流体力学 第四章 流动阻力和能量损失(第一次)

合集下载

流体力学4流动阻力和能量损失

流体力学4流动阻力和能量损失

粘性切应力:各流层的时均流速不同,存在相对 du 运动。
1
惯性切应力: 脉动引起的 动量交换产 生的切应力。

y
dy
管心线 时均流速分布线 u f y
u u
y2

2 u ux u u ux y x y
u
A
A
l
y1
x

横向脉动产生的紊流惯性切应力
p1 A p2 A Al cos 0l 2 r0 0 p1 p2 2 0l Z1 Z 2 r0
2 0l hf r0

因而


2 0 r0 J 0 J l r0 2 hf

沿程水头损失与速度v的关系
1

Z1
p1

1v12
2g
Z2
2
p2

2 2v2
2g
hl
均匀流
1
p1 ) (Z 2
hl h f ( Z1
2
p2
) h
lg h f lg k m lg v h f kv m
层流:m=1,hf ~ v1 紊流:m=1.75~2,hf ~ v1.75~2
2、莫迪图

莫迪以柯氏公式为基础绘制出工业管道沿程 阻力系数的曲线。
3、简化公式

莫迪公式

阿里特苏里公式
1 6 3 1 2000 K 10 0.0055 d Re 7 K 适于 Re 4000 ~ 10 , 0.01, 0.05 d
系列1
25 20

流体力学第四章:流体阻力及能量损失

流体力学第四章:流体阻力及能量损失
减小摩擦阻力的方法
优化物体表面粗糙度、使用润滑剂、改变流体的流速和方 向等。
形状阻力
形状阻力
由于物体形状的不同,流体在绕过物体时产生的阻力。
形状阻力公式
$F_s = frac{1}{2} rho u^2 A C_s$,其中$C_s$为形状阻力系数, 与物体形状、流体性质和流速有关。
减小形状阻力的方法
详细描述
汽车设计中的流体阻力优化主要包括车身形 状设计和空气动力学套件的应用。设计师会 采用流线型设计来减小空气阻力,同时也会 采用导流板、扰流板等空气动力学套件来调 整汽车周围的空气流动,以提高汽车的行驶
稳定性、减小风噪,并降低燃油消耗。
THANKS FOR WATCHING
感谢您的观看
详细描述
船舶航行中的流体阻力主要来自船体与水之间的摩擦力以及水对船体的冲击力。为了减小流体阻力, 船舶设计师通常会采用流线型设计,优化船体表面的光滑度,以及减少不必要的突出物,从而提高航 行效率。
管道流动中的能量损失
总结词
管道中流体流动时,由于流体与管壁之 间的摩擦以及流体内部的湍流等效应, 会产生能量损失。
根据伯努利方程、欧拉方程等计算公式,结合物体的形状、速度和流体密度等 参数进行计算。
02 流体阻力现象
摩擦阻力
摩擦阻力
由于流体与物体表面的相对运动产生摩擦而形成的阻力。
摩擦阻力公式
$F_f = frac{1}{2} rho u^2 A C_f$,其中$rho$为流体密 度,$u$为流速,$A$为流体与物体接触的表面积,$C_f$ 为摩擦阻力系数。
流体力学第四章流体阻力及能量损 失
目录
• 流体阻力的概念 • 流体阻力现象 • 能量损失原理 • 流体阻力的减小方法 • 实际应用案例

(完整版)管道内的局部阻力及损失计算

(完整版)管道内的局部阻力及损失计算

第四节管道内的局部阻力及损失计算在实际的管路系统中,不但存在上一节所讲的在等截面直管中的沿程损失,而且也存在有各种各样的其它管件,如弯管、流道突然扩大或缩小、阀门、三通等,当流体流过这些管道的局部区域时,流速大小和方向被迫急剧地发生改变,因而出现流体质点的撞击,产生旋涡、二次流以及流动的分离及再附壁现象。

此时由于粘性的作用,流体质点间发生剧烈的摩擦和动量交换,从而阻碍着流体的运动。

这种在局部障碍物处产生的损失称为局部损失,其阻力称为局部阻力。

因此一般的管路系统中,既有沿程损失,又有局部损失。

4.4.1 局部损失的产生的原因及计算一、产生局部损失的原因产生局部损失的原因多种多样,而且十分复杂,因此很难概括全面。

这里结合几种常见的管道来说明。

()()图4.9 局部损失的原因对于突然扩张的管道,由于流体从小管道突然进入大管道如图 4.9 ()所示,而且由于流体惯性的作用,流体质点在突然扩张处不可能马上贴附于壁面,而是在拐角的尖点处离开了壁面,出现了一系列的旋涡。

进一步随着流体流动截面面积的不断的扩张,直到 2 截面处流体充满了整个管截面。

在拐角处由于流体微团相互之间的摩擦作用,使得一部分机械能不可逆的转换成热能,在流动过程中,不断地有微团被主流带走,同时也有微团补充到拐角区,这种流体微团的不断补充和带走,必然产生撞击、摩擦和质量交换,从而消耗一部分机械能。

