实验20 集成运算放大器的基本运算电路
集成运放组成的基本运算电路
K2
C 1μF
R2 1M
K1 +15V
vS
-
R1 100K
A
vO
+
R′ 100K
-15V
vo
1 R1
t
0 vsdt
积分运算电路
4. 积分运算电路
将实验数据及波形填入下述表格中:
vs波形
vs幅度值
vo波形
vo频率
vo幅度值
5. 用积分电路转换方波为三角波
电路如下图所示。图中电阻R2的接入是为了抑制由 IIO、VIO所造成的积分漂移,从而稳定运放的输出零 点。
A
vO
υS
+
R′ 10K
-15V
v0
(1
RF R1
)vs
同相比例运算电路
2. 实现同相比例运算
将实验数据及波形填入下述表格中:
输入信号vs1 (V)
有效值
波形
输入信号vs2 (V)
有效值
波形
有效值
输出电压vo (V)
峰值
波形
注:上表针对正弦波输入,若是其他信号输入表作相应改变。
3. 减法器(差分放大电路)
减法器(差分放大电路)运算仿真电路
3. 减法器(差分放大电路)
减法器(差分放大电路)运算仿真电路
3. 减法器(差分放大电路)
将实验数据及波形填入下述表格中:
输入信号vs1 (V)
有效值
波形
输入信号vs2 (V)
ቤተ መጻሕፍቲ ባይዱ
有效值
波形
有效值
输出电压vo (V)
峰值
波形
注:上表针对正弦波输入,若是其他信号输入表作相应改变。
vs波形
集成运放组成的基本运算电路 实验报告
实验报告课程名称: 电路与模拟电子技术实验 指导老师: 张冶沁 成绩:__________________ 实验名称: 基本运算电路设计 实验类型: 电路实验 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得一、实验目的和要求1.掌握集成运放组成的比例、加法和积分等基本运算电路的设计。
2.掌握基本运算电路的调试方法。
3.学习集成运算放大器的实际应用。
二、实验内容和原理1.实现反相加法运算电路2.实现反相减法运算电路3.用积分电路将方波转换为三角波4.同相比例运算电路的电压传输特性(选做)5.查看积分电路的输出轨迹(选做)三、主要仪器设备HY3003D-3型可调式直流稳压稳流电源 示波器、信号发生器、万用表 实验箱LM358运放模块四、操作方法和实验步骤1.两个信号的反相加法运算1) 按设计的运算电路进行连接。
2) 静态测试:将输入接地,测试直流输出电压。
保证零输入时电路为零输出。
3) 调出0.2V 三角波和0.5V 方波,送示波器验证。
4) V S1输入0.2V 三角波,V S2输入0.5V 方波,用示波器双踪观察输入和输出波形,确认电路功能正确。
记录示波器波形(坐标对齐,注明幅值)。
2. 减法器(差分放大电路)减法器电路,为了消除输入偏置电流以及输入共模成分的影响,要求R1=R2、RF=R3。
专业: 姓名:学号: 日期: 地点:学生序号61) 按设计的运算电路进行连接。
2) 静态测试:输入接地,保证零输入时为零输出。
3) V S1和V S2输入正弦波(频率和幅值),用示波器观察输入和输出波形,确认电路功能正确。
4) 用示波器测量输入和输出信号幅值,记到表格中。
3.用积分电路转换方波为三角波电路中电阻R2的接入是为了抑制由I IO、V IO所造成的积分漂移,从而稳定运放的输出零点。
集成运算放大电路实验报告
电子技术基础实验与课程设计------运算放大器基本放大电路实验目的1.通过实验,进一步理解集成运算放大器线性应用电路的特点。
2.掌握集成运算放大器基本线性应用电路的设计方法。
3.了解限幅放大器的转移特性以及转移特性曲线的绘制方法。
集成运算放大器放大电路概述集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。
集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。
集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。
1.1反相比例放大电路输入输出关系: 输入电阻: Ri=R1 输出电阻: Ro=01.1.1设计要求1.1.2选择器件与多数计算通过查找资料选用TL082集成运放设计放大12倍。
