线性代数 第三章向量
线性代数第三章总结
第三章 几何空间一、 向量的运算1. 向量的数量积(1) 在仿射坐标系123{;,,}O e e e 中给定两个向量123(,,)x x x α=,123(y ,,)y y β=,则112323(,,)y x x x A y y αβ⎛⎫ ⎪⋅= ⎪ ⎪⎝⎭,其中111213212223313233e e e e e e A e e e e e e e e e e e e ⋅⋅⋅⎛⎫ ⎪=⋅⋅⋅ ⎪ ⎪⋅⋅⋅⎝⎭. (2) 在直角坐标系{;,,}O i j k 中给定两个向量123(,,)x x x α=,123(y ,,)y y β=,则131233213(,,)i i i y x x x I y x y y αβ=⎛⎫ ⎪⋅== ⎪ ⎪⎝⎭∑ ∙ =0αβαβ⊥⇔⋅2. 向量的向量积在直角坐标系{;,,}O i j k 中给定两个向量123(,,)x x x α=,123(y ,,)y y β=,则123123i jk x x x y y y αβ⨯=. ∙ //=0αβαβ⇔⨯3. 向量的混合积在直角坐标系{;,,}O i j k 中给定两个向量123(,,)x x x α=,123(y ,,)y y β=,123(,,)z z z γ=则123123123(,,)x x x y y y z z z αβγ=. ∙ (,,)0αβγαβγ⇔=,,共面例:(1)设=αβγδ⨯⨯, =αγβδ⨯⨯,证明αδ-,βγ-共线.(2)设0αββγγα⨯+⨯+⨯=,证明αβγ,,共面.(3)证明()()βγααγβγ⋅-⋅⊥.证明:(1)因为()()αδβγ-⨯-=αβαγδβδγ⨯-⨯-⨯+⨯=αβγδαγ⨯-⨯-⨯+0βδ⨯=,所以αδ-,βγ-共线.(2)因为()αβγ=,,()αβγ⨯⋅=()βγγ-⨯⋅()γαγ-⨯⋅=()βγγ-,,()γαγ-,,0=,所以αβγ,,共面.(3) 因为(()βγα⋅())αγβγ-⋅⋅=()βγ⋅()αγ⋅()αγ-⋅()βγ⋅0=,所以()βγα⋅()αγβ-⋅γ⊥.二、 位置关系的判断1. 两个向量的共线;三个向量的共面.2. 两条直线异面,共面(相交、平行、重合)3. 两个平面相交、平行、重合4. 直线与平面相交、平行、直线在平面上.三、距离和垂线(在右手直角坐标系中讨论)1. 点到直线的距离,垂线方程垂线方程:设直线过已知点0000,,)P x y z (方向向量为0()X Y Z υ=,,,求过111(,,)P x y z 点直线的垂线方程。
线性代数第三章向量组的线性相关性与矩阵的秩
第三章向量组的线性相关性与矩阵的秩何建军§3 • 1 概念与性质3.1.1向量的概念和运算1、n维向量:n个数构成的一个有序数组(a i,a2,…,a n),称为一个n维向量,记为〉=佝,a2 ,…,a n ),并称为n维行向量,a i称为〉的第i个分量,〉的转置T T(a1,a2, a n)称为n维向量。
2、相等:若a =@182,…,a n),p =(D,b2,…,b n),当且仅当a i =b i(i =1,2,…,n)时,:,:。
3、加法:」-a b!,a2 b2^ ,a n b n4、数乘:k ka1,ka2,…,ka n ,(k 为常数)5、內积:匕0 】=aQ +a?b2 + …+a“b n3.1.2向量组的线性相关性1、线性组合:给定向量组A : 对于任何一组实数匕出,…,k m,向量k V1 k^ 2肚m称为向量组A的一个线性组合,匕*?,…,k m称为这个线性组合的组合系数2、线性表示:给定向量组A : 〉1「2,i「m和向量:,如果存在一组数n n « n'1, '2, ,‘ m ,使得■- = ‘1〉1 ‘2〉2 •…-'rn'm则向量-能有向量组A线性表示,向量-是向量组A的线性组合。
3、线性相关:给定向量组A : ‘1厂2,厂m,如果存在一组不全为零的数k1 , k2 , , k m,使得kr 1 k2〉2 k m〉m=o则称向量组A是线性相关的。
4、线性无关:向量组A :r,〉2,…,〉m,不线性相关,称向量组A线性无关,即不存在不全为零的数k1,k2, , k m使得1• k2「2•■ k m m=0成立,即只有当k1二Q二=k m=0时,才有k^ 1 k2「2 ' k^' m=0成立。
(如果存在一组数k-k2,,k m 使得k V 1 k^ ■k m「m=0,则必有k1= k2 = = k m=0,称向量组A 线性无关)注:含有零向量的向量组一定线性相关。
线性代数课件 第三章——向量 3 向量组的秩、向量空间简介
, m
, m 线性无关; , m 线性表示.
ii) V中任意向量都可由 1 , 2 ,
§3 向量组的秩、向量空间简介
注.向量空间V的维数实际上就是向量组的秩.
dim L(1 , 2 , , m ) R{1 , 2 , , m }.
