七年级上册天津市南开翔宇学校数学期末试卷试卷(word版含答案)
天津市南开中学七年级上册数学期末试题及答案解答
天津市南开中学七年级上册数学期末试题及答案解答一、选择题1.根据等式的性质,下列变形正确的是( ) A .若2a =3b ,则a =23b B .若a =b ,则a +1=b ﹣1 C .若a =b ,则2﹣3a =2﹣3bD .若23a b=,则2a =3b 2.对于方程12132x x +-=,去分母后得到的方程是( ) A .112x x -=+ B .63(12)x x -=+ C .233(12)x x -=+ D .263(12)x x -=+3.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠4.如图,数轴的单位长度为1,点A 、B 表示的数互为相反数,若数轴上有一点C 到点B 的距离为2个单位,则点C 表示的数是( )A .-1或2B .-1或5C .1或2D .1或55.下列调查中,适宜采用全面调查的是() A .对现代大学生零用钱使用情况的调查 B .对某班学生制作校服前身高的调查 C .对温州市市民去年阅读量的调查D .对某品牌灯管寿命的调查6.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3P ⋯,如图所示排列,根据这个规律,点2014P 落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上7.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为( ) 4abc﹣23 …A .4B .3C .0D .﹣2 8.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A .(2,1)B .(3,3)C .(2,3)D .(3,2)9.下列方程的变形正确的有( ) A .360x -=,变形为36x =B .533x x +=-,变形为42x =C .2123x -=,变形为232x -= D .21x =,变形为2x =10.下列变形中,不正确的是( )A .若x=y ,则x+3=y+3B .若-2x=-2y ,则x=yC .若x ym m=,则x y = D .若x y =,则x y m m= 11.下列计算正确的是( ) A .-1+2=1 B .-1-1=0C .(-1)2=-1D .-12=112.如图,C ,D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )A .3 cmB .6 cmC .11 cmD .14 cm二、填空题13.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________. 14.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.15.若12x y =⎧⎨=⎩是方程组72ax by bx ay +=⎧⎨+=⎩的解,则+a b =_________.16.已知23,9n mn aa -==,则m a =___________.17.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若OC 6=,则线段AB 的长为______.18.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程_____.19.将520000用科学记数法表示为_____. 20.已知二元一次方程2x-3y=5的一组解为x ay b=⎧⎨=⎩,则2a-3b+3=______. 21.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.22.观察“田”字中各数之间的关系:则c 的值为____________________.23.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为______. 24.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.三、解答题25.解不等式组()355232x x x +≤⎧⎨+>-⎩,并在数轴上表示解集.26.解方程:(1)()43203x x --= (2)23211510x x -+-= 27.先化简,再求值:22111(83)3()223x xy x xy y ---+,其中2x =-,1y =. 28.解下列方程或方程组: (1)3(2x ﹣1)=2(1﹣x )﹣1(2)111234x y x y -+⎧+=⎪⎨⎪+=⎩29.已知,,,A B C D 四点如图所示,请按要求画图.(1)画直线AB ;(2)若所画直线AB 表示一条河流,点,C D 分别表示河流两旁的两块稻田,要在河岸边某一位置开渠引水灌溉稻田,请在河流AB 上确定点P ,使得在点P 处开渠到两块稻田,C D 的距离之和最短,并说明理由.30.如图,O 为直线AB 上的一点,∠AOC =48°24′,OD 平分∠AOC ,∠DOE =90°. (1)求∠BOD 的度数;(2)OE 是∠BOC 的平分线吗?为什么?四、压轴题31.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.32.如图1,线段AB 的长为a .(1)尺规作图:延长线段AB 到C ,使BC =2AB ;延长线段BA 到D ,使AD =AC .(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB 所在的直线画数轴,以点A 为原点,若点B 对应的数恰好为10,请在数轴上标出点C ,D 两点,并直接写出C ,D 两点表示的有理数,若点M 是BC 的中点,点N 是AD 的中点,请求线段MN 的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D 处开始,在点C ,D 之间进行往返运动;乙从点N 开始,在N ,M 之间进行往返运动,甲、乙同时开始运动,当乙从M 点第一次回到点N 时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.33.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
天津市南开翔宇学校七年级上学期 压轴题 期末复习数学试题及答案
天津市南开翔宇学校七年级上学期 压轴题 期末复习数学试题及答案一、压轴题1.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______;(3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.2.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ?3.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON 的度数为 °.图3中∠MON 的度数为 °.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC 和∠BOD 的和为90°,所以我们容易得到∠MOC 和∠NOD 的和,这样就能求出∠MON 的度数. 小华:设∠BOD 为x °,我们就能用含x 的式子分别表示出∠NOD 和∠MOC 度数,这样也能求出∠MON 的度数.(2)请你根据他们的谈话内容,求出图1中∠MON 的度数.类比拓展 受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC 、∠BOD 的平分线OM 、ON ,他们认为也能求出∠MON 的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON 的度数;若不同意,请说明理由.4.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.(3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.5.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =22,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)出数轴上点B 表示的数 ;点P 表示的数 (用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.6.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.7.已知多项式3x6﹣2x2﹣4的常数项为a,次数为b.(1)设a与b分别对应数轴上的点A、点B,请直接写出a=,b=,并在数轴上确定点A、点B的位置;(2)在(1)的条件下,点P以每秒2个单位长度的速度从点A向B运动,运动时间为t 秒:①若PA﹣PB=6,求t的值,并写出此时点P所表示的数;②若点P从点A出发,到达点B后再以相同的速度返回点A,在返回过程中,求当OP=3时,t为何值?8.已知,如图,A、B、C分别为数轴上的三点,A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,C点在B点左侧,C点到A点距离是B点到A点距离的4倍.(1)求出数轴上B点对应的数及AC的距离.(2)点P 从A 点出发,以3单位/秒的速度向终点C 运动,运动时间为t 秒.①当P 点在AB 之间运动时,则BP = .(用含t 的代数式表示)②P 点自A 点向C 点运动过程中,何时P ,A ,B 三点中其中一个点是另外两个点的中点?求出相应的时间t .③当P 点运动到B 点时,另一点Q 以5单位/秒的速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直.接.写.出.相遇时P 点在数轴上对应的数9.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线.(1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,< 且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.10.如图,己知数轴上点A 表示的数为8,B 是数轴上一点,且AB=22.动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B 表示的数____,点P 表示的数____(用含t 的代数式表示);(2)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q?(列一元一次方程解应用题)(3)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问 秒时P 、Q 之间的距离恰好等于2(直接写出答案)(4)思考在点P 的运动过程中,若M 为AP 的中点,N 为PB 的中点.线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.11.射线OA 、OB 、OC 、OD 、OE 有公共端点O .(1)若OA 与OE 在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n <72),OB 平分∠AOE,OD 平分∠COE(如图2),求∠BOD 的度数;(3)如图3,若∠AOE=88°,∠BO D =30°,射OC 绕点O 在∠AOD 内部旋转(不与OA 、OD 重合).探求:射线OC 从OA 转到OD 的过程中,图中所有锐角的和的情况,并说明理由.12.已知:A、O、B三点在同一条直线上,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM所在直线恰好平分∠BOC时,时间t的值为(直接写结果).13.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A点与C点重合,则点B与数______表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C 之间的距离表示为BC.则AB=______,AC=______,BC=______.(用含t的代数式表示).(4)直接写出点B为AC中点时的t的值.14.如图,在数轴上点A表示数a,点B表示数b,AB表示A点和B点之间的距离,且a,b满足|a+2|+(b+3a)2=0.(1)求A,B两点之间的距离;(2)若在线段AB上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一小球甲从点A处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.设运动时间为t秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t的代数式表示)②求甲乙两小球到原点距离相等时经历的时间.15.已知:如图,点A 、B 分别是∠MON 的边OM 、ON 上两点,OC 平分∠MON ,在∠CON 的内部取一点P (点A 、P 、B 三点不在同一直线上),连接PA 、PB .(1)探索∠APB 与∠MON 、∠PAO 、∠PBO 之间的数量关系,并证明你的结论; (2)设∠OAP=x°,∠OBP=y°,若∠APB 的平分线PQ 交OC 于点Q ,求∠OQP 的度数(用含有x 、y 的代数式表示).【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)4;(2)12或72;(3)27或2213或2 【解析】【分析】(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =【详解】解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24,∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2=(3)情况一:3t+4t=2,解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13=情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)解得:t=2.综上所述:t 的值为,2或27或2213. 【点睛】本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.2.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm.【解析】【分析】(1)根据数轴的特点,所以可以求出点P ,Q 的位置;(2)根据向左移动用减法,向右移动用加法,即可得到答案;(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案.【详解】解:(1)如图所示: .(2)由(1)可知,点P 为2-,点Q 为5;∴移动后的点P 为:2x --;移动后的点Q 为:53x +;∴线段PQ 的长为:53(2)47x x x +---=+;(3)根据题意可知,当PQ=2cm 时可分为两种情况:①当点P 在点Q 的左边时,有(21)72t -=-,解得:5t =;②点P 在点Q 的右边时,有(21)72t -=+,解得:9t =;综上所述,当运动时间为5秒或9秒时,PQ=2cm.本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.3.(1)135,135;(2)∠MON=135°;(3)同意,∠MON=(90°﹣12x°)+x°+(45°﹣12x°)=135°.【解析】【分析】(1)由题意可得,∠MON=12×90°+90°,∠MON=12∠AOC+12∠BOD+∠COD,即可得出答案;(2)根据“OM和ON是∠AOC和∠BOD的角平分线”可求出∠MOC+∠NOD,又∠MON =(∠MOC+∠NOD)+∠COD,即可得出答案;(3)设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,进而求出∠MOC和∠BON,又∠MON=∠MOC+∠BOC+∠BON,即可得出答案.【详解】解:(1)图2中∠MON=12×90°+90°=135°;图3中∠MON=1 2∠AOC+12∠BOD+∠COD=12(∠AOC+∠BOD)+90°=1290°+90°=135°;故答案为:135,135;(2)∵∠COD=90°,∴∠AOC+∠BOD=180°﹣∠COD=90°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC+∠NOD=12∠AOC+12∠BOD=12(∠AOC+∠BOD)=45°,∴∠MON=(∠MOC+∠NOD)+∠COD=45°+90°=135°;(3)同意,设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC=12∠AOC=12(180°﹣x°)=90°﹣12x°,∠BON=12∠BOD=12(90°﹣x°)=45°﹣12x°,∴∠MON=∠MOC+∠BOC+∠BON=(90°﹣12x°)+x°+(45°﹣12x°)=135°.【点睛】本题考查的是对角度关系及运算的灵活运用和掌握,此类问题的练习有利于学生更好的对4.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)] =(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032.(4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.5.(1)﹣14,8﹣5t;(2)2.5或3秒时P、Q之间的距离恰好等于2;(3)点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,其值为11,见解析.【解析】【分析】(1)根据已知可得B点表示的数为8﹣22;点P表示的数为8﹣5t;(2)设t秒时P、Q 之间的距离恰好等于2.分①点P、Q相遇之前和②点P、Q相遇之后两种情况求t值即可;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC﹣BC=AB,列出方程求解即可;(3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8﹣22=﹣14,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8﹣5t.故答案为:﹣14,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=22,解得t=2.5;②点P、Q相遇之后,由题意得3t﹣2+5t=22,解得t=3.答:若点P、Q同时出发,2.5或3秒时P、Q之间的距离恰好等于2;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=22,解得:x=11,∴点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=12×22=11;②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=11,∴线段MN的长度不发生变化,其值为11.【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.6.探究三:16,6;结论:n²,;应用:625,300.【解析】【分析】探究三:模仿探究一、二即可解决问题;结论:由探究一、二、三可得:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有个;边长为2的正三角形共有个;应用:根据结论即可解决问题.【详解】解:探究三:如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有个;边长为2的正三角形有个.结论:连接边长为的正三角形三条边的对应等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第层有个,共有个;边长为2的正三角形,共有个.应用:边长为1的正三角形有=625(个),边长为2的正三角形有(个).故答案为探究三:16,6;结论:n², ;应用:625,300.【点睛】本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题.7.(1)﹣4,6;(2)①4;②1319,22或【解析】【分析】(1)根据多项式的常数项与次数的定义分别求出a,b的值,然后在数轴上表示即可;(2)①根据PA﹣PB=6列出关于t的方程,解方程求出t的值,进而得到点P所表示的数;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)P在原点右边;(Ⅱ)P在原点左边.分别求出点P运动的路程,再除以速度即可.【详解】(1)∵多项式3x6﹣2x2﹣4的常数项为a,次数为b,∴a=﹣4,b=6.如图所示:故答案为﹣4,6;(2)①∵PA=2t,AB=6﹣(﹣4)=10,∴PB=AB﹣PA=10﹣2t.∵PA﹣PB=6,∴2t﹣(10﹣2t)=6,解得t=4,此时点P所表示的数为﹣4+2t=﹣4+2×4=4;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)如果P在原点右边,那么AB+BP=10+(6﹣3)=13,t=132;(Ⅱ)如果P在原点左边,那么AB+BP=10+(6+3)=19,t=192.【点睛】本题考查了一元一次方程的应用,路程、速度与时间关系的应用,数轴以及多项式的有关定义,理解题意利用数形结合是解题的关键.8.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣483 4【解析】【分析】(1)根据A点对应的数为60,B点在A点的左侧,AB=30求出B点对应的数;根据AC=4AB求出AC的距离;(2)①当P点在AB之间运动时,根据路程=速度×时间求出AP=3t,根据BP=AB﹣AP 求解;②分P点是A、B两个点的中点;B点是A、P两个点的中点两种情况讨论即可;③根据P、Q两点的运动速度与方向可知Q点在往返过程中与P点相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.根据AQ ﹣BP=AB列出方程;第二次相遇是点Q到达C点后返回到A点的途中.根据CQ+BP=BC列出方程,进而求出P点在数轴上对应的数.【详解】(1)∵A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,∴B点对应的数为60﹣30=30;∵C点到A点距离是B点到A点距离的4倍,∴AC=4AB=4×30=120;(2)①当P点在AB之间运动时,∵AP=3t,∴BP=AB﹣AP=30﹣3t.故答案为30﹣3t;②当P点是A、B两个点的中点时,AP=12AB=15,∴3t=15,解得t=5;当B点是A、P两个点的中点时,AP=2AB=60,∴3t=60,解得t =20. 故所求时间t 的值为5或20;③相遇2次.设Q 点在往返过程中经过x 秒与P 点相遇. 第一次相遇是点Q 从A 点出发,向C 点运动的途中. ∵AQ﹣BP =AB , ∴5x﹣3x =30, 解得x =15,此时P 点在数轴上对应的数是:60﹣5×15=﹣15; 第二次相遇是点Q 到达C 点后返回到A 点的途中. ∵CQ+BP=BC , ∴5(x ﹣24)+3x =90, 解得x =1054, 此时P 点在数轴上对应的数是:30﹣3×1054=﹣4834. 综上,相遇时P 点在数轴上对应的数为﹣15或﹣4834. 