北京市朝阳区2016年初中毕业考试-数学试卷及答案-
2016~2017朝阳初三第一学期期末数学试题及答案
北京市朝阳区2016~2017学年度第一学期期末检测 九年级数学试卷〔选用〕 2017.1(考试时间120分钟 总分值120分)一、选择题〔此题共30分,每题3分〕第1-10题均有四个选项,符合题意的选项只有..一个. 1.二次函数2(1)3y x =--的最小值是( )(A) 2 (B) 1 (D) -2 (D ) -3 2.以下事件中,是必然事件的是( ) (A) 明天太阳从东方升起; (B) 射击运发动射击一次,命中靶心;(C) 随意翻到一本书的某页,这页的页码是奇数; (D) 经过有交通信号灯的路口,遇到红灯.3.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是( ) (A)(B) (C) (D) 4.如图,在△ABC 中,DE ∥BC ,DE 分别交AB ,AC 于点D ,E ,假设AD :DB =1:2,则△ADE 与△ABC 的面积之比是( )(A) 1:3 (B) 1:4 (C) 1:9 (D) 1:165. 已知点A 〔1,a 〕与点B 〔3,b 〕都在反比例函数12y x=-的图象上,则a 与b 之间的关系是( ) (A) a >b (B) a <b (C) a ≥b (D) a =b6. 已知圆锥的底面半径为2cm ,母线长为3cm ,则它的侧面展开图的面积为〔 〕(A) 18πcm 2(B) 12πcm 2(C) 6πcm 2(D) 3πcm 27. 已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A)与电阻R (单位:Ω)是反比例函数关系,它的图象如以下图.则用电阻R 表示电流I 的函数表达式为〔 〕(A) 3I R = (B) I R=-6 (C) 3I R=-(D) I R=68.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,假设⊙O 的半径为5,AC =8.则cos B 的值是〔 〕(A) 43(B)35(C)34 (D) 4523122513I /ΩBxyMN P O 9.《九章算术》是我国古代内容极为丰富的数学名著,书中有这样一个问题:“今有勾八步,股十五步,问勾中容圆,径几何?”其意思是:“如图,今有直角三角形,勾〔短直角边〕长为8步,股〔长直角边〕长为15步,问该直角三角形能容纳的圆形〔内切圆〕直径是多少?”此问题中,该内切圆的直径是〔 〕(A) 5步 (B) 6步 (C) 8步 (D)10步10. 已知二次函数y 1=ax 2+bx +c (a ≠0)和一次函数y 2=kx +n (k ≠0)的图象如以下图,下面有四个推断:①二次函数y 1有最大值②二次函数y 1的图象关于直线1x =-对称 ③当2x =-时,二次函数y 1的值大于0④过动点P (m ,0)且垂直于x 轴的直线与y 1,y 2的图象的交点分别 为C ,D ,当点C 位于点D 上方时,m 的取值范围是m <-3或m >-1. 其中正确的选项是〔 〕(A)①③(B)①④(C)②③(D)②④二、填空题〔此题共18分,每题3分〕11. 将二次函数y =x 2-2x -5化为y=a (x -h )2+k 的形式为y= .12.抛物线22y x x m =-+与x 轴有两个公共点,请写出一个符合条件的表达式为 .13. 如图,假设点P 在反比例函数3(0)y x x=-<的图象上,过点P 作PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,则矩形PMON 的面积为 .14.某农科所在相同条件下做某种作物种子发芽率的试验,结果如下表所示: 种子个数n 1000 1500 2500400080001500020000 30000 发芽种子个数m 8991365 2245 3644 7272 13680 18160 27300发芽种子频率m n则该作物种子发芽的概率约为 .15. 如图,△ABC 中,D 、E 分别是AB 、AC 边上一点,连接DE .请你添加一个条件,使△ADE ∽△ABC ,则你添加的这一个条件可以是 〔写出一个即可〕.EA Dyx–1–2–3123–1–2123O16.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:老师说:“小明的作法正确.”请答复:〔1〕点O 为△ABC 外接圆圆心〔即OA =OB =OC 〕的依据是 ;〔2〕∠APB =∠ACB 的依据是 .三、解答题〔此题共72分,第17-26题每题5分,第27题7分,第28题7分,第29题8分〕17.计算:o o o 2sin 45tan 602cos30++18.如图,△ABC 中,点D 在边AB 上,满足∠ACD =∠ABC ,假设AC ,AD = 1,求DB 的长.B19.已知二次函数2(0)y ax bx c a =++≠中,函数y 与自变量x 的部分对应值如下表:〔1〕求二次函数的表达式,并写出这个二次函数图象的顶点坐标; 〔2〕求出该函数图象与x 轴的交点坐标.20. 如图,在平面直角坐标系xOy 中,△ABC 的三个顶点分别为A (2,6),B (4,2), C (6,2). 〔1〕以原点O 为位似中心,将△ABC 缩小为原来的12,得到△DEF . 请在第一象限内,画出△DEF . 〔2〕在〔1〕的条件下,点A 的对应点D 的坐标为 ,点B 的对应点E 的坐标为 .21. 如图是一个隧道的横截面,它的形状是以点O 为圆心的圆的一部分.如果M 是⊙O 中弦CD 的中点,EM 经过圆心O 交⊙O 于点E ,CD =10,EM =25.求⊙O 的半径.22. 如图,在Rt △ABC 中,∠C =90°,点D 是BC 边的中点,CD =2,tan B =34. 〔1〕求AD 和AB 的长; 〔2〕求sin ∠BAD 的值.23. 已知一次函数21y x =-+的图象与y 轴交于点A , 点B (-1,n )是该函数图象与反比例函数)(0≠=k xky 图象在第二象限内的交点. 〔1〕求点B 的坐标及k 的值;〔2〕试在x 轴上确定点C ,使AC AB =,直接写出点C 的坐标.24.如图,用一段长为40m 的篱笆围成一个一边靠墙的矩形花圃ABCD ,墙长28m .设AB 长为x m ,矩形的面积为y m 2.〔1〕写出y 与x 的函数关系式;〔2〕当AB 长为多少米时,所围成的花圃面积最大?最大值是多少? 〔3〕当花圃的面积为150m 2时,AB 长为多少米?25.如图,AB 是⊙O 的直径,C ,D 是⊙O 上两点,且BC =CD ,过点C 的直线CF ⊥AD 于点F ,交AB的延长线于点E ,连接AC .〔1〕求证:EF 是⊙O 的切线;〔2〕连接FO ,假设sin E =12,⊙O 的半径为r ,请写出求线段FO 长的思路.26.某“数学兴趣小组”根据学习函数的经验,对函数y = -x 2+2x +1的图象和性质进行了探究,探究过程如下,请补充完整:〔1〕自变量x 的取值范围是全体实数,x 与y 的几组对应数值如下表: x…-352--2 -1 0 1 2523 …y … -214-m 2 1 2 114--2 …其中m = ;〔2〕如以以下图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;〔3〕根据函数图象,写出:①该函数的一条性质 ;②直线y =kx +b 经过点〔-1,2〕,假设关于x 的方程-x 2+2x +1=kx +b 有4个互不相等的实数根,则b 的取值范围是 .27.在平面直角坐标系xOy 中,直线y =14-x +n 经过点A (-4, 2),分别与x ,y 轴交于点B ,C ,抛物线y = x 2-2mx +m 2-n 的顶点为D . (1) 求点B ,C 的坐标;(2) ①直接写出抛物线顶点D 的坐标〔用含m 的式子表示〕②假设抛物线y = x 2-2mx +m 2-n 与线段BC 有公共点,求的取值范围.y –1–2–3123–1–2123Oy –1–2–3–41234–1–2123O28.在Rt △ABC 中,∠ACB =90°,O 为AB 边上的一点,且tan B =21,点D 为AC 边上的动点〔不与点A ,C 重合〕,将线段OD 绕点O 顺时针旋转90°,交BC 于点E . 如图1,假设O 为AB 边中点, D 为AC 边中点,则OEOD的值为 ; 〔2〕假设O 为AB 边中点, D 不是AC 边的中点,①请根据题意将图2补全;②小军通过观察、实验,提出猜想:点D 在AC 边上运动的过程中,〔1〕中OE OD的值不变.小军把这个猜想与同学们进行交流,通过讨论,形成了求OE OD的值的几种想法:想法1:过点O 作OF ⊥AB 交BC 于点F ,要求OE OD的值,需证明△OEF ∽△ODA .想法2:分别取AC ,BC 的中点H ,G ,连接OH ,OG ,要求OE OD的值,需证明△OGE ∽△OHD .想法3:连接OC ,DE ,要求OE OD的值,需证C ,D ,O ,E 四点共圆.......请你参考上面的想法,帮助小军写出求OE OD 的值的过程(一种方法即可);〔3〕假设1BO BA n 〔n ≥2且n 为正整数〕,则OE OD的值为 〔用含n 的式子表示〕.图2图1ED29.在平面直角坐标系xOy 中,C 的半径为r 〔r >1〕,P 是圆内与圆心C 不重合的点,C 的“完美点”的定义如下:假设直线..CP 与C 交于点A ,B ,满足2PA PB -=,则称点P 为C 的“完美点”,以以下图为C 及其“完美点”P 的示意图.(1) 当O 的半径为2时,①在点M (32,0),N (0,1),31(,)22T --中, O 的“完美点”是 ;② 假设O 的“完美点”P 在直线3y x =上,求PO 的长及点P 的坐标;(2)C 的圆心在直线31y x =+上,半径为2,假设y 轴上存在C 的“完美点”,求圆心C 的纵坐标t 的取值范围.yx11A BCOP北京市朝阳区2016~2017学年度第一学期期末检测九年级数学试卷参考答案及评分标准2017.1一、选择题〔此题共30分,每题3分〕三、解答题〔此题共72分,第17-26题每题5分,第27题7分,第28题7分,第29题8分〕17. 解:2sin 45tan 602cos30︒+︒+︒22=-=18.解:∵,ACD ABC ∠=∠A A ∠=∠,∴△ACD ∽△ABC . ∴AC ADAB AC=.∴AB =. ∴3AB =.∴2DB =. 19.解:(1) 由题意,得c = -3.将点〔2, 5〕,〔-1,-4〕代入,得4235,3 4.a b a b +-=⎧⎨--=-⎩解得1,2.a b =⎧⎨=⎩∴223y x x =+- . 顶点坐标为〔-1,-4〕. (2) 〔-3,0〕,〔1,0〕. 20.解:(1) 如图.(2) D 〔1,3〕,E 〔2,1〕. 21.解:如图,连接OC ,∵M 是弦CD 的中点,EM 过圆心O , ∴EM ⊥CD . ∴CM =MD . ∵CD =10, ∴CM =5.设OC =x ,则OM =25-x ,在Rt △COM 中,根据勾股定理,得 52+(25-x )2=x 2 . 解得 x =13 .∴⊙O 的半径为13 .22. 解: (1) ∵D 是BC 的中点,CD =2, ∴BD =DC =2,BC =4.在Rt △ACB 中, 由 tan B =34AC CB =, ∴344AC =. ∴AC =3.∴AD 13,AB =5 .(2) 过点D 作DE ⊥AB 于E ,∴∠C =∠DEB =90°. 又∠B =∠B ,∴△DEB ∽△ACB .∴DE DB AC AB=.∴235DE =. ∴65DE =.∴13sin 65BAD ∠=. 23. 解:(1) ∵点B (-1,n )在直线21y x =-+上,∴21 3.n =+= ∴B 〔-1,3〕.∵点B (-1,3)在反比例函数xky =的图象上, ∴3k =-.(2) ()2,C -0或()2,0.24. 解:(1) 2240y x x =-+.(402)x x -(或写成)(2) 由题意,得0402028x x -≤⎧⎨⎩>,<.∴6≤x <20 .由题意,得 ()2210200y x =--+. ∴当x =10时,y 有最大值,y 的最大值为200.∴当AB 长为10m 时,花圃面积最大,最大面积为200m 2. (3) 令y =150,则 2240150x x -+=. ∴ 125,15x x == .∵6≤x <20, ∴x =15.∴当AB 长为15m 时,面积为150m 2.25. (1) 证明:如图,连接OC ,∵OC =OA , ∴∠1 =∠2. ∵BC =CD , ∴∠1 =∠3. ∴∠2 =∠3. ∴OC ∥AF .∵CF ⊥AD , ∴∠CF A =90°. ∴∠OCF =90°. ∴OC ⊥EF .∵OC 为⊙O 的半径, ∴EF 是⊙O 的切线. (2) 解:求解思路如下:①在Rt △AEF 和Rt △OEC 中,由sin E =12, 可得△AEF ,△OEC 都为含30°的直角三角形; ②由∠1 =∠3,可知△ACF 为含30°的直角三角形;③由⊙O 的半径为r ,可求OE ,AE 的长,从而可求CF 的长; ④在Rt △COF 中,由勾股定理可求OF 的长.26. 解:(1) m = 1.(2)如图.〔3〕①答案不唯一.如:函数图象关于y 轴对称.②1<b <2.27. 解: (1) 把A 〔-4,2〕代入y =14-x +n 中,得 n =1.∴ B 〔4,0〕,C 〔0,1〕. (2) ①D 〔m ,-1〕.②将点〔0,1〕代入2221y x mx m =-+-中,得211m =-.解得 122,2m m =-=.将点〔4,0〕代入2221y x mx m =-+-中,得 201681m m =-+-.y–1–2–3123–1–2123O解得 125,3m m ==.∴25m -≤≤ .28.解:(1)12. (2) ①如图.②法1:如图,过点O 作OF ⊥AB 交BC 于点F , ∵∠DOE =90°,∴∠AOD +∠DOF =∠DOF +∠FOE =90°. ∴∠AOD =∠FOE . ∵∠ACB =90°,∴∠A +∠B =∠OFE +∠B =90°. ∴∠A =∠OFE . ∴△OEF ∽△ODA . ∴OE OFOD OA=. ∵O 为AB 边中点, ∴OA =OB .在Rt △FOB 中,tan B =21, ∴12OF OB =. ∴1.2OF OA = ∴12OE OD =. 法2:如图,分别取AC ,BC 的中点H ,G ,连接OH ,OG , ∵O 为AB 边中点,y x–1–2–3–4123456–1–2123OFEDED∴OH ∥BC ,OH =12BC ,OG ∥AC . ∵∠ACB =90°,∴∠OHD =∠OGE =90°. ∴∠HOG =90°. ∵∠DOE =90°,∴∠HOD +∠DOG =∠DOG +∠GOE =90°. ∴∠HOD =∠GOE . ∴△OGE ∽△OHD . ∴OE OGOD OH=. ∵tan B =21, ∴1.2OG GB = ∵OH =GB ,∴1.2OG OH = ∴12OE OD =. 法3:如图,连接OC ,DE ,∵∠ACB =90°,∠DOE =90°,∴DE 的中点到点C ,D ,O ,E 的距离相等. ∴C ,D ,O ,E 四点共圆. ∴∠ODE =∠OCE . ∵O 为AB 边中点, ∴OC =OB . ∴∠B =∠OCE . ∴∠ODE =∠B . ∵tan B =21, ∴12OE OD =. (3) 122n -.29. 解:(1) ①N ,T .②如图,根据题意,2PA PB -=, ∴∣OP +2-(2- OP )∣=2. ∴OP =1.假设点P 在第一象限内,作PQ ⊥x 轴于点Q , ∵点P 在直线3y x =上,OP =1,∴OQ =12,PQ =32.∴P (12,32).假设点P 在第三象限内,根据对称性可知其坐标为(-12,3). 综上所述,PO 的长为1,,点P 的坐标为(123)或(-12,3).(2)对于C 的任意一个“完美点”P 都有2PA PB -=,即2(2)2CP CP +-=-.可得CP =1.对于任意的点P ,满足CP =1,都有2(2)2CP CP +-=-,即2PA PB -=,故此时点P 为C 的“完美点”.因此,C 的“完美点”的集合是以点C 为圆心,1为半径的圆.设直线31y x =+与y 轴交于点D ,如图,当C 移动到与y 轴相切且切点在点D 的下方时,t 的值最小. 设切点为E ,连接CE ,可得DE 3.t 的最小值为13 当C 移动到与y 轴相切且切点在点D 的上方时,t 的值最大.同理可得t 的最大值为13+综上所述,t 的取值范围为13-t ≤13+说明:以上答案仅供参考,假设有不同解法,只要过程和解法都正确,可相应给分.祝 老 师 们 假 期 愉 快 !yx11Q AB PO。
北京市朝阳区2016年中考一模数学试题
最大最全最精的教育资源网 北京市朝阳区九年级综合练习(一)数学试卷2016.5考 生 须 知 1 •本试卷共8页,共三道大题,29道小题,满分120分•考试时间120分钟• 2 •在试卷和答题卡上认真填写学校名称、姓名和准考证号• 3 •试题答案一律填涂或书写在答题卡上,在试卷上作答无效•4•在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答• 5 •考试结束,请将本试卷、答题卡一并交回• 一、选择题(本题共 30分,每小题3分) 下面各题均有四个选项,其中只有一个是符合题意的.1 •清明节是中国传统节日,它不仅是人们远足踏青的日子,更是 祭奠祖先、缅怀先人的节 日.市民政局提供的数据显示,今年清明节当天全市213处祭扫点共接待群众 264000人,源:]将264000用科学计数法表示应为 A • 264 1 03B • 2.64 10^C . 2/64 1 05D . 0.264 106——|——I ——I --------- 1 4——I ——I_t ~i_I ——I ——-5 —-3 -2 -1 D 1 2 3 4哎2•实数a , b , c , d 在数轴上对应的位置如图所示,绝对值相等的两个实数是3•有一种推理游戏叫做“天黑请闭眼” ,9位同学参与游戏,通过抽牌决定所扮演的角色, 事先做好9张卡牌(除所写文字不同,其余均相同),其中有法官牌1张,杀手牌2张,好人牌6张•小易参与游戏,如果只随机抽取一张,那么小易抽到杀手牌的概率是B • 50o来 源:Z#xx#]形选自历届世博博会会徽夕中是轴对称图形的是 QD如图,四边形 ABCD 内接于O O , E 为DC 延长线上一点,A =50o , 则/ BCE 的度数40o4 •我市为了促进全民健身,举办“健步走”活动,朝阳区活动场地位 于奥林匹克公园(路线:森林公园一玲珑塔一国家体育场则终点水立方的坐标为 A . ( T 2, -4)10 .如图1,在等边三角形 ABC 中,AB=2 , G 是BC 边上一个动点且不与点 B 、C 重合,H 是AC 边上一点,且.AGH =30 ° °设BG=x ,图中某条线段长为 y , y 与x 满足的函数关系 的图象大致如图2所示,则这条线段可能是图中的最大最全最精的教育资源网C . 60oD . 13006•某地需要开辟一条隧道,隧道 AB 的长度无法直接测量.如图所示, 在地面上取一点 C ,使C 到A 、B 两点均可直接到达,测量找到 AC 和BC 的中点D 、E ,测得DE 的长为1100m ,则隧道AB 的长度为A. 3300mB. 2200mC. 1100mD . 550m7. 2022年将在北京一张家口举办冬季奥运会,很多学校开设了相关的课程.某校 8名同学参加了冰壶选修课,他们被分成甲、乙两组进行训练,身高(单位:cm )如下表所示:队员1队员2 队员3 队员4 甲组 176 177 175 176 乙组178175177174列关系中完全正确的是C . X 甲V X 乙,s 甲VD . 乂甲> X 乙,S 甲 > 如图,△ ABC 内接于O若O O 的半径为6,■ A =60 ,BC 的长为D . 12 n人员在奥林匹克公园设计图上设定玲珑塔的坐标为(0),森林公园的坐标为(-2, 2),9..如图,体育局的工作D . ( -4,-)设两队队员身高的平均数依次为 下—*5*5X 甲 , X 乙,方差依 次为s 甲 , s 乙, OBCA.线段CG B .线段AG D .线段CH[ 来源C.线段AH:]最大最全最精的教育资源网三、填空题(本题共18分,每小题3分)11. ______________________________________________________ 若二次根式yjX-2有意义,则X的取值范围是______________________________________________ .2 2 312. _______________________________________ 分解因式:a b -6ab - 9b = .13. 关于x的方程x22x 2k -4 =0有两个不相等实数根,写出一个满足条件的k的值:k= ___________ .14. 《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:杯何以多?’妇人曰:家有客.’津吏曰:客几何?’妇人曰:二人共饭,三人共羹,四人共肉,凡用杯六十五. ’不知客几何?” 译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?” 设共有客人x人,可列方程为_________________________ .15. 在数学活动课上,小派运用统计方法估计瓶子中的豆子的数量.他先取出100粒豆子, 给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出100粒豆子,发现其中8粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为 _________________________ 粒.16. 阅读下面材料:数学课上,老师提出如下问题:最大最全最精的教育资源网最大最全最精的教育资源网老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是______________ .三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29 题8分) 17•计算:(—2)」——廳+(72—1)°+4COS45。
2015-2016学年北京市朝阳区初三毕业考试数学试题.docx