另一方面,进入大管流体的流速必然重新分配,增加了流体的相对运动,并导致流体的进一步的摩擦和撞击。

局部损失就发生在旋涡开始到消失的一段距离上。

图4.9()给出了弯曲管道的流动。

由于管道弯曲,流线会发生弯曲,流体在受到向心力的作用下,管壁外侧的压力高于内侧的压力。

在管壁的外侧,压强先增加而后减小,同时内侧的压强先减小后增加,这样流体在管内形成螺旋状的交替流动。

综上所述,碰撞和旋涡是产生局部损失的主要原因。

当然在 1-2之间也存在沿程损失,一般来说,局部损失比沿程损失要大得多。

流体力学第四章流动阻力与管路水力计算

流体力学第四章流动阻力与管路水力计算
图4-7 水力光滑管和水力粗糙管
第四章 流动阻力与管路水力计算
3.湍流阻力与流速分布 (1)湍流阻力 在湍流中,流体内部不仅存在着因流层间的时均流 速不同而产生的粘滞切应力τ1,而且还存在着由于脉动使流体质 点之间发生动量交换而产生的惯性切应力τ2。
第四章 流动阻力与管路水力计算
(2)湍流速度分布 实验证明,流体在管道中作湍流运动时,过流 断面上的速度分布如图4-8所示。
第四章 流动阻力与管路水力计算
第四章 流动阻力与管路水力计算
3.圆管层流运动时的沿程阻力系数
第四章 流动阻力与管路水力计算
第四章 流动阻力与管路水力计算
解:v=Q/A=4Q/π=4×75×/π×m/s=0.96m/s 二、圆管湍流的沿程损失计算 实际工程中,除少数流动为层流外,绝大多数都属于湍流运动, 因此湍流的特征和运动规律在解决工程实际问题中有重要的作用。 1.湍流脉动现象与时均法
第四章 流动阻力与管路水力计算
均匀流动是指流速大小和方向均沿流程不变的流动。由于这种流 动只能发生在壁面(截面形状、大小、表面粗糙度等)不发生任 何变化的直管段上,所以在均匀流动时,只有沿程损失,没有局 部损失。为了寻找沿程损失的变化规律,需要先建立沿程损失和 沿程阻力之间的关系式,又称为均匀流动方程式。
第四章 流动阻力与管路水力计算
图4-8 湍流速度分布
第四章 流动阻力与管路水力计算
4.湍流沿程阻力系数的确定 由于湍流的复杂性,至今还不能完全通过理论推导的方法确定湍 流沿程阻力系数l,只能借助实验研究总结一些经验或半经验公式。 (1)尼古拉兹实验 为了得到l的变化规律,尼古拉兹在类似图4-2所 示的实验台上,采用人工粗糙管(管内壁上均匀敷有粒度相同的砂 粒)进行了大量实验。

流体力学 第4章流动阻力和能量损失

流体力学 第4章流动阻力和能量损失

雷诺的实验装置如图 4.1 所示,水箱 A 内水位保持不变,阀门 C 用于调节流量,容器 D 内盛有容重与相近的颜色水,容器 E 水位也保持不变,经细管 E 流入玻璃管 B,用以演 示水流流态,阀门 F 用于控制颜色水流量。
图 4.1 雷诺实验装置 ·73·
·74·
流体力学
当 B 管内流速较小时,管内颜色水成一股细直的流速,这表明各液层间毫不相混。这 种分层有规则的流动状态称为层流。如图 4.1(a)所示。当阀门 C 逐渐开大流速增加到某一 临界流速 vk 时,颜色水出现摆动,如图 4.1(b)所示。继续增大 B 管内流速,则颜色水迅速 与周围清水相混,如图 4.1(c)所示。这表明液体质点的运动轨迹是极不规则的,各部分流体 互相剧烈掺混,这种流动状态称为紊流或湍流。 能量损失在不同的流动状态下规律如何呢?雷诺在上述装置的管道 B 的两个相距为 L 的断面处加设两根测压管,定量测定不同流速时两测压管液面之差。根据伯努利方程,测 压管液面之差就是两断面管道的沿程损失,实验结果如图 4.2 所示。
流体力学
Z1 +
由均匀流的性质:
p1
γ
+
ห้องสมุดไป่ตู้
α 1v12
2g
=
= Z2 +
2 α 2 v2
p2
γ
+
2 α 2 v2
2g
+ hl1−2
α 1v12
2g
代入上式,得:
2g
hl = h f
⎛ p1 ⎞ ⎛ p2 ⎞ (4-11) ⎜ + Z1 ⎟ ⎟−⎜ ⎜ ⎟ + Z2 ⎟ hf = ⎜ ⎝γ ⎠ ⎝ γ ⎠ 上式说明,在均匀流条件下,两过流断面间的沿程水头损失等于两过流断面测压管水 头的差值,即流体用于克服阻力所消耗的能量全部由势能提供。考虑所取流段在流向上的 受力平衡条件。设两断面间的距离为 L,过流断面面积 A1=A2=A,在流向上,该流段所受 的作用力有:重力分量 γ Alcosα、断面压力 p1A 和 p2A、管壁切力 τ0.l.2πr0(τ0 为管壁切应力, r0 为圆管半径)。

