分子生物学重要问题

分子生物学重要问题
分子生物学重要问题

什么是Z-DNA?Z-DNA在基因表达调控中起什么作用?

Z-DNA指左手螺旋DNA。在邻近调控系统中,与调节区相邻的转录区被ZDNA抑制,只有当ZDNA 转变为BDAN后转录才能活化,而在远距离调控中,ZDNA可通过改变负超螺旋水平,决定聚合酶能否与模板链结合而调节转录起始的。

列表比较原核生物和真核生物复制的差异。

①真核生物每条染色质上可以有多处复制起始点,原核生物只有一个。

②真核生物的染色体全部复制完后才能重新复制,原核生物在一次复制完成前可开始新的复制。

③两者使用的DNA聚合酶种类不同。真核生物使用DNA polα、β、γ、δ和ε,原核生物使用DNA pol I、II、III、IV和V。

④DNA复制的过程不同。

⑤复制的终止过程不同。

⑥复制存在的空间问题的解决方式不同:原核生物DNA的复制时紧靠在中间体上进行的,而真核生物由于染色体存在骨架因而在骨架上直接进行。

⑦其他区别。

先导链与滞后链如何区分?两者各自是怎样合成的?

先导链和滞后链是在DNA复制中进行划分的。先导链是子链中连续合成的那条DNA单链,而滞后链是不连续合成的那条DNA单链。先导链直接连续合成,滞后链通过冈崎片段不连续合成。

分析比较三种大肠杆菌DNA聚合酶在性质功能上的异同。

①DNA聚合酶Ⅰ即具有3′→5′核酸外切酶活性,同时也有5′→3′核酸外切酶活性,故而在DNA复制中主要用于切除冈崎片段5′端的RNA引物,并在DNA切除修复中起主要作用。

②DNA聚合酶Ⅱ具有3′-5′核酸外切酶活性,故在DNA复制过程中起校正作用。

③DNA聚合酶Ⅲ具有较高的聚合酶活性,故在DNA复制过程中起合成新链的作用。

简述转座子的遗传学效应。

1 引起插入突变

2 产生新的基因

3 产生染色体畸变

4 引起生物进化

列举RNA的种类和功能。

mRNA 作为信使指导蛋白质合成

tRNA 作为蛋白质合成中氨基酸的转运工具

rRNA 作为核糖体的组分参与和糖体的组成内阁

列出真核生物mRNA与原核生物mRNA的区别。

原核生物mRNA的半衰期短,多以多顺反子形式存在,5′端无帽子结构,3′端没有或有较短的polyA 尾巴。单在原核生物起始密码上游具有能与核糖体16SrRNA3′端反向互补的序列,称SD序列。原核生物mRNA的起始密码子有AUG、GUG和UUG三种。

真核生物mRNA半衰期相对较长,多以单顺反子形式村子,5′端有GTP倒扣形成的帽子结构,3′端有较长的polyA尾巴。只有AUG一种起始密码子。

概括说明ζ因子对启动子调节的辅助功能。

ζ因子是RNA聚合酶的别构效应物,能增加聚合酶对启动子的亲和力,同时降低聚合酶对非启动子区的亲和力。由于同一个聚合酶可以和几种不同ζ因子结合,故可利用选择不同的ζ因子起始不同的基因转录。

真核生物启动子的基本结构包括哪些部分?分别有何功能?

真核生物启动子包含核心启动子元件和上游启动子元件两部分。核心启动子元件即TA TA box,其功能是使转录精确的起始。上游启动子元件包括CAA T box 和GC box,其功能是控制转录起始的频率。

RNA的加工都包括哪些方面?各自有何意义?

1 加帽——保护RNA免遭核酸酶破坏

2 加尾——终止转录,提高RNA稳定性

3 剪接——切除内含子以表达断裂基因

4 编辑——调整遗传信息,对核酸进行修饰化。

简述真核与原核细胞中翻译起始的主要区别。

主要区别来自mRNA的本质差异以及小亚基与mRNA起始密码子上游区结合的能力。

原核细胞mRNA较不稳定且多是多顺反子,在IF3介导下与核糖体小亚基16SrRNA结合。

真核细胞需要几种起始因子来帮助mRNA形成起始复合物。一旦结合则核糖体开始相下游搜索直到找到第一个密码子。

什么是PCR技术?PCR的基本原理是什么?

PCR即聚合酶链式反应,是一种在体外快速扩增特定目的基因或DNA序列的技术,故又称基因的体外扩增技术。它可以在试管中建立反应,经过数小时之后,就能将极微量的目的基因或DNA片断扩增数十万乃至千百万倍,无需经过繁琐费时的基因克隆程序,便可获得足够数到两精确的DNA拷贝。

PCR的基本工作原理:以拟扩增的DNA分子为模板,以一对分别与模板5'末端和3'末端相互补的寡核苷酸片段为引物,在DNA聚合酶的作用下,按照半保留复制的机制沿着模板链延伸直至完成新的DNA 合成,重复这一过程,即可使目的DNA片段得到扩增。

简述乳糖操纵子的正负调控机制

乳糖操纵子的功能是在阻遏基因的负调控和cAMP-CRP系统的正调控两个独立的调控机制下实现的。

1 在乳糖浓度低时,阻遏基因的产物阻遏蛋白结合在操纵基因上所形成的构象使其下游的结构基因无法转录。在乳糖浓度高时,乳糖作为诱导分子结合阻遏蛋白改变其三维构象使之不能与操纵基因结合,从而激发结构基因的表达。

2 cAMP-CRP复合体系结合在操纵子的启动子区域上是操纵子转录的必需条件,与阻遏系统无关。当培养基中有葡萄糖存在时,葡萄糖通过抑制腺苷酸环化酶活性而降低cAMP浓度来抑制结构基因的表达,达到优先利用葡萄糖的目的。

比较说明原核生物与真核生物在基因表达水平上的异同。

真核生物和原核生物在基因表达调控上的巨大差别是由两者基本生活方式不同所决定的。

原核生物主要通过转录调控以开启或关闭某些基因来适应环境条件尤其是营养水平的变化。真核生物基因调控范围更加宽广,并能在特定时间和特定细胞中激活特定的基因从而实现预定的、有序的、不可逆转的分化、发育过程,并使生物的组织和器官保持正常功能。

什么是增强子?增强子具有哪些特点?增强子在基因表达中起什么作用?其作用原理是什么?

概念:能使与之连锁的基因转录频率明显增加的DNA序列。

特点:效应明显、方向位置不定、重复序列、有组织细胞特异性、可组合、受调控

作用原理:改变模板构象、固定模板位置、提供反式作用因子的作用入口

什么是顺式作用元件?各种顺式作用元件在基因表达过程中各起什么作用?