北京市朝阳区 2016 年初中毕业考试数学试卷2016.4考1.考试时间为 90 分钟,满分 100 分;生2.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(填空题、解答题)两部分,共8 页,须第 8 页为草稿纸;知3.认真填写密封线内学校、班级、姓名.第Ⅰ卷(共 30 分)一、选择题(共 10 道小题,每小题 3 分,共 30 分)下列各题均有四个选项,其中只有一个是符合题意的.请用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑.1.在下列各数中,绝对值最大的数是A . 1B .- 2C.1D.1 232. 2015 年 10 月 16 日,新一期全球超级计算机500强榜单在美国公布,中国“天河二号”超级计算机以每秒338600000 亿次浮点运算速度连续第六度称雄.将 338600000用科学记数法表示为A . 3. 386 ×107B . 0.3386 ×109 C. 3. 386 ×108 D . 0.3386 ×1083.右图是某个几何体的三视图,则这个几何体是A.圆柱B.圆锥C.三棱柱D.三棱锥4.阿仁是一名非常爱读书的学生.他制作了五张材质和外观完全一样的书签,每张书签上写有一本书的名称和作者,分别是:《海底两万里》(作者:凡尔纳,法国)、《三国演义》(作者:罗贯中)、《西游记》(作者:吴承恩)、《骆驼祥子》(作者:老舍)、《钢铁是怎样炼成的》(作者:尼·奥斯特洛夫斯基,前苏联),从这五张书签中随机抽取一张,则抽到的书签上的作者是中国人的概率是1234A .B.C.D.55555.下列运算正确的是A .x 2x3x6B.x63x2C.4x32x22 x D.x32x6x6.一次函数y kx b的图象如右图所示,则 k,b 应满足的条件是A .k 0, b 0B.k 0, b 0k 0, b 0k 0, b 07.如图,将一块含有45°的直角三角板的两个顶点放在直尺的对边上,如果∠1=20 °,则∠2 的度数是A . 15°B. 20°C.25°D. 30°8.如图,⊙ O 的半径为10, AB 是弦, OC⊥ AB 于点 C,若 AB=12,则 OC 的长为OA . 2B.22C C.6D. 8A B9.某闭合电路中,电源电压为定值,电流I(A) 与电阻 R( Ω)成反比例,右图表示的是该电路中电流I 与电阻 R 之间函数关系的图象,则电流 I 关于电阻 R 的函数关系式为6B .I 632A .I C.IR D .IR R RA'10.如图,把正方形 ABCD 绕它的中心O 顺时针旋转,得到A E F D正方形 A’B’C’D’,旋转角大于 0°小于90°.△ A’EF 的面积为 S,线段 AE 的长度为 x,那么 S 关于 x 的函数的图象可能是B'O D'SB CS S SC'O x O x O x O nA B C D第Ⅱ卷(共 70 分)二、填空题(共 6 道小题,每小题 3 分,共 18 分)11.分解因式:ax2ay2___________.12.某校在进行―阳光体育活动‖中,统计了7 位原来偏胖的学生的情况,他们的体重分别降低了 5, 9, 3, 10,6, 8, 5(单位: kg),则这组数据的中位数是__________.第 13 题图第14题图13.如图,若在象棋棋盘上建立直角坐标系,使―帥‖位于点(-3,-2),“炮”位于点(-2.0),14.如图,“吃豆小人”是一个经典的游戏形象,它的形状是一个扇形,开口∠1=60°,半径为,则这个“吃豆小人” (阴影图形)的面积为.15.若关于x 的一元二次方程kx 24x 2 0 有两个不相等的实数根,则k 的取值范围是_________________.16.阅读下面材料 :在数学课上,老师提出如下问题 :尺规作图:作一个角等于已知角.已知:∠ AOB.O BA求作:∠ A′O′,B′使∠ A′O′=B′∠ AOB .小义同学作法如下:①作射线O′A;′②以点 O 为圆心,以任意长为半径作弧,交OA 于 C,交 OB 于 D ;③以点 O′为圆心,以 OC 长为半径作弧,交O′A于′ C′;④以点 C′为圆心,以 CD 为半径作弧,交③中所画弧于D′;⑤经过点D′作射线 O′B,′∠ A′O′就B′是所求的角.B B'D D'O A A'C O'C'老师说 : “小义的作法正确. ”请回答 :小义的作图依据是______________________________________________________ .三、解答题(共 10 道小题, 17-24 题每小题 5 分, 25-26 题每小题 6 分,共 52 分)17.(本小题 5 分)120161计算: 1- 2 -2sin45 .318.(本小题 5 分)2 x1解不等式 x 1,并写出不等式的正整数解.319.(本小题 5 分)如图,△ AFD 和△ BEC 中,点 A、 E、 F、 C 在同一条直线上.有下面四个关系式:(1) AD = CB,( 2) AD∥ BC,( 3)∠ B=∠ D,( 4) AE= CF .请用其中三个作为已知条件,余下一个作为求证的结论,写出你的已知和求证,并证明.已知:A D求证:证明:EFB C1x22xy y220.(本小题 5 分)先化简,再求值:,其中 x 3 y .x y x 2 y21.(本小题 5 分)某城市 2015 年约有初中生10 万人, 2016 年初中生人数还会略有增长.该市青少年活动中心对初中生阅读情况进行了统计,绘制的统计图表如下:2015 年某市喜爱阅读的初中生的2012-2015 年某市阅读首选类别喜爱阅读的初中生人数年份喜爱阅读的初中生人数(万人)2012 1.02013 2.22014 3.52015 5.0根据以上信息解答下列问题:( 1)扇形统计图中m 的值为;( 2) 2015 年,在该市喜爱阅读的初中生中,首选阅读科普读物的人数为万;( 3)请你结合对数据的分析,预估2016 年该市喜爱阅读的初中生人数,并简单说明理由.22.(本小题5 分)在“校园文化”建设中,某校用8 000 元购进一批绿植,种植在礼堂前的空地处 . 根据建设方案的要求,该校又用7500 元购进第二批绿植 .两次所买绿植盆数相同,且第二批每盆的价格比第一批的少10 元 . 请问第二批绿植每盆多少元?23.(本小题 5 分)如图,△ ABC 和△ CDE 都是直角三角形, 点 B 、C 、D 在同一条直线上, ∠B=∠ D=∠ ACE=90 °,BC1AB 1 , CD4 .2( 1)求 DE 的长;( 2)连接 AE .求证:四边形 ABDE 是矩形.A EB CD24.(本小题 5 分)如图,以△ ABC 的一边 BC 为直径的⊙ O ,交 AB 于点 D ,连接 CD , OD ,已知∠ A+ 1∠ 1=90°.2( 1)求证: AC 是⊙ O 的切线;( 2)若∠ B=30°, AD=2,求⊙ O 的半径.ADC1 BO25.(本小题 6 分)在平面直角坐标系中,已知抛物线y x22mx 与 x 轴的一个交点为A( 4,0).( 1)求抛物线的表达式及顶点 B 的坐标;( 2)将0 x 5时函数的图象记为G,点 P 为 G 上一动点,求P 点纵坐标 n 的取值范围;( 3)在( 2)的条件下,若经过点C( 4, -4)的直线y kx b k 0 与图象G有两个公共点,结合图象直接写出 b 的取值范围.26.(本小题6 分)在一节数学活动课上,老师和同学们一起研究不同等腰三角形形状差异问题,老师提出我们可以规定一个“正度” ,“正度” 应满足三个条件:①可以用来衡量等腰三角形与正三角形的接近程度;②相似的等腰三角形的“正度”相等;③“正度”的值是非负数.经过讨论后,有两个组给出了答案:小智组提出:设等腰三角形的底和腰分别为a,b,可用式子a b 来表示“正度”, a b 的值越小,表示等腰三角形越接近正三角形;小信组提出:设等腰三角形的底角和顶角分别为α和β,可用式子来表示“正度” ,的值越小,表示等腰三角形越接近正三角形.⑴他们的方案哪个较为合理,为什么?⑵请再写出一种可以衡量“正度”的表达式.北京市朝阳区2016 年初中毕业考试数学试卷评分标准及参考答案2016.4一、 (每小 3 分,共 30 分)1. B 2. C 3. B4.C 5. D 6. A7.C8. D9. A10. B二、填空 (每小 3 分,共18 分)11. a x y x y12. 613.(5 , 1) 14. 5π 15. k 2 且 k 016.三 分 相等的两个三角形全等;全等三角形 角相等(写出其中一个即可). 三、解答 ( 17— 24 每小5 分, 25—26 每小6 分,共 52 分)17.解:原式132 22 分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯42=4. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯分 518.解: 3x3 2x1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分3x 2x 3 1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分x2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分∴原不等式的所有正整数解 1,2. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分19.已知: AD = CB , AD ∥ CB ,∠ D =∠ B . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 分求 : AE = CF .明:∵ AD ∥ CB ,∴∠ A =∠ C.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分∵AD = CB ,∠ D =∠ B,∴△ ADF ≌△ CBE ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分∴AF =CE. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分∴AE =CF.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分1x 220.解:原式y分x y x⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯32 yx y ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯分 4x 2 y当 x 3y ,原式3 y y 2 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分3y 2 y21. 解:( 1) 8.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分( 2) 0.75. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分( 3)答案依据数据 明,合理即可.如:6.6 万人,因 市喜 的初中生人数逐年增 ,且增 快. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分22. 解: 第二批 植每盆 x 元. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 分依 意,得80007500 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分x10x解得 x 150. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分, x =150 是原方程的解,且符合 意.⋯⋯⋯⋯⋯ 4 分答:第二批 植每盆150 元. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分23.( 1)解:∵∠ B=∠ ACE=90 °,∴∠ A+∠ ACB=90°,∠ ECD+∠ ACB=90°.∴∠ A=∠ ECD . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 分∵∠ B=∠ D=90°,∴△ ABC ∽△ CDE . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分∴ BCAB . DECD∵ BC1AB 1 , CD 4 ,2∴ DE2 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分( 2) 明:∵∠ B=∠ D=90°, ∴∠B+∠ D=180°.∴ AB ∥ DE . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分 ∵ AB=DE=2,∴四 形 ABDE 是平行四 形. ∵∠B=90°,∴平行四 形 ABDE 是矩形. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分24.( 1) 明:依 意,得∠B= 1∠1. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分2∵∠ A+ 1∠1=90°,2∴∠ A+∠ B=90°. ∴∠ ACB=90°. ∴ AC ⊥ BC.∵ BC 是⊙ O 的直径,∴ AC 是⊙ O 的切 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分 ( 2)解:∵ BC 是⊙ O 的直径,∴∠ CDB =∠ ADC=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分∵∠ B=30°,∴∠ A=60°,∠ ACD=30°.∴ AC=2AD =4. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分AC 4 3 .∴ BCtan B∴⊙ O 的半径 23 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分25.解:( 1)∵ A ( 4, 0)在抛物 y x 2 2mx 上,∴16 8m 0 .解得m 2 .∴ y x2 4 x .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分即 y x2 24 .∴ 点坐 B 2, 4 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分(2)当x2,y有最小–4;当x 5 ,y有最大 5.∴点 P 坐的n 的取范是 4 n 5 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分(3) 4 b 0 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分26.解:( 1)小信的方案合理.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分因的越小,两个角越接近60°,等腰三角形就越接近正三角形,且保相似三角形的正度相等.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分小智的方案不合理.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分因不能保相似的等腰三角形的正度相等,如三分4、 4、 2 和 8、 8、 4,4 2 8 4 |.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分(2)60 (+120 ,b1 , 1 ,⋯)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分a明:各解答的其他正确解法参照以上准分.。
2016-2017学年北京市朝阳区九年级(上)期末数学试卷含答案
2016-2017学年北京市朝阳区九年级(上)期末数学试卷一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有一个.1.二次函数y=(x﹣1)2﹣3的最小值是()A.2 B.1 C.﹣2 D.﹣32.下列事件中,是必然事件的是()A.明天太阳从东方升起B.射击运动员射击一次,命中靶心C.随意翻到一本书的某页,这页的页码是奇数D.经过有交通信号灯的路口,遇到红灯3.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是()A.B.C.D.4.如图,在△ABC中,DE∥BC,DE分别交AB,AC于点D,E,若AD:DB=1:2,则△ADE与△ABC的面积之比是()A.1:3 B.1:4 C.1:9 D.1:165.已知点A(1,a)与点B(3,b)都在反比例函数y=﹣的图象上,则a与b之间的关系是()A.a>b B.a<b C.a≥b D.a=b6.已知圆锥的底面半径为2cm,母线长为3cm,则它的侧面展开图的面积为()A.18πcm2B.12πcm2C.6πcm2D.3πcm27.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.则用电阻R表示电流I的函数表达式为()A.B.C.D.8.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为5,AC=8.则cosB的值是()A.B.C.D.9.《九章算术》是我国古代内容极为丰富的数学名著,书中有这样一个问题:“今有勾八步,股十五步,问勾中容圆,径几何?”其意思是:“如图,今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”此问题中,该内切圆的直径是()A.5步B.6步C.8步D.10步10.已知二次函数y1=ax2+bx+c(a≠0)和一次函数y2=kx+n(k≠0)的图象如图所示,下面有四个推断:①二次函数y1有最大值②二次函数y1的图象关于直线x=﹣1对称③当x=﹣2时,二次函数y1的值大于0④过动点P(m,0)且垂直于x轴的直线与y1,y2的图象的交点分别为C,D,当点C位于点D上方时,m的取值范围是m<﹣3或m>﹣1.其中正确的是()A.①③ B.①④ C.②③ D.②④二、填空题(本题共18分,每小题3分)11.将二次函数y=x2﹣2x﹣5化为y=a(x﹣h)2+k的形式为y= .12.抛物线y=x2﹣2x+m与x轴有两个公共点,请写出一个符合条件的表达式为.13.如图,若点P在反比例函数y=﹣(x<0)的图象上,过点P作PM⊥x轴于点M,PN⊥y轴于点N,则矩形PMON 的面积为.14.某农科所在相同条件下做某种作物种子发芽率的试验,结果如表所示:则该作物种子发芽的概率约为.15.如图,△ABC中,D、E分别是AB、AC边上一点,连接DE.请你添加一个条件,使△ADE∽△ABC,则你添加的这一个条件可以是(写出一个即可).16.阅读下面材料:①作线段AB的垂直平分线m;②作线段BC的垂直平分线n,与直线m交于点O;③以点O为圆心,OA为半径作△ABC的外接圆;④在弧ACB上取一点P,连结AP,BP.所以∠APB=∠ACB.老师说:“小明的作法正确.”请回答:(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是;(2)∠APB=∠ACB的依据是.、解答题(本题共72分,第17-26题每小题5分,第27题7分,第28题7分,第29题8分)17.(5分)计算:2sin45°+tan60°+2cos30°﹣.18.(5分)如图,△ABC中,点D在边AB上,满足∠ACD=∠ABC,若AC=,AD=1,求DB的长.19.(5分)已知二次函数y=ax2+bx+c(a≠0)中,函数y与自变量x的部分对应值如表:(1)求二次函数的表达式,并写出这个二次函数图象的顶点坐标;(2)求出该函数图象与x轴的交点坐标.20.(5分)如图,在平面直角坐标系xOy中,△ABC的三个顶点分别为A(2,6),B(4,2),C(6,2).(1)以原点O为位似中心,将△ABC缩小为原来的,得到△DEF.请在第一象限内,画出△DEF.(2)在(1)的条件下,点A的对应点D的坐标为,点B的对应点E的坐标为.21.(5分)如图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分.如果M是⊙O中弦CD的中点,EM 经过圆心O交⊙O于点E,CD=10,EM=25.求⊙O的半径.22.(5分)如图,在Rt△ABC中,∠C=90°,点D是BC边的中点,CD=2,tanB=.(1)求AD和AB的长;(2)求sin∠BAD的值.23.(5分)已知一次函数y=﹣2x+1的图象与y轴交于点A,点B(﹣1,n)是该函数图象与反比例函数y=(k ≠0)图象在第二象限内的交点.(1)求点B的坐标及k的值;(2)试在x轴上确定点C,使AC=AB,直接写出点C的坐标.24.(5分)如图,用一段长为40m的篱笆围成一个一边靠墙的矩形花圃ABCD,墙长28m.设AB长为x m,矩形的面积为y m2.(1)写出y与x的函数关系式;(2)当AB长为多少米时,所围成的花圃面积最大?最大值是多少?(3)当花圃的面积为150m2时,AB长为多少米?25.(5分)如图,AB是⊙O的直径,C,D是⊙O上两点,且=,过点C的直线CF⊥AD于点F,交AB的延长线于点E,连接AC.(1)求证:EF是⊙O的切线;(2)连接FO,若sinE=,⊙O的半径为r,请写出求线段FO长的思路.26.(5分)某“数学兴趣小组”根据学习函数的经验,对函数y=﹣x2+2|x|+1的图象和性质进行了探究,探究过程如下,请补充完整:(1)自变量x的取值范围是全体实数,x与y的几组对应数值如表:其中m= ;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(3)根据函数图象,写出:①该函数的一条性质;②直线y=kx+b经过点(﹣1,2),若关于x的方程﹣x2+2|x|+1=kx+b有4个互不相等的实数根,则b的取值范围是.27.(7分)在平面直角坐标系xOy中,直线y=﹣x+n经过点A(﹣4,2),分别与x,y轴交于点B,C,抛物线y=x2﹣2mx+m2﹣n的顶点为D.(1)求点B,C的坐标;(2)①直接写出抛物线顶点D的坐标(用含m的式子表示);②若抛物线y=x2﹣2mx+m2﹣n与线段BC有公共点,求m的取值范围.28.