北师版初三数学九年级上册数学补课讲义及练习

合集下载

北师版九年级上册数学第一章第二课时四边形证明讲义及习题含答案

北师版九年级上册数学第一章第二课时四边形证明讲义及习题含答案
3.(1)证明略;
提示:由OE=DO,AO=BO得,四边形AEBD是平行四边形;又因为AB=AC,AD是△ABC的角平分线,所以AD⊥BC,进而得证四边形AEBD是矩形.
(2)当△ABC是等腰直角三角形,即AB=AC,∠BAC=90°时;四边形AEBD是正方形;理由略.
4.(1)证明略;
提示:先证AC∥EF,∠EAC=∠AEF,
(1)当点O运动到何处时,四边形AECF是矩形?请证明你的结论.
(2)在(1)的条件下,∠ACB的大小为多少时,四边形AECF为正方形(不要求说明理由)?
【参考答案】
课前预习
2.①有一组邻边相等的平行四边形是菱形;
对角线互相垂直平分的四边形是菱形;
②有三个角是直角的四边形是矩形;
有一个角是直角的平行四边形是矩形;
四边形证明(讲义)
课前预习
1.我们在做几何证明题时,如果已知条件中有某个特殊的四边形,往往从其性质着手考虑.而如果要证明某个四边形是特殊的四边形,则需要考虑其判定方法.
例如:
在四边形ABCD中,若AB=CD,要证明四边形ABCD是平行四边形,我们考虑判定方法:对边平行且相等的四边形是平行四边形或两组对边分别相等的四边形是平行四边形.
AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
6.如图,在正方形ABCD中,点E,F分别在BC,CD边上,且AE=AF.
(1)求证:BE=DF;
(2)连接AC,交EF于点O,延长OC至点M,使OM=OA,连接EM,FM,则四边形AEMF是什么特殊四边形?请证明你的结论.
7.如图,在△ABC中,O是AC边上的一动点(不与点A,C重合),过点O作直线MN∥BC,直线MN与∠BCA的平分线相交于点E,与∠DCA(△ABC的外角)的平分线相交于点F.

北师大版九年级数学上册 第一章 特殊的平行四边形 培优、拔高专题讲义专题训练

北师大版九年级数学上册  第一章 特殊的平行四边形  培优、拔高专题讲义专题训练
第 9 页 共 11 页
19、如图所示,点 坐标为 藰‫ ڹ‬,点 坐标为 藰‫ ڹ‬藰 ,动点 从点 开始沿 以每秒 个单位长
度的速度向点 移动,动点 从点 开始沿 以每秒 藰 个单位长度的速度向点 移动.如果 、
分别从 、 同时出发,用 (秒)表示移动的时间 ‫ ڹ‬藰 ,那么,
当 为何值时,四边形
第 2 页 共 11 页
(Ⅰ)求证:四边形 PBQD 是平行四边形; (Ⅱ)若 AD=6cm,AB=4cm,点 P 从点 A 出发,以 1cm/s 的速度向点 D 运动(不与点 D 重合),设点 P 运 动的时间为 ts,请用含 t 的代数式表示 PD 的长,并求出当 t 为何值时四边形 PBD 是菱形,并求出此时菱 形的周长.
以矩形 A1B1C1D1 的中点为顶点作菱形 A2B2C2D2 ,……,如此下去,得到四边形 A2019B C D 2019 2019 2019 的面积用
含 a,b 的代数式表示为

3、如图所示,正方形 ABCD 的面积为 12,△ABE 是等边三角形,点 E 在正方形 ABCD 内,在对角
线 AC 上有一点 P,使 PD+PE 的和最小,则这个最小值为
北师大版九年级数学上册 第一章 特殊的平行四边形 培优、拔高专题讲义及练习 1、已知,R△ABC 中,∠C=90°,AC=3,BC=4,P 为 AB 上任意一点,PF⊥AC 于 F,PE⊥BC 于 E,则 EF 的最 小值是___________.
2、如图,菱形 ABCD 的对角线长分别为 a、b,以菱形 ABCD 各边的中点为顶点作矩形 A1B1C1D1 ,然后再
沿着
y
轴向上平移
2 3
个单位交
x
轴于点
M ,交直线 l1 于点 N ,求 NMF 的面积.

北师大版初中数学九年级上册知识讲解,巩固练习题:第1讲 菱形

北师大版初中数学九年级上册知识讲解,巩固练习题:第1讲 菱形

菱形(提高)【学习目标】1. 理解菱形的概念.2. 掌握菱形的性质定理及判定定理.【要点梳理】要点一、菱形的定义有一组邻边相等的平行四边形叫做菱形.要点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.要点二、菱形的性质菱形除了具有平行四边形的一切性质外,还有一些特殊性质:1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心.要点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.(2)菱形的面积由两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.要点三、菱形的判定菱形的判定方法有三种:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.要点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.【典型例题】类型一、菱形的性质1、如图所示,菱形ABCD中,E、F分别是BC、CD上的点,∠B=∠EAF=60°,∠BAE =18°.求∠CEF的度数.【思路点拨】由已知∠B=60°,∠BAE=18°,则∠AEC=78°.欲求∠CEF的度数,只要求出∠AEF的度数即可,由∠EAF=60°,结合已知条件易证△AEF为等边三角形,从而∠AEF=60°.【答案与解析】解:连接AC.∵四边形ABCD是菱形,∴ AB=BC,∠ACB=∠ACF.又∵∠B=60°,∴△ABC是等边三角形.∴∠BAC=∠ACB=60°,AB=AC.∴∠ACF=∠B=60°.又∵∠EAF=∠BAC=60°∴∠BAE=∠CAF.∴△ABE≌△ACF.∴ AE=AF.∴△AEF为等边三角形.∴∠AEF=60°.又∵∠AEF+∠CEF=∠B+∠BAE,∠BAE=18°,∴∠CEF=18°.【总结升华】当菱形有一个内角为60°时,连接菱形较短的对角线得到两个等边三角形,有助于求相关角的度数.在求角的度数时,一定要注意已知角与所求角之间的联系.2、(2018•龙岩)如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.4【思路点拨】作F点关于BD的对称点F′,则PF=PF′,由两点之间线段最短可知当E、P、F′在一条直线上时,EP+FP有最小值,然后求得EF′的长度即可.【答案】C.【解析】解:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选:C.【总结升华】本题主要考查的是菱形的性质、轴对称﹣﹣路径最短问题,明确当E、P、F′在一条直线上时EP+FP有最小值是解题的关键.举一反三:【变式】(2018春•潍坊期中)如图,在菱形ABCD中,对角线AC、BD相交于点O,E是AB的中点,如果EO=2,求四边形ABCD的周长.【答案】解:∵四边形ABCD为菱形,∴BO=DO,即O为BD的中点,又∵E是AB的中点,∴EO是△ABD的中位线,∴AD=2EO=2×2=4,∴菱形ABCD的周长=4AD=4×4=16.类型二、菱形的判定3、(2018春•郑州校级月考)如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以lcm/s的速度运动,同时点F从点B出发沿线射BC以2cm/s 的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)当t为多少时,四边形ACFE是菱形.【思路点拨】(1)由题意得到AD=CD,再由AG与BC平行,利用两直线平行内错角相等得到两对角相等,利用AAS即可得证;(2)若四边形ACFE是菱形,则有CF=AC=AE=6,由E的速度求出E运动的时间即可.【答案与解析】(1)证明:∵AG∥BC,∴∠EAD=∠DCF,∠AED=∠DFC,∵D为AC的中点,∴AD=CD,在△ADE和△CDF中,,∴△ADE≌△CDF(AAS);(2)解:①若四边形ACFE是菱形,则有CF=AC=AE=6,则此时的时间t=6÷1=6(s).故答案为:6s.【总结升华】此题考查了菱形的判定,全等三角形的判定与性质等知识,弄清题意是解本题的关键.举一反三:【变式】已知,在△ABC中,AB=AC=a,M为底边BC上任意一点,过点M分别作AB、AC 的平行线交AC于P,交AB于Q.⑴求四边形AQMP的周长;⑵M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.【答案】解:(1)∵MQ∥AP,MP∥AQ,∴四边形AQMP是平行四边形∴QM=AP又∵AB=AC,MP∥AQ,∴∠2=∠C,△PMC是等腰三角形,PM=PC∴QM+PM=AP+PC=AC=a∴四边形AQMP的周长为2a(2)M位于BC的中点时,四边形AQMP为菱形.∵M位于BC的中点时,易证△QBM与△PCM全等,∴QM=PM,∴四边形AQMP为菱形类型三、菱形的综合应用4、如图所示,菱形ABCD中,AB=4,∠ABC=60°,∠EAF=60°,∠EAF的两边分别交BC、CD于E、F.(1)当点E、F分别在边BC、CD上时,求CE+CF的值.(2)当点E、F分别在CB、DC的延长线时,CE、CF又存在怎样的关系,并证明你的结论.【思路点拨】(1)由菱形的性质可知AB=BC,而∠ABC=60°,即联想到△ABC为等边三角形,∠BAC=60°,又∠EAF=60°,所以∠BAE=∠CAF,可证△BAE≌△CAF,得到BE=CF,所以CE+CF=BC.(2)思路基本与(1)相同但结果有些变化.【答案与解析】解:(1)连接AC.在菱形ABCD中,BC=AB=4,AB∥CD.∵∠ABC=60°,∴ AB=AC=BC,∠BAC=∠ACB=60°.∴∠ACF=60°,即∠ACF=∠B.∵∠EAF=60°,∠BAC=60°,∴∠BAE=∠CAF.∴△ABE≌△ACF(ASA),∴ BE=CF.∴ CE+CF=CE+BE=BC=4.(2)CE-CF=4.连接AC如图所示.∵∠BAC=∠EAF=60°,∴∠EAB=∠FAC.∵∠ABC=∠ACD=60°,∴∠ABE=∠ACF=120°.∵ AB=AC,∴△ABE≌△ACF(ASA),∴ BE=CF.∴ CE-CF=CE-BE=BC=4.【总结升华】(1)菱形的性质的主要应用是证明角相等、线段相等、两直线平行、两线段互相垂直、互相平分等.(2)注意菱形中的60°角的特殊性,它让菱形这个特殊的平行四边形变得更加特殊,常与等边三角形发生联系.【巩固练习】一.选择题1.下列命题中,正确的是( )A.两邻边相等的四边形是菱形B.一条对角线平分一个内角的平行四边形是菱形C.对角线垂直且一组邻边相等的四边形是菱形D.对角线垂直的四边形是菱形2. 菱形的周长为高的8倍,则它的一组邻角是()A.30°和150°B.45°和135°C.60°和120°D.80°和100°3.已知菱形的周长为40cm,两条对角线的长度比为3:4,那么两条对角线的长分别为()A.6cm,8cm B. 3cm,4cm C. 12cm,16cm D. 24cm,32cm4.(2018•青神县一模)如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数是()A.108°B.72°C.90°D.100°5. (2018•枣庄)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5 D.46. 如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是()二.填空题7. (2018•江西三模)将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为.8.如图,已知菱形ABCD,其顶点A、B在数轴上对应的数分别为-4和1,则BC=_____.9.如图,菱形ABCD的边长是2cm,E是AB中点,且DE⊥AB,则菱形ABCD的面积为______ 2cm.10.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,则菱形的两条对角线的长和面积分别是.11. 如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH⊥AB,垂足为H,则点O到边AB的距离OH=.12.如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=12,BD=16,E为AD中点,点P在x轴上移动,小明同学写出了两个使△POE为等腰三角形的P点坐标(-5,0)和(5,0).请你写出其余所有符合这个条件的P点坐标__________________.三.解答题13. (2018•建湖县一模)如图,△ABC中,∠ACB=60°,分别以△ABC的两边向形外作等边△BCE、等边△ACF,过A作AM∥FC交BC于点M,连接EM.求证:(1)四边形AMCF是菱形;(2)△ACB≌△MCE.14.(2018•安顺)如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.15.如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点(不与端点重合),且满足AE+CF=2.(1)求证:△BDE ≌△BCF ;(2)判断△BEF 的形状,并说明理由;(3)设△BEF 的面积为S ,求S 的取值范围.【答案与解析】一.选择题1.【答案】B ;2.【答案】A ;【解析】由题意可知边长是高的2倍,所以一个内角为30°,另一个内角为150°.3.【答案】C ;【解析】设两条对角线的长为6,8k k .所以有()()2223410k k +=,∴2k =,所以两条对角线的长为12 ,16.4.【答案】B ;【解析】连接PA ,如图所示:∵四边形ABCD 是菱形,∴∠ADP=∠CDP=∠ADC=36°,BD 所在直线是菱形的对称轴,∴PA=PC ,∵AD 的垂直平分线交对角线BD 于点P ,∴PA=PD ,∴PD=PC ,∴∠PCD=∠CDP=36°,∴∠CPB=∠PCD+∠CDP=72°;故选:B.5.【答案】A.【解析】∵四边形ABCD是菱形,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB==5,∵S菱形ABCD=,∴,∴DH=,故选A.6.【答案】A;【解析】阴影部分面积=两个菱形面积-△ABD面积-△DEF面积-△BGF面积==.二.填空题7.【答案】.;【解析】∵AECF为菱形,∴∠FCO=∠ECO,由折叠的性质可知,∠ECO=∠BCE,又∠FCO+∠ECO+∠BCE=90°,∴∠FCO=∠ECO=∠BCE=30°,在Rt △EBC 中,EC=2EB ,又EC=AE ,AB=AE+EB=3,∴EB=1,EC=2,∴BC=.8.【答案】5;【解析】菱形四条边相等.9.【答案】【解析】由题意∠A =60°,DE10.【答案】5;;2;【解析】菱形一个内角为60°,边长为5,所以两条对角线长为5和,面积为152⨯⨯=. 11.【答案】512; 【解析】431255AO BO OH AB ⨯⨯===. 12.【答案】()258,0,,08⎛⎫⎪⎝⎭; 【解析】由在菱形ABCD 中,AC =12,BD =16,E 为AD 中点,根据菱形的性质与直角三角形的性质,易求得OE 的长,然后分别从①当OP =OE 时,②当OE =PE 时,③当OP =EP 时去分析求解即可求得答案.三.解答题13.【解析】证明:(1)∵△ACF 是等边三角形,∴∠FAC=∠ACF=60°,AC=CF=AF ,∵∠ACB=60°,∴∠ACB=∠FAC,∴AF∥BC,∵AM∥FC,∴四边形AMCF是平行四边形,∵AM∥FC,∠ACB=∠ACF=60°,∴∠AMC=60°,又∵∠ACB=60°,∴△AMC是等边三角形,∴AM=MC,∴四边形AMCF是菱形;(2)∵△BCE是等边三角形,∴BC=EC,在△ABC和△MEC中∵,∴△ABC≌△MEC(SAS).14.【解析】(1)证明:∵在▱ABCD中,AB=CD,∴BC=AD,∠ABC=∠CDA.又∵BE=EC=BC,AF=DF=AD,∴BE=DF .∴△ABE ≌△CDF .(2)解:∵四边形AECF 为菱形时,∴AE=EC .又∵点E 是边BC 的中点,∴BE=EC ,即BE=AE .又BC=2AB=4,∴AB=BC=BE ,∴AB=BE=AE ,即△ABE 为等边三角形,▱ABCD 的BC 边上的高可由勾股定理算得为,∴菱形AECF 的面积为2.15.【解析】解:(1)∵AE +CF =2=CD =DF +CF∴AE =DF ,DE =CF ,∵AB =BD∴∠A =∠ADB =60°在△BDE 与△BCF 中BD BC ADB C DE CF =⎧⎪∠=∠⎨⎪=⎩∴△BDE ≌△BCF(2)由(1)得BE =BF ,∠EBD =∠CBF∴∠EBF =∠EBD +∠DBF =∠DBF +∠CBF =∠CBD =60°∴△BEF 是等边三角形(3)∵3≤△BEF 的边长<2∴2244S ≤<S ≤<。

北师大版九年级上册数学复习知识点及例题

北师大版九年级上册数学复习知识点及例题

北师大版九年级上册数学复习知识点及例题数学九年级上册知识点总结第一章特殊的平行四边形复中考考点综述:矩形、菱形、正方形是历年中考的必考内容之一。

这些特殊的平行四边形主要出现的题型多样,注重考查学生的基础证明和计算能力,以及灵活运用数学思想方法解决问题的能力。

考试内容主要包括:矩形、菱形、正方形的性质与判定,以及相关计算。

学生需要了解平行四边形与矩形、菱形、正方形之间的联系,掌握平行四边形是矩形、菱形、正方形的条件。

知识目标:掌握矩形、菱形、正方形等概念,掌握矩形、菱形、正方形的性质和判定。

通过定理的证明和应用的教学,使学生逐步学会分别从题设和结论出发,寻找论证思路分析法和综合法。

重难点:1.矩形、菱形性质及判定的应用2.相关知识的综合应用知识点归纳:矩形:定义:有一个角是直角的平行四边形叫做矩形。

性质:四个角都是直角;对角线相等,具有平行四边形的所有性质。

判定:1.对角线相等的平行四边形是矩形。

2.四个角都是直角的四边形是矩形。

3.有一个角是直角的平行四边形是矩形。

例题:若矩形的对角线长为8cm,两条对角线的一个交角为60,则该矩形的面积为?菱形:定义:有一组邻边相等的平行四边形叫做菱形。

性质:对边平行,四边相等;对角相等;互相垂直平分,且每条对角线平分一组对角。

判定:四边相等的四边形;是平行四边形且有一组邻边相等;是菱形,且有一个角是直角;是平行四边形且两条对角线互相垂直。

例题:菱形具有而矩形不具有的性质是?正方形:定义:四边相等且四个角都是直角的平行四边形叫做正方形。

性质:对边平行,四边相等;四个角都是直角;互相垂直平分且相等,每条对角线平分一组对角。

判定:四边相等的四边形;是平行四边形且有一组邻边相等;是矩形,且有一组邻边相等;是菱形,且有一个角是直角;是平行四边形且两条对角线互相垂直。

例题:如图,□ABCD各角的平分线分别相交于点E,F,G,H,求证四边形EFGH是矩形。

总结:掌握特殊平行四边形的定义、性质和判定方法,能够灵活运用所学知识解决实际问题,是数学研究的基础。

第2讲 解直角三角形-九年级数学上册同步精品讲义(北师大版)原卷版

第2讲 解直角三角形-九年级数学上册同步精品讲义(北师大版)原卷版

第2讲解直角三角形解直角三角形为中考必考内容,至少有一道是解答题,常是利用解直角三角形的相关知识来解决实际问题。

在解直角三角形的综合题中,常与非特殊角结合在一起考,这种题几乎是中考数学的必考题。

在教学中,一要注意强调书写格式问题;二是要给学生储备典型的直角三角形模型(如:背靠背型和母子型等)。

知识点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.二、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,知识精讲目标导航一角锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.【知识拓展1】如图,已知一商场自动扶梯的长l为10米,该自动扶梯到达的高度h为6米,自动扶梯与地面所成的角为α,则tanα的值为()。

初三数学上册全册教案(北师大版)

初三数学上册全册教案(北师大版)

初三数学上册全册教案(北师大版)北师大版九年级数学上全册精品教案第一证明(二)(时安排)1.你能证明它们吗?3时2.直角三角形2时3.线段的垂直平分线2时4.角平分线1时1你能证明它们吗?(一)教学目标:知识与技能目标:1.了解作为证明基础的几条公理的内容。