【点睛】本题考查了一元一次方程的应用,行程问题相等关系的应用,线段中点的定义,进行分类讨论是解题的关键.9.(1)图1中∠AOD=60°;图2中∠AOD=10°; (2)图1中∠AOD=n m 2+;图2中∠AOD=n m2-. 【解析】 【分析】(1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=n m2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m2+,故∠AOD=∠BOD ﹣∠AOB=n m2-. 【详解】解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°, ∵OD 是∠BOC 的平分线, ∴∠BOD=12∠BOC=10°,∴∠AOD=∠AOB+∠BOD=50°+10°=60°; 图2中∠BOC=∠AOC+∠AOB=120°, ∵OD 是∠BOC 的平分线, ∴∠BOD=12∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,如图1中,∠BOC=∠AOC ﹣∠AOB=n ﹣m , ∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m2﹣, ∴∠AOD=∠AOB+∠BOD=n m2+;如图2中,∠BOC=∠AOC+∠AOB=m+n , ∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2+, ∴∠AOD=∠BOD ﹣∠AOB=n m2-.【点睛】本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏.10.(1)-14,8-4t (2)点P 运动11秒时追上点Q (3)103或4(4)线段MN 的长度不发生变化,都等于11 【解析】【分析】(1)根据AB长度即可求得BO长度,根据t即可求得AP长度,即可解题;(2)点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC-BC=AB,列出方程求解即可;(3)分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8-22=-14,∵动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8-4t.故答案为-14,8-4t;(2)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC-BC=AB,∴4x-2x=22,解得:x=11,∴点P运动11秒时追上点Q;(3) ①点P、Q相遇之前,4t+2+2t =22,t=103,②点P、Q相遇之后,4t+2t -2=22,t=4,故答案为103或4(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=12×22=11②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=11∴线段MN的长度不发生变化,其值为11.【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.11.(1)图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE;(2)∠BOD=54°;(3)∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=412°.理由见解析. 【解析】【分析】(1)根据角的定义即可解决;(2)利用角平分线的性质即可得出∠BOD=12∠AOC+12∠COE,进而求出即可;(3)将图中所有锐角求和即可求得所有锐角的和与∠AOE、∠BOD和∠BOD的关系,即可解题.【详解】(1)如图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE.(2)如图2,∵OB平分∠AOE,OD平分∠COE,∠AOC=108°,∠COE=n°(0<n<72),∴∠BOD=12∠AOD﹣12∠COE+12∠COE=12×108°=54°;(3)如图3,∠AOE=88°,∠BOD=30°,图中所有锐角和为∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE =4∠AOB+4∠DOE=6∠BOC+6∠COD=4(∠AOE﹣∠BOD)+6∠BOD=412°.【点睛】本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE、∠BOD和∠BOD的关系是解题的关键,12.(1)90°;(2)30°;(3)12秒或48秒.【解析】【分析】(1)依据图形可知旋转角=∠NOB,从而可得到问题的答案;(2)先求得∠AOC的度数,然后依据角的和差关系可得到∠NOC=60°-∠AON,∠AOM=90°-∠AON,然后求得∠AOM与∠NOC的差即可;(3)可分为当OM为∠BOC的平分线和当OM的反向延长为∠BOC的平分线两种情况,然后再求得旋转的角度,最后,依据旋转的时间=旋转的角度÷旋转的速度求解即可.【详解】(1)由旋转的定义可知:旋转角=∠NOB=90°.故答案为:90°(2)∠AOM﹣∠NOC=30°.理由:∵∠AOC:∠BOC=1:2,∠AOC+∠BOC=180°,∴∠AOC=60°.∴∠NOC=60°﹣∠AON.∵∠NOM=90°,∴∠AOM=90°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.(3)如图1所示:当OM为∠BOC的平分线时,∵OM为∠BOC的平分线,∴∠BOM=∠BOC=60°,∴t=60°÷5°=12秒.如图2所示:当OM的反向延长为∠BOC的平分线时,∵ON为为∠BOC的平分线,∴∠BON=60°.∴旋转的角度=60°+180°=240°.∴t=240°÷5°=48秒.故答案为:12秒或48秒.【点睛】本题主要考查的是三角形的综合应用,解答本题主要应用了旋转的定义、直角三角形的定义以及角的和差计算,求得三角板旋转的角度是解题的关键.13.(1)-2;1;7;(2)4;(3)3+3t;9+5t;6+2t;(4)3.【解析】【分析】(1)利用|a+2|+(c﹣7)2=0,得a+2=0,c﹣7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)分别写出点A、B、C表示的数为,用含t的代数式表示出AB、AC、BC即可;(4)由点B为AC中点,得到AB=BC,列方程,求解即可.【详解】(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得:a=﹣2,c=7.∵b是最小的正整数,∴b=1.故答案为﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4.故答案为4.(3)点A表示的数为:-2-t,点B表示的数为:1+2t,点C表示的数为:7+4t,则AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6.故答案为3t+3,5t+9,2t+6.(4)∵点B为AC中点,∴AB=BC,∴3t+3=2t+6,解得:t=3.【点睛】本题考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.14.2+t6-2t或2t-6【解析】分析:(1)、先根据非负数的性质求出a、b的值,再根据两点间的距离公式即可求得A、B 两点之间的距离;(2)、设BC的长为x,则AC=2x,根据AB的长度得出x的值,从而得出点C所表示的数;(3)①甲球到原点的距离=甲球运动的路程+OA的长,乙球到原点的距离分两种情况:(Ⅰ)当0<t≤3时,乙球从点B处开始向左运动,一直到原点O,此时OB的长度-乙球运动的路程即为乙球到原点的距离;(Ⅱ)当t>3时,乙球从原点O处开始向右运动,此时乙球运动的路程-OB的长度即为乙球到原点的距离;②分两种情况:(Ⅰ)0<t≤3,(Ⅱ)t>3,根据甲、乙两小球到原点的距离相等列出关于t的方程,解方程即可.。
天津市南开翔宇学校七年级上学期期末数学试题及答案
天津市南开翔宇学校七年级上学期期末数学试题及答案一、选择题1.如果一个角的补角是130°,那么这个角的余角的度数是( ) A .30° B .40° C .50° D .90°2.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14-B .116C .14D .123.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b4.-2的倒数是( ) A .-2B .12- C .12D .25.已知线段AB 的长为4,点C 为AB 的中点,则线段AC 的长为( ) A .1B .2C .3D .46.如图,数轴的单位长度为1,点A 、B 表示的数互为相反数,若数轴上有一点C 到点B 的距离为2个单位,则点C 表示的数是( )A .-1或2B .-1或5C .1或2D .1或57.将图中的叶子平移后,可以得到的图案是()A .B .C .D .8.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3B .﹣3C .1D .﹣19.﹣3的相反数是( ) A .13-B .13C .3-D .310.下列方程的变形正确的有( ) A .360x -=,变形为36x = B .533x x +=-,变形为42x =C .2123x -=,变形为232x -= D .21x =,变形为2x = 11.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( )A .45010⨯B .5510⨯C .6510⨯D .510⨯12.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( ) A .赚了10元 B .赔了10元C .赚了50元D .不赔不赚13.下列各数中,比73-小的数是( ) A .3-B .2-C .0D .1-14.如图,4张如图1的长为a ,宽为b (a >b )长方形纸片,按图2的方式放置,阴影部分的面积为S 1,空白部分的面积为S 2,若S 2=2S 1,则a ,b 满足( )A .a =32bB .a =2bC .a =52b D .a =3b15.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-1二、填空题16.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.17.如图,点A 在点B 的北偏西30方向,点C 在点B 的南偏东60︒方向.则ABC ∠的度数是__________.18.已知|x |=3,y 2=4,且x <y ,那么x +y 的值是_____.19.已知a ,m ,n 均为有理数,且满足5,3a m n a -=-=,那么m n -的值为 ______________.20.若关于x 的多项式2261x bx ax x -++-+的值与x 的取值无关,则-a b 的值是________ 21.﹣30×(1223-+45)=_____. 22.分解因式: 22xy xy +=_ ___________23.已知23,9n mn aa -==,则m a =___________.24.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______.25.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.26.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,则线段AC=______cm . 27.计算:3+2×(﹣4)=_____.28.若关于x 的方程1210m x m -++=是一元一次方程,则这个方程的解是_______. 29.-2的相反数是__.30.如图,直线AB 、CD 相交于O ,∠COE 是直角,∠1=44°,则∠2=______.三、压轴题31.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数; (3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小. 32.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a ;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a ;⋯⋯如此进行了n 次.n a =①______(用含m 、n 的代数式表示);②当n a 6188=时,求123n1111a a a a +++⋯⋯+的值.33.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇? (2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.34.对于数轴上的点P ,Q ,给出如下定义:若点P 到点Q 的距离为d(d≥0),则称d 为点P 到点Q 的d 追随值,记作d[PQ].例如,在数轴上点P 表示的数是2,点Q 表示的数是5,则点P 到点Q 的d 追随值为d[PQ]=3. 问题解决:(1)点M ,N 都在数轴上,点M 表示的数是1,且点N 到点M 的d 追随值d[MN]=a(a≥0),则点N 表示的数是_____(用含a 的代数式表示);(2)如图,点C 表示的数是1,在数轴上有两个动点A ,B 都沿着正方向同时移动,其中A 点的速度为每秒3个单位,B 点的速度为每秒1个单位,点A 从点C 出发,点B 表示的数是b ,设运动时间为t(t>0).①当b=4时,问t 为何值时,点A 到点B 的d 追随值d[AB]=2; ②若0<t≤3时,点A 到点B 的d 追随值d[AB]≤6,求b 的取值范围.35.已知:如图数轴上两点A 、B 所对应的数分别为-3、1,点P 在数轴上从点A 出发以每秒钟2个单位长度的速度向右运动,点Q 在数轴上从点B 出发以每秒钟1个单位长度的速度向左运动,设点P 的运动时间为t 秒.(1)若点P 和点Q 同时出发,求点P 和点Q 相遇时的位置所对应的数;(2)若点P 比点Q 迟1秒钟出发,问点P 出发几秒后,点P 和点Q 刚好相距1个单位长度;(3)在(2)的条件下,当点P 和点Q 刚好相距1个单位长度时,数轴上是否存在一个点C ,使其到点A 、点P 和点Q 这三点的距离和最小,若存在,直接写出点C 所对应的数,若不存在,试说明理由.36.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
2022年天津市南开区数学七年级第一学期期末统考试题含解析
2022-2023学年七上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)1.木星是太阳系中八大行星之一,且是太阳系中体积最大、自传最快的行星,它的赤道直径约为14.3万千米,其中14.3万用科学记数法可表示为 ( ) A .1.43×105B .1.43×104C .1.43×103D .14.3×1042.在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是( )①用两颗钉子就可以把木条固定在墙上;②把笔尖看成一个点,当这个点运动时便得到一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上. A .①③B .②④C .①④D .②③3.2018年,全国教育经费投入为46135亿元,比上年增长8.39%。
其中,国家财政性教育经费(主要包括一般公共预算安排的教育经费,政府性基金预算安排的教育经费,企业办学中的企业拨款,校办产业和社会服务收入用于教育的经费等)为36990亿元,约占国内生产总值的4.11%。
其中36990亿用科学记数法表示为( ) A .130.369910⨯B .123.69910⨯C .133.69910⨯D .1136.9910⨯4.正在建设的轻轨即将在2020年底验收,预计轻轨开通后,可以缩短很多人的上下班时间.小徐住在A 处,每天去往B 处上班,他预计乘轻轨比乘公交车上班时间将减少45分钟.已知乘轻轨从A 到B 处的路程比乘公交车多1千米,若轻轨行驶的平均速度为60千米/时,公交车行驶的平均速度为20千米/时,求从A 到B 处的乘公交车路程.若设从A 到B 处的乘公交车路程为x 千米,则符合题意的方程是( ) A .160x +﹣20x=34B .20x﹣160x +=34C .20x ﹣160x +=45D .160x +﹣20x =45 5.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了6天才到达目的地.若设此人第一天走的路程为x 里,依题意可列方程为( )A .53782xx +⨯= B .378246810x x x x xx +++++= C .3782481632x x x x x x +++++= D .37824816x x x xx ++++= 6.如图,数轴上的A ,B ,C 三点所表示的数是分别是a 、b 、c ,其中AB =BC ,如果|a |>|b |>|c |,那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点B 与点C 之间(靠近点C )或点C 的右边 7.下面几何体中,全是由曲面围成的是( ) A .圆柱 B .圆锥 C .球 D .正方体8.下列各式中:①m ,②57x +=,③23x y +,④3m >,其中整式有( ) A .1个B .2个C .3个D .4个9.如图,∠AOC =∠BOD =90°,∠AOD =140°,则∠BOC 的度数为( )A .30°B .45°C .50°D .40°10.下列代数式中符合书写要求的是( ) A .4abB .143x C .x y ÷D .52a -二、填空题(本大题共有6小题,每小题3分,共18分) 11.若分式2x +有意义,则x 的取值范围是______.12.我们常用的数是十进制,如32103245310210410510=⨯+⨯+⨯+⨯,十进制数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,1.而在电子计算机中用的是二进制,只要2个数码:0和1,如二进制210110121202=⨯+⨯+⨯,相当于十进制数中的6,543210110101121202120212=⨯+⨯+⨯+⨯+⨯+⨯,相当于十进制数中的2.那么二进制中的101011等于十进制中的数是________.(提示:非零有理数的零幂都为1) 13.16的平方根是 .14.比较大小,4-______3(用“>”,“<”或“=”填空). 15.五边形从某一个顶点出发可以引_____条对角线.16.某学校8个班级进行足球友谊赛,比赛采用单循环赛制(参加比赛的队,每两队之间进行一场比赛),胜一场得3分,平一场得1分,负一场得0分,某班共得15分,并以不败成绩获得冠军,那么该班共胜______场比赛. 三、解下列各题(本大题共8小题,共72分)17.(8分)如图所示,△ABC 中,∠ACB=90°,AC=6cm ,BC =8cm.点P 从A 点出发,沿A C B --路径向终点B 运动,点Q 从B 点出发,沿B C A --路径向终点A 运动.点P 和Q 分别1/cm s 和3/cm s 的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过点P 和Q 作PE ⊥l 于E ,QF ⊥l 于F.则点P 运动多少秒时,△PEC 和△CFQ 全等?请说明理由.18.(8分)阅读材料,解决下面的问题:(1)如图2,连接正六面体中相邻面的中心,可得到一个柏拉图体. ①它是正 面体,有 个顶点, 条棱;②已知该正多面体的体积与原正方体体积的比为1:6,若原正方体的棱长为3cm ,该正多面体的体积为 cm 3; (2)如图3,用6个棱长为1的小正方体搭成一个几何体.小明要再用一些完全相同的小正方体搭一个几何体.若要使新搭的几何体恰好能与原几何体拼成一个无空隙的正六面体,则小明至少需要 个小正方体,他所搭几何体的(3)小华用4个棱长为1的小正四面体搭成一个如图4所示的造型,可以看做是一个不完整的大四面体.小华发现此造型中间空缺部分也是一个柏拉图体!请写出该柏拉图体的名称: .19.(8分)如图,点O 为直线AB 上一点,过点O 作射线OC ,使110BOC ∠=°,将一直角三角板的直角顶点放在点O 处(30OMN ∠=︒),一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图1中的三角板绕点O 逆时针旋转至图2,使一边OM 在BOC ∠的内部,且恰好平分BOC ∠,求BON ∠的度数;(2)将图1中的三角板绕点O 以每秒5〫的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,直线ON 恰好平分锐角AOC ∠,求t 的值;将图1中的三角板绕点O 逆时针旋转至图3,使一边ON 在AOC ∠的内部,请探究AOM NOC ∠-∠的值. 20.(8分)已知2x +是27的立方根,31x y +-的算术平方根是4,求73x y +平方根.21.(8分)为了解宣城市市民“绿色出行”方式的情况,我校数学兴趣小组以问卷调查的形式,随机调查了宣城市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图. 种类 ABCDE出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有______人,其中选择B 类的人数有______人; (2)在扇形统计图中,求A 类对应扇形圆心角α的度数,并补全条形统计图;(3)宣城市约有人口280万人,若将A 、B 、C 这三类出行方式均视为“绿色出行”方式,请估计我市“绿色出行”方式的人数.22.(10分)如图,∠BOC=2∠AOC ,OD 是∠AOB 的平分线,且∠COD=18°,求∠AOC 的度数.23.(10分)有个写运算符号的游戏:在“3□(2□3)□43□2” 中的每个□内,填入+,-,×,÷中的某一个(可重复使用),然后计算结果.(1)请计算琪琪填入符号后得到的算式:()2432323⨯÷-÷; (2)嘉嘉填入符号后得到的算式是()43233÷⨯⨯□22,一不小心擦掉了□里的运算符号,但她知道结果是103-,请推算□内的符号.24.(12分)已知多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同,求m ,n 的值.参考答案一、选择题(每小题3分,共30分) 1、A【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】14.3万用科学记数法表示为1.43×1. 故选:A . 【点睛】考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 2、C【分析】直接利用直线的性质以及线段的性质分析得出答案.【详解】①用两颗钉子就可以把木条固定在墙上,可以用基本事实“两点确定一条直线”来解释; ②把笔尖看成一个点,当这个点运动时便得到一条线,可以用基本事实“无数个点组成线”来解释; ③把弯曲的公路改直,就能缩短路程,可以用基本事实“两点之间线段最短”来解释;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上,可以用基本事实“两点确定一条直线”来解释. 故选C . 【点睛】此题主要考查了直线的性质以及线段的性质,正确把握相关性质是解题关键. 3、B【分析】把一个数表示成10n a ⨯的形式,其中10a ≤<1∣∣,n 是整数,这种记数方法叫做科学记数法,根据科学记数法的要求即可解答.