定理5:设V是向量空间,若dimV=r,则V中任意r+1
, m 线性
, s )是 L(1 , 2 ,
, m ) 的子空间.
பைடு நூலகம்
§3 向量组的秩、向量空间简介
2.基变换与坐标变换
定义4. 向量空间V的一个极大线性无关组称为V的一 个基,基所含向量的个数称为V的维数,记作dimV. 规定:零向量空间没有基,维数定义为0. 判别.设 1 , 2 , , m是V中m个向量,则 1 , 2 , 是V的一个基的充要条件是 i) 1 , 2 ,
向量都线性相关.
推论:设V是向量空间,若dimV=r,则V中任意r个
线性无关的向量组都是V的一个基.
§3 向量组的秩、向量空间简介
定义5. 若 1 , 2 , , m是向量空间V的一个基,则
V中任意向量 可唯一表示为
k1 k2 , m ) k m
k11 k2 2
第三章 向量
§1 n维向量的线性相关性 §2 线性相关性的结论、极大线性无关组 §3 向量组的秩、向量空间简介 §4 向量的内积
一、向量组的秩 二、向量空间简介
一、向量组的秩
定义1 向量组 1 , 2 , , m 的极大无关组所含向量
的个数,称为该向量组的秩,记作 R{1 , 2 , 规定:零向量组的秩为0.
4 (1,2, k ,6)T , 5 (1,1,2,4)T , 求向量组1 , 2 , 3 , 4 , 5
线性代数第3章向量空间
表示, 又 m>n, 由表示不等式
r(Blm ) r( Aln ) n m 从而 B 必相关.
-26-
(6) “短的无关, 则长的也无关.等价地… ” P101推论3
无穷多种表示, 并求所有表示方法.
解 记 A [1,2 ,3 ] 只需讨论 Ax 解的情况.
具体解方程组过程略。
0 时,方程组无解, 不能由 A 表示. 0 且 3时, 方程组有唯一解, 可由 A 唯一表示.
-12-
3 时, 方程组有无穷多解, 可由 A 无穷多种表示.
1
1 2
,
2
3 4
是无关的.
1
3
n r( Amn ) r(Bln ) n
1 , 2 也是无关的.
2
4
r(Bln ) n
1
再如:1
2 0 0
,
0
2
101,
0
3
9 0 1
.
-27-
(7)含有n个向量的n元向量组线性相关(无关)
由它构成的n阶矩阵的行列式 | A | 0 (| A | 0) 例4 t 取何值时,下列向量组线性相关 ? P101推论2
(用矩阵的秩) r( A) n
把向量组排成矩阵,如果矩阵的秩等于向量的个数就线性 无关,否则如果矩还阵是的转秩换小!于转向换量线的性个无数关就…线性相关。
-18-
例1
1
0
2
1 1,2 2,3 4,
1
5
7
问向量组 {1,2 ,3 } 和 {1,2 }的线性相关性?
线性代数_第三章
这与1,2, . . .,s与线性无关矛盾.
推论1 两个等价的且线性无关的向量组,含有相 同个数的向量。
推论2 等价的向量组有相同的秩。
推论3 向量组(I)的秩为r1,向量组(II)的秩为r2,且
组(I)可由组(II)线性表出,则r1≤r2。
lts ks 0
于是
1 , 2 ,
k1 k2 b1 , b 2 , , s ks
l11 l12 l21 l22 , bt lt1 lt 2
l1s k1 0 l2 s k 2 0
第三章 向量组与线性方程组
§3.1 向量组的线性相关性
2 x1 3 x2 3 x3 5 x1 2 x2 x3 2 7 x2 x3 1
2 3 3 5 1 2 1 2 0 7 1 1
显然第三行是前两行的代数和; 也就是说,第三个方程能由前两 个方程“表示”;
4, (III) 1, 2, 3, 5, 且向量组的秩分别
为R(I)=R(II)=3, R(III)=4. 证明:向量组1, 2, 3, 5-4的秩为4.