1 启动子——识别和结合RNA聚合酶,启动转录

2 增强子(弱化子)——增强(抑制)转录

3 应答元件——控制基因的特异表达

什么是反式作用因子?各种反式作用因子是如何在基因表达过程中其作用的?

1 RNA聚合酶识别和结合启动子启动转录

2 转录起始(终止)辅助因子和DNA启动子(终止子)结合组装起始(终止)复合物

3 专一的转录因子和特殊的应答元件相互作用协调相关基因的转录。

说明真核生物前体RNA加工的类别及机理。

1 rRNA:分子内切割、甲基化修饰(原核生物主要是碱基甲基化,真核生物主要是核糖甲基化)

2 tRNA :先修饰后剪接

3 mRNA :转录后加工的多样性——盖帽、加尾、甲基化修饰、选择性剪接(不同的基因转录产物具有不同的加工方式。

简单比较原核与真核基因表达调节的总体异同,

原核生物: 1 调控方式以转录调控为主;

2 调控机制以开关机制为主;

3 调控信号以营养水平和环境变化为主

真核生物:1 调控范围更大;

2 严格的时空限制;

3 调控信号以发育阶段和激素水平为主

试比较真核生物与原核生物转录的主要区别

原核生物

1)一种RNA聚合酶 2 )不同启动子具相当大的同源性3 )聚合酶直接与启动子结合 4 )没有增强子 5 )转录作用的终止由在几个多聚U前面形成茎环结构的序列介导 6 )启动子通常位于基因的上游7 )转录单位常常含有多个基因

真核生物

1 )三种RNA聚合酶

2 )不同启动子的差异大

3 )聚合酶通过转录因子相互作用进行结合

4 )有增强子

5 )转录的终止是靠转录过程特殊的核酸内切酶切割的序列介导

6 )聚合酶III的启动子位于被转录的序列之中

7 )转录单位只含一个基因

医学分子生物学

医学分子生物学 疾病和基因关系始终是医学领域关注的重大问题。在孟德尔遗传规律被重新认识的初期,就发现许多疾病受到遗传因素的控制,遵守孟德尔遗传因子的传递规律。遗传连锁定律的提出,现代经典遗传学理论体系的完善,极大地促进了对遗传性疾病的认识。上世纪40年代,L Pauling提出了”分子病”的概念,1956年,V Ingram发现血红蛋白β链第六位氨基酸从谷氨酸突变为缬氨酸是导致镰刀状贫血的原因。几乎同时,J.Lejeune发现Down综合症是由于21号染色体三陪体异常所致,系列染色体疾病病因。1976年,H Vanmus 和M Bishop在对肿瘤病毒学的研究中,发现了病毒癌基因,继而又无确定细胞癌基因的存在,此后抑癌基因也相继被发现,建立了肿瘤发生的基因理论,肿瘤被认为是体细胞的遗传病得到了普遍的认可。1983年,将亨廷顿病基因定位于第四号染色体上,1986年,克隆了慢性肉芽肿病的致病基因,同年杜氏肌营养不良和视网膜母细胞瘤的基因,也被定位克隆成功,掀起了单基因遗传病致病基因鉴定和克隆的热潮。世纪之交,人类基因组计划的完成,新的DNA标记的发现,为研究常见病的遗传因素成为了可能,2005年,首次用全基因组关联分析(GWAS),解析了视网膜黄斑变性病的相关基因,揭开了复杂性疾病易感基因确定的序幕,此后,一系列的常见多发疾病基因的GWAS研究,极大地丰富了人们对疾病发病机制的认识,加深了对疾病发生发展机制的认知。今天,疾病和基因关系仍是很长一段时间的重点工作,解析疾病基因,不但可以确定疾病的遗传易感性,有目的的开展预防、诊治,更

重要的是了解疾病新的致病机制,为分子诊断、分子靶向干预提供分子靶点。另一方面,药物作用靶点分子基因在人群的多态性,对药物作用的疗效影响;参与药物吸收、分布、代谢、排泄和毒性(admet)的基因多态性,也会影响药物的疗效,即药物基因组方面的研究,必将成为后基因组时代的重要研究内容。以疾病基因组学和药物基因组学为代表的组学研究进展,将为个体化医疗、精准医学提供理论和实践基础。

微生物分子生物学技术

一、质粒DNA提取及琼脂糖凝胶电泳 (一)碱变性法提取质粒DNA 质粒(Plasmid) 是细菌染色体外能自身独立复制的双股环状DNA。带有遗传信息,可赋予细菌某些新的表型。将质粒指纹图谱分析方法、质粒DNA探针技术及检测质粒的PCR技术用于临床感染性疾病的诊断和流行病学调查已成为现实。质粒作为载体在基因工程中起着重要的作用。 分离和纯化质粒DNA的方法很多,但这些方法基本包括三个步骤:即细菌的培养和质粒DNA的扩增,细菌菌体的裂解; 质粒DNA的提取与纯化。 本实验学习用碱变性方法提取质粒DNA。 【原理】 细菌培养物加入SDS和NaOH 碱性溶液处理后,菌体裂解,可使细菌的质粒DNA、染色体DNA和RNA 一起从细胞内释放出来,经琼脂糖凝胶电泳,因各种核酸分子的迁移率不同将上述核酸分成不同的带。用溴化乙锭(EB)染色后,在紫外线灯下可看到各种核酸带发出的荧光。根据荧光的位置,可区分不同的核酸带。 【材料】 1.菌株E.coli JM109(pUC19),E.coli RRI(pBR322) 2.试剂溶液Ⅰ( 50 mM葡萄糖, 25 mM Tris.Hcl PH 8.0, 10 mM EDTA) 溶液II ( 0.2 N NaOH,1%SDS) 用前新配制 溶液III ( 5 mM KAc溶液PH4.8) TE缓冲液(10mMTris.Hcl ,1mMEDTA PH8.0) LB液体培养基( 胰蛋白胨10g,,酵母粉5g, Nacl 10g. 加蒸馏水溶解,用NaOH调PH 至7.5,加水至1000 ml,15磅高压灭菌15分钟)。 【方法】 1.接种细菌于5ml LB液体培养基中,370C培养过夜。 2.3000 rpm/min,离心15min,弃上清。加入100ul 溶液1悬起细菌沉淀。 3.加入200ul前新配制的溶液II ,颠倒EP管5次混合均匀,置冰浴2min。 4.加入150ul溶液III温和地混匀,12000 rpm/min,离心5min。 5.吸取上清清亮裂解液放入另一新EP 管中,加等体积酚-氯仿-异戊醇抽提2次,12000 rpm/min,离心2min。(若不做酶切,此步可省略)吸取上清放入另一新EP 管中,加入二倍体积的冷乙醇,12000 rpm/min,离心10min。 6.弃乙醇,干燥后用30ul TE缓冲液洗下核酸,待电泳检测。 (二)琼脂糖凝胶电泳 琼脂糖凝胶电泳技术(Agarose gel electroghoresis)是分离、鉴定和提纯DNA片断的有效方法。凝胶分辨率决定于使用材料的浓度,并由此决定凝胶的孔径。琼脂糖凝胶可分辩0.1~6.0kb的双链DNA片段。琼脂糖凝胶电泳是一个电场作用。它首先利用琼脂糖的分子筛效应,此外,在弱碱性条件下,DNA分子带负电荷,从负极向正极移动。根据DNA分子大小、结构及所带电荷的不同,它们以不同的速率通过介质运动而相互分离。借助溴化乙锭(EB)能与双链DNA结合的作用,利用EB染色,并通过紫外线激发即可观察被分离DNA片段的位置。 【材料】 1.琼脂糖、10×TAE电泳缓冲液(40m MTris ,20 mM NaAc,1mM EDTA PH8.0) 2.载体缓冲液(0.25%溴酚蓝,30%甘油)、溴化乙锭水溶液(10mg/ml ) 3.凝胶槽、电泳仪 【方法】 1.取琼脂糖0.9g,加入100ml 1x TAE电泳缓冲液于250ml烧瓶中,1000C加热溶解。 2.平衡凝胶槽,放好两侧挡板,调节好梳子与底板的距离(一般高出底板0.5~1mm)。 3.铺板:在溶解好的凝胶中加入终浓度为0.5ug/ml 的溴化乙锭水溶液,轻轻混匀,待冷至500C左右倒入凝胶槽,胶厚一般为5~8mm。 4.待胶彻底凝固后,去掉两侧挡板,将凝胶放入盛有电泳液的槽中(加样孔朝向负极端,DNA由负极向正极移动),使液面高出凝胶2~3mm,小心拔出梳子。 5.DNA 样品与载体缓冲液5:1混合并加入凹孔中(样品不可溢出)。