反相比例放大电路仿真电路图i oV R R V 12-=i R o V R R V R R V 1212)1(-+=输入与输出电压所以输出放大倍数 =12电压输入输出波形图i oV R R V 12-=1.2同相比例放大电路输入输出关系: 输入电阻: Ri=∞ 输出电阻: Ro=0 1.2.1设计要求1.2.2选择器件与多数计算通过查找资料选用TL082集成运放设计放大12倍。
i o V RRV )1(12+=R o V R RV R R V 12i 12)1(-+=同相比例放大电路仿真电路图输入与输出电压所以输出放大倍数: =12 电压输入输出波形图i o V RRV )1(12+=1.3微分电路R fU iR 2U oC 1foi R U dt dU C -=1dtdU C R U if o 1-=max 1)(dtdU U C R i oM f ≤实用微分电路RC1=RfC电路的输出电压为o u 为:21io du u R C dt =- 式中,21R C 为微分电路的时间常数。
集成运算放大器基本应用(模拟运算电路)实训指导
集成运算放大器基本应用 (模拟运算电路)实训指导(特别提醒:实验电路图中可能存在有的元器件数值与实验电路板中的不相同,实验时应以实验电路板中的为准。
另外,由于元器件老化、湿度变化、温度变化等诸多因素的影响所致,实验电路板中所标的元器件数值也可能与元器件的实际数值不一致。
有的元器件虽然已经坏了,但仅凭肉眼看不出来。
因此,在每次实验前,应该先对元器件(尤其是电阻、电容、三极管)进行单个元件的测量(注意避免与其它元器件或人体串联或并联在一块测量)。
并记下元器件的实际数值。
否则,实验测得的数值与计算出的数值可能无法进行科学分析。
)一.实验目的1.研究由集成运放组成的比例、加法、减法和积分等基本运算电路的功能。
2.了解运算放大器在实际应用时应考虑的一些问题。
二.实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。
当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
基本运算电路。
1)反相比例运算电路电路如图8—1所示。
对于理想运放,该电路的输出电压与输入电压之间的关系为i F O U R RU 1-=为了减小输入级偏置电流引起的运算误差,在同相端应接入平衡电阻R 2=R 1||R F 。
U OOU U图8—1 图8—22)反相加法电路电路如图8—2,输出电压与输入电压之间的关系为)(2211i F i F O U R RU R R U +-=R 3= R 1‖R 2‖R F 3)同相比例运算电路图8—3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i F O U R R U ⎪⎪⎭⎫ ⎝⎛+=11 R 2 = R 1‖R F当R 1 ∞,U o =U i ,即得到如图8—3(b)所示的电压跟随器,图中R 2=R F ,用以减小漂移和起保作用。
一般R F 取10K Ω,R F 太小起不到保护作用,太大则影响跟随性。
集成运算放大器的基本应用实验报告
集成运算放大器的基本应用实验报告集成运算放大器的基本应用实验报告引言:集成运算放大器(Operational Amplifier,简称Op-Amp)是一种广泛应用于电子电路中的重要器件。
它具有高增益、低失调、宽带宽等特点,可以实现信号放大、滤波、积分、微分等功能。
在本次实验中,我们将通过几个基本应用实验,探索集成运算放大器的工作原理和应用场景。
实验一:非反相放大器非反相放大器是Op-Amp最常见的应用之一。
它通过将输入信号与放大倍数相乘,输出一个放大后的信号。
我们在实验中使用了一个标准的非反相放大器电路,将一个正弦波信号作为输入,观察输出信号的变化。
实验结果显示,输出信号的幅度和输入信号的幅度相比,增大了放大倍数倍。
而相位方面,输出信号与输入信号的相位保持一致。
这说明非反相放大器能够有效放大输入信号,并且不改变其相位。
实验二:反相放大器反相放大器是Op-Amp另一种常见的应用。