2.掌握证明的基本步骤和书写格式.过程与方法1.经历“探索——发现——猜想——证明”的过程。

2.能够用综合法证明等区三角形的有关性质定理。

情感态度与价值观1.启发、引导学生体会探索结论和证明结论,即合情推理与演绎推理的相互依赖和相互补充的辩证关系.2.培养学生合作交流、独立思考的良好学习习惯.重点、难点、关键1.重点:探索证明的思路与方法。

能运用综合法证明问题.2.难点:探究问题的证明思路及方法.3.关键:结合实际事例,采用综合分析的方法寻找证明的思路.教学过程:一、议一议:1.还记得我们探索过的等腰三角形的性质吗?2.你能利用已有的公理和定理证明这些结论吗?给出公理和定理:1.等腰三角形两腰相等,两个底角相等。

2.等边三角形三边相等,三个角都相等,并且每个角都等于延伸.二、回忆上学期学过的公理本套教材选用如下命题作为公理:1两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2两条平行线被第三条直线所截,同位角相等;3两边夹角对应相等的两个三角形全等; (SAS)4两角及其夹边对应相等的两个三角形全等; (ASA)三边对应相等的两个三角形全等; (SSS)6全等三角形的对应边相等,对应角相等三、推论两角及其中一角的对边对应相等的两个三角形全等。

(AAS)证明过程:已知:∠A=∠D,∠B=∠E,B=EF求证:△AB≌△DEF证明:∵∠A+∠B+∠=180°,∠D+∠E+∠F=180°(三角形内角和等于180°)∴∠=180°-(∠A+∠B)∠F=180°-(∠D+∠E)又∵∠A=∠D,∠B=∠E(已知)∴∠=∠F又∵B=EF(已知)∴△AB≌△DEF(ASA)推论等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合。

新北师大版九年级上册初中数学全册教材习题课件精选全文

新北师大版九年级上册初中数学全册教材习题课件精选全文

教材习题
教材习题
教材习题
【综合运用】
教材习题
【综合运用】
第四章 图形的相似
4.5相似三角形判定定理的证明
教材习题以及答案
教材习题
练习 P102
教材习题
教材习题
教材习题
教材习题
教材习题
第四章 图形的相似
4.6 利用相似三角形测高
教材习题以及答案
教材习题
练习 P105
教材习题
教材习题
教材习题
教材习题
【综合运用】
教材习题
【综合运用】
第一章 特殊的平行四边形
1.3正方形的性质与判定
教材习题以及答案
教材习题
练习 P22
教材习题
教材习题
习题1.7 P22
【复习巩固】
教材习题
教材习题
教材习题
【综合运用】
教材习题
【综合运用】
第二章 一元二次方程
2.1认识一元二次方
教材习题
习题4.1 P79
【复习巩固】
教材习题
教材习题
【综合运用】
教材习题
【综合运用】
第四章 图形的相似
4.7相似三角形的性质
教材习题以及答案
教材习题
练习 P107
教材习题
教材习题
习题4.1 P79
【复习巩固】
教材习题
教材习题
教材习题
【综合运用】
教材习题
【综合运用】
第四章 图形的相似
第二章 一元二次方程
2.6应用一元二次方程
教材习题以及答案
教材习题
练习 P53
教材习题
教材习题
习题2.5 P43

北师大版初中数学九年级上册知识讲解 巩固练习 第4讲《特殊平行四边形》全章复习和巩固(基础)

北师大版初中数学九年级上册知识讲解 巩固练习 第4讲《特殊平行四边形》全章复习和巩固(基础)

《特殊平行四边形》全章复习与巩固(基础)知识讲解【学习目标】1. 掌握平行四边形、矩形、菱形、正方形的概念, 了解它们之间的关系.2. 探索并掌握平行四边形、矩形、菱形、正方形的有关性质和常用判别方法, 并能运用这些知识进行有关的证明和计算.【知识网络】【要点梳理】要点一、平行四边形1.定义:两组对边分别平行的四边形叫做平行四边形.2.性质:(1)对边平行且相等;(2)对角相等;邻角互补;(3)对角线互相平分;(4)中心对称图形.3.面积:4.判定:边:(1)两组对边分别平行的四边形是平行四边形;高底平行四边形⨯=S(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形.角:(4)两组对角分别相等的四边形是平行四边形;(5)任意两组邻角分别互补的四边形是平行四边形.边与角:(6)一组对边平行,一组对角相等的四边形是平行四边形;对角线:(7)对角线互相平分的四边形是平行四边形.要点诠释:平行线的性质:(1)平行线间的距离都相等;(2)等底等高的平行四边形面积相等.要点二、菱形1. 定义:有一组邻边相等的平行四边形叫做菱形.2.性质:(1)具有平行四边形的一切性质;(2)四条边相等;(3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角;(4)中心对称图形,轴对称图形.3.面积: 4.判定:(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形;(3)四边相等的四边形是菱形.要点三、矩形1.定义:有一个角是直角的平行四边形叫做矩形.2.性质:(1)具有平行四边形的所有性质;(2)四个角都是直角;(3)对角线互相平分且相等;2对角线对角线高==底菱形⨯⨯S(4)中心对称图形,轴对称图形.3.面积:4.判定:(1) 有一个角是直角的平行四边形是矩形.(2)对角线相等的平行四边形是矩形.(3)有三个角是直角的四边形是矩形.要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半.要点四、正方形1. 定义:四条边都相等,四个角都是直角的四边形叫做正方形.2.性质:(1)对边平行;(2)四个角都是直角;(3)四条边都相等;(4)对角线互相垂直平分且相等,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形;(6)中心对称图形,轴对称图形.3.面积:=S 正方形边长×边长=12×对角线×对角线 4.判定:(1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形;(3)对角线相等的菱形是正方形;(4)对角线互相垂直的矩形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形;(6)四条边都相等,四个角都是直角的四边形是正方形.【典型例题】宽=长矩形S类型一、平行四边形1、如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC 交AC于点E,CF∥AB交DE的延长线于点F.(1)求证:DE=EF;(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.【答案与解析】∵∠A+∠ADG=∠1,∴∠A+∠G=∠B.【总结升华】此题主要考查了平行四边形的判定与性质,以及直角三角形的性质,关键是找出∠ADG=∠G,∠1=∠B.掌握在直角三角形中,斜边上的中线等于斜边的一半.类型二、菱形2、(2019•广安)如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,求证:DF=BE.【思路点拨】连接AC,根据菱形的性质可得AC平分∠DAE,CD=BC,再根据角平分线的性质可得CE=FC,然后利用HL证明Rt△CDF≌Rt△CBE,即可得出DF=BE.【答案与解析】证明:连接AC,∵四边形ABCD是菱形,∴AC平分∠DAE,CD=BC,∵CE⊥AB,CF⊥AD,∴CE=FC,∠CFD=∠CEB=90°.在Rt△CDF与Rt△CBE中,,∴Rt△CDF≌Rt△CBE(HL),∴DF=BE.【总结升华】此题考查了菱形的性质,角平分线的性质,关键是掌握菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;角平分线的性质:角的平分线上的点到角的两边的距离相等.同时考查了全等三角形的判定与性质.举一反三:【变式】用两张等宽的纸带交叉重叠地放在一起,重合的四边形ABCD是菱形吗?如果是菱形请给出证明,如果不是菱形请说明理由.【答案】四边形ABCD是菱形;证明:由AD∥BC,AB∥CD得四边形ABCD是平行四边形,过A,C两点分别作AE⊥BC于E,CF⊥AB于F.∴∠CFB=∠AEB=90°.∵AE=CF(纸带的宽度相等)∠ABE=∠CBF,∴Rt△ABE≌Rt△CBF,∴AB=BC,∴四边形ABCD是菱形.类型三、矩形3、已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.①求证:CD=AN;②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.【思路点拨】①根据两直线平行,内错角相等求出∠DAC=∠NCA,然后利用“角边角”证明△AMD和△CMN全等,根据全等三角形对应边相等可得AD=CN,然后判定四边形ADCN是平行四边形,再根据平行四边形的对边相等即可得证;②根据三角形的一个外角等于与它不相邻的两个内角的和推出∠MCD=∠MDC,再根据等角对等边可得MD=MC,然后证明AC=DN,再根据对角线相等的平行四边形是矩形即可得证.【答案与解析】证明:①∵CN∥AB,∴∠DAC=∠NCA,在△A MD和△CMN中,∵DAC NCA MA MCAMD CMN ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AMD≌△CMN(ASA),∴AD=CN,又∵AD∥CN,∴四边形ADCN是平行四边形,∴CD=AN;②∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC,∴MD=MC,由①知四边形ADCN是平行四边形,∴MD=MN =MA =MC ,∴AC=DN ,∴四边形ADCN 是矩形.【总结升华】要判定一个四边形是矩形,通常先判定它是平行四边形,再根据平行四边形构成矩形的条件,判定有一个角是直角或对角线相等.4、如图所示,在矩形ABCD 中,AB =6,BC =8.将矩形ABCD 沿CE 折叠后,使点D 恰好落在对角线AC 上的点F 处,求EF 的长.【思路点拨】要求EF 的长,可以考虑把EF 放入Rt △AEF 中,由折叠可知CD =CF ,DE =EF ,易得AC =10,所以AF =4,AE =8-EF ,然后在Rt △AEF 中利用勾股定理求出EF 的值.【答案与解析】解:设EF =x ,由折叠可得:DE =EF =x ,CF =CD =6,又∵ 在Rt △ADC 中,.∴ AF =AC -CF =4,AE =AD -DE =8-x .在Rt △AEF 中,222AE AF EF =+,即,解得:x =3 ∴ EF =3【总结升华】在矩形折叠问题中往往根据折叠找出相等的量,然后把未知边放在合适的直角三角形中,再利用勾股定理进行求解.举一反三:【变式】把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若10AC ==222(8)4x x -=+AB = 3cm ,BC = 5cm ,则重叠部分△DEF 的面积是__________2cm .【答案】5.1.提示:由题意可知BF =DF ,设FC =x ,DF =5-x ,在Rt △DFC 中,,解得x =,BF =DE =3.4,则=×3.4×3=5.1. 类型四、正方形5、如图,一个含45°的三角板HBE 的两条直角边与正方形ABCD 的两邻边重合,过E 点作EF ⊥AE 交∠DCE 的角平分线于F 点,试探究线段AE 与EF 的数量关系,并说明理由.【思路点拨】AE =EF .根据正方形的性质推出AB =BC ,∠BAD=∠HAD=∠DCE=90°,推出∠HAE=∠CEF,根据△HEB 是以∠B 为直角的等腰直角三角形,得到BH =BE ,∠H=45°,HA =CE ,根据CF 平分∠DCE 推出∠H=∠FCE,根据ASA 证△HAE≌△CEF 即可得到答案.【答案与解析】探究:AE =EF证明:∵△BHE 为等腰直角三角形,∴∠H =∠HEB =45°,BH =BE.又∵CF 平分∠DCE ,四边形ABCD 为正方形,222DC FC DF +=85DEF 1=DE AB 2S ⨯△12∴∠FCE=12∠DCE=45°,∴∠H=∠FCE.由正方形ABCD知∠B=90°,∠HAE=90°+∠DAE=90°+∠AEB,而AE⊥EF,∴∠FEC=90°+∠AEB,∴∠HAE=∠FEC.由正方形ABCD知AB=BC,∴BH-AB=BE-BC,∴HA=CE,∴△AHE≌△ECF (ASA),∴AE=EF.【总结升华】充分利用正方形的性质和题目中的已知条件,通过证明全等三角形来证明线段相等.举一反三:【变式】(2018•黄冈)如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于.【答案】65°。

北师大版初中数学九年级上册知识讲解,巩固练习(教学资料):第18讲《图形的相似》全章复习与巩固(基础)

北师大版初中数学九年级上册知识讲解,巩固练习(教学资料):第18讲《图形的相似》全章复习与巩固(基础)

《图形的相似》全章复习与巩固--巩固练习(基础)【巩固练习】一、选择题1.如图,已知,那么下列结论正确的是( ).A.B. C.D.2. 在和中,,如果的周长是16,面积是12,那么的周长、面积依次为( ).A.8,3 B.8,6 C.4,3 D.4,63.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与相似的是( ).4.如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x 轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是,则点B的横坐标是().A.B. C.D.5.(2019•咸宁)如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA,则△ABC与△DEF的面积之比为()A .1:2B .1:4C .1:5D .1:6 6. 如图,在正方形ABCD 中,E 是CD 的中点,P 是BC 边上的点,下列条件中不能推出△ABP 与以点E 、C 、P 为顶点的三角形相似的是( ).A .∠APB=∠EPCB .∠APE=90°C .P 是BC 的中点D .BP :BC=2:37. 如图,在△ABC 中,EF ∥BC ,,,S 四边形BCFE =8,则S △ABC =( ).A .9B .10C .12D .138.如图,六边形ABCDEF ∽六边形GHIJKL ,相似比为2:1,则下列结论正确的是( ).A .∠E=2∠KB .BC=2HIC .六边形ABCDEF 的周长=六边形GHIJKL 的周长D .S 六边形ABCDEF =2S 六边形GHIJKL二、填空题 9. 在□ABCD 中,在上,若,则___________.10. 如图,在△ABC 中,D 、E 分别是AB 和AC 中点,F 是BC 延长线上一点,DF 平分CE 于点G ,CF=1,则BC=_______,△ADE•与△ABC•的面积之比为_______,•△CFG 与△BFD 的面积之比为________.12AEEB11. 如图,梯形ABCD中,AD∥BC,AC、BD交于O点,S△AOD:S△COB=1:9,则S△DOC:S△BOC=_______.12. 在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在面上的影长为40米,则古塔高为________.13.(2019•金华)如图,直线l1、l2、…l6是一组等距的平行线,过直线l1上的点A作两条射线,分别与直线l3、l6相交于点B、E、C、F.若BC=2,则EF的长是.14.如图,在△ABC中,MN∥BC,若∠C=68°,AM:MB=1:2,则∠MNA=_______度,AN:NC=_____________.15.如图,点D,E分别在AB、AC上,且∠ABC=∠AED。

北师版九年级上册数学精品教学课件 第二章 一元二次方程 第2课时 营销问题及其他问题 (2)

北师版九年级上册数学精品教学课件 第二章 一元二次方程 第2课时 营销问题及其他问题 (2)
依题意列方程 60 + 60x + 60x(1 + x) = 2400 整理得 60(1 + x)2 = 2400 解得 x1 = -21 (舍去), x2 = 19.
答:每轮感染中平均一台电脑会感染 19 台电脑.
2. 某种细胞分裂时,每个细胞在每轮分裂中分
成两个细胞.
(1)经过三轮分裂后细胞的个数是 8 .
第n轮
(1 + x)n
经过 n 轮传染后共有 (1 + x)n 人患流感.
例3 某种植物的主干长出若干数目的支干,每个支干又 长出同样数目的小分支,主干,支干和小分支的总数是 133,每个支干长出多少小分支?
解:设每个支干长出 x 个小分支,
则 1 + x + x2 = 133,






即 x2 + x −132 = 0.
例2 某超市将进货单价为 40 元的商品按 50 元出售时, 能卖 500 个,已知该商品涨价 1 元,其销售量就减少 10 个,为了赚 8000 元利润,售价应定为多少,这时 应进货多少个? 分析:设商品单价为 (50 + x) 元,则每个商品得利润 [(50 + x) - 40] 元,因为每涨价 1 元,其销售会减少 10 个,设每个涨价 x 元,其销售量会减少 10x 个,故销 售量为 (500 - 10x) 个,根据每件商品的利润×件数 = 8000,则 (500 - 10x)·[(50 + x) - 40] = 8000.
答:每轮感染中平均每一台电脑会感染 9 台电脑,4 轮感染 后,被感染的电脑会超过 7000 台.
练一练 1. 电脑勒索病毒的传播非常快,如果开始 有60 台电脑被感染,经过两轮感染后共有 2400 台电

北师大版初中数学九年级上册知识讲解,巩固练习(教学资料,补习资料):第9讲 一元二次方程的应用(提高)

北师大版初中数学九年级上册知识讲解,巩固练习(教学资料,补习资料):第9讲 一元二次方程的应用(提高)