(完整版)分子生物学试题及答案(整理版)

分子生物学试题及答案 一、名词解释 1.cDNA与cccDNA:cDNA是由mRNA通过反转录酶合成的双链DNA;cccDNA是游离于染色体之外的质粒双链闭合环形DNA。 2.标准折叠单位:蛋白质二级结构单元α-螺旋与β-折叠通过各种连接多肽可以组成特殊几何排列的结构块,此种确定的折叠类型通常称为超二级结构。几乎所有的三级结构都可以用这些折叠类型,乃至他们的组合型来予以描述,因此又将其称为标准折叠单位。 3.CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein ),cAMP与CRP结合后所形成的复合物称激活蛋白CAP(cAMP activated protein ) 4.回文序列:DNA片段上的一段所具有的反向互补序列,常是限制性酶切位点。 5.micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA的翻译。 6.核酶:具有催化活性的RNA,在RNA的剪接加工过程中起到自我催化的作用。 7.模体:蛋白质分子空间结构中存在着某些立体形状和拓扑结构颇为类似的局部区域 8.信号肽:在蛋白质合成过程中N端有15~36个氨基酸残基的肽段,引导蛋白质的跨膜。 9.弱化子:在操纵区与结构基因之间的一段可以终止转录作用的核苷酸序列。 10.魔斑:当细菌生长过程中,遇到氨基酸全面缺乏时,细菌将会产生一个应急反应,停止全部基因的表达。产生这一应急反应的信号是鸟苷四磷酸(ppGpp)和鸟苷五磷酸(pppGpp)。PpGpp与pppGpp的作用不只是一个或几个操纵子,而是影响一大批,所以称他们是超级调控子或称为魔斑。 11.上游启动子元件:是指对启动子的活性起到一种调节作用的DNA序列,-10区的TATA、-35区的TGACA 及增强子,弱化子等。 12.DNA探针:是带有标记的一段已知序列DNA,用以检测未知序列、筛选目的基因等方面广泛应用。13.SD序列:是核糖体与mRNA结合序列,对翻译起到调控作用。 14.单克隆抗体:只针对单一抗原决定簇起作用的抗体。 15.考斯质粒:是经过人工构建的一种外源DNA载体,保留噬菌体两端的COS区,与质粒连接构成。16.蓝-白斑筛选:含LacZ基因(编码β半乳糖苷酶)该酶能分解生色底物X-gal(5-溴-4-氯-3-吲哚-β-D-半乳糖苷)产生蓝色,从而使菌株变蓝。当外源DNA插入后,LacZ基因不能表达,菌株呈白色,以此来筛选重组细菌。称之为蓝-白斑筛选。 17.顺式作用元件:在DNA中一段特殊的碱基序列,对基因的表达起到调控作用的基因元件。18.Klenow酶:DNA聚合酶I大片段,只是从DNA聚合酶I全酶中去除了5’→3’外切酶活性 19.锚定PCR:用于扩增已知一端序列的目的DNA。在未知序列一端加上一段多聚dG的尾巴,然后分别用多聚dC和已知的序列作为引物进行PCR扩增。 20.融合蛋白:真核蛋白的基因与外源基因连接,同时表达翻译出的原基因蛋白与外源蛋白结合在一起所组成的蛋白质。 二、填空 1. DNA的物理图谱是DNA分子的(限制性内切酶酶解)片段的排列顺序。 2. RNA酶的剪切分为(自体催化)、(异体催化)两种类型。 3.原核生物中有三种起始因子分别是(IF-1)、(IF-2)和(IF-3)。 4.蛋白质的跨膜需要(信号肽)的引导,蛋白伴侣的作用是(辅助肽链折叠成天然构象的蛋白质)。5.启动子中的元件通常可以分为两种:(核心启动子元件)和(上游启动子元件)。 6.分子生物学的研究内容主要包含(结构分子生物学)、(基因表达与调控)、(DNA重组技术)三部分。7.证明DNA是遗传物质的两个关键性实验是(肺炎球菌感染小鼠)、( T2噬菌体感染大肠杆菌)这两个实验中主要的论点证据是:(生物体吸收的外源DNA改变了其遗传潜能)。 8.hnRNA与mRNA之间的差别主要有两点:(hnRNA在转变为mRNA的过程中经过剪接,)、 (mRNA的5′末端被加上一个m7pGppp帽子,在mRNA3′末端多了一个多聚腺苷酸(polyA)尾巴)。 9.蛋白质多亚基形式的优点是(亚基对DNA的利用来说是一种经济的方法)、(可以减少蛋白质合成过程中随机的错误对蛋白质活性的影响)、(活性能够非常有效和迅速地被打开和被关闭)。 10.蛋白质折叠机制首先成核理论的主要内容包括(成核)、(结构充实)、(最后重排)。 11.半乳糖对细菌有双重作用;一方面(可以作为碳源供细胞生长);另一方面(它又是细胞壁的成分)。所以需要一个不依赖于cAMP—CRP的启动子S2进行本底水平的永久型合成;同时需要一个依赖于cAMP—CRP的启动子S1对高水平合成进行调节。有G时转录从( S2)开始,无G时转录从( S1)开