(7分)在Rt△ABC中,∠ACB=90°,O为AB边上的一点,且tanB=,点D为AC边上的动点(不与点A,C 重合),将线段OD绕点O顺时针旋转90°,交BC于点E.(1)如图1,若O为AB边中点,D为AC边中点,则的值为;(2)若O为AB边中点,D不是AC边的中点,①请根据题意将图2补全;②小军通过观察、实验,提出猜想:点D在AC边上运动的过程中,(1)中的值不变.小军把这个猜想与同学们进行交流,通过讨论,形成了求的值的几种想法:想法1:过点O作OF⊥AB交BC于点F,要求的值,需证明△OEF∽△ODA.想法2:分别取AC,BC的中点H,G,连接OH,OG,要求的值,需证明△OGE∽△OHD.想法3:连接OC,DE,要求的值,需证C,D,O,E四点共圆.…请你参考上面的想法,帮助小军写出求的值的过程(一种方法即可);(3)若=(n≥2且n为正整数),则的值为(用含n的式子表示).29.(8分)在平面直角坐标系xOy中,⊙C的半径为r(r>1),P是圆内与圆心C不重合的点,⊙C的“完美点”的定义如下:若直线CP与⊙C交于点A,B,满足|PA﹣PB|=2,则称点P为⊙C的“完美点”,如图为⊙C及其“完美点”P的示意图.(1)当⊙O的半径为2时,①在点M(,0),N(0,1),T(﹣,﹣)中,⊙O的“完美点”是;②若⊙O的“完美点”P在直线y=x上,求PO的长及点P的坐标;(2)⊙C的圆心在直线y=x+1上,半径为2,若y轴上存在⊙C的“完美点”,求圆心C的纵坐标t的取值范围.数学试题答案一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有一个.1.【考点】二次函数的最值.【分析】由顶点式可知当x=1时,y取得最小值﹣3.【解答】解:∵y=(x﹣1)2﹣3,∴当x=1时,y取得最小值﹣3,故选:D.【点评】本题主要考查二次函数的最值,熟练掌握二次函数的性质是解题的关键.2.【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念,可得答案.【解答】解:A、明天太阳从东方升起是必然事件,故A正确;B、射击运动员射击一次,命中靶心是随机事件,故B错误;C、随意翻到一本书的某页,这页的页码是奇数是随机事件,故C错误;D、经过有交通信号灯的路口,遇到红灯是随机事件,故D错误;故选:A.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.【考点】概率公式.【分析】直接利用概率公式求解.【解答】解:从该盒子中任意摸出一个球,摸到黄球的概率==.故选A.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.4.【考点】相似三角形的判定与性质.【分析】根据DE∥BC,即可证得△ADE∽△ABC,然后根据相似三角形的面积的比等于相似比的平方,即可求解.【解答】解:∵AD:DB=1:2,∴AD:AB=1:3,∵DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.【点评】本题考查了三角形的判定和性质:熟练掌握相似三角形的面积比是相似比的平方是解题的关键.5.【考点】反比例函数图象上点的坐标特征.【分析】把所给点的横纵坐标代入反比例函数的解析式,求出a与b的值,比较大小即可.【解答】解:点A(1,a)在反比例函数y=﹣的图象上,a=﹣12,点(3,b)在反比例函数y=﹣的图象上,b=﹣4,∴a<b.故选:B.【点评】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积等于比例系数.6.【考点】圆锥的计算.【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【解答】解:它的侧面展开图的面积=•2π•2•3=6π(cm2).故选C.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.【考点】反比例函数的应用;根据实际问题列反比例函数关系式.【分析】根据函数图象可用电阻R表示电流I的函数解析式为I=,再把(2,3)代入可得k的值,进而可得函数解析式.【解答】解:设用电阻R表示电流I的函数解析式为I=,∵过(2,3),∴k=3×2=6,∴I=,故选:D.【点评】此题主要考查了待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.8.【考点】三角形的外接圆与外心;解直角三角形.【分析】连接CD,则可得∠ACD=90°,且∠B=∠D,在Rt△ADC中可求得CD,则可求得cosD,即可求得答案.【解答】解:如图,连接CD,∵AD⊙O的直径,∴∠ACD=90°,且∠B=∠D,在Rt△ACD中,AD=5×2=10,AC=8,∴CD=6,∴cosD===,∴cosB=cosD=,故选B.【点评】本题主要考查圆周角定理及三角函数的定义,构造直角三角形是解题的关键.9.【考点】三角形的内切圆与内心.【分析】由勾股定理可求得斜边长,分别连接圆心和三个切点,设内切圆的半径为r,利用面积相等可得到关于r 的方程,可求得内切圆的半径,则可求得内切圆的直径.【解答】解:如图,在Rt△ABC中,AC=8,BC=15,∠C=90°,∴AB==17,∴S△ABC=AC•BC=×8×15=60,设内切圆的圆心为O,分别连接圆心和三个切点,及OA、OB、OC,设内切圆的半径为r,∴S△ABC=S△AOB+S△BOC+S△AOC=×r(AB+BC+AC)=20r,∴20r=60,解得r=3,∴内切圆的直径为6步,故选B.【点评】本题主要考查三角形的内切圆,连接圆心和切点,把三角形的面积分成三个三个角形的面积得到关于r的方程是解题的关键.10.【考点】二次函数图象上点的坐标特征;一次函数图象与系数的关系;二次函数的最值.【分析】根据函数的图象即可得到结论.【解答】解:∵二次函数y1=ax2+bx+c(a≠0)的图象的开口向上,∴二次函数y1有最小值,故①错误;观察函数图象可知二次函数y1的图象关于直线x=﹣1对称,故②正确;当x=﹣2时,二次函数y1的值小于0,故③错误;当x<﹣3或x>﹣1时,抛物线在直线的上方,∴m的取值范围为:m<﹣3或m>﹣1,故④正确.故选D.【点评】本题考查了二次函数图象上点的坐标特征以及函数图象,熟练运用二次函数图象上点的坐标特征求出二次函数解析式是解题的关键.二、填空题(本题共18分,每小题3分)11.【考点】二次函数的三种形式.【分析】利用配方法整理即可得解;【解答】解:(1)y=x2﹣2x﹣5=x2﹣2x+1﹣6=(x﹣1)2﹣6,故答案为:(x﹣1)2﹣6.【点评】本题考查了二次函数的三种形式的转化,二次函数的性质,熟练掌握配方法是解题的关键.12.【考点】抛物线与x轴的交点.【分析】根据判别式的意义得到△=(﹣2)2﹣4m>0,然后解不等式组求出m的范围,再在此范围内写出一个m的值即可.【解答】解:根据题意得到△=(﹣2)2﹣4m>0,解得m<1,若m取0,抛物线解析式为y=x2﹣2x.故答案为y=x2﹣2x.【点评】本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2﹣4ac决定抛物线与x轴的交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.13.【考点】反比例函数系数k的几何意义.【分析】设PN=a,PM=b,根据P点在第二象限得P(﹣a,b),根据矩形的面积公式即可得到结论.【解答】解:设PN=a,PM=b,∵P点在第二象限,∴P(﹣a,b),代入y=中,得k=﹣ab=﹣3,∴矩形PMON的面积=PN•PM=ab=3,故答案为:3.【点评】本题考查了反比例函数系数k的几何意义.过反比例函数图象上一点作x轴、y轴的垂线,所得矩形的面积为反比例函数系数k的绝对值.14.【考点】模拟实验.【分析】选一个表格中发芽种子频率比较按近的数,如0.900、0.910等都可以.【解答】解:答案不唯一,如:0.910.故答案为:0.910.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.15.【考点】相似三角形的判定.【分析】利用有两组角对应相等的两个三角形相似添加条件.【解答】解:∵∠DAE=∠BAC,∴当∠ADE=∠B时,△ADE∽△ABC.故答案为∠ADE=∠B.【点评】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.16.【考点】作图—复杂作图;线段垂直平分线的性质;三角形的外接圆与外心.【分析】(1)根据线段的垂直平分线的性质定理以及等量代换即可得出结论.(2)根据同弧所对的圆周角相等即可得出结论.【解答】解:(1)如图2中,∵MN垂直平分AB,EF垂直平分BC,∴OA=OB,OB=OC(线段垂直平分线上的点与这条线段两个端点的距离相等),∴OA=OB=OC(等量代换)故答案为①线段垂直平分线上的点与这条线段两个端点的距离相等;②等量代换.(2)∵=,∴∠APB=∠ACB(同弧所对的圆周角相等).故答案为同弧所对的圆周角相等.【点评】本题考查作图﹣复杂作图、线段的垂直平分线的性质、三角形的外心等知识,解题的关键是熟练掌握三角形外心的性质,属于中考常考题型.三、解答题(本题共72分,第17-26题每小题5分,第27题7分,第28题7分,第29题8分)17.【考点】实数的运算;特殊角的三角函数值.【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:原式=2×++2×﹣2=.【点评】此题主要考查了实数运算以及特殊角的三角函数值,正确记忆相关数据是解题关键.18.【考点】相似三角形的判定与性质.【分析】由∠ACD=∠ABC与∠A是公共角,根据有两角对应相等的三角形相似,即可证得△ADC∽△ACB,又由相似三角形的对应边成比例,即可求得AB,进而得到DB的长.【解答】解:∵∠ACD=∠ABC,∠A=∠A,∴△ACD∽△ABC.∴,∴.∴AB=3,∴DB=AB﹣AD=2.【点评】此题考查了相似三角形的判定与性质.此题难度不大,解题的关键是注意方程思想与数形结合思想的应用.19.【考点】抛物线与x轴的交点;待定系数法求二次函数解析式.【分析】(1)由待定系数法即可得出答案;(2)求出y=0时x的值,即可得出答案.【解答】解:(1)由题意,得c=﹣3.将点(2,5),(﹣1,﹣4)代入,得解得∴y=x2+2x﹣3.顶点坐标为(﹣1,﹣4).(2)当y=0时,x2+2x﹣3,解得:x=﹣3或x=1,∴函数图象与x轴的交点坐标为(﹣3,0),(1,0).【点评】本题考查了待定系数法求二次函数的解析式、抛物线与x轴的交点;求出二次函数的解析式是解决问题的关键.20.【考点】作图-位似变换.【分析】(1)分别连接OA、OB、OC,然后分别取它们的中点得到D、E、F;(2)利用线段中点坐标公式可得到D点和E点坐标.【解答】解:(1)如图,△DEF为所作;(2)D(1,3),E(2,1).故答案为(1,3),(2,1).【点评】本题考查了作图﹣位似变换:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.21.【考点】垂径定理的应用.【分析】根据垂径定理得出EM⊥CD,则CM=DM=2,在Rt△COM中,有OC2=CM2+OM2,进而可求得半径OC.【解答】解:如图,连接OC,∵M是弦CD的中点,EM过圆心O,∴EM⊥CD.∴CM=MD.∵CD=10,∴CM=5.设OC=x,则OM=25﹣x,在Rt△COM中,根据勾股定理,得52+(25﹣x)2=x2.解得 x=13.∴⊙O的半径为13.【点评】此题主要考查了垂径定理的应用,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形.22.【考点】解直角三角形.【分析】(1)由中点定义求BC=4,根据tanB=得:AC=3,由勾股定理得:AB=5,AD=;(2)作高线DE,证明△DEB∽△ACB,求DE的长,再利用三角函数定义求结果.【解答】解:(1)∵D是BC的中点,CD=2,∴BD=DC=2,BC=4,在Rt△ACB中,由 tanB=,∴,∴AC=3,由勾股定理得:AD===,AB===5;(2)过点D作DE⊥AB于E,∴∠C=∠DEB=90°,又∠B=∠B,∴△DEB∽△ACB,∴,∴,∴,∴sin∠BAD===.【点评】本题考查了解直角三角形,熟练掌握直角三角形的边角关系是解题的关键.23.【考点】反比例函数与一次函数的交点问题.【分析】(1)由点B的横坐标利用一次函数图象上点的坐标特征即可求出点B的坐标,根据点B的坐标利用反比例函数图象上点的坐标特征即可求出k值;(2)令x=0利用一次函数图象上点的坐标特征可求出点A的坐标,设点C的坐标为(m,0),根据两点间的距离公式结合AC=AB即可得出关于m无理方程,解之即可得出m的值,进而得出点C的坐标.【解答】解:(1)∵点B(﹣1,n)在直线y=﹣2x+1上,∴n=2+1=3.∴点B的坐标为(﹣1,3).∵点B(﹣1,3)在反比例函数的图象上,∴k=﹣3.(2)当x=0时,y=﹣2x+1=1,∴点A的坐标为(0,1).设点C的坐标为(m,0),∵AC=AB,∴==,解得:m=±2.∴点C的坐标为(2,0)或(﹣2,0).【点评】本题考查了反比例函数与一次函数的交点问题、一次函数图象上点的坐标特征以及反比例函数图象上点的坐标特征,根据一次函数图象上点的坐标特征找出点A、B的坐标是解题的关键.24.【考点】二次函数的应用;一元二次方程的应用.【分析】(1)根据题意可以得到y与x的函数关系式;(2)根据(1)中的函数关系式化为顶点式,注意x的取值范围;(3)根据(1)和(2)中的关系可以求得AB的长.【解答】解:(1)y=x(40﹣2x)=﹣2x2+40x,即y与x的函数关系式是y=﹣2x2+40x;(2)由题意,得,解得,6≤x<20.由题意,得 y=﹣2x2+40x=﹣2(x﹣10)2+200,∴当x=10时,y有最大值,y的最大值为200,即当AB长为10m时,花圃面积最大,最大面积为200m2;(3)令y=150,则﹣2x2+40x=150.解得,x1=5,x2=15,∵6≤x<20,∴x=15,即当AB长为15m时,面积为150m2.【点评】本题考查二次函数的应用、一元二次方程的应用,解题的关键是明确题意,找出所求问题需要的条件.25.【考点】切线的判定;圆心角、弧、弦的关系;解直角三角形.【分析】(1)连接OC,根据等腰三角形的性质得到∠1=∠2,根据圆周角定理得到∠1=∠3,推出OC∥AF,根据切线的判定定理即可得到结论;(2)由sinE=,推出△AEF,△OEC都为含30°的直角三角形;推出△ACF为含30°的直角三角形;由勾股定理可求OF的长.【解答】(1)证明:如图,连接OC,∵OC=OA,∴∠1=∠2,∵=,∴∠1=∠3,∴∠2=∠3,∴OC∥AF,∵CF⊥AD,∴∠CFA=90°,∴∠OCF=90°,∴OC⊥EF,∵OC为⊙O的半径,∴EF是⊙O的切线;(2)解:求解思路如下:①在Rt△AEF和Rt△OEC中,由sinE=,可得△AEF,△OEC都为含30°的直角三角形;②由∠1=∠3,可知△ACF为含30°的直角三角形;③由⊙O的半径为r,可求OE,AE的长,从而可求CF的长;④在Rt△COF中,由勾股定理可求OF的长.【点评】本题考查了切线的判定,直角三角形的性质,圆周角定理,平行线的判定和性质,正确的作出辅助线是解题的关键.26.【考点】抛物线与x轴的交点;一次函数的图象;一次函数与一元一次方程;二次函数的图象.【分析】(1)把x=﹣2代入函数解释式即可得m的值;(2)描点、连线即可得到函数的图象;(3)①根据函数图象得到函数y=x2﹣2|x|+1的图象关于y轴对称;当x>1时,y随x的增大而减少;②根据函数的图象即可得到b的取值范围是1<b<2.【解答】解:(1)当x=﹣2时,m=﹣(﹣2)2+2×|﹣2|+1=﹣4+4+1=1.(2)如图所示:(3)①答案不唯一.如:函数图象关于y轴对称.②由函数图象知:∵关于x的方程﹣x2+2|x|+1=kx+b有4个互不相等的实数根,∴b的取值范围是1<b<2.故答案为:1;函数图象关于y轴对称;1<b<2.【点评】本题考查了抛物线与x轴的交点,二次函数的图象和性质,正确的识别图象是解题的关键.27.【考点】二次函数的性质;一次函数的性质;一次函数图象上点的坐标特征.【分析】(1)把A点坐标代入直线解析式,可求得n的值,可得直线解析式,即可求得B、C的坐标;(2)①把抛物线解析式化为顶点式,结合(1)中所求n的值,可求得D点坐标;②把B、C两点的坐标分别代入抛物线解析式,可求得m的值,从而可求得其取值范围.【解答】解:(1)把A(﹣4,2)代入y=x+n中,得n=1,∴直线解析式为y=x+1,令y=0可求得x=4,令x=0可得y=1,∴B(4,0),C(0,1);(2)①∵y=x2﹣2mx+m2﹣n=(x﹣m)2﹣1,∴D(m,﹣1);②将点(0,1)代入y=x2﹣2mx+m2﹣1中,得1=m2﹣1,解得m=或m=﹣,将点(4,0)代入y=x2﹣2mx+m2﹣1中,得0=16﹣8m+m2﹣1,解得m=5或m=3,∴.【点评】本题主要考查二次函数的性质,求得抛物线的解析式是解题的关键,注意数形结合.28.【考点】相似形综合题;相似三角形的判定与性质.【分析】(1)根据O为AB边中点,D为AC边中点,得出四边形CDOE是矩形,再根据tanB==tan∠AOD,得出=,进而得到=;(2)①根据题意将图2补全即可;②法1:过点O作OF⊥AB交BC于点F,要求的值,需证明△OEF∽△ODA;法2:分别取AC,BC的中点H,G,连接OH,OG,要求的值,需证明△OGE∽△OHD;法3:连接OC,DE,要求的值,需证C,D,O,E四点共圆.分别根据三种方法进行解答即可;(3)先过点O作OF⊥AB交BC于点F,要求的值,需证明△OEF∽△ODA,得出,再根据=(n≥2且n为正整数),得到=即可.【解答】解:(1)如图1,∵O为AB边中点,D为AC边中点,∴OD∥BC,∠CDO=90°,又∵∠ACB=90°,∠DOE=90°,∴四边形CDOE是矩形,∴OE=CD=AD,∵OD∥BC,∴∠AOD=∠B,∴tanB==tan∠AOD,即=,∴=.故答案为:;(2)①如图所示:②法1:如图,过点O作OF⊥AB交BC于点F,∵∠DOE=90°,∴∠AOD+∠DOF=∠DOF+∠FOE=90°,∴∠AOD=∠FOE,∵∠ACB=90°,∴∠A+∠B=∠OFE+∠B=90°,∴∠A=∠OFE,∴△OEF∽△ODA,∴,∵O为AB边中点,∴OA=OB.在Rt△FOB中,tanB=,∴,∴,∴;法2:如图,分别取AC,BC的中点H,G,连接OH,OG,∵O为AB边中点,∴OH∥BC,OH=,OG∥AC.∵∠ACB=90°,∴∠OHD=∠OGE=90°,∴∠HOG=90°,∵∠DOE=90°,∴∠HOD+∠DOG=∠DOG+∠GOE=90°,∴∠HOD=∠GOE,∴△OGE∽△OHD,∴,∵tanB=,∴,∵OH=GB,∴,∴;法3:如图,连接OC,DE,∵∠ACB=90°,∠DOE=90°,∴DE的中点到点C,D,O,E的距离相等,∴C,D,O,E四点共圆,∴∠ODE=∠OCE,∵O为AB边中点,∴OC=OB,∴∠B=∠OCE,∴∠ODE=∠B,∵tanB=,∴;(3)如图所示,过点O作OF⊥AB交BC于点F,∵∠DOE=90°,∴∠AOD+∠DOF=∠DOF+∠FOE=90°,∴∠AOD=∠FOE.∵∠ACB=90°,∴∠A+∠B=∠OFE+∠B=90°,∴∠A=∠OFE,∴△OEF∽△ODA,∴,∵=,∴可设OB=1,则AB=n,AO=n﹣1,∵在Rt△FOB中,tanB=,∴OF=,∴==,∴=.故答案为:.【点评】本题属于相似形综合题,主要考查了相似三角形的判定与性质的综合应用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合;或作辅助线构造相似三角形,判定三角形相似的方法有时可单独使用,有时需要综合运用.29.【考点】圆的综合题.【分析】(1)①利用圆的“完美点”的定义直接判断即可得出结论;②先确定出满足圆的“完美点”的OP的长度,然后分情况讨论计算即可得出结论;(2)先判断出圆的“完美点”的轨迹,然后确定出取极值时⊙C与y轴的位置关系即可得出结论.【解答】解:(1)①∵点M(,0),∴设⊙O与x轴的交点为A,B,∵⊙O的半径为2,∴取A(﹣2,0),B(2,0),∴|MA﹣MB|=|(+2)﹣(﹣2)|=4≠2,∴点M不是⊙O的“完美点”,同理:点N,T是⊙O的“完美点”.故答案为N,T;②如图1,根据题意,|PA﹣PB|=2,∴|OP+2﹣(2﹣OP)|=2,∴OP=1.若点P在第一象限内,作PQ⊥x轴于点Q,∵点P在直线上,OP=1,∴OQ=,PQ=.∴P(,).若点P在第三象限内,根据对称性可知其坐标为(﹣,﹣).综上所述,PO的长为1,点P的坐标为(,)或(﹣,﹣).(2)对于⊙C的任意一个“完美点”P都有|PA﹣PB|=2,∴|CP+2﹣(2﹣CP)|=2.∴CP=1.∴对于任意的点P,满足CP=1,都有|CP+2﹣(2﹣CP)|=2,∴|PA﹣PB|=2,故此时点P为⊙C的“完美点”.因此,⊙C的“完美点”是以点C为圆心,1为半径的圆.设直线与y轴交于点D,如图2,当⊙C移动到与y轴相切且切点在点D的下方时,t的值最小.设切点为E,连接CE,∵⊙C的圆心在直线y=x+1上,∴此直线和x轴,y轴的交点C(0,1),F(﹣,0),∴OF=,OD=1,∵CE∥OF,∴△DOF∽△DEC,∴,∴,∴DE=2.∴OE=t的最小值为1﹣2.当⊙C移动到与y轴相切且切点在点D的上方时,t的值最大.同理可得t的最大值为1+2.综上所述,t的取值范围为1﹣2≤t≤1+2。
2016.1朝阳区初三数学期末试卷及答案