一元二次方程的应用—知识讲解(提高)【学习目标】1. 通过分析具体问题中的数量关系,建立方程模型并解决实际问题,总结运用方程解决实际问题的一般步骤;2. 通过列方程解应用题,进一步提高逻辑思维能力、分析问题和解决问题的能力.【要点梳理】要点一、列一元二次方程解应用题的一般步骤 1.利用方程解决实际问题的关键是寻找等量关系. 2.解决应用题的一般步骤:审(审题目,分清已知量、未知量、等量关系等); 设(设未知数,有时会用未知数表示相关的量); 列(根据题目中的等量关系,列出方程);解(解方程,注意分式方程需检验,将所求量表示清晰);验(检验方程的解能否保证实际问题有意义) 答(写出答案,切忌答非所问). 要点诠释:列方程解实际问题的三个重要环节: 一是整体地、系统地审题; 二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.要点二、一元二次方程应用题的主要类型 1.数字问题(1)任何一个多位数都是由数位和数位上的数组成.数位从右至左依次分别是:个位、十位、百位、 千位……,它们数位上的单位从右至左依次分别为:1、10、100、1000、……,数位上的数字只能是0、1、2、……、9之中的数,而最高位上的数不能为0.因此,任何一个多位数,都可用 其各数位上的数字与其数位上的单位的积的和来表示,这也就是用多项式的形式表示了一个多位 数.如:一个三位数,个位上数为a ,十位上数为b ,百位上数为c ,则这个三位数可表示为: 100c+10b+a.(2)几个连续整数中,相邻两个整数相差1.如:三个连续整数,设中间一个数为x ,则另两个数分别为x-1,x+1. 几个连续偶数(或奇数)中,相邻两个偶数(或奇数)相差2.如:三个连续偶数(奇数),设中间一个数为x ,则另两个数分别为x-2,x+2.2.平均变化率问题列一元二次方程解决增长(降低)率问题时,要理清原来数、后来数、增长率或降低率,以及增长或降低的次数之间的数量关系.如果列出的方程是一元二次方程,那么应在原数的基础上增长或降低两次. (1)增长率问题:平均增长率公式为(1)na xb += (a 为原来数,x 为平均增长率,n 为增长次数,b 为增长后的量.) (2)降低率问题:平均降低率公式为(1)na xb -= (a 为原来数,x 为平均降低率,n 为降低次数,b 为降低后的量.)3.利息问题 (1)概念:本金:顾客存入银行的钱叫本金. 利息:银行付给顾客的酬金叫利息. 本息和:本金和利息的和叫本息和. 期数:存入银行的时间叫期数.利率:每个期数内的利息与本金的比叫利率.(2)公式:利息=本金×利率×期数 利息税=利息×税率本金×(1+利率×期数)=本息和本金×[1+利率×期数×(1-税率)]=本息和(收利息税时)4.利润(销售)问题利润(销售)问题中常用的等量关系: 利润=售价-进价(成本)总利润=每件的利润×总件数5.形积问题此类问题属于几何图形的应用问题,解决问题的关键是将不规则图形分割或组合成规则图形,根据图形的面积或体积公式,找出未知量与已知量的内在关系并列出方程.要点诠释:列一元二次方程解应用题是把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.这是在解决实际问题时常用到的数学思想—方程思想.【典型例题】类型一、数字问题1.(2018春•兴化市校级期末)两个连续负奇数的积是143,求这两个数. 【答案与解析】解:设这两个连续奇数为x ,x+2, 根据题意x (x+2)=143, 解得x 1=11(不合题意舍去),x 2=﹣13, 则当x=﹣13时,x+2=﹣11.答:这两个数是﹣13,﹣11.故答案为:﹣13,﹣11.【总结升华】得到两个奇数的代数式是解决本题的突破点;根据两个数的积得到等量关系是解决本题的关键.类型二、平均变化率问题2.(2019•衡阳)随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2018年底某市汽车拥有量为16.9万辆.己知2018年底该市汽车拥有量为10万辆,设2018年底至2018年底该市汽车拥有量的平均增长率为x,根据题意列方程得()A.10(1+x)2=16.9B.10(1+2x)=16.9C.10(1﹣x)2=16.9D.10(1﹣2x)=16.9【思路点拨】根据题意可得:2018年底该市汽车拥有量×(1+增长率)2=2018年底某市汽车拥有量,根据等量关系列出方程即可.【答案】A.【解析】解:设2018年底至2018年底该市汽车拥有量的平均增长率为x,根据题意,可列方程:10(1+x)2=16.9,故选:A.【总结升华】此题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.举一反三:【变式】有一人患了流感,经过两轮传染后共有121人患了流感,按照这样的速度,第三轮传染后,患流感的人数是( )A.1331 B.1210 C.1100 D.1000【答案】设每人每轮传染x人,则(1+x)2=121,x1=10,x2=-12舍去,第三轮传染后患流感人数为121(1+10)=1331人.类型三、利润(销售)问题3. 有一种螃蟹,从海上捕获后不放养最多只能存活两天,如果放养在塘内,可以延长存活时间,但每天也会有一定数量的螃蟹死去,假设放养期间内螃蟹的个体重量基本保持不变.现有一经销商,按市场价收购了这种活螃蟹1000kg放养在塘内,此时市场价为30元/kg.据测算此后每千克的活蟹的市场价每天可上升1元,但是,放养一天各种费用支出400元,且平均每天还有10 kg的蟹死去,假定死蟹均于当天全部售出,售价都是20元/kg,如果经销商将这批蟹出售后能获利6250元,那么他应放养多少天后再一次性售出?【答案与解析】解:设经销商放养的活蟹时间定为x天较为合适.根据题意,得20×10x+(30+x)(1000-10x)-(400x+30×1000)=6250,整理,得x2-50x+625=0,∴ x1=x2=25.答:经销商放养25天后,再一次性售出可获利6250元.【总结升华】此题牵涉到的量比较多,找等量关系列方程有一定难度.我们可以把复杂问题转化成若干个简单问题分别解决,最后用一根主线连在一起.这里放养的天数x与死蟹销售资金、x天后活蟹的价格、x天后活蟹的剩余量及x天的开支情况等问题都有关系,通过这个“x”把上述几个量联系在一起,列出了方程,使问题得以突破.举一反三: 【变式】(2018•东西湖区校级模拟)商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.据此规律计算:每件商品降价多少元时,商场日盈利可达到2100元. 【答案】解:∵降价1元,可多售出2件,降价x 元,可多售出2x 件,盈利的钱数=50﹣x , 由题意得:(50﹣x )(30+2x )=2100, 化简得:x 2﹣35x+300=0, 解得:x 1=15,x 2=20,∵该商场为了尽快减少库存, ∵降的越多,越吸引顾客, ∵选x=20,答:每件商品降价20元时,商场日盈利可达到2100元.类型四、行程问题4. 一辆汽车以20m /s 的速度行驶,司机发现前方路面有情况,紧急刹 车后又滑行25m 后停车.(1)从刹车到停车用了多少时间?(2)从刹车到停车平均每秒车速减少多少?(3)刹车后汽车滑行到15m 时约用了多少时间(精确到0.1s )? 【答案与解析】 解:(1)已知刹车后滑行路程为25m ,如果知道滑行的平均速度,则根据路程、速度、时间三者的关系,可求出滑行时间.为使问题简化,不妨设车速从20m/s 到0m/s 是随时间均匀变化的.这段时间内的平均车速等于最大速度与最小速度的平均值,即,于是刹车到停车的时间为“行驶路程平均车速”, 即.(2)从刹车到停车平均每秒车速减少值为“(初速度末速度)车速变化时间”, 即. (3)设刹车后汽车行驶到15m 用了 s ,由(2)可知,这时车速为.这段路程内的平均车速为,即. 由速度×时间=路程,得.解方程,得. 20010(/)2m s +=÷2510 2.5()s ÷=-÷22008(/)2.5m s -=x (208)/x m s -20(208)(/)2x m s +-(204)/x m s -(204)15x x -=x =根据问题可知,,即x <5,又x <2.5;所以. 刹车后汽车行驶到15m 时约用了 0.9 s .【总结升华】弄清路程、速度、时间三者的关系,即可解答此题.一元二次方程的应用—巩固练习(提高)【巩固练习】一、选择题1. (2019•台州)有x 支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是( )A .x (x ﹣1)=45B .x (x +1)=45C .x (x ﹣1)=45D .x (x +1)=452.上海世博会的某纪念品原价168元,连续两次降价a%后售价为128元,下列所列方程中正确的是 ( )A .168(1+a%)2=128B .168(1-a%)2=128C .168(1-2a%)2=128D .168(1-a 2%)=128 3.从一块长30cm ,宽12cm 的长方形薄铁片的四个角上,截去四个相同的小正方形,余下部分的面积为296cm 2,则截去小正方形的边长为 ( )A .1 cmB .2 cmC . 3 cmD . 4 cm4.甲、乙两人分别骑车从A 、B 两地相向而行,甲先行1小时后,乙才出发,又经过4小时两人在途中的C 地相遇,相遇后两人按原来的方向继续前进.乙在由C 地到达A 地的途中因故停了20分钟,结果乙由C 地到达A 地时比甲由C 地到达B 地还提前了40分钟,已知乙比甲每小时多行驶4千米,则甲、乙两人骑车的速度分别为( )千米/时.A .2,6B .12,16C .16,20D .20,245.某农户种植花生,原来种植的花生亩产量为200千克,出油率为50%(即每100千克花生可加工成花生油50千克).现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量的增长率的.则新品种花生亩产量的增长率为 ( )A .20%B .30%C .50%D .120%6.从盛满20升纯酒精的容器里倒出若干升,然后用水注满,再倒出同样升数的混合液后,这时容器里剩下纯酒精5升.则每次倒出溶液的升数为( ) A .5 B .6 C .8 D .10二、填空题7.某公司在2009年的盈利额为200万元,预计2011年盈利额将达到242万元,若每年比上一年盈利额增长的百分率相同,那么该公司在2010年的盈利额为________万元.8.有一间长20 m ,宽15 m 的会议室,在它的中间铺一块地毯,地毯的面积是会议室面积的一半,四周2040x ->5100.9x -=≈未铺地毯的留空宽度相同,则留空的宽度为________.9.一块矩形耕地大小尺寸如图1所示,要在这块地上沿东西、南北方向分别挖3条和4条水渠.如果水渠的宽相等,而且要保证余下的可耕地面积为8700m2,那么水渠应挖的宽度是米.10.有一个两位数,它的十位数字与个位数字之和是8,如果把十位数字与个位数字调换后,所得的两位数乘原来的两位数就得1855,则原来的两位数是.11.某省十分重视治理水土流失问题,2011年治理水土流失的面积为400 km2,为了逐年加大治理力度,计划今、明两年治理水土流失的面积都比前一年增长一个相同的百分数,到2018年年底,使这三年治理水土流失的面积达1324 km2,则该省今、明两年治理水土流失的面积平均每年增长的百分数是.12.(2018•贵阳)如图,在Rt∵ABC中,∵BAC=90°,AB=AC=16cm,AD为BC边上的高.动点P从点A出发,沿A→D方向以cm/s的速度向点D运动.设∵ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t秒(0<t<8),则t=秒时,S1=2S2.三、解答题13.(2019•百色)在直角墙角AOB(OA⊥OB,且OA、OB长度不限)中,要砌20m长的墙,与直角墙角AOB围成地面为矩形的储仓,且地面矩形AOBC的面积为96m2.(1)求这地面矩形的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?14.(2018•广元)李明准备进行如下操作实验,把一根长40cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48cm2,你认为他的说法正确吗?请说明理由.15.如图所示,AO=OB=50cm,OC是一条射线,OC⊥AB,一只蚂蚁由A点以2cm/s的速度向B爬行,同时另一只蚂蚁由O点以3 cm/s的速度沿OC方向爬行,是否存在这样的时刻,使两只蚂蚁与O点组成的三角形的面积为450cm2?【答案与解析】一、选择题1.【答案】A【解析】∵有x支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为x(x﹣1),∴共比赛了45场,∴x(x﹣1)=45,故选A.2.【答案】B;【解析】168元降价a%后的价格为168(1-a%)元,再降价a%后为168(1-a%)(1-a%)元.根据题意可列方程168(1-a%)2=128.3.【答案】D;【解析】设截去小正方形的边长为x,则30×12-4x2=296,∴ x2=16,x1=-4(舍去),x2=4.4.【答案】C;【解析】设甲的速度为x千米/时,则乙的速度为(x+4)千米/时.根据题意,得解之,得x1=16,x2=-2.经检验:x1=16,x2=-2都是原方程的根,但x2=-2不合题意,舍去.∴当x=16时,x+4=20.5.【答案】A;【解析】设新品种花生亩产量的增长率为x ..【解析】第一次倒出的是纯酒精,而第二次倒出的就不是纯酒精了.若设每次倒出x升,则第一次倒出纯酒精x升,第二次倒出纯酒精(·x)升.根据20升纯酒精减去两次倒出的纯酒精,就等于容器内剩下的纯酒精的升数.20-x-·x=5.二、填空题7.【答案】220.【解析】方法一,设增长的百分率为x,则2010年盈利额为200(1+x)万元,2011年的盈利额为200(1+x)2万元,依题意得200(1+x)2=242.解得x1=10%,x2=-2.1(舍去),∴ 200(1+x)=200(1+10%)=220.方法二,设2010年的盈利额为x万元,则2010年增长的百分率为,2011年增长的百分率为,由增长率相同可列方程,解得x1=220,x2=-220(舍去)8.【答案】2.5m.【解析】设留空的宽度为x m,则,解得x1=15(舍去),.9.【答案】1.【解析】如图2所示设水渠的宽度为xm,即可耕土地的长为(120-4x)m,宽为(78-3x)m.(120-4x)(78-3x)=8700,即x2-56x+55=0,解得x1=1,x2=55.当x=55时,3×55=165>78,(不合题意,舍去).∴ x=1.答:水渠应挖1m宽.1216(),=0.2=205x x=-舍去%2020x-2020x-200100%200x-⨯242100%xx-⨯200242200x xx--=1(152)(202)20152x x--=⨯⨯252x=10.【答案】35或53.【解析】设原两位数的十位数字为x,则个位数字是(8-x),由题意得[10x+(8-x)]·[10(8-x)+x]=1855.化简得x2-8x+15=0,解之得:x1=3,x2=5.经检验,x1=3,x2=5都符合题意.答:原两位数是35或53.11.【答案】10%.【解析】设该省今、明两年治理水土流失的面积每年增长的百分数为x,依题意得:400+400(1+x)+400(1+x)2=1324.即100x2+300x-31=0.解得x1=0.1=10%,x2=-3.1(不合题意,舍去).答:今、明两年治理水土流失的面积每年增长的百分数为10%.12.【答案】6.【解析】∵Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高,∵AD=BD=CD=8cm,又∵AP=t,则S1=AP•BD=×8×t=8t,PD=8﹣t,∵PE∵BC,∵∵APE∵∵ADC,∵,∵PE=AP=t,∵S2=PD•PE=(8﹣t)•t,∵S1=2S2,∵8t=2(8﹣t)•t,解得:t=6.三、解答题13.【答案与解析】(1)设这地面矩形的长是xm,则依题意得:x(20﹣x)=96,解得x1=12,x2=8(舍去),答:这地面矩形的长是12米;(2)规格为0.80×0.80所需的费用:96÷(0.80×0.80)×55=8250(元).规格为1.00×1.00所需的费用:96÷(1.00×1.00)×80=7680(元).因为8250>7680,所以采用规格为1.00×1.00所需的费用较少.14. 【答案与解析】解:(1)设剪成的较短的这段为xcm,较长的这段就为(40﹣x)cm,由题意,得()2+()2=58,解得:x 1=12,x 2=28,当x=12时,较长的为40﹣12=28cm ,当x=28时,较长的为40﹣28=12<28(舍去). 答:李明应该把铁丝剪成12cm 和28cm 的两段; (2)李明的说法正确.理由如下:设剪成的较短的这段为mcm ,较长的这段就为(40﹣m )cm ,由题意,得 ()2+()2=48,变形为:m 2﹣40m+416=0,∵∵=(﹣40)2﹣4×416=﹣64<0, ∵原方程无实数根,∵李明的说法正确,这两个正方形的面积之和不可能等于48cm 2. 15. 【答案与解析】(1)当蚂蚁在AO 段时,设离开A 点t s 后两只蚂蚁与O 点组成的三角形的面积是450cm 2.根据题意,得.整理得:,解得t 1=10,t 2=15. (2)当蚂蚁爬完AO 这段距离用了后,开始由O 向B 爬行,设从O 点开始x s 后组成的 三角形的面积是450 cm 2,根据题意,得:,整理得x 2+25x-150=0,解得x 1=5,x 2=-30(舍去). 当x =5时,x+25=30.这时蚂蚁已由A 点爬了30s .答:分别在10s ,15s ,30s 时,两只蚂蚁与O 点组成的三角形的面积是450cm 2.(502)34502t t-=g 2251500t t -+=50252s =23(25)4502x x +=g。

最新北师大版九年级数学上册全册课时练习(附详细解析过程)

最新北师大版九年级数学上册全册课时练习(附详细解析过程)