中南大学_医学分子生物学试题库答案.pdf

医学分子生物学习题集 (参考答案) 第二章基因与基因组 一、名词解释 1.基因(gene):是核酸中储存有功能的蛋白质多肽链或RNA序列信息及表达这些信息 所必需的全部核苷酸序列。 2.断裂基因(split gene):真核生物基因在编码区内含有非编码的插入序列,结构基因 不连续,称为断裂基因。 3.结构基因(structural gene):基因中用于编码RNA或蛋白质的DNA序列为结构基因。 4.非结构基因(non-structural gene):结构基因两侧一段不编码的DNA片段,含有基 因调控序列。 5.内含子(intron):真核生物结构基因内非编码的插入序列。 6.外显子(exon):真核生物基因内的编码序列。 7. 基因间DNA (intergenic DNA):基因之间不具有编码功能及调控作用的序列。 8. GT-AG 法则 (GT-AG law):真核生物基因的内含子5′端大多数是以GT开始,3′ 端大多数是以 AG 结束,构成 RNA 剪接的识别信号。 9.启动子(promoter):RNA聚合酶特异识别结合和启动转录的DNA序列。 10.上游启动子元件(upstream promoter element ):TATA合上游的一些特定的DNA序 列,反式作用因子,可与这些元件结合,调控基因转录的效率。 11.反应元件(response element):与被激活的信息分子受体结合,并能调控基因表达的 特异DNA序列。 12.poly(A)加尾信号 (poly(A) signal) :结构基因末端保守的 AATAAA 顺序及下游 GT 或T富含区,被多聚腺苷酸化特异因子识别,在mRNA 3′端加约200个A。 13.基因组(genome):细胞或生物体一套完整单倍体的遗传物质的总称。 14.操纵子(operon):多个功能相关的结构基因成簇串联排列,与上游共同的调控区和下 游转录终止信号组成的基因表达单位。 15.单顺反子(monocistron):一个结构基因转录生成一个mRNA分子。 16.多顺反子(polycistron):原核生物的一个mRNA分子带有几个结构基因的遗传信息,

医学分子生物学讲义复习重点

分子生物学 1.ORF 答:ORF是open reading frame的缩写,即开放阅读框架。在DNA链上,由蛋白质合成的起始密码开始,到终止密码为止的一个连续编码列,叫做一个开放阅读框架。 2.结构基因 答:结构基因(structural genes)可被转录形成mRNA,并翻译成多肽链,构成各种结构蛋白质或催化各种生化反应的酶和激素等。 3.断裂基因 答:基因是核酸分子中贮存遗传信息的遗传单位,一个基因不仅仅包括编码蛋白质或 RNA 的核酸序列,还包括保证转录所必需的调控序列、位于编码区 5 ' 端与 3 ' 端的非编码序列和内含子。真核生物的结构基因,由若干个编码区和非编码区互相间隔开但又连续镶嵌而成,去除非编码区再连接后,可翻译出由连续氨基酸组成的完整蛋白质,这些基因称为断裂基因(split gene)。 4.选择性剪接 答:选择性剪接(也叫可变剪接)是指从一个mRNA前体中通过不同的剪接方式(选择不同的剪接位点组合)产生不同的mRNA剪接异构体的过程,而最终的蛋白产物会表现出不同或者是相互拮抗的功能和结构特性,或者,在相同的细胞中由于表达水平的不同而导致不同的表型。 5.C值 答:基因组的大小通常以其DNA的含量来表示,我们把一种生物体单倍体基因组DNA的总量成为C值(C value)。 6.生物大分子 答:生物大分子指的是作为生物体内主要活性成分的各种分子量达到上万或更多的有机分子。常见的生物大分子包括蛋白质、核酸、脂类、糖类。 7.酚抽提法 答:酚抽提法最初于1976年由Stafford及其同事提出,通过改良,以含EDTA、SDS及无DNA酶的RNA酶裂解缓冲液破碎细胞,经蛋白酶K处理后,用pH8.0的Tris饱和酚抽提DNA,重复抽提至一定纯度后,根据不同需要进行透析或沉淀处理获得所需的DNA样品。 8.凝胶过滤层析 答:凝胶过滤层析也称分子排阻层析或分子筛层析,利用凝胶分子筛对大小、形状不同的分子进行层析分离,是根据分子大小分离蛋白质混合物最有效的方法之一。 9.多重PCR 答:多重PCR技术是在一个反应体系中加入多对引物,同时扩增出多个核酸片段,由于每对引物扩增的片段长度不同,可用琼脂糖凝胶电泳或毛细管电泳等技术加以鉴别。 10.荧光域值 答:荧光阈值是在荧光扩增曲线上人为设定的一个值,它可以设定在荧光信号指数扩增阶段任意位置上,一般荧光阈值的设置是基线荧光信号的标准偏差的10倍。 11.退火 答:温度突然降至37-58℃时,变性的DNA单链在碱基互补的基础上重新形成氢