空气流动的流体力学原理—流动阻力和能量损失

空气流动的流体力学原理—流动阻力和能量损失

-1.12
-0.68
-0.27
-0.08
0.11
1.4
-2.55
-1.20
-0.75
-0.30
-0.10
0.10
1.5
-2.62
-1.25
-0.78
-0.32
-0.12
0.09

例题1:如下图所示,某三通支管道直径D=100mm,主管道D=150mm,夹角角度为
30°,主管道与支管道风速均为12m/s,求主管道局部阻力和支管道局部阻力。
1.弯头的曲率半径R;
2.转角α;
3.弯头管道参数:如圆形弯头
的直径D方形弯头的宽和高。
附表一、圆形截面弯头阻力系数(部分)
曲率半径
阻力系数
D
1.5D
2D
2.5D
3D
7.5
0.028
0.021
0.018
0.016
0.014
10
0.058
0.044
0.037
0.033
0.029
30
0.110
0.081

. × . × ×
=
= . ×
= . ()

× .
例题2:如下图所示,某矩形弯头参数如下:a=200mm,b=100mm,弯
曲半径R=400mm,弯曲角度为90°,风管内风速v=12m/s,求空气流过此弯
头的局部阻力。
解:1.先计算矩形风管的当量直径D当
L----管道的长度(m)
ρ---空气的密度(kg/m³)
v---空气的平均流速(m/s)
λ---沿程阻力系数,和雷诺数Re有关。

沿程阻力计算公式还可以表示为:Hm=RL

流体力学第四章

流体力学第四章

同的规律。因此,在计算管流水头损失时必须首先判别出流动状态。
大量的实验表明,流体的流动状态不仅由临界速度一个参数决定。
影响流体流动类型的因素:
①流体的流速 u;②管径 d;③流体密度 ρ;④流体的粘度 μ。
u、d、ρ越大,μ越小,就越容易从层流转变为湍流。上述中四个因素所组成的复合数群 duρ/μ,是
差计,其液面高差△h=4cm,
求作用水头 H。
考点二 雷诺实验
实际流体的流动由于粘滞性的存在而具有两种不同的状态,英国物理学家雷诺(Reynolds)通过 大量的实验研究发现,实际流体在管路中流动存在着两种不同的状态,并且测定了管路中的能量损失 与不同的流动状态之间的关系,此即著名的雷诺实验。
试验过程(装置如下图): 实验过程中使水箱中的水位保持恒定。实验开始前水箱中颜色水的阀门以及玻璃管上的阀门都是关 闭的。开始实验时,逐渐打开玻璃管出口端上的阀门,并开启颜色水的阀门,使颜色水能流人玻璃管中。 ①层流:流动状态主要表现为流体质点的摩擦和变形,这种流体质点互不干扰各自成层的流动称 为层流。 a.流体质点做直线运动; b.流体分层流动,层间不相混合、不碰撞; c.流动阻力来源于层间粘性摩擦力。
湿周较小———外部阻力较小
{ } 面积 A较小———内部阻力较小
水力半径小
综合阻力较大
湿周较大———外部阻力较大
水力半径与阻力特性
例题 图中所示为一从水箱引水的水平直管。已知管径 d=20cm,
管长 L=40m,局部水头损失系数:进口 ζ1=0.5,阀门 ζ2=0.6。当通过流 量 Q=0.2m3/s时,在相距△L=10m的 1-1及 2-2断面间装一水银压
试验方法:
在试验段上接出两根测压管。液体在等直径的水平管路中稳定流时,由伯努利方程可得:hf