北师大版九年级数学上册全册课时练习1.1菱形的性质与判定 (1)1.2矩形的性质与判定 (11)1.3正方形的性质与判定 (19)2.1 认识一元二次方程 (28)2.2 用配方法求解一元二次方程 (31)2.3 用公式法求解一元二次方程 (36)2.4 用因式分解法求解一元二次方程 (40)2.5 一元二次方程的根与系数的关系 (44)2.6 应用一元二次方程 (48)3.1 用树状图或表格求概率 (54)3.2用频率估计概率 (65)4.1 成比例线段 (72)4.3相似多边形 (75)4.4 探索三角形相似的条件 (81)*4.5相似三角形判定定理的证明 (93)4.6利用相似三角形测高 (100)4.7相似三角形的性质 (108)4.8图形的位似 (115)5.1投影 (125)5.2视图 (133)6.1反比例函数 (142)6.2反比例函数的图象与性质 (148)6.3 反比例函数的应用 (158)1.1菱形的性质与判定一、选择题(本题包括12个小题.每小题只有1个选项符合题意)1. 如图,在菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则的△AEF的面积是()A. 4B. 3C. 2D.2. 如图,在菱形ABCD中,AB=8,点E,F分别在AB,AD上,且AE=AF,过点E作EG∥AD 交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O.当四边形AEOF与四边形CGOH的周长之差为12时,AE的值为()A. 6.5B. 6C. 5.5D. 53. 如图,BD是菱形ABCD的对角线,CE⊥AB交于点E,交BD于点F,且点E是AB中点,则tan∠BFE的值是()A. B. 2 C. D.4. 如图,在菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于()A. 3.5B. 4C. 7D. 145. 如图,在菱形ABCD中,AB=6,∠ABD=30°,则菱形ABCD的面积是()A. 18B. 18C. 36D. 366. 如图,O是坐标原点,菱形OABC的顶点A的坐标为(-3,4),顶点C在x轴的负半轴上,函数y =(x<0)的图象经过顶点B,则k的值为()A. -12B. -27C. -32D. -367. 菱形具有而平行四边形不具有的性质是()A. 两组对边分别平行B. 两组对角分别相等C. 对角线互相平分D. 对角线互相垂直8. 某校的校园内有一个由两个相同的正六边形(边长为2.5m)围成的花坛,如图中的阴影部分所示,校方先要将这个花坛在原有的基础上扩建成一个菱形区域如图所示,并在新扩充的部分种上草坪,则扩建后菱形区域的周长为()A. 20mB. 25mC. 30mD. 35m9. 如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数是()A. 108°B. 72°C. 90°D. 100°10. 菱形的两条对角线长分别为6和8,则菱形的面积是()A. 10B. 20C. 24D. 4811. 在菱形ABCD中,下列结论错误的是()A. BO=DOB. ∠DAC=∠BACC. AC⊥BDD. AO=DO12. 如图,在菱形ABCD中,P、Q分别是AD、AC的中点,如果PQ=3,那么菱形ABCD的周长是()A. 30B. 24C. 18D. 6二、填空题(本题包括4个小题)13. 如图,AD是△ABC的高,DE∥AC,DF∥AB,则△ABC满足条件________时,四边形AEDF 是菱形.14. 如图,在△ABC中,已知E、F、D分别是AB、AC、BC上的点,且DE∥AC,DF∥AB,要使四边形AEDF是菱形,在不改变图形的前提下,你需添加的一个条件是________就可以证明这个多边形是菱形15. 如图,四边形ABCD的对角线AC、BD相交于点O,且OA=OC,OB=OD.请你添加一个适当的条件:_________,使四边形ABCD成为菱形.16. 如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是_________三、解答题(本题包括4个小题)17. 如图,已知在△ABC中,∠ACB=90°,CE是中线,△ACD与△ACE关于直线AC对称.(1)求证:四边形ADCE是菱形;(2)求证:BC=ED.18. 如图,△ABC与△CDE都是等边三角形,点E、F分别为AC、BC的中点.(1)求证:四边形EFCD是菱形;(2)如果AB=8,求D、F两点间的距离.19. 如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.20. 如图,由两个等宽的矩形叠合而得到四边形ABCD.试判断四边形ABCD的形状并证明答案1.【答案】B【解析】∵四边形ABCD是菱形,∴BC=CD,∠B=∠D=60°,∵AE⊥BC,AF⊥CD,∴BC×AE=CD×AF,∠BAE=∠DAF=30°,∴AE=AF,∵∠B=60°,∴∠BAD=120°,∴∠EAF=120°-30°-30°=60°,∴△AEF是等边三角形,∴AE=EF,∠AEF=60°,∵AB=4,∴AE=AB×sin60°=∴EF=AE=∴AM=AE•sin60°=3,∴△AEF的面积是:EF•AM=××3=.故选:B.2.【答案】C【解析】根据题意可得四边形AEOF和四边形CGOH为菱形,且OH=EB,设AE=x,则BE=8-x,根据菱形的周长之差为12,可得两个菱形的边长之差为3,即x-(8-x)=3,解得:x=5.5 3. 【答案】D【解析】根据菱形的性质,在菱形ABCD中,AB=BC,E为AB的中点,因此可知BE=,又由CE⊥AB,可知△BCA为直角三角形,∠BCE=30°,∠EBC=60°,再由菱形的对角线平分每一组对角,可得∠EBF=∠EBC=30°,因此可求∠BFE=60°,进而可得tan∠BFE=.故选D 4. 【答案】A【解析】根据菱形的四条边都相等求出AB,再根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵E为AD边中点,∴OE是△ABD 的中位线,∴OE=AB=×7=3.5.故选A.5. 【答案】B【解析】过点A作AE⊥BC于E,如图,∵在菱形ABCD中,AB=6,∠ABD=30°,∴∠BAE=30°,∵AE⊥BC,∴AE=,∴菱形ABCD的面积是=,故选B.6. 【答案】C【解析】∵A(﹣3,4),∴OA==5,∵四边形OABC是菱形,∴AO=CB=OC=AB=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B的坐标代入得,4=,解得:k=﹣32.故选C.7. 【答案】D【解析】A、不正确,两组对边分别平行;B、不正确,两组对角分别相等,两者均有此性质正确;C、不正确,对角线互相平分,两者均具有此性质;D、菱形的对角线互相垂直但平行四边形却无此性质.故选D.8. 【答案】C【解析】如图,∵花坛是由两个相同的正六边形围成,∴∠FGM=∠GMN=120°,GM=GF=EF,∴∠BMG=∠BGM=60°,∴△BMG是等边三角形,∴BG=GM=2.5(m),同理可证:AF=EF=2.5(m)∴AB=BG+GF+AF=2.5×3=7.5(m),∴扩建后菱形区域的周长为7.5×4=30(m),故选C.9. 【答案】B【解析】如图,连接AP,∵在菱形ABCD中,∠ADC=72°,BD为菱形ABCD的对角线,∴∠ADP=∠CDP=∠ADC=36°.∵AD的垂直平分线交对角线BD于点P,垂足为E,∴PA=PD.∴∠DAP=∠ADP=36°.∴∠APB=∠DAP+∠ADP=72°.又∵菱形ABCD是关于对角线BD对称的,∴∠CPB=∠APB=72°.故选B.点睛:连接AP,利用线段垂直平分线的性质和菱形的性质求得∠APB的度数是解本题的基础,而利用通常容易忽略的“菱形是关于对称轴所在直线对称的”,由轴对称的性质得到∠CPB=∠APB才是解决本题的关键.10.【答案】C【解析】由菱形的两条对角线的长分别是6和8,根据菱形的面积等于对角线积的一半,即可求得答案.∵菱形的两条对角线的长分别是6和8,∴这个菱形的面积是:×6×8=24.故选C.11. 【答案】D【解析】根据菱形的性质:“菱形的对角线互相垂直平分,每一条对角线平分一组对角”可知:选项A、B、C的结论都是正确的,只有选项D的结论不一定成立.故选D.12. 【答案】B【解析】∵P,Q分别是AD,AC的中点,∴PQ是△ADC的中位线,∴DC=2PQ=6.又∵在菱形ABCD中,AB=BC=AD=CD,∴C菱形ABCD=6+6+6+6=24.故选B.13. 【答案】AB=AC或∠B=∠C【解析】∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形.所以当四边形AEDF中有一组邻边相等时,它就是菱形了.由此在△ABC中可添加条件:(1)AB=AC或(2)∠B=∠C.(1)当添加条件“AB=AC”时,∵AD是△ABC的高,AB=AC,∴点D是BC边的中点,又∵DE∥AC,DF∥AB,∴点E、F分别是AB、AC的中点,∴AE=AB,AF=AC,∴AE=AF,∴平行四边形AEDF 是菱形.(2)当添加条件“∠B=∠C”时,则由∠B=∠C可得AB=AC,同(1)的方法可证得:AE=AF,∴平行四边形AEDF是菱形.14. 【答案】AB=AC,答案不唯一【解析】根据DE∥AC,DF∥AB,可直接判断出四边形AEDF是平行四边形,要使其变为菱形,只要邻边相等即可,从而可以得出.条件AE=AF(或AD平分角BAC,等)∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,又AE=AF,∴四边形AEDF是菱形.15. 【答案】AB=AD,答案不唯一【解析】由已知条件可证四边形ABCD是平行四边形,而要使平行四边形是菱形,根据菱形的判定方法可添加:(1)四边形ABCD中,有一组邻边相等;(2)四边形ABCD的对角线互相垂直;因此,本题的答案不唯一,如可添加:AB=AD,证明如下:∵四边形ABCD的对角线AC、BD相交于点O,且OA=OC,OB=OD.∴四边形ABCD是平行四边形.又∵AB=AD,∴平行四边形ABCD是菱形.点睛:本题方法不唯一,由已知条件可证得四边形ABCD是平行四边形,结合菱形判定方法中的:①有一组邻边相等的平行四边形是菱形;②对角线相等的平行四边形是菱形;就可得到本题添加条件的方法有3种:(1)直接添加四组邻边中的任意一组相等;(2)直接添加对角线AC⊥BD;(3)在题中添加能够证明(1)或(2)的其它条件.16. 【答案】菱形【解析】∵分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,∴AC=AD=BD=BC,∴四边形ADBC是菱形.故答案为:菱形.17. 【答案】(1)证明见解析;(2)证明见解析.【解析】(1)由△ABC中,∠ACB=90°,CE是中线,可证得:CE=AE,再由△ACD与△ACE(2)由(1)可得DC∥BE,关于直线AC对称,可得AD=AE=CE=CD,从而可得四边形ADCE是菱形;DC=AE=BE,从而可证得:四边形BCDE是平行四边形,就可得到:BC=DE.(1)证明:∵∠C=90°,点E为AB的中点,∴EA=EC.∵△ACD与△ACE关于直线AC对称.∴△ACD≌△ACE,∴EA=EC=DA=DC,∴四边形ADCE是菱形;(2)∵四边形ADCE是菱形,∴CD∥AE且CD=AE,∵AE=EB,∴CD∥EB且CD=EB∴四边形BCDE为平行四边形,∴DE=BC.18. 【答案】(1)证明见解析;(2)【解析】(1)由△ABC是等边三角形,点E、F分别为AC、BC的中点可证得:EF=EC=FC;由△DEC是等边三角形可得:DE=DC=EC,从而可得EF=FC=CD=DE,由此可得:四边形EFCD是菱形;(2)连接DF交AC于点G,由已知易证EF=EC=4,再由菱形的对角线互相垂直平分,可得EG=2,再由勾股定理可得:FG=,从而可得DF=.解:(1)∵△ABC与△CDE都是等边三角形∴AB=AC=BC,ED=DC=EC∵点E、F分别为AC、BC的中点∴EF=AB,EC=AC,FC=BC∴EF=EC=FC,∴EF=FC=ED=DC,∴四边形EFCD是菱形.(2)连接DF,与EC相交于点G,∵四边形EFCD是菱形,∴DF⊥EC,垂足为G ,EG=EC,∴∠EGF=90°,又∵AB=8, EF=AB,EC=AC,∴EF=4,EC=4,EG=2,∴GF=,∴DF=2GF=.19. 【答案】(1)证明见解析;(2)直角三角形.解:(1)四边形ABCD中,AB∥CD,过C作CE∥AD交AB于E,则四边形AECD是平行四边形(两组对边分别平行的四边形是平行四边形),因为AB∥CD,所以;AC平分∠BAD,所以,因此,所以AD=CD,所以四边形AECD是菱形.(2)由(1)知四边形AECD是菱形,所以AE=CE;点E是AB的中点,AE=BE,所以CE=AE=BE,所以△ABC是直角三角形(斜边上的中线等于斜边的一半是直角三角形)20. 【答案】四边形ABCD是菱形.证明见解析.【解析】过点A作AR⊥BC于点R,AS⊥CD于点S,由已知可得:AD∥BC,AB∥CD,从而得到四边形ABCD是平行四边形;由矩形纸条等宽可得AR=AS,由面积法可证得:BC=DC,从而可得:平行四边形ABCD是菱形.解:四边形ABCD是菱形.理由如下:作AR⊥BC于R,AS⊥CD于S,由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵两个矩形等宽,∴AR=AS,∵S平行四边形ABCD=AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形.点睛:本题第一步容易证得四边形ABCD是平行四边形;第二步抓住题中条件“等宽的矩形”通过作辅助线AR⊥BC,AS⊥CD,就可得AR=AS,再用“面积法”证得:BC=CD是解决本题的关键.1.2矩形的性质与判定一、选择题(本题包括11个小题.每小题只有1个选项符合题意)1. 如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B 与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是()A. 四边形ABCD由矩形变为平行四边形B. BD的长度增大C. 四边形ABCD的面积不变D. 四边形ABCD的周长不变2. 如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A. ∠ABC=90°B. AC=BDC. OA=OBD. OA=AD3. 如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为()A. 17B. 18C. 19D. 204. 如图,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为20cm,则这个矩形的一条较短边的长度为()A. 10cmB. 8cmC. 6cmD. 5cm5. 如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠ACB=30°,AB=2,则BD的长为()A. 4B. 3C. 2D. 16. 一个矩形被分成不同的4个三角形,其中绿色三角形的面积占矩形面积的15%,黄色的三角形的面积是212,则该矩形的面积为()A. 602B. 702C. 1202D. 14027. 如图,矩形ABCD中,AC交BD于点O,∠AOD=60°,OE⊥AC.若AD=,则OE=()A. 1B. 2C. 3D. 48. 矩形具有而菱形不具有的性质是()A. 对角线相等B. 两组对边分别平行C. 对角线互相平分D. 两组对角分别相等9. 矩形的一内角平分线把矩形的一条边分成3cm和5cm的两部分,则此矩形的周长为()A. 16cmB. 22cmC. 26cmD. 22cm或26cm10. 矩形的对角线所成的角之一是65°,则对角线与各边所成的角度是()A. 57.5°B. 32.5°C. 57.5°,23.5°D. 57.5°,32.5°11. 过四边形的各个顶点分别作对角线的平行线,若这四条平行线围成一个矩形,则原四边形一定是()A. 对角线相等的四边形B. 对角线垂直的四边形C. 对角线互相平分且相等的四边形D. 对角线互相垂直平分的四边形二、填空题(本题包括3个小题)12. 如图,平行四边形ABCD的对角线相交于点O,请你添加一个条件__________(只添一个即可),使平行四边形ABCD是矩形.13. 平行四边形ABCD的对角线相交于点O,分别添加下列条件:①∠ABC=90°;②AC⊥BD;③AB=BC;④AC平分∠BAD;⑤AO=DO.使得四边形ABCD是矩形的条件有________14. 木工做一个长方形桌面,量得桌面的长为15cm,宽为8cm,对角线为17cm,这个桌面_________(填”合格”或”不合格”)三、解答题(本题包括5个小题)15. 如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=CF.(1)求证:四边形EFGH是平行四边形;(2)如果AB=AD,且AH=AE,求证:四边形EFGH是矩形16. 如图,在△ABC中,AB=AC=5,BC=6,AD为BC边上的高,过点A作AE∥BC,过点D作DE∥AC,AE与DE交于点E,AB与DE交于点F,连结BE.求四边形AEBD的面积17. 如图,在平行四边形ABCD中,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接BE,∠F=45°.求证:四边形ABCD是矩形18. 有一块形状如图所示的玻璃,不小心把DEF部分打碎,现在只测得AB=60cm,BC=80cm,∠A=120°,∠B=60°,∠C=150°,你能设计一个方案,根据测得的数据求出AD的长吗?19. 如图,△ABC中,AB=AC,AD、AE分别是∠BAC与∠BAC的外角的平分线,BE⊥AE.求证:AB=DE答案1. 【答案】C【解析】由题意可知,当向右扭动框架时,BD可伸长,故BD的长度变大,四边形ABCD由矩形变为平行四边形,因为四条边的长度不变,所以四边形ABCD的周长不变.原来矩形ABCD 的面积等于BC乘以AB,变化后平行四边形ABCD的面积等于底乘以高,即BC乘以BC边上的高,BC边上的高小于AB,所以四边形ABCD的面积变小了,故A,B,D说法正确,C说法错误.故正确的选项是C.2. 【答案】D【解析】本题考查了矩形的性质;熟练掌握矩形的性质是解决问题的关键.矩形的性质:四个角都是直角,对角线互相平分且相等;由矩形的性质容易得出结论.∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠CDA=∠BAD=90°,AC=BD,OA=AC,OB=BD,∴OA=OB,∴A、B、C正确,D错误3. 【答案】D【解析】∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴∠ABC=∠D=90°,CD=AB=5,BC=AD=12,OA=OB,OM为△ACD的中位线,∴OM=CD=2.5,AC==13,∵O是矩形ABCD 的对角线AC的中点,∴BO=AC=6.5,∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,故选D.4. 【答案】D【解析】∵四边形ABCD是矩形,∴OA=OC=AC,OD=OB=BD,AC=BD,∴OA=OB,∵AC+BD=20,∴AC=BD=10cm,∴OA=OB=5cm,∵OA=OB,∠AOB=60°,∴△OAB是等边三角形,∴AB=OA=5cm,故选D.5. 【答案】A【解析】在矩形ABCD中,∠ABC=90°,∵∠ACB=30°,AB=2,∴AC=2AB=2×2=4,∵四边形ABCD是矩形,∴BD=AC=4.故选A.6. 【答案】A【解析】黄色三角形与绿色三角形面积之和是矩形面积的50%,而绿色三角形面积占矩形面积的15%,所以黄色三角形面积占矩形面积的(50%-15%)=35%,已知黄色三角形面积是21平方厘米,故矩形的面积=21÷(50%-15%)=21÷35%=60(cm2).故选A.7.【答案】A【解析】∵四边形ABCD是矩形,∠AOD=60°,∴△ADO是等边三角形,∴OA=,∠OAD=60°,∴∠OAE=30°,∵OE⊥AC,∴△OAE是一个含30°的直角三角形,∴OE=1,故选A.8.【答案】A【解析】∵矩形具有的性质是:对角线相等且互相平分,两组对边分别平行,两组对角分别相等;菱形具有的性质是:两组对边分别平行,对角线互相平分,两组对角分别相等;∴矩形具有而菱形不具有的性质是:对角线相等.故选A.9. 【答案】D【解析】∵四边形ABCD是矩形,∴AD=BC,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AB=AE,当AE=3cm时,AB=AE=3=CD,AD=3cm+5cm=8cm=BC,∴此时矩形ABCD的周长是AB+BC+CD+AD=3cm+8cm+3cm+8cm=22cm;当AE=5cm时,AB=AE=5cm=CD,AD=3cm+5cm=8cm=BC,∴此时矩形ABCD的周长是AB+BC+CD+AD=5cm+8cm+5cm+8cm=26cm;故选D.10. 【答案】D【解析】∵四边形ABCD是矩形,∴∠ABC=90°,AD∥BC,AB∥CD,AC=BD,AO=OC,OB=OD,∴OB=OA=OC=OD,∠OAB=∠OCD,∠DAO=∠OCB,∴∠OAD=∠ODA,∠OCB=∠OBC,∠ODC=∠OCD,∠OAB=∠OBA=×(180°﹣∠AOB)=×(180°﹣65°)=57.5°,∵∠ABC=90°,∴∠ACB=90°﹣57.5°=32.5°,即∠OAD=∠ODA=∠OBC=∠OCB=32.5°,∠OAB=∠OBA=∠ODC=∠OCD=57.5°,对角线与各边所成的角度是57.5°和32.5°,故选D.点睛:本题考查了矩形的性质,三角形的内角和定理,等腰三角形的性质的应用,能正确运用矩形的性质进行推理是解此题的关键,注意:矩形的对角线相等且互相平分.11. 【答案】B【解析】∵四边形EFGH是矩形,∴∠E=90°,∵EF∥AC,EH∥BD,∴∠E+∠EAG=180°,∠E+∠EBO=180°,∴∠EAO=∠EBO=90°,∴四边形AEBO是矩形,∴∠AOB=90°,∴AC⊥BD,故选B.12. 【答案】AC=BD.答案不唯一【解析】添加的条件是AC=BD,理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故答案为:AC=BD.答案不唯一.13.【答案】①⑤【解析】要使得平行四边形ABCD为矩形添加:①∠ABC=90°;⑤AO=DO2个即可;故答案为:①⑤.14. 【答案】合格【解析】勾股定理的逆定理:若一个三角形的两边长的平方和等于第三边的平方,则这个三角形的直角三角形.∵∴这个桌面合格.15. 【答案】(1)证明见解析;(2)证明见解析.【解析】(1)易证得△AEH≌△CGF,从而证得BE=DG,DH=BF.故有,△BEF≌△DGH,根据两组对边分别相等的四边形是平行四边形而得证.(2)由题意知,平行四边形ABCD是菱形,连接AC,BD,则有AC⊥BD,由AB=AD,且AH=AE可证得HE∥BD,同理可得到HG∥AC,故HG⊥HE,又由(1)知四边形HGFE是平行四边形,故四边形HGFE是矩形.证明:(1)在平行四边形ABCD中,∠A=∠C,又∵AE=CG,AH=CF,∴△AEH≌△CGF.∴EH=GF.在平行四边形ABCD中,AB=CD,AD=BC,∴AB-AE=CD-CG,AD-AH=BC-CF,即BE=DG,DH=BF.又∵在平行四边形ABCD中,∠B=∠D,∴△BEF≌△DGH.∴GH=EF.∴四边形EFGH是平行四边形.(2)在平行四边形ABCD中,AB∥CD,AB=CD.设∠A=α,则∠D=180°-α.∵AE=AH,∴∠AHE=∠AEH=.∵AD=AB=CD,AH=AE=CG,∴AD-AH=CD-CG,即DH=DG.∴∠DHG=∠DGH=.∴∠EHG=180°-∠DHG-∠AHE=90°.又∵四边形EFGH是平行四边形,∴四边形EFGH是矩形.16. 【答案】12.【解析】利用平行四边形的性质和矩形的判定定理推知平行四边形AEBD是矩形.在Rt△ADC 中,由勾股定理可以求得AD的长度,由等腰三角形的性质求得CD(或BD)的长度,则矩形的面积=长×宽=AD•BD=AD•CD.解:∵AE∥BC,BE∥AC,∴四边形AEDC是平行四边形,∴AE=CD.在△ABC中,AB=AC,AD为BC边上的高,∴∠ADB=90°,BD=CD,∴BD=AE,∴平行四边形AEBD是矩形.在Rt△ADC中,∠ADB=90°,AC=5,CD=BC=3,∴AD==4,∴四边形AEBD的面积为:BD•AD=CD•AD=3×4=12.17. 【答案】证明见解析.【解析】欲证明四边形ABCD是矩形,只需推知∠DAB是直角.证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAF=∠F.∵∠F=45°,∴∠DAE=45°.∵AF是∠BAD的平分线,∴∠EAB=∠DAE=45°,∴∠DAB=90°.又∵四边形ABCD是平行四边形,∴四边形ABCD是矩形.18. 【答案】AD=140cm.【解析】过C作CM∥AB,交AD于M,推出平行四边形ABCM,推出AM=BC=80cm,AB=CM=60cm,∠B=∠AMC,求出∠D=∠MCD,求出CM=DM=60cm,代入AD=AM+DM求出即可.解:过C作CM∥AB,交AD于M,∵∠A=120°,∠B=60°,∴∠A+∠B=180°,∴AM∥BC,∵AB∥CM,∴四边形ABCM是平行四边形,∴AB=CM=60cm,BC=AM=80cm,∠B=∠AMC=60°,∵AD∥BC,∠C=150°,∴∠D=180°﹣150°=30°,∴∠MCD=60°﹣30°=30°=∠D,∴CM=DM=60cm,∴AD=60cm+80cm=140cm.19. 【答案】证明见解析.【解析】先由角平分线和等腰三角形的性质证明AE∥BD,再由AD、AE分别是∠BAC与∠BAC 的外角的平分线可证得DA⊥AE,可得AD∥BE,可证得四边形ADBE为矩形,可得结论.证明:∵AD、AE分别是∠BAC与∠BAC的外角的平分线,∴∠BAD+∠EAB=(∠BAC+∠FAB)=90°,∵BE⊥AE,∴DA∥BE,∵AB=AC,∴∠ABC=∠ACB,∵∠FAB=∠ABC+∠ACB=2∠ABC,且∠FAB=2∠EAB,∴∠ABC=∠EAB,∴AE∥BD,∴四边形AEBD为平行四边形,且∠BEA=90°,∴四边形AEBD为矩形,∴AB=DE.1.3正方形的性质与判定一、选择题(本题包括11个小题.每小题只有1个选项符合题意)(2)如果a≥0,1. 下列五个命题:(1)若直角三角形的两条边长为5和12,则第三边长是13;那么=a;(3)若点P(a,b)在第三象限,则点P(﹣a,﹣b+1)在第一象限;(4)对角线互相垂直且相等的四边形是正方形;(5)两边及第三边上的中线对应相等的两个三角形全等.其中不正确命题的个数是()A. 2个B. 3个C. 4个D. 5个2. 下列命题,真命题是()A. 两条对角线相等的四边形是平行四边形B. 两条对角线相等的四边形是矩形C. 两条对角线互相垂直平分的四边边是菱形D. 两条对角线平分且相等的四边形是正方形3. 如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形;③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的结论是()A. ①②③B. ①④⑤C. ①③④D.③④⑤4. 如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A. 当AB=BC时,它是菱形B. 当AC⊥BD时,它是菱形C. 当∠ABC=90°时,它是矩形D. 当AC=BD时,它是正方形5. 已知四边形ABCD中,∠A=∠B=∠C=90°,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是()A. ∠D=90°B. AB=CDC. AD=BCD. BC=CD6. 如图,将一张长方形纸片对折两次,然后剪下一个角,打开.如果要剪出一个正方形,那么剪口线与折痕成()A. 22.5°角B. 30°角C. 45°角D. 60°角7. 在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的条件是()A. AC=BD,AB∥CD,AB=CDB. AD∥BC,∠A=∠CC. AO=BO=CO=DO,AC⊥BDD. AO=CO,BO=DO,AB=BC8. 用两个全等的直角三角形拼下列图形:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(3)菱形;(4)正方形;(5)等腰三角形,一定可以拼成的图形是()A. (1)(2)(5)B. (2)(3)(5)C. (1)(4)(5)D. (1)(2)(3)9. 四边形ABCD的对角线AC和BD相交于点O,设有下列条件:①AB=AD;②∠DAB=90°;③AO=CO,BO=DO;④矩形ABCD;⑤菱形ABCD,⑥正方形ABCD,则下列推理不成立的是()A. ①④⑥B. ①③⑤C. ①②⑥D. ②③④10. 下列说法中错误的是()A. 四个角相等的四边形是矩形B. 对角线互相垂直的矩形是正方形C. 对角线相等的菱形是正方形D. 四条边相等的四边形是正方形11. 矩形的四个内角平分线围成的四边形()A. 一定是正方形B. 是矩形C. 菱形D. 只能是平行四边形二、填空题(本题包括2个小题)12. 如图,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O,若不增加任何字母与辅助线,要使四边形ABCD是正方形,则还需增加一个条件是.13. 把“直角三角形,等腰三角形,等腰直角三角形”填入下列相应的空格上.(1)正方形可以由两个能够完全重合的拼合而成;(2)菱形可以由两个能够完全重合的拼合而成;(3)矩形可以由两个能够完全重合的拼合而成.三、解答题(本题包括6个小题)14. 如图,点D是线段AB的中点,点C是线段AB的垂直平分线上的任意一点,DE⊥AC于点E,DF⊥BC于点F.(1)求证:CE=CF;(2)点C运动到什么位置时,四边形CEDF成为正方形?请说明理由.15. 已知:如图,D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E、F,且BF=CE.(1)求证:△ABC是等腰三角形;(2)当∠A=90°时,试判断四边形AFDE是怎样的四边形,证明你的结论.16. 如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE 是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形.17. 已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.18. 如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=90°,求证:四边形DFAE是正方形.19. 如图,在Rt△ABC与Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于点G,过点A作AE∥DB交CB的延长线于点E,过点B作BF∥CA交DA的延长线于点F,AE,BF相交于点H.(1)图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)(2)证明:四边形AHBG是菱形;(3)若使四边形AHBG是正方形,还需在Rt△ABC的边长之间再添加一个什么条件?请你写出这个条件.(不必证明)答案1. 【答案】B【解析】(1)由于直角三角形的两条边长为5和12,这两条边没有确定是否是直角边,所以第三边长不唯一,故命题错误;(2)符合二次根式的意义,命题正确;(3)∵点P(a,b)在第三象限,∴a<0、b<0,∴﹣a>0,﹣b+1>0,∴点P(﹣a,﹣b+1).在第一象限,故命题正确;(4)正方形是对角线互相垂直平分且相等的四边形,故命题错误;(5)两边及第三边上的中线对应相等的两个三角形全等是正确的.故选A.2. 【答案】C【解析】A、两条对角线互相平分的四边形是平行四边形,故A错误;B、两条对角线平分且相等的四边形是矩形,故B错误;C、两条对角线互相垂直平分的四边边是菱形,故C正确;D、两条对角线平分、垂直且相等的四边形是正方形,故D错误;故选C.3. 【答案】B【解析】解此题的关键在于判断△DEF是否为等腰直角三角形,作常规辅助线连接CF,由SAS定理可证△CFE和△ADF全等,从而可证∠DFE=90°,DF=EF.所以△DEF是等腰直角三角形.可证①正确,②错误,再由割补法可知④是正确的;判断③,⑤比较麻烦,因为△D EF 是等腰直角三角形DE=DF,当DF与BC垂直,即DF最小时,DE取最小值4,故③错误,△CDE最大的面积等于四边形CDEF的面积减去△DEF的最小面积,由③可知⑤是正确的.故只有①④⑤正确.连接CF;∵△ABC是等腰直角三角形,∴∠FCB=∠A=45°,CF=AF=FB;∵AD=CE,∴△ADF≌△CEF(SAS);∴EF=DF,∠CFE=∠AFD;∵∠AFD+∠CFD=90°,∴∠CFE+∠CFD=∠EFD=90°,∴△EDF是等腰直角三角形(故①正确).当D、E分别为AC、BC中点时,四边形CDFE是正方形(故②错误).∵△ADF≌△CEF,∴S△CEF=S△ADF∴S四边形CEFD=S△AFC,(故④正确).由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DF⊥AC时,DE最小,此时DF=BC=4.∴DE=DF=4(故③错误).当△CDE面积最大时,由④知,此时△DEF的面积最小.此时S△CDE=S四边形CEFD﹣S△DEF=S△AFC﹣S△DEF=16﹣8=8(故⑤正确).故选:B.4. 【答案】D【解析】A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC 时,它是菱形,故A选项正确;B、∵四边形ABCD是平行四边形,∴BO=OD,∵AC⊥BD,∴AB2=BO2+AO2,AD2=DO2+AO2,∴AB=AD,∴四边形ABCD是菱形,故B选项正确;C、有一个角是直角的平行四边形是矩形,故C选项正确;D、根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,不是正方形,故D选项错误;综上所述,符合题意是D选项;故选D.5.【答案】D【解析】由∠A=∠B=∠C=90°可判定为矩形,根据正方形的定义,再添加条件“一组邻边相等”即可判定为正方形,故选D.6. 【答案】C【解析】一张长方形纸片对折两次后,剪下一个角,是菱形,而出现的四边形的两条对角线分别是两组对角的平分线,所以当剪口线与折痕成45°角,菱形就变成了正方形.故选C.7. 【答案】C【解析】根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.A,不能,只能判定为矩形;B,不能,只能判定为平行四边形;C,能;D,不能,只能判定为菱形.故选C.8. 【答案】A【解析】拿两个“90°、60°、30°的三角板一试可得:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(5)等腰三角形.而菱形、正方形需特殊的直角三角形:等腰直角三角形.故选A.9. 【答案】C【解析】A.符合邻边相等的矩形是正方形;B.可先由对角线互相平分,判断为平行四边形,再由邻边相等,得出是菱形;D.可先由对角线互相平分,判断为平行四边形,再由一个角为直角得出是矩形;故选C.10. 【答案】D【解析】A正确,符合矩形的定义;B正确,符合正方形的判定;C正确,符合正方形的判定;D不正确,也可能是菱形;故选D.11. 【答案】A【解析】矩形的四个角平分线将举行的四个角分成8个45°的角,因此形成的四边形每个。