分子生物学复习资料 绝对重点

分子生物学复习资料 (第一版) 一名词解释 1 Southern blot / Northern blot—DNA斑迹法 / RNA转移吸印技术。是为了检测待检基因或其表达产物的性质和数量(基因拷贝数)常用的核酸分子杂交技术。二者均属于印迹转移杂交术,所不同的是前者用于检测DNA样品;后者用于检测RNA样品。 2 cis-acting element / trans-acting factor—顺式作用元件 / 反式作用因子。均为真核生物基因中的转录调控序列。顺式作用元件是与结构基因表达调控相关、能被基因调控蛋白特异性识别和结合的特定DNA序列,包括启动子和上游启动子元件、增强子、反应元件和poly (A)加尾信号。反式作用因子是能与顺式作用元件特异性结合、对基因表达的转录起始过程有调控作用的蛋白质因子,如RNA聚合酶、转录因子、转录激活因子、抑制因子。 3VNTR / STR—可变数目串联重复序列 / 短串联重复。均为非编码区的串联重复序列。 前者也叫高度可变的小卫星DNA,重复单位约9~24bp,重复次数变化大,变化高度多态性;后者也叫微卫星DNA,重复单位约2~6 bp,重复次数约10~60次,总长度通常小于150bp 。(参考第7题) 4 viral oncogene / cellular oncogene—病毒癌基因 / 细胞癌基因。病毒癌基因指存在于逆转录病毒中、体外能使细胞转化、体内能导致肿瘤发生的基因;细胞癌基因也叫原癌基因,指存在于细胞内,与病毒癌基因同源的基因序列。正常情况下不激活,与细胞增殖相关,是维持机体正常生命活动所必须的,在进化上高等保守。当原癌基因的结构或调控区发生变异,基因产物增多或活性增强时,使细胞过度增殖,从而形成肿瘤。 5 ORF / UTR—开放阅读框 / 非翻译区。均指在mRNA中的核苷酸序列。前者是特定蛋白质多肽链的序列信息,从起始密码子开始到终止密码子结束,决定蛋白质分子的一级功能;后者是位于前者的5'端上游和3'端下游的、没有编码功能的序列,主要参与翻译起始调控,为前者的多肽链序列信息转变为多肽链所必需。 6 enhancer / silencer—增强子 / 沉默子。均为顺式作用元件。前者是一段含多个作用元件的短DNA序列,可特异性与转录因子结合,增强基因的转录活性,可以位于基因任何位置,通常在转录起始点上游-100到-300个碱基对处;后者是前者内含的负调控序列,结合特异蛋白因子时,对基因转录起阻遏作用。 7 micro-satellite / minisatellite—微卫星DNA / 小卫星DNA 。卫星DNA是出现在非编码区的串联重复序列,特点是有固定重复单位且重复单位首尾相连形成重复序列片段,串联重复单位长短不等,重复次数大小不一。微卫星DNA即STR;小卫星DNA分为高度可变的小卫星DNA(即VNTR)和端粒DNA。(参考第3题) 8 SNP / RFLP—单核苷酸多态性 / 限制性片段长度多态性。前者是指在基因组水平上由单个核苷酸的变异所引起的DNA序列多态性,它是人类遗传变异中最常见的一种,占所

关于分子生物学试题及答案

分子生物学试题(一) 一.填空题(,每题1分,共20分) 一.填空题(每题选一个最佳答案,每题1分,共20分) 1. DNA的物理图谱是DNA分子的()片段的排列顺序。 2. 核酶按底物可划分为()、()两种类型。 3.原核生物中有三种起始因子分别是()、()和()。 4.蛋白质的跨膜需要()的引导,蛋白伴侣的作用是()。5.真核生物启动子中的元件通常可以分为两种:()和()。6.分子生物学的研究内容主要包含()、()、()三部分。 7.证明DNA是遗传物质的两个关键性实验是()、()。 8.hnRNA与mRNA之间的差别主要有两点:()、()。 9.蛋白质多亚基形式的优点是()、()、()。 10.蛋白质折叠机制首先成核理论的主要内容包括(成核)、(结构充实)、(最后重排)。 11.半乳糖对细菌有双重作用;一方面(可以作为碳源供细胞生长);另一方面(它又是细胞壁的成分)。所以需要一个不依赖于cAMP-CRP的启动子S2进行本底水平的永久型合成;同时需要一个依赖于cAMP-CRP的启动子S1对高水平合成进行调节。有G时转录从(S2 )开始,无G时转录从(S1 )开始。 12.DNA重组技术也称为(基因克隆)或(分子克隆)。最终目的是(把一个生物体中的遗传信息DNA转入另一个生物体)。典型的DNA重组实验通常包含以下几个步骤: ①提取供体生物的目的基因(或称外源基因),酶接连接到另一DNA分子上(克隆载体),形一个新的重组DNA分子。 ②将这个重组DNA分子转入受体细胞并在受体细胞中复制保存,这个过程称为转化。 ③对那些吸收了重组DNA的受体细胞进行筛选和鉴定。 ④对含有重组DNA的细胞进行大量培养,检测外援基因是否表达。 13、质粒的复制类型有两种:受到宿主细胞蛋白质合成的严格控制的称为(严紧型质粒),不受宿主细胞蛋白质合成的严格控制称为(松弛型质粒)。 14.PCR的反应体系要具有以下条件: a、被分离的目的基因两条链各一端序列相互补的 DNA引物(约20个碱基左右)。 b、具有热稳定性的酶如:TagDNA聚合酶。 c、dNTP d、作为模板的目的DNA序列 15.PCR的基本反应过程包括:(变性)、(退火)、(延伸)三个阶段。 16、转基因动物的基本过程通常包括: ①将克隆的外源基因导入到一个受精卵或胚胎干细胞的细胞核中; ②接种后的受精卵或胚胎干细胞移植到雌性的子宫;

(珍贵)浙江大学05-12年博士医学分子生物学真题

2012浙江大学医学分子生物学(乙)回忆版: 一.名词解释(3分*5) 1.The Central Dogma 2.Telomere 3.nuclear localization signal, NLS 4.Protein Motif 5.Splicesome 二.简答题:(5分*9) 1.一个基因有哪些结构组成? 2.基因、染色体、基因组的关系? 3.表观遗传机制改变染色质结果的机制? 4.内含子的生物学意义? 5.什么是蛋白质泛素化?其生物学意义是什么? 6.蛋白质纯化的方法? 7.MicroRNA是什么?它如何发挥作用? 8.什么是全基因组关联研究(Genome Wide Association Studies,GWAS)?其研究目的是什么? 9.分子生物学研究为什么需要模式生物? 三.问答题:(10分*4) 1.人体不同部位的细胞其基因组相同,为什么表达蛋白质的种类和数量不同? 2.用分子生物学知识,谈谈疾病发生机制? 3.有一块肿瘤组织及癌旁组织,设计一个实验证明细胞内蛋白质在肿瘤发生发展中的作用? 4.目前,基因靶点研究已成为新药开发的用药部分,结合目前药物靶点在新药开发中的应用,谈谈你的建议和观点?