北京市朝阳区2015~2016学年度第一学期期末检测九年级数学试卷(选用) 2016.1(考试时间120分钟 满分120分) 成绩______________一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.下列交通标志中,既是轴对称图形又是中心对称图形的是ABCD2.下列事件为必然事件的是A. 任意掷一枚均匀的硬币,正面朝上B. 篮球运动员投篮,投进篮筐C. 一个星期有七天D. 打开电视机,正在播放新闻3.在平面直角坐标系中,点B 的坐标为(3,1),则点B 关于原点的对称点的坐标为 A. (3,-1) B. (-3,1) C. (-1,-3) D. (-3,-1)4.如图,AC 与BD 相交于点E ,AD ∥BC .若AE =2,CE =3,AD =3,则BC 的长度是 A. 2 B. 3 C. 4.5 D. 65.如图,在Rt △ABC 中,∠C =90°,BC =3,AC =4,则sin A 的值是A.43B.34 C.53 D.54第4题图 第5题图第6题图6.如图,反比例函数2y x=-的图象上有一点A ,过点A 作AB ⊥x 轴于B ,则AOB S V 是 A.12B.1C.2D.47.如图,在⊙O 中,∠BOC =100°,则∠A 等于 A. 100° B. 50° C. 40° D. 25°第7题图第8题图8.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A ’OB ’,若∠AOB =15°,则∠AOB ’的度数是 A. 25° B. 30° C. 35° D. 40° 9.如图,点D ,E 分别在△ABC 的AB ,AC 边上,增加下列条件中的一个:①∠AED =∠B ,②∠ADE =∠C ,③BC DE AB AE =,④ABAE AC AD =,⑤AE AD AC ⋅=2, 使△ADE 与△ACB 一定相似的有A.①②④B.②④⑤C.①②③④D.①②③⑤图①图②第9题图 第10题图10.小阳在如图①所示的扇形舞台上沿O -M -N 匀速行走,他从点O 出发,沿箭头所示的方向经过点M 再走到点N ,共用时70秒.有一台摄像机选择了一个固定的位置记录了小阳的走路过程,设小阳走路的时间为t (单位:秒),他与摄像机的距离为y (单位:米),表示y 与t 的函数关系的图象大致如图②,则这个固定位置可能是图①中的 A. 点Q B. 点P C. 点M D. 点N二、填空题(本题共18分,每小题3分)11.在一个不透明的袋子中,装有2个红球和3个白球,它们除颜色外其余均相同.现随机从袋中摸出一个球,颜色是白色的概率是 . 12.如图,正六边形ABCDEF 内接于⊙O ,⊙O 的半径为1,则»AB 的长为 .13.已知y 是x 的反比例函数,且在每个象限内,y 随x 的增大而减小.请写出一个满足以上条件的函数表达式 .FE ABCDBOA第12题图 第14题图 第15题图 第16题图14.如图,矩形ABCD 中,点E 是边AD 的中点,BE 交对角线AC 于点F ,则△AFE 与△BCF 的面积比等于.15.如图,⊙O的半径为6,OA与弦AB的夹角是30°,则弦AB的长度是.16.如图,已知反比例函数2yx=的图象上有一组点B1,B2,…,B n,它们的横坐标依次增加1,且点B1横坐标为1.“①,②,③…”分别表示如图所示的三角形的面积,记S1=①-②,S2=②-③,…,则S7的值为,S1+S2+…+S n=(用含n的式子表示).三、解答题(本题共72分,第17-26小题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.计算:12cos45tan60sin302︒-︒+︒--.18.如图,在Rt△ABC中,∠C=90°,D是AC边上一点,DE⊥AB于点E.若DE=2,BC=3,AC=6,求AE的长.19.如图,点A的坐标为(3,2),点B的坐标为(3,0).作如下操作:①以点A为旋转中心,将△ABO顺时针方向旋转90°,得到△AB1O1;②以点O为位似中心,将△ABO放大,得到△A2B2O,使相似比为1∶2,且点A2在第三象限.(1)在图中画出△AB1O1和△A2B2O;(2)请直接写出点A2的坐标:__________.20.党的十八大提出,倡导富强、民主、文明、和谐,倡导自由、平等、公正、法治,倡导爱国、敬业、诚信、友善,积极培育和践行社会主义核心价值观,这24个字是社会主义核心价值观的基本内容.其中:“富强、民主、文明、和谐”是国家..层面的价值目标;“自由、平等、公正、法治”是社会..层面的价值取向;“爱国、敬业、诚信、友善”是公民个人....层面的价值准则.文明和谐自由平等A BC D小光同学将其中的“文明”、“和谐”、“自由”、“平等”的文字分别贴在4张硬纸板上,制成如右图所示的卡片.将这4张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,不放回...,再随机抽取一张卡片.(1)小光第一次抽取的卡片上的文字是国家..层面价值目标的概率是;(2)请你用列表法或画树状图法,帮助小光求出两次抽取卡片上的文字一次是国家..层面价值目标、一次是社会..层面价值取向的概率(卡片名称可用字母表示).21.如图,在平面直角坐标系xOy中,正比例函数2y x=与反比例函数kyx=的图象交于A,B两点,点A的横坐标为2,AC⊥x轴于点C,连接BC.(1)求反比例函数的表达式;(2)若点P是反比例函数kyx=图象上的一点,且满足△OPC的面积是△ABC面积的一半,请直接写出点P的坐标.22.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.《九章算术》中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图①)阅读完这段文字后,小智画出了一个圆柱截面示意图(如图②),其中BO⊥CD于点A,求间径就是要求⊙O的直径.再次阅读后,发现AB=______寸,CD=____寸(一尺等于十寸),通过运用有关知识即可解决这个问题.请你补全题目条件,并帮助小智求出⊙O的直径.图①图②23.如图,在一次户外研学活动中,老师带领学生去测一条东西流向的河流的宽度(把河两岸看做平行线,河宽即两岸之间的垂线段的长度).某同学在河南岸A处观测到河对岸水边有一棵树P,测得P在A北偏东60°方向上,沿河岸向东前行20米到达B处,测得P在B北偏东45°方向上.求河宽(结果保留一位小数. 1.4142≈, 1.7323≈).24. 如图,已知△ABC是等边三角形,以AB为直径作⊙O,交BC边于点D,交AC边于点F,作DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若△ABC的边长为4,求EF的长度.25.如图①,在Rt△ABC中,∠C=90°.将△ABC绕点C逆时针旋转得到△A’B’C,旋转角为α,且0°<α<180°.在旋转过程中,点B’可以恰好落在AB的中点处,如图②.(1)求∠A的度数;(2)当点C到AA’的距离等于AC的一半时,求α的度数.图①图②备用图26. 有这样一个问题:探究函数262--=xxy的图象与性质.小慧根据学习函数的经验,对函数262--=xxy的图象与性质进行了探究.下面是小慧的探究过程,请补充完成:(1)函数262--=xxy的自变量x的取值范围是___________;(2)列出y与x的几组对应值.请直接写出m的值,m=__________;x …-3 -2 0 1 1.5 2.5 m 4 6 7 …y … 2.4 2.5 3 4 6 -2 0 1 1.5 1.6 …(3)请在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;(4)结合函数的图象,写出该函数的两条性质:①;②.xy–1–2–3–412345678–1–2–3–412345678OFEDOAB C27. 我们将能完全覆盖某平面图形的最小圆...称为该平面图形的最小覆盖圆......例如线段AB 的最小覆盖圆就是以线段AB 为直径的圆. (1)请分别作出图①中两个三角形的最小覆盖圆(要求用尺规作图,保留作图痕迹,不写作法);80°ABC100°AB C图①(2)三角形的最小覆盖圆有何规律?请直接写出你所得到的结论(不要求证明); (3)某城市有四个小区E F G H ,,,(其位置如图②所示),现拟建一个手机信号基站,为了使这四个小区居民的手机都能有信号,且使基站所需发射功率最小(距离越小,所需功率越小),此基站应建在何处?请写出你的结论..并说明研究思路.28.如图①,在平面直角坐标系中,直径为32的⊙A 经过坐标系原点O (0,0),与x 轴交于点B ,与y 轴交于点C (0,3).(1)求点B 的坐标;(2)如图②,过点B 作⊙A 的切线交直线OA 于点P ,求点P 的坐标; (3)过点P 作⊙A 的另一条切线PE ,请直接写出切点E的坐标.图①图②33.88°48°48.12°44°54°51°50°31°FEH G图②29.在数学活动课上,老师提出了一个问题,希望同学们进行探究.在平面直角坐标系中,若一次函数6y kx =+的图象与x 轴交于点A ,与y 轴交于点B ,与反比例函数xy 6=的图象交于C 、D 两点,则AD 和BC 有怎样的数量关系? 同学们通过合作讨论,逐渐完成了对问题的探究.小勇说:我们可以从特殊入手,取1k =-进行研究(如图①),此时我发现AD =BC .小攀说:在图①中,分别从点C 、D 两点向两条坐标轴作垂线,根据所学知识可以知道有两个图形的面积是相等的,并能求出确定的值,而且在图②中,此时1k ≠- ,这一结论仍然成立,即_______的面积=_______的面积,此面积的值为____.小高说:我还发现,在图①或图②中连接某两个已知点,得到的线段与AD 和BC 都相等,这条线段是 .xy123456654321I FA BH G DC Oxy123456654321IF A BH GDCO图① 图②(1)请完成以上填空; (2)请结合以上三位同学的讨论,对图②所示的情况下,证明AD =BC ; 小峰突然提出一个问题:通过刚才的证明,我们可以知道当直线与双曲线的两个交点都在第一象限时,AD BC =总是成立的,但我发现当k 的取值不同时,这两个交点有可能在不同象限,结论还成立吗? (3)请你结合小峰提出的问题,在图③中画出示意图,并判断结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.图北京市朝阳区2015~2016学年度第一学期期末检测九年级数学试卷答案 2016.1(考试时间120分钟 满分120分) 成绩______________一、选择题(本题共30分,每小题3分)1 2 3 4 5 6 7 8 9 10 ACDCCBBBAB二、填空题(本题共18分,每小题3分) 11121314151653 3π 如:1y x =,( k >0即可) 1463156(1分);1n n +(2分)三、解答题(本题共72分,第17-26小题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程. 17. 解:22130sin 60tan 45cos --︒+︒-︒ 21213222-+-⨯= …………………………………………………………………………4分 32-= ………………………………………………………………………………………5分18.解:∵︒=∠90C ,AB DE ⊥,∴︒=∠=∠90C AED . …………………………………………………………………………1分 又∵A A ∠=∠,∴AED ∆∽ACB ∆. ……………………………………………………………………………2分∴CBEDCA EA =. ……………………………………………………………………………………3分 又∵2=DE ,3=BC ,6=AC , ∴326=EA . ………………………………………………………………………………………4分∴4=AE . ………………………………………………………………………………………5分19.(1)每个三角形2分 …………………………………………………………………………4分(2)点2A 的坐标为()4,6--……………………………………………………………………5分 20. 解:(1)21……………………………………………………………………………………2分 (2)…………………4分共有12种情况,其中符合题意的有8种,∴32=P ………………………………………………………………………………5分 21. 解:(1)将2=x 代入x y 2=中,得422=⨯=y .∴点A 坐标为()42,. …………………………………………………………………1分 ∵点A 在反比例函数xky =的图象上, ∴842=⨯=k . ………………………………………………………………………2分 ∴反比例函数的表达式为xy 8=. ……………………………………………………3分 (2)()42,P 或()42--,. ……………………………………………………………5分22.解:(1)1;10 ………………………………………………………………………………2分(2)连接CO , ∵CD BO ⊥,∴521==CD CA .………………………………………………………3分 设x CO =,则1-=x AO ,在Rt CAO ∆中,︒=∠90CAO ,∴222CO CA AO =+.∴()22251x x =+-.……………………………………………………4分解得13=x ,∴⊙O 的直径为26寸.…………………………………………………………………………5分 23. 解:过P 作AB PC ⊥于点C ,……………………………………………………………1分ABC DBA C D CA B D DA B C第一次第二次∴︒=∠90ACP .由题意可知,︒=∠30PAC ,︒=∠45PBC . ∴︒=∠45BPC .∴PC BC =.……………………………………………2分 在Rt ACP ∆中,PC PACPCAC 3tan =∠=. ………3分∵20=AB ,∴PC AC PC 320==+. ∴1320-=PC ……………………………………………………………………………………4分 3.27≈(是否进行分母有理化可能造成差异,27.2~27.4均正确)………………5分答:河流宽度约为3.27米. 24.(1)证明:连接OD , ∵ABC ∆是等边三角形, ∴︒=∠=∠60C B . ∵OD OB =,∴︒=∠=∠60B ODB .…………………………………………………………………………1分∵AC DE ⊥, ∴︒=∠90DEC . ∴︒=∠30EDC . ∴︒=∠90ODE . ∴OD DE ⊥于点D .∵点D 在⊙O 上, ∴DE 是⊙O 的切线.……………………………………………………………………………2分 (2)连接AD ,BF , ∵AB 为⊙O 直径,∴︒=∠=∠90ADB AFB . ∴BF AF ⊥,BD AD ⊥.∵ABC ∆是等边三角形,∴221==BC DC ,221==AC FC . ………………………………………………………3分∵︒=∠30EDC ,∴121==DC EC .………………………………………………………………………………4分∴1=-=EC FC FE . …………………………………………………………………………5分(说明:其它方法请相应对照给分)25.解:(1)将ABC ∆绕点C 逆时针旋转得到C B A ''∆,旋转角为α,∴'CB CB = . ……………………………………………………………………………………1分 ∵点'B 可以恰好落在AB 的中点处, ∴点'B 是AB 的中点. ∵︒=∠90ACB ,∴'21'BB AB CB ==.……………………………………………………………………………2分 ∴''BB CB CB ==.即'CBB ∆是等边三角形.F E D OA B C FE DOAB C∴︒=∠60B . ∵︒=∠90ACB , ∴︒=∠30A . ……………………………………………………………………………………3分 (2)如图,过点C 作'AA CD ⊥于点D ,点C 到'AA 的距离等于AC 的一半,即AC CD 21=.在Rt ADC ∆中,︒=∠90ADC ,21sin ==∠AC CD CAD , ∴︒=∠30CAD .…………………………………………4分 ∵'CA CA =,∴︒=∠=∠30'CAD A .∴︒=∠120'ACA ,即︒=120α. ………………………5分26. (1)2≠x ……………………………………………………………………………………1分 (2)3=m …………………………………………………………………………………………2分(3)如图所示:………………………………………3分(4)可以从对称性、增减性、渐近性、最值、连续性、与坐标轴交点、图象所在象限等方面作答.………………………………………………………………………………………………5分 27(1)如图所示:……………………2分(2)锐角三角形的最小覆盖圆是其外接圆,钝角三角形的最小覆盖圆是以其最长边为直径的圆,直角三角形的最小覆盖圆二者均可. ………………………………………………………4分 (说明:写出三角形的最小覆盖圆是其外接圆,或是以其最长边为直径的圆,各给1分) (3)结论:HEF ∆的外接圆的圆心为手机信号基站所在位置. …………………………… 5分 研究思路:a .手机信号基站应建在四边形EFGH 的最小覆盖圆的圆心处;所以先考虑四边形EFGH 的外接80°OBA C100°O B A C圆,因为对角不互补,所以该四边形没有外接圆;b .作四边形对角线,将四边形分割成两个三角形,考虑其中一个三角形的最小覆盖圆能否覆盖另一个三角形,从而将四边形最小覆盖圆问题转化为三角形最小覆盖圆问题来研究;…………………………………………………………………………………6分c .若沿GE 分割,因为︒<∠+∠180GFE GHE ,所以这两个三角形的最小覆盖圆均不能完全覆盖另一个三角形;d .若沿HF 分割,因为︒>∠+∠180HGF HEF ,所以存在一个三角形的最小覆盖圆能完全覆盖另一个三角形的情况,又因为︒<∠90HEF ,所以HEF ∆的最小覆盖圆,即其外接圆能完全覆盖HGF ∆,因此HEF ∆的外接圆的圆心为手机信号基站所在位置. ……7分 (说明:1.学生的答案只要涉及到将四边形问题转化为三角形问题,可以给第6分;2.若学生答案含有以下情况之一,并借此分析沿GE 分割和沿HF 分割的差异性,均可以给第7分: ①比较四边形对角和的数量关系; ②同弧所对的圆周角的度数关系;③画出四个三角形的最小覆盖圆,通过观察或测量,比较大小后发现HEF ∆的外接圆的圆心为手机信号站所在位置.3.重在判断学生思维的方向,不过多的要求语言的规范和思维的严谨.)28.解:(1)如图①,连接BC . ∵︒=∠90BOC ,∴BC 是⊙A 的直径. ……………………………1分∴32=BC , ∵()30,C , ∴3=OC . ∴3=OB .∴()03,B .………………………………………2分 (2)如图②,过点P 作x PD ⊥轴于点D . ∵PB 为⊙A 的切线, ∴︒=∠90PBC .在Rt BOC ∆中,()03,B ,()3,0C , ∴33tan ==∠OB OC OBC . ∴︒=∠30OBC .…………………………………3分∴︒=∠30AOB .∴︒=∠-∠-∠-︒=∠30180ABP ABO POB OPB .∴3==BP OB . ………………………………………………………………………4分图①图②在Rt PBD ∆中,︒=∠90PDB ,︒=∠60PBD ,3=BP ,∴23=BD ,323=PD . ∵3=OB ,∴29=+=BD OB OD .∴⎪⎭⎫⎝⎛323,29P .…………………………………………………………………………5分 (3)⎪⎭⎫ ⎝⎛323,23E . ……………………………………………………………………7分29. (1)四边形OHCF ,四边形OIDG ,……………………………………………………1分(说明:其它答案,如三角形也可以)6………………………………………………2分GH ……………………………………………3分(2)成立,证明如下: 如图①,连接GH ,GC ,DH ,∵点C ,D 是反比例图象上的点, ∴G D IO FCH O S S 矩形矩形=. ∴GDIO FCHO S S 矩形矩形2121=. ∴G H D CG H S S ∆∆=.∴点C ,D 到GH 的距离相等.∴CD ∥GH . ……………………………………………………………………………………4分 ∴四边形BCHG 和四边形GHAD 都是平行四边形.∴GH BC =,DA GH =. ……………………………………………………………………5分 即BC AD =.(3)画出图形,得到GH , ……………………………………………………………………6分 ∵点C ,D 是反比例图象上的点,∴G D IO FCH O S S 矩形矩形=. ∴GDIO FCHO S S 矩形矩形2121=. ∴G H D CG H S S ∆∆=.∴点C ,D 到GH 的距离相等.∴CD ∥GH . ………………………………………7分 ∴四边形BCHG 和四边形GHAD 都是平行四边形. ∴GH BC =,DA GH =.即BC AD =.…………………………………………8分xy123456654321I FA BH GDC O xyBA IF G HKCDO。
北京市朝阳区2016年初中毕业考试(一模)数学试卷(含答案)
北京市朝阳区2016年初中毕业考试数学试卷2016.4考生须知1.考试时间为90分钟,满分100分;2.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(填空题、解答题)两部分,共8页,第8页为草稿纸;3.认真填写密封线内学校、班级、姓名.第Ⅰ卷(共30分)一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个是符合题意的.请用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑.1.在下列各数中,绝对值最大的数是A .1B .-2C .21D .132.2015年10月16日,新一期全球超级计算机500强榜单在美国公布,中国“天河二号”超级计算机以每秒338600000亿次浮点运算速度连续第六度称雄.将338600000用科学记数法表示为A .3.386×107B .0.3386×109C .3.386×108D .0.3386×1083. 右图是某个几何体的三视图,则这个几何体是A .圆柱B .圆锥C .三棱柱D .三棱锥4.阿仁是一名非常爱读书的学生.他制作了五张材质和外观完全一样的书签,每张书签上写有一本书的名称和作者,分别是:《海底两万里》(作者:凡尔纳,法国)、《三国演义》(作者:罗贯中)、《西游记》(作者:吴承恩)、《骆驼祥子》(作者:老舍)、《钢铁是怎样炼成的》(作者:尼·奥斯特洛夫斯基,前苏联),从这五张书签中随机抽取一张,则抽到的书签上的作者是中国人的概率是A .15B .25C .35D .455. 下列运算正确的是A .236xx x B .632x x x C .32422x x xD .236xx6.一次函数ykx b 的图象如右图所示,则k,b 应满足的条件是A .0,0k bB .0,0k bC .0,0kbD .0,0kb。