最新北师版九年级初三数学上册《第二章小结与复习》名师精品课件

最新北师版九年级初三数学上册《第二章小结与复习》名师精品课件
3
【易错提示】应用根的判别式之前务必将方程化为一般形式, 这样能帮助我们正确确定a,b,c的值.
针对训练
5.下列所给方程中,没有实数根的是( D )
A. x2+x=0
B. 5x2-4x-1=0
C.3x2-4x+1=0
D. 4x2-5x+2=0
6.(开放题)若关于x的一元二次方程x2-x+m=0有两个
x 22 5
由此可得x 2= 5,
x1 2 5, x2 2 5.
考点四 一元二次方程的根的判别式的应用
例4 已知关于x的一元二次方程x2-3m=4x有两个不相等
的实数根,则m的取值范围是( A )
A. m 4 B. m<2
3
C. m ≥0
D. m<0
解析 根据方程根的情况可知,此方程的根的判别式 Δ >0,即 42-4×1×(-3m)=16+12m>0,解得m 4 ,故选A.
根的判别式: Δ=b2-4ac
b
根与系数的关系
x1
x2
a
c
x1 x2 a
一元二次方 几何问题、数字问题 程 的 应 用 营销问题、平均变化率问题
同学们我们本节课的学习内 容,你掌握了吗?下面我们一起 来回顾好吗?
1.请同学之间相互说说本课的收获。 2.师生共同回顾总结本课知识 点。
非常感谢您的参与与配合,我非常喜欢你们, 您是最聪明的孩子
(注意:这里的横坚斜小路的的宽度都相等)
课堂小结
一元二次方 程的定义
概念:①整式方程; ②一元; ③二次. 一般形式:ax2+bx+c=0 (a≠0)
直接开平方法
一元二次方 程的解法