证明: 由R(I)=R(II)=3得知向量组(I)线性无关,向
量组(II)线性相关,且4可由1, 2, 3,线性表出,
lm m 0
定理3 设m≤n,则m个n维向量1 ,2 ,
,m 线性无关的充
分必要条件是,其组成的矩阵的秩R(A)=m.即A为列满秩。
证:必要性. 因为Q可逆,必有l1,l2,…,lm不全为零, 这与1,2,…,m线性无关矛盾。 因此,R(A)=m。
线性代数[第三章n维向量]山东大学期末考试知识点复习
线性代数[第三章n维向量]⼭东⼤学期末考试知识点复习第3章 n维向量⼀、n维向量的概念1.n维向量的定义由n个数a1,a2,…,a n所组成的⼀个有序数组α=(a1,a2,…,a n)称为⼀个n维向量,其中第i个数ai称为向量α的第i个分量(i=1,2,…,n).向量常⽤希腊字母α,β,γ,…来表⽰,其分量常⽤⼩写拉丁字母a,b,c,…来表⽰.2.零向量所有分量都是零的向量称为零向量.3.负向量向量α中的每个分量都变号后得到的向量,称为α的负向量,记为-α.4.向量相等两个向量相等的充要条件是它们的对应分量相等.⼆、向量的线性运算1.向量的加法设α=(a1,a2,…,a n),β=(b1,b2,…,b n),定义α+β为这两个向量的对应元素相加所得到的向量,即α+β=(a1+b1,a2+b2,…,a n+b n),并称其为向量的加法.2.数与向量的乘法设α=(a1,a2,…,a n),k∈R,则kα=(ka1,ka2,…,ka n)3.向量的减法设α=(a1,a2,…,a n),β=(b1,b2,…,b n),则α-β=(a1-b1,a2-b2,…,a n-b n).4.向量的线性运算向量的加法以及数与向量的乘法称为向量的线性运算.向量的线性运算满⾜以下⼋条运算规律:(1)α+β=β+α;(2)(α+β)+γ=α+(β+γ);(3)α+θ=α;(4)α+(-α)=θ;(5)1.α=α;(6)(kl)α=k(lα);(7)k(α+β)=kα+kβ;(8)(k+l)α=kα+lα三、向量的线性组合1.向量的线性组合的定义设β,α1,α2,…,αn是⼀组m维向量,如果存在数k1,k2,…,k n使得关系式β=k1α1+k2α2+…+k nαn成⽴,则称卢是向量组α1,α2,…,αn的线性组合,或称β可由向量组α1,α2,…,αn线性表⽰.2.⼏个常⽤结论(1)零向量可由任意同维向量组线性表⽰;(2)向量组中的任⼀向量可由该向量组线性表⽰;(3)任⼀n维向量α=(a1,a2,…,a n)都可由n维单位向量组ε1,ε2,…,ε线性表⽰,且α=a1ε1+a2ε2+…+a nεn.n四、向量组的等价1.定义设有两个向量组α1,α2,…,αm,(1)β1,β2,…,βn.(2)若向量组(1)中每个向量可以由向量组(2)线性表⽰,则称向量组(1)可由向量组(2)线性表⽰.若向量组(1)与向量组(2)可互相线性表⽰,则称两向量组等价,记作{α1,α2,…,αm}≌{β1,β2,…,βn}.2.向量组的等价性质向量组的等价满⾜反⾝性、对称性、传递性.五、向量组线性相关与线性⽆关1.定义设α1,α2,…,αn为n个m维向量,如果存在⼀组不全为零的数k1,k2,…,k n,使得k1α1+k2α2+…+k nαn=θ成⽴,则称向量组α1,α2,…,αn线性相关;否则,称向量组α1,α2,…,αn线性⽆关.线性⽆关的⼏种等价定义:(1)对任意⼀组不全为零的数k1,k2,…,k n,都有k1α1+k2α2+…+k nαn≠θ(2)k1α1+k2α2+…+k nαn=θ当且仅当k1,k2,…,k n全为零.2.⼏个常⽤结论(1)由⼀个向量α构成的向量组线性相关的充要条件是α=θ.(2)由两个向量构成的向量组线性相关的充要条件是其对应分量成⽐例.(3)含有零向量的任⼀向量组线性相关.(4)若⼀个向量组中有⼀个部分向量组线性相关,则该向量组线性相关;反之,若⼀个向量组线性⽆关,则它的任⼀部分组都线性⽆关.我们可把这个结论简单地记为“部分相关,整体相关;整体⽆关,部分⽆关”.(5)⼀个线性⽆关的向量组中的每个向量按相同的位置随意增加⼀些分量所得到的⾼维向量组仍线性⽆关.逆否命题:⼀个线性相关的向量组中的每个向量按相同的序号划去⼀些分量所得的低维向量组仍线性相关.(6)n维向量组α1,α2,…,αn线性⽆关的充要条件是D=det(α1,α2,…,αn)≠0;n维向量组α1,α2,…,αn线性相关的充要条件是D=det(α1,α2,…,αn)=0.