《工程流体力学》第四章 流动损失

《工程流体力学》第四章  流动损失

1、运动参数的脉动: 紊流特征:旋涡结构 紊流运动:旋涡迁移掺混的随机运动
精密测速仪测定流场中M点瞬时速度:随机变化曲线 运动参数的脉动(脉动现象):在足够长时段T内,随机 值具有围绕某一“平均值”而上下变动的现象
紊流脉动:各空间点的速度、压强等物理量,随时间围 绕某一“平均值”作不规则变化的流动现象。
(b)继续开大阀门C:B管中流速增大,有色液体的流动并 无变化,仍为层流。
当B管中平均流速达到某一值时,层流开始转变紊流 —— 临界状态(临界区)。
临界状态:流束发生动荡、分散、个别地方出现中断。
(c)再稍开大阀门C:B管中流速超过临界值VK’,则有色 液体不再呈现流束动荡和分散中断,而破碎掺混变成一种 紊乱的流动状态,有色流体质点布满B管中—紊流。
管中水流为紊流。
(2)保持层流的最大流速就是临界流速:
流态分析:
层流:各流层互不掺混,只有粘性引起的各流层间的滑动 摩擦阻力。
紊流:许多大大小小的涡体动荡于各流层间,有粘性阻力, 惯性阻力。(由质点掺混,互相碰撞所引起的)
紊流阻力>>层流阻力
层流到紊流的转变过程:
假设流体原来作直线层流运动,由于某种原因干扰,流层 发生波动。
水力半径:截面面积A与流体湿周长c之比 水力半径表征截面的流通能力: A增加,c变小,则流体流通能力增加。
几种断面的水力半径:
当量直径de:当非圆管的水力半径 = 圆管的水力半径时, 这时圆管的直径就是非圆管的当量直径。 如当非圆管的水力半径R = 圆管的水力半径d/4时, 则圆管的直径d = 4R为非圆管的当量直径de。
上临界速度VK’不稳定:受试验设备,周围环境影响很大 (1)当管壁光滑,入口平滑,周围干扰较小时:VK’可达到 较高值。即速度较大时,层流才转变为紊流 (2)当管壁粗糙,周围干扰较大时, VK’可达到的值较小。 即速度较小时,层流就转变为紊流

流体力学_龙天渝_流动阻力和能量损失

流体力学_龙天渝_流动阻力和能量损失

(2)光滑黄铜管的沿程水头损失
在Re<105时可用布拉修斯公式:
由图4-11和莫迪图可得出一致的结果.
(3)K=0.15mm工业管道的水头损失 根据Re=80000,K/d=0.15mm/100mm=0.0015,由莫迪图得 0.024。
第七节 非圆管的沿程损失
非圆管的沿程损失一般用到当量直径计算。 水力半径为过流断面面积A和湿周 之比。
( b) ( c) 图4-2 由紊流变为层流的临界流速 小于由层流转变为紊流的临界 流速 。称 为上临界流速, 为下临界流速。上临界流速 不稳定,下临界流速稳定,一般的临界流速指的是下临界流速。
( a)
流态的判别标准——临界雷诺数
பைடு நூலகம்
流动状态不仅和流速v有关,还和管径d、流体的动力黏度 和密度 有关,用一无因次数Re表示,称雷诺数:
式(4-30) 和式(4-32)都是半经验公式,还有两个应用 广泛的经验公式,光滑区的布拉休斯公式:
上式适用于Re<105的情况。还有粗糙区的希弗林松公式:
紊流过渡区和柯列勃洛克公式 柯列勃洛克根据大量的工业管道试验资料,整理出工业管道 过渡区曲线,并提出该曲线的方程:
K为工业管道的当量粗糙粒高度,可查4-1。该式为尼古拉兹 光滑区公式和粗糙区公式的机械组合。为简化计算,莫迪以 柯氏公式为基础绘制出反映Re、K/d和 对应关系的莫迪图, 在该图上可根据Re和K/d直接查出 。 此外,还有一些人为简化计算,在柯氏公式的基础上提出了
[例4-11]某钢板制风道,断面尺寸为400mm×200mm,管长 80m。管内平均流速v=10m/s。空气温度t=20℃,求压强损失 pf。 [解](1)当量直径
(2)求Re。查表,t=20 ℃时, =15.7×10-6m2/s

流体力学-第四章-流动阻力和能量损失(章结)

流体力学-第四章-流动阻力和能量损失(章结)

K(mm) 管道材料 K(mm)
表面光滑砖风道
4.0
度锌钢管
0.15
矿渣混凝土板风道 1.5
钢管
0.046
钢丝网抹灰风道 10~15
铸铁管
0.25
胶合板风道
1.0
混凝土管
0.3~3.0
墙内砌砖风道
5~10 木条拼合圆管 0.18~0.9
确定沿程阻力系数的方法:
(1)经验公式 (2)莫迪图 (3)查相关手册
二、等效过程
(1)用实验方法对某种材料的管道进行沿程损 失实验,测出 和 hf ;
(2)再用达西公式计算出λ;
hf
l d
2
2g
(3)用尼古拉兹阻力平方区公式计算出绝对
粗糙度K。
1
(1.74 2 lg d )2
2K
此时的K值在阻力的效果上是与人工粗糙管的管 道粗糙度相当的,故称其为当量粗糙度。
莫迪(Mood渐扩管 (d)减缩管
(e)折弯管
(f)圆弯管
(g)锐角合流三通
(h)圆角分流三通
在局部阻碍范围内损失的能量,只占局部损失中 的一部分,另一部分是在局部阻碍下游一定长度的 管段上损耗掉的,这段长度称为局部阻碍的影响长 度。受局部阻碍干扰的流动,经过影响长度后,流 速分布和紊流脉动才能达到均匀流动的正常状态。
核心问题2 水力半径、湿周、当量直径
以上讨论的都是圆管,圆管是最常用的断面形式。 但工程上也常用到非圆管的情况。例如通风系统 中的风道,有许多就是矩形的。如果设法把非圆 管折合成圆管来计算,那么根据圆管制定的上述 公式和图表,也就适用于非圆管了。这种由非圆 管折合到圆管的方法是从水力半径的概念出发, 通过建立非圆管的当量直径来实现的。