2011浙江大学博士入学考试医学分子生物学试题回忆 一、英文名解 1、冈崎片段: 2、反式作用因子: 3、多克隆位点: 4、micro RNA: 5、分子伴侣: 二、简答 1、蛋白质四级结构。 2、真核转录调控点。 3、表观遗传学调控染色质。 4、真核RNA聚合酶类型及作用。 5、基因突变。 6、组学概念及举例。 7、简述兔源多克隆抗体的制备。

中外微生物学史上著名的十大人物

中外微生物学史上着名的十大人物 XX (生物制药二班生命科学学院黑龙江大学哈尔滨 150080) 摘要:在浩瀚的历史长河中,有这么一群人,不断地探索着这个神奇的世界,让我们知道这个世界上还有我们肉眼看不到的生物,我们永远不会忘记他们所作的贡献。 关键词:微生物学发展史;十大人物;生平事迹; Ten Public Figures in History of Microbiology at Home and Abroad XX (The 2th class of Biological Pharmaceutics,College of Life, Science,Heilongjiang University, Harbin, 150080) Abstract: In the vast history, so a group of people, constantly exploring the magical world, let us know in this world and our invisible creatures, we will never forget their contributions. Key words: the history of microbiology; ten public figures; life story and contributions; 自古以来,人类在日常生活和生产实践中,已经觉察到微生物的生命活动及其所发生的作用。在留下来的石刻上,记有酿酒的操作过程。中国在时期,就已经利用微生物分解有机物质的作用,进行沤粪积肥。但到17世纪中叶,微生物学的研究才取得重大进展。此后,欧洲涌现出一批又一批伟大的微生物学家。19世纪末,随着欧洲建立的一些细菌培养技术被教会医院的引入应用,中国人开始逐步了解微生物学,一大批学者投入微生物学的研究并取得了显着成就。 1673年,有个名叫列文虎克(Antoni van Leeuwenhoek,1632-1723)的荷兰人用自己制造的显微镜观察到了被他称为“小动物”的微生物世界。他给英国皇家学会写了许多信,介绍他的观察结果,他发现了杆菌、球菌和原生动物,表明他实实在在看到并记录了一类从前没有人看到过的微小生命。因为这个伟大的发现,他当上了英国皇家学会的会员。所以今天我们把列文虎克看成是微生物学的开山祖。不过,在列文虎克发现微生物后差不多过了200年,人们对微生物的认识还仅仅停留在对它们的形态进行描述上,并不知道原来是这些微小生命的生理活动对人类健康和生产实践有那样的重要关系。虽然他活着的时候就看到人们承认了他的发现,但等到100多年以后,当人们在用效率更高的显微镜重新观察列文虎克描述的形形色色的“小动物”,并知道他们会引起人类严重疾病和产生许多有用物质时,才真正认识到列文虎克对人类认识世界所作出的伟大贡献。 路易斯-巴斯德(Louis Pas-teur,1822—1895)是法国微生物学家、化学家,近代微生物学的奠基人。像牛顿开辟出经典力学一样,巴斯德开辟了微生物领域,他也是一位科学巨人。巴斯德一生进行了多项探索性的研究,取得了重大成果,是19世纪最有成就的科学家之一。他用一生的精力证明了三个科学

医学分子生物学

第一章总论 一、名词解释: 1.单体、有效部位2.一次代谢产物、二次代谢产物3.有效成分、无效成分 4.正相色谱、反相色谱5.水/醇法、醇/水法 二、填空题: 1.溶剂提取法中选择溶剂的依据__________。 2.色谱法按其基本原理分为________、________、________、________。 3.硅胶为________性吸附剂,适于分离________成分,化合物的极性越大,与吸附剂吸附得越____,越_____被洗脱下来。 4.凝胶色谱法分离天然产物中大分子时,主要依据化合物____________差异。 5.葡聚糖凝胶的商品型号是按其交链度大小分类,并以________表示。英文字母G代表________,后面的阿拉伯数字表示凝胶的吸水量再乘以________的值,如G-25的吸水量为________。 6.分配层析是利用各成分在的两相溶剂中不同而进行分离的层析方法。 7.聚酰胺吸附属于________吸附,是一种用途十分广泛的分离方法,特别适于分离________、________、________类化合物。 8.硅胶活化温度________,时间________,超过________丧失吸附力,硅胶含水量达________不能作吸附剂使用,只能作分配色谱。 9.中药液体制剂常采用“水提醇沉”法,水可以提取如糖类、_________、________、_______ 等成分,醇沉可以沉淀________、__________等物质。 10.使用混合溶剂重结晶时,一般是将样品先溶于__________的溶剂中,在加热的情况下滴加__________溶剂直至__________,再稍滴加__________溶剂使__________后让其渐渐析晶。 11.纸色谱的原理属__________,特别适合于________成分的分离鉴定,如_________、_________、__________等。 12.聚酰胺在含水溶剂中的吸附能力大致有三个规律①__________②__________③__________。 13.硅胶、氧化铝吸附剂的用量一般为试样量的__________倍,试样极性较小、难以分离者, 吸附剂用量可适当提高至试样量的__________倍。 14.TLC展开时,使组分R f值达到__________的溶剂系统可选用为柱色谱分离该相应组分的 最佳溶剂系统。 15.活性炭是__________吸附剂,对__________物质具有较强的吸附力,在水溶液中吸附力 __________,在有机溶剂中吸附力__________。 16.常见的极性有机溶剂有甲醇、乙醇、丙酮、正丁醇等,欲从水提取也重萃取极性成分,

分子生物学复习题(有详细答案)

绪论 思考题:(P9) 1.从广义和狭义上写出分子生物学的定义? 广义上讲的分子生物学包括对蛋白质和核酸等生物大分子结构与功能的研究,以及从分子水平上阐明生命的现象和生物学规律。 狭义的概念,即将分子生物学的范畴偏重于核酸(基因)的分子生物学,主要研究基因或DNA结构与功能、复制、转录、表达和调节控制等过程。其中也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。 2、现代分子生物学研究的主要内容有哪几个方面?什么是反向生物学?什么是 后基因组时代? 研究内容: DNA的复制、转录和翻译;基因表达调控的研究;DNA重组技术和结构分子生物学。 反向生物学:是指利用重组DNA技术和离体定向诱变的方法研究已知结构的基因相应的功能,在体外使基因突变,再导入体内,检测突变的遗传效应,即以表型来探索基因结构。 后基因组时代:研究细胞全部基因的表达图式和全部蛋白质图式,人类基因组研究由结构向功能转移。 3、写出三个分子生物写学展的主要大事件(年代、发明者、简要内容) 1953年Watson和Click发表了?脱氧核糖核苷酸的结构?的著名论文,提出了DNA的双螺旋结构模型。 1972~1973年,重组DNA时代的到来。H.Boyer和P.Berg等发展了重组DNA 技术,并完成了第一个细菌基因的克隆,开创了基因工程新纪元。 1990~2003年美、日、英、法、俄、中六国完成人类基因组计划。解读人类遗传密码。 4、21世纪分子生物学的发展趋势是怎样的? 随着基因组计划的完成,人类已经掌握了模式生物的所有遗传密码。又迎来了后基因组时代,人类基因组的研究重点由结构向功能转移。相关学说理论相应诞生,如功能基因组学、蛋白质组学和生物信息学。生命科学又进入了一个全新的时代。 第四章 思考题:(P130) 1、基因的概念如何?基因的研究分为几个发展阶段? 概念:基因是原核、真核生物以及病毒的DNA和RNA分子中具有遗传效应的核苷酸序列,是遗传的基本单位和突变单位以及控制形状的功能单位。 发展阶段:○120世纪50年代以前,主要从细胞的染色体水平上进行研究,属于基因的染色体遗传学阶段。 ○220世纪50年代以后,主要从DNA大分子水平上进行研究,属于分