它与非反相放大器相比,输入信号与放大倍数相乘后取反,输出一个反向的放大信号。
我们在实验中使用了一个反相放大器电路,将一个正弦波信号作为输入,观察输出信号的变化。
实验结果显示,输出信号的幅度与输入信号的幅度相比,同样增大了放大倍数倍。
但是相位方面,输出信号与输入信号相差180度。
这说明反相放大器能够有效放大输入信号,并且改变其相位。
实验三:积分器积分器是Op-Amp的另一个重要应用。
它可以将输入信号进行积分运算,输出一个积分后的信号。
我们在实验中使用了一个积分器电路,将一个方波信号作为输入,观察输出信号的变化。
实验结果显示,输出信号呈现一个斜率逐渐增大的曲线,表明输入信号得到了积分。
这说明积分器能够有效对输入信号进行积分运算,输出一个积分后的信号。
实验四:微分器微分器是Op-Amp的又一个重要应用。
它可以将输入信号进行微分运算,输出一个微分后的信号。
我们在实验中使用了一个微分器电路,将一个正弦波信号作为输入,观察输出信号的变化。
集成运算放大器的基本运算电路
集成运算放大器的基本运算电路x本文介绍了集成运算放大器的基本运算电路,包括其结构、功能、特性和应用。
集成运算放大器是一种半导体器件,用于放大电气信号,它有助于提高信号的电压或电流,使信号可以传输到远处。
集成运算放大器具有很多优点,如体积小、功耗低、抗干扰能力强、可靠性高等。
此外,它还可以实现各种电路设计,如移相器、高通滤波器和低通滤波器等。
本文将详细介绍集成运算放大器的基本运算电路,包括电路结构、工作原理、参数、应用等。
集成运算放大器(Integrated Operational Amplifier)是一种具有可替代性的多输入半导体电路,它可以提高任何一路输入信号的电压或电流,可以实现各种复杂的放大电路。
集成运算放大器的基本电路由一个或多个放大器组成,每个放大器由若干个部件组成,可以形成一个可调节复杂放大电路。
集成运算放大器可分为多晶片、单晶片和小规模集成电路3种类型,根据处理信号的种类和放大系数的大小,它可以分为分立电路、模拟电路和数字电路。
集成运算放大器的输出电压可以大大提高原始信号的电压,并且可以根据输入参数调节输出电压。
集成运算放大器的基本运算电路由放大器、输入端口和输出端口组成。
输入端口由两个端口组成,分别是正输入端口和负输入端口,这两个端口可以接收一个正电压信号和一个负电压信号。
输出端口可以接收较大的电压信号,输出信号与输入信号的相位一致。
此外,很多放大器还具有滞后环节,可以进一步延迟放大器的输出信号,使其同输入信号的相位更为一致。
集成运算放大器的特性取决于其器件和结构,主要特性有:抗干扰能力强、体积小、功耗低、可靠性高等。
此外,集成运算放大器还具有很多类型,如双路放大器、移相器、高通滤波器和低通滤波器等,每种器件都有其特定的应用。
集成运算放大器可用于实现各种电路,如低通滤波器、高通滤波器、移相器等,这些电路有助于提高电路系统的精度和灵敏度,从而实现精确的测量和控制。
此外,它还可以用于实现多种复杂电路,如高阻率电路、低阻率电路和串行/并行电路等。
集成运算放大器构成的反相比例运算电路
集成运算放大器构成的反相比例运算电路反相比例运算电路是一种基本的集成运算放大器应用电路,广泛应用于信号放大、滤波、测量和控制等领域。
反相比例运算电路由集成运算放大器、电阻、输入信号源和输出负载组成。
其中,集成运算放大器是电路的核心部件,具有高增益、高输入阻抗和低输出阻抗的特点。
反相比例运算电路的工作原理如下:输入信号通过电阻与集成运算放大器的输入端相连,电阻使得输入信号能够被有效地分配给集成运算放大器。
集成运算放大器将输入信号放大,并通过输出端连接的负载电阻输出放大后的信号。
由于电阻的存在,输出信号与输入信号成反向关系,并且放大倍数与电阻的比值有关。
反相比例运算电路具有许多重要特性。
首先,通过调整电阻值可以调节放大倍数,使得电路可以适应不同的信号放大需求。
其次,由于集成运算放大器具有极低的输入电阻,使得电路可以接收来自各种信号源的输入信号,而不会对信号源产生额外负载。
此外,反相比例运算电路具有极低的输出阻抗,可以驱动各种负载电阻,保证输出信号的传输质量。
在实际应用中,反相比例运算电路有着广泛的用途。