【详解】36990亿=123.69910⨯, 故选:B. 【点睛】此题考察科学记数法,注意n 的值的确定方法,当原数大于10时,n 等于原数的整数数位减1,按此方法即可正确求解. 4、B【分析】根据题意利用乘轻轨比乘公交车上班时间将减少45分钟,进而得出等式求出答案. 【详解】设从A 到B 处的乘公交车路程为x 千米, 则20x﹣160x +=34.故选:B . 【点睛】此题主要考查了由实际问题抽象出一元一次方程,根据题意表示出乘地铁以及公交所用的时间是解题关键. 5、C【分析】设此人第一天走的路程为x 里,根据从第二天起每天走的路程都为前一天的一半结合6天共走了1里,即可得出关于x 的一元一次方程,此题得解. 【详解】解:设此人第一天走的路程为x 里, 根据题意得:x+2481632x x x x x++++=1.本题考查了由实际问题抽象出一元一次方程以及数学常识,找准等量关系,正确列出一元一次方程是解题的关键. 6、D【分析】由题意根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A 、B 、C 到原点的距离的大小,从而得到原点的位置,进行分析即可得解. 【详解】解:∵|a|>|b|>|c|,∴点A 到原点的距离最大,点B 其次,点C 最小, 又∵AB=BC ,∴在点B 与点C 之间,且靠近点C 的地方或点C 的右边, 故选:D . 【点睛】本题考查实数与数轴,熟练掌握并理解绝对值的定义是解题的关键. 7、C【解析】圆柱的上下底面是平的面,圆锥的底面 平的面,正方体的六个面都是平的面.故选C. 8、B【分析】根据单项式和多项式统称为整式即可判断得出.【详解】解:①m 为整式,②57x +=是等式,不是整式,③23x y +是多项式,故是整式,④3m >为不等式,不是整式,∴是整式的有①③, 故答案为:B 【点睛】本题考查了整式的判断,解题的关键是熟知整式的概念. 9、D【分析】由∠AOC=∠BOD=90°,∠AOD =140°,可求出∠COD 的度数,再根据角与角之间的关系求解. 【详解】∵∠AOC =90°,∠AOD =140°, ∴∠COD =∠AOD ﹣∠AOC =50°, ∵∠BOD =90°, ∴∠BOC =∠BOD ﹣∠COD =90°﹣50° =40°.本题考查的知识点是角的计算,注意此题的解题技巧:两个直角相加和∠BOC相比,多加了∠BOC一次.10、D【分析】根据代数式的书写规范逐项排查即可.【详解】解:A、不符合书写要求,应为4ab,故此选项不符合题意;B、不符合书写要求,应为133x,故此选项不符合题意;C、不符合书写要求,应为xy,故此选项不符合题意;D、52a-符合书写要求,故此选项符合题意.故选:D.【点睛】本题考查了代数式的书写规范,书写代数式要关注以下几点:①在代数式中出现的乘号,通常简写成“·”或者省略不写;②数字与字母相乘时,数字要写在字母的前面;③在代数式中出现的除法运算,一般按照分数的写法来写、带分数也要写成假分数.二、填空题(本大题共有6小题,每小题3分,共18分)11、1x≠【分析】根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】∵分式21xx+-有意义,∴10x-≠,解得:1x≠.故答案为:1x≠.【点睛】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.12、3【分析】依据题中二进制的换算方式将二进制转化为十进制计算即可.【详解】解:101011=1×25+0×24+1×23+0×22+1×21+1×20=32+0+8+0+2+1=3.故答案为3.【点睛】本题考查有理数的乘方运算.根据已知转化方法,找出其中规律是解决此题的关键.±1. 故答案为±1. 14、<;【解析】试题解析:4 3.-< 故答案为.<点睛:正数都大于0,负数都能小于0,正数大于负数. 15、1【分析】从n 边形的一个顶点出发有(n−3)条对角线,代入求出即可. 【详解】解:从五边形的一个顶点出发有5﹣3=1条对角线, 故答案为1. 【点睛】本题考查了多边形的对角线,熟记知识点(从n 边形的一个顶点出发有(n−3)条对角线)是解此题的关键. 16、4【解析】8个班进行友谊赛,也就是说每个班级要和其余7个班级比赛,根据总比赛场数为7,设赢了x 场,则3x +(7-x )=15,解得x =4,故答案为:4.三、解下列各题(本大题共8小题,共72分) 17、1秒或3.5秒或12秒【分析】因为Rt PEC ∆和Rt CFQ ∆全等,所以PC CQ =,有三种情况:P ①在AC 上,Q 在BC 上②P ,Q 都在AC 上,此时P ,Q 重合③当Q 到达A 点(和A 点重合),P 在BC 上时,此时Q 点停止运动.根据这三种情况讨论. 【详解】设运动时间为t 秒时,PEC ∆和CFQ ∆全等, ∵Rt PEC ∆和Rt CFQ ∆全等, ∴PC CQ =, 有三种情况:如图1所示,P 在AC 上,Q 在BC 上,6PC t =-,83CQ t =-, ∴683t t -=-, ∴1t =.∴638t t -=-, ∴ 3.5t =.(3)如图3所示,当Q 到达A 点(和A 点重合),P 在BC 上时,此时Q 点停止运动, ∵PC CQ =,6CQ AC ==,6PC t =-, ∴66t -=, ∴12t =. ∵14t ≤, ∴12t =符合题意.答:点P 运动1秒或3.5秒或12秒时,PEC ∆和CFQ ∆全等.【点睛】本题考查的是全等三角形,熟练掌握全等三角形的性质是解题的关键. 18、(1)①八;6;12;②92;(2)21;50;(3)正八面体 【分析】(1)①根据图2的特点即可求解;②先求出原正方体的体积,根据比值即可求出该正多面体的体积; (2)根据题意需搭建为3×3的正方体,根据几何体的特点即可求解; (3)根据这个柏拉图体有6个顶点即可得到为正八面体.【详解】(1)如图2,连接正六面体中相邻面的中心,可得到一个柏拉图体. ①它是正八面体,有6个顶点,12条棱;②已知该正多面体的体积与原正方体体积的比为1:6,若原正方体的棱长为3cm , 则原正方体的体积为33=27 ∴该正多面体的体积为1927=62⨯cm 3; (2)如图,新搭的几何体俯视图及俯视图上的小正方体的个位数如下,则至少需要1+2×4+3×4=21个小正方体,他所搭几何体的表面积最小是2×9+2×8+2×8=50;(3)由图可知这个柏拉图体有6个顶点,故为正八面体;故答案为:(1)①八;6;12;②92;(2)21;50;(3)正八面体.【点睛】此题主要考查立方体的特点及性质,解题的关键是根据题意理解柏拉图体的特点、三视图的应用.19、(1)35°;(2)11或47;(3)∠AOM-∠NOC=20°.【分析】(1)根据角平分线的定义通过计算即可求得∠BON的度数;(2)当ON的反向延长线平分∠AOC时或当射线ON平分∠AOC时这两种情况分别讨论,根据角平分线的定义以及角的关系进行计算即可;(3)根据∠MON=90°,∠AOC=70°,分别求得∠AOM=90°-∠AON,∠NOC=70°-∠AON,再根据∠AOM-∠NOC=(90°-∠AON)-(70°-∠AON)进行计算,即可得出∠AOM与∠NOC的数量关系.【详解】解:(1)如图2中,∵OM平分∠BOC,∴∠MOC=∠MOB,又∵∠BOC=110°,∴∠MOB=55°,∵∠MON=90°,∴∠BON=∠MON-∠MOB=35°;(2)(2)分两种情况:①如图2,∵∠BOC=110°∴∠AOC=70°,当当ON的反向延长线平分∠AOC时,∠AOD=∠COD=35°,∴∠BON=35°,∠BOM=55°,即逆时针旋转的角度为55°,由题意得,5t=55°解得t=11;②如图3,当射线ON平分∠AOC时,∠NOA=35°,∴∠AOM=55°,即逆时针旋转的角度为:180°+55°=235°,由题意得,5t=235°,解得t=47,综上所述,t=11s 或47s 时,直线ON 恰好平分锐角∠AOC ;故答案为:11或47;(3)∠AOM-∠NOC=20°.理由:∵∠MON=90°,∠AOC=70°,∴∠AOM=90°-∠AON ,∠NOC=70°-∠AON , ∴∠AOM-∠NOC=(90°-∠AON )-(70°-∠AON )=20°,∴∠AOM 与∠NOC 的数量关系为:∠AOM-∠NOC=20°.【点睛】本题主要考查的是角平分线的定义的运用,熟练掌握角平分线的使用和角的和差关系是解题的关键.20、7±【分析】根据立方根的定义和算术平方根的定义,可得二元一次方程组,根据解方程组,可得x 、y 的值,再计算73x y+的值,根据平方根的定义,可得答案.【详解】由题意得:24x ⎧+=⎪=,解得:114x y =⎧⎨=⎩, ∴7374249x y +=+=,∵49的平方根为±1,∴73x y +的算术平方根为±1.【点睛】本题考查了立方根,平方根和算术平方根,根据题意得出二元一次方程组是解题的关键.21、(1)800,240;(2)90︒,图见解析;(3)224万人【分析】(1)联合扇形图和条形图的信息,根据选择C 类的人数和所占百分比即可求出总数;然后根据B 类所占百分比即可求得其人数;(2)首先求出A 类人数所占百分比,即可求得对应扇形圆心角和人数;(3)根据A 、B 、C 三类人群所占百分比之和即可估算出全市人数.【详解】(1)由题意,得参与本次问卷调查的市民人数总数为:20025%800÷=(人)其中选择B 类的人数为:80030%240⨯=(人)故答案为:800;240;(2)∵A 类人数所占百分比为1(30%25%14%6%)25%-+++=,∴A 类对应扇形圆心角α的度数为36025%90︒⨯=︒,A 类的人数为80025%200⨯=(人), 补全条形图如下:(3)280(25%30%25%)224⨯++=(万人),答:估计该市“绿色出行”方式的人数约为224万人.【点睛】此题主要考查条形统计图和扇形统计图相关联的信息求解,熟练掌握,即可解题.22、36AOC ∠=︒【分析】由∠BOC=2∠AOC 可得∠BOA=3∠AOC ,由角平分线定义可得∠BOA=2∠AOD ,根据∠AOD=∠AOC+∠COD 可得2(∠AOC+18°)=3∠AOC ,即可得答案. 【详解】∵∠BOC=2∠AOC ,∠BOA=∠BOC+∠AOC ,∴∠BOA=3∠AOC ,∵OD 是∠AOB 的平分线,∴∠BOA=2∠AOD ,∵∠AOD=∠AOC+∠COD ,∠COD=18°,∴2(∠AOC+18°)=3∠AOC , ∴∠AOC=36°. 【点睛】本题考查角平分线的定义及角的计算,熟练掌握定义是解题关键.23、(1)53;(2)□里应是“-”号.【分析】(1)根据有理数的混合运算法则计算可以解答本题;(2)根据题目中式子的结果,可以得到□内的符号;【详解】(1) ()2432323⨯÷-÷ =2413334⨯-⨯ =123- =53; (2) ()43233÷⨯⨯=4363÷⨯=1423⨯ =23, 因为23□22=103-,即23□4=103- 所以23-123=103- 所以“□”里应是“-”号.【点睛】本题考查了有理数的混合运算,解答本题得关键是明确有理数混合运算的计算方法.24、m =1,n =1.【分析】根据多项式的次数是多项式中次数最高的单项式的次数,可得m 的值,根据单项式的次数是单项式中所有字母指数和,可得n 的值.【详解】∵多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 1m ﹣3与多项式的次数相同,∴2+2m +1=5,n +1m ﹣3=5,解得m =1,n =1.【点睛】本题考查了多项式,利用多项式的次数是多项式中次数最高的单项式的次数,单项式的次数是单项式中所有字母指数和得出m 、n 的值是解题关键.。
天津市南开翔宇学校七年级上学期期末数学试题及答案
天津市南开翔宇学校七年级上学期期末数学试题及答案一、选择题1.4 =( )A .1B .2C .3D .42.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125°3.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .124.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是( )A .()121826x x =-B .()181226x x =-C .()2181226x x ⨯=-D .()2121826x x ⨯=- 5.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( ) A .10-B .10C .5-D .5 6.计算(3)(5)-++的结果是( ) A .-8B .8C .2D .-2 7.在223,2,7-四个数中,属于无理数的是( ) A .0.23 B 3 C .2- D .2278.21(2)0x y -+=,则2015()x y +等于( )A .-1B .1C .20143D .20143-9.方程3x +2=8的解是( )A .3B .103C .2D .1210.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.连接两点的线段叫做两点的距离11.如图,4张如图1的长为a,宽为b(a>b)长方形纸片,按图2的方式放置,阴影部分的面积为S1,空白部分的面积为S2,若S2=2S1,则a,b满足()A.a=32b B.a=2b C.a=52b D.a=3b12.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A.亏了10元钱B.赚了10钱C.赚了20元钱D.亏了20元钱二、填空题13.已知x=3是方程(1)21343x m x-++=的解,则m的值为_____.14.根据下列图示的对话,则代数式2a+2b﹣3c+2m的值是_____.15.把53°24′用度表示为_____.16.已知x=2是方程(a+1)x-4a=0的解,则a的值是 _______.17.单项式22ab-的系数是________.18.已知线段AB=8 cm,在直线AB上画线段BC,使得BC=6 cm,则线段AC=________cm.19.对于有理数a,b,规定一种运算:a⊗b =a2-ab .如1⊗2=12-1⨯2 =-1,则计算-5⊗[3⊗(-2)]=___.20.如图,已知OC是∠AOB内部的一条射线,∠AOC=30°,OE是∠COB的平分线.当∠BOE=40°时,则∠AOB的度数是_____.21.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____.22.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.23.一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作_____.24.若-3x 2m+6y 3与2x 4y n 是同类项,则m+n=______.三、压轴题25.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小;(2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.26.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。
2023-2024学年天津市南开区七年级(上)期末数学试卷及答案解析
2023-2024学年天津市南开区七年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如表所示是某用户微信支付情况,﹣200表示的意思是()零钱明细微信红包12月23日13:21﹣200余额667.35微信红包12月23日13:18+200余额867.35微信红包12月17日13:21+0.54余额667.35A.发出200元B.收入200元C.余额200元D.抢到200元2.(3分)如图,从A地到B地的四条路线中,最短路线是()A.1B.2C.3D.43.(3分)据2023年5月21日《天津日报》报道,在天津举办的第七届世界智能大会通过“百网同播、万人同屏、亿人同观”,全球网友得以共享高端思想盛宴,总浏览量达到935000000人次,将数据935000000用科学记数法表示应为()A.0.935×109B.9.35×108C.93.5×107D.935×106 4.(3分)下列计算正确的是()A.4a﹣2a=2B.2ab+3ba=5abC.a+a2=a3D.5x2y﹣3xy2=2xy5.(3分)下列方程中,解是x=2的方程是()A.3x+6=0B.2x+4=0C.D.2x﹣4=0 6.(3分)在数轴上与﹣1的距离等于5个单位长度的点所表示的数是()A.6B.﹣4或6C.﹣6D.4或﹣67.(3分)下列变形正确的是()A.若3x﹣1=2x+1,则3x+2x=﹣1+1B.若,则2﹣3x﹣1=2x C.若3(x+1)﹣5(1﹣x)=2,则3x+3﹣5+5x=2D.若,则8.(3分)将一副三角板的直角顶点重合放置于A处,下列结论一定成立的是()A.∠BAE+∠DAC=180°B.∠CAE+∠DAB=90°C.∠BAE﹣∠DAC=45D.∠DAC=2∠BAD9.(3分)若∠α的余角为54°32',则∠α的补角的大小是()A.35°28'B.45°38'C.144°32'D.154°38' 10.(3分)如图,已知线段a,b.按如下步骤完成尺规作图.①用直尺画射线AM;②在射线AM上用圆规依次截取AD=a,DB=a;③在线段AB上用圆规截取BC=b.则线段AC的长是()A.2a+b B.2a﹣b C.a+b D.b﹣a11.(3分)有理数a在数轴上的位置如图所示,下列各数中,在0到1之间的是()①﹣a﹣1,②|a+1|,③2﹣|a|,④|a|.A.②③④B.①③④C.①②③D.①②③④12.(3分)如图所示,在这个数据运算程序中,若开始输入的x的值为1,结果输出的是﹣4,返回进行第二次运算则输出的是﹣2,…,则第2024次输出的结果是()A.﹣8B.﹣6C.﹣4D.﹣2二、填空题(本大题共6小题,每小题3分,共18分.请将答案真接填在答题纸中对应的横线上)13.(3分)﹣6倒数的绝对值为.14.(3分)某个两位数,十位上的数为a,个位上的数为b,将其十位上的数与个位上的数交换位置,得到一个新的两位数,新两位数用式子表示为.15.(3分)如图是一个长方体包装盒的平面展开图,已知包装盒中相对两个面上的数互为相反数,则a+b﹣c=.16.(3分)若关于x的方程(k﹣2)x|k|﹣1=k+1是一元一次方程,则此方程的解是.17.(3分)如图,长方形纸片ABCD,点E,F分别在边AB,CD上,连接EF.将∠BEF 对折,点B落在直线EF上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF 上的点A′处,得折痕EN.若∠AEN=31°,则∠BEM=(度).18.(3分)线段AB上有P,Q两点,AB=24,AP=12,PQ=10,那么BQ=.三、解答题(本大题共6小题,共46分.解答应写出文字说明、演算步骤或推理过程)19.(6分)计算.(Ⅰ);(Ⅱ)|﹣|÷()﹣(﹣4)2.20.(8分)解下列一元一次方程.(Ⅰ)2x﹣(x+10)=5x+2(x﹣1);(Ⅱ).21.(6分)(Ⅰ)化简代数式:;(Ⅱ)若a为最小的正整数,求(Ⅰ)中代数式的值.22.(8分)直线AB,CD相交于点O,∠AOF=90°,OA平分∠EOC.(Ⅰ)如图1,若∠AOE=50°,求∠COF和∠EOD;(Ⅱ)如图2,若∠EOC=∠COF,①求∠AOE的度数;②直接写出与∠AOE互补的角:.23.(8分)学校七年级举行数学说题比赛,计划购买笔记本作为奖品.根据比赛设奖情况,需购买笔记本共30本.已知A种笔记本的单价是11元,B种笔记本的单价是9元.(Ⅰ)若学校购买A,B两种笔记本作为奖品,设购买A种笔记本x本.①根据信息填表(用含有x的式子表示).型号单价(元/本)数量(本)费用(元)A笔记本11x11xB笔记本9②若购买笔记本的总费用为288元,则购买A,B笔记本各多少本?(Ⅱ)为缩减经费,学校最终购买A,B,C三种笔记本共30本作为奖品,其中C种笔记本的单价为6元,A,B两种笔记本单价不变.若购买A种笔记本m本,B种笔记本n 本.①则购买C种笔记本本,购买三种笔记本的费用为元.(请用含有m,n的式子表示)②若学校购买三种笔记本的费用为188元,则m的值为(本).24.(10分)已知数轴上点O表示的数是0,A,B两点表示的数分别是a,b,且满足|a+6|+|b ﹣15|=0.动点P从点A出发,以每秒1个单位长度的速度向点B运动,设运动时间为t秒,点P运动到点B时停止.(Ⅰ)填空:①a=,b=.②点P表示的数为(用含有t的式子表示);③当t的值为时,点P停止运动.(Ⅱ)当点P在线段AO上运动时,若M为PA的中点,N为PO的中点,试判断在点P 运动的过程中,线段MN的长度是否发生变化.如果发生变化,请说明理由,如果不发生变化,请求出线段MN的值.(Ⅲ)当点P运动到点O时,动点Q开始从点A出发,以每秒个单位长度的速度在A,B两点之间往返运动.动点P仍按照原来的速度运动,直至点P停止运动,点Q也停止运动.当P,Q两点之间的距离为时,直接写出的t值.2023-2024学年天津市南开区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【分析】正数和负数是一组具有相反意义的量,据此即可求得答案.【解答】解:﹣200表示发出200元,故选:A.【点评】本题考查正数和负数,理解具有相反意义的量是解题的关键.2.【分析】根据两点之间线段最短进行判断即可.【解答】解:从A地到B地的四条路线中,3是一条线段,∴路程最短的是3.故选:C.【点评】本题考查了线段的性质,解本题的关键在熟练掌握两点之间线段最短.3.【分析】将一个数表示为a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可得出答案.【解答】解:935000000=9.35×108,故选:B.【点评】本题考查科学记数法表示较大的数,科学记数法是基础且重要知识点,必须熟练掌握.4.【分析】根据合并同类项的运算法则将各项计算后进行判断即可.【解答】解:A.4a﹣2a=(4﹣2)a=2a,则A不符合题意;B.2ab+3ba=(2+3)ab=5ab,则B符合题意;C.a与a2不是同类项,无法合并,则C不符合题意;D.5x2y与3xy2不是同类项,无法合并,则D不符合题意;故选:B.【点评】本题考查合并同类项,其运算法则是基础且重要知识点,必须熟练掌握.5.【分析】把x=2代入每个方程,看看是否相等即可.【解答】解:A.把x=2代入方程3x+6=0得:左边=3×2+6=6+6=12,右边=0,左边≠右边,所以x=2不是方程3x+6=0的解,故本选项不符合题意;B.把x=2代入方程2x+4=0得:左边=2×2+4=8,右边=0,左边≠右边,所以x=2不是方程2x+4=0的解,故本选项不符合题意;C.把x=2代入方程x=﹣4得:左边=×2=1,右边=﹣4,左边≠右边,所以x=2不是方程x=﹣4的解,故本选项不符合题意;D.把x=2代入方程2x﹣4=0得:左边=2×2﹣4=0,右边=0,左边=右边,所以x =2是方程2x﹣4=0的解,故本选项不符合题意;故选:D.【点评】本题考查了一元一次方程的解,能熟记方程的解的定义(使方程左右两边相等的未知数的值,叫方程的解)是解此题的关键.6.【分析】结合数轴进行判断,从表示﹣1的点向左向右分别找数.【解答】解:数轴上与﹣1距离等于5个单位的点有两个,从表示﹣1的点向左数5个单位是﹣6,从表示﹣1的点向右数5个单位是4.故选:D.【点评】本题考查数轴,注意在数轴上,把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成.本题注意观察所有符合条件的点,在学习中要注意培养数形结合的数学思想.7.【分析】根据去分母,去括号,移项的方法依次变形,即可得出正确判断.【解答】解:A.若3x﹣1=2x+1,则3x﹣2x=1+1,故本项错误,不符合题意;B.若,则2﹣(3x﹣1)=2x,故本项错误,不符合题意;C.若3(x+1)﹣5(1﹣x)=2,则3x+3﹣5+5x=2,故本项正确,符合题意;D.若,则,故本项错误,不符合题意.故选:C.【点评】此题考查了解一元一次方程的部分步骤:去分母,去括号,移项的几个易错点.