2016朝阳二模初三数学与答案
市区九年级综合练习(二)数 学 试 卷 2016.6考生须知1.本试卷共8页,共三道大题,29道小题,满分120分.考试时间120分钟. 2.在试卷和答题卡上认真填写学校名称、和号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效. 4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,请将本试卷、答题卡一并交回. 一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.2015年6月国家主席和比利时国王菲利普,在人民大会堂共同见证了两国公司在集成电路方面进行合作研发的签约仪式,两国将共同着力研发14纳米量产技术,这标志 着我国芯片制造能力将进入国际顶尖水平.14纳米为0.000 000 014米,将0.000 000 014 用科学记数法表示应为A .70.1410-⨯ B .81.410-⨯ C .60.01410-⨯ D .91410-⨯ 2.如图,在单位长度为1的数轴上,点A 、B 表示的两个数互为相反数,那么点A 表示的 数是A .2B .-2C . 3D .-3 3.在中国有很多吉祥的图案深受大家喜爱,人们会用这些图案来装饰生活,祈求平安. 比如下列图案分别表示“福”、“禄”、“寿”、“喜”,其中是.轴对称图形,不是..中心 对称图形的为A B C D4.一个袋子中只装有黑、白两种颜色的球,这些球的形状、质地等完全相同,其中白色球有2个, 黑色球有n 个.在看不到球的条件下,随机地从袋子中摸出一个球,记录下颜色后,放回袋子 中并摇匀.同学们进行了大量重复试验,发现摸出白球的频率稳定在0.4附近,则n 的值为 A .2 B .3 C .4 D .55.如图,螺母的一个面的外沿可以看作是正六边形,这个正六边形ABCDEF 的半径是23cm , 则这个正六边形的周长是A .63cmB .12 cmC .123cmD .36 cm6.某篮球队12名队员的年龄统计如图所示,则该队队员年龄的众数和中位数分别是A .16,15B .15,15.5C .15,17D .15,16 7.一艘海上搜救船借助雷达探测仪寻找到事故船的位置,雷达示意图如图所示,搜救船位于图中 圆心O 处,事故船位于距O 点40海里的A 处,雷达操作员要用方位角...把事故船相对于搜救船 的位置汇报给船长,以便调整航向,下列四种表述方式中正确的为A .事故船在搜救船的北偏东60°方向B .事故船在搜救船的北偏东30°方向C .事故船在搜救船的北偏西60°方向D .事故船在搜救船的南偏东30°方向8.现有A 、B 两种商品,买3件A 商品和2件B 商品用了160元,买2件A 商品和3件B 商品用 了190元.如果准备购买A 、B 两种商品共10件,下列方案中费用最低的为 A .A 商品7件和B 商品3件 B .A 商品6件和B 商品4件 C .A 商品5件和B 商品5件 D .A 商品4件和B 商品6件9.把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次 翻滚..到第1格,第2格,第 3格,第4格,此时正方体朝上一面的文字为 A .富 B .强 C .文 D .民10.如图,ABC ∆为等边三角形,点O 在过点A 且平行于BC 的直线上运动,以ABC ∆的高为半径的⊙O 分别交线段AB 、AC 于点E 、F ,则所对的圆周角的度数 A .从︒0到︒30变化 B .从︒30到︒60变化 C .总等于︒30 D .总等于︒60第7题图第5题图图1第9题图图2 第6题图FEOCB A 第10题图二、填空题(本题共18分,每小题3分) 11.分解因式:2312=a -________. 12.函数121y x x =++的自变量x 的取值围是________. 13.请写出一个开口向下,并且与y 轴交于点(0,2)的抛物线的表达式,y =________.14.将一元二次方程0562=+-x x 化成2()x a b -=的形式,则ab =________.15.如图,在⊙O 中,AB 为⊙O 的弦,半径OC ⊥AB 于点D ,若OB 的长为10,4sin 5BOD ∠=, 则AB 的长为________. 16.在数学活动课上,老师说有人根据如下的证明过程,得到“1=2”的结论.大家经过认真讨论,发现上述证明过程中从某一步开始出现错误,这一步是________ (填入编号),造成错误的原因是________.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)1711|5|()2tan 602----︒.18.解方程组212x y x y +=⎧⎨-=⎩,.19.已知2220a a --=,求代数式22111a a a -÷-+的值. 20.如图,在Rt △ABC 中,∠BAC = 90º,AD 是BC 边上的中线,ED BC ⊥于D ,交BA 延长线于点E ,若∠E =35°, 求∠BDA 的度数.EBA21.每年的4月23日,是“世界读书日”.据统计,“幸福家园小区”1号楼的住户一年共阅读纸质图书460本,2号楼的住户一年共阅读纸质图书184本,1号楼住户的人数比2号楼住户人数的2倍多20人,且两栋楼的住户一年人均阅读纸质图书的数量相同.求这两栋楼的住户一年人均阅读纸质图书的数量是多少本?22.如图,四边形ABCD中,AB∥DC,∠B = 90º,F为DC上一点,且FC = AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若ED = EC,求证:EA = EG.23.如图,在平面直角坐标系xOy中,反比例函数4yx的图象与正比例函数y=kx的图象的一个交点为M(1,b).(1)求正比例函数y=kx的表达式;(2)若点N在直线OM上,且满足MN=2OM,直接写出点N的坐标.24.如图,O是∠MAN的边AN上一点,以OA为半径作⊙O,交∠MAN的平分线于点D,DE⊥AM于E.(1)求证:DE是⊙O的切线;(2)连接OE,若∠EDA=30º,AE=1,求OE的长.前四天每天接待的观众人数统计图图15月3日观看各种戏剧人数分布统计图图225.为弘扬中国传统文化,2016年4月30日“戏曲文化周”在园博园开始举行,活动期间开展了丰富多样的戏曲文化互动体验活动,同时也推出了好戏连台园博看大戏的活动,主办方统计了前几天观看戏剧情况的部分相关数据,绘制统计图表如下:(1)m =_______;(2)若5月3日当天看豫剧的人数为93人,请你补全图1;(3)请你根据前四天接待观众人数,估计“戏曲文化周”活动在5月4日接待观众约为 ________人.5月4日的戏曲活动,分别演出 “京剧”、“曲剧”、“沪剧”、“腔”、“粤剧”. 通过对100名观众的调查发现, 有12人喜欢“沪剧”,5人喜 欢“腔”,8人喜欢“粤剧”.主办方希望把“沪剧”、“腔”、“粤剧”三种戏剧安排到以下五个园(如下表)中的三个园进行演出.请你结合下表为这三种戏剧选择 合适的演出地点,并说明理由.园中可以容纳人数园 130人 园 100人 岭南园 70人 园 60人 晋中园30人26.(1)如图,在平面直角坐标系xOy 中,直线132y x =+与抛物线y = x 2相交于点A 、B , 与x 轴交于点C ,A 点横坐标为x 1,B 点横坐标为x 2(x 1 < x 2),C 点横坐标为x 3. 请你计算1211x x +与31x 的值,并判断它们的数量关系.xyx 3x 1x 2CBA O(2)在数学的世界里,有很多结论的形式是统一的,这也体现了数学的美.请你在下列两组 条件中选择一组....,证明1211x x +与31x 仍具有(1)中的数量关系. ①如图,∠APC =120º,PB 平分∠APC ,直线l 与P A 、PB 、PC 分别交于点A 、B 、C , P A =x 1,PC =x 2,PB =x 3.②如图,在平面直角坐标系xOy 中,过点A (x 1,0)、B (0,x 2)作直线l ,与直线y =x 交于 点C ,点C 横坐标为x 3.27.在平面直角坐标系xOy 中,抛物线22(9)6y x m x =-++-的对称轴是2x =.(1)求抛物线表达式和顶点坐标;(2)将该抛物线向右平移1个单位,平移后的抛物线与原抛物线相交于点A ,求点A 的坐标; (3)抛物线22(9)6y x m x =-++-与y 轴交于点C ,点A 关于平移后抛物线的对称轴的对称点为点B ,两条抛物线在点A 、C 和点A 、B 之间的部分(包含点A 、B 、C ) 记 为图象M .将直线22y x =-向下平移b (b >0)个单位,在平移过程中直线与图象M 始终有两个公共点,请你写出b 的取值围_________.llCBAPxy x 3x 1x 2CABO28.在ABC ∆中,点D 、E 分别在AB 、AC 上,BE 、CD 相交于点O ,且A EBC DCB ∠=∠=∠21. (1)如图1,若AB =AC ,则BD 与CE 的数量关系是______________;(2)如图2,若AC AB ≠,请你补全图2,思考BD 与CE 是否仍然具有(1)中的数量关系, 并说明理由;(3)如图3,︒=∠105BDC ,BD = 3,且BE 平分∠ABC ,请写出求BE 长的思路. (不用写出计算结果)29.P 是⊙O 一点,过点P 作⊙O 的任意一条弦AB ,我们把PA PB ⋅的值称为点P 关于⊙O 的“幂值”.(1)⊙O 的半径为5,OP = 3.①如图1,若点P 恰为弦AB 的中点,则点P 关于⊙O 的“幂值”为________; ②判断当弦AB 的位置改变时,点P 关于⊙O 的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P 关于⊙O 的“幂值”的取值围.(2)若⊙O 的半径为r ,OP = d ,请参考(1)的思路,用含r 、d 的式子表示点P 关于⊙O 的“幂值”或“幂值”的取值围________;(3)在平面直角坐标系xOy 中,⊙O 的半径为4,若在直线33y x b =+上存在点P ,使得 点P 关于⊙O 的“幂值”为13,请写出b 的取值围________.图1图3图1POBAO备用图图2市区九年级综合练习(二)数学试卷评分标准及参考答案 2016.6一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分, 第29题8分)17.解:原式=52-- ..................................................................4分 =3. (5)分18.解:21,2.x y x y +=⎧⎨-=⎩①+②,得33x =,1x =.………………………………………………………2分 把1x =代入②,得12y -=,1y =-.……………………………………………………4分所以这个方程组的解是1,1.x y =⎧⎨=-⎩ …………………………………………………5分19.解:原式()()21111a a a a +=⋅+-- ……………………………………………………1分()22=1a - ……………………………………………………………………3分22=21a a -+.∵2220a a --=,∴222a a -=.……………………………………………………………4分 ∴ 原式23=.………………………………………………………………5分 ①②20.解:∵ED BC ⊥,35E ∠=︒,∴55B ∠=︒. …………………………………………1分∵在Rt △ABC 中,∠BAC = 90º,AD 是BC 边上的中线, ∴AD BD =. …………………………………………3分∴55BAD B ∠=∠=︒ .………………………………4分∴70BDA ∠=︒.…………………………………………………………………5分21.解:设这两栋楼的住户一年人均阅读纸质图书的数量为x 本.……………………1分 由题意,得460218420x x⨯=+. …………………………………………3分 解得 4.6x =. ……………………………………………………4分 经检验, 4.6x =是原方程的解,且符合题意.……………………………5分 答:这两栋楼的住户一年人均阅读纸质图书的数量为4.6本. 22.证明:(1)∵AB ∥DC ,FC=AB ,∴四边形A B C F 是平行四边形.…………………………………………1分∵90B ∠=︒,∴四边形A B C F 是矩形.…………………………………………………2分(2)由(1)可得,90AFC ∠=︒,∴90DAF D ∠=︒-∠,90CGF ECD ∠=︒-∠. ………………3分 ∵ED EC =,∴D ECD ∠=∠.…………………………4分 ∴DAF CGF ∠=∠.∵EGA CGF ∠=∠, ∴EAG EGA ∠=∠.∴EA EG =.………………………………………………………5分 23.解:(1)∵双曲线4y x=过点M (1,b ), ∴4b =.……………………………………………………………………1分 ∵正比例函数y kx =的图象过点M (1,4),∴4k =.……………………………………………………………………2分 ∴正比例函数的表达式为4y x =.………………………………………3分 (2)(-1,-4),(3,12). …………………………………………………5分E CBA24.(1)证明:连接OD .∵AD 平分MAN ∠, ∴EAD OAD ∠=∠. ∵OA OD =, ∴ODA OAD ∠=∠.∴EAD ODA ∠=∠.……………………………1分 ∵DE AM ⊥于E , ∴90AED ∠=︒. ∴90EAD EDA ∠+∠=︒, ∴90ODA EDA ∠+∠=︒.∴OD ED ⊥.∴DE 是⊙O 的切线. ………………2分 (2)解:∵30EDA ∠=︒,∴60ODA ∠=︒. ∵OA OD =,∴△ADO 为等边三角形.…………………………………………………3分在Rt △AED 中,1AE =,可得2AD =,3ED =.………………4分 ∴2OD AD ==.在Rt △ODE 中,由勾股定理可得7OE =. ………………………5分25.解:(1)41. ……………………………………………………………………… ……1分 (2)补全图1,如图所示. ……………………………………………… ………2分(3)801; ………………………………………………………………3分答:预计观看“沪剧”、“腔”、“粤剧”的人数分别约为96、40、64,…………4分所以演出应分别安排在园、园、岭南园.………………………………5分前四天每天接待的观众人数统计图图126.(1)解: 由题意可得2132x x =+. ∵12x x <,∴132x =-,22x =. …………………………………………………1分 ∴121116x x +=-. ∵直线132y x =+与x 轴交于点C ,C 点横坐标为3x ,∴36x =-.………………………………………………………………2分∴3116x =-. ∴123111x x x +=.…………………………………………………………3分 (2)①证明:如图,过点B 作BE ∥PA 交PC 于点E .∴△BEC ∽△APC .…………………………………………………4分 由PB 平分APC ∠,120APC ∠=︒,可得△PBE 是等边三角形.∴3BE PE PB x ===.∴23EC x x =-.∵BE ECAP PC =, ∴32312x x x x x -=.∴231312x x x x x x +=. ∴123111x x x +=.…………………………………………………………5分 ②解:过点C 作CD ⊥x 轴于点D ,CE ⊥y 轴于点E .∵点C 在直线y x =上,且横坐标为3x , ∴点C (3x ,3x ).∴3CE CD x ==.……………………………4分 ∵BOC AOC AOB S S S ∆∆∆+=,∴231312111222x x x x x x +=. ∴123111x x x +=.…………………………………………………………5分 lxy E Dx 3x 1x 2C A BO l图 2 27.解:(1)∵抛物线()2296y x m x =-++-的对称轴是2x =,∴922(2)m +-=⨯-.∴1m =-. ……………………………………………………………1分∴抛物线的表达式为2286y x x =-+-.…………………………………2分 ∴22(2)2y x =--+.∴顶点坐标为(2,2).………………………………………………3分 (2)由题意得,平移后抛物线表达式为 ()2232y x =--+……………………4分 ∵()()222223x x --=--,∴52x =. ∴A (52,32).………………………5分(3)702b <≤. ……………………………7分28.(1)BD CE =;………………………………………1分(2)补全图形.………………………………………2分证明:如图2,在BE 上截取BF CD =,连接CF .∵12DCB EBC A ∠=∠=∠, ∴△DCB ≌△FBC .………………………3分 ∴BD CF =,FCB DBC ∠=∠.∴CFE FBC FCB FBC ABE ∠=∠+∠=∠+∠2.∵CEF A ABE ∠=∠+∠.∴CFE CEF ∠=∠.………………………………………………………4分 ∴CF CE =.∴BD CE =.………………………………………………………5分(3)求解思路如下:a .如图3,过点E 作EM BC ⊥于M ;b .由BE 平分ABC ∠,可得ABC A ∠=∠;c .由BDC ∠=︒105,可得EBC ∠=︒25,50A ∠=︒,80ACB ∠=︒;………………………………………………………6分 d .由(2)知CE BD ==3,在Rt △CEM 中,可求EM 的长度;e .在Rt △BEM 中,由EBM ∠的度数和的EM 的长度,可求BE 的长度.…7分图3ADBMCE29.(1)①16.………………………………………………………………………………1分②当弦AB 的位置改变时,点P 关于⊙O 的“幂值”为定值.………………2分 证明:如图,AB 为⊙O 中过点P 的任意一条弦,且不与OP 垂直. 过点P 作⊙O 的弦''A B ⊥OP ,连接'AA 、'BB . ∵在⊙O 中,''AA P B BP ∠=∠,''APA BPB ∠=∠,∴△'APA ∽△'B PB .…………………………………………………3分∴''PA PA PB PB=. ∴''PA PB PA PB ⋅=⋅.…………………………4分∵OP ⊥''A B ,3OP =,⊙O 半径为5. ∴''4A P B P ==.∴16PA PB ⋅=.…………………………………………………………5分 ∴当弦AB 的位置改变时,点P 关于⊙O 的“幂值”为定值.(2)22r d -. …………………………………………………………………………6分 (3)22b -≤≤. …………………………………………………………………8分说明:各解答题的其他正确解法请参照以上标准给分.。
2016年北京中考数学试卷和参考答案
2016年北京市高级中等学校招生考试数学试卷学校姓名准考证号考生须知1.本试卷共8页,共三道大题,29道小题,满分120分。
考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束后,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只.有.一个。
1. 如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为(A) 45°(B) 55°(C) 125°(D) 135°2. 神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28 000公里。
将28 000用科学计数法表示应为(A)2.8×103(B) 28×103(C)2.8×104(D)0.28×1053. 实数a,b在数轴上的对应点的位置如图所示,则正确的结论是(A) a>− 2(B) a<− 3(C) a>− b(D) a<− b4. 内角和为540°的多边形是BAO5. 右图是某个几何体的三视图,该几何体是(A)圆锥(B)三棱锥(C)圆柱(D)三棱柱6. 如果a+b=2,那么代数(a−b 2a )∙aa−b的值是(A) 2 (B)-2 (C)12(D)−127. 甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是A B C D8. 在1-7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是(A) 3月份(B) 4月份(C) 5月份(D) 6月份第8题图第9题图9. 如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为(A)O1(B)O2(C)O3(D)O410. 为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增。
2016年北京市中考数学试卷及答案