例如,可以用于音频放大器、传感器信号放大、滤波器设计等。
在音频放大器中,反相比例运算电路能够将低电平的音频信号放大至足够的音量,以满足人们对音乐的欣赏需求。
在传感器信号放大方面,反相比例运算电路可以对微弱的传感器信号进行放大,使其能够被有效地采集和处理。
而在滤波器设计中,反相比例运算电路能够实现对特定频率范围内信号的放大,过滤掉其他频率的杂音干扰。
总之,反相比例运算电路是一种重要的集成运算放大器应用电路,其结构简单、性能优越,具有广泛的应用领域。
通过合理选择电阻值和运用反相比例运算电路的特性,我们可以满足各种信号放大、滤波、测量和控制的需求,并提高电路的性能和可靠性。
集成运算放大器的基本应用模拟运算电路实验报告
集成运算放大器的基本应用模拟运算电路实验报告实验目的:1. 学习集成运算放大器的基本应用;2. 掌握模拟运算电路的基本组成和设计方法;3. 理解反馈电路的作用和实现方法。
实验器材:1. 集成运算放大器OP07;2. 双电源电源供应器;3. 多用途万用表;4. 音频信号发生器;5. 电容、电阻、二极管、晶体管等元器件。
实验原理:集成运算放大器是一种高增益、高输入阻抗、低输出阻抗、具有巨大开环增益的差分放大器。
在应用中,我们通常通过反馈电路来控制放大器的增益、输入输出阻抗等特性,从而使其实现各种模拟运算电路。
常用的反馈电路有正向电压反馈、负向电压反馈和电流反馈等。
各种反馈电路的实现方法有所不同,但基本思想都是引入一个反馈回路来控制电路的传递函数,从而实现对电路特性的控制。
实验内容:1. 非反相比例放大电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。
2. 非反相积分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。
3. 非反相微分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。
4. 反相比例放大电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。
5. 反相积分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。
6. 反相微分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。
7. 增益和带宽测试选择合适的集成运算放大器,按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。
实验数据及分析:根据实验中所得到的数据,可以绘制出放大倍数和频率的曲线图,从中可以看出电路的增益特性和带宽特性。
实验结论:通过本次实验,我们学习了集成运算放大器的基本应用,掌握了模拟运算电路的基本组成和设计方法,理解了反馈电路的作用和实现方法,同时也提高了我们的实验操作能力。
集成运放基本运算电路实验报告
实验七 集成运放基本运算电路一、实验目的1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。
2、了解运算放大器在实际应用时应考虑的一些问题。
二、实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。
当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
理想运算放大器特性 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。
开环电压增益 A ud =∞ 输入阻抗 r i =∞ 输出阻抗 r o =0 带宽 f BW =∞ 失调与漂移均为零等。
理想运放在线性应用时的两个重要特性: (1)输出电压U O 与输入电压之间满足关系式U O =A ud (U +-U -)由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。
即U +≈U -,称为“虚短”。
(2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。