北师大版初三上册数学课后习题答案

北师大版初三上册数学课后习题答案

北师大版九年级上册数学第4页练习答案解:因为在菱形ABCD中,AC±BD于点O,所以∠AOB=90°.在Rt△ABO中,OB=√(AB^2-AO^2 )=√(5^2-4^2 )=3(cm).因为在菱形ABCD中,对角线AC,BD互相平分,所以BD=2OB=6cm.1.11.证明:∵四边形ABCD是菱形,∴BC=AB,BC//AD,∴∠B+∠BAD=180°(两直线平行,同旁内角互补).∵∠BAD=2∠B,∴∠B+2∠B=180°,∴∠B=60°.∵BC=AB,∴△ABC是等边三角形(有一个角为60°的等腰三角形的等边三角形).2.解:∵四边形ABCD是菱形,∴AD=DC=CB=BA,∴AC±BD,AO=1/2 AC= 1/2×8=4,DO= 1/2 BD= 1/2×6=3.在Rt△AOD中,由勾股定理,得AD=√(AO²+DO²)=√(4²+3²)=5.∴菱形ABCD的周长为4AD=4×5=20.3.证明:∵四边形ABCD是菱形,∴AD=AB,AC±BD,DO=BO,∴△ABD是等腰三角形,∴AO是等腰△ABD低边BD上的高,中线,也是∠DAB的平分线,∴AC平分∠BAD.同理可证AC平分∠BCD,BD平分∠ABC和∠ADC.4.解:有4个等腰三角形和4个直角三角形.第7页练习答案解,所画菱形AB-CD如图1-1-32所示,使对角线AC=6cm,BD=4cm.1.21.证明:在□ABCD中,AD//BC,∴∠EAO=∠FCO(两直线平行,内错角相等).∵EF是AC的垂直平分线,∴AO=CO.在△AOE和△COF中,∴△AOE≌△COF(ASA),∴AE=CF.∵AE//CF,∴四边形AFCE是平行四边形(一组对边平行且相等的四边形是平行四边形).∵EF±AC,∴四边形AFCE是菱形(对角线互相垂直的平行四边形是菱形).2.证明:∵四边形ABCD是菱形,∴AC±BD,OA=OC,OB=OD.又∵点E,F,G,H,分别是OA,OB,OC,OD 的中点,∴OE=1/2OA,OG=1/2 OG,OF= 1/2 OB,OH= 1/2 OD,∴OE=OG,OF=OH,∴四边形EFGH是平行四边形(对角线互相平分的四边形是平行四边形).∵AC⊥BD,即EG⊥HF,∴平行四边形EFGH是菱形(对角线互相垂直的平行四边形是菱形).3.解:四边形CDC′E是菱形.证明如下:由题意得,△C′DE≌△CDE.所以∠C′DE=∠CDE,C^' D=CD,CE=C^' E.又因为AD//BC,所以∠C′DE=∠CED,所以∠CDE=∠CED,所以CD=CE(等角对等边),所以CD=CE=C′E=C′D,所以四边形CDC′E是菱形(四边相等的四边形是菱形).第9页练习答案1.解:(1)如图1-1-33所示.∵四边形AB-CD是菱形,∴AB=BC=CD=DA=1/4×40=10(cm).∵对角线AC=10cm,∴AB=BC=AC,∴△ABC是等边三角形,∴∠B=∠BAC=∠ACB=60°.∵AD//BC,∴∠BAD+∠B=180°,∴∠BAD=180°-∠B=180°-60°=120°,∴∠BCD=∠BAD=120°,∠D=∠B=60°.(2)如图1-1-34所示,连接BD,交AC于点O,∴AO=1/2 AC= 1/2×10=5(cm).在Rt△AOB中,∠AOB=90°,由勾股定理,得BO=√(AB^2-AO^2 )=√(〖10〗^2-5^2 )=5√3 (cm),∴BD=2BO=2×5√3=10√3 (cm),∴这个菱形另一条对角线的长为10√3 cm.2.证明:在Rt△ABC中,∠ACB=90°,∠BAC=60°,∴∠B=90°-∠BAC=90°-60°=30°.∵FD是BC的垂直平分线,∴EB=EC,∴∠ECB=∠B=30°(等边对等角).∴∠ECA=∠ACB-∠ECB=90°-30°=60°.在△AEC中,∠EAC+∠ECA+∠AEC=180°,∴∠AEC=180°-∠EAC-∠ECA=180°-60°-60°=60°.∴△AEC是等边三角形,∴AC=CE.在Rt△BDE中,∠BDE=90°,∴∠BED=90°-∠B=90°-30°=60°.∴∠AEF=∠BED=60°(对顶角相等).∵AE=CF,AF=CE,∴AF=AE,∴△AEF是等边三角形(有一个角等于60°的等腰三角形是等边三角形).∴AF=EF,∴AF=EF=CE=AC,∴四边形ACEF是菱形(四边相等的四边形是菱形).1.31.证明:(1)∵四边形ABCD是菱形,∴AD=CD,AB=CB,∠A=∠C.∵BE=BF,∴AB-BE=CB-BF,即AE=CF.在△ADE和CDF中,.(2)∵△ADE≌△CDF,∴DE=DF,∴∠DEF=∠DFE(等边对等角).2.已知:如图1-1-35所示,四边形ABCD是菱形,AC和BD是对角线.求证:S菱形ABCD=1/2 AC∙BD.证明:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO.∴S△AOB=S△AOD=S△BOC=S△COD=1/2 AO.BO.∴S菱形ABCD=4×1/2 AO∙BO=1/2×2AO∙2BO=1/2 AC∙BD.3.解:在菱形ABCD中,AC⊥BD,∴∠AOB=90°,AO= 1/2 AC= 1/2×16=8,BO= 1/2 BD= 1/2×12=6. 在Rt△AOB中,由勾股定理,得AB=√(AO^2+BO^2 )=√(8^2+6^2 )=10.∵S菱形ABCD=1/2 AC∙BD= 1/2×16×12=96,又∵DH⊥AB,∴S菱形ABCD=AB∙DH,∴96=AB∙DH,即96=10DH,DH=9.6.∴菱形ABCD的高DH为9.6.4.证明:∵点E,F,G,H分别是AB,CD,AC,BD,的中点,∴GF是△ADC的中位线,EH是△ABD的中位线,∴GF//AD,GF=1/2 AD,EH//AD,EH=1/2AD,∴GF//EH,GF=EH,∴四边形EGFH是平行四边形(一组对边平行且相等的四边形是平行四边形),又∵FH是△BDC的中位线,∴FH=1/2 BC.又∵AD=BC,∴GF=FH,∴平行四边形EGFH是菱形(一组邻边相等的平行四边形是菱形).5.略第13页练习答案解:在矩形ABCD中,AO=4,BD=AC=2AO=8.因为∠BA=90°,所以在Rt△BAD中,由勾股定理,得AD=√(BD^2-AB^2 )=√(8^2-6^2 )=2√7.所以BD与AD的长分别为8与2√7.1.41.解:如图1-2-33所示,设这个矩形为ABCD,两条对角线相交于点O,OA=OB=3.在△AOB中,∠OAB=∠OBA=45°,于是∠AOB=90°,AB=√(OB^2+OA^2 )=3√2,同理AD=3√2,所以BC=AD=3√2 AB=DC=3√2所以这个矩形的各边长都是3√2.2.解:如图1-2-34所示,设这个矩形AB-CD两条对角线相交于点O,∠AOB=60°,AC=BD=15,∴AO=1/2AC=7.5,BO=1/2 BD=7.5,∴OA=OB,∴△AOB是等边三角形,∴AB=7.5.3.解:四边形ADCE是菱形.证明如下:在Rt△ABC中,∠ACB=90°,D为AB的中点,∴CD=1/2 AB,AD= 1/2 AB,∴AD=CD.∵AE//CD,CE//AD,∴四边形ADCE是平行四边形.又∵AD=CD,∴平行四边形ADCE是菱形(一组邻边相等的平行四边形是菱形)4.已知:如图1-2-35所示,在△ABC中,BO为AC边上的中线,BO=1/2 AC.求证:△ABC是直角三角形.证明:如图1-2-35所示,延长BO到D,使BO=DO,连接AD,CD.∵AO=CO,BO=DO,∴四边形ABCD是矩形.∴∠ABC=90°.∴△ABC是直角三角形.第16页练习答案证明:∵四边形ABCDS是平行四边形,∴AB=DC.∵M是AD的中点,∴AM=DM.又∵MB=MC,∴△ABM≌△DCM(SSS),∴∠A=∠D.又∵AB//DC,∴∠A+∠D=180°,∴∠A=∠D=90°.∴平行四边形ABCD是矩形(有一个角是直角的平行四边形是矩形).1.51.解:(1)四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形).(2)当△ABC是直角三角形,即∠BAC=90°时,四边形ABEC是矩形.2.解:四边形ACBD是矩形.证明如下:如图1-2-36所示.∵CD//MN,∴∠2=∠4.∵BD平分∠ABN,∴∠1=∠4,∴∠1=∠2,∴OB=OD(等角对等边).同理可证OB=OC,∴OC=OD.∵O是AB的中点,∴OA=OB,∴四边形ACBD是平行四边形(对角线互相平分的四边形是平行四边形).又∵BC平分∠ABM,∴∠3=1/2∠ABM.∵BD平分∠ABN,∴∠1= 1/2∠ABN.∵∠ABM+∠ABN=180°,∴2∠3+2∠1=180°,∴∠3+∠1=90°,即∠CBD=90°.∴平行四边形ACBD是矩形(有一个角是直角的平行四边形是矩形)3.解:做法如下:如图1-2-37所示,(1)连接AC,BD;(2)过A,C两点分别作EF//BD,GH//BD;(3)同法作FG//AC,EH//AH,与EF,GH交于四个点E,F,G,H,则矩形EFGH即为所求,且S矩形EFGH=2S菱形ABCD.第18页练习答案证明:∵四边形ABCD是由两个全等的等边三角形ABD和CBD组成,∴AB=AD=CD=BC,∴四边形ABD和CBD组成,∴AB=AD=CD=BC,∴四边形ABCD是菱形.∵M,N分别是BC和AD的中点,∴DN=1/2 AD,BM= 1/2 BC,∴DN=BM.∵BN=DM,∴四边形BMDN是平行四边形.∴∠DBN=1/2∠ABD= 1/2×60°=30°,∠DBM=60°,∴∠NBM=∠DBN+∠DBM=30°+60°=90.∴平行四边形BMDN是矩形(有一个角是直角的平行四边形是矩形).1.61.解:在矩形ABCD中,AC=BD=4,∠ABC=90°,∠ACB=30°,∴AB= 1/2 AC= 1/2×4=2.在Rt△ABC中,由勾股定理,得BC=√(AC^2-AB^2 )=√(4^2-2^2 )=2√3.∴S矩形ABCD=BC∙AB=2√3×2=4√3.2.解:在矩形ABCD中,∠BAD=90°,即∠BAE+∠EAD=90°.∵∠EAD=3∠BAE,∴∠BAE+3∠BAE=90°,∠BAE=22.5°.∴∠EAD=3∠BAE=3×22.5°=67.5°.∵AE⊥BO,∴∠AEB=90°,∴∠BAE+∠ABE=90°,即22.5°+∠ABE=90°,∴∠ABE=67.5°.∵AC=BC,OA=1/2 AC,OB= 1/2 BD,∴OA=OB,∴∠OAB=∠ABE=67.5°.∵∠EAO+∠BAE=∠OAB,∴∠EAO=∠OAB-∠BAE=67.5°-22.5°=45°.3.证明:∵D是BC的中点,∴BD=CD.∵四边形ABDE是平行四边形,∴AE//BC,AE=BD,ED=AB(平行四边形的性质).∴AE=CD.∵AE//CD,∴四边形ADCE是平行四边形(一组对边平行且相等的平行四边形是矩形).∵AB=AC,∴ED=AC,∴平行四边形ADCE是矩形(一组对边平行且相等的四边形是平行四边形). ※4.解:将矩形纸片ABCD折叠,使点C与点A重合得到的图形如图1-2-38所示.折痕为EF,则AE=CE,EF垂直平分AC,连接AC交EF于点O,在矩形ABCD中,∠B=90°,BC=8cm,设CE=x cm,则AE=x cm,BE=BC-CE=(8-x)cm.在Rt△ABE中,由勾股定理,得AE²=AB²+BE²,X²=6²+(8-x)²,解得x=25/2,即EC=25/4cm.在Rt△ABC中,由勾股定理,得AC=√(AB^2+BC^2 )=√(6^2+8^2 )=10cm.∴OC=1/2=AC=1/2×10=5cm.∵EF⊥AC,∴∠EOC=90°.在Rt△EOC中,由勾股定理,得EO²=EC²-OC²,EO=√(EO^2-OC^2 )=√((25/4)^2-5^2 )=15/4 cm,∴折痕EF=2EO=2× 15/4=15/2 cm. ※5.解:如图1-2-39所示,连接PO.S矩形ABCD=AB.BC=3×4=12.在Rt△ABC中,AC=B√(AB²+BC²)=√(3²+4²)=5.又因为AC=BD,AO= 1/2 AC,DC= 1/2 BD,所以AO=DO=5/2.所以S△AOD=S△APO+S△POD= 1/2 AO.PE+ 1/2 DO∙PE= 1/2 AO(PE+PE)=1/2×5/2 (PE+PE)=5/4 (PE+PE).又因为S△AOD= 1/4 S矩形ABCD= 1/4×12=3,所以5/4 (PE+PE)=3,解得PE+PE= 12/5.第21页练习答案1.解:以正方形的四个顶点为直角顶点的等腰直角三角形共有四个,以正方形的两条对角线的交点为顶点的等腰直角三角形也有四个,所以共有八个等腰直角三角形.2.:△ADF≌△ABF,△DCF≌△BCF,△ADC≌△ABC.以△ADF≌ABF为例加以证明:∵四边形ABCD是正方形,∴AD=AB,∠DAF=∠BAF.∵AF=AF,∴△ADF≌ABF(SAS).1.71.解:设正方形的边长为为想x cm,则x²+x²=2²,解得x=√2,即正方形的边长为√2 cm.2.解:∵四边形ABCD是正方形,∴∠ABC=∠DCB=90°,AB=BC=DC.∵△CBE是等边三角形,∴BE=EC=CB,∠EBC=∠ECB=60°.∴∠ABE=30°.∴AB=BE,∴∠AEB=BAE=(180°-∠ABE)/2=(180°-30°)/2=75°.3.证明:如图1-3-24所示,∵四边形ABCD是正方形,∴AD=D,∠BAD=∠D=90°,AB=DA.∵PD=QC,∴AP=DQ∴△ABP≌△DAQ.∴BP=AQ,∠1=∠2.∵∠2+∠3=90°,∴∠1+∠3=90°,即BP⊥AQ.※4.解:过正方形两条对角线的交点任意做两条互相垂直的直线,即可将正方形分成大小,形状完全相同的四部分.答案不唯一,如图1-3-25所以方法仅供参考.第24页练习答案答案:满足对角线垂直的矩形是正方形或有一组邻边相等的矩形是正方形.满足对角线相等的菱形是正方形或有一个角是直角的菱形是正方形证明结论如下:(1)对角线垂直的矩形是正方形.(2)已知:如图1-3-7(1)多事,四边形ABCD是矩形,AC,BD是对角线,且AC⊥BD.求证:四边形ABCD是正方形.证明:∵四边形ABCD是矩形,∴AC平分BD.又∵AC⊥BD,∴AC是BD的垂直平分线.∴AB=AD.∴四边形ABCD是正方形.(4)有一个角是直角的菱形是正方形.已知,如图1-3-7(4)所示,四边形ABCD是菱形,∠A=90°.求证:四边形ABCD是正方形.证明:∵四边形ABCD是菱形,∴四边形ABCD是平行四边形.又∵∠A=90°,∴四边形ABCD是矩形.又AB=BC,∴矩形ABCD是正方形.1.81.答案:对角线相等的菱形是正方形.已知:如图1-3-7(3)所示,四边形ABCD是菱形,AC,BD是对角线,且AC=DC.求证:四边形ABCD是正方形.证明:∵四边形ABCD是菱形,∴AD=BC.又∵AB=BA,BD=AC,∴△ABD≌△BAC(SSS).∴∠DAB=∠CBA.又∵AD//bc,∴∠dab+∠cba=180°.∴∠DAB=∠CBA=90°.∴四边形ABCD是正方形.2.证明:∵四边形ABCD是正方形,∴AD=CB,AD//CB,∴∠ADF=∠CBE.在△ADF和=∠CBE中,∴△ADF≌△CBE(SAS),∴AF=CF,∠AFD=∠CEB.∵∠AFD+∠AFE=180°,∠CEB+∠CEF=180°,∴∠AFE=∠CEF(等角的补角相等).∴AF//CE(内错角相等,两直线平行).∴四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形).∵AD=AB,∴∠ADF=∠ABE.在△AFD和AEB中,∴△AFD≌△AEB(SAS).∴AF=AE,∴四边形AECF是菱形(一组邻边相等的平行四边形是菱形).3.解:四边形EFGH是正方形.在正方形ABCD中,AB=BC=CD=AD,∠A=∠B=∠C=∠D=90°.因为AE=BF=CG=DH,所以AB-AE=BC-BF=CD-CG=AD-DH,即BE=CF=DG=AH.所以△AEH≌△BFE≌△CGF≌△DHG(SAS),所以∠AEH,HE=EF=FG=GH.所以四边形EFGH 是菱形.因为∠AEH+∠AHE=90°,所以∠DHG+∠AHE=90°,所以∠EHG=90°,所以菱形EFGH是正方形.4.解:重叠部分的面积等于正方形ABCD面积的1/4.证明如下:重叠部分为等腰直角三角形时,重叠部分为面积为正方形ABCD面积的1/4,即S△AOB=S△BOC=S△COD=S△AOD= 1/4S正方形ABCD.重叠部分为四边形是,如图1-3-26所示.设OA′与AB相交于点E,OC′与BC相交于点F.∵四边形ABCD是正方形,∴OA=OB,∠EAO=∠FBO=45°,AO⊥BD.又∵∠AOE=90°-∠EOB,∠BOF=90°-∠EOB,∴∠AOE=∠BOF,∴△AOE≌△BOF.∴S△AOE+S△BOE=S△BOE+S△BOE,∴S△AOB=S四边形EBFO.又∵S△AOB=1/4 S正方形EBFO.∴S四边形EBFO=1/4 S正方形ABCD.第一章复习题1.解:设该菱形为菱形ABCD,两对角线交于点O,则△AOB为直角三角形,直角边长分别为2cm 和4cm,则有勾股定理,得AB=√(OA^2+OB^2 )=√(2^2+4^2 )=2√5 (cm),即林习惯的边长为2√5 cm.2.解:由OA=OB=√2/2 AB,可知OA^2+OB^2=AB^2,则∠AOB=90°.因为OA=OB=OC=OD,所以AC,BD互相垂直平分且相等,故四边形ABCD必是正方形.3.解:不一定是菱形,因为也可能是矩形.4.已知:如图1-4-20所示,菱形BACD中,对角线AC,BD相交于点O,AC=60cm,周长为200cm.求(1)BD的长;(2)菱形的面积.解:(1)因为菱形四边相等,对角线互相垂直平分,所以AB=1/4×200=50(cm),AC⊥BD且OA=OC= 1/2 AC= 1/2×60=30(cm),OB=OD.在Rt△AOB中,OB=√(AB²-AO²)=√(50²-30²)=40(cm).所以BD=2OB=80cm.(2)S菱形ABCD=1/2 AC∙BD= 1/2×60×80=2 400(cm^2 ).5.已知:如图1-4-21所示,在四边形AB-CD,对角线AC⊥BD,E,F,P,Q分别为边AB,BC,CD,DA的中点.求证:四边形EFPQ为正方形.证明:∵E,Q分别为B,AD的中点,∴四边形EFPQ为平行四边形.∵AC=BD,∴EF=EQ.∴□EFPQ为菱形.∵AC⊥BD,∴EF⊥EQ.∴∠QEF=90°.∴菱形EFPQ是正方形.6.解∵AC=EC,∴∠CEA=∠CAE.由四边形ABCD是正方形.得AD//BE, ∴∠DAE=∠CEA=∠CAE.又∠DAC=∠DAE+∠CAE=45°,∴∠DAE=1/2∠DAC= 1/2×45°=22.5°.7.解:(1)是正方形,因为对角线相等的菱形必为正方形.(2)是正方形,因为这个四边形的对角线相等,四条边也相等.8.证明:如图1-4-22所示,∵AD平分∠BAC,∴∠1=∠2.∵DE//AC,∴∠2=∠3.∴∠1=∠3.∴AE=DE.∵DE//AC,DF//AB,∴四边形AEDF是平行四边形.又AE=DE,∴□AEDF是菱形.9.证明:如图1-4-23所示,∵BE⊥AC,ME为Rt△BEC的中线,∴ME=1/2BC.同理MF=1/2BC,∴ME=MF.10.已知:四边形ABCD是正方形,对角线AC=BD=l.求正方形的周长和面积.解:正方形ABCD中,AB=BC,∠B=90°.在Rt△ABC中,AB²+BC²=AC²,2AB²=l²,所以AB=√2/2l.所以正方形的周长=4AB=4×√2/2 l=2√2 l,S四边形ABCD=AB^2=(√2/2 l)^2=1/2 l^2.11.证明:∵CP//BD,DP//AC,∴四边形CODP是平行四边形.∵四边形ABCD是矩形,∴AC=BD.∵OC=1/2 AC,OD= 1/2 BD,∴OC=OD∴四边形CODP是菱形(一组邻边相等的平行四边形是菱形).12.证明:∵四边形ABCD是矩形,∴AC=BD.∵OA=OC,OB=OD,又∵AM=BP=CN=DQ,∴OA-AM=OC-CN,即OM=ON,OB-BP=OD-DQ,即OP=OQ,∴四边形MPNQ是平行四边形(对角线互相平分的四边形是平行四边形).∵AM+MN+NC=AC,BP+PQ+DQ=BD,∴MN=PQ,∴四边形MPNQ是矩形(对角线相等的平行四边形是矩形).13.证明:在Rt△ABC中,∠ACB=90°,CD平分∠ACB,∴∠FCD=1/2∠ACB=45°.∵DF⊥AC,∴∠DFC=90°.在Rt△FCD中,∠FDC=90°-∠FCD=90°-45°=45°,∴∠FCD=∠FDC,∴FC=FD.∵DE⊥BC,∴∠DEC=90°.∴∠DFC=∠FCE=∠DEC=90°.∴四边形DFCE是矩形(有个三角是直角的四边形是矩形).∵FC=FD,∴四边形CEDF是正方形(有一组邻边相等的矩形是正方形).14.解:由AP=4t cm,CQ=l cm,∵四边形ABCD是矩形,∴AB=DC-CQ=(20-t)cm.∴DQ=DC-CQ=(20-t)cm.当四边形APQD是矩形时,则有DQ=AP,∴20-t=4t,解得t=4∴当t为4时,三角形APQD是矩形.15解:△BFD是等腰三角形,理由如下:∵四边形ABCD是矩形,∴AD//BC,∴∠ADB=∠DBC.∵∠FBD=∠DBC,∵∠FBD=∠ADB,∴BF=DF.∴△BFD是等腰三角形.16.解由题意知,矩形ABCD≌矩形GCDF,∴AB=FG,BC=GC,AC=FC,∴△ABC≌△FGC,∴∠ACB=∠FCG.∵∠ACB+∠ACD=90°,∴∠FCG+∠ACD=90°,即∠ACF=90°.∵AC=CF,∴△ACF是等腰直角三角形.∴∠AFC=45°.17.解不一定,因为还可能是菱形,若要判断这块纱巾是否为正方形,还需要检验对角线是否相等.18.证明:∵四边形ABCD是平行四边形,∴BC//DA.∴∠DAB+∠ABC=180°.∵AH平分∠DAB,BH,平分∠ABC,∴∠HAB=1/2∠DAB,∠HBA= 1/2∠ABC.∴∠HAB+∠HBA=90°.∴∠H=90°.同理可证∠F=90°,∠HEF=90°.∴四边形EFGH是矩形.19.解:略.提示:如图1-4-24所示图形仅供参考.第32页练习答案1.解:设直角三角形的三边长分别为m-1,n,n+1(n>1,且n为整数,)则(n-1)²+n²=(n+1)².2.解:∵(3x+2)²=4(x-3)²,∴9x²+12x+4-4x²+24x-36=0,∴5x²+36x-32=0.其中二次项系数为5,一次项系数为36,常数项为-32.(答案不唯一)3.解:设竹竿长为x尺,则门框宽为(x-4)尺,高为(x-2)尺.由勾股定理,得(x-4)²+(x-2)^2=x²,即x²-12x+20=0. 2.11.解:(1)设这个正方形的边长是xm,根据题意,得(x+5)(x+2)=54,即x²+7x-44=0.设这三个连续整数依次为x,x+1,x+2,根据题意,得x(x+1)+x(x+2)+(x+1)(x+2)=242,即x²+2x-80=0.2.(答案不唯一)根据题意,得x(8-x)=15.整理,得x²-8x+15=0. 列表:由表格知x=5.(当x=3时,也满足方程,但不符合实际,故舍去)答:可用16m长的绳子围城一个15m²的矩形,其次为5m,宽为3m.3.解:根据题意,得10+2.5t-5t2=5,即2t²-t-2=0. 列表:所以1<t<2. 进一步列表:所以1.2<t<1.3.答:他完成规定动作的事假最多不超过1.3s.第34页练习答案解:设这五个连续整数第一个数为x,则另外四个数分别为x+1,x+2,x+3,x+4.根据题意,得(x+1)²+(x+2)²+x²=(x+3)²+(x+4)².整理,得x²-8x-20=0. 列表:∴x=-2或x=10.因此这五个连续整数依次为-2,-1,0,1,2或10,11,12,13,14.2.2 1.解:设苗圃的宽为xm,则长为(x+2)m.根据题意,得x(x+2)=120,即x²+2x-120=0.列表:由表格知x=10.(当x=-12时,也满足方程,但不符合实际情况,故舍去)答:苗圃的宽为10m,长为12m.2.解:能.设矩形的长为xm,则宽为(8-x)m.第37页练习答案(1)x_1=5+√7,x_2=5-√7.(2)x_1=7+√57,x_2=7-√57.(3)x_1=(√13-3)/2,x_2=-(√3+3)/2.(4)x_1=3+√11,x_2=3-√11.2.3 1.解:(1)移项,得x²+12x=-25.配方,得x²+12x+6²=-25+36,(x+6)²=11,即x+6=√11或x+6=-√11.∴x_1=√11-6,x_2=-√11-6.(2)配方,得x²+4x+2²=10+2²,(x+2)²=14,即x+2=√14 或x2=-√14.∴x_1=√14-2,x_2=-√14-2.(3)配方,得x²-6x+(-3)²=11+(-3)²,(x-3)²=20,即x-3=2√5 或x-3=-2√5.∴x_1=2√5+3,x_2=-2√5+3.(4)化简,得x²-9x=-19,配方,得x²-9x+(-9/2)^2=-19+(-9/2)^2,(x-9/2)^2=5/4,即x-9/2=√5/2 或x- 9/2=-√5/2,∴x_1=(9+√5)/2,x_2=(9-√5)/2.2.解:设道路的宽为xm,根据题意,得(35-x)(26-x)=850.整理,得x²-61x+(-61/2)²=-60+(-61/2)².∴(x-61/2)^2=(3 481)/4.开平方,得x- 61/2=±59/2.解得x_1=1,x_2=60(不合题意,舍去).答:道路的宽应为1m.3.解:设增加69人后,增加的行数,列数都是x,则(x+8)(x+12)=69+8×12. 