(完整版)流体力学选择题精选题库

(完整版)流体力学选择题精选题库

(完整版)流体力学选择题精选题库《流体力学》选择题库第一章绪论1.与牛顿内摩擦定律有关的因素是:A、压强、速度和粘度;B、流体的粘度、切应力与角变形率;C、切应力、温度、粘度和速度;D、压强、粘度和角变形。

2.在研究流体运动时,按照是否考虑流体的粘性,可将流体分为:A、牛顿流体及非牛顿流体;B、可压缩流体与不可压缩流体;C、均质流体与非均质流体;D、理想流体与实际流体。

3.下面四种有关流体的质量和重量的说法,正确而严格的说法是。

A、流体的质量和重量不随位置而变化;B、流体的质量和重量随位置而变化;C、流体的质量随位置变化,而重量不变;D、流体的质量不随位置变化,而重量随位置变化。

4.流体是一种物质。

A、不断膨胀直到充满容器的;B、实际上是不可压缩的;C、不能承受剪切力的;D、在任一剪切力的作用下不能保持静止的。

5.流体的切应力。

A、当流体处于静止状态时不会产生;B、当流体处于静止状态时,由于内聚力,可以产生;C、仅仅取决于分子的动量交换;D、仅仅取决于内聚力。

6.A、静止液体的动力粘度为0;B、静止液体的运动粘度为0;C、静止液体受到的切应力为0;D、静止液体受到的压应力为0。

7.理想液体的特征是A、粘度为常数B、无粘性C、不可压缩D、符合RT=。

pρ8.水力学中,单位质量力是指作用在单位_____液体上的质量力。

A、面积B、体积C、质量D、重量9.单位质量力的量纲是A、L*T-2B、M*L2*TC、M*L*T(-2)D、L(-1)*T10.单位体积液体的重量称为液体的______,其单位。

A、容重N/m2B、容重N/M3C、密度kg/m3D、密度N/m311.不同的液体其粘滞性_____,同一种液体的粘滞性具有随温度______而降低的特性。

A、相同降低B、相同升高C、不同降低D、不同升高12.液体黏度随温度的升高而____,气体黏度随温度的升高而_____。

B、增大,减小;C、减小,不变;D、减小,减小13.运动粘滞系数的量纲是:A、L/T2B、L/T3C、L2/TD、L3/T14.动力粘滞系数的单位是:A、N*s/mB、N*s/m2C、m2/sD、m/s15.下列说法正确的是:A、液体不能承受拉力,也不能承受压力。

第一篇 流体力学第四章 阻力损失与管路计算

第一篇 流体力学第四章 阻力损失与管路计算
• 有了当量直径,只要用de 代替d,就可利用圆管的计算公式来进行非圆 管沿程损失的计算,即
上一页
返回
第四节 局部损失的计算
• 局部损失可按下式计算:
• 局部损失的计算可以转化为求局部阻力系数ζ 的问题.对于不同的局部 阻碍,有不同的局部阻力系数ζ 值,其多数通过试验确定,并编制成专用 计算图、表,供计算时查用.表4-1列出了各种常用管件的局部阻力系 数ζ值.应当注意,表4-1中的ζ 值都是针对某一过流断面的平均流速而 言的,查表时必须与指定的断面流速相对应,凡未注明的,均应采用局部 阻碍以后断面的平均流速.
• 根据流体的边界情况,将流动阻力和能量损失分为两种形式:一种是沿 程阻力与沿程能量损失;另一种是局部阻力与局部能量损失.
下一页 返回
第一节 流动阻力与能量损失
• 如图4-1所示,水箱侧壁上连接一根由三段不同直径的管段所组成的 管路.在边壁沿程不变的管段上(1-2、2-3、3-4、4-5段), 阻碍流体流动的阻力沿程基本不变,这类阻力称为沿程阻力.为克服沿 程阻力而产生的能量损失称为沿程能量损失.沿程损失以水柱高度表 示时,称为沿程水头损失,用符号hf 表示.图中的hf12、hf23、hf34、 hf45就是相应1-2、2-3、3-4、4-5各管段的沿程水头 损失.图中整个管路的沿程水头损失等于各管段的沿程水头损失之和, 即
• 人们很早以前就发现沿程损失与流速之间存在着某种关系,但直到1 883年,英国物理学家雷诺在他做的试验中揭示了流体运动存在着 两种流态,这才认识到沿程损失与流速的关系与流态密切相关.
• 雷诺试验的装置如图4-2所示,水箱A 中水位恒定,水流通过玻璃管B 恒定出流,阀门K 用来调节管内流量,容器D 中盛有颜色水,颜色水可以 经过细管E 注入玻璃管B 中.