学习时要注意这几个地方.8.【分析】根据题意,利用角的和差判断正误.【解答】解:根据题意可知:∠CAE+∠DAC=90°,∠BAE﹣∠DAB=90°,∠BAE+∠DAC=180°,∠DAC+∠BAD=90°,∴B、C、D选项不成立,只有A选项成立.故选:A.【点评】本题考查了角的计算,掌握角的和差计算是关键.9.【分析】如果两个角的和是90°,那么这两个角互为余角,如果两个角的和是180°,那么这两个角互为补角,据此计算即可.【解答】解:∵∠α的余角是54°32',∴∠α=90°﹣54°32'=89°60'﹣54°32'=35°28',∴∠α的补角是180°﹣35°28'=144°32′.故选:C.【点评】本题考查了余角和补角,熟练掌握互为余角的定义是解题的关键.10.【分析】根据题意画出几何图形,然后利用两点之间的距离得到AC=AD+BD﹣BC.【解答】解:如图,AC=AB﹣BC=AD+BD﹣BC=2a﹣b.故选:B.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了两点间的距离.11.【分析】根据数轴得出﹣2<a<﹣1,再逐个判断即可.【解答】解:①根据数轴可以知道:﹣2<a<﹣1,∴1<﹣a<2,∴0<﹣a﹣1<1,符合题意;②∵﹣2<a<﹣1,∴﹣1<a+1<0,∴0<|a+1|<1,符合题意;③∵﹣2<a<﹣1,∴1<|a|<2,∴﹣2<﹣|a|<﹣1,∴0<2﹣|a|<1,符合题意;④∵1<|a|<2,∴<|a|<1,符合题意.故选:D.【点评】本题主要考查了数轴,绝对值,相反数的定义,其中,用绝对值的定义去判断是解题的关键.12.【分析】根据程序的输出结果总结出结果的变化规律即可.【解答】解:由题知第一次输入1;第一次输出﹣4;第二次输出为﹣2;第三次输出为﹣1;第四次输出为﹣6;第五次输出为﹣3;第六次输出为﹣8;第七次输出为﹣4;.....∴从第一次开始每六次循环一次,2024÷6=337......2,∴第2024次的输出结果为﹣2,故选:D.【点评】本题主要考查数字的变化规律,总结出输出数字的变化规律是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分.请将答案真接填在答题纸中对应的横线上)13.【分析】根据倒数的定义和绝对值的定义求解.【解答】解:﹣6的倒数是﹣,﹣的绝对值是.故答案为:.【点评】此题考查的是倒数与绝对值,倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.绝对值的代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零.14.【分析】列代数式的定义是把题目中与数量有关的词语,用含有数字字母和运算符号的式子表示出来,就是列代数式,根据意思代入即可.【解答】解:∵十位数字为a,个位数字为b,将其十位上的数与个位上的数交换位置,得到一个新的两位数,∴新的两位数的十位数字为b,个位数字为a,这个新的两位数用代数式表示为10b+a,故答案为:10b+a.【点评】本题考查列代数式的定义,解题的关键是实现从基本数量关系的语言表述到代数式的一种转换.15.【分析】根据长方体的表面展开图找相对面的方法,同层隔一面,“Z”字两端是对面求出a,b,c的值即可解答.【解答】解:由题意得:a=1,b=﹣2,c=﹣3,∴a+b﹣c=1﹣2+3=2,故答案为:2.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.16.【分析】根据x的次数为1,x的系数不等于0,计算即可.【解答】解:根据题意得:,解得:k=﹣2,原方程为:﹣4x=﹣1,x=,故答案为:,.【点评】本题考查了一元一次方程的定义,解题时注意x的系数不等于0.17.【分析】先由翻折的性质得到∠AEN=∠A′EN,∠BEM=∠B′EM,从而可知∠NEM =×180°=90°,然后,根据余角的性质即可得到结论.【解答】解:由翻折的性质可知:∠AEN=∠A′EN=23°18',∠BEM=∠B′EM.∠NEM=∠A′EN+∠B′EM=(∠AEA′+∠BEB′)=×180°=90°.由翻折的性质可知:∠MB′E=∠B=90°.∴∠MEB′+∠A′EN=∠B′ME+∠MEB′=90°,∴∠B′ME=∠A′EN,∴∠EMB=∠EMB′,∴∠BME=∠AEN=23°18′,∴∠BEM=90°﹣∠BME=90°﹣23°18′=66°42′=66.7°.故答案为:66.7.【点评】本题主要考查的是翻折的性质、余角的定义,掌握翻折的性质是解题的关键.18.【分析】本题没有给出图形,在画图时,应考虑到A、B、P、Q四点之间的位置关系的多种可能,再根据正确画出的图形解题.【解答】解:本题有两种情形:(1)当点Q在线段AP上时,如图,BQ=BP+PQ=AB﹣AP+PQ=24﹣12+10=22;(2)当点Q在线段BP上时,如图,BQ=BP﹣PQ=AB﹣AP+PQ=24﹣12﹣10=2.故答案为:22或2.【点评】本题考查了比较线段长短的知识,注意在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.三、解答题(本大题共6小题,共46分.解答应写出文字说明、演算步骤或推理过程)19.【分析】(1)利用乘法分配律计算即可;(2)先算绝对值,乘方及括号里面的,再算乘除,最后算减法即可.【解答】解:(1)原式=48×(﹣)+48×﹣48×=48×(﹣+﹣)=48×0=0;(2)原式=÷﹣×16=÷﹣=×﹣=﹣=﹣.【点评】本题考查有理数的混合运算,熟练掌握相关运算法则是解题的关键.20.【分析】(I)方程去括号,移项合并,把x系数化为1,即可求出解;(II)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【解答】解:(I)去括号得:2x﹣x﹣10=5x+2x﹣2,移项得:2x﹣x﹣5x﹣2x=﹣2+10,合并得:﹣6x=8,解得:x=﹣;(II)去分母得:10(3y+2)﹣20=5(2y﹣1)﹣4(2y+1),去括号得:30y+20﹣20=10y﹣5﹣8y﹣4,移项合并得:28y=﹣9,解得:y=﹣.【点评】此题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解本题的关键.21.【分析】先去括号,合并同类项,化简后将a,b的值代入计算即可.【解答】解:(Ⅰ)原式=3a2﹣(5a﹣a+3+2a2)=3a2﹣5a+a﹣3﹣2a2=a2﹣a﹣3;(Ⅱ)∵a为最小的正整数,∴a=1,原式=12﹣×1﹣3=1﹣﹣3=﹣.【点评】本题考查整式化简求值,解题的关键是掌握去括号,合并同类项的法则.22.【分析】(Ⅰ)根据角平分线的定义可求得∠AOC的度数,再利用角的和差即可求得∠COF的度数及∠EOD的度数;(Ⅱ)①利用角平分线的定义及角的和差即可求得∠AOE的度数;②根据补角的定义即可求得答案.【解答】解:(Ⅰ)∵∠AOE=50°,OA平分∠EOC,∴∠AOC=∠AOE=50°,∴∠EOD=180°﹣50°﹣50°=80°,∵∠AOF=90°,∴∠COF=90°﹣50°=40°;(Ⅱ)①∵OA平分∠EOC,∠EOC=∠COF,∴∠AOE=∠AOC,∠COF=∠EOC=2∠AOE=2∠AOC,∵∠AOC+∠COF=∠AOF=90°,∴3∠AOE=90°,∴∠AOE=30°;②∵∠AOE+∠BOE=180°,∠AOC+∠AOD=180°,∠AOC+∠BOC=180°,∠AOC=∠AOE,∴∠AOE+∠BOE=∠AOE+∠AOD=∠AOE+∠BOC=180°,∴与∠AOE互补的角为:∠BOE,∠AOD,∠BOC,故答案为:∠BOE,∠AOD,∠BOC.【点评】本题考查邻补角,角平分线的定义,余角和补角及角的运算,(Ⅱ)①中结合已知条件求得∠COF=∠EOC=2∠AOE=2∠AOC是解题的关键.23.【分析】(1)①设买A种笔记本x本,则B种笔记本的数量为(30﹣x)本,购买A种笔记本的费用为11x元,B种笔记本的费用为9(30﹣x)元,就可以得出结论;②根据购买笔记本的总费用为288元建立方程式求出其解即可得出结论;(2)①购买笔记本的总数减去购买A、B两种笔记本的数即可,总费用就是三种笔记本费用之和;②利用①中费用总和代数式等于188,分析讨论解答即可.【解答】解:(1)①由题意,得:型号单价(元/本)数量(本)费用(元)A笔记本11x11xB笔记本9(30﹣x)9(30﹣x)②根据题意得:11x+9(30﹣x)=288,解得:x=9,∴30﹣9=21(本).答:购买A笔记本9本,B笔记本21本.故答案为:(30﹣x);9(30﹣x).(2)①∵购买A种笔记本m本,B种笔记本n本,∴购买C种笔记本为(30﹣m﹣n)本,购买三种笔记本的总费用为:11m+9n+6(30﹣m﹣n)=(5m+3n+180)元;②∵学校购买三种笔记本的费用为188元,∴5m+3n+180=188(m、n取正整数);整理得5m+3n=8,∵m、n取正整数,∴m=1,n=1.故答案为:①(30﹣m﹣n);(5m+3n+180);1.【点评】本题考查了列一元一次方程式和二元一次方程解实际问题的运用,解答本题的关键是明确题意,找出相应的数量关系.24.【分析】(Ⅰ)①根据非负数的性质求解;②根据向右运动用加法列式表示;③根据“时间=路程÷速度”计算;(Ⅱ)根据两点之间的距离公式求解;(Ⅲ)根据两点之间的距离公式求解.【解答】解:(Ⅰ)①由题意得:a=﹣6,b=15,故答案为:﹣6,15;②点P表示的数为:﹣6+t,故答案为:﹣6+t;③t=15﹣(﹣6)=21,故答案为:21;(Ⅱ)线段MN的长度不发生变化,为3;理由:M表示的数为:=﹣6+t,N表示的数为:=﹣3+t,∴MN=|(﹣6+)﹣(﹣3+))|=3;(Ⅲ)当6≤t≤20时,|t﹣(t﹣6)|=,解得:t=15.5或t=20.5(不合题意,舍去),当20<t≤21,|15﹣(t﹣20)﹣(﹣6+t)|=,解得:t=20.9或t=19.9(不合题意,舍去),所以当t=15.5或20.9时,P、Q相距.【点评】本题考查了一元一次方程的应用,找到相等关系是解题的关键。
2022-2023学年天津市南开翔宇学校七年级(上)期末数学试卷+答案解析(附后)
2022-2023学年天津市南开翔宇学校七年级(上)期末数学试卷1. 下列各对数中,是互为相反数的是( )A. 与B. 与C. 与D. 与2. 下列计算正确的是( )A. B.C. D.3. 下列说法正确的是( )A. 表示的平方的式子是B. 表示x、、的积的式子是C. x、y两数差的平方表示为D. 的意义是x与y和的平方4. 如图所示,小明家在A处,体育馆在B处,星期六小明由家去体育馆打篮球,他想尽快到达体育馆,请你帮助他选择一条最近的路线,应是( )A. B.C. D.5. 如图所示,射线OA的方向是北偏东,,则射线OB的方向是( )A. 南偏东B. 南偏东C. 南偏东D. 南偏西6. 若干个桶装方便面摆放在桌子上,小明从三个不同方向看到的图形如图所示,则这一堆方便面共有( )A. 5桶B. 6桶C. 9桶D. 12桶7. 现有一个如图1所示的正方体,它的展开图可能是( )A.B.C.D.8. 已知且,则z的值为( )A. 9B.C. 12D. 不确定9. 如图所示,点A、B、C在直线l上,则下列说法正确的是( )A. 图中有2条线段B. 图中有6条射线C. 点C在直线AB的延长线上D. A、B两点之间的距离是线段AB10. 如果一个角的余角等于这个角的补角的,那么这个角的度数是( )A. B. C. D.11. 2020年2月某敬老院为了更好的保护好老人,预防老人们感染新冠病毒,用4800元购进A,B口罩共160件,其中A型口罩每件24元,B型口罩每件36元.设购买A型口罩x件,B型口罩y件,依题意列方程组正确的是( )A. B.C. D.12. 如图,为锐角.下列说法:①;②;③;④其中,能说明射线OP一定为的平分线的有( )A. 1个B. 2个C. 3个D. 4个13.______.14. 若单项式与的差仍是单项式,则______.15. 方程是关于x,y的二元一次方程,则______.16. 如图,,,D是AC的中点,DB的长是______.17. 已知,若,则______度.18. 如图,将三个同样大小的正方形的一个顶点重合放置,已知,,那么下列说法中正确的有______.①与互为余角;②与互为补角;③;④OE平分19. 计算:;20. 解下列方程:;21. 已知,化简:;已知a、b满足,求的值.22. 如图,已知点O为直线AB上一点,,,OM平分求的度数;若与互余,求的度数.23. 如图1,已知,点O为直线AB上一点;OC在直线AB是上方,一直角三角板的直角顶点放在点C处,三角板一边OM在射线OB上,另一边ON在直线AB的下方.在图1的时刻,的度数为______,的度数为______;如图2,当三角板绕点O旋转至一边OM恰好平分时,的度数为______;如图3,当三角板绕点O旋转至一边ON在的内部时,的度数为______;在三角板绕点O旋转一周的过程中,与的关系为______.24. 入秋后,某地发生了洪灾,红星集团及时为灾区购进A,B两种抗洪物资80吨,共用去200万元,A种物资每吨万元,B种物资每吨万元.求A,B两种物资各购进了多少吨?该集团租用了大、小两种货车若干辆将这些物资一次性运往灾区,每辆大货车可运8吨A 种物资和2吨B种物资,每辆小货车可运5吨A种物资和吨B种物资,问租用的大、小货车各多少辆?25. 如图,数轴上点A,C对应的实数分别为和4,线段,,,若线段AB以秒的速度向右匀速运动,同时线段CD以秒的速度向左匀速运动.问运动多少秒时?线段AB与线段CD从开始相遇到完全离开共经过多长时间?是线段AB上一点,当B点运动到线段CD上时,是否存在关系式若存在,求线段PD的长;若不存在,请说明理由.答案和解析1.【答案】C【解析】解:根据相反数的定义,,,得与不是互为相反数,那么A不符合题意.B.根据相反数的定义,与不是相反数,那么B不符合题意.C.根据相反数的定义,,,得与互为相反数,那么C 符合题意.D.根据相反数的定义,,得与不是相反数,那么D不符合题意.故选:根据相反数以及绝对值的定义解决此题.本题主要考查绝对值、相反数,熟练掌握相反数以及绝对值的定义是解决本题的关键.2.【答案】A【解析】解:A、,此选项正确;B、,此选项错误;C、,此选项错误;D、不是同类项不能合并,故此选项错误;故选:分别根据有理数混合运算顺序和合并同类项法则求出判断即可.此题主要考查了合并同类项,正确掌握运算法则是解题关键.3.【答案】C【解析】解:A、错误.表示的平方的式子是B、错误.表示x、、的积的式子是C、正确.x、y两数差的平方表示为D、错误.的意义是x与y的平方和.故选:根据有理数的乘方和乘法对各选项分析判断后利用排除法求解.本题考查了列代数式,代数式的意义等知识,题目比较简单,主要是对一些书写习惯的考查.4.【答案】A【解析】解:最近的路线,应是,故选:根据两点之间,线段最短进行解答即可.此题主要考查了线段的性质,关键是掌握两点之间,线段最短.5.【答案】B【解析】解:因为射线OA的方向是北偏东,,所以射线OB的方向是南偏东,故选:方向角是从正北或正南方向到目标方向所形成的小于的角,由此即可求解.本题考查方向角的概念,掌握方向角的定义是解题的关键.6.【答案】A【解析】解:根据从三个不同方向看到的图形,可得到,图形相应位置上放置的个数,进而得出总数量;图中的数,表示该位置放的数量,因此故选:根据从三个不同方向看到的图形,可得到,图形相应位置上放置的桶装方便面的个数,进而得出答案.考查图形的实际应用,根据从三个不同方向看到的图形,分析得到相应位置上放置的个数是解题的关键.7.【答案】C【解析】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点C符合.故选:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题考查了几何体的展开图,理解立体图形和平面图形的关系是解题的关键.8.【答案】B【解析】解:②-①,得,,,解得,,故选:用第二个方程减去第一个方程即可得到与z的关系,然后根据,即可得到z的值,本题得以解决.本题考查解三元一次方程组,解答此类问题的关键是将原方程组变形,建立与已知条件的关系,求出相应的z的值.9.【答案】B【解析】解:图中有3条线段,选项A不正确;图中有6条射线,选项B正确;点C在线段AB的延长线上,选项C不正确;、B两点之间的距离是线段AB的长度,选项D不正确.故选:根据两点间的距离的含义和求法,以及直线、射线和线段的认识,逐项判断即可.此题主要考查了两点间的距离的含义和求法,以及直线、射线和线段的认识,要熟练掌握.10.【答案】C【解析】解:设这个角为,则这个角的余角,补角,由题意得,,解得故选:设这个角为,则这个角的余角,补角,结合题意可得出答案,求解即可.本题考查了余角和补角的知识,属于基础题,解答本题的关键是掌握互补的两角之和为,互余的两角之和为11.【答案】B【解析】解:设购买A型口罩x件,B型口罩y件,依题意列方程组得:故选:直接利用用4800元购进A,B口罩共160件,分别得出等式组成方程组即可.此题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题关键.12.【答案】A【解析】解:根据角平分线的定义,结合各选项得:①如果P点不在夹角内,则OP不是的平分线;②正确;③如果P点在外面,则OP不是的平分线;④如果,则OP不是的平分线;故选根据角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线,判断各选项即可得出答案.本题考查角平分线的定义,属于基础题,比较容易解答,注意掌握角平分线的定义是解题关键.13.【答案】【解析】解:故答案为:根据,换算即可得出答案.本题考查了度分秒的换算.相同单位相加减,满60时向上一单位进14.【答案】【解析】【分析】本题考查了合并同类项,先根据差是单项式,得出它们是同类项,求出m、n的值,再求出答案.根据差是单项式,可得它们是同类项,再根据同类项,可得m、n的值,根据有理数的减法,可得答案.【解答】解:单项式与的差仍是单项式,单项式与是同类项,,,即,,故答案为15.【答案】4【解析】解:根据题意得:且,故答案为:根据二元一次方程的定义计算即可.本题考查了二元一次方程的定义,掌握二元一次方程的定义是解题的关键,含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程,注意x前面的系数不等于16.【答案】【解析】解:,,,是AC的中点,,故答案为:由,,求出AC的长,再由D是AC的中点,求出DC的长,即可求出DB的长.本题考查求线段的长,关键是掌握线段中点的定义.17.【答案】60或120【解析】解:,,当OC在的外侧时,度;当OC在的内侧时,度.故填60或此题需要分类讨论,共两种情况.先作图后计算.此题计算量不大,但是不能忽略有两种情况.18.【答案】①②③【解析】解:由题意得:,,,,,即与互为余角,故①说法正确;,,,即与互为补角,故②说法正确;,,故③说法正确;,不是的平分线,故④说法错误.综上所述,正确的有①②③.故答案为:①②③.利用余角与补角的定义,结合图形对各说法进行分析即可.本题主要考查余角与补角,解答的关键是明确互余的两角之和为,互补的两角之和为19.【答案】解:原式;原式【解析】原式先计算乘除运算,再计算加减运算即可得到结果;原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.本题考查了有理数的混合运算,掌握有理数的运算法则是关键.20.【答案】解:,,,;,整理得:,①+②得:,解得,把代入②得:,解得,故原方程组的解是:【解析】利用解一元一次方程的方法进行求解即可;利用加减消元法进行求解即可.本题主要考查解二元一次方程组,解一元一次方程,解答的关键熟练掌握解一次方程的方法.21.【答案】解:由题意可知:,,所以,,所以【解析】本题考查整式的加减,涉及代入求值,有理数混合运算等知识.运用整式的加减,将化简;求出a与b的值,然后代入中结果求值即可.22.【答案】解:因为,,所以,因为,所以,,因为OM平分,所以,所以;因为与互余,所以,因为,所以,因为OM平分,所以,所以【解析】本题主要考查余角的定义,角平分线的定义及角的计算,灵活运用角的和差求解相关角的度数是解题的关键.由已知角度结合平角的定义可求解,的度数,再利用角平分线的定义可求解;根据余角的定义,平角的定义可求解的度数,再利用角平分线的定义结合角的和差可求解.23.【答案】或【解析】解:,,,,;故答案为:120,150;,,又平分,,,;故答案为:30;,理由如下:,,、,,即;故答案为:30;分两种情况:当三角板绕点O旋转至一边ON在的内部时,如图,设NO的延长线为OE,则,,,,当三角板绕点O旋转至一边ON不在的内部时,如图:,,;综上所述,与的关系为:或故答案为:或由平角的定义和已知条件解答即可;由角的平分线的定义、平角的定义和角的和差关系解答即可;因为,,所以、,然后作差即可;分两种情况:当三角板绕点O旋转至一边ON在的内部时,;当三角板绕点O旋转至一边ON不在的内部时,,综合两种情况得出答案.此题考查了角的计算和角平分线的定义,认真审题并仔细观察图形,熟记角平分线的定义,找到各个角之间的关系是解题的关键.24.【答案】解:设A种物资购进了x吨,B种物资购进了y吨,由题意得:,解得:,答:A种物资购进了60吨,B种物资购进了20吨;设租用的大货车为m辆,小货车为n辆,由题意得:,解得:,答:租用的大货车为5辆,小货车为4辆.【解析】设A种物资购进了x吨,B种物资购进了y吨,由题意:集团及时为灾区购进A,B两种抗洪物资80吨,共用去200万元,列出二元一次方程组,解方程组即可;设租用的大货车为m辆,小货车为n辆,由题意:每辆大货车可运8吨A种物资和2吨B种物资,每辆小货车可运5吨A种物资和吨B种物资,列出二元一次方程组,解方程组即可.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.25.【答案】解:设运动t秒时BC为2单位长度,①当点B在点C的左边时,由题意得:,解得:;②当点B在点C的右边时,由题意得:,解得:综合①②得:当运动1秒或2秒时;,点A在数轴上表示的数是,点C在数轴上表示的数是4,,而秒,线段AB与线段CD运动秒后相遇,又,秒,线段AB与线段CD从开始相遇到完全离开共经过秒长时间;存在,设运动时间为t秒,①当时,点B和点C重合,,点P在线段AB上,,,当时,,即;此时,②当时,点C在点A和点B之间,,当点P在线段BC上时,,,,,有,故时,,③当时,点A与点C重合,,,,,,有,故,此时,综上所述,线段PD的长为或【解析】本题考查一元一次方程的应用,解题的关键是读懂题意,分类列方程解决问题.用BC长度除以速度和即得线段AB与线段CD相遇所用时间,用除以速度和即得线段AB与线段CD从开始相遇到完全离开所需时间;设运动t秒时BC为2单位长度,①当点B在点C的左边时,可得,②当点B在点C的右边时,可得,即可解得答案;设运动时间为t秒,分三种情况列方程:①当时,点B和点C重合,可得,②当时,点C在点A和点B之间,,可得,故时,,③当时,点A与点C重合,,可得。
天津市南开区-学年七年级上学期期末数学试卷(PDF版 含答案)
--------4 分
②
I 如图 2
∵AF=3AD
DF=2AD
当 E 在线段 AC 上时,DE=8, AC=12 此时 F 在线段 DE 上
设 AD=x,则 DF=2x,EF=DE-DF=8-2x,CE=4-x
∴ 8-2x+4-x=3
则 x=3 所以 AD=3
——————————4 分2(源自)36
4 2
4
1
16
解
8
3( )
6
4 2
5
2
①
11
12 ①
10
16
②
2 ② 5得
28y=56
12
16
-----------------1 分
---------
2分
----------5 分
y=2
把 y=2
所以
代入②
-----------------7 分
II 如图 3
设 AD=x,则 DF=2x,EF=2x-8,CE=x-4
∴ 3x-12=3 则 x=5 所以 AD=5
∴ 综上所述,AD=3 或 5
—————————10 分
三解答题
19 计算(共六分)
(1)-(-1)1000-2.45×8+2.55×(-8).