(7)向量组α1,α2,…,αs(s≥2)线性相关的充要条件是其中⾄少有⼀个向量是其余s-1个向量的线性组合.(8)若向量组α1,α2,…,αs线性⽆关,⽽α1,α2,…,αs,β线性相关,则向量β可由向量组α1,α2,…,αs线性表⽰,且表⽰法惟⼀.(9)若向量组α1,α2,…,αs可由向量组β1,β2,…,βt线性表⽰,且s>t,则向量组α1,α2,…,αs线性相关.逆否命题:若向量组α1,α2,…,αs线性⽆关,且可由向量组β1,β2,…,βt线性表⽰,则s≤t.(10)m个n维向量组(m>n)必线性相关.(11)两个等价的线性⽆关的向量组必含有相同个数的向量.六、向量组的极⼤线性⽆关组1.极⼤线性⽆关组的概念向量组α1,α2,…,αr,αr+1,…,αs的部分组α1,α2,…,αr是极⼤⽆关组(1)α1,α2,…,αr线性⽆关;(2)α1,α2,…,αr,αr+1,…,αs中每个向量可由α1,α2,…,αr 线性表⽰.(1)α1,α2,…,αr线性⽆关;(2)α1,α2,…,αr,αr+1,…,αs中任意r+1个向量线性相关.2.关于极⼤线性⽆关组的常⽤结论(1)含⾮零向量的任⼀向量组⼀定存在极⼤⽆关组.(2)线性⽆关向量组的极⼤⽆关组是其⾃⾝、.(3)任何向量组均与其极⼤⽆关组等价.(4)⼀个向量组的任意两个极⼤⽆关组都含有相同个数的向量.七、向量组的秩1.向量组的秩的定义向量组α1,α2,…,αs的任⼀极⼤⽆关组所含向量的个数称为这个向量组的秩,记为r(α1,α2,…,αs).2.关于向量组的秩的常⽤结论(1)对任何向量组α1,α2,…,αs均有0≤r(α1,α2,…,αs)≤s;(2)向量组α1,α2,…,αs线性⽆关?r(α1,α2,…,αs)=s;(3)向量组α1,α2,…,αs线性相关?r(α1,α2,…,αs)(4)若向量组α1,α2,…,αs可由向量组β1,β2,…,βt线性表⽰,则r(α1,α2,…,αs)≤r(β1,β2,…,βt).特别地,若两向量组等价,则它们的秩相同;反之不真.(5)若向量组的秩为r,则其任何含r个向量的线性⽆关的部分组都是其极⼤线性⽆关组.⼋、矩阵的⾏秩与列秩1.定义矩阵A的⾏(列)向量组的秩称为A的⾏(列)秩.2.矩阵秩的性质(1)对任何矩阵A,都有A的⾏秩=A的列秩=r(A);(2)r(AB)≤min{r(A),r(B)};(4)r(A+B)≤r(A)+r(B).九、极⼤⽆关组的求法1.矩阵的初等⾏(列)变换不改变其列(⾏)向量间的线性关系2.求向量组α1,α2,…,αs的⼀个极⼤⽆关组的⽅法(1)以α1,α2,…,αs为列向量作矩阵A;(2)对A施以初等⾏变换化成阶梯形矩阵B,设r(B)=r,且B中第j1,j2,…,j r列有⼀个r阶⼦式不等于零,则αj1,αj2,…,αjr 即为所求向量组的⼀个极⼤⽆关组.3.求向量组α1,α2,…,αs的极⼤⽆关组并将其余向量⽤该极⼤⽆关组表出的⽅法(1)以α1,α2,…,αs为列向量作矩阵A;(2)对A施以初等⾏变换化成阶梯形矩阵B;(3)再通过初等⾏变换化为⾏简化阶梯形矩阵C,设矩阵C的第j1,j2,…,j r列为单位向量,则αj1,αj2,…,αjr即为所求向量组的⼀个极⼤⽆关组,且C 中列向量间的线性关系即为A中相应列向量间的线性关系.⼗*、向量空间1.向量空间的定义设V是⾮空的n维向量的集合,若集合V对于加法及数乘两种运算封闭,则称V是向量空间.2.向量空间的⽣成3.向量空间的相等若{α1,α2,…,αm}≌{β1,β2,…,βn},则span(α1,α2,…,αm)=span(β1,β2,…,βn).4.向量空间的⼦空间设有向量空间V1,V2,若V1?V2,则称V1是V2的⼦空间.5.向量空间的基及其维数设V是向量空间,如果存在r个向量α1,α2,…,αr∈V,满⾜(1)α1,α2,…,αr线性⽆关;(2)V中任⼀向量都可由α1,α2,…,αr线性表⽰;则称α1,α2,…,αr为V的⼀个基,r称为V的维数.⼗⼀、重点难点(⼀)重点(1)向量的线性运算可以看做是特殊矩阵的线性运算,它是后⾯讨论向量的线性组合、线性相关性等概念的基础,必须熟练掌握.(2)向量的线性组合、线性相关、线性⽆关的概念、性质及三者之间的关系定理是本章的重点,要熟练掌握三个概念及有关结论,详见内容提要;要深刻理解概念、定理的本质,熟练掌握线性相关和线性⽆关的有关性质及判别法,并能灵活应⽤.(3)向量组的极⼤⽆关组是特别重要的概念,它在向量组线性相关性的证明中往往能起到重要的作⽤;此外,还应当掌握求向量组的极⼤⽆关组的⽅法.(4)理解并掌握向量组的秩的概念,理解矩阵的秩与其⾏(列)向量组的秩的关系,熟练掌握求向量组的秩的⽅法,并能通过秩这⼀重要⼯具来判断向量组的线性相关性.(⼆)难点(1)向量组的线性相关性的证明.常见的⽅法有:定义法、利⽤有关结论及定理、利⽤齐次线性⽅程组有⽆⾮零解、利⽤向量组的秩与向量组所含向量的个数关系等.(2)向量组的秩与线性⽅程组有关理论的证明.。