流体力学流动阻力和水头损失

流体力学流动阻力和水头损失
hf=(p1-p2 / 记录层流与紊流情况下的平均流速u与对应 的hf,作u-hf关系曲线。
2020/3/31
流动阻力和水头损失
17
第四章 流动阻力和水头损失
vc vc
2020/3/31
流动阻力和水头损失
18
第四章 流动阻力和水头损失
线段AC及ED都是直线,
用 lg h f lg k m lg 表示
的影响
可用过水断面的水力要素来表征,如过水断面
的面积A、湿周 及力半径R等。
对圆管:
d 2
R A 4 d
d 4
2020/3/31
流动阻力和水头损失
9
第四章 流动阻力和水头损失
2、液流边界纵向轮廓对水头损失的影响
因边界纵向轮廓的不同,可有两种不同 形式的液流:均匀流与非均匀流
均 匀 流
2020/3/31
分布进行改组流线发生弯曲并产生旋涡,在这些局部地区就有局部水头损
失。
2020/3/31
流动阻力和水头损失
6
第四章 流动阻力和水头损失
液流产生水头损失的两个条件
(1) 液体具有粘滞性。
(2) 由于固体边界的影响,液流内部质点之间 产生相 对运动。
液体具有粘滞性是主要的,起决定性作用。
2020/3/31
流动阻力和水头损失
10
第四章 流动阻力和水头损失

+hj



均匀流时无局部水头损失,非均匀渐变流时局部
水头损失可忽略不计,非均匀急变流时两种水头损失 都有。
2020/3/31
流动阻力和水头损失
11
第四章 流动阻力和水头损失
二、水头损失的计算公式

流体力学泵与风机(第五版) 蔡增基 课后习题答案(1)

流体力学泵与风机(第五版) 蔡增基 课后习题答案(1)
⎝d ⎠
2 0.25

L ⋅ v2 d ⋅ 2g
∴ h1 ∽ v 2 11. 某风管 直径 d=500mm ,流速 v =20m/s ,沿程 阻力 系数
λ =0.017,空气温度
t=200C
求风管的 K 值。 解:Re= vd = 20 × 500 × 10 =6.4×105,故为紊流 −6
υ
15.7 × 10
4
Q π 2 ⋅d 4
L v2 hf =π ⋅ ⋅ d 2g
=λ· L d
hf Q2 L
·
Q2 π2 4 ⋅ d ⋅ 2g 16 k⎞ ,又λ= 0.11⎛ ⎜ ⎟
⎝d ⎠
0.25
λ=
π2 8
·g·d5·
∴K=0.18mm 19.矩形风道的断面尺寸为 1200×600mm ,风道内空气的温 度为 45℃,流量为 42000 m3/h,风道壁面材料的当粗糙度 K=0.1mm, 今用酒精微压计量测风道水平段 AB 两点的压差 ,
流动阻力和能量损失
1.如图所示: ( 1)绘制水头线; ( 2)若关小上游阀门 A,各
段水头线如何变化?若关小下游阀门 B,各段水头线又如何 变化?(3)若分别关小或开大阀门 A 和 B,对固定断面 1-1 的压强产生什么影响? 解: ( 1)略 (2)A 点阻力加大,从 A 点起,总水头线平行下移。由于 流量减少,动能减少,使总水头线与测压管水头线之间的距 离减小,即 A 点以上,测压管水头线上移。A 点以下,测压 管水头线不变,同理讨论关小 B 的闸门情况。 (3)由于 1—1 断面在 A 点的下游,又由于 A 点以下测压管 水头线不变,所以开大或者关小阀门对 1—1 断面的压强不 受影响。对 B 点,关小闸门, B 点以上测压管水头线上移, 使 1—1 断面压强变大,反之亦然。 2.用直径 d = 100mm 的管道,输送流量为 10kg / s 的水,如水温为 5℃,试确定管内水的流态。如用这样管道输送同样质量流

流体力学第四章 流动阻力及能量损失

流体力学第四章 流动阻力及能量损失
沿层损失:
局部损失:
hm

v2 2g
第二节 雷诺试验 层流与紊流
一、两种流态 1883年英国物理学家雷诺(Reynolds O.)通过 试验观察到液体中存在两种流态。
二、雷诺实验
如图所示,实验曲线
分为三部分:
(1)ab段:当υ <υ c时,
流动为稳定的层流。
(2)ef段:当υ >υ ‘’时,
流动只能是紊流。
适用范围:

c.紊流λ的综合计算公式 考尔布鲁克公式 巴赞(Barr)公式 式中: K——当量粗糙高度,是指和工业管道粗
糙管区l值相等的同直径人工粗糙管的粗糙高度。工 业管道的“当量粗糙高度”反映了糙粒各种因素对
沿 程损失的综合影响。
适用范围:适用于圆管紊流的过渡区,也适用于 光滑管区和粗糙管区。