解 = -1+(2.45+2.55)×(-8)——————————1 分
=-1+5×(-8)
——————————2 分
=-41
(2)
解
2
——————————3 分
七年级数学答案
一选择(每题 3 分)
天津市南开翔宇学校七年级上册数学期末试卷及答案-百度文库
天津市南开翔宇学校七年级上册数学期末试卷及答案-百度文库一、选择题1.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间( ) A .30分钟B .35分钟C .42011分钟 D .36011分钟 2.一个角是这个角的余角的2倍,则这个角的度数是( ) A .30 B .45︒ C .60︒ D .75︒ 3.一周时间有604800秒,604800用科学记数法表示为( ) A .2604810⨯ B .56.04810⨯C .66.04810⨯D .60.604810⨯4.下列因式分解正确的是()A .21(1)(1)xx x +=+- B .()am an a m n +=- C .2244(2)m m m +-=-D .22(2)(1)aa a a --=-+5.下列分式中,与2x yx y---的值相等的是() A .2x yy x +-B .2x yx y+-C .2x yx y--D .2x yy x-+ 6.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28B .30C .32D .347.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC=40°时,∠BOD 的度数是( ) A .50°B .130°C .50°或 90°D .50°或 130°8.当x=3,y=2时,代数式23x y-的值是( ) A .43B .2C .0D .39.下列等式的变形中,正确的有( ) ①由5 x =3,得x =53;②由a =b ,得﹣a =﹣b ;③由﹣x ﹣3=0,得﹣x =3;④由m =n ,得mn=1. A .1个B .2个C .3个D .4个10.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >011.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( ) A .两点确定一条直线 B .两点之间,线段最短C .直线可以向两边延长D .两点之间线段的长度,叫做这两点之间的距离12.下列方程的变形正确的有( ) A .360x -=,变形为36x = B .533x x +=-,变形为42x = C .2123x -=,变形为232x -= D .21x =,变形为2x = 二、填空题13.若|x |=3,|y |=2,则|x +y |=_____.14.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.15.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____. 16.把5,5,35按从小到大的顺序排列为______.17.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________.18.如图,在长方形ABCD 中,10,13.,,,AB BC E F G H ==分别是线段,,,AB BC CD AD 上的定点,现分别以,BE BF 为边作长方形BEQF ,以DG 为边作正方形DGIH .若长方形BEQF 与正方形DGIH 的重合部分恰好是一个正方形,且,BE DG =,Q I 均在长方形ABCD 内部.记图中的阴影部分面积分别为123,,s s s .若2137S S =,则3S =___19.如果一个数的平方根等于这个数本身,那么这个数是_____. 20.已知一个角的补角是它余角的3倍,则这个角的度数为_____.21.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的 .22.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm . 23.已知7635a ∠=︒',则a ∠的补角为______°______′.24.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n 个图案有2019个黑棋子,则n=______.三、解答题25.为引导学生“爱读书,多读书,读好书”,某校七(2)班决定购买A 、B 两种书籍.若购买A 种书籍1本和B 种书籍3本,共需要180元;若购买A 种书籍3本和B 种书籍1本,共需要140元.(1)求A 、B 两种书籍每本各需多少元?(2)该班根据实际情况,要求购买A 、B 两种书籍总费用不超过700元,并且购买B 种书籍的数量是A 种书籍的32,求该班本次购买A 、B 两种书籍有哪几种方案? 26.计算:(1)84(3)-÷⨯- (2)220192(3)(1)-+---27.已知x ay b =⎧⎨=⎩是方程组2025x y x y -=⎧⎨+=⎩的解,则3a b -=_____.28.请根据图中提供的暖瓶和水杯的售价信息,回答下列问题:(1)一个暖瓶与一个水杯的售价分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯,在新年期间,两家商场都在搞促销活动.甲商场规定:这两种商品都打8.5折;乙商场规定:两种商品都不打折,但买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和16个水杯,请问这个单位选择哪家商场购买更合算,并说明理由. 29.解方程:2112233x x-+=. 30.先化简,再求值:()()223321325x x x x --+---,其中1x =-.四、压轴题31.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数. 特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON 的度数为 °.图3中∠MON 的度数为 °. 发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论: 小明:由于图1中∠AOC 和∠BOD 的和为90°,所以我们容易得到∠MOC 和∠NOD 的和,这样就能求出∠MON 的度数.小华:设∠BOD 为x °,我们就能用含x 的式子分别表示出∠NOD 和∠MOC 度数,这样也能求出∠MON 的度数.(2)请你根据他们的谈话内容,求出图1中∠MON 的度数. 类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC 、∠BOD 的平分线OM 、ON ,他们认为也能求出∠MON 的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON 的度数;若不同意,请说明理由.32.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值.33.射线OA 、OB 、OC 、OD 、OE 有公共端点O .(1)若OA 与OE 在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n <72),OB 平分∠AOE,OD 平分∠COE(如图2),求∠BOD 的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC 绕点O 在∠AOD 内部旋转(不与OA 、OD 重合).探求:射线OC 从OA 转到OD 的过程中,图中所有锐角的和的情况,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由题意知,开始写作业时,分针和时针组成一平角,写完作业时,分针和时针重合.设小强做数学作业花了x分钟,根据分针追上时针时多转了180°列方程求解即可.【详解】分针速度:30度÷5分=6度/分;时针速度:30度÷60分=0.5度/分.设小强做数学作业花了x分钟,由题意得6x-0.5x=180,解之得x= 360 11.故选D.【点睛】本题考查了一元一次方程的应用---追击问题,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.C解析:C【解析】【分析】设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解.【详解】解:根据题意列方程的:2(90°-α)=α,解得:α=60°.故选:C.【点睛】本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).3.B解析:B 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【详解】604800的小数点向左移动5位得到6.048, 所以数字604800用科学记数法表示为56.04810⨯, 故选B . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值. 4.D解析:D 【解析】 【分析】分别利用公式法以及提取公因式法对各选项分解因式得出答案. 【详解】解:A 、21x +无法分解因式,故此选项错误; B 、()am an a m n +=+,故此选项错误; C 、244m m +-无法分解因式,故此选项错误; D 、22(2)(1)aa a a --=-+,正确;故选:D . 【点睛】此题主要考查了公式法以及提取公因式法分解因式,正确应用乘法公式是解题关键.5.A解析:A 【解析】 【分析】根据分式的基本性质即可求出答案. 【详解】 解:原式=22x y x yx y y x++-=--, 故选:A .【点睛】本题考查分式的基本性质,解题的关键熟练运用分式的基本性质,本题属于基础题型.6.B解析:B【解析】【分析】根据同底数幂的乘除法法则,进行计算即可.【详解】解:(1.8−0.8)×220=220(KB),32×211=25×211=216(KB),(220−216)÷215=25−2=30(首),故选:B.【点睛】本题考查了同底数幂乘除法运算,熟练掌握运算法则是解题的关键.7.D解析:D【解析】【分析】根据题意画出图形,再分别计算即可.【详解】根据题意画图如下;(1)∵OC⊥OD,∴∠COD=90°,∵∠AOC=40°,∴∠BOD=180°﹣90°﹣40°=50°,(2)∵OC ⊥OD , ∴∠COD=90°, ∵∠AOC=40°, ∴∠AOD=50°,∴∠BOD=180°﹣50°=130°, 故选D . 【点睛】此题考查了角的计算,关键是根据题意画出图形,要注意分两种情况画图.8.A解析:A 【解析】 【分析】当x=3,y=2时,直接代入代数式即可得到结果. 【详解】23x y -=2323⨯-=43, 故选A 【点睛】本题考查的是代数式求值,正确的计算出代数式的值是解答此题的关键.9.B解析:B 【解析】 ①若5x=3,则x=35, 故本选项错误; ②若a=b ,则-a=-b , 故本选项正确; ③-x-3=0,则-x=3, 故本选项正确; ④若m=n≠0时,则nm=1, 故本选项错误. 故选B.10.C解析:C 【解析】 【分析】利用数轴先判断出a 、b 的正负情况以及它们绝对值的大小,然后再进行比较即可. 【详解】解:由a 、b 在数轴上的位置可知:a <0,b >0,且|a |>|b |, ∴a +b <0,ab <0,a ﹣b <0,a ÷b <0. 故选:C .11.A解析:A 【解析】 【分析】根据题目可知:两棵树的连线确定了一条直线,可将两棵树看做两个点,再运用直线的公理可得出答案. 【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,这种做法运用到的数学知识是“两点确定一条直线”. 故答案为:A. 【点睛】本题考查的知识点是直线公理的实际运用,易于理解掌握.12.A解析:A 【解析】 【分析】根据等式的基本性质对各项进行判断后即可解答. 【详解】选项A ,由360x -=变形可得36x =,选项A 正确; 选项B ,由 533x x +=-变形可得42x =-,选项B 错误; 选项C ,由2123x -=变形可得236x -=,选项C 错误; 选项D ,由21x =,变形为x =12,选项D 错误. 故选A. 【点睛】本题考查了等式的基本性质,熟练运用等式的基本性质对等式进行变形是解决问题的关键.二、填空题13.1或5. 【解析】 【分析】根据|x|=3,|y|=2,可得:x =±3,y =±2,据此求出|x+y|的值是多少即可. 【详解】解:∵|x|=3,|y|=2,∴x =±3,y =±2,(1)x =3解析:1或5.【解析】【分析】根据|x |=3,|y |=2,可得:x =±3,y =±2,据此求出|x +y |的值是多少即可.【详解】解:∵|x |=3,|y |=2,∴x =±3,y =±2,(1)x =3,y =2时,|x +y |=|3+2|=5(2)x =3,y =﹣2时,|x +y |=|3+(﹣2)|=1(3)x =﹣3,y =2时,|x +y |=|﹣3+2|=1(4)x =﹣3,y =﹣2时,|x +y |=|(﹣3)+(﹣2)|=5故答案为:1或5.【点睛】此题主要考查了有理数的加法的运算方法,以及绝对值的含义和求法,要熟练掌握.14.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元解析:(23)a b【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系. 15.09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09. 故答案为0.09.【点睛】本题考查了近似数和解析:09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.16.【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:,5,都大于0,则,,故答案为:.【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进5<<【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:50,则62636555=<=<,5<<,5<<.【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进行比较即可. 17.-3【解析】【分析】根据题意将代入方程即可得到关于a ,b 的代数式,变形即可得出答案.【详解】解:将代入方程得到,变形得到,所以=故填-3.【点睛】本题考查利用方程的对代数式求值,将方解析:-3【解析】【分析】根据题意将1x =-代入方程即可得到关于a ,b 的代数式,变形即可得出答案.【详解】解:将1x =-代入方程得到220a b --+=,变形得到22a b -=-,所以241a b -+=2(2)1 3.a b -+=-故填-3.【点睛】本题考查利用方程的对代数式求值,将方程的解代入并对代数式变形整体代换即可.18.【解析】【分析】设CG =a ,然后用a 分别表示出AE 、PI 和AH ,根据,列方程可得a 的值,根据正方形的面积公式可计算S3的值.【详解】解:如图,设CG =a ,则DG =GI =BE =10−a , 解析:1214【解析】【分析】设CG =a ,然后用a 分别表示出AE 、PI 和AH ,根据2137S S =,列方程可得a 的值,根据正方形的面积公式可计算S 3的值.【详解】解:如图,设CG=a,则DG=GI=BE=10−a,∵AB=10,BC=13,∴AE=AB−BE=10−(10−a)=a, PI=IG−PG=10−a−a=10−2a,AH=13−DH=13−(10−a)=a+3,∵213 7S S =,即23(3)7aa a=+,∴4a2−9a=0,解得:a1=0(舍),a2=94,则S3=(10−2a)2=(10−92)2=1214,故答案为121 4.【点睛】本题考查正方形和长方形边长之间的关系、面积公式以及解一元二次方程等知识,解题的关键是学会利用参数列方程解决问题.19.0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵±=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】解析:0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.20.45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α解析:45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.21.5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.解析:5【解析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.22.4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=解析:4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=50×40×h,解得:h=10,则水箱中露在水面外的铁块的高度为:20-10=10(cm),所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm3).故答案为:4000.【点睛】此题考查一元一次方程的实际运用,掌握长方体的体积计算公式是解决问题的关键.23.25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】的补角为故答案为103;25.此题主要考查补角的求解,熟练掌握,即可解题解析:25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】a ∠的补角为180762313550'='︒-︒︒故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题.24.404【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】解:观察图1有5×1-1=4个黑棋子; 图2有5×2-1=9个黑棋子; 图3有解析:404【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】解:观察图1有5×1-1=4个黑棋子;图2有5×2-1=9个黑棋子;图3有5×3-1=14个黑棋子;图4有5×4-1=19个黑棋子;…图n 有5n-1个黑棋子,当5n-1=2019,解得:n=404,故答案:404.【点睛】本题考查探索与表达规律——图形类规律探究.能根据题中已给图形找出黑棋子的数量与序数之间的规律是解决此题的关键.三、解答题25.(1)A 种书籍每本30元,B 种书籍每本50元;(2)三种方案,具体见解析.【解析】【分析】(1)设A 种书籍每本x 元,B 种书籍每本y 元,根据条件建立方程组进行求解即可;(2)设购买A 种书籍a 本,则购买B 种书籍32a 本,根据总费用不超过700元可得关于a 的一元一次不等式,进而求解即可.【详解】(1)设A 种书籍每本x 元,B 种书籍每本y 元,由题意得 31803140x y x y +=⎧⎨+=⎩, 解得:3050x y =⎧⎨=⎩, 答:A 种书籍每本30元,B 种书籍每本50元;(2)设购买A 种书籍a 本,则购买B 种书籍32a 本,由题意得 30a+50×32a ≤700, 解得:a ≤203, 又a 为正整数,且32a 为整数, 所以a=2、4、6,共三种方案,方案一:购买A 种书籍2本,则购买B 种书籍3本,方案二:购买A 种书籍4本,则购买B 种书籍6本,方案三:购买A 种书籍6本,则购买B 种书籍9本.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系或不等式关系是解题的关键.26.(1)6;(2)12.【解析】【分析】(1)由题意利用有理数的乘除运算法则对式子进行运算即可;(2)先进行乘方与去绝对值运算,最后进行加减运算即可.【详解】解:(1)84(3)-÷⨯-= 2(3)-⨯-=6(2)220192(3)(1)-+---=29(1)+--=12【点睛】本题考查有理数的混合运算,熟练掌握有理数的混合运算法则包括乘方与去绝对值运算等是解题关键.27.【解析】【详解】 解:∵x a y b =⎧⎨=⎩是方程组2025x y x y -=⎧⎨+=⎩的解, ∴2025a b a b -=⎧⎨+=⎩①②, ①+②得,3a ﹣b =5.故答案为5.28.(1)一个暖瓶的售价是30元,一个水杯的售价是8元;(2)这个单位在甲商场购买更算.【解析】【分析】(1)根据“暖瓶+水杯=38元”和“2个暖瓶的价格+3个水杯的价格=84元”这两个关系式,设暖瓶为x 元,用x 将水杯的售价表示出来,然后列出一元一次方程求解即可.(2)根据售价×折扣=实际售价,分别计算两个方案各自的售价,然后对比判断即可解决.【详解】(1)设一个暖瓶售价x 元,则一个水杯售价是(38)x -元.依题意得:23(38)84x x +-=,解得:30x =.38-30=8(元).因此,一个暖瓶的售价是30元,一个水杯的售价是8元.(2)这个单位在甲商场购买更算.理由:在甲商场购买所需费用为:43016885%210.8⨯+⨯⨯=()(元);在乙商场购买所需费用为:43016-48216⨯+⨯=()(元);因为210.8<216,所以这个单位在甲商场购买更算.【点睛】本题考查了一元一次方程解决问题和方案选择问题,解决本题的关键是正确理解题意,找到等量关系,能够根据各自的方案计算其所需的费用.29.12x =. 【解析】【分析】 根据解一元一次方程的步骤依次计算可得.【详解】解:去分母,得:3(21)24x x -+=,去括号,得:6324x x -+=,移项,得:6432x x -=-,合并同类项,得:21x =,系数化为1,得:12x =. 【点睛】本题主要考查解一元一次方程,解题的关键是熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x a =形式转化.30.23213x x -+-,-27【解析】【分析】先先去括号,再合并同类项得到最简结果,然后把x 的值代入计算即可求出值.【详解】解:原式=2229636153213x x x x x x -+-++=-+-当x=-1时,原式=-3-21-3=-27【点睛】本题考查了整式的加减和求值,能正确根据整式的加减法则进行化简是解此题的关键. 四、压轴题31.(1)135,135;(2)∠MON =135°;(3)同意,∠MON =(90°﹣12x °)+x °+(45°﹣12x °)=135°. 【解析】【分析】(1)由题意可得,∠MON =12×90°+90°,∠MON =12∠AOC +12∠BOD +∠COD ,即可得出答案;(2)根据“OM 和ON 是∠AOC 和∠BOD 的角平分线”可求出∠MOC +∠NOD ,又∠MON =(∠MOC +∠NOD )+∠COD ,即可得出答案;(3)设∠BOC =x °,则∠AOC =180°﹣x °,∠BOD =90°﹣x °,进而求出∠MOC 和∠BON,又∠MON=∠MOC+∠BOC+∠BON,即可得出答案.【详解】解:(1)图2中∠MON=12×90°+90°=135°;图3中∠MON=1 2∠AOC+12∠BOD+∠COD=12(∠AOC+∠BOD)+90°=12⨯90°+90°=135°;故答案为:135,135;(2)∵∠COD=90°,∴∠AOC+∠BOD=180°﹣∠COD=90°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC+∠NOD=12∠AOC+12∠BOD=12(∠AOC+∠BOD)=45°,∴∠MON=(∠MOC+∠NOD)+∠COD=45°+90°=135°;(3)同意,设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC=12∠AOC=12(180°﹣x°)=90°﹣12x°,∠BON=12∠BOD=12(90°﹣x°)=45°﹣12x°,∴∠MON=∠MOC+∠BOC+∠BON=(90°﹣12x°)+x°+(45°﹣12x°)=135°.【点睛】本题考查的是对角度关系及运算的灵活运用和掌握,此类问题的练习有利于学生更好的对角进行理解.32.(1)3;(2)12;-3,2,-4或2,-3,-4.(3)a=11或4或10.【解析】【分析】(1)根据上述材料给出的方法计算其相应的最佳值为即可;(2)按照三个数不同的顺序排列算出最佳值,由计算可以看出,要求得这些数列的最佳值的最小值;只有当前两个数的和的绝对值最小,最小只能为|−3+2|=1,由此得出答案即可;(3)分情况算出对应的数值,建立方程求得a的数值即可.【详解】(1)因为|−4|=4,-4-32=3.5,-4-312+=3,所以数列−4,−3,1的最佳值为3.故答案为:3;(2)对于数列−4,−3,2,因为|−4|=4,432--=72,432||2--+=52,所以数列−4,−3,2的最佳值为52;对于数列−4,2,−3,因为|−4|=4,||422-+=1,432||2--+=52,所以数列−4,2,−3的最佳值为1;对于数列2,−4,−3,因为|2|=2,224-=1,432||2--+=52,所以数列2,−4,−3的最佳值为1;对于数列2,−3,−4,因为|2|=2,223-=12,432||2--+=52,所以数列2,−3,−4的最佳值为1 2∴数列的最佳值的最小值为223-=12,数列可以为:−3,2,−4或2,−3,−4.故答案为:12,−3,2,−4或2,−3,−4.(3)当22a+=1,则a=0或−4,不合题意;当92a-+=1,则a=11或7;当a=7时,数列为−9,7,2,因为|−9|=9,972-+=1,9722-++=0,所以数列2,−3,−4的最佳值为0,不符合题意;当972a-++=1,则a=4或10.∴a=11或4或10.【点睛】此题考查数字的变化规律,理解新定义运算的方法是解决问题的关键.33.(1)图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE;(2)∠BOD=54°;(3)∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=412°.理由见解析. 【解析】【分析】(1)根据角的定义即可解决;(2)利用角平分线的性质即可得出∠BOD=12∠AOC+12∠COE,进而求出即可;(3)将图中所有锐角求和即可求得所有锐角的和与∠AOE、∠BOD和∠BOD的关系,即可解题.【详解】(1)如图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE.(2)如图2,∵OB平分∠AOE,OD平分∠COE,∠AOC=108°,∠COE=n°(0<n<72),∴∠BOD=12∠AOD﹣12∠COE+12∠COE=12×108°=54°;(3)如图3,∠AOE=88°,∠BOD=30°,图中所有锐角和为∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=4∠AOB+4∠DOE=6∠BOC+6∠COD=4(∠AOE﹣∠BOD)+6∠BOD=412°.【点睛】本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE、∠BOD和∠BOD的关系是解题的关键,。
天津市南开翔宇学校七年级上学期期末数学试题及答案