2016年北京市中考数学试卷及答案一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有一个.1.如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为()A.45°B.55°C.125°D.135°【解析】由生活知识可知这个角小于90度,排除C、D,又OB边在50与60之间,所以度数应为55°.故选B.2.神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A.2.8×103 B.28×103 C.2.8×104 D.0.28×105【解析】28000=2.8×104.故选C.3.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b【解析】A.如图所示:﹣3<a<﹣2,故此选项错误;B.如图所示:﹣3<a<﹣2,故此选项错误;C.如图所示:1<b<2,则-2<-b<-1,故a<-b,故此选项错误;D.由选项C可得,此选项正确.故选D.4.内角和为540°的多边形是()【解析】设它是n边形,根据题意得(n﹣2)•180°=540°,解得n=5.故选C.5.如图是某个几何体的三视图,该几何体是()A.圆锥B.三棱锥C.圆柱D.三棱柱【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选D.6.如果a+b=2,那么代数式2()b aaa a b-⋅-的值是()A.2B.﹣2C.12D.12-【解析】∵a+b=2,∴原式=22a b aa a b-⋅-=()()a b a b aa a b+-⋅-=a+b=2.故选A.7.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.【解析】A.是轴对称图形,故本选项错误;B.是轴对称图形,故本选项错误;C.是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项正确.故选D.8.在1~7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是()A.3月份B.4月份C.5月份D.6月份【解析】各月每斤利润:3月:7.5-4.5=3(元),4月:6-2.5=3.5(元),5月:4.5-2=2.5(元),6月:3-1.5=1.5(元),所以4月份每斤水果利润最大.故选B.9.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为()A.B.C.D.【解析】因为A点坐标为(-4,2),所以原点在点A的右边,且在点A的下边2个单位处,从点B来看,B(2,-4),所以原点在点B的左边,且在点B的上边4个单位处.如下图,O1符合.故选A.10.为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增.计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%.为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计图,如图所示,下面有四个推断:①年用水量不超过180 m3的该市居民家庭按第一档水价交费②年用水量超过240 m3的该市居民家庭按第三档水价交费③该市居民家庭年用水量的中位数在150~180之间④该市居民家庭年用水量的平均数不超过180正确的是()A.①③B.①④C.②③D.②④【解析】年用水量不超过180 m3的居民家庭有:0.25+0.75+1.5+1.0+0.5=4(万户),45×100%=80%,所以①正确;年用水量超过240 m3的居民家庭有:0.15+0.15+0.05=0.35(万户),0.355×100%=7%>5%,故②不正确;由图可知,样本中年用水量不超过120 m3的居民有0.25+0.75+1.5=2.5(万户),所以中位数不可能在150m3~180m3之间,故③不正确;由图中数据可得该市居民家庭年用水量的平均数为(0.25×45+0.75×75+1.5×105+1.0×135+0.5×165+0.4×195+0.25×225+0.15×255+0.15×285+0.05×315)÷5=134.7(m3)<180(m3),故④正确.故选B.二、填空题(本题共18分,每小题3分)11.如果分式21x 有意义,那么x的取值范围是.【解析】由题意,得x-1≠0,解得x≠1,故答案为:x≠1.12.下图中的四边形均为矩形,根据图形,写出一个正确的等式:.【解析】最大矩形的长为(a+b+c),宽为m,所以它的面积为m(a+b+c);又最大矩形的面积为三个小矩形面积之和,三个小矩形的面积分别为:ma,mb,mc,所以有m(a+b+c)=ma+mb+mc.故答案为:m(a+b+c)=ma+mb+mc.(开放性试题,答案合理即可)13.林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:移植的棵数n1000 1500 2500 4000 8000 15000 20000 30000成活的棵数m865 1356 2220 3500 7056 13170 17580 26430成活的频率mn0.865 0.904 0.888 0.875 0.882 0.878 0.879 0.881估计该种幼树在此条件下移植成活的概率为.【解析】x=(0.865+0.904+0.888+0.875+0.882+0.878+0.879+0.881)÷8≈0.882,∴这种幼树移植成活的概率约为0.882.故答案为:0.882.14.如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为m.【解析】如图,∵CD∥AB∥MN,∴△ABE∽△CDE,△ABF∽△MNF,∴CD DEAB BE=,FN MNFB AB=,即1.8 1.81.8AB BD=+,1.5 1.51.52.7AB BD=+-,解得AB=3.故答案为:3.15.百子回归图是由1,2,3,…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,…,同时它也是十阶幻方,其每行10个数之和、每列10个数之和、每条对角线10个数之和均相等,则这个和为.【解析】1+2+3+4+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)=5050,共10行,每一行的10个数之和相等,所以每一行数字之和为505010=505.故答案为:505.16.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程.已知:直线l和l外一点P.求作:直线l 的垂线,使它经过点P.作法:如图.(1)在直线l 上任取两点A,B;(2)分别以点A,B 为圆心.AP,BP 长为半径作弧,两弧相交于点Q; (3)作直线PQ ,所以直线PQ 就是所求的垂线.请回答:该作图的依据是 .【解析】由作图可知,AP =AQ ,所以点A 在线段PQ 的垂直平分线上,同理,点B 也在线段PQ 的垂直平分线上,所以有AB ⊥PQ . 【答案】(1)到线段两端距离相等的点在线段的垂直平分线上;(2)两点确定一条直线.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程. 17.计算:0(3)4sin 45813π-+-+-.【解】原式=2142231 3.2+⨯-+-= 18.解不等式组:253(1)74.2x x x x +>-⎧⎪⎨+>⎪⎩, 【解】解不等式2x+5>3(x ﹣1),得x <8,解不等式742x x +>,得x >1,∴不等式组的解集为1<x <8.19.如图,四边形ABCD 是平行四边形,AE 平分∠BAD ,交DC 的延长线于点E .求证:DA=DE .【解】∵四边形ABCD 是平行四边形,∴AB CD, ∴E BAE ∠=∠,∵AE 平分BAD ∠,∴,.BAE DAE E DAE DA DE ∠=∠∴∠=∠∴=,20.关于x 的一元二次方程22(21)10x m x m +++-=有两个不相等的实数根. (1)求m 的取值范围;(2)写出一个满足条件的m 的值,并求此时方程的根.【解】(1)∵关于x 的一元二次方程22(21)10x m x m +++-=有两个不相等的实数根,∴Δ=22(21)41(1)m m +-⨯⨯-=4m+5>0,解得m >54-.(2)m=1,此时原方程为230x x +=,即x (x+3)=0,解得10x =,23x =-.(答案不唯一)20.如图,在平面直角坐标系xOy 中,过点A (-6,0)的直线1l 与直线2l﹕y=2x 相交于点B (m ,4).(1)求直线1l的表达式;(2)过动点P (n ,0)且垂于x 轴的直线与1l ,2l的交点分别为C ,D ,当点C 位于点D 上方时,写出n 的取值范围.【解析】(1)由点B 在直线2l 上,可求出m 的值,设l 1的表达式为y=kx+b,由A 、B 两点均在直线1l 上,可求出1l的表达式;(2)根据1l,2l 表达式表示出C(,32n n +),D ,2)n n (,由于点C 在点D 的上方,得到322nn +>,解不等式即可得到结论.【解】(1) ∵点B 在直线2l 上, ∴4=2m, ∴m=2,设1l的表达式为y=kx+b, 由A 、B 两点均在直线1l上得到4=2k+b,06k+b,⎧⎨=-⎩解得1k=,2b=3,⎧⎪⎨⎪⎩则l 1的表达式为1y=x 3.2+ (2)C(,32n n +),D,2)n n ( ,点C 在点D 的上方,所以322nn +>,解得n <2. 22.调查作业:了解你所住小区家庭5月份用气量情况.小天、小东和小芸三位同学住在同一小区,该小区共有300户家庭,每户家庭人数在2~5之间,这300户家庭的平均人数均为3.4.小天、小东、小芸各自对该小区家庭5月份用气量情况进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1 抽样调查小区4户家庭5月份用气量统计表 (单位:m 3)家庭人数 2 3 4 5 用气量 14192126表2 抽样调查小区15户家庭5月份用气量统计表 (单位:m 3)家庭人数 222333333333334用气量 10 11 15 13 14 15 15 17 17 18 18 18 18 20 22表3 抽样调查小区15户家庭5月份用气量统计表 (单位:m 3)家庭人数 2 23333333444455用气量 1012 13 14 17 17 18 19 20 20 22 26 31 28 31根据以上材料回答问题: 小天、小东和小芸三人中,哪一位同学抽样调查的数据能较好地反映出该小区家庭5月份用气量情况,并简要说明其他两位同学抽样调查的不足之处.【解】小天调查的样本容量较少;小东抽样的调查数据中,家庭人数的平均值为(2×3+3×11+4)÷15≈2.87,远远偏离了平均人数的3.4,所以他的数据抽样有明显问题;小芸抽样的调查数据中,家族人数的平均值为(2×2+3×7+4×4+5×2)÷15=3.4,说明小芸抽样数据质量较好,且样本类型较全面,因此小芸的抽样调查的数据能较好地反映出该小区家庭5月份用气量情况.23.如图,在四边形ABCD 中,∠ABC=90°,AC=AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN . (1)求证:BM=MN ;(2)∠BAD=60°,AC 平分∠BAD ,AC=2,求BN 的长.【证明】(1)△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,且MN=12AD,在Rt△ABC中,∵M是AC的中点,∴BM=12AC,又∵AC=AD,∴BM=MN.【解】(2)∵∠BAD=60°,且AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)知,BM=12AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°.∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN2=BM2+MN2,而由(1)知,MN=BM=12AC=12×2=1,∴BN=2.24.阅读下列材料:北京市正围绕“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.1%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2406.7亿元,比上年增长9.1%.文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2794.3亿元,占地区生产总值的13.1%,创历史新高.2015年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)用折线图将2011~2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约亿元,你的预估理由: .【解】(1)如下图:(2)3355.7,按照增加值的平均增长量计算(答案不唯一)25.如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交AC于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接CD,若OA=AE=a,写出求四边形ACDE面积的思路.【证明】(1)∵ED 与⊙O 相切于D,∴OD ⊥DE,∵F 为弦AC 中点,∴OD ⊥AC,∴AC ∥DE. 【解】(2)作DM ⊥OA 于M,连接CD,CO,AD.首先证明四边形ACDE 是平行四边形,根据 S 平行四边形ACDE =AE ·DM ,只要求出DM 即可.∵AC ∥DE,AE=AO,∴OF=DF,∵AF ⊥DO, ∴AD=AO,∴AD=AO=OD,∴△ADO 是等边三角形,同理△CDO 也是等边三角形,∴∠CDO=∠DOA=60°,∴AO ∥CD,即AE ∥CD,又AC ∥DE,∴四边形ACDE 是平行四边形,易知DM=32a ,∴平行四边形ACDE 的面积=232a .26.已知y 是x 的函数,自变量x 的取值范围是x >0,下表是y 与x 的几组对应值:x … 1 2 3 5 7 9 …y …1.983.952.631.581.130.88…小腾根据学习函数的经验,利用上述表格所反映出的y 与x 之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为;②该函数的一条性质:.【解】(1)如下图:(2)①2(2.1到1.8之间都正确)②该函数有最大值(其他正确性质都可以).27.在平面直角坐标系xOy中,抛物线221y mx mx m=-+-(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.【解】(1)将抛物线表达式变为顶点式为2(1)1y m x=--,则抛物线顶点坐标为(1,-1).(2)①m=1时,抛物线表达式为22y x x=-,因此A、B的坐标分别为(0,0)和(2,0),则线段AB上的整点有(0,0),(1,0),(2,0),共3个.②抛物线顶点为(1,-1),则由线段AB 之间的部分及线段AB 所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB 线段上(含A ,B 两点)必须有5个整点;又有抛物线表达式,令y=0,则2210mx mx m -+-=,得到A 、B 两点坐标分别为(11m -,0),(11m+,0),即5个整点是以(1,0)为中心向两侧分散,进而得到123m ≤<,∴1194m <≤.28.在等边三角形ABC 中:(1)如图1,P ,Q 是BC 边上的两点,AP=AQ ,∠BAP=20°,求∠AQB 的度数;(2)点P ,Q 是BC 边上的两个动点(不与点B ,C 重合),点P 在点Q 的左侧,且AP=AQ ,点Q 关于直线AC 的对称点为M ,连接AM ,PM .①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P ,Q 运动的过程中,始终有PA=PM ,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明PA=PM ,只需证△APM 是等边三角形;想法2:在BA 上取一点N ,使得BN=BP ,要证明PA=PM ,只需证△ANP ≌△PCM ;想法3:将线段BP 绕点B 顺时针旋转60°,得到线段BK ,要证PA=PM ,只需证PA=CK ,PM=CK…请你参考上面的想法,帮助小茹证明PA=PM (一种方法即可).【解】(1)∵AP=AQ,∴∠AQB=APC,∵△ABC 是等边三角形,∴∠B=60°,∵∠BAP=20°,∴∠APC=∠BAP+∠B=60°+20°=80°.∴∠AQB=80°.(2)①如图3;②∵AP=AQ,∴∠APQ=AQP, ∴∠APB=AQC,∵△ABC 是等边三角形,∴∠B=∠C =60°,∴∠BAP=∠CAQ ,∵点Q 关于直线AC 的对称点为M ,∴AQ=AM ,∠QAC=∠MAC ,∴∠MAC=∠BAP ,∴∠BAP+∠PAC=∠MAC+∠CAP=60°,∴∠PAM=60°,∵AP=AQ ,∴AP=AM ,∴△APM 是等边三角形,∴AP=PM .29.在平面直角坐标系xOy 中,点P 的坐标为(1x ,1y ),点Q 的坐标为(2x ,2y ),且12x x ≠,12y y ≠,若P ,Q 为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P ,Q 的“相关矩形”.下图为点P ,Q 的“相关矩形”的示意图.(1)已知点A 的坐标为(1,0).①若点B 的坐标为(3,1)求点A ,B 的“相关矩形”的面积;②点C 在直线x=3上,若点A ,C 的“相关矩形”为正方形,求直线AC 的表达式;(2)⊙O 的半径为2,点M 的坐标为(m ,3).若在⊙O 上存在一点N ,使得点M ,N 的“相关矩形”为正方形,求m 的取值范围.【解】(1)①S=2×1=2;②由题意知C 的坐标为(3,2)或者(3,-2),设AC 的表达式为y=kx+b,将A 、C 的坐标分别代入AC 的表达式得到:0=k+b,23k+b ⎧⎨=⎩或0=k+b,23k+b ⎧⎨-=⎩,解得k=1,b=-1⎧⎨⎩或k=-1,b=1.⎧⎨⎩则直线AC 的表达式为y=x-1或y=-x+1. (2)若⊙O 上存在点N,使M 、N 的相关矩形为正方形,则直线MN 的斜率k=±1,即过M 点作k=±1的直线,与⊙O 有交点,即存在N,当k=-1时,极限位置是直线与⊙O 相切,如图l 1与l 2,直线l 1与⊙O 切于点N,连接ON,ON=2,∠ONM=90°,∴l 1与y 轴交于P 1(0,-2).M 1(m 1,3),∴3-(-2)=0-m 1,∴m 1=-5,∴M 1(-5,3);同理可得M 2(-1,3);当k=1时,极限位置是直线3l 与4l (与⊙O 相切),可得3M (1,3), 4M (5,3). 因此m 的取值范围为1≤m ≤5 或者51m -≤≤-.。
2016年北京市中考数学试题(含答案)
2017年北京市高级中等学样招生考试数学试卷学校 姓名 准考证号一、选择题(本题共30分,每小题3分) 第1—10题均有四个选项,符合题意的选项只有..一个. 1、如图所示,用量角器度量AOB∠,可以读出AOB ∠的度数为( ) A. 45° B. 55° C. 125° D. 135°2、神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为( ) A. 2.8×103 B. 28×103 C. 2.8×104 D. 0.28×1053、实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )ba 23A. 2a >-B. 3a <-C. a b >-D. a b <- 4、内角和为540° 的多边形是( )A. B. C.D.5、下图是某个几何体的三视图,该几何体是( ) A. 圆锥 B. 三棱锥 C. 圆柱 D. 三棱柱6、如果2a b +=,那么代数式2b aa a ab ⎛⎫- ⎪-⎝⎭ 的值是( )A. 2 B. -2 C. 12 D. 12-7、甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是..轴对称的是( )8、在1~7月份,某种水果的每斤进价与每斤售价的信息如图所示,则出售该种水果每斤利润最大的月份是( ) A. 3月份 B. 4月份 C. 5月份 D. 6月份(第8题 图) (第9题 图)9、如图,直线m n ⊥,在某平面直角坐标系中,x 轴∥m ,y 轴∥n ,点A 的坐标为42-(,),点B 的坐标为(2,-4),则坐标原点为( ) A. 1O B. 2O C. 3O D. 4O10、为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增.计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%.为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:3m ),绘制了统计图,如图所示.下面有四个推断: 其中合理的是( ) A. ①③ B. ①④ C. ②③ D. ②④①年用水量不超过1803m的该市居民家庭按第一档水价交费②年用水量不超过2403m的该市居民家庭按第三档水价交费③该市居民家庭年用水量的中位数在150~180之间④该市居民家庭年用水量的平均数不超过180二、填空题(本题共18分,每小题3分)11、如果分式21x有意义,那么x的取值范围是.12、下图中四边形均为矩形,根据图形,写出一个正确的等式:.13、14、如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯小的影长分别为1.8m、1.5m,已知小军、小珠的身高分别为1.8m、1.5m,则路灯的高为__________m15、百子回归图是由1,2,3,...,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“2350”标示澳门面积,……,同时它也是十阶幻方,其每行10个数之和、每列10个数之和、每条对角线10个数之和均相等,则这个和为_______。
【中考真题】北京市2016年中考数学试卷及参考答案