线性代数--第三章向量线性关系秩
不妨设k10, 则有:
α1
k2 k1
α2
k3 k1
α3
α ks k1 s
充分性:不妨设1可由2, …,s线性表示, 即存在一组
数k2,,…,ks使: 1=k22+ …+kss , 于是有
1+k22+ …+kss =0
这里1, k2 , …,ks不全为零, 所以1,2, …,s线性相关.
两个向量线性相关的几何意义是这两向量共线;
(1, 0, 0, 1)的线性相关性.
解 设 k11+k22+k33=0 , 即 (k1k3, k1+k2, 0,k2+k3)=(0,0,0,0)
k1 k1
k3 k2
0 0
k2 k3 0
解得: k1=k2=k3=0. 所以1, 2, 3线性无关.
例3 讨论向量组 1T=(1,1,2), 2T=(0,1, 1), 3T= (2, 3, 3)的线性相关性.
解 设 k11+k22+k33=0 , 即 (k1+2k3, k1+k2+3k3, 2k1k2+3k3)=(0,0,0)
k1+2k3 0 k1+k2 +3k3
0
2k 1k2 3k3 0
解得: k1=2k2=2k3. 比如取k1=2, 则有21+2 3=0
所以1, 2, 3线性相关.
显然, 一个向量组成的向量组线性相关=0
证明 不妨设1,2, …,r, …,s中1,2, …,r线性相关, 存在不全为零的数k1,k2 , …,kr, 使: k11+k22+ …+krr=0. 所以有: k11+k22+ …+krr+0r+1+ …+0s =0 而k1,k2 , …,kr,0,…,0不全为零, 所以1,2, …,s线性相关.
线性代数第三章(一二节向量与线性相关性)
证明
必要性 设向量组 A: a1 , a2 , ... , am 线
性相关, 则有 m 个不全为零的实数 k1 , k2 , ... , km 使 k1a1 + k2a2 + ... + kmam = 0 . 因 k1 , k2 , ... , km 不全为 0 , 不妨设 k1 0 , 于是便 有
(9) 若a1 , a2 , ... , an是n维向量组,则 a1 , a2 , ... , an线性相关的充要条件是其 构造的行列式值为0. 若a1 , a2 , ... , an是n维向量组,则
a1 , a2 , ... , an线性无关的充要条件是其
构造的行列式值非0. (10) 若a1 , a2 , ... , am是n维向量组,且 m>n,则 a1 , a2 , ... , am线性相关。 特别地,n+1个n维向量必线性相关。
第 三 章 向量组的线性相关性与n 维向量空间
第一节
1. 向量的定义 定义1 n 个有次序的数 a1 , a2 , ... , an 所组成的
数组称为 n 维向量,其中第 i 个数 ai 称为第i 个分量,n称为向量的维数.
n维向量
n 维向量可写成一行, 也可写成一列. 分别
称为行向量和列向量, 也就是行矩阵和列矩阵。
引例1:非齐次线性方程组(Ⅰ)有解<=>
存在一组数x1, x2, ... , xn, 满足
x1a1 + x2a2 + ... + xnan = b。 引例2:齐次线性方程组(Ⅱ)有非零解<=> 存在一组不全为零的数x1, x2, ... , xn, 满足 x1a1 + x2a2 + ... + xnan = 0。 从这两个引例中我们可以提炼出向量组两个
线性代数第3章 n维向量与线性方程组
29
例3.3.3判定向量组α1=(1,0,3,2),α2=(0, 1,4,3)的线性相关性. 定理3.3.6 如果向量组α1,α2,…,αs线性无 关,而β,α1,α2,…,αs线性相关,则β可 由α1,α2,…,αs线性表示,且表示式是惟一 的.