天津市南开翔宇学校七年级上学期期末数学试题及答案 一、选择题 1.当x 取2时,代数式(1)2x x -的值是( ) A .0 B .1C .2D .3 2.若34(0)x y y =≠,则( )A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 3.下列四个式子:9,327-,3-,(3)--,化简后结果为3-的是( )A .9B .327-C .3-D .(3)--4.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a 、b 之间把绳子再剪(n ﹣2)次(剪刀的方向与a 平行),这样一共剪n 次时绳子的段数是( )A .4n+1B .4n+2C .4n+3D .4n+55.如图,OA ⊥OC ,OB ⊥OD ,①∠AOB=∠COD ;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个( )A .1个B .2个C .3个D .4个6.在下边图形中,不是如图立体图形的视图是( )A .B .C .D .7.下列变形不正确的是( )A .若x =y ,则x+3=y+3B .若x =y ,则x ﹣3=y ﹣3C .若x =y ,则﹣3x =﹣3yD .若x 2=y 2,则x =y 8.用代数式表示“a 的3倍与b 的差的平方”,正确的是( ) A .3(a ﹣b )2B .(3a ﹣b )2C .3a ﹣b 2D .(a ﹣3b )2 9.单项式﹣6ab 的系数与次数分别为( ) A .6,1B .﹣6,1C .6,2D .﹣6,2 10.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD∠的度数为( )A .100B .120C .135D .150 11.如果2|2|(1)0a b ++-=,那么()2020a b +的值是( )A .2019-B .2019C .1-D .1 12.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-1二、填空题13.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____.14.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元. 支付宝帐单日期 交易明细10.16乘坐公交¥ 4.00-10.17 转帐收入¥200.00+ 10.18体育用品¥64.00- 10.19零食¥82.00- 10.20餐费¥100.00-15.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 16.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.17.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若OC 6=,则线段AB 的长为______.18.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.19.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______.20.请先阅读,再计算:因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________. 21.当x= 时,多项式3(2-x )和2(3+x )的值相等.22.下列命题:①若∠1=∠2,∠2=∠3,则∠1=∠3;②若|a|=|b|,则a=b ;③内错角相等;④对顶角相等.其中真命题的是_______(填写序号)23.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.24.如图,直线AB 、CD 相交于O ,∠COE 是直角,∠1=44°,则∠2=______.三、解答题25.解方程(组):(1)2512432x y x y -=⎧⎨+=-⎩(2)12233x x x --=--. 26.如图,//AB CD ,60A ∠=︒,C E ∠=∠,求E ∠.27.某服装店购进一批甲、乙两种款型时尚T 恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T 恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完 这批T 恤衫商店共获利多少元?28.已知方程313752x x -=+与关于 x 的方程3a -8=2(x +a)-a 的解相同. (1)求 a 的值;(2)若 a 、b 在数轴上对应的点在原点的两侧,且到原点的距离相等,c 是倒数等于本身的数,求(a + b - c )2018的值.29.O 为数轴的原点,点A 、B 在数轴上表示的数分别为a 、b ,且满足(a ﹣20)2+|b+10|=0.(1)写出a 、b 的值;(2)P 是A 右侧数轴上的一点,M 是AP 的中点.设P 表示的数为x ,求点M 、B 之间的距离;(3)若点C 从原点出发以3个单位/秒的速度向点A 运动,同时点D 从原点出发以2个单位/秒的速度向点B 运动,当到达A 点或B 点后立即以原来的速度向相反的方向运动,直到C 点到达B 点或D 点到达A 点时运动停止,求几秒后C 、D 两点相距5个单位长度?30.如图,C 为线段AD 上一点,点B 为CD 的中点,且AD =9,BD =2.(1)求AC 的长;(2)若点E 在直线AD 上,且EA =1,求BE 的长.四、压轴题31.如图,数轴上有A 、B 两点,且AB=12,点P 从B 点出发沿数轴以3个单位长度/s 的速度向左运动,到达A 点后立即按原速折返,回到B 点后点P 停止运动,点M 始终为线段BP 的中点(1)若AP=2时,PM=____;(2)若点A 表示的数是-5,点P 运动3秒时,在数轴上有一点F 满足FM=2PM ,请求出点F 表示的数;(3)若点P 从B 点出发时,点Q 同时从A 点出发沿数轴以2.5个单位长度/s 的速度一直..向右运动,当点Q 的运动时间为多少时,满足QM=2PM.32.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空)()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.33.如图,在数轴上点A 表示数a,点B 表示数b,AB 表示A 点和B 点之间的距离,且a,b 满足|a+2|+(b+3a)2=0.(1)求A,B 两点之间的距离;(2)若在线段AB 上存在一点C,且AC=2BC,求C 点表示的数;(3)若在原点O 处放一个挡板,一小球甲从点A 处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B 处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.设运动时间为t 秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t 的代数式表示)②求甲乙两小球到原点距离相等时经历的时间.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】把x 等于2代入代数式即可得出答案.【详解】解:根据题意可得:把2x =代入(1)2x x -中得: (1)21==122x x -⨯, 故答案为:B.【点睛】本题考查的是代入求值问题,解题关键就是把x 的值代入进去即可.2.D解析:D【解析】【分析】根据选项进行一一排除即可得出正确答案.【详解】解:A 中、34y 0x +=,可得34y x =-,故A 错;B 中、8-6y=0x ,可得出43x y =,故B 错;C 中、3+4x y y x =+,可得出23x y =,故C 错;D 中、43x y =,交叉相乘得到34x y =,故D 对. 故答案为:D.【点睛】 本题考查等式的性质及比例的性质,熟练掌握性质定理是解题的关键.3.B【解析】【分析】由题意直接利用求平方根和立方根以及绝对值的性质和去括号分别化简得出答案.【详解】解:,故排除A;=3-,选项B正确;C. 3-=3,故排除C;--=3,故排除D.D. (3)故选B.【点睛】本题主要考查求平方根和立方根以及绝对值的性质和去括号原则,正确掌握相关运算法则是解题关键.4.A解析:A【解析】试题分析:设段数为x,根据题意得:当n=0时,x=1,当 n=1时,x=1+4=5,当 n=2时,x=1+4+4=9,当 n=3时,x=1+4+4+4=13,所以当n=n时,x=4n+1.故选A.考点:探寻规律.5.C解析:C【解析】【分析】根据垂直的定义和同角的余角相等分别计算后对各小题进行判断,由此即可求解.【详解】∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠COD+∠BOC=90°,∴∠AOB=∠COD,故①正确;∠BOC+∠AOD=90°﹣∠AOB+90°+∠AOB=180°,故②正确;∠AOB+∠COD不一定等于90°,故③错误;图中小于平角的角有∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD一共6个,故④正确;综上所述,说法正确的是①②④.故选C.【点睛】本题考查了余角和补角,垂直的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.解析:C【解析】【分析】直接利用简单组合体的三视图进而判断得出答案.【详解】解:A 选项为该立体图形的俯视图,不合题意;B 选项为该立体图形的主视图,不合题意;C 选项不是如图立体图形的视图,符合题意;D 选项为该立体图形的左视图,不合题意.故选:C .【点睛】此题主要考查了简单组合体的三视图,正确掌握观察角度是解题关键.7.D解析:D【解析】【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【详解】解:A 、两边都加上3,等式仍成立,故本选项不符合题意.B 、两边都减去3,等式仍成立,故本选项不符合题意.C 、两边都乘以﹣3,等式仍成立,故本选项不符合题意.D 、两边开方,则x =y 或x =﹣y ,故本选项符合题意.故选:D .【点睛】本题主要考查了等式的基本性质.解题的关键是掌握等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.8.B解析:B【解析】用代数式表示“a 的3倍与b 的差的平方”结果是:2(3)a b .故选B.9.D解析:D【解析】【分析】直接利用单项式的次数与系数确定方法分析得出答案.【详解】解:单项式﹣6ab 的系数与次数分别为﹣6,2.故选:D .【点睛】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.10.C解析:C【解析】【分析】首先根据角平分线性质得出∠COB=∠BOD=45°,再根据角的和差得出∠AOC=45°,从而得出答案.【详解】解:∵OB 平分∠COD ,∴∠COB=∠BOD=45°,∵∠AOB=90°,∴∠AOC=45°,∴∠AOD=135°.故选:C .【点睛】本题考查了角的平分线角的性质和角的和差,角平分线的性质是将两个角分成相等的两个角.11.D解析:D【解析】【分析】根据非负数的性质可求得a ,b 的值,然后代入即可得出答案.【详解】解:因为2|2|(1)0a b ++-=,所以a +2=0,b -1=0,所以a =-2,b =1,所以()2020a b +=(-2+1)2020=(-1)2020=1.故选:D.【点睛】本题主要考查了非负数的性质——绝对值和偶次方,根据几个非负数的和为零,则这几个数均为零求出a ,b 的值是解决此题的关键. 12.A解析:A【解析】【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4,∴|6-E|=4,∴点E所表示的数是:6-4=2.∴离线段BD的中点最近的整数是2.故选:A.【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.二、填空题13.-3【解析】【分析】根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、解析:-3【解析】【分析】根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、3,所以最小的整数是﹣3.故答案为:﹣3.【点睛】本题考查了数轴,注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉任一种情况.14.810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛解析:810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛】本题考查有理数的加减运算,理解题意根据题意对支出与收入进行加减运算从而求解. 15.【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式===故答案为:.【点睛】本题考查分式的计算,掌握分式的通分和约分是关键.解析:1 a b【解析】先将括号内进行通分计算,再将除法变乘法约分即可. 【详解】 解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭b a b a a b a b a b a b =()()+⋅-+b a b a b a b b=1a b - 故答案为:1a b-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.16.2+【解析】【分析】先求出点A 、B 之间的距离,再根据点B 、C 到点A 的距离相等,即可解答.【详解】∵数轴上点A ,B 表示的数分别是1,–,∴AB=1–(–)=1+,则点C 表示的数为1+1+解析:2+2【解析】【分析】先求出点A 、B 之间的距离,再根据点B 、C 到点A 的距离相等,即可解答.【详解】∵数轴上点A ,B 表示的数分别是1,–2,∴AB=1–(–2)=1+2,则点C 表示的数为1+1+2=2+2,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.17.4或36【解析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:,设,,若点C 在线段AB 上,则,点O 为AB 的中点,解析:4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:AC 2BC =,∴设BC x =,AC 2x =,若点C 在线段AB 上,则AB AC BC 3x =+=,点O 为AB 的中点,3AO BO x 2∴==,x CO BO BC 6x 12AB 312362∴=-==∴=∴=⨯= 若点C 在点B 右侧,则AB BC x ==,点O 为AB 的中点,x AO BO 2∴==,3CO OB BC x 6x 4AB 42∴=+==∴=∴= 故答案为4或36【点睛】 本题考查两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键. 18.16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+解析:16【解析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+d=37①;2a=b+2=c-3=2d ②; 第二个方程所有字母都用a 来表示可得b=2a-2,c=2a+3,d=4a ,代入第一个方程得a=4, ∴b=6,c=11,d=16,∴这四堆苹果中个数最多的一堆为16.故答案为16.【点睛】本题需注意未知数较多时,要把未知的四个量用一个量来表示,化多元为一元. 19.2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知解析:2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知,a-b=-7,c+d=2013,∴原式=7+2013=2020,故答案为:2020.【点睛】本题考查了整式加法交换律和结合律的运算,整体代换思想的应用,掌握整式加法运算律的应用是解题的关键.20.【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】解:故答案为【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的 解析:242525【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】 解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1111111110010110110210210320192020-+-+-++-= 9610100242525== 故答案为242525【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算. 21.【解析】试题解析:根据题意列出方程3(2-x )=2(3+x )去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.解析:【解析】试题解析:根据题意列出方程3(2-x )=2(3+x )去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.22.①④【解析】【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此解析:①④【解析】【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此时|a|=|b|,而a≠b,故②是假命题,不符合题意;③两直线平行,内错角相等,故③是假命题,不符合题意;④对顶角相等,真命题,符合题意,故答案为:①④.【点睛】本题考查了真假命题,熟练掌握等式的性质,绝对值的性质,平行线的性质,对顶角的性质是解题的关键.23.6cm【解析】【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=AM=2cm ,AQ=AB=8cm,从而得到答案.【详解】解:∵AB=16cm,AM:BM=1解析:6cm【解析】【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=12AM=2cm,AQ=12AB=8cm,从而得到答案.【详解】解:∵AB=16cm,AM:BM=1:3,∴AM=4cm.BM=12cm,∵P,Q分别为AM,AB的中点,∴AP=12AM=2cm,AQ=12AB=8cm,∴PQ=AQ-AP=6cm;故答案为:6cm.【点睛】本题考查了线段的长度计算问题,把握中点的定义,灵活运用线段的和、差、倍、分进行计算是解决本题的关键.24.46°【解析】【分析】根据∠2=180°-∠COE-∠1,可得出答案.【详解】解:由题意得∠2=180°-∠COE-∠1=180°-90°-44°=46°.故答案为:46°.【点睛】解析:46°【解析】【分析】根据∠2=180°-∠COE-∠1,可得出答案.【详解】解:由题意得∠2=180°-∠COE-∠1=180°-90°-44°=46°.故答案为:46°.【点睛】本题考查平角、直角的定义和几何图形中角的计算.能识别∠AOB是平角且它等于∠1、∠2和∠COE三个角之和是解题关键.三、解答题25.(1)12xy=⎧⎨=-⎩;(2)原方程无解.【解析】【分析】(1)利用加减消元法即可解答(2)先去分母,再移项合并同类项即可【详解】(1)2512432x y x y -=⎧⎨+=-⎩①② 由2①×,得41024x y -=③由-③②,并化简,得2y =-把2y =-代入①,并化简,得1x =∴12x y =⎧⎨=-⎩(2)解:原式两边同时乘以3x -,得12(3)2x x --=-∴3x =经检验:3x =是增根,舍去∴原方程无解.【点睛】此题考查解二元一次方程组和解分式方程,解题关键在于掌握运算法则26.30°.【解析】【分析】依据平行线的性质,即可得到∠DOE =60°,再根据三角形外角性质,即可得到∠E 的度数.【详解】解:∵AB ∥CD ,∠A =60°,∴∠DOE =∠A =60°,又∵∠C =∠E ,∠DOE =∠C+∠E ,∴∠E =12∠DOE =30°. 【点睛】 本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.27.(1)甲种款型的T 恤衫购进60件,乙种款型的T 恤衫购进40件;(2)售完这批T 恤衫商店共获利5960元.【解析】【分析】(1)可设乙种款型的T 恤衫购进x 件,则甲种款型的T 恤衫购进1.5x 件,根据题意列出方程求解即可;(2)先求出甲款型的利润,乙款型前面销售一半的利润,后面销售一半的亏损,再相加即可求解.【详解】(1)设乙种款型的T 恤衫购进x 件,则甲种款型的T 恤衫购进1.5x 件,依题意有:78006400301.5x x+=,解得x=40,经检验,x=40是原方程组的解,且符合题意,1.5x=60.答:甲种款型的T 恤衫购进60件,乙种款型的T 恤衫购进40件;(2)6400x=160,160﹣30=130(元), 130×60%×60+160×60%×(40÷2)﹣160×[1﹣(1+60%)×0.5]×(40÷2)=4680+1920﹣640=5960(元).答:售完这批T 恤衫商店共获利5960元.【点睛】本题考查分式方程的应用,根据等量关系建立方程是关键,注意分式方程需要验根.28.(1)4a =-;(2)1.【解析】【分析】(1)先求出方程313752x x -=+的解x=-8,再代入方程3a -8=2(x +a)-a 求出a 的值即可; (2)根据数a ,b 在数轴上的位置特点,可知a ,b 互为相反数,即a+b=0,再由倒数的定义可知xy=1,把它们代入所求代数式(a+b-c )2018,根据运算法则即可得出结果.【详解】(1)313752x x -=+解得8x =-, 再将8x =-代入()382a x a a -=+-,解得4a =-,(2)∵a ,b 互为相反数,∴a+b=0,∵c 是倒数等于本身的数,∴c=±1;∴()()20182018011a b c +-=±= 【点睛】本题主要考查了相反数、倒数的定义和性质及有理数的加法运算.注意,数轴上,在原点两侧,并且到原点的位置相等的点表示的两个数一定互为相反数.29.(1)a =20,b =﹣10;(2)20+2x ;(3)1秒、11秒或13秒后,C 、D 两点相距5个单位长度【解析】【分析】(1)利用绝对值及偶次方的非负性,可求出a ,b 的值;(2)由点A ,P 表示的数可找出点M 表示的数,再结合点B 表示的数可求出点M 、B 之间的距离;(3)当0≤t≤203时,点C 表示的数为3t ,当203<t≤503时,点C 表示的数为20﹣3(t ﹣203)=40﹣3t;当0≤t≤5时,点D表示的数为﹣2t,当5<t≤20时,点D表示的数为﹣10+2(t﹣5)=2t﹣20.分0≤t≤5,5<t≤203及203<t≤503,三种情况,利用CD=5可得出关于x的一元一次方程,解之即可得出结论.【详解】解:(1)∵(a﹣20)2+|b+10|=0,∴a﹣20=0,b+10=0,∴a=20,b=﹣10.(2)∵设P表示的数为x,点A表示的数为20,M是AP的中点.∴点M表示的数为202x+.又∵点B表示的数为﹣10,∴BM=202x+﹣(﹣10)=20+2x.(3)当0≤t≤203时,点C表示的数为3t;当203<t≤503时,点C表示的数为:20﹣3(t﹣203)=40﹣3t;当0≤t≤5时,点D表示的数为﹣2t;当5<t≤20时,点D表示的数为:﹣10+2(t﹣5)=2t﹣20.当0≤t≤5时,CD=3t﹣(﹣2t)=5,解得:t=1;当5<t≤203时,CD=3t﹣(2t﹣20)=5,解得:t=﹣15(舍去);当203<t≤503时,CD=|40﹣3t﹣(2t﹣20)|=5,即60﹣5t=5或60﹣5t=﹣5,解得:t=11或t=13.答:1秒、11秒或13秒后,C、D两点相距5个单位长度.【点睛】本题考查了一元一次方程的应用、数轴、绝对值及偶次方的非负性,解题的关键是:(1)利用绝对值及偶次方的非负性,求出a,b的值;(2)根据各点之间的关系,用含x的代数式表示出BM的长;(3)找准等量关系,正确列出一元一次方程.30.(1)5;(2)BE的长为8或6【解析】【分析】(1)由中点的定义可得CD=2BD,由BD=2可求CD的长度,最后根据线段的和差即可解答;(2)由于点E 在直线AD 上位置不确定,需分E 在线段DA 上和线段AD 的延长线两种情况解答.【详解】解:(1)∵点B 为CD 的中点,BD =2,∴CD =2BD =4,∵AD =9,∴AC =AD ﹣CD =9﹣4=5;(2)若E 在线段DA 的延长线,如图1,∵EA =1,AD =9,∴ED =EA +AD =1+9=10,∵BD =2,∴BE =ED ﹣BD =10﹣2=8,若E 线段AD 上,如图2,EA =1,AD =9,∴ED =AD ﹣EA =,9﹣1=8,∵BD =2,∴BE =ED ﹣BD =8﹣2=6,综上所述,BE 的长为8或6.【点睛】本题考查的是线段的中点、线段的和差计算等知识点,根据题意画出图形并进行分类讨论是解答本题的关键.四、压轴题31.(1)5 ;(2)点F 表示的数是11.5或者-6.5;(3)127t =或6t =. 【解析】【分析】(1)由AP=2可知PB=12-2=10,再由点M 是PB 中点可知PM 长度;(2)点P 运动3秒是9个单位长度,M 为PB 的中点,则可求解出点M 表示的数是2.5,再由FM=2PM 可求解出FM=9,此时点F 可能在M 点左侧,也可能在其右侧;(3)设Q 运动的时间为t 秒,由题可知t=4秒时,点P 到达点A ,再经过4秒点P 停止运动;则分04t ≤≤和48t <≤两种情况分别计算,由题可知即可QM=2PM=BP ,据此进行解答即可.【详解】 (1)5 ;(2)∵点A 表示的数是5-∴点B 表示的数是7∵点P 运动3秒是9个单位长度,M 为PB 的中点∴PM=12PB=4.5,即点M 表示的数是2.5 ∵FM=2PM∴FM=9∴点F 表示的数是11.5或者-6.5(3)设Q 运动的时间为t 秒, 当04t ≤≤时,由题可知QM=2PM=BP ,故点Q 位于点P 左侧,则AB=AQ+QP+PB ,而QP=QM-PM=2PM-PM=12BP ,则可得12=2.5t+12⨯3t+3t=7t ,解得t=127; 当48t <≤时,由题可知QM=2PM=BP ,故点Q 位于点B 右侧,则PB=2QB ,则可得,()()123422.512t t --=-,整理得8t=48,解得6t =.【点睛】本题结合数轴上的动点问题考查了一元一次方程的应用,第3问要根据题干条件分情况进行讨论,作出图形更易理解.32.(1)2AC cm =,4DM cm =;(2)6AC MD cm +=;(3)4AM =;(4)13MN AB =或1. 【解析】【详解】(1)根据题意知,CM=2cm ,BD=4cm .∵AB=12cm ,AM=4cm ,∴BM=8cm ,∴AC=AM ﹣CM=2cm ,DM=BM ﹣BD=4cm . 故答案为2,4;(2)当点C 、D 运动了2 s 时,CM=2 cm ,BD=4 cm .∵AB=12 cm ,CM=2 cm ,BD=4 cm ,∴AC+MD=AM ﹣CM+BM ﹣BD=AB ﹣CM ﹣BD=12﹣2﹣4=6 cm ;(3)根据C 、D 的运动速度知:BD=2MC .∵MD=2AC ,∴BD+MD=2(MC+AC ),即MB=2AM .∵AM+BM=AB,∴AM+2AM=AB,∴AM=13AB=4.故答案为4;(4)①当点N在线段AB上时,如图1.∵AN﹣BN=MN.又∵AN﹣AM=MN,∴BN=AM=4,∴MN=AB﹣AM﹣BN=12﹣4﹣4=4,∴MNAB=412=13;②当点N在线段AB的延长线上时,如图2.∵AN﹣BN=MN.又∵AN﹣BN=AB,∴MN=AB=12,∴MNAB=1212=1.综上所述:MNAB=13或1.【点睛】本题考查了两点间的距离,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.33.2+t6-2t或2t-6【解析】分析:(1)、先根据非负数的性质求出a、b的值,再根据两点间的距离公式即可求得A、B 两点之间的距离;(2)、设BC的长为x,则AC=2x,根据AB的长度得出x的值,从而得出点C所表示的数;(3)①甲球到原点的距离=甲球运动的路程+OA的长,乙球到原点的距离分两种情况:(Ⅰ)当0<t≤3时,乙球从点B处开始向左运动,一直到原点O,此时OB的长度-乙球运动的路程即为乙球到原点的距离;(Ⅱ)当t>3时,乙球从原点O处开始向右运动,此时乙球运动的路程-OB的长度即为乙球到原点的距离;②分两种情况:(Ⅰ)0<t≤3,(Ⅱ)t>3,根据甲、乙两小球到原点的距离相等列出关于t的方程,解方程即可.详解:(1)、由题意知a=-2,b=6,故AB=8.(2)、设BC的长为x,则AC=2x, ∵BC+AC=AB,∴x+2x=8,解得x=83,∴C点表示的数为6-8 3=103.(3)①2+t;6-2t或2t-6.②当2+t=6-2t时,解得t=43,当2+t=2t-6时,解得t=8.∴t=43或8.点睛:本题考查了非负数的性质,方程的解法,数轴,两点间的距离,有一定难度,运用分类讨论思想、方程思想及数形结合思想是解题的关键.。