15106
为层流列截面1-1和2-2的伯努利方程
h
pa
g
1
V12 2g
0
pa
g
2
V22 2g
hf
认为油箱面积足够大,取 V1 0 ,则
hf
2
V22 2g
64 Re
l d
V22 2g
2 0.2392 64 15 0.2392




29.806 127.5 0.008 29.806
(3)be段:当υ c<υ <υ ‘’ 时,流动可能是层流(bc 段),也可能是紊流(bde
段),取决于水流的原来状 态。
层流: m1=1.0, hf=k1v , 即沿程水头损失与流线的一次方成正比。
紊流: m2=1.75~2.0, hf =k2v 1.75~2.0 , 即沿程水头损失hf与流速的1.75~2.0次方成正

第4章_粘性流体的流动阻力计算

第4章_粘性流体的流动阻力计算

5. 流体从紊流变为层流时的流速 A 不变 B 与流体粘性成正比,与断面几何尺寸成反比 C 与流体粘性成反比,与断面几何尺寸成正比
4.4 流体在圆管中的层流流动
4.4.1 均匀流动中内摩擦力的分布规律
r0 处管内流体内摩擦切应力:
0
r0 2
i
r 处圆柱形流段内摩擦切应力:
内摩擦切应力分布规律:
' cr
cr
cr
' cr
试验表明,水在毛细管和岩石缝隙中的流动,重油在管道中的 流动,多处于层流运动状态,而实际工程中,水在管道(或水渠) 中的流动,空气在管道中的流动,大多是紊流流动。
4.3.2 流动状态与水头损失的关系
不同流动状态形成不同阻力, 也必然形成不同的水头损失。 由水头损失与流速关系(对数 曲线)得
思 考 题
1. 判断:有两个圆形管道,管径不同,输送的液体也不同,则流态判 别数(雷诺数)不相同。 (对 /错) 2. 雷诺数与哪些因数有关?其物理意义是什么?当管道流量一定时随 管径的加大,雷诺数是增大还是减小?
3. 为什么用下临界雷诺数,而不用上临界雷诺数作为层流与紊流的判 别准则?
4. 当管流的直径由小变大时,其下临界雷诺数如何变化?
在液压设备的短管路计算中,le 值是很有实际意义的。
4.2
流体在圆管中的紊流流动
在实际工程中,除少数流动是层流流动以外,绝大多数流动是紊流 流动。因此研究紊流的特性和规律,均有重要的实际意义。 4.5.1 紊流的特征

紊流流动时,流体质点不再维持直线形状而是杂乱无章地扩散到整个 管路中流动。 管中紊流流体质点的速度不仅具有三个方向的分量,而且这些分量的 大小又随时间变化。 紊流中不但速度瞬息变化,一点上流体压强等参数都存在着类似的变 化(脉动)。层流破坏以后,在紊流中形成许多大大小小不同的漩涡, 这种漩涡是造成速度脉动的原因。 紊流的速度、压力等运动要素,在空间、时间上均有随机性质,因 此紊流是一种非定常流动。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
基准线 z1 1
z
0
z2 2
0
水力坡度: 常用符号 J 表示, J= hf / L。 含义: 单位长度流程上的水头损失。
核心问题4: 恒定气流能量方程
z1 +
p1 γ
+ α1v12 2g
=
z2
+
p2 γ
+ α2v22 2g
+ hw
恒定总流伯努利方程是在不可压缩这样的流动模 型基础上提出的,但在流速不高(小于 68m / s ) ,压 强变化不大的情况下,同样可以应用于气体。
这篇文章用实验说明水流分为层流与紊流两种形态,并提出以 无量纲数Re作为判别两种流态的标准。雷诺于1886年提出轴 承的润滑理论,1895年在湍流中引入应力的概念。他的成果 曾汇编成《雷诺力学和物理学课题论文集》两卷。
其相应的水头损失称局部水头损失(hm)。 局部水头损失一般发生在管道入口、转弯、突扩 (缩)、三通、阀门等附近的局部流段上。
总水头损失
hw hf hm
液流产生水头损失的两个条件
(1) 液体具有粘滞性。 (2) 由于固体边界的影响,液流内部质点 之间产生相对运动。 液体具有粘滞性是主要的,起决定性作用。
1、理想流体
总水头线
v2 z p 常数 H
2g
b
v12 / 2g
c
p1 /
b'
v22 / 2g
静水头线 c'
速 位压 度 置强 水 水水 头 头头