整理,得x²+20x=69.配方.得x²+20x+10²=69+10².∴(x+10)²=169.开平方,得x+10=±13.解得x_1=3,x_2=-23(不合题意,舍去)答:增加的行数,列数都是3.第39页练习答案解(1)移项,得3x²-9x=-2. 两边同除以3,得x²-3x=-2/3.配方,得(x-3/2)²=19/12. 开平方,得x-3/2=±√57/6.∴x_1=(9+√57)/6,x_2=(9-√57)/6.(2)移项,得2x²-7x=-6. 两边同除以2,得x²-7/2 x=-3.配方,得(x-7/4)²=1/16. 开平方,得x-7/4=±1/4.∴x_1=2,x_2=3/2.(3)移项,得4x²-8x=3. 两边同除以4,得x²-2x=3/4.配方,得(x-1)²=7/4. 开平方,得x-1=±√7/2.∴x_1=(2+√7)/2,x_2=(2-√7)/2.2.4 1.(1)x_1=1,x_2=1/6.(2)x_1=3,x_2=-6/5.(3)x_1=4,x_2=-13/4.(4)x_1=(-1+√21)/5,x_2=(-1-√21)/5.2.解:设共有x只猴子,根据题意,得x=(1/8 x)²+12.解得x1=16,x_2=48. 答:共有16只或48只猴子.3.解:如图2-2-4所示,过点Q作QH⊥AB,垂足为H. 设经过ts时,点P和点Q的距离是10cm. 则CQ=2tcm,AP=3tcm.∵四边形ABCD是矩形,∴∠B=∠C=90°.∵∠QHB=90°,∴四边形QHBC是矩形,∴BH=CQ=2t,HQ=BQ=BC=6cm,∴PH=AB-AP-BH=16-3t-2t=(16-5t)cm.在Rt△PHQ中,∠PHQ=90°,由勾股定理,得PQ²=PH²+HQ².当PQ=10cm时,10²=(16-5t)²+6². ∴(16-5t)²=64,解得t_1=8/5,t_2=24/5,经检验:t_1=8/5s, t_2=24/5 s时都符合题意,所以当t_1=8/5 s和t_2=24/5 s时,点P和点Q 的距离是10cm.第43页练习答案1.解:(1)原方程变形为2x²-7x+5=0,这里a=2,b=-7,c=5,∵b²-4ab=(-7)^2-4×2×5=9>0,∴原方程变形为4x²-4x+3=0,这里a=4,b=-4,c=3,∵b²=-32<0,∴原方程没有实数根.(3)原方程变形为4y²-2.4y+0.36=0,这里a=4,b=-2,.4,c=0.36,∵b²-4ac=(-2.4)²-4×4×0.36=5.76-5.76=0,∴原方程有两个相等的实数根.2.解:(1)∵a=2,b=-9,c=8,∴b²-4ac=(-9)²-4×2×8=17>0,∴x=(9+√17)/4,即x_1=(9+√17)/4,x_2=(9-√17)/4.(2)∵a=9,b=6,c=1,∴b²-4ab=36-4×9×1=0,∴x=(-6±0)/18=-1/3,即x_1=x_2=-1/2.(3)∵a=16,b=8,c=-3,∴b²-4ac=64-4×16×(-3)=256,∴x=(-8±√256)/32=(-8±16)/32,即x_1=1/4,x_2=-3/4.(4)原方程化为x²-3x+5=0.∵a=1,b=-3,c=5,∴b²-4ac=(-3)²-4×1×5=-11<0,∴原方程没有实数根.3.解:设中间的一条边长为n,则另两条边长分别为n-2和n+2.由勾股定理,得n²+(n-2)²=(n+2)²,解得n_1=8,n_2=0(不合题意,舍去).∴这个三角形的三条边分别为6,8,10.2.5 1.解:(1)原方程变形为5x²+x-7=0,这里a=5,b=1,c=-7,因为b²-4ac=1²-4×5×(-7)=141>0,所以原方程有两个不相等的实数根.(2)这里a=25,b=20,c=4.因为b²-4ac=20²-4×25×4=0,所以原方程有两个相等的实数根.(3)原方程变形为4x²+3x+1=0,这里a=4,b=3,c=1,因为b²-4ac=3²-4×4×1=-7<0,2.解:(1)∵a=2,b=-4,c=-1,∴b²-4ab=16-4×2×(-1)=24>0,∴x=(-b±√(b^2-4ac))/2a=(4±2√6)/4,∴x_1=(2+√6)/2,x_2=(2-√6)/2.(2)5x+2=3x²变形为3x²-5x-2=0.∵a=3,b-5,c=-2,∴b²-4ac=25-4×3×(-2)=49>0,∴x=(-b±√(b²-4ac))/2a=(5±7)/6,∴x_1=2,x_2=-1/3.(3)(x-2)(3x-5)=1变形为3x²-11x+9=0.∵a=3,b=-11,c=9,∴b²-4ac=121-108=13>0,∴x=(-b±√(b^2-4ab))/2a=(11±√13)/6.∴x_1=(11+√13)/6,x_2=(11-√13)/6.(4)0.2x²+5=3/2 x变形为0.2x²-3/2 x+5=0,∵a=0.2,b=-3/2,c=5,∴b²-4ac=(-3/2)²-4×0.2×5=-7/4<0,∴原方程没有实数根.3.解:设门的高为x尺,则宽为(x-6.8)尺.根据题意,得10²=x²+(x-6.8)²整理,得2x²-13.6x-53.76=0.解得x_1=9.6,x_2=-2.8(不合题意,舍去).∴x=9.6.∴x-6.8=2.8.答:门的高度为9尺6寸,宽为2尺8寸.4.解设木箱的长为x dm,则宽为(x-5)dm,于是有8x(x-5)=528,解得x_1=11,x_2=-6(不合题意,舍去).所以x=11.所以x-5=11-5=6.答:木箱的长为11dm,宽为6dm.第44页练习答案解:根据题意,得(16-x)(12-x)=1/2×16×12.解得x_1=24(不合题意,舍去),x_2=4.∴x=4,∴图中的x为4.2.6 1.解设金色纸边的宽是x cm,根据题意,得(90+2x)(40+2x)×72%= 90×40,即x²+65x-350=0,解得x_1=5,x_2=-70(不合题意,舍去).答:金色纸边的宽是50cm.2.解:设鸡场的一边(靠墙的一边)长为xm,则另外两边长均为(40-x)/2 m.(1)若x∙(40-x)/2=180,解得x_1=20+2√10(不合题意,舍去),x_2=20-2√10.∴鸡场的面积能达到180m².若x∙(40-x)/2=200,解得x_1=x_2=20.∴鸡场的面积能达到200m².(2)若x∙(40-x)/2=250,则x²-40x+500=0,方程无实数根.∴鸡场的面积不能达到250m².3.解:设圆柱底面半径为Rcm,则15∙2πR+2πR²=200π,解得R_1=5,R_2=-0(不合题意,舍去).∴圆柱底面半径为5 cm.※4.解:如图2-3-2所示,过点P做x轴的垂线,垂足为M,根据题意,得S△pab=S梯形pmob-S△boa-S△pma,即1/2 (1+a)×14-1/2 a²-1/2×1×(14-a)=18,解得a_1=3,a_2=12.所以a的值为3或12.第47页练习答案1.解:(1)(x+2)(x-4)=0,x+2=0,或x-4=0,∴x_1=-2,x_2=4.(2)解:移项的4x(2x+1)-3(2x+1)=0,∴(2x+1)(4x-3)=0,∴2x+1=0,或4x-3=0,∴x_1=-1/2,x_2=3/4.2.解:设这个数为n,则2n²-7n=0,解得n_1=0,n_2=7/2.2.71.解:(1)(4x-1)(5x+7)=0,4x-1=0,或5x+7=0,∴x_1=1/4,x_2=-7/5.(2)原方程可变形为3x(x-1)+2(x-1)=0,即(x-1)(3x+2)=0,X-1=0,或3x+2=0,∴x_1=1,x_2=-2/3.(3)原方程可变形为(2x+3)(2x+3-4)=0,2x+3=0,或2x-1=0,∴x_1=-3/2,x_2=1/2.(4)原方程可变形为2(2x-3)²-(x+3)(x-3)=0,(x-3)(2x-6-x-3)=0,X-3=0,或x-9=0,∴x_1=3,x_2=9.2.解:(1)5(x²-x)=3(x²+x).化简,得2x²-8x=0,2x(x-4)=0,∴2x=0或x-4=0,∴x_1=0,x_2=4.(2)(x-2)²=(2x+3)².移项,得(x-2)²-(2x+3)²=0,(x-2+2x+3)(x-2-2x-3)=0,(3x+1)(-x-5)=0,∴3x+1=0或-x-5=0.∴x_1=-1/3,x_2=-5.(3)(x-2)(x-3)=12.化简,得x²-5x-6=0,∵a=1,b=-5,c=-6,b²-4ac=(-5)²-4×1×(-6)=49,∴x=(-(-5)±√49)/(2×1)=(5±7)/2,∴x_1=6,x_2=-1.(4)2x+6=(x+3)²,移项,得(x+3)²-(2x+6)=0,(x+3)²-2(x+3)=0,(x+3)(x+3-2)=0,(x+3)(x+1)=0,x+3=0或x+1=0,∴x_1=-3,x_2=-1.(5)2y²+4y=y+2,化简,得2y²+3y-2=0.∵a=2,b=3,c=-2,∴b²-4ac=3²-4×2×(-2)=25.∴x=(-3±√25)/(2×2)=(-3±5)/4,∴x_1=1/2,x_2=-2.3.解:设原正方形空地上的边长为xm,则(x-1)(x-2)=12,解得x_1=5,x_2=-12,解得x_1=5,x_2=-2(不和题意,舍去).故原正方形空地上的边长为5m. 第50页练习答案1.解:(1)∵b²-4ac=(-3)²-4×1×(-1)=13>0.∴方程有两个不相等的实数根.设方程的两个实数根是x_1,x_2,那么x_1+x_2=3,x_1 x_2=-1.(2)∵b²-4ac=2²-4×3×(-5)=64>0,∴方程有两个不相等的实数根.设方程的两个实数根是x_1,x_2,那么x_1+x_2=-2/3,x_1,x_2=-5/3.2.解:它们的答案不确定.判断方法:∵b²-4ac=6²-4×9×(-1)=72>0,∴方程有两个不相等的实数根.设方程的两个实数根是x_1,x_2,那么x_1+x_2=-2/3,,x_1 x_2=-1/9.小明的答案中x_1+x_2=(-1/3)+(-1/3)=-2/3,x_1 x_2=(-1/3)×(-1/3)=1/9≠-1/9,∴小明的答案错误.笑话的答案中x_1+x_2=(-3+3√2)+(-3-3√2)=-6≠-2/3,x_1 x_2=(-3+3√2)(-3-3√2)=-9≠-1/9,∴小华的答案错误.3.解:设它的另一个根为x_1,根据一元二次方程根与系数的关系,得3x_1=-7,x_1=-7/3,∴它的另一个根是-7/3.2.81.解:(1)原方程变形为3x²-x-1=0,∵b²-4ac=(-1)²-4×3×(-1)=13>0,∴方程有两个不相等的实数根.设方程的两个实数根分别为x_1,x_2,那么x_1+x_2=1/3,x_1 x_2=-1/3.(2)原方程化简,2x²+6x-2=0,即x²+3x-1=0.∵b²-4ac=3²-4×1×(-1)=13>0,∴方程有两个不相等的实数根.设方程的两个实数根为x_1,x_2,那么x_1+x_2=-3,x_1 x_2=-1.2.解:(1)∵a=12,b=7,c=1,∴b²-4ac=7²-4×12×1=1,∴x=(-7±√1)/(2×12)=(-7±1)/24,∴x_1=-1/4,x_2=-1/3.(2)原方程变形为0.8x²+x-0.3=0,∵a=0.8,b=1,c=-0.3,∴b²-4ac=1²-4×0.8×(-0.3)=1.96,∴x=(-1±√1.96)/(2×0.8)=(-1±1.4)/1.6,∴x_1=1/4,x_2=-3/2.(3)原方程变形为3x²-2√3 x+1=0.∵a=3,b=-2√3,c=1,∴b²-4ac=(-2√3)²-4×3×1=0,∴x=(-(-2√3)±√0)/(2×3)=(2√3)/6=√3/3.∴x_1=x_2=√3/3.(4)原方程化简,得x²-4x-8=0,配方,得x²-4x+(-2)²-(-2)²-8=0,(x-2)²=12,∴x-2=±2√3.∴x_1=2+2√3,x_2=2-2√3.3.解:设方程5x²+kx-6=0的另一根为x_1,由根与系数的关系,得2x_1=-6/5,解得x_1=-3/5.当x_1=-3/5时,2+(-3/5)=-k/5.解得k=-7.所以它的另一个根为-3/5,k的值为-7.4.解:∵a=1,b=-17,c=66,∴b²-4ac=(-17)²-4×1×66=289-264=25>0,∴方程有两个不相等的实数根.设一元一次方程x²-17x+66=0的两个实数根分别为,x_1,x_2,由根与系数的关系,得x_1+x_2=17.∵17>20,不满足三角形的两边之和大于第三边,不能构成三角形,∴这个三角形的第三边的长不可能是20.第52页练习答案解:设相遇时所走的时间为x,则10²+(3x)²=(7x-10)².解得x_1=3.5,x_2=0(不合题意,舍去).∴x=3.5.∴甲走了3.5×7=24.5(步),乙走了3.5×3=10.5(步).答:甲走了24.5步,乙走了10.5步.1.解:设赛义得到的钱数为x,则少的一笔钱为20-x,根据题意,得x²-20x+96=0.解得x_1=12,x_(2=8) (不合题意,舍去).答:赛义德到的钱数为12.2.解:设经过x s△pcq的面积为Rt△ACB面积的一半,根据题意,得1/2 (8-x)(6-x)=1/2×1/2×8×6.整理,得x²-14x+24=0.解得x_1=12(不合题意,舍去),x_2=2.答:经过2 s△PCQ的面积为Rt△ACB面积的一半.3.解:设渠道深为x m,则渠低宽为(x+0.4)m,上口宽为(x+0.4+0.6)m.根据题意,得1/2 x【(x+0.4)+(x+0.4+0.6)】=0.78,整理,得x²+0.7x-0.78=0.解得x_1=0.6,x_2=-1.3(不合题意,舍去).答:渠深为0.6m.4.解:设经过ts后P,Q两点相距25cm,∴PC=2tcm,BQ=t cm,CQ=BC-BQ=25-t(cm).在Rt△PCQ中,∠C=90°,由古定理,得PQ²=PC²+CQ²,25²=(2t)²+(25-t)².解这个方程,得t_1=0(不合题意,舍去),t_2=10.∴经过10s后P,Q两点相距25cm.第55页练习答案解:设每张贺年卡应降价x元,根据题意,得(0.3-x)(500+x/0.05×200)=180,整理,得400x²-70x+3=0.解得x_1=0.1,x_2=0.075(不合题意,舍去).答:每张贺年卡应降价0.1元.2.10 1.解:设每件应降价x元,根据题意,得(44-x)(20+5x)=1600,整理,得x²-40x+144=0.解得x_1=4,x_2=36(不合题意,舍去).答:每件应降价4元.2.解设储藏x个星期出售这批农产品可获利122 000元.根据题意,得(80-2x)(1 200+200x)-1 600x-64 000=122 000,化简,得x²-30x+225=0.解得x_1=x_2=15,所以储藏15个星期出售这批农产品可获利122 000元.3.解:设该市这两年自然保护区面积的年均增长率为x,则4.85%∙(1+x)^2=8%.解这个方程,得x_1≈0.284=28.4%,x_2≈-2.284(舍去).4.解:设该商场11,12两个月营业额的月均增长率为x,根据题意,得2 500+2 500(1+x)+2 500(1+x)²=9 100.解得x_1=0.2=20%,x_2≈-3.2(不合题意,舍去)所以该商场11,12两个月营业额的月均增长率为20%.第二章复习题1.解:设其中一个数为x,则另一个数为x-4,则x(x-4)=45,解得x_1=9,x_2=-5.当x=9是时,x-4=5;当x=-5时,x-4=-9.答:这两个数为9和5,或-5和-9.2.解:(1)x(x-14)=0,x=0,或x-14=0,所以x_1=0,x_2=14.(2)x^2+12x+27=0,(x+3)(x+9)=0,X+3=0,或x+9=0,所以x_1=-3,x_2=-9.(3)x²=x+56,x²-x-56=0,(x+7)(x-8)=0,X+7=0,或x-8=0,所以x_1=-7,x_2=8.(4)x(5x+4)=5x+4,(5x+4)(x-1)=0,5x+4=0,或x-1=0,所以x_1=-4/5,x_2=1.(5)4x²-45=31x,4x²-31x-45=0,(4x+5)(x-9)=0,4x+5=0,或x-9=0,所以x_1=-5/4,x_2=9.(6)-3x²+22x-24=0,3x²-22x+24=0,(3x-4)(x-6)=0,所以x_1=4/3,x_2=6.(7)(x+8)(x+1)=-12,X²+9x+20=0,(x+4)(x+5)=0,X+4=0,或x+5=0,所以x_1=-4,x_2=-5.(8)(3x+2)(x+3)=x+14,3x²+10x-8=0,(3x-2)(x+4)=0,3x-2=0,或x+4=0,所以x_1=2/3,x_2=-4.3.(1)解法1:原方程可化为x²+9x+18=0,(x+3)(x+6)=0,所以x_1=-3,x_2=-6.(2)解:x²-2√5 x+2=0,X²-2√5x=-2,X²-2√5 x+5=-2+5,(x-√5)²=3,x-√5=±√3,所以x_1=√5+√3,x_2=√5-√3.(3)解:(x+1)²-3(x+1)+2=0,(x+1-1)(x+1-2)=0,(x-1)=0,所以x_1=0,x_2=1.4.解:(1)∵a=2,b=1,c=-1,∴b²-4ac=1²-4×4×2(-1)=9>0,∴方程有两个不相等的实数根.(2)原方程变形为4x²-4x+1=0,∵a=4,b=-4,c=1,∴b²-4ac=(-4)²-4×4×1=16-16=0,∴方程有两个相等的实数根.(3∵a=7,b=2,c=3,b²-4ac=2²-4×7×3=-80<0,∴方程没有实数根.*5.解:(1)∵a=1,b=-5,c=-6,b²-4ac=(-5)²-4×1×(-6)=49>0,∴方程有两个不相等的实数根.设方程的两个实数根分别为x_1,x_2.由根与系数的关系,得x_1+x_2=-b/a=-5/3,x_1 x_2=c/a=1/3.6解:(1)根据题意,得x²-13x+12=0,所以x1=1,x_2=12,即当x=1或x=12时,代数式x²-13x+12的值等于0.(2)由题意,得x²-13x+12=42,所以x_1=15,x_2=-2,所以当x=15或x=-2时,代数式x²-13x+12的值等于42.(3)由题意,得x²-13x+12=-4x²+18,所以x_1=3,x_2=-2/5,所以当x=3或x=-2/5时,代数式x²-13x+12的值与代数式-4x²+18的值相等.7.解:设该公司这两年缴税的年均增长率为x,由题意,得40(1+x)²=48.4.解得x_1=0.1=10%,x_2=-2.1(舍去).答:该公司这两年缴税的年均增长率为10%.8.解:设原铁皮的边长为x cm,则4(x-8)²=400.解得x_1=18,x_2=-2(不合题意,舍去).答:原铁皮的边长应为18cm.9.解:如图2-7-3所示,设小路宽为xm,由题意,得2x(15+2x)+2×20x=246.整理,得2x²+35x-123=0.解得x_1=3,x_2=-20.5(舍去).答:小路的宽为3m.10.解:设每行的座位数为x,则总行数为x+16,依题意,得x(x+16)=1 161.(x-27)(x+43)=0.解得x_1=27,x_2=-43(舍去).答:每行的座位数为27.11.解:设其中一段长为x cm,则另一段长为(56-x)cm.(1)由(x/4)²+((56+x)/4)²=100,解得x_1=24,x_2=32,所以一段长为24cm,另一段长为32cm.(2)由(x/4)²+((56-x)/4)²=196,解得x_1=0,x_2=56,所以不能剪开.(3)由(x/4)²+((56-x)/4)^2=200,解得x_1=28+4√51>56(舍去),X_2=28-4√51<0(舍去).所以面积之和不可能等于200cm^2.12.解:令3x+5=y,原方程可化为y²-4y+3=0,(y-1)(y-3)=0,解得y_1=1,y_2=3.当y=1,即3x+5=1时,x=-4/3;当y=3,即3x+5=3时,x=-2/3.所以原方程的解为x_1=-4/3,x_2=-2/3.13.解:把2+√3 代入x^2-4x+c=0中,得(2+√3)^2-4(2+√3)+c0.解得c=1.原方程的另一个根为2-√3,c的值为1.14.解:当s=200时,200=10t+3t²,解得t_1=20/3,t_2=-10(不合题意,舍去),所以行驶200m需要的时间为20/3 s.15.解法1:设水渠宽为cm,根据题意,得(92-2x)(60-x)=885×6=92x+2×60x-2x²,即x²-106x+105=0.解得x_1=105(舍去),x_2=1.答:水渠应挖1m宽.解法2:设水渠宽为xm,根据题意,得(92-2x)(60-x)=885×6,即x²-106x+105=0.解得x_1=105(舍去),x_2=1.答:水渠应挖1m宽.16.解:设应多种x颗桃树,由题意,得(100+x)(1 000-2x)=1 000×100×(1+15.2%).整理,得x²-400x+7 600=0.解得x_1=380,x_2=20.又由题意知x=380不符合题意,故舍去,因此x只能为20.答:应多种20颗桃树,产量会增加15.2%.17.解:设其中一条直角边长为x cm,则另一条直角边长为(x+1)cm,所以x²+(x+1)²=7².解得X_1=(√97-1)/2,x_2=(-√97-1)/2 (舍去).所以x+1=(√97-1)/2+1=(√97+1)/2.答:这两条直角边长分别为(√97-1)/2cm和(√97+1)/2cm.18.解:设t时后侦察船可侦侦察到这艘军舰,根据题意,有(90-30t)²+(20t)²=50².整理得13t²-54t+56=0.因为b²-4ac=(-54)²-4×13×56=4>0,所以方程有实数根,即侦察船可侦察到军舰,解得t_1=2,t_2=28/13(不合题意,舍去).答:侦察船可侦察到军舰,最早在2时后可侦察到.19.解:设到会人数为x,则有x(x-1)/2=66.整数得x^2-1x-132=0.解得x_1=12,x_2=-11(不合题意,舍去).答:这次会议到会的人数为12.20.解:设点P(x,-2x+3),一次函数y=-2x+3的图象交x轴于点A(3/2,0),交y轴于点B(0,3). ∵点P在第一象限,∴x>0,-2x+3>0,∴PD=x,PC=-2x+3.根据题意,得S_矩形OCPD=PD∙PC=1,x(-2x+3)=1.化简,得-2x²+3x-1=0,解这个方程,得x_1=1,x_2=1/2.当x=1时,-2x+3=-2×1+3=1,∴点P_1 (1,1)当x=1/2 时,-2x+3=-2× 1/2+3=2,∴点P_2 (1/2,2).∴当点P_1 (1,1)或P_2(1/2,2)时,矩形OCPD的面积为1.21.分析:由于距台风中心200km的区域受影响,所以应考虑轮船与台风中心的距离是否超过200km,如果超过200km,则会进入台风影响区.解:(1)这艘轮船不改变航向,他会进入台风影响区.理由:如图2-7-4所示,在Rt△ABC中,∠BAC=90°,BC=500km,BA=300km,由勾股定理,得AC=√(BC^2-BA^2 )=√(〖500〗^2-〖300〗^2 )=400(km).当这艘轮船不改变航向时,轮船由C地到A地的时间为400/30=13(h),台风中心由B地到A的时间为300/20=15(h).故轮船到达A地时,台风中心距离A地为300-20×40/3=331/3 (km).而331/3 km<200km,所以这艘轮船不改变航向会进入台风影响区.(2)设从接到报警开始,经过th这艘轮船就会进入台风影响区,则CD=30t km,BE=20t km,AD=AC-CD=(400-30t)km,AE=AB-BE=(300-20t)km,DE=200km.在Rt△DAE中,由勾股定理,得AD²+AE²=DE²,即(400-30t)²+(300-20t)²=200².整理,得13t²-360t+2 100=0,解得t_1≈8.35,t_2≈19.34.所以从接到报警开始,经过8.35h它就会进入台风影响区.※22.解:设该银行一年定期存款的年利率是x,根据题意,得【2 000(1+x)-1 00】+【2 000(1+x)-1 000】x=1 107.45.化简,得(1 000+2 000x)(1+x)=1 107.45400x²+600x-21.49=0.解这个方程,得x_1=0.035=3.5%,x_2=-1.535(不合题意,舍去).所以该银行一年定期存款的年利率是3.5%.第61页练习答案解:列表如下:或画树状图如图3-1-13所示:由表或树状图可知总共有4中结果,每中结果出现的可能性相同,其中恰好是白色上衣和白色裤子的结果有一种,所以,P(白色上衣和白色裤子)=1/4.3.1 1.解:列表如下:(1)由表可知,一次实验中两张牌的牌面数字和有2,3,4.(2)两张牌的牌面数字和为3的概率最大.(3)P(和为3)=3/4=1/2.2.解:列表如下:由表可知:(1)两次都摸到红球的概率为1/4;(2)连词摸到不同颜色的去的概率为2/4=1/2.(3)解:可能性相同.因为掷一枚硬币正反面朝上的概率都是1/2.第64页练习答案解:设三张大小一样而画面不同的画片分别为A,B,C,将出现的可能结果列表如下:由表可知,出现的总结过有9种,能拼成原来的一幅画的结果有(A上,A下),(B上,B下,)(C上,C下)三种,所以P(两张恰好能拼成原来的一幅画)=3/9=1/3.3.2 1.解:将出现的可能结果列表如下:由表可知,(1)两张牌的牌面数字和等于1的概率为0;(2)两张牌的牌面数字和等于2的概率为1/9;(3)两张牌的牌面数字和为4的概率最大;(4)两张牌的牌面数字和大于3的概率是6/9=2/3.2.解:将出现的可能结果列表如下:由表可知,(1)两人都左拐左拐的概率为1/9;。