30
31
32
3.4 在实际问题中,一个向量组有时含有很多个 向量.对于一个线性相关的向量组,只要所含的向 量不全是零向量,就一定存在一部分向量,它们 是线性无关的.本节主要介绍向量组的最大线性无 关组和向量组的秩.
2
由n维向量加法与数乘运算的定义,不难证明, n维向量的线性运算满足下列运算规律:
3
例3.1.1 设
解
4
例3.1.2 将线性方程组
写成向量方程的形式.
5
解
令
6
即
7
3.2 3.2.1 向量的线性组合 定义3.2.1 例3.2.1 设有向量0=(0,0,0),α1=(1,-1, 2),α2=(3,5,6),α3=(-2,4,3),问: 向量0能否表为向量α1,α2,α3的线性组合?
8
例3.2.2 求证:任何一个n维向量 α=(a1,a2,…,an)都可由向量组
线性表示.
9
证明 因为
10
例3.2.3设β=(1,1,1),α1=(0,1,-1),α2= (1,1,0),α3=(1,0,2),问β能否由α1, α2,α3线性表示?若能,写出线性表示式. 解 设
11
12
3.2.2 向量组的线性相关性 定义3.2.2 例3.2.4 已知α1=(1,1,1),α2=(0,2,5), α3=(2,4,7),试判定向量组α1,α2,α3的 线性相关性.
33
线性代数简明教程(方小娟编 科学出版社)第三章、向量空间
1 2 1 0 1 = 2 − 1 − 0 1 3 1 1
定义3 向量组 α1,α2 ,⋯αm,如果该向量组对零向量 定义 只有平凡表示,也即对零向量的线性表示方法唯一, 只有平凡表示,也即对零向量的线性表示方法唯一, α1,α2 ,⋯αm 线性无关,否则,称其线性 则称向量组 线性无关,否则,称其线性 相关。 相关。 定义3 称为线性相关 线性相关的 定义 / 向量组 α1,α2 ,⋯αm 称为线性相关的,如果 存在一组不全为零的数k 存在一组不全为零的数 1,k2,…,km,使
是线性相关的, 是线性相关的,因为
α3 = 3α1 −α2
定理2 定理
线性无关, 设向量组 β1 , β2 ,⋯βt 线性无关,而向量组
线性相关, β1, β2 ,⋯, βt ,α 线性相关,则 α 能由向量组 β1 , β2 ,⋯, βt 线性表示,且表示式是唯一的。 线性表示,且表示式是唯一的。 线性相关, 证 由于β1 , β2 ,⋯, βt ,α 线性相关,就有不全为零的 数k1,k2,…, kt,k,使 ,
向量 称为 的数量乘积, 数乘, 的数量乘积 简称数乘 α 与k的数量乘积,简称数乘,记为 kα 。 称为零向量, 称为零向量,记为
(ka1,ka2,…,kan)T
(0,0 ⋯ 0)T 定义4 定义 分量全为零的向量
ϑ
= (0,0⋯ 0)T ϑ
α 与-1的数乘 (−1)α = (−a1 ,−a2 ,⋯,−an )T 定义5 定义 的数乘 的负向量, 称为 α 的负向量,记为 −α
即 =2ε1 − 5ε2 + 3ε3 + 0ε4 β
所以, 的线性组合, 所以,称 β 是ε1,ε2 ,ε3 ,ε4 的线性组合, 线性表示。 或 β 可以由 ε1,ε2 ,ε3 ,ε4 线性表示。
线性代数3a
线性代数
第3章 向量空间
3.2 向量的线性相关性
定理3.2.2 设
s 个 n 维向量
a1s a2 s , s , ans
a11 a12 a a22 21 1 , 2 , a n1 an 2
(1) 得
( 2)
特别注意( 2 )中未知量个数 s ,方程式个数 n , 向量方程式( 1 )有解和 线性方程组( 2 )有解是一回事,
因而有定理 3.2.1。
线性代数
第3章 向量空间
3.2 向量的线性相关性
例1 判断下列向量 能否由向量组 1 , 2 , 3 线性表示,若能,试 写出它的一种表达式,其中
行向量 列向量
n 维向量的第 i
个分量.
a1, a2 , , an
a1 a2 a1 , a2 , an
, an
T
线性代数
第3章
向量空间
3.1
n维向量
定义3.1.2
向量的分量都是零的向量称为零向量,记为
0 0,0,
1 3 5 5 ,1 1 1 3 1 ,
2 2 3 7 4 ,3 0 1 1 2 .
例2 设
1 1 5 2 1 1 , 3 , 3 , 2 3 4 0 1 t 1
,s s 2 线性相关的充分必要条件
为其中有一个向量可由其余向量线性表示. 推论1 向量组 1,
,s s 2 线性无关的充分必要条件
是其中每一个向量都不能由其余向量线性表示.