医学分子生物学试题答案

名词解释: 基因是核酸中贮存遗传信息的遗传单位,是贮存有功能的蛋白质多肽链或RNA序列信息及表达这些信息所必需的全部核苷酸序列。 基因组(gencme):细胞或生物中,一套完整单倍体遗传物质的总和(包括一种生物所需的全套基因及间隔序列)称为基因组。基因组的功能是贮存和表达遗传信息。 SD序列(Shine-Dalgarno sequence,SD sequence) 是mRNA能在细菌核糖体上产生有效结合和转译所需要的序列。SD序列与16S rRNA的3’末端碱基(AUUCCUCCAC-UAG-5’)互补,以控制转译的起始 分子克隆:克隆(clone):是指单细胞纯系无性繁殖,现代概念是将实验得到的人们所需的微量基因结构,引入适当的宿主细胞中去,在合适的生理环境中进行无性繁殖,从而利用宿主的生理机制繁衍人们所需要的基因结构,并进行表达。由于整个操作在分子水平上进行,所以称为分子克隆(molecular cloning)。 动物克隆(Animal cloning)就是不经过受精过程而获得动物新个体的方法. 基因诊断:就是利用现代分子生物学和分子遗传学的技术方法,直接检测基因结构 (DNA水平)及其表达水平(RNA水平)是否正常,从而对疾病做出诊断的方法。 基因治疗就是将有功能的基因转移到病人的细胞中以纠正或置换致病基因的一种治疗方法,是指有功能的目的基因导入靶细胞后有的可与宿主细胞内的基因发生整合,成为宿主细胞遗传物质的一部分,目的基因的表达产物起到对疾病的治疗作用。 转基因动物就是把外源性目的基因导入动物的受精卵或其囊胚细胞中,并在细胞基因组中稳定整合,再将合格的重组受精卵或囊胚细胞筛选出来,采用借腹怀孕法寄养在雌性动物(foster mother)的子宫内,使之发育成具有表达目的基因的胚胎动物,并能传给下一代。这样,生育的动物为转基因动物。 探针:在核酸杂交分析过程中,常将已知顺序的核酸片段用放射性同位素或生物素进行标记。这种带有一定标记的已知顺序的核酸片段称为探针。 限制性核酸内切酶:限制性核酸内切酶(restriction endonuclease)是一类专门切割DNA 的酶,它们能特异结合一段被称为限制酶识别顺序的特殊DNA序列并切割dsDNA。 载体:要把一个有用的基因(目的基因-研究或应用基因)通过基因工程手段送到生物细胞(受体细胞),需要运载工具携带外源基因进入受体细胞,这种运载工具就叫做载体(vector)。 限制性片段长度多肽性分析(RFLP):DNA片段长度多态性分析(restriction fragment length polymer-phism,RFLP)基因突变导致的基因碱基组成或(和)顺序发生改变,会在基因结构中产生新的限制性内切酶位点或使原有的位点消失. 用限制酶对不同个体基因组进行消化时,其电泳条带的数目和大小就会产生改变,根据这些改变可以判断出突变是否存在。 简答题: 1.蛋白质的生物合成过程中的成分参与,参与因子,作用? mRNA是合成蛋白质的“蓝图(或模板)” tRNA是原料氨基酸的“搬运工” rRNA与多种蛋白质结合成核糖体作为合成多肽链的装配机(操作台) tRNA mRNA是合成蛋白质的蓝图,核糖体是合成蛋白质的工厂,但是,合成蛋白质的原料——20种氨基酸与mRNA的碱基之间缺乏特殊的亲和力。因此,需要转运RNA把氨基酸搬运到核糖体中的mRNA上 rRNA 核糖体RNA(rRNA)和蛋白质共同组成的复合体就是核糖体,核糖体是蛋白质合成的场所。

医学分子生物学复习总结学习资料.doc

医学分子生物学复习资料

蛋白质、糖蛋白与蛋白聚糖、脂蛋白、细胞信号传导 名词解释: 1、构型:指一个有机分子中各个原子特有的固定的空间排列。这种排列不经过 共价键的断裂和重新形成是不会改变的。不同构型之间相互转化会涉及化学键 的断裂,构型的改变往往使分子的光学活性发生变化。 2、构象:构成分子的原子和基团因为化学键的旋转而形成在三维空间的不同的 排布、走向。不同的构象之间可以相互转化而不涉及化学键的破裂。构象改变 不会改变分子的光学活性。 3、肽平面:肽键具有部分双键性质而不能自由旋转,这样C、N 原子同它们连接的 O、H和两个 Cα共六个原子就被约束在一个刚性平面上,这个平面被称为肽平面。 4、基序或模体:相邻的几个二级结构相互作用形成有规则的组合体称为超二级 结构,是特殊的序列或结构的基本组成单元,又称为基序或模体。 5、结构域:蛋白质的超二级结构进一步组合折叠成半独立紧密的球状结构域。 6、糖蛋白:在分子组成中以蛋白质为主,其一定部位以共价键与若干糖链(约4%)相连所构成的分子。 7、蛋白聚糖:蛋白聚糖是一类由蛋白质和糖胺聚糖通过共价键相连而成的化合物,其分子中的含糖量通常为50%~90%。 8、血脂:血浆所含的脂类统称为血脂,它包括甘油三酯、磷脂、胆固醇及游离 脂酸。 9、血浆脂蛋白:在血浆中血脂与蛋白质结合,形成血浆脂蛋白。 10、载脂蛋白:血浆脂蛋白中蛋白质部分称为载脂蛋白。 11、脂蛋白受体:脂蛋白受体是一类位于细胞膜上的糖蛋白,它们能以高亲和 性的方式与其相应的脂蛋白配体相互作用,介导细胞对脂蛋白的摄取和代谢, 从而进一步调节血浆脂蛋白和血脂的水平。 12、细胞通讯( cell communication):指一个细胞发出的信息通过介质传递 到另一个细胞产生相应反应的过程。

医学分子生物学复习题(精)