【中考真题】北京市2016年中考数学试卷及参考答案一、选择题(本题共30分,每小题3分)1.如图所示,用量角器度量AOB ∠,可以读出AOB ∠的度数为 (A)45° (B)55° (C)125° (D) 135°2.神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为 (A)2.8×103 (B) 28×103 (C) 2.8×104 (D)0.28×1053.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是ba 3210123(A) 2a >- (B) 3a <- (C) a b >- (D) a b <- 4.内角和为540° 的多边形是(A)(B)(C)5.右图是某个几何体的三视图,该几何体是 (A)圆锥 (B) 三棱锥 (C)圆柱 (D)三棱柱6.如果2a b +=,那么代数式2b aa a ab ⎛⎫- ⎪-⎝⎭g的值是 (A) 2 (B) -2 (C) 12 (D)12-7.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是..轴对称的是8.在1~7月份,某种水果的每斤进价与每斤售价的信息如图所示,则出售该种水果每斤利润最大的月份是 (A)3月份 (B) 4月份 (C)5月份 (D)6月份9.如图,直线m n ⊥,在某平面直角坐标系中,x 轴∥m ,y 轴∥n ,点A 的坐标为42-(,),点B 的坐标为24-(,),则坐标原点为 (A)1O (B) 2O (C) 3O (D) 4O10.为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增.计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%.为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:3m ),绘制了统计图,如图所示.下面有四个推断: ①年用水量不超过1803m 的该市居民家庭按第一档水价交费 ②年用水量不超过2403m 的该市居民家庭按第三档水价交费 ③该市居民家庭年用水量的中位数在150~180之间 ④该市居民家庭年用水量的平均数不超过180 其中合理的是(A) ①③ (B)①④ (C) ②③ (D)②④ 二、填空题(本题共18分,每小题3分) 11.如果分式21x -有意义,那么x 的取值范围是 . 12.右图中四边形均为矩形,根据图形,写出一个正确的等式:.13.林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组统计数据:移植的棵数n1000 1500 2500 4000 8000 15000 20000 30000成活的棵数m865 1356 2220 3500 7056 13170 17580 26430成活的频率mn0.865 0.904 0.888 0.875 0.882 0.878 0.879 0.881估计该种幼树在此条件下移植成活的概率为__________.14.如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯小的影长分别为1.8m、1.5m,已知小军、小珠的身高分别为1.8m、1.5m,则路灯的高为__________m15.百子回归图是由1,2,3,...,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,……,同时它也是十阶幻方,其每行10个数之和、每列10个数之和、每条对角线10个数之和均相等,则这个和为________。
2015-2016年北京朝阳初三上学期期末数学试题及标准答案(word版)
2015-2016年北京朝阳初三上学期期末数学试题及答案北京市朝阳区2015~2016学年度第一学期期末检测九年级数学试卷(选用)2016.1一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.下列交通标志中,既是轴对称图形又是中心对称图形的是ABCD2.下列事件为必然事件的是A. 任意掷一枚均匀的硬币,正面朝上 B. 篮球运动员投篮,投进篮筐 C.一个星期有七天D.打开电视机,正在播放新闻3.在平面直角坐标系中,点B 的坐标为(3,1),则点B关于原点的对称点的坐标为A. (3,-1)B. (-3,1) C. (-1,-3) D . (-3,-1)4.如图,AC 与B D相交于点E ,AD ∥B C.若A E=2,C E=3,AD=3,则B C的长度是A.2 B. 3C.4.5 D. 65.如图,在R t△AB C中,∠C =90°,BC =3,AC =4,则s inA的值是A.43B.34 C.53 D .54第4题图第5题图第6题图6.如图,反比例函数2 yx =-的图象上有一点A,过点A作AB⊥x轴于B,则AOBS是A.12B. 1C. 2 D. 47.如图,在⊙O中,∠BOC=100°,则∠A等于A.100° B. 50°C. 40° D. 25°第7题图第8题图8.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A’OB’,若∠AOB=15°,则∠AOB’的度数是A.25° B. 30°C.35°D.40°9.如图,点D,E分别在△ABC的AB,AC边上,增加下列条件中的一个:①∠AED=∠B,②∠ADE=∠C,③BCDEABAE=,④ABAEACAD=,⑤AEADAC⋅=2,使△ADE与△ACB一定相似的有A.①②④ B. ②④⑤C. ①②③④D. ①②③⑤图①图②第9题图第10题图10.小阳在如图①所示的扇形舞台上沿O-M-N匀速行走,他从点O出发,沿箭头所示的方向经过点M再走到点N,共用时70秒.有一台摄像机选择了一个固定的位置记录了小阳的走路过程,设小阳走路的时间为t(单位:秒),他与摄像机的距离为y(单位:米),表示y与t的函数关系的图象大致如图②,则这个固定位置可能是图①中的A.点QB. 点P C. 点M D. 点N二、填空题(本题共18分,每小题3分)。
北京市朝阳区2016年中考一模数学试题(含答案)
北京市朝阳区九年级综合练习(一)数学试卷2016.5一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.清明节是中国传统节日,它不仅是人们远足踏青的日子,更是祭奠祖先、缅怀先人的节日.市民政局提供的数据显示,今年清明节当天全市213处祭扫点共接待群众264000人, 将264000用科学计数法表示应为A .B .C .D . 2.实数a ,b ,c ,d 在数轴上对应的位置如图所示,绝对值相等的两个实数是A .与B .与C .与D .与3.有一种推理游戏叫做“天黑请闭眼”,9位同学参与游戏,通过抽牌决定所扮演的角色,事先做好9张卡牌(除所写文字不同,其余均相同),其中有法官牌1张,杀手牌2张,好人牌6张.小易参与游戏,如果只随机抽取一张,那么小易抽到杀手牌的概率是 A .B .C .D . 4.下列图形选自历届世博会会徽,其中是轴对称图形的是A B C D5.如图,四边形ABCD 内接于⊙O ,E 为DC 延长线上一点,∠A =50º,则∠BCE 的度数为A .40ºB .50ºC .60ºD .130º326410⨯42.6410⨯52.6410⨯60.26410⨯a b b c c d a d 21132919图16.某地需要开辟一条隧道,隧道AB 的长度无法直接测量.如图所示, 在地面上取一点C ,使C 到A 、B 两点均可直接到达,测量找到AC 和BC 的中点D 、E ,测得DE 的长为1100m ,则隧道AB 的长度为A .3300mB .2200mC .1100mD .550m7.2022年将在北京—张家口举办冬季奥运会,很多学校开设了相关的课程.某校8名同学参加了冰壶选修课,他们被分成甲、乙两组进行训练,身高(单位:cm )如下表所示:设两队队员身高的平均数依次为,,方差依次为,,下列关系中完全正确的是 A .=,<B .=,>C .<,<D .>,>8.如图,△内接于⊙,若⊙的半径为6,, 则的长为A .2πB .4πC .6πD .12π9.我市为了促进全民健身,举办“健步走”活动,朝阳区活动场地位于奥林匹克公园(路线:森林公园—玲珑塔—国家体育场—水立方).如图,体育局的工作人员在奥林匹克公园设计图上设定玲珑塔的坐标为(–1,0),森林公园的坐标为(–2,2),则终点水立方的坐标为A .(–2,–4)B .(–1,–4)C .(–2,4)D .(–4,–1)10.如图1,在等边三角形ABC 中,AB =2,G 是BC 边上一个动点且不与点B 、C 重合,H 是AC 边上一点,且°.设BG=x ,图中某条线段长为y ,y 与x 满足的函数关系的图象大致如图2所示,则这条线段可能是图中的A .线段CGB .线段AGC .线段AHD .线段CH甲x 乙x 2甲s 2乙s 甲x 乙x 2甲s 2乙s 甲x 乙x 2甲s 2乙s 甲x 乙x 2甲s 2乙s 甲x 乙x 2甲s 2乙s ABC O O ︒=∠60A BC 30=∠AGH 1–112O图2三、填空题(本题共18分,每小题3分)11.若二次根式有意义,则x 的取值范围是____________.12.分解因式:____________.13.关于x 的方程有两个不相等实数根,写出一个满足条件的k 的值:k =____________.14.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?” 译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”设共有客人x 人,可列方程为____________.15.在数学活动课上,小派运用统计方法估计瓶子中的豆子的数量.他先取出100粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出100粒豆子,发现其中8粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为____________粒. 16.阅读下面材料:数学课上,老师提出如下问题:小艾的作法如下:老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是____________.2x -22369a b ab b -+=04222=-++k x x 尺规作图:经过已知直线上一点作这条直线的垂线.已知:直线AB 和AB 上一点C .求作:AB 的垂线,使它经过点C .如图,(1)在直线AB 上取一点D ,使点D 与点C 不重合,以点C 为圆心,CD 长为半径作弧,交AB 于D ,E 两点; (2)分别以点D 和点E 为圆心,大于12DE 长为半径作弧,两弧相交于点F ; (3)作直线CF .所以直线CF 就是所求作的垂线.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:1(2)1)4cos 45---+︒. 18.已知11m m-=,求(21)(21)(5)m m m m +-+-的值. 19.解不等式组3(1)6,1.2x x x x -<⎧⎪⎨+≤⎪⎩并写出它的所有整数解. 20.如图,E 为AC 上一点,EF ∥AB 交AF 于点F ,且AE = EF . 求证:= 2∠1.21.台湾是中国领土不可分割的一部分,两岸在政治、经济、文化等领域的交流越来越深入,2015年10月10日是北京故宫博物院成立90周年院庆日,两岸故宫同根同源,合作举办了多项纪念活动.据统计北京故宫博物院与台北故宫博物院现共有藏品约245万件,其中北京故宫博物院藏品数量比台北故宫博物院藏品数量的2倍还多50万件,求北京故宫博物院和台北故宫博物院各约有多少万件藏品.22.如图,四边形ABCD 是矩形,点E 在BC 边上,点F 在BC 延长线上,且∠CDF =∠BAE . (1)求证:四边形AEFD 是平行四边形; (2)若DF =3,DE =4,AD =5,求CD 的长度.BAC ∠FEDCB A1FECBA23.在平面直角坐标xOy 中,直线与双曲线的一个交点为A (2,4),与y 轴交于点B .(1) 求m 的值和点B 的坐标; (2) 点P 在双曲线上,△OBP 的面积为8,直接写出点P 的坐标.24.如图,点D 在⊙O 上,过点D 的切线交直径AB 延长线于点P ,DC ⊥AB 于点C . (1) 求证:DB 平分∠PDC ; (2) 若DC =6,3tan 4P ∠=,求BC 的长.25.阅读下列材料:人口老龄化已经成为当今世界主要问题之一.北京市在上世纪90年代初就进入了老龄化社会,全市60岁及以上户籍老年人口2013年底达到279.3万人,占户籍总人口的21.2%;2014年底比2013年底增加17.4万人,占户籍总人口的22.3%;2015年底比2014年底增加23.3万人,占户籍总人口的23%.“百善孝为先”,北京市政府越来越关注养老问题,提出养老服务新模式,计划90%的老年人在社会化服务协助下通过家庭照顾养老(即居家养老),6%的老年人在社区养老,4%的老年人入住养老服务机构.本市养老服务机构的床位总数2013年达到8.0516万张,2014年达到10.938万张,2015年达到12万张. 根据以上材料回答下列问题:(1)到2014年底,本市60岁及以上户籍老年人口为__________万人;(2)选择统计表或.统计图,将2013年––2015年本市60岁及以上户籍老年人口数量和占户籍总人口的比例表示出来;(3)预测2016年本市养老服务机构的床位数约为_________万张,请你结合数据估计,能否满足4%的老年人入住养老服务机构,并说明理由.26.观察下列各等式:y x b =+my x=my x=P,,, ……根据上面这些等式反映的规律,解答下列问题:(1)上面等式反映的规律用文字语言可描述如下:存在两个实数,使得这两个实数的等于它们的;(2)请你写一个实数,使它具有上述等式的特征:-3=3;(3)请你再写两个实数,使它们具有上述等式的特征:-=;(4)符合上述特征的所有等式中,是否存在两个实数都是整数的情况?若存在,求出所有满足条件的等式;若不存在,说明理由.27.在平面直角坐标系xOy 中,抛物线经过点(0,–3),(2,–3). (1)求抛物线的表达式;(2)求抛物线的顶点坐标及与x 轴交点的坐标;(3)将(y ≤0)的函数图象记为图象A ,图象A 关于x 轴对称的图象记为图象B .已知一次函数y=mx +n ,设点H 是x 轴上一动点,其横坐标为a ,过点H 作x 轴的垂线,交图象A 于点P ,交图象B 于点Q ,交一次函数图象于点N .若只有当1<a<3时,点Q 在点N 上方,点N 在点P 上方,直接写出n 的值.28.在等腰三角形ABC 中, AC =BC ,点P 为BC 边上一点(不与B 、C 重合),连接P A ,222=233-⨯( 1.2)6( 1.2)6--=-⨯11()(1)()(1)22---=-⨯-⨯⨯c bx x y ++=2c bx x y ++=2以P 为旋转中心,将线段P A 顺时针旋转,旋转角与∠C 相等,得到线段PD ,连接DB . (1)当∠C =90º时,请你在图1中补全图形,并直接写出∠DBA 的度数; (2)如图2,若∠C =α,求∠DBA 的度数(用含α的代数式表示);(3)连接AD ,若∠C =30º,AC =2,∠APC =135º,请写出求AD 长的思路.(可以不写出计算结果)29.在平面直角坐标系xOy 中,A (t ,0),B (,0),对于线段AB 和x 轴上方的点P 给出如下定义:当∠APB=60°时,称点P 为AB 的“等角点”.(1)若,在点302C ⎛⎫ ⎪⎝⎭,,2D ⎛⎫ ⎪ ⎪⎝⎭,3,22E ⎛⎫- ⎪ ⎪⎝⎭中,线段AB 的“等角点”是; (2)直线MN 分别交x 轴、y 轴于点M 、N ,点M 的坐标是(6,0),∠OMN=30°.①线段AB 的“等角点”P 在直线MN 上,且∠ABP =90°,求点P 的坐标; ②在①的条件下,过点B 作BQ ⊥P A ,交MN 于点Q ,求∠AQB 的度数; ③若线段AB 的所有“等角点”都在△MON 内部,则t 的取值范围是.t+t =-图1PC B APCBA图2北京市朝阳区九年级综合测试(一)数学试卷评分标准及参考答案一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17─26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式=11422--+⨯……………………………………………… …4分=12.……………………………………………………………………… 5分18.解:原式=22415m m m-+-………………………………………………………… 2分=2551m m--………………………………………………………………… 3分=25()1m m--.11mm-=,21m m∴-=.…………………………………………………………… 4分∴原式=4.…………………………………………………………………… 5分19.解:3(1)6,1.2x xxx-<⎧⎪⎨+≤⎪⎩解不等式①,得x>-1.……………………………………………………………2分解不等式②,得x≤1.………………………………………………………… 3分∴不等式组的解集是<≤1.………………………………………………… 4分∴原不等式组的所有整数解为0,1.……………………………………………5分1-x①②20.证明:∵EF ∥AB ,∴∠1=∠FAB .…………………… 2分 ∵AE =EF ,∴∠EAF =∠EFA . ……………… 3分∵∠1=∠EFA ,∴∠EAF =∠1.…………………… 4分∴∠BAC =2∠1. …………………5分21.解:设北京故宫博物院约有x 万件藏品,台北故宫博物院约有y 万件藏品.. …… 1分 依题意,列方程组得 245250.x y x y +=⎧⎨=+⎩,…………………………………………………………………………3分解得18065.x y =⎧⎨=⎩, ………………………………………………………………………………5分答:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品. 22.(1)证明:∵四边形ABCD 是矩形,∴,=90º. ∵BAE CDF ∠=∠,∴△≌△.………………1分 ∴. ∴. ∵,∴.………………………2分 又∵EF ∥AD ,∴四边形AEFD 是平行四边形.………………………3分 (2)解:由(1)知,EF =AD = 5.在△EFD 中,DF =3,DE =4,EF =5,∴222DE DF EF +=.∴∠EDF =90º.……………………………………………………………………4分∴1122ED DF EF CD ⋅=⋅. ∴125CD =. ……………………………………………………………………5分DC AB =DCF B ∠=∠ABE DCF CF BE =EF BC =AD BC =AD EF =FEDCB A1FEC BA23.解:(1)∵双曲线经过点,A (2,4), ∴.………………………………………………………………………1分 ∵直线y x b =+经过点A (2,4),∴2b =.…………………………………………………………………………2分∴此直线与y 轴交点B 的坐标为(0,2). …………………………………3分(2)(8,1),(-8,-1). .…………………………………………………… 5分 24.(1)证明:如图,连接OD . ∵DP 是⊙O 的切线, ∴OD ⊥DP .∴90ODP ∠=︒. ………………………………………………………1分 ∴90.ODB BDP ∠+∠=︒ 又∵DC ⊥OB , ∴90DCB ∠=︒.∴90BDC OBD ∠+∠=︒. ∵OD =OB ,∴.ODB OBD ∠=∠ ∴BDP BDC ∠=∠.∴DB 平分∠PDC .……………………………………………………………2分 (2)解:过点B 作BE ⊥DP 于点E . ∵,BDP BDC ∠=∠BC ⊥DC , ∴BC =BE . ……………………………………3分 ∵DC =6,, ∴DP =10,PC =8.……………………………… 4分 设CB=x , 则BE=x ,BP=8- x .∵△PEB ∽△PCD ,∴8610x x-= .∴.∴ ……………………………………………………………………… 5分 25.(1)296.7. ………………………………………………………………………………1分xmy =8=m 3tan 4P ∠=3=x .3=BCAA(2)统计表如下:2013–2015年本市60岁及以上户籍老年人口数量和占户籍总人口的比例统计表……………………………………………………………………………………3分 (3)14; ……………………………………………………………………………………4分能满足老年人的入住需求. 理由:根据2013–2015年老年人口数量增长情况,估计到2016年老年人口约有340万人,有4%的老年人入住养老服务机构,即约有13.6万人入住养老服务机构,到2016年北京市养老服务机构的床位数约14万张,所以能满足老年人的入住需求. ……………….…………….…………….…………………………………………5分 26.解:(1)差,积;…………………………………………………………………………1分分 分(4)存在. 设这两个实数分别为x ,y .可以得到 ……………………………………………………4分 ∴.∴111y x =-+.∵ 要满足这两个实数x ,y 都是整数,∴ x +1的值只能是1±.∴当时,;当时,.∴满足两个实数都是整数的等式为,.…5分27.解:(1)把(0,–3)代入,∴把(2,–3)代入.xy y x =-1+=x xy 0=x 0=y 2-=x 2=y 0000⨯=-222)2(⨯-=--c bx x y ++=2.3-=c ,32-+=bx x y∴. ………………2分 (2)由(1)得2(1)4y x =--. ∴顶点坐标为(1,–4).……………3分 由2230x x --=解得123,1x x ==-.∴抛物线与x 轴交点的坐标为(–1,0),(3,0).…………………………5分 (3). .……………………………………………………………………7分28.解:(1)如图,补全图1. …………….………………………………………………1分∠DBA=. ……………….………………………………………………2分(2) 过点P 作PE ∥AC 交AB 于点E . ………………………………………………3分 ∴PEB CAB ∠=∠.∵ AC =BC ,∴CAB CBA ∠=∠. ∴PEB PBE ∠=∠. ∴PE PB =.又∵BPD DPE EPA DPE α∠+∠=∠+∠=, ∴BPD EPA ∠=∠. ∵PD PA =,∴△PDB ≌△PAE .…………………………………………………………4分 ∵11(180)9022PBA PEB αα∠=∠=︒-=︒-, ∴180PBD PEA PEB ∠=∠=︒-∠=α2190+︒.∴DBA PBD PBA α∠=∠-∠=. …………………………………………5分 (3)求解思路如下:a .作AH ⊥BC 于H ;.2-=b 322--=x x y 6±︒90PEC BACPb .由∠C =30º,AC =2,可得AH =1,CH,BH=2, 勾股定理可求AB ; ………………………………………6分 c .由∠APC =135 º,可得∠APH =45 º,AP; d .由∠APD =∠C =30º,AC =BC ,AP =DP ,可得△PAD ∽△CAB ,由相似比可求AD 的长. ……………7分 29.解:(1)C ,D . ……….…………….………….…….………….………………2分 (2)①如图,∵∠APB=60°,∠ABP =90°, ∴∠PAB =30°,又∵∠OMN=30°,∴,.PA PM AB BM == ……………3分∵∴BM =∴∴P(61). .………..……….….………….………….…………4分 ②∵BQ ⊥AP ,且∠APB =60º,∴∠PBQ =30º. ∴∠ABQ =60º.∴∠BMQ =∠MQB =30º. ……5分 ∴BQ = BM =AB .∴△ABQ 是等边三角形.∴∠AQB =60º. ………………………………………………………6分同理,当点N 在x 轴下方时,可得P(1),∠AQB =90º. ………7分③142t -<<-…………………………………………………8分说明:各解答题的其他正确解法请参照以上标准给分.,3=AB .1=PB NMNM。