线性代数第三章第二节 向量组及其最大无关组(2014版)
反证法,若 盾。
s
t
则由定理1知
1
,
2
,
, t 线性相关,矛
推论2 若 r(1,2 , ,s ) r 则 1,2 , , s 中任何r+1个
向量都是线性相关的。
证明:设 1,2 , ,r 是 1,2 , , s 的一个极大线性无 关组 1,2 , ,r ,r1是 1,2 , , s 的部分组, 则 1,2 , ,r ,r1 可由1,2 , ,r 线性表示, 又r+1>r,由定理1知,1,2 , ,r ,r1 线性相关。
a222
a2nn
(1)
n an11 an22 annn
证明:若 D | aij |,0 则向量组1, 2 , n 与 1 ,2 ,
n 等价。
反之如何?
证: 由于D 0 ,则根据(1),可按克莱姆法则把
i (i 1, 2, , n) 解出,用 Aij 表示D中元素 aij 的
代数余子式,于是用 A11 , A21 , , An依1 次乘(1)中 第(1),(2),… ,(n)个等式两端,再相加,
的一个极大线性无关组,A中任何一个向量都可由A0 线性表出, 即A中任意r+1个向量必线性相关,另外,A0,是A的部分组,故 A0中的任一向量都可由A线性表出。所以,A0与A可互为线性表 出。一般来说有:
3.2.2 向量组的等价
定义:如果向量组
A :1,2, ,m
中的每一个向量 i (i 1,2,m)
思考题解答
证法一根据向量组等价的定义,寻找两向量 组相互线性表示的系数矩阵;
证法二利用“经初等列变换,矩阵的列向量 组等价,经初等行变换,矩阵的行向量组等价” 这一特性,验证是否有相同的行最简形矩阵;
《线性代数》第3章向量空间与线性方程组解的结构
称为该向量组的一个线性组合.
定义 4
n 给定 维向量组1,2,L ,n 和一个n 维向量 ,如果存在一组数 k1, k2,L , kn ,使得
k11+k22 +L
+kn
,
n
则称向量 可由向量组1,2,L ,n 线性表示,
或者说向量 是向量组1,2,L ,n 的一个线性组合.
一、向量的概念及运算
第3章 向量空间与线性方程组解的结构 7
例1 设有线性方程组
a11x1 a12 x2 L a1n xn b1
a21x1 LL
a22 x2 LLL
L a2n xn b2 LLLLLL
am1x1 am2 x2 L amn xn bm
a1i
将第 i
个未知量
维向量组
1T
,
T 2
,L
, ,
T m
则得到一个以
1T
,
T 2
,L
,
T m
为行的
m
n
矩阵
A
1T
T 2
M
.
T m
因此,一个所含向量个数有限的向量组总可与一个矩阵建立一一对应关系.
二、向量组及其线性组合
定义 3
第3章 向量空间与线性方程组解的结构 11
给定 n 维向量组1,2,L ,n ,对于任意一组数 k1, k2,L , kn ,表达式
2 矩阵方程 AX B 与 BY A同时有解 X Kms ,Y = Msm .
三、向量组的等价
第3章 向量空间与线性方程组解的结构 22
例6
1 2
3 3 1
已知向量组
(完整版)线性代数第三章向量试题及答案
第三章 向量1、基本概念定义1:由n 个数构成的一个有序数组[]n a a ,,a 21 称为一个n 维向量,称这些数为它的分量。
分量依次是a 1,a 2,⋯ ,a n 的向量可表示成:=α[]n a a ,,a 21 ,称为行向量,或=T α[]T n a a ,,a 21 称为列向量。
请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样(左边是1⨯n 矩阵,右边是n ⨯1矩阵)。
习惯上把它们分别(请注意与下面规定的矩阵的行向量和列向量概念的区别)。
一个m ⨯n 的矩阵的每一行是一个n 维向量,称为它的行向量;每一列是一个m 维向量,称为它的列向量,常常用矩阵的列向量组来写出矩阵,例如当矩阵A 的列向量组为m ααα,,21 时(它们都是表示为列的形式!)可记A =(m ααα,,21 )。
矩阵的许多概念也可对向量来规定,如元素全为0的向量称为零向量,通常也记作0。
两个向量和相等(记作=),是指它的维数相等,并且对应的分量都相等.2、向量的线形运算3、向量组的线形相关性定义2:向量组的线性组合:设m ααα,,21 是一组n 维量,m k k k 21,是一组数,则m m k k k ααα ++2211为m ααα,,21 的线性组合。
n 维向量组的线性组合也是n 维向量。
定义3:线形表出:如果n 维向量β能表示成m ααα,,21 的一个线性组合,即=βm m k k k ααα ++2211,则称β可以用量组m ααα,,21 线性表示。
判别β是否可以用m ααα,,21 线性表示? 表示方式是否唯一?就是问:向量方程βααα=++m m x x x 2211是否有解?解是否唯一?用分量写出这个向量方程,就是以()βααα m 21,为增广矩阵的线性方程组。
反之,判别“以()β A 为增广矩阵的线性方程组是否有解?解是否唯一?的问题又可转化为β是否可以用A 的列向量组线性表示? 表示方式是否唯一?”的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n维向量部分
这部分逻辑性非常强,考生必须要相当熟悉教材中的重要定理。
从历年考试情况来看,线性相(无)关、线性表出、极大无关组、向量组的秩及等价、向量空间(数一)等内容是考试经常会涉及到的内容。
常出现在选择题中。
回顾: n维向量的运算
1.定义:设 ,,k为数域P中的数,定义
,称为向量与的和;
,称为向量与数k的数量乘积.