分子生物学复习题 一、名词解释 1、 Northern Blot P40第九 2、 motif P12第七 3、 open reading frame,ORF P25第八 4、 secondary massager 5、 receptor P73第一 6、 probe 7、 vector P39第三 8、 Gene therapy P44第五 9、癌基因 P94第二 10、 Transgenic animal 11、不对称 PCR 12、多重 PCR 13、蛋白质变性 14、 Enhancer P32第三 15、 cis-acting elements 16、 molecular chaperone 17、 G protein P69第八

18、基因文库 P40第六 19、α-互补 P40第七 20、融合蛋白 21、 DNA 芯片(DNA chips P6第 14 22、 Anti-oncogene P94第三 23、 RFLP P5第四 24、 gene superfamily P5第二 25、 insertion sequence 26、 trans-acting factor P31第六 27、 housekeeping gene P31第四 28、转座子(transposon 29、 Klenow 片断 30、 Structural domain P12第 13 31、 S-D 序列 P25第 10 32、 cDNA 文库 P40第五 33、 Gene targeting 34、 Gene diagnosis P44第一 35、自杀基因 36、不对称转录

(完整版)分子生物学》试题及答案

《分子生物学》考试试题B 课程号:66000360 考试方式:闭卷 考试时间: 一、名词解释(共10题,每题2分,共20分) 1. SD 序列 2. 重叠基因 3.ρ因子 4.hnRNA 5. 冈崎片段、 6. 复制叉(replication fork) 7. 反密码子(anticodon): 8. 同功tRNA 9. 模板链(template strand) 10. 抑癌基因 二、填空题(共20空,每空1分,共20分) 1.原核基因启动子上游有三个短的保守序列,它们分别为____和__区. 2.复合转座子有三个主要的结构域分别为______、______、________。 3.原核生物的核糖体由_____小亚基和_____大亚基组成,真核生物核糖糖体由_____小亚基和_______大亚基组成。 4.生物界共有___个密码子,其中__ 个为氨基酸编码,起始密码子为__ _______;终止密码子为_______、__________、____________。 5. DNA生物合成的方向是_______,冈奇片段合成方向是_______。 6.在细菌细胞中,独立于染色体之外的遗传因子叫_______。它是一

种_______状双链DNA,在基因工程中,它做为_______。 三.判断题(共5题,每题2分,共10分) 1.原核生物DNA的合成是单点起始,真核生物为多点起始。( ) 2.在DNA生物合成中,半保留复制与半不连续复制指相同概念。( ) 3.大肠杆菌核糖体大亚基必须在小亚基存在时才能与mRNA结合。( ) 4.密码子在mRNA上的阅读方向为5’→ 3’。( ) 5.DNA复制时,前导链的合成方向为5’→ 3’,后随链的合成方向也是5’→ 3’。() 四、简答题(共6题,每题5分,共30分) 1.简述三种RNA在蛋白质生物合成中的作用。 2.蛋白质合成后的加工修饰有哪些内容? 3.简述人类基因组计划的主要任务。 4.简述现代分子生物学的四大研究热点。 5.何谓转座子?简述简单转座子发生转座作用的机理。 6.简述大肠杆菌乳糖操纵子与色氨酸操纵子在阻遏调控机制上有那些区别? 四、问答题(共2题,共20分) 1.叙述蛋白质生物合成的主要过程。(10分) 2.请叙述真核基因的表达调控主要发生在那些环节?分别是怎样进行 的?(10分)

(完整word版)医学分子生物学

医学分子生物学 名词解释: 结构基因(structural genes): 可被转录形成 mRNA,并转译成多肽链,构成各种结构蛋白质,催化各种生化反应的酶和激素等。 ORF 开放阅读框架( open reading frame,ORF ): 是指DNA链上,由蛋白质合成的起始密码开始,到终止密码为止的一个连续编码。 C值(C-value): 一种生物体单倍体基因组DNA的总量,用以衡量基因组的大小。 C值矛盾/ C值悖论: C值和生物结构或组成的复杂性不一致的现象。 基因组(genome): 是指生物体全套遗传信息,包括所有基因和基因间的区域 重叠基因 是指同一段DNA片段能够参与编码两种甚至两种以上的蛋白质分子。 SNP单核苷酸多态性(singl e nucleotid e polymorphism) 是由基因组DNA上的单个碱基的变异引起的DNA序列多态性。是人群中个体差异最具代表性的DNA多态性,相当一部分还直接或间接与个体的表型差异、对疾病的易感性或抵抗能力、对药物的反应性等相关。SNP被认为是一种能稳定遗传的早期突变 蛋白质组(proteomics): 指应用各种技术手段来研究蛋白质组的一门新兴科学,其目的是从整体的角度分析细胞内动态变化的蛋白质组成成份、表达水平与修饰状态,了解蛋白质之间的相互作用与联系,揭示蛋白质功能与细胞生命活动规律. 质谱技术mass spectrometry,MS 样品分子离子化后,根据不同离子间质核比(m/z)的差异来分离并确定分子量 开放阅读框=ORF 基因工程

又称为重组DNA技术,是指将外源基因通过体外重组后导入受体细胞,并使其能在受体细胞内复制和表达的技术。 限制性核酸内切酶(restriction endonuclease, RE) 是一类能识别和切割双链DNA特定核苷酸序列的核酸水解酶。 逆转录酶 依赖RNA的DNA聚合酶,它以RNA为模板、4种dNTP为底物,催化合成DNA,其功能主要有:1)逆转录作用;2)核酸酶H的水解作用;3)依赖DNA的DNA聚合酶作用。 粘性末端 被限制酶切割后突出的部分就是粘性末端(来自360问答) 载体vector 指能携带外源DNA片段导入宿主细胞进行扩增或表达的工具。载体的本质为DNA。多克隆位点 载体上具有多个限制酶的单一切点(即在载体的其他部位无这些酶的相同切点)称为多克隆位点 报告基因(reporter gene): 是指处于待测基因下游并通过转录和表达水平来反映上游待测基因功能的基因,又称报道基因。 转化 以质粒DNA或以它为载体构建的重组子导入细菌的过程称为转化(transformation) 感受态细胞 细胞膜结构改变、通透性增加并具有摄取外源DNA能力的细胞称谓感受态细胞(competent cell)。 碱裂解法 在NaOH提供的高pH(12.0~12.6)条件下,用强阳离子去垢剂SDS破坏细胞壁,裂解细胞,与NaOH共同使宿主细胞的蛋白质与染色体DNA发生变性,释放出质粒DNA。 核酸变性 变性(denaturation):在某些理化因素的作用下,维系DNA分子二级结构的氢键和碱基堆积力受到破坏,DNA由双螺旋变成单链过程。 核酸复性

相关文档
最新文档