北师大版九年级上册数学-1.2-矩形的性质和判定课堂讲义及练习(含答案)

北师大版九年级上册数学-1.2-矩形的性质和判定课堂讲义及练习(含答案)

北师大版九年级上册数学矩形的性质和判定课堂讲义及练习(含答案)【矩形的性质】1.矩形的定义有一个角是直角的平行四边形叫做矩形.温馨提示①对于矩形的定义要注意两点a.是平行四边形.b.有一个角是直角;②定义说有一个角是直角的平行四边形才是矩形,不要错误地理解为有一个角是直角的四边形是矩形;③矩形的定义既是矩形的性质,也提供了矩形的种判定方法。

2. 矩形的性质(1)矩形具有平行四边形的所有性质 .(2)矩形的四个角都是直角.(3)矩形的对角线相等.(4)矩形是轴对称图形,它有两条对称轴,对角线所在直线就是它的对称轴. 矩形又是中心对称图形,对角线的交点为对称中心,过中心的任意直线可将矩形分成完全全等的两部分..矩形中相等的线段:AC=BD, OA = OC=OB = OD.矩形中相等的角:∠ABC = ∠BCD = ∠CDA = ∠DAB = 90°.矩形中的全等三角形:全等的等腰三角形有:,全等的直角三角形有:点拨:有关矩形问题可转化为直角三角形或等腰三角形的问题来解决 (转化思想).温馨提示:①矩形具有平行四边形的一切性质;②利用矩形的性质可以推出直角三角形斜边中线的性质,即:在直角三角形中,斜边上的中线等于斜边的一半;③“矩形的四个角都是直角”这一性质可用来证两条线段互相垂直或角相等,“矩形的对角线相等”这一性质可用来证线段相等;④矩形的两条对角线分矩形为面积相等的四个等腰三角形。

【练习】1.如图,在矩形ABCD中,E是BC边的中点,且AE平分∠BAD,CE=2,则CD的长是( )A.2 B.3 C.4 D.52.如图,在矩形ABCD中,AB=2BC,在CD上取一点E,使AE=AB,则∠EBC的度数是( )A.30° B.° C.15° D.10°3第4题第5题第6题第7题4.在矩形ABCD中,对角线AC,BD相交于点O,E,F分别是AO,AD的中点,若AB=6 cm,BC=8 cm,则EF =________cm.5.△ABC中,∠ACB=90°,∠B=55°,D是斜边AB的中点,那么∠ACD的度数为( )A.15° B.25° C.35° D.45°6.已知矩形ABCD沿着直线BD折叠,使点C落在点C′处,BC′交AD于点E,AD=8,AB=4,则DE的长为( ) A.3 B.4 C.5 D.67.在矩形ABCD中,E,F分别是AB,CD的中点,连接DE,BF,分别取DE,BF的中点M,N,连接AM,CN,MN,若AB=5,BC=8,则图中阴影部分的面积为( )A.5 B.8 C.13 D.208.如图,已知△ABC和△ABD均为直角三角形,其中∠ACB=∠ADB=90°,E为AB的中点.求证:CE=DE.9.如图,在矩形ABCD中,连接对角线AC,BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.(1)求证:△ACD≌△EDC;(2)请探究△BDE的形状,并说明理由.【矩形的判定】1.矩形的判定定理(1)有三个角是直角的四边形是矩形.(2)对角线相等的平行四边形是矩形。

北师大版-数学-九年级上册-成比例线段 讲义

北师大版-数学-九年级上册-成比例线段 讲义

成比例线段知识点一、两条线段的比两条线段比的概念:如果选用_________________量得两条线段AB.CD 的长分别为m ,n ,那么这两条线段的比就是它们的长度的比,即AB :CD =___________或写成___________(注意:线段AB 与其长度的位置对应),其中,线段AB ,CD 分别叫做这个线段比的___________和___________。

如果把m n 表示成比值k ,则AB CD=k 或AB =kCD. 提示:(1)两条线段的比其实就是___________的比。

(2)求两条线段的比时,两条线段的________________要统一【例1】.如图,画线段AB 的垂直平分线交AB 于点O ,在这条垂直平分线上截取OC =OA ,以点A 为圆心,AC 长为半径画弧交AB 于点P ,则线段AP 与AB 的比是( )A.3∶2 B .1∶3C.2∶ 3 D.2∶2【例2】.如图,在△ABC 中,AC =2 cm ,BC =3 cm ,则△ABC 的两高AD 与BE 的比是( )A.23B.32C.35D.53知识点二、成比例线段成比例线段的概念:四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即b a =d c(或a:b=c:d ),那么这四条线段a ,b ,c ,d 叫做__________,简称__________。

反过来,如果这四条线段a ,b ,c ,d 成比例线段,则可以记作__________。

★注意:a ,b ,c ,d 必须按顺序写出。

特别的若b a =c b,则b 为a ,c 的比例中项。

【例1】判断下列线段a ,b ,c ,d 是否成比例线段:a=4,b=6,c=5,d=10;a=4cm ,b=2cm ,c=1cm ,d=3cm【变式】已知四条线段a ,b ,c ,d 的长度,试判断它们是否成比例?a=16cm b=8cm c=5cm d=10cma=0.8dm b=5cm c=0.06m d=10cm(3),,,【例2】.已知线段a=4,b=1,如果线段c 是线段A.b 的比例中项,那么c=______.【例3】.已知三条线段的长分别为3 cm ,6 cm ,8 cm ,如果再增加一条线段,使这四条线段成比例,那么这条线段的长可以为多少?知识点三、比例的性质 (1)比例的基本性质:如果b a =d c,那么__________。

2022北师大版九年级数学上册教案

2022北师大版九年级数学上册教案

2022北师大版九年级数学上册教案我们虽然还不能低估教案的作用,但更应当将教学的着力点放在备课上。

老师备课应将重点放在学生和教材上,备学生备教材,而不是抄教参。

这一点相识无疑是特别重要的。

今日我在这里整理了一些20xx最新北师大版九年级数学上册教案,我们一起来看看吧!20xx最新北师大版九年级数学上册教案1本学期是初中学习的关键时期,教学任务特别艰难。

因此,要完成教学任务,必需紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点,努力把本学期的任务圆满完成。

九年级毕业班总复习教学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学老师必需面对的问题。

下面特制定以下教学复习打算。

一、学情分析经过前面五个学期的数学教学,本班学生的数学根底和学习看法已经明晰可见。

通过上个学期屡次摸底测试及期末检测发觉,本班的特点是两极分化现象极为紧要。

虽然涌现了一批学习刻苦,成果优异的优秀学生,但后进学生因数学成果非常低下,厌学心情特别紧要,根本放弃对数学的学习了。

其次是局部中等学生对前面所学的一些根底学问记忆不清,驾驭不牢。

二、指导思想坚持贯彻党的十八大教育方针,接着深化开展新课程教学改革。

立足中考,把握新课程改革下的中考命题方向,以课堂教学为中心,针对近年来中考命题的改变和趋势进展探究,踊跃探究高效的复习途径,夯实学生数学根底,提高学生做题解题的实力,和解答的精确性,以期在中考中取得优异的数学成果。

并通过本学期的课堂教学,完成九年级下册数学教学任务及整个初中阶段的数学复习教学。

三、教学内容分析本学期,除了要完成规定的所学内容,就将起先进入初中数学总复习,将九年制义务教育数学课本教学内容分成代数、几何两大局部,其中初中数学教学中的六大版块即:“实数与统计”、“方程与函数”、“解直角三角形”、“三角形”、“四边形”、“圆”是学业考试考中的重点内容。

在《课标》要求下,造就学生创新精神和实践实力是当前课堂教学的目标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C
【例15】如图, ABC 中, ACB 90 , AD 是 BAC 的平分线,交 BC 于 D , CH 是 AB 边上的高,交 AD 于 F , DE AB 于 E ,求证:四边形 CDEF 是菱形.
4.菱形的面积等于两对角线乘积的一半.
二. 典例分析。
板块一、菱形的性质
【例1】 菱形的两条对角线将菱形分成全等三角形的对数为
【例2】 ⑴ 如 图 2 , 一 活 动 菱 形 衣 架 中 , 菱 形 的 边 长 均 为 16 cm 若 墙 上 钉 子 间 的 距 离
AB BC 16 cm ,则
1
C. 40 cm2
D. 80 cm2
D
A
C
图1
B
【例7】 已知菱形 ABCD 的两条对角线 AC,BD 的乘积等于菱形的一条边长的平方,则菱形 的一个钝角的大小是
【例8】 如图,菱形花坛 ABCD 的周长为 20m , ABC 60 ,沿着菱形的对角线修建了 两条小路 AC 和 BD ,求两条小路的长和花坛的面积.
A
G
D
B
EF
C
【例14】如 图 , 在 ABC 中 , AB AC , M 是 BC 的 中 点 . 分 别 作 MD AB 于 D , ME AC 于 E , DF AC 于 F , EG AB 于 G . DF、EG 相交于点 P .求证: 四边形 DMEP 是菱形.
A
GP F
D
E
B
M
【例9】 已知,菱形 ABCD 中, E 、 F 分别是 BC 、 CD 上的点,若 AE AF EF AB , 求 C 的度数.
A
B E
D F
C
4
板块二、菱形的判定
【例10】如图,如果要使平行四边形 ABCD 成为一个菱形,需要添加一个条件,那么你添
加的条件是

A
D
B
C
【例11】☆如图,在 ABC 中, BD 平分 ABC , BD 的中垂线交 AB 于点 E ,交 BC 于点 F , 求证:四边形 BEDF 是菱形
九年级上学期补习目录
第一讲: 菱形的性质和判定 第二讲: 矩形的性质和判定 第三讲: 正方形的性质和判定 第四讲 一元二次方程的定义及解法(1) 第五讲 一元二次方程及解法(2) 第六讲 一元二次方程的根的判别式 第七讲 一元二次方程的根与系数的关系 第八讲 一元二次方程应用题 第九讲: 一元二次方程巩固提高训练 第十讲: 相似三角形的性质与判定(1) 第十一讲:相似三角形的性质与判定(2) 第十二讲 反比例函数(一) 第十三讲 反比例函数综合训练(二) 第十四讲 反比例函数综合应用 第十五讲 期末复习(测试卷)
EP CD 于点 P ,则 FPC ( )
A. 35
B. 45
C. 50
D. 55
D
A
E
P
C
B
F
图3
3
【例6】 ☆如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为 60
的菱形,剪口与折痕所成的角 的度数应为( )
A.15 或 30 B. 30 或 45
C. 45 或 60
D. 30 或 60
【巩固】菱形 ABCD 中, E 、 F 分别是 BC 、 CD 的中点,且 AE BC , AF CD ,那么
EAF 等于

【巩固】如图,将一个长为10 cm ,宽为 8cm 的矩形纸片对折两次后,沿所得矩形两邻边中
点的连线(虚线)剪下,再打开,得到的菱形的面积为( )
A.10 cm2
B. 20 cm2
D
E
H
A
C
P
B F
【例4】 如图 1 所示,菱形 ABCD 中,对角线 AC 、 BD 相交于点 O , H 为 AD 边中点,
菱形 ABCD 的周长为 24 ,则 OH 的长等于

A
H
B
D
O
C 图1
【巩固】如图,已知菱形 ABCD 的对角线 AC 8cm,BD 4 cm,DE BC 于点 E ,则 DE 的 长为
A C'
D
B
E
C
【例13】☆如图, E 是菱形 ABCD 的边 AD 的中点, EF AC 于 H ,交 CB 的延长线于 F , 交 AB 于 P ,证明: AB 与 EF 互相平分
A
E
D
A
E
D
P
P
F
B
CF
B
C
5
【巩固】☆已知:如图,在平行四边形 ABCD 中, AE 是 BC 边上的高,将 ABE 沿 BC 方 向平移,使点 E 与点 C 重合,得 GFC .若 B 60 ,当 AB 与 BC 满足什么数量 关系时,四边形 ABFG 是菱形?证明你的结论.
度.
A
B
C
1
图2
⑵ 如 图 , 在 菱 形 ABCD 中 , A 60 , E 、 F 分 别 是 AB 、 AD 的 中 点 , 若 EF 2 ,则菱形 ABCD
的边长是______. A
E
F
B
D
C
2
【例3】 如图, E 是菱形 ABCD 的边 AD 的中点, EF AC 于 H ,交 CB 的延长线于 F , 交 AB 于 P , 证明: AB 与 EF 互相平分.
【例5】 菱形的周长为 20 cm ,两邻角度数之比为 2 :1 ,则菱形较短的对角线的长度为
【巩固】如图 2,在菱形 ABCD 中, AC 6 , BD 8 ,则菱形的边长为( )
A. 5
B. 10
C. 6
D. 8
A
D
B
C
图2
【巩固】如 图 3 , 在 菱 形 ABCD 中 , A 110 , E 、 F 分 别 是 边 AB 和 BC 的 中 点 ,
1
第一讲:菱形的性质和判定
一.基础知识。
1.菱形的的定义:有一组邻边相等的平行四边形叫菱形.
2.菱形的性质(1)菱形具有平行四边形的一切性质. (2)菱形的四条边相等. (3)菱形的两条对角线互相垂直平分;并且每一条对角线平分一组对角.
3.菱形的识别方法:(1)有一组邻边相等的平行四边形是菱形. (2)对角线互相垂直的平行四边形为菱形. (3)四条边相等的四边形是菱形.
A
E
D
B
F
C
【巩固】已知:如图,平行四边形 ABCD 的对角线 AC 的垂直分线与边 AD 、 BC 分别相
交于 E 、 F .求证:四边形 AFCE 是菱形.
A
E
D
O
B
F
C
【例12】如图,在梯形纸片 ABCD 中, AD / /BC , AD CD ,将纸片沿过点 D 的直线折叠, 使点 C 落在 AD 上的点 C 处,折痕 DE 交 BC 于点 E ,连结 CE . 求证:四边形 CDCE 是菱形.
相关文档
最新文档