天津市南开区翔宇中学2019-2020学年第一学期人教版七年级上期末考试模拟试卷(PDF版含答案) (1)
天津市南开区翔宇中学2019-2020人教版七年级数学期末考试模拟试卷(含答案)一、单选题1.下列结论成立的是()A .若|a|=a ,则a >0B .若|a|=|b|,则a =±bC .若|a|>a ,则a≤0D .若|a|>|b|,则a >b .2.下列说法正确的是()A .一个数的绝对值一定比0大B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数D .最小的正整数是13.若a ≠0,b≠0,则代数式||||||a b ab a b ab ++的取值共有()A .2个B .3个C .4个D .5个4.据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积面积约为多少平方千米()A .73610⨯B .83.610⨯C .90.3610⨯D .93.610⨯5.整式23x x -的值是4,则2398x x -+的值是()A .20B .4C .16D .-46.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算()A .甲B .乙C .丙D .一样7.多项式()n1x n 2x 72-++是关于x 的二次三项式,则n 的值是()A .2B .2-C .2或2-D .38.方程1﹣22x -=13x +去分母得()A .1﹣3(x﹣2)=2(x+1)B .6﹣2(x﹣2)=3(x+1)C .6﹣3(x﹣2)=2(x+1)D .6﹣3x﹣6=2x+29.已知方程7236x x +=-与关于x 的方程1x k -=的解相同,则231k -的值为()A .18B .20C .26D .-2610.下列命题中:①.有理数和数轴上的点一一对应;②.内错角相等;③.平行于同一条直线的两条直线互相平行;④.邻补角一定互补.其中真命题的个数是()A.1个B.2个C.3个D.4个11.如图,OE平分∠AOC,OF平分∠BOC,且∠BOC=60°,若∠AOC+∠EOF=156°,则∠EOF的度数是()A.88°B.30°C.32°D.48°12.已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD 的度数是()A.20°或50°B.20°或60°C.30°或50°D.30°或60°二、填空题13.若定义一种新的运算,规定acbd=ab-cd,则1423=_____.14.近似数2.30万精确到________位,用科学记数法表示为__________.15.若多项式3(a2-2ab-b2)-(a2+mab+2b2)中不含有ab项,则m=________.16.已知关于x的方程2ax=(a+1)x+3的解是正整数,则正整数a=_____.17.如图,已知∠AOB是直角,ON平分∠AOC,OM平分∠BOC,则∠MON的度数为________________°.18.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.三、解答题19.计算与化简:(1)(﹣5)﹣(+3)﹣(﹣7)+(﹣9)(2)(﹣3)3÷214×(﹣23)2(3)(﹣34+712﹣59)÷(﹣136)20.解下列方程(组):(1)321126x x -+-=(2)21.已知多项式(2x 2+ax -y +6)-(bx 2-2x +5y -1).(1)若多项式的值与字母x 的取值无关,求a 、b 的值;(2)在(1)的条件下,先化简多项式2(a 2-ab +b 2)-(a 2+ab +2b 2),再求它的值.22.如图,已知线段20AB =厘米,M 是线段AB 的中点在线段MB 上,N 为线段PB 的中点,4NB =厘米,求PM 的长.23.为了响应市委和市政府“绿色环保,节能减排”的号召,幸福商场用3300元购进甲、乙两种节能灯共计100只,很快售完.这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲种节能灯3040乙种节能灯3550(1)求幸福商场甲、乙两种节能灯各购进了多少只?(2)全部售完100只节能灯后,商场共计获利多少元?24.已知,∠AOD=160°,OB、OM、ON是∠AOD内的射线(1)如图1,若OM平分∠AOB,ON平分∠BOD,则∠MON=°(2)如图2,OC是∠AOD内的射线,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD,当射线OB在∠AOC内时,求∠MON的大小;(3)如图2,在(2)的条件下,当∠AOB=2t°时,∠AOM:∠DON=2:3,求t的值.答案第1页,总1页参考答案1.B 2.D 3.A 4.B 5.A 6.C 7.A 8.C 9.C 10.B 11.C 12.C 13.1414.百42.3010⨯15.-616.2或417.4518.5419.(1)﹣10(2)﹣163(3)2620.(1)x=16;(2)13383x y ⎧=⎪⎪⎨⎪=⎪⎩21.(1)a=-2,b=2;(2)16.22.2cm23.(1)商场购进甲种节能灯40只,购进乙种节能灯60只(2)商场共计获利1300元24.(1)80(2)70°(3)26。
天津市南开翔宇学校七年级上学期期末数学试题及答案
天津市南开翔宇学校七年级上学期期末数学试题及答案一、选择题1.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为()A.0.1289×1011B.1.289×1010C.1.289×109D.1289×1072.如图,C为射线AB上一点,AB=30,AC比BC的14多5,P,Q两点分别从A,B两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB上沿AB方向运动,运动时间为t秒,M为BP的中点,N为QM的中点,以下结论:①BC=2AC;②AB=4NQ;③当PB=12BQ时,t=12,其中正确结论的个数是()A.0 B.1 C.2 D.33.一周时间有604800秒,604800用科学记数法表示为()A.2604810⨯B.56.04810⨯C.66.04810⨯D.60.604810⨯4.已知关于x的方程mx+3=2(m﹣x)的解满足(x+3)2=4,则m的值是()A.13或﹣1 B.1或﹣1 C.13或73D.5或735.计算32a a⋅的结果是()A.5a;B.4a;C.6a;D.8a.6.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF,以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC+∠ABD=90°;④∠BDC=∠BAC;其中正确的结论有()A.1个B.2个C.3个D.4个7.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.6cm B.3cm C.3cm或6cm D.4cm8.下列调查中,最适合采用全面调查(普查)的是( )A.对广州市某校七(1)班同学的视力情况的调查B.对广州市市民知晓“礼让行人”交通新规情况的调查C .对广州市中学生观看电影《厉害了,我的国》情况的调查D .对广州市中学生每周课外阅读时间情况的调查9.如图,能判定直线a ∥b 的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠410.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x 人到甲处,则所列方程是( )A .2(30+x )=24﹣xB .2(30﹣x )=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x ) 11.已知105A ∠=︒,则A ∠的补角等于( )A .105︒B .75︒C .115︒D .95︒ 12.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .连接两点的线段叫做两点的距离二、填空题13.2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为__________.14.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____.15.单项式22ab -的系数是________. 16.单项式﹣22πa b的系数是_____,次数是_____.17.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.18.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________.19.请先阅读,再计算:因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________. 20.五边形从某一个顶点出发可以引_____条对角线.21.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.22.若关于x 的方程2x +a ﹣4=0的解是x =﹣2,则a =____.23.线段AB=2cm ,延长AB 至点C ,使BC=2AB ,则AC=_____________cm.24.如图,直线AB 、CD 相交于O ,∠COE 是直角,∠1=44°,则∠2=______.三、解答题25.计算:(1)17+(﹣1.5)﹣(﹣67) (2)32÷(﹣34)+(﹣27)2×21 26.请根据图中提供的暖瓶和水杯的售价信息,回答下列问题:(1)一个暖瓶与一个水杯的售价分别是多少元? (2)甲、乙两家商场同时出售同样的暖瓶和水杯,在新年期间,两家商场都在搞促销活动.甲商场规定:这两种商品都打8.5折;乙商场规定:两种商品都不打折,但买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和16个水杯,请问这个单位选择哪家商场购买更合算,并说明理由.27.如图,在一条不完整的数轴上从左到右有点A ,B ,C ,其中AB =2BC ,设点A ,B ,C 所对应数的和是m .(1)若点C 为原点,BC =1,则点A ,B 所对应的数分别为 , ,m 的值为 ;(2)若点B 为原点,AC =6,求m 的值.(3)若原点O 到点C 的距离为8,且OC =AB ,求m 的值.28.计算:()()320192413-÷--⨯-29.全民健身运动已成为一种时尚 ,为了解揭阳市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷内容包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.以下是根据调查结果绘制的统计图表的一部分,运动形式A B C D E 人数 12 30 m 54 9请你根据以上信息,回答下列问题:()1接受问卷调查的共有 人,图表中的m = ,n = .()2统计图中,A 类所对应的扇形的圆心角的度数是 度.()3揭阳市环岛路是市民喜爱的运动场所之一,每天都有“暴走团”活动,若某社区约有1500人,请你估计一下该社区参加环岛路“暴走团”的人数.30.如图,在数轴上点A 表示的数a 、点B 表示数b ,a 、b 满足|a ﹣30|+(b+6)2=0.点O 是数轴原点.(1)点A 表示的数为 ,点B 表示的数为 ,线段AB 的长为 .(2)若点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC ,请在数轴上找一点C ,使AC=2BC ,则点C 在数轴上表示的数为 .(3)现有动点P 、Q 都从B 点出发,点P 以每秒1个单位长度的速度向终点A 移动;当点P 移动到O 点时,点Q 才从B 点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达A 点时,点Q 就停止移动,设点P 移动的时间为t 秒,问:当t 为多少时,P 、Q 两点相距4个单位长度?四、压轴题31.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC .①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).32.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由.33.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A ,B 在数轴上分别对应的数为a ,b (a <b ),则AB 的长度可以表示为AB =b -a .请你用以上知识解决问题:如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A点,再向右移动3个单位长度到达B点,然后向右移动5个单位长度到达C点.(1)请你在图②的数轴上表示出A,B,C三点的位置.(2)若点A以每秒1个单位长度的速度向左移动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t秒.①当t=2时,求AB和AC的长度;②试探究:在移动过程中,3AC-4AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:12 8900 0000元,这个数据用科学记数法表示为1.289×109.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.C解析:C【解析】【分析】根据AC比BC的14多5可分别求出AC与BC的长度,然后分别求出当P与Q重合时,此时t=30s,当P到达B时,此时t=15s,最后分情况讨论点P与Q的位置.【详解】解:设BC=x,∴AC=14x+5∵AC+BC=AB∴x+14x+5=30,解得:x=20,∴BC=20,AC=10,∴BC=2AC,故①成立,∵AP=2t,BQ=t,当0≤t≤15时,此时点P在线段AB上,∴BP=AB﹣AP=30﹣2t,∵M是BP的中点∴MB=12BP=15﹣t∵QM=MB+BQ,∴QM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当15<t≤30时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,综上所述,AB=4NQ,故②正确,当0<t≤15,PB=12BQ时,此时点P在线段AB上,∴AP=2t,BQ=t∴PB=AB﹣AP=30﹣2t,∴30﹣2t=12t,∴t=12,当15<t≤30,PB=12BQ时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,不符合t>30,综上所述,当PB=12BQ时,t=12或20,故③错误;故选:C.【点睛】本题考查两点间的距离,解题的关键是求出P到达B点时的时间,以及点P与Q重合时的时间,涉及分类讨论的思想.3.B解析:B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】604800的小数点向左移动5位得到6.048,所以数字604800用科学记数法表示为56.04810⨯,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值.4.A解析:A【解析】【分析】先求出方程的解,把x 的值代入方程得出关于m 的方程,求出方程的解即可.【详解】解:(x+3)2=4,x ﹣3=±2,解得:x =5或1,把x =5代入方程mx+3=2(m ﹣x )得:5m+3=2(m ﹣5),解得:m =13, 把x =﹣1代入方程mx+3=2(m ﹣x )得:﹣m+3=2(1+m ),解得:m =﹣1,故选:A .【点睛】本题考查了解一元一次方程的解的应用,能得出关于m 的方程是解此题的关键.5.A解析:A【解析】此题考查同底数幂的乘法运算,即(0)m n m n a a aa +⋅=>,所以此题结果等于325a a +=,选A ; 6.C解析:C【解析】①∵AD 平分△ABC 的外角∠EAC ,∴∠EAD=∠DAC,∵∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,故①正确.②由(1)可知AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABC=2∠ADB,∵∠ABC=∠ACB,∴∠ACB=2∠ADB,故②正确.③在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°∴∠ADC=90°−∠ABD,故③正确;④∵∠BAC+∠ABC=∠ACF,∴12∠BAC+12∠ABC=12∠ACF,∵∠BDC+∠DBC=12∠ACF,∴12∠BAC+12∠ABC=∠BDC+∠DBC,∵∠DBC=12∠ABC,∴12∠BAC=∠BDC,即∠BDC=12∠BAC.故④错误.故选C.点睛:本题主要考查了三角形的内角和,平行线的判定和性质,三角形外角的性质等知识,解题的关键是正确找各角的关系.7.D【解析】【分析】根据线段的和与差,可得MB的长,根据线段中点的定义,即可得出答案.【详解】当点C在AB的延长线上时,如图1,则MB=MC-BC,∵M是AC的中点,N是BC的中点,AB=8cm,∴MC=11()22AC AB BC=+,BN=12BC,∴MN=MB+BN,=MC-BC+BN,=1()2AB BC+-BC+12BC,=12 AB,=4,同理,当点C在线段AB上时,如图2,则MN=MC+NC=12AC+12BC=12AB=4,,故选:D.【点睛】本题考查了线段的和与差,线段中点的定义,掌握线段中点的定义是解题的关键.8.A解析:A【解析】【分析】根据普查得到的结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.【详解】A. 对广州市某校七(1)班同学的视力情况的调查,适合全面调查,符合题意;B. 对广州市市民知晓“礼让行人”交通新规情况的调查,适合抽样调查,故不符合题意;C. 对广州市中学生观看电影《厉害了,我的国》情况的调查,适合抽样调查,故不符合题意;D. 对广州市中学生每周课外阅读时间情况的调查,适合抽样调查,故不符合题意,【点睛】本题考查的是抽样调查与全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大的调查,应选用抽样调查,对于精确度要求高的调查,事关重大的调查往往先用普查的方式.9.D解析:D【解析】【分析】根据平行线的判定方法逐一进行分析即可得.【详解】A. ∠2+∠4=180°,互为邻补角,不能判定a//b,故不符合题意;B. ∠3=∠4,互为对顶角,不能判定a//b,故不符合题意;C. ∠1+∠4=90°,不能判定a//b,故不符合题意;D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b,故符合题意,故选D.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.10.D解析:D【解析】【分析】设应从乙处调x人到甲处,根据调配完后甲处人数是乙处人数的2倍,即可得出关于x的一元一次方程,此题得解.【详解】设应从乙处调x人到甲处,依题意,得:30+x=2(24﹣x).故选:D.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解答本题的关键.11.B解析:B【解析】【分析】由题意直接根据互补两角之和为180°求解即可.【详解】解:∵∠A=105°,∴∠A的补角=180°-105°=75°.故选:B.【点睛】本题考查补角的知识,属于基础题,掌握互补两角之和为180°是关键.12.A解析:A【解析】【分析】根据公理“两点确定一条直线”来解答即可.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.【点睛】此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.二、填空题13.684×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解析:684×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将 2684 亿用科学记数法表示为:2.684×1011.故答案为:2.684×1011【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和解析:09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.15.【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式的系数是,故答案为:.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键.解析:12-【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式22ab-的系数是12-,故答案为:1 2 -.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键.16.﹣; 3.【解析】【分析】根据单项式的次数、系数的定义解答.【详解】解:单项式﹣的系数是﹣,次数是2+1=3,故答案是:﹣;3.【点睛】本题考查了单项式系数、次数的定义解析:﹣2π; 3. 【解析】【分析】 根据单项式的次数、系数的定义解答.【详解】 解:单项式﹣22πa b 的系数是﹣2π,次数是2+1=3, 故答案是:﹣2π;3. 【点睛】本题考查了单项式系数、次数的定义.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键. 17.16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+解析:16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+d=37①;2a=b+2=c-3=2d ②; 第二个方程所有字母都用a 来表示可得b=2a-2,c=2a+3,d=4a ,代入第一个方程得a=4, ∴b=6,c=11,d=16,∴这四堆苹果中个数最多的一堆为16.故答案为16.【点睛】本题需注意未知数较多时,要把未知的四个量用一个量来表示,化多元为一元. 18.6×【解析】试题解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 0解析:6×910【解析】试题解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 000=4.6×109.故答案为4.6×109.19.【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】解:故答案为【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的 解析:242525【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1111111110010110110210210320192020-+-+-++-= 9610100242525== 故答案为242525【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算. 20.2【解析】【分析】从n 边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记解析:2【解析】【分析】从n 边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记知识点(从n 边形的一个顶点出发有(n−3)条对角线)是解此题的关键.21.2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键解析:2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.22.8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一解析:8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一元一次方程的解,解答本题的关键是把x=﹣2代入方程2x+a﹣4=0求解.23.6【解析】如图,∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.解析:6【解析】如图,∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.24.46°【解析】【分析】根据∠2=180°-∠COE-∠1,可得出答案.【详解】解:由题意得∠2=180°-∠COE-∠1=180°-90°-44°=46°.故答案为:46°.【点睛】解析:46°【解析】【分析】根据∠2=180°-∠COE-∠1,可得出答案.【详解】解:由题意得∠2=180°-∠COE-∠1=180°-90°-44°=46°.故答案为:46°.【点睛】本题考查平角、直角的定义和几何图形中角的计算.能识别∠AOB是平角且它等于∠1、∠2和∠COE三个角之和是解题关键.三、解答题25.(1)﹣0.5;(2)﹣27【解析】【分析】(1)原式利用减法法则变形,结合后计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:(1)原式=16+77﹣1.5=1﹣1.5=﹣0.5; (2)原式=﹣32×43+449 ×21=﹣2+127=﹣27 . 【点睛】本题考查了有理数的混合运算,熟练掌握运算法则和运算顺序是正确解题的关键.26.(1)一个暖瓶的售价是30元,一个水杯的售价是8元;(2)这个单位在甲商场购买更算.【解析】【分析】(1)根据“暖瓶+水杯=38元”和“2个暖瓶的价格+3个水杯的价格=84元”这两个关系式,设暖瓶为x 元,用x 将水杯的售价表示出来,然后列出一元一次方程求解即可.(2)根据售价×折扣=实际售价,分别计算两个方案各自的售价,然后对比判断即可解决.【详解】(1)设一个暖瓶售价x 元,则一个水杯售价是(38)x -元.依题意得:23(38)84x x +-=,解得:30x =.38-30=8(元).因此,一个暖瓶的售价是30元,一个水杯的售价是8元.(2)这个单位在甲商场购买更算.理由:在甲商场购买所需费用为:43016885%210.8⨯+⨯⨯=()(元);在乙商场购买所需费用为:43016-48216⨯+⨯=()(元);因为210.8<216,所以这个单位在甲商场购买更算.【点睛】本题考查了一元一次方程解决问题和方案选择问题,解决本题的关键是正确理解题意,找到等量关系,能够根据各自的方案计算其所需的费用.27.(1)﹣3,﹣1,﹣4;(2)﹣2;(3)8或-40.【解析】【分析】(1)根据数轴上的点对应的数即可求解;(2)根据数轴上原点的位置确定其它点对应的数即可求解;(3)根据原点在点C 的右边先确定点C 对应的数,进而确定点B 、点A 所表示的数即可求解.【详解】解:(1)∵点C 为原点,BC =1,∴B 所对应的数为﹣1,∵AB =2BC ,∴AB =2,∴点A 所对应的数为﹣3,∴m =﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)∵点B 为原点,AC =6,AB =2BC ,AB+BC=AC ,∴AB=4,BC=2,∴点A 所对应的数为﹣4,点C 所对应的数为2,∴m =﹣4+2+0=﹣2;(3)∵原点O 到点C 的距离为8,∴点C 所对应的数为±8,∵OC =AB ,∴AB =8,当点C 对应的数为8,∵AB =8,AB =2BC ,∴BC =4,∴点B 所对应的数为4,点A 所对应的数为﹣4,∴m =4﹣4+8=8;当点C 所对应的数为﹣8,∵AB =8,AB =2BC ,∴BC =4,∴点B 所对应的数为﹣12,点A 所对应的数为﹣20,∴m =﹣20﹣12﹣8=﹣40.【点睛】本题考查了数轴,解决本题的关键是数形结合思想的灵活运用.28.1【解析】【分析】根据有理数的乘方、绝对值、有理数的乘除法和加减法可以解答本题.【详解】解:()()3201924132(3)1-÷--⨯-=---=【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.29.