重于考查教材中的主要章节,如有理数、代数式、一元一次方程、一元一次不等式、数据的统计和分析。
试题所考查的知识点隶属于数与代数、空间与图形、统计与概率、实践与综合应用四个领域。
纵观全卷,所有试题所涉知识点均遵循《数学新课程标准》的要求。
3、试卷特点等方面:从整体上看,本次试题难度适中,符合学生的认知水平。
试题注重基础,内容紧密联系生活实际,注重了趣味性、实践性和创新性。
突出了学科特点,以能力立意命题,体现了数学课程标准精神。
有利于考察数学基础和基本技能的掌握程度,有利于教学方法和学法的引导和培养。
有利于良好习惯和正确价值观形成。
其具体特点如下:(1)强化知识体系,突出主干内容。
考查学生基础知识的掌握程度,是检验教师教与学生学的重要目标之一。
学生基础知识和基本技能水平的高低,关系到今后各方面能力水平的发展。
本次试题以基础知识为主,既注意全面更注意突出重点,对主干知识的考查保证了较高的比例,并保持了必要的深度。
(2)贴近生活实际,体现应用价值。
“人人学有价值的数学,”这是新课标的一个基本理念。
本次试题依据新课标的要求,从学生熟悉的生活索取题材,把枯燥的知识生活化、情景化,通过填空、选择、解决问题等形式让学生从中体验、感受学习数学知识的必要性、实用性和应用价值。
(3)巧设开放题目,展现个性思维。
中考数学试卷考纲考点分析
中考数学试卷考纲考点分析中考数学试卷考纲考点分析基础数学的知识与运用是个人与团体生活中不可或缺的一部分。
其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。
从那时开始,其发展便持续不断地有小幅度的进展。
今天在这给大家整理了一些中考数学试卷考纲考点分析,我们一起来看看吧!中考数学试卷考纲考点分析对于任意一个实数x,都对应着的角(弧度制中等于这个实数),而这个角又对应着确定的余割值cscx与它对应,按照这个对应法则建立的函数称为余割函数。
记作f(x)=cscxf(x)=cscx=1/sinx相信同学们看过上述的初中数学余割函数的基础公式定理内容之后,有所感悟了吧。
其实和正弦型函数的解析式差不多,余弦型函数的解析式各常数值对函数图像的影响很大。
余弦型函数余弦型函数解析式:y=Acos(ωx+φ)+h各常数值对函数图像的影响:φ(初相位):决定波形与X轴位置关系或横向移动距离(左加右减)ω:决定周期(最小正周期T=2π/|ω|)A:决定峰值(即纵向拉伸压缩的倍数)h:表示波形在Y轴的位置关系或纵向移动距离(上加下减) 作图方法运用“五点法”作图“五点作图法”即取ωx+φ当分别取0,π/2,π,3π/2,2π时y的值.在考试当中,余弦型函数的解析式经常运用在函数的综合大题中,是拿分的关键。
在直角坐标系中定义的余弦函数图像,我们相对更容易分析其的对称性特点。
图象性质1)对称轴:关于直线x=kπ,k∈Z对称2)中心对称:关于点(π/2+kπ,0),k∈Z对称作法一、运用五点法做出图象。
二、利用正弦函数导出余弦函数。
①可以由诱导公式六:sin(π/2-α)=cosα导出y=cosx=sin(π/2+x)②因此,y=cosx的图像就相对sinx左移π/2个单位(上增下减是y值的变化,左增右减是x值的变化)初中数学余弦函数的图象的作法有上述两大要点,图像为解题提供了直观的思路。
性质(1)定义域:{x|x≠kπ,k∈Z}(2)值域:实数集R(3)奇偶性:奇函数,可由诱导公式cot(-x)=-cotx推出图像关于(kπ/2,0)k∈z对称,实际上所有的零点和使cotx无意义的点都是它的对称中心(4)周期性是周期函数,周期为kπ(k∈Z且k≠0),最小正周期T=π;(5)单调性在每一个开区间(kπ,(k+1)π),k∈Z上都是减函数,在整个定义域上不具有单调性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年广东省中考数学试卷分析报告
坦洲实验中学邓凯
通过市平均分来判断,2012年的中考数学试题比前几年的数学试题难度有所降低,但是题型没有改变,整章试卷力求稳定,基本没有创新。
而且改编试题较多,有点让人失望。
不过,反过来想,对我们中考备考也不一定是件坏事。
因此,本报告分三个部分,第一部分是试题的传承在哪里?第二部分是试题的创新在哪里?第三部分是给2013年中考备考的个人不成熟的建议。
此分析为个人意见,不当之处,恳请各位同事、领导和专家批评指正。
一、试题的传承在哪里?
(一)关于“数”的试题,题型连续三年基本相同。
(二)关于“式”的试题,题型与前两年相比,有同有异,加强了化简求值与分式计算。
(三)关于“方程”的试题,题型连续三年没有改变。
(四)关于“应用题”的试题,题型连续10年基本相同,题序基本不变,但方程模型每年有变化。
(五)关于“函数”的试题,题型连续10年基本相同。
(六)关于“三角形”的试题,年年都是几何试题的重点,今年也不例外。
(七)关于“四边形”的试题,题型连续10年基本相同。
今年略有减少
(八)关于“圆”的试题,年年都有变化。
(九)关于“图形基本变换”的试题,今年仍然考了尺规作图,而且由连续几年的“旋转”改为“轴对称”。
(十)关于“相似”的试题,今年没有考查。
(十一)关于“图形与证明”的试题,今年单独考查了平行四边形的判定。
(十二)关于“统计与概率”的试题,两个考点,题型一小一大,交替考查。
二、|试题的创新在哪里?
广东省以及中山市的中考数学试卷,基本是通过改编达成创新。
创新的类型包括:背景创新,例如第15题;材料创新,例如第16题、第20题、第22题等;设问创新,例如第19题。
由此,给我们的感觉是:改编的试题即使创新,也基本上是没有新意。
这给了我们比较有利的提示——备考有章可循;同时,我们要通过2012年试题的传承与创新,得到一种宝贵经验,即要注意把题讲活,即要注意重点题型的训练以及重要数学思想方法的训练。
三、给2012年中考复习的建议
(一)警惕三种失误
1、学生会做的题做不对。
即“确定会考,训练没有加强”。
2、学生熟悉的题不会做。
即“知道会考,没有研究变式”。
3、让学生见过更多的题(型)。
“没有海选好题,没有针对训练”。
因此,我们对试题的命题方向基本掌握,对于可能的题型也基本把握。
还对命题者可能注意的试题进行训练.
(二)强调三种对策
1、年年考的题,穷尽知识点,全面训练,人人过关
2、轮换考的题,比较知识点,系统训练,重点过关
3、重点的规律题,选编典型题,专题专练,方法过关
因此,建议我们要坚决执行学校“三轮复习”对策,保证复习的高效率。
(三)探讨几个重点专题
1、“双压轴题”的趋势很明显。
一个代数综合,一个几何综合。
2、把“探究规律”作为专题,一定弄过关。
数的规律、式的规律、图的规律及其数学思想方法精练。
3、通过“对折”和“旋转”设计几何综合题,值得深入推敲。
因此,建议在多年备考的经验的基础,要组织打阵地战、攻坚战!。