2.向量运算的基本性质
1) 2) 3)
4) 5) 6)
7) 8),9),,
10)若,则即,若,则或
1 向量组的秩、极大无关组的相关题型
知识点
极大线性无关组定义:设为中的一个向量组,它的一个部分组若满足
i) 线性无关
ii) 对任意的,可经线性表出
则称为向量组的一个极大线性无关组(简称极大无关组). 向量组的秩
定义:向量组的极大无关组所含向量个数称为这个向量组的秩.性质:
1)一个向量组线性无关的充要条件是它的秩与它所含向量个数相同.
一个向量组线性相关的充要条件是它的秩<它所含向量个数.2)等价向量组必有相同的秩.(注意:反之不然.)
3)若向量组可经向量组线性表出,则
秩秩.
例1 设向量组
(1)求此向量组的秩;
(2)求此向量组的一个极大无关组,并将其余向量用该极大无关组表示。
例2 选择题
若向量组的秩为 r,则()
(A)必定r<s
(B)向量组中任意小于 r个向量的部分组线性无关
(C)向量组中任意r个向量的部分组线性无关
(D)向量组中任意r+1个向量必定线性相关
设向量组和向量组为两个n维向量组,且秩()=秩()= t,则()
(A)秩(,)=t
(B)两个向量组等价
(C)当向量组可经向量组线性表出时,可经向量组线性表出
(D)当 r=t时,两个向量组等价
练习:
1.1 设向量组I:,而II:,,…, ,则
(A)秩(向量组I)=秩(向量组II)
(B)秩(向量组I)>秩(向量组II)
(C)秩(向量组I)<秩(向量组II)
(D)不能确定秩(向量组I)与秩(向量组II)的大小关系
2 向量组的线性相关性的判定或根据向量相关性求参数
知识点:1对向量组,设
若如果存在不全为零的数,使上式成立,则向量组线性相关。
若当且仅当上式才成立,则线性无关。
2 设向量组I:可由向量组II:线性表现,若 r>s , 则向量组I线性相关。
(注意它的逆否定理)
3 利用矩阵的秩或行列式
设有 s个n维列向量组,设A=(),
则当秩A=s时,线性无关;当秩A<s时,线性相关。
若 s=m,则当|A|不等于0时线性无关;否则线性相关
例3 设
(1)问t为何值时,向量组线性无关?线性无关?
(2) 当线性相关时,将表示为的线性组合。
例4 (2007) 设向量组线性无关,则下列向量组线性相关的是()
(A),,
(B),,
(C),,
(D),,
练习
2.1 n维列向量组线性无关的充分必要条件是()
(A)存在不全为零的数,使
(B)中任意两个向量都线性无关。
(C)中存在一个向量,它不能用其余向量线性表出。
(D)中任意一个向量都不能用其余向量线性表出
2.2 设向量组线性无关,则下列向量组线性无关的是()(A),,,,
(B),,,,
(C),,,,
(D),,,,
2.3(2010)设向量组I:可由向量组II:线性表现, 则下列命题正确的是()
(A)若向量组I线性无关,则r≤s;
(B)若向量组I线性相关,则r>s;
(C)若向量组II线性无关,则r≤s;
(D)若向量组II线性相关,则r<s
3 向量组的线性表示的命题的判断和讨论
知识点:一个向量是否能由一组向量线性表示,可以用以下方法:
(1)设=转为非齐次方程组的计算,讨论是否有解;
(2)若向量组线性无关,但是,线性相关,则是能由一组向量线性表示;
(3)若秩()=秩(,),,则是能由一组向量线性表示
例5设问是否能由向量线性表示?
练习
3.1 (2003数四)设有向量组I:和向量组II:问:当a 为何值
时,向量组I和向量组II等价?当a 为何值时,向量组I和向量组II不等价?。