线
线


1

z1
0
a
总 水 头 线
H p2 /
2
z2
a'
0
2、实际流体
a1v12a 2g

z1
p1


a2v22a 2g
穷究于理,成就与工
流体力学
内容回顾
核心问题1: 水头线的提出——工程需要
材料力学
弯矩图
直观
剪力图
能量方程的几何意义
绘出沿程各个截面的水头线
直观反映沿程水头变化
反映整个流程的能量转换关系
核心问题2: 水头损失
水头损失hw的概念
单位重量液体自上游断面流至下游断面所损失的 机械能。
影响因素
20082964
它与液体的粘滞性有关
它与液体的固体边界有关
水头损失的分类
hf为沿程阻力损失——简称沿程损失。 hj为局部阻力损失——简称局部损失。
水头损失产生机理
产生损失的内因
物理性质:粘滞性 固体边界:固壁对流动的阻滞和扰动
产生流 动阻力
损耗机 械能 hw
产生损失的外因
核心问题3: 总水头线与测压管水头线

能 量
z1
p1
v12
2
z2

p2

v22
2
hw



z1
( p1

pa )
v12 2

z2
( p2

pa )
v22 2
hw
最终结果
pa pa a (z2 z1)
p1
+
ρv12 2
+ (γa
- γ)(z2
-
z1 )
将方程各项乘以重度 γ ,方程各项都转换为压强 量纲。
z1

p1

v12
2
z2

p2

v22
2
hw
3、气流能量方程采用相对与绝对压强的区别


z1
( p1
pa )
v12
2
z2
( p2

pa )
v22
2
hw

能 量
z1
p1
v12
2
z2

p2

v22
2
hw



z1
( p1

pa )
v12
2

z2
( p2

pa )
v22
2
hw
真正误差: pa pa

z1
( p1
pa )
v12
2
z2
( p2

pa )
v22
2
hw
z2Biblioteka p2 hw
a1
v12a 2g
总水头线 静水头线
速 位压 度 置强 水 水水 头 头头






线
线
总 水 头
损 失
p1 g


z1
dA
0







线
线
hw
a2
v22a 2g
p2 g
z2
0
1v12 2g
v2
2g
p1

p
水流轴线
1

总水头线
hw
2 v22
2g
静水头线
p2
1、动能修正系数α
气体粘度较小,实际流速沿断面分布比较均匀, 接近于平均流速,气体流动中的动能修正系数常取 1.0
z1
p1


v12 2g

z2

p2


v22 2g
hw
2、气流能量方程应采用压强量纲
能量方程用于液体时,水头概念直观具体,采 用长度量纲方便。
能量方程用于气体流动时,水头概念没有像液 体流动那样明确具体。
[相对平衡]
动力学
学习进程
由 静
恒定元流
由 简




运 动
恒定总流
复 杂

理想流体 理


实际流体
现 实
§4.1 沿程损失和局部损失
根据流体与约束流动的固体边界的位置关系。
内流和外流
内流:流体在约束流动的固体边界内部。(管道、明渠)
外流:流体在约束流动的固体边界外部。(流体绕流桥墩、 船舶、飞机、汽车等)故外流也称绕流。
本章重点:内流的相关问题。
沿程阻力与沿程水头损失
当流体在约束流动的固体边界内做均匀流动时, 产生的流动阻力称为沿程阻力或摩擦阻力。
由沿程阻力做功引起的水头损失称沿程水头损失 (hf)。
沿程水头损失沿流程均匀分布,与流程长度成正 比。
局部阻力与局部水头损失
局部阻力:当约束流动的固体边界急剧改变,使 流速分布发生变化而产生的流动阻力。
=
p2
+
ρv22 2g
+
pw
p1和 p2为相对压强
纸上谈兵到是弹演习
第四章 流动阻力和能量损失
1、结论由大量实验得出 2、出现了大量修正系数
问题1、沿程损失和局部损失 问题2、层流与紊流、雷诺数
学习要求: 1、理解水头损失产生的原因 2、区分层流与紊流的区别与联系 3、理解雷诺数提出的目的
静力学
把能量损失的计算问题转化为求阻力系数的问题。
这两系数必须借助于典型实验,用经 验或半经验方法求得。
雷诺生平简介
雷诺(O.Reynolds,1842-1912):英国 力学家、 理学家和工程师,1842年8月23 日生于爱尔兰,1867年毕业于剑桥大学王 后学院,1868年出任曼彻斯特欧文学院 (后改名为维多利亚大学)首席工程学教授, 1877年当选为皇家学会会员,1888年获皇 家勋章。雷诺于1883年发表了一篇经典性 论文—《决定水流为直线或曲线运动的条件 以及在平行水槽中的阻力定律的探讨》。
如何定量计算水头损失??
能量损失的计算公式—长期工程经验总结
液体
沿程水头损失:
hf

l d
v2 2g
λ—沿程阻力系数;l—管道长度;d—管道直径; v—平均流速
局部水头损失:
hm

v2 2g
—局部阻力系数
气体
沿程压强损失:
pf
l
d
v2
2
局部压强损失:
pm

v2
2
核心问题: 和 的计算。
相关文档
最新文档