(完整word版)2016年北京中考数学试卷和参考答案
2016年北京市高级中等学校招生考试数学试卷学校 姓名 准考证号 考生须知1. 本试卷共8页,共三道大题,29道小题,满分120分。
考试时间120分钟.2. 在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3. 试题答案一律填涂在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束后,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只.有.一个。
1. 如图所示,用量角器度量∠AOB ,可以读出∠AOB 的度数为 (A ) 45° (B ) 55° (C ) 125° (D ) 135°2。
神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28 000公里.将28 000用科学计数法表示应为 (A )(B ) 28 (C ) (D )3. 实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是(A ) a (B ) (C ) (D )4。
内角和为540的多边形是5. 右图是某个几何体的三视图,该几何体是BAO(A)圆锥(B)三棱锥(C) 圆柱 (D)三棱柱6。
如果,那么代数的值是(A) 2 (B)-2 (C)(D)7. 甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是A B C D8. 在1-7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是(A) 3月份(B) 4月份(C) 5月份(D) 6月份第8题图第9题图9. 如图,直线,在某平面直角坐标系中,x轴m,y轴n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为(A)(B)(C)(D)10. 为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增。
计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%.为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:),绘制了统计图,如图所示,下面有四个推断:①年用水量不超过180的该市居民家庭按第一档水价交费②年用水量超过240的该市居民家庭按第三档水价交费③该市居民家庭年用水量的中位数在150—180之间④该市居民家庭年用水量的平均数不超过180(A) ①③(B)①④(C)②③(D)②④二、填空题(本题共18分,每小题3分)11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市朝阳区九年级综合练习(一)数学试卷2016.5一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.清明节是中国传统节日,它不仅是人们远足踏青的日子,更是祭奠祖先、缅怀先人的节日.市民政局提供的数据显示,今年清明节当天全市213处祭扫点共接待群众264000人, 将264000用科学计数法表示应为A .326410⨯B .42.6410⨯C .52.6410⨯D .60.26410⨯2.实数a ,b ,c ,d 在数轴上对应的位置如图所示,绝对值相等的两个实数是 A .a 与b B .b 与c C .c 与dD .a 与d3.有一种推理游戏叫做―天黑请闭眼‖,9位同学参与游戏,通过抽牌决定所扮演的角色,事先做好9张卡牌(除所写文字不同,其余均相同),其中有法官牌1张,杀手牌2张,好人牌6张.小易参与游戏,如果只随机抽取一张,那么小易抽到杀手牌的概率是A .B .C .D .4.下列图形选自历届世博会会徽,其中是轴对称图形的是ABCD5.如图,四边形ABCD 内接于⊙O ,E 为DC 延长线上一点,∠A = 50º,则∠BCE 的度数为 A .40º B .50º C .60ºD .130º2113291926.某地需要开辟一条隧道,隧道AB 的长度无法直接测量.如图所示,在地面上取一点C ,使C 到A 、B 两点均可直接到达,测量找到AC 和BC 的中点D 、E ,测得DE 的长为1100m ,则隧道AB 的长度为 A .3300m B .2200m C .1100mD .550m7.2022年将在北京—张家口举办冬季奥运会,很多学校开设了相关的课程.某校8名同学参加了冰壶选修课,他们被分成甲、乙两组进行训练,身高(单位:cm )如下表所示:设两队队员身高的平均数依次为,,方差依次为,,下列关系中完全正确的是 A .=,< B .=,>C .<,<D .>,>8.如图,△内接于⊙,若⊙的半径为6,,则的长为 A .2π B .4π C .6πD .12π9.我市为了促进全民健身,举办―健步走‖活动,朝阳区活动场地位于奥林匹克公园(路线:森林公园—玲珑塔—国家体育场—水立方).如图,体育局的工作人员在奥林匹克公园设计图上设定玲珑塔的坐标为(–1,0),森林公园的坐标为(–2,2),则终点水立方的坐标为 A .(–2,–4) B .(–1,–4) C .(–2,4)D .(–4,–1)10.如图1,在等边三角形ABC 中,AB =2,G 是BC 边上一个动点且不与点B 、C 重合,H 是AC 边上一点,且°.设BG=x ,图中某条线段长为y ,y 与x 满足的函数关系的图象大致如图2所示,则这条线段可能是图中的 A .线段CG B .线段AG C .线段AH D .线段CH甲x 乙x 2甲s 2乙s 甲x 乙x 2甲s 2乙s 甲x乙x 2甲s 2乙s 甲x 乙x 2甲s 2乙s 甲x 乙x 2甲s 2乙s ABC O O ︒=∠60A BC30=∠AGH 1–112O图2图1二、填空题(本题共18分,每小题3分)11x 的取值范围是____________.12.分解因式:____________.13.关于x 的方程有两个不相等实数根,写出一个满足条件的k 的值:k =____________.14.《孙子算经》是中国传统数学的重要著作之一,其中记载的―荡杯问题‖很有趣.《孙子算经》记载―今有妇人河上荡杯.津吏问曰:‗杯何以多?‘妇人曰:‗家有客.‘津吏曰:‗客几何?‘妇人曰:‗二人共饭,三人共羹,四人共肉,凡用杯六十五.‘不知客几何?‖译文:―2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?‖设共有客人x 人,可列方程为____________.15.在数学活动课上,小派运用统计方法估计瓶子中的豆子的数量.他先取出100粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出100粒豆子,发现其中8粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为____________粒. 16.阅读下面材料:数学课上,老师提出如下问题:小艾的作法如下:老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是____________.22369a b ab b -+=04222=-++k x x 如图,(1)在直线AB 上取一点D ,使点D 与点C 不重合,以点C 为圆心,CD 长为半径作弧,交AB 于D ,E 两点;(2)分别以点D 和点E 为圆心,大于12DE 长为半径作弧,两弧相交于点F ;(3)作直线CF .所以直线CF 就是所求作的垂线.尺规作图:经过已知直线上一点作这条直线的垂线.已知:直线AB 和AB 上一点C .求作:AB 的垂线,使它经过点C .4三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.计算:10(2)1)4cos 45---++︒.18.已知11m m-=,求(21)(21)(5)m m m m +-+-的值.19.解不等式组3(1)6,1.2x x x x -<⎧⎪⎨+≤⎪⎩并写出它的所有整数解.20.如图,E 为AC 上一点,EF ∥AB 交AF 于点F ,且AE = EF . 求证:= 2∠1.21.台湾是中国领土不可分割的一部分,两岸在政治、经济、文化等领域的交流越来越深入, 2015年10月10日是北京故宫博物院成立90周年院庆日,两岸故宫同根同源,合作举办了多项纪念活动.据统计北京故宫博物院与台北故宫博物院现共有藏品约245万件,其中北京故宫博物院藏品数量比台北故宫博物院藏品数量的2倍还多50万件,求北京故宫博物院和台北故宫博物院各约有多少万件藏品.22.如图,四边形ABCD 是矩形,点E 在BC 边上,点F 在BC 延长线上,且∠CDF =∠BAE . (1)求证:四边形AEFD 是平行四边形; (2)若DF =3,DE =4,AD =5,求CD 的长度.BAC ∠1FEC AFEDCB A23.在平面直角坐标xOy 中,直线与双曲线的一个交点为A (2,4),与y 轴交于点B . (1) 求m 的值和点B 的坐标; (2) 点P 在双曲线上,△OBP 的面积为8,直接写出点P 的坐标.24.如图,点D 在⊙O 上,过点D 的切线交直径AB 延长线于点P ,DC ⊥AB 于点C . (1) 求证:DB 平分∠PDC ; (2) 若DC =6,3tan 4P ∠=,求BC 的长.25.阅读下列材料:人口老龄化已经成为当今世界主要问题之一.北京市在上世纪90年代初就进入了老龄化社会,全市60岁及以上户籍老年人口2013年底达到279.3万人,占户籍总人口的21.2%; 2014年底比2013年底增加17.4万人,占户籍总人口的22.3%;2015年底比2014年底增加23.3万人,占户籍总人口的23%.―百善孝为先‖,北京市政府越来越关注养老问题,提出养老服务新模式,计划90%的老年人在社会化服务协助下通过家庭照顾养老(即居家养老),6%的老年人在社区养老,4%的老年人入住养老服务机构.本市养老服务机构的床位总数2013年达到8.0516万张,2014年达到10.938万张,2015年达到12万张. 根据以上材料回答下列问题:(1)到2014年底,本市60岁及以上户籍老年人口为__________万人;(2)选择统计表或.统计图,将2013年––2015年本市60岁及以上户籍老年人口数量和占户籍总人口的比例表示出来;(3)预测2016年本市养老服务机构的床位数约为_________万张,请你结合数据估计,能否满足4%的老年人入住养老服务机构,并说明理由.y x b =+my x=my x=P626.观察下列各等式:,,,……根据上面这些等式反映的规律,解答下列问题:(1)上面等式反映的规律用文字语言可描述如下:存在两个实数,使得这两个实数的等于它们的; (2)请你写一个实数,使它具有上述等式的特征:-3=3; (3)请你再写两个实数,使它们具有上述等式的特征:-=;(4)符合上述特征的所有等式中,是否存在两个实数都是整数的情况?若存在,求出所有满足条件的等式;若不存在,说明理由.27.在平面直角坐标系xOy 中,抛物线经过点(0,–3),(2,–3). (1)求抛物线的表达式;(2)求抛物线的顶点坐标及与x 轴交点的坐标;(3)将(y ≤0)的函数图象记为图象A ,图象A 关于x 轴对称的图象记为图象B .已知一次函数y=mx +n ,设点H 是x 轴上一动点,其横坐标为a ,过点H 作x 轴的垂线,交图象A 于点P ,交图象B 于点Q ,交一次函数图象于点N .若只有当1<a<3时,点Q 在点N 上方,点N 在点P 上方,直接写出n 的值.222=233-⨯( 1.2)6( 1.2)6--=-⨯11((1)()(1)22---=-⨯-⨯⨯c bx x y ++=2c bx x y ++=228.在等腰三角形ABC 中, AC =BC ,点P 为BC 边上一点(不与B 、C 重合),连接PA ,以P 为旋转中心,将线段PA 顺时针旋转,旋转角与∠C 相等,得到线段PD ,连接DB . (1)当∠C =90º时,请你在图1中补全图形,并直接写出∠DBA 的度数; (2)如图2,若∠C =α,求∠DBA 的度数(用含α的代数式表示);(3)连接AD ,若∠C =30º,AC =2,∠APC =135º,请写出求AD 长的思路.(可以不写出计算结果)29.在平面直角坐标系xOy 中,A (t ,0),B (,0),对于线段AB 和x 轴上方的点P 给出如下定义:当∠APB=60°时,称点P 为AB 的―等角点‖.(1)若,在点302C ⎛⎫ ⎪⎝⎭,,2D ⎛⎫⎪ ⎪⎝⎭,322E ⎛⎫- ⎪ ⎪⎝⎭中,线段AB 的―等角点‖是; (2)直线MN 分别交x 轴、y 轴于点M 、N ,点M 的坐标是(6,0),∠OMN=30°. ①线段AB 的―等角点‖P 在直线MN 上,且∠ABP =90°,求点P 的坐标; ②在①的条件下,过点B 作BQ ⊥PA ,交MN 于点Q ,求∠AQB 的度数;③若线段AB 的所有―等角点‖都在△MON 内部,则t 的取值范围是.t+t =-PCBA图2图1PC BA北京市朝阳区九年级综合测试(一)数学试卷评分标准及参考答案一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17─26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式=1142--+…………………………………………………4分=12.……………………………………………………………………… 5分18.解:原式=22415m m m-+-………………………………………………………… 2分=2551m m--………………………………………………………………… 3分=25()1m m--.11mm-=,∴21m m-=.…………………………………………………………… 4分∴原式=4.…………………………………………………………………… 5分819.解:3(1)6,1.2x x x x -<⎧⎪⎨+≤⎪⎩ 解不等式①,得x>-1.……………………………………………………………2分解不等式②,得x ≤1.………………………………………………………… 3分∴不等式组的解集是<≤1.………………………………………………… 4分∴原不等式组的所有整数解为0,1.……………………………………………5分20.证明:∵EF ∥AB , ∴∠1=∠FAB .…………………… 2分∵AE =EF , ∴∠EAF =∠EFA .……………… 3分∵∠1=∠EFA , ∴∠EAF =∠1.…………………………………………………………………………4分∴∠BAC =2∠1.…………………………………………………………………………5分21.解:设北京故宫博物院约有x 万件藏品,台北故宫博物院约有y 万件藏品..…………………………………………………………………………1分依题意,列方程组得245250.x y x y +=⎧⎨=+⎩,…………………………………………………………………………3分解得18065.x y =⎧⎨=⎩,………………………………………………………………………………5分答:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品.1-x ① ②1FEC A1022.(1)证明:∵四边形ABCD 是矩形, ∴,=90º. ∵BAE CDF ∠=∠, ∴△≌△.………………1分∴. ∴. ∵,∴.………………………2分 又∵EF ∥AD ,∴四边形AEFD 是平行四边形.………………………3分 (2)解:由(1)知,EF =AD = 5. 在△EFD 中,DF =3,DE =4,EF =5, ∴222DE DF EF +=. ∴∠EDF =90º.……………………………………………………………………4分∴1122ED DF EF CD ⋅=⋅. ∴125CD =. ……………………………………………………………………5分23.解:(1)∵双曲线经过点,A (2,4), ∴.………………………………………………………………………1分∵直线y x b =+经过点A (2,4), ∴2b =.…………………………………………………………………………2分∴此直线与y 轴交点B 的坐标为(0,2).…………………………………3分(2)(8,1),(-8,-1)..……………………………………………………5分DC AB =DCF B ∠=∠ABE DCF CF BE =EF BC =AD BC =AD EF =xmy =8=m FEDCB A24.(1)证明:如图,连接OD . ∵DP 是⊙O 的切线, ∴OD ⊥DP . ∴90ODP ∠=︒.………………………………………………………1分∴90.ODB BDP ∠+∠=︒ 又∵DC ⊥OB , ∴90DCB ∠=︒.∴90BDC OBD ∠+∠=︒. ∵OD =OB , ∴.ODB OBD ∠=∠ ∴BDP BDC ∠=∠. ∴DB 平分∠PDC .……………………………………………………………2分(2)解:过点B 作BE ⊥DP 于点E . ∵,BDP BDC ∠=∠BC ⊥DC , ∴BC =BE .……………………………………3分∵DC =6,, ∴DP =10,PC =8.……………………………… 4分设CB=x ,则BE=x ,BP=8- x . ∵△PEB ∽△PCD , ∴8610x x -=. ∴. ∴……………………………………………………………………… 5分3tan 4P ∠=3=x .3=BCAA1225.(1)296.7.………………………………………………………………………………1分(2)统计表如下:2013–2015年本市60岁及以上户籍老年人口数量和占户籍总人口的比例统计表……………………………………………………………………………………3分(3)14;……………………………………………………………………………………4分能满足老年人的入住需求. 理由:根据2013–2015年老年人口数量增长情况,估计到2016年老年人口约有340万人,有4%的老年人入住养老服务机构,即约有13.6万人入住养老服务机构,到2016年北京市养老服务机构的床位数约14万张,所以能满足老年人的入住需求.……………….…………….…………….…………………………………………5分26.解:(1)差,积;…………………………………………………………………………1分……………………………………………………………………2分…………………………………………3分(4)存在. 设这两个实数分别为x ,y . 可以得到……………………………………………………4分∴. ∴111y x =-+. ∵要满足这两个实数x ,y 都是整数, ∴x +1的值只能是1±..xy y x =-1+=x x y∴当时,;当时,.∴满足两个实数都是整数的等式为,.……………………………………………………………………………5分27.解:(1)把(0,–3)代入, ∴把(2,–3)代入 ∴.………………2分(2)由(1)得2(1)4y x =--. ∴顶点坐标为(1,–4).……………3分由2230x x --=解得123,1x x ==-.∴抛物线与x 轴交点的坐标为(–1,0),(3,0).…………………………5分(3)..……………………………………………………………………7分28.解:(1)如图,补全图1.…………….………………………………………………1分∠DBA=.……………….………………………………………………2分(2)过点P 作PE ∥AC 交AB 于点E .………………………………………………3分∴PEB CAB ∠=∠.∵ AC =BC ,∴CAB CBA ∠=∠. ∴PEB PBE ∠=∠.∴PE PB =.又∵BPD DPE EPA DPE α∠+∠=∠+∠=, ∴BPD EPA ∠=∠.∵PD PA =, ∴△PDB ≌△PAE .…………………………………………………………4分∵11(180)9022PBA PEB αα∠=∠=︒-=︒-,∴180PBD PEA PEB ∠=∠=︒-∠=α2190+︒. ∴DBA PBD PBA α∠=∠-∠=.…………………………………………5分0=x 0=y 2-=x 2=y 0000⨯=-222)2(⨯-=--c bx x y ++=2.3-=c ,32-+=bx x y .2-=b 322--=x x y 6±︒90PEDCBA14NMNM(3)求解思路如下: a .作AH ⊥BC 于H ;b .由∠C =30º,AC =2,可得AH =1,CHBH=2, 勾股定理可求AB ;………………………………………6分c .由∠APC =135 º,可得∠APH =45 º,APd .由∠APD =∠C =30º,AC =BC ,AP =DP , 可得△PAD ∽△CAB ,由相似比可求AD 的长.……………7分29.解:(1)C ,D .……….…………….………….…….………….………………2分(2)①如图,∵∠APB=60°,∠ABP =90°,∴∠PAB =30°, 又∵∠OMN=30°, ∴,.PA PM AB BM ==……………3分∵∴BM =∴ ∴P (61)..………..……….….………….………….…………4分②∵BQ ⊥AP ,且∠APB =60º, ∴∠PBQ =30º. ∴∠ABQ =60º.∴∠BMQ =∠MQB =30º. ……5分 ∴BQ = BM =AB . ∴△ABQ 是等边三角形. ∴∠AQB =60º.………………………………………………………6分同理,当点N 在x 轴下方时,可得P (1),∠AQB =90º.……………………………………………………7分③142t -<< …………………………………………………8分,3=AB .1=PB HABC P。