(1)150、45、36;(2)28.8°;(3)450人【解析】【分析】(1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D项目人数除以总人数可得n的值;(2)360°乘以A项目人数占总人数的比例可得;(3)利用总人数乘以样本中C人数所占比例可得.【详解】解:(1)接受问卷调查的共有30÷20%=150人,m=150-(12+30+54+9)=45,54%100%36%150n=⨯=∴n=36,故答案为:150、45、36;(2)A类所对应的扇形圆心角的度数为12 36028.8150︒︒⨯=故答案为:28.8°;(3)451500450150⨯=(人)答:估计该社区参加碧沙岗“暴走团”的大约有450人【点睛】本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.30.(1)30,﹣6, 36;(2)6或﹣42;(3)当t为4秒、7秒和11秒时,P、Q两点相距4个单位长度.【解析】【分析】(1)根据偶次方以及绝对值的非负性即可求出a、b的值,可得点A表示的数,点B表示的数,再根据两点间的距离公式可求线段AB的长;(2)分两种情况:点C在线段AB上,点C在射线AB上,进行讨论即可求解;(3)分0<t≤6、6<x≤9和9<t≤30三种情况考虑,根据两点间的距离公式结合PQ=4即可得出关于t的一元一次方程,解之即可得出结论.【详解】(1)∵|a﹣30|+(b+6)2=0,∴a﹣30=0,b+6=0,解得a=30,b=﹣6,AB=30﹣(﹣6)=36.故点A表示的数为30,点B表示的数为﹣6,线段AB的长为36.(2)点C在线段AB上,∵AC=2BC,∴AC=36×212+=24,点C在数轴上表示的数为30﹣24=6;点C在射线AB上,∵AC=2BC,∴AC=36×2=72,点C在数轴上表示的数为30﹣72=﹣42.故点C在数轴上表示的数为6或﹣42;(3)经过t秒后,点P表示的数为t﹣6,点Q表示的数为6(06){3(6)6(636)tt t-<≤--<≤,(i)当0<t≤6时,点Q还在点A处,∴P Q=t﹣6﹣(﹣6)=t=4;(ii)当6<x≤9时,点P在点Q的右侧,∴(t﹣6)﹣[3(t﹣6)﹣6]=4,解得:t=7;(iii)当9<t≤30时,点P在点Q的左侧,∴3(t﹣6)﹣6﹣(t﹣6)=4,解得:t=11.综上所述:当t为4秒、7秒和11秒时,P、Q两点相距4个单位长度.故答案为:30,﹣6,36;6或﹣42.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离公式、绝对值以及偶次方的非负性,根据两点间的距离公式结合点之间的关系列出一元一次方程是解题的关键.四、压轴题31.(1)①5;②OQ平分∠AOC,理由详见解析;(2)5秒或65秒时OC平分∠POQ;(3)t=703秒.【解析】【分析】(1)①由∠AOC=30°得到∠BOC=150°,借助角平分线定义求出∠POC度数,根据角的和差关系求出∠COQ度数,再算出旋转角∠AOQ度数,最后除以旋转速度3即可求出t 值;②根据∠AOQ和∠COQ度数比较判断即可;(2)根据旋转的速度和起始位置,可知∠AOQ=3t,∠AOC=30°+6t,根据角平分线定义可知∠COQ=45°,利用∠AOQ、∠AOC、∠COQ角之间的关系构造方程求出时间t;(3)先证明∠AOQ与∠POB互余,从而用t表示出∠POB=90°﹣3t,根据角平分线定义再用t表示∠BOC度数;同时旋转后∠AOC=30°+6t,则根据互补关系表示出∠BOC度数,同理再把∠BOC度数用新的式子表达出来.先后两个关于∠BOC的式子相等,构造方程求解.【详解】(1)①∵∠AOC=30°,∴∠BOC =180°﹣30°=150°,∵OP 平分∠BOC ,∴∠COP =12∠BOC =75°, ∴∠COQ =90°﹣75°=15°,∴∠AOQ =∠AOC ﹣∠COQ =30°﹣15°=15°,t =15÷3=5;②是,理由如下:∵∠COQ =15°,∠AOQ =15°,∴OQ 平分∠AOC ;(2)∵OC 平分∠POQ ,∴∠COQ =12∠POQ =45°. 设∠AOQ =3t ,∠AOC =30°+6t ,由∠AOC ﹣∠AOQ =45°,可得30+6t ﹣3t =45,解得:t =5,当30+6t ﹣3t =225,也符合条件,解得:t =65,∴5秒或65秒时,OC 平分∠POQ ;(3)设经过t 秒后OC 平分∠POB ,∵OC 平分∠POB ,∴∠BOC =12∠BOP , ∵∠AOQ +∠BOP =90°,∴∠BOP =90°﹣3t ,又∠BOC =180°﹣∠AOC =180°﹣30°﹣6t ,∴180﹣30﹣6t =12(90﹣3t ), 解得t =703. 【点睛】本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键.32.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠.【解析】【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到。
2021-2022学年天津市南开区七年级(上)期末数学试卷(附答案详解)
2021-2022学年天津市南开区七年级(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1. 已知A 地的海拔高度为−36米,B 地比A 地高20米,则B 地的海拔高度为( )A. 16米B. 20米C. −16米D. −56米2. 在数−(−3),0,(−3)2,|−9|,−14中,正数的有( )个A. 2B. 3C. 4D. 53. 据Worldmeters 实时统计数据显示,截至北京时间2021年10月3日,全球累计确诊新冠肺炎病例约达235000000例,数据235000000用科学记数法表示为( )A. 2.35×108B. 2.35×109C. 235×106D. 0.235×109 4. 单项式−25a 3b 的系数与次数分别是( )A. −25,3B. 25,4C. −25,4D. −2,35. 如图,虚线左边的图形绕虚线旋转一周,能形成的几何体是( )A.B.C.D.6.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“负”相对的面上的汉字是()A. 强B. 课C. 提D. 质7.当分针指向12,时针这时恰好与分针成30°的角,此时是()A. 9点钟B. 10点钟C. 11点钟或1点钟D. 2点钟或10点钟8.根据直线、射线、线段的性质,图中的各组直线、射线、线段一定能相交的是()A. B. C. D.9.下列关于多项式−3a2b+ab−2的说法中,正确的是()A. 是二次三项式B. 二次项系数是0C. 常数项是2D. 最高次项是−3a2b10.一种商品每件成本为a元,原来按成本增加40%定出售价,现在由于库存积压减价,打八折出售,则每件盈利()元.A. 0.1aB. 0.12aC. 0.15aD. 0.2a11.用式子表示“比x的3倍小5的数等于x的4倍”为()A. 3x−5=4xB. 5−3x=4xC. 13x−5=4x D. 3x−5=14x12.如图,∠AOB=α,OA1、OB1分别是∠AOM和∠MOB的平分线,OA2、OB2分别是∠A1OM和∠MOB1的平分线,OA3、OB3分别是∠A2OM和∠MOB2的平分线,…,OA n,OB n分别是∠A n−1OM和∠MOB n−1的平分线,则∠A n OB n的度数是()A. αn B. α2n−1C. α2nD. αn2二、填空题(本大题共6小题,共18.0分)13.已知∠1与∠2互余,∠3与∠2互余,则∠1______∠3.(填“>”,“=”或“<”)14.若∠1=58°37′,∠2=43°55′,则∠1+∠2=______.15.若点C是直线AB上的一点,且线段AC=3,BC=7,则线段AB的长为______.16.已知|m|=m+1,则(4m−1)4=______.17.古书《九章算术》有这样一个问题:“今有共买鸡,人出九,盈十一;人出六,不足十六,问人数、鸡价各几何?”大意是:有几个人共同出钱买鸡,每人出9钱,则多了11钱,每人出6钱,则少了16钱,那么有几个人共同买鸡?鸡的总价是多少?若有x个人共同买鸡,则可列方程:______.18.有若干个数,第一个数记为a1,第二个数记为a2,…,第n个数记为a n.若a1=−12,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”,a2021=______.三、解答题(本大题共6小题,共46.0分)19.(1)解方程:3x−1=2−x.(2)解方程:x6−3−x4=1.20.已知代数式A=−6x2y+4xy2−5,B=−3x2y+2xy2−3.(1)求A−B的值,其中|x−1|+(y+2)2=0.(2)请问A−2B的值与x,y的取值是否有关系,试说明理由.21.已知一个角的余角比这个角的补角的一半还小12°,求这个角的度数.22.已知:线段AB=20cm,点C为线段AB上一点,BC=4cm,点D、点E分别为AC和AB的中点,求线段DE的长.23.甲,乙两车从A、B两地同时出发,沿同一条路线相向匀速行驶,出发后经3小时相遇.已知在相遇时乙比甲多行了90千米,相遇后经1小时乙到达A地,问:(1)甲车速度是______千米/小时,乙车速度是______千米/小时,A,B路程是______千米;(2)这一天,若乙车晚1小时出发,问乙出发后经过多长时间,两车相距20千米?24.已知:如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC:∠BOC=1:5.将一等腰直角三角板的直角顶点放在点O处,一直角边ON在射线OB上,另一直角边OM在直线AB的下方.(1)将图1中的等腰直角三角板绕点O以每秒3°的速度逆时针方向旋转一周,直角边ON旋转后的对应边为ON′,直角边OM旋转后的对应边为OM′.在此过程中,经过t秒后,OM′恰好平分∠BOC,求t的值;(2)如图2,在(1)问的条件下,若等腰直角三角板在转动的同时,射线OC也绕点O以每秒4°的速度顺时针方向旋转,射线OC旋转后的对应射线为OC′.当射线OC′落在射线OC的反向延长线上时,射线OC和等腰直角三角板同时停止运动.在此过程中,是否存在某一时刻t,使得OC′//M′N′.若存在,请求出t的值,若不存在,诮说明理由;(3)如图3,在(1)问的条件下,若等腰直角三角板在转动的同时,射线OC也绕点O以每秒5°的速度顺时针方向旋转,射线OC旋转后的对应射线为OC′.当等腰直角三角板停止运动时,射线OC也停止运动.在整个运动过程中.经过t秒后,∠M′ON′的某一边恰好平分∠AOC′,请直接写出所有满足条件的t的值.答案和解析1.【答案】C【解析】解:−36+20=−16(米),故选:C.根据题意可得算式:−36+20,再根据有理数的加法法则进行计算即可.此题主要考查了有理数的加法,关键是掌握绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.2.【答案】B【解析】解:−(−3)=3是正数,0既不是正数也不是负数,(−3)2=9是正数,|−9|=9是正数,−14=−1是负数,所以,正数有−(−3),(−3)2,|−9|共3个.故选:B.根据相反数的定义,有理数的乘方和绝对值的性质化简,然后根据正数和负数的定义判定即可.本题考查了正数和负数,主要利用了相反数的定义,有理数的乘方和绝对值的性质.3.【答案】A【解析】解:235000000=2.35×108.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.4.【答案】C【解析】解:根据单项式的系数与次数的定义,单项式−25a3b的系数与次数分别是−25、4.故选:C.根据单项式的系数与次数的定义解决此题.本题主要考查单项式,熟练掌握单项式的次数与系数的定义是解决本题的关键.5.【答案】B【解析】解:根据“面动成体”可得,旋转后的几何体为两个底面重合的圆锥的组合体,因此选项B中的几何体符合题意.故选:B.从运动的观点来看,点动成线,线动成面,面动成体.根据“面动成体”可得答案.本题考查“面动成体”,点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.6.【答案】B【解析】解:这是一个正方体的平面展开图,共有六个面,其中面“强”与面“提”相对,面“减”与面“质”相对,面“负”与面“课”相对.故选:B.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题考查了正方体相对两个面上的文字,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念是解决此类问题的关键.7.【答案】C【解析】解:∵钟表上每一个大格之间的夹角是30°,∴当分针指向12,时针这时恰好与分针成30°的角时,距分针成30°的角时针应该有两种情况,即距时针1个格,∴只有11点钟或1点钟是符合要求.故选:C.根据钟表上每一个大格之间的夹角是30°,当分针指向12,时针这时恰好与分针成30°的角,应该得出,时针距分针应该是1个格,应考虑两种情况.此题主要考查了钟面角的有关知识,得出距分针成30°的角时针应该有两种情况,是解决问题的关键.8.【答案】C【解析】解:根据直线、射线、线段的延伸性,知C一定能够相交.故选:C.根据射线能够向一方延伸,直线能够向两方延伸和线段不能延伸进行分析.此题考查了直线、射线和线段的延伸性,熟练掌握直线、射线和线段的性质是解题关键.9.【答案】D【解析】解:A、多项式−3a2b+ab−2是三次三项式,原说法错误,故此选项不符合题意;B、多项式−3a2b+ab−2的二次项系数是1,原说法错误,故此选项不符合题意;C、多项式−3a2b+ab−2的常数项是−2,原说法错误,故此选项不符合题意;D、多项式−3a2b+ab−2的最高次项是−3a2b,原说法正确,故此选项符合题意;故选:D.根据多项式的相关定义解答即可.此题主要考查了多项式,解题的关键是掌握多项式的相关定义.多项式中次数最高的项的次数叫做多项式的次数.多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式.10.【答案】B【解析】解:依题意有:a×(1+40%)×80%−a=0.12a(元).故选:B.将每件成本乘(1+40%)可求原定售价,再乘80%,即可求出现售价.本题主要考查列代数式的能力,理解题意找到题目蕴含的相等关系是解题的关键.11.【答案】A【解析】解:x的3倍表示为3x,x的4倍表示为4x,则3x−5=4x.故选:A.根据题目中的数量关系列出方程即可.本题主要考查的是由实际问题抽象出一元一次方程,明确题目中的数量关系是解题的关键.12.【答案】C【解析】解:∵OA1、OB1分别是∠AOM和∠MOB的平分线,∴∠A1OM=12∠AOM,∠B1OM=12∠BOM,∴∠A1OB1=∠A1OM+∠B1OM=12∠AOM+12∠BOM=12(∠AOM+B0M)=12∠AOB=12α,同理,∠A2OB2=12∠A1OB1=12×12α=122α,∠A3OB3=12∠A2OB2=12×122α=123α,…∴∠A n OB n=α2n,故选:C.根据角平分线的性质分别表示出∠A1OB1、∠A2OB2、…,即可归纳出此题规律,求得此题结果.此题考查了角度的计算与规律归纳的能力,关键是能利用角的平分线性质及和差关系进行计算推理与规律归纳.13.【答案】=【解析】解:∵∠1与∠2互余,∠3与∠2互余,∴∠1=∠3.故答案为:=.根据余角的性质求解即可.本题考查了余角和补角的知识,解答本题的关键在于掌握“同角或等角的余角相等”.14.【答案】102°32′【解析】解:∠1+∠2=58°37′+43°55′=101°92′=102°32′,故答案为:102°32′.根据度分秒的换算方法进行计算即可.本题考查度分秒的换算,掌握单位之间的进率是正确计算的关键.15.【答案】10或4【解析】解:本题有两种情形:①当点B在线段AC的延长线上时,如图,∵AB=AC+BC,AC=3,BC=7,∴AB=AC+BC=3+7=10;②当点B在线段AC的反向延长线上时,如图,∵AB=BC−AC,AC=3,BC=7,∴AB=BC−AC=7−3=4;综上可得:AB=10或4.故答案为:10或4.本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据题意正确地画出图形解题.本题考查的是两点间的距离,在画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.16.【答案】81【解析】解:当m ≥0,则|m|=m .∴m =m +1.此时,m 不存在.当m <0,则|m|=−m .∴−m =m +1.∴m =−12. ∴(4m −1)4=(−3)4==81.故答案为:81.根据绝对值、有理数的乘方解决此题.本题主要考查绝对值、有理数的乘方,熟练掌握绝对值、有理数的乘方是解决本题的关键.17.【答案】9x −11=6x +16【解析】解:设有x 个人共同买鸡,由题意可得:9x −11=6x +16,故答案为:9x −11=6x +16.设有x 个人共同买鸡,等量关系为:9×买鸡人数−11=6×买鸡人数+16,即可解答. 此题考查由实际问题抽象出一元一次方程,根据鸡价得到等量关系是解决本题的关键.18.【答案】23【解析】解:由题意得:a 1=−12,a 2=11−(−12)=23,a3=11−23=3,a4=11−3=−12,…则该数据为−12,23,3的循环排列,∵2021÷3=673……2,∴a2021=a2=23.故答案为:23.先利用倒数的定义计算出a2,a3,a4,则可判断循环排列,由于2021÷3=673……2,所以a2021=a2.本题考查了规律型:数字的变化类:认真观察、仔细思考,善用联想是解决这类问题的方法.19.【答案】解:(1)移项,可得:3x+x=2+1,合并同类项,可得:4x=3,系数化为1,可得:x=34.(2)去分母,可得:2x−3(3−x)=12,去括号,可得:2x−9+3x=12,移项,可得:2x+3x=12+9,合并同类项,可得:5x=21,系数化为1,可得:x=215.【解析】(1)移项、合并同类项、系数化为1,据此求出方程的解即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.20.【答案】解:(1)A−B=(−6x2y+4xy2−5)−(−3x2y+2xy2−3)=−6x2y+4xy2−5+3x2y−2xy2+3=−3x2y+2xy2−2.∵|x−1|+(y+2)2=0,|x−1|≥0,(y+2)2≥0,∴x−1=0,y+2=0,解得:x=1,y=−2.∴A−B=−3×12×(−2)+2×1×(−2)2−2=−3×1×(−2)+2×1×4−2=6+8−2=12;(2)A−2B的值与x,y的取值无关.理由:∵A−2B=(−6x2y+4xy2−5)−2(−3x2y+2xy2−3)=−6x2y+4xy2−5+6x2y−4xy2+6=1,∴A−2B的值与x,y的取值无关.【解析】(1)利用合并同类项的法则先化简A−B的结果,利用非负数的意义求得x,y的值,将x,y的值代入计算即可得出结论;(2)通过计算A−2B的值即可得出结论.本题主要考查了整式的加减,非负数的意义,利用非负数的意义求得x,y的值是解题的关键.21.【答案】解:设这个角为x°,根据题意得:(180−x)−12,90−x=12解得:x=24.故这个角的度数为24°.【解析】设这个角为x°,根据“一个角的余角比这个角的补角的一半还小12°”,列出方程,即可解答.本题考查了余角和补角,解决本题的关键是根据题意列出方程.22.【答案】解:由线段的和差,得AC=AB−BC=20−4=16cm,由点D 是AC 的中点,所以AD =12AC =12×16=8cm ;由点E 是AB 的中点,得AE =12AB =12×20=10cm , 由线段的和差,得DE =AE −AD =10−8=2cm .【解析】先根据线段的和差,可得AC 的长,再根据线段中点的性质,可得AD 、AE 的长,最后根据线段的和差,可得DE 的长.本题考查了两点间的距离,利用了线段的和差,线段中点的性质.23.【答案】15 45 180【解析】解:(1)设甲车的速度为x 千米/时,则乙车的速度为3x+903千米/时, 根据题意得3x+903×1=3x ,解得x =15,∴3x+903=3×15+903=45,∴3×15+3×45=180(千米),甲车的速度为15千米/时,乙车的速度为45千米/时,A 、B 两地的路程是180千米, 故答案为:15,45,180.(2)设乙车出发y 小时两车相距20千米,根据题意得15(y +1)+45y +20=180或15(y +1)+45y −20=180,解得y =2912或y =3712,答:乙出发后经过2912小时或3712小时,两车相距20千米.(1)设甲车的速度为x 千米/时,则乙车的速度为3x+903千米/时,根据乙车1小时行驶的路程等于甲车3小时行驶的路程列方程求出x 的值,再求出乙车的速度及A 、B 两地的路程; (2)设乙车出发y 小时两车相距20千米,由于乙车晚出发1小时,所以甲车的行驶时间为(y +1)小时,两车相距20千米分两种情况,一是两车相遇前相距20千米,二是两车相遇后相距20千米,分别列方程求出y 的值即可.此题考查解一元一次方程、列一元一次方程解应用题等知识与方法,解题的关键是正确地用代数式表示两车的速度、时间以及行驶的路程.24.【答案】解:设∠AOC=x,则∠BOC=5x,x+5x=180°,∴∠AOC=30°,则∠BOC=150°.(1)当OM′恰好平分∠BOC时,∠BOC=165°,OM′需要旋转90°+12165°÷3=55,所以,t=55;(2)第一种情况:当OC′//M′N′时,∠C′ON′=∠ON′M′=45°,此时t=(150°−45°)÷(3°+4°)=15,第二种情况:当OC′//M′N′时,∠C′OM′=∠ON′M′=45°,此时t=(240°+45°)÷(3°+4°)=285;7(3)∠AOC′=30°+5t,①当∠AON′=∠AOC′时满足条件,即180°−3t=(30°+5t),解得:t=15,②当∠AOM′=∠AOC′时满足条件,即270°−3t=(30°+5t),.解得:t=51011∠BOC=165°,进而求解;【解析】(1)当OM′恰好平分∠BOC时,OM′需要旋转90°+12(2)第一种情况:当OC′//M′N′时,∠C′ON′=∠ON′M′=45°,进而求解;第二种情况:当OC′//M′N′时,∠C′OM′=∠ON′M′=45°,进而求解;(3)①当∠AON′=∠AOC′时满足条件,即180°−3t=(30°+5t),进而求解;②当∠AOM′=∠AOC′时满足条件,即270°−3t=(30°+5t),即可求解.本题是角的计算综合题,主要考查了图形旋转时角的变化等,分类求解是本题解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.已知:如图(1)∠ AOB 和∠ COD 共顶点 O,OB 和 OD 重合,OM 为∠ AOD 的平分线, ON 为∠ BOC 的平分线,∠ AOB=α,∠ COD=β.
(1)如图(2),若 α=90°,β=30°,求∠ MON; (2)若将∠ COD 绕 O 逆时针旋转至图(3)的位置,求∠ MON(用 α、β 表示); (3)如图(4),若 α=2β,∠ COD 绕 O 逆时针旋转,转速为 3°/秒,∠ AOB 绕 O 同时逆时 针旋转,转速为 1°/秒,(转到 OC 与 OA 共线时停止运动),且 OE 平分∠ BOD,请判断 ∠ COE 与∠ AOD 的数量关系并说明理由. 【答案】 (1)解:∵ OM 为∠ AOD 的平分线,ON 为∠ BOC 的平分线,α=90°,β=30°
2.如图,线段 AB=20cm.
(1)点 P 沿线段 AB 自 A 点向 B 点以 2cm/秒运动,同时点 Q 沿线段 BA 自 B 点向 A 点以 3cm/秒运动,几秒后,点 P、Q 两点相遇? (2)如图,AO=PO=2cm,∠ POQ=60°,现点 P 绕着点 O 以 30°/秒的速度顺时针旋转一周后 停止,同时点 Q 沿直线 BA 自 B 点向 A 点运动,若 P、Q 两点也能相遇,求点 Q 运动的速 度. 【答案】 (1)解:设 x 秒点 P、Q 两点相遇根据题意得: 2x+3x=20, 解得 x=4 答:4 秒后,点 P、Q 两点相遇。
如图 2 时,AP=14+BQ+2,即 4x=14+2x+2,解得:x=8,
综上,当点 P 运动 6 秒或 8 秒后与点 Q 的距离为 2 个单位
(3)解:线段 MN 的长度不发生变化,都等于 7;理由如下: ∵ ①当点 P 在点 A、B 两点之间运动时:
MN=MP+NP= AP+ BP= (AP+BP)= AB= ×14=7, ②当点 P 运动到点 B 的左侧时:
(2)动点 Q 从点 B 出发沿数轴向左匀速运动,速度是点 P 速度的一半,动点 P、Q 同时出 发,问点 P 运动多少秒后与点 Q 的距离为 2 个单位? (3)若点 M 为线段 AP 的中点,点 N 为线段 BP 的中点,在点 P 的运动过程中,线段 MN 的长度是否会发生变化?若变化,请说明理由;若不变,求出线段 MN 的长. 【答案】 (1)点 B 表示的数-6;点 P 表示的数 8-4t (2)解:设点 P 运动 x 秒时,点 P 与点 Q 的距离是 2 个单位长度,则 AP=4x,BQ=2x, 如图 1 时,AP+2=14+BQ,即 4x+2=14+2x,解得:x=6,
MN=MP-NP= AP- BP= (AP-BP)= AB=7, ∴ 线段 MN 的长度不发生变化,其值为 7. 【解析】【解答】解:(1)∵ 点 A 表示的数为 8,B 在 A 点左边,AB=14, ∴ 点 B 表示的数是 8-14=-6, ∵ 动点 P 从点 A 出发,以每秒 4 个单位长度的速度沿数轴向左匀速运动,设运动时间为 t (t>0)秒, ∴ 点 P 表示的数是 8-4t. 故答案为:-6,8-4t; 【分析】(1)根据题意由点 A 表示的数为 8,B 在 A 点左边,AB=14,得到点 B 表示的 数,求出动点 P 表示的数的代数式;(2)由点 P 与点 Q 的距离是 2 个单位长度,得到 AP+2=14+BQ 和 AP=14+BQ+2,求出点 P 运的时间;(3)当点 P 在点 A、B 两点之间运动 时,MN=MP+NP,再由中点定义求出 MN 的值,当点 P 运动到点 B 的左侧时,MN=MPNP,再由中点定义求出 MN 的值.
∴ ∠ MOB= ∠ AOB=45°
∠ NOD= ∠ BOC=15° ∴ ∠ MON=∠ MOB+∠ NOD=45°+15°=60°.
(2)解:设∠ BOD=γ,∵ ∠ MOD=MON=∠ MOD+∠ NOB-∠ DOB=
+
-γ=
(3)解:①
为定值 ,
设运动时间为 t 秒,则∠ DOB=3t-t=2t,
( 2 ) 设 ∠ BOD=γ , 利 用 角 平 分 线 的 定 义 , 分 别 表 示 出 ∠ MOD 和 ∠ NOB , 再 利 用 ∠ MON=∠ MOD+∠ NOB-∠ DOB,可求出结果。 (3)设运动时间为 t 秒,用含 t 的代数式分别表示出∠ DOB、∠ COE、∠ AOD,再求出 ∠ COE 和∠ AOD 的比值。
3.如图,在数轴上有两点 A、B,点 A 表示的数是 8,点 B 在点 A 的左侧,且 AB=14,动 点 P 从点 A 出发,以每秒 4 个单位长度的速度沿数轴向左匀速运动,设运动时间为 t(t> 0)秒.
(1)写出数轴上点 B 表示的数:________ ;点 P 表示的数用含 t 的代数式表示为 ________ .
(2)解:①当点 P.Q 在 OB 与圆的交点处相遇时:P 点运动所用的时间为:① (秒),P 点的运动速度为:(20-4)÷2=8cm/秒 ②当点 P,Q 在 A 点处相遇时:P 点运动所用的时间为:②(60+180)÷30=8(秒),P 点 运动的速度为:20÷8-2.5cm/秒 【解析】【分析】(1)此题是一道相遇问题,根据相遇的时候,P 点所走的路程+Q 点运 动的路程等于 AB 两地之间的距离,列出方程,求解即可; (2)分①当点 P.Q 在 OB 与圆的交点处相遇时,②当点 P,Q 在 A 点处相遇时两类讨论, 分别根据路程除以速度等于时间算出 P 点运动的时间,即 Q 点运动的时间,再根据路程除 以时间等于速度即可算出 Q 点的运动速度。
∠ DOE= ∠ DOB=t, ∴ ∠ COE=β+t, ∠ AOD=α+2t,又∵ α=2β, ∴ ∠ AOD=2β+2t=2(β+t).
∴ 【 解 析 】 【 分 析 】 ( 1 ) 根 据 角 平 分 线 的 定 义 , 分 别 求 出 ∠ MOB 和 ∠ NOD , 再 根 据 ∠ MON=∠ MOB+∠ NOD,可求出∠ MON 的度数。