这说明运放对其前级吸取电流极小。
上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。
基本运算电路1.12n fRR R R in i i i ++++ΛΛ321= i f于是有V=RRf- (V i1 +V i2 +V i3 +……+V in)如果各电阻的阻值不同,则可作为比例加法器,则有⎥⎦⎤⎢⎣⎡+++-=innfifif VRRVRRVRRVΛΛ22112、减法器是指输出信号为两个输入信号之差的放大器。
用数学关系表示时,可写为:y = x1- x2下图为减法器的基本结构图。
由于 VA= VBffAAi iRVVRVVi=-=-=0112ffiB RRRVV+=12(已知R3= Rf)所以()2110iif VVRRV-=3⎰=xdty这里反馈网络的一个部分用电容来代替电=II4算的结果。
集成运算放大器基本运算电路
集成运算放大器的基本运算电路集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。
当外部接入不同的线性或非线性元器件组成负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
基本运算电路(1)反相比例运算电路电路如图1所示,对于理想运放,该电路的输出电压与输入电压之间的关系为uO=-ui图1 反相比例运算电路为了减小输入偏置电流引起的运算误差,在同相输入端应接入平衡电阻R2=R1||RF。
(2)同相比例运算电路图2是同相比例运算电路,它的输出电压与输入电压之间的关系为)ui当R1→∞时,uO=ui,即得到如图3所示的电压跟随器。
图中R2=RF,用以减小漂移和起保护作用。
一般RF取10KΩ,RF太小起不到保护作用,太大则影响跟随性。
图2 同相比例运算电路图3 电压跟随器(3)反相加法电路电路如图4所示。
图4 反相加法运算电路输出电压与输入电压之间的关系为uO=()R3=R1||R2||RF (4) 减法运算电路对于图5所示的减法运算电路,当R1=R2,R3=RF时,有如下关系式uO=(ui2-ui1)图5 减法运算电路(5)积分运算电路反相积分电路如图6所示。
在理想化条件下,输出电压uo等于uo(t)= —式中“—”号表示输出信号与输入信号反相。
uc(o)是t=0时刻电容C两端的电压值,即初始值。
图6 积分运算电路如果ui(t)是幅值为E的阶跃电压,并设uc(o)=0,则—即输出电压uo(t)随时间增长而线性下降。
显然时间常数R1C的数值大,达到给定的uo值所需的时间就长。
积分输出电压所能达到的最大值受集成运放最大输出范围的限制。
在进行积分运算之前,首先应对运放调零。
为了便于调节,将图中K1闭合,通过电阻R2的负反馈作用帮助实现调零。
但在完成调零后,应将K1打开,以免因R2的接入造成积分误差。
K2的设置一方面为积分电容放电提供通路,同时可实现积分电容初始电压uc(o)=0。
集成运算放大器的基本运算电路要点
• 集成运算放大器概述 • 集成运算放大器的线性应用 • 集成运算放大器的非线性应用 • 集成运算放大器的实际应用 • 集成运算放大器的选择与使用注意事项
目录
Part
01
集成运算放大器概述
定义与特点
定义
集成运算放大器是一种高放大倍 数的多级直接耦合放大电路,主 要用于信号的电压放大。
积分器的应用场景
积分器电路广泛应用于信号处理、控制系统、测量仪器等领域,用于实现信号的平滑处理 和时间常数提取等功能。
微分器电路
01
微分器电路的工作原 理
微分器电路是集成运算放大器的一种 非线性应用,用于将输入信号进行微 分运算。微分器电路由运算放大器和 RC电路组成,通过正反馈实现微分功 能。
02
03
比较器的应用场景
比较器电路广泛应用于各种电子设备和系统中,如自动控制系统、信号
处理、测量仪器等。
积分器电路
积分器电路的工作原理
积分器电路是集成运算放大器的一种非线性应用,用于将输入信号进行积分运算。积分器 电路由运算放大器和RC电路组成,通过负反馈实现积分功能。
积分器的输入与输出关系
积分器的输出信号与输入信号的时间积分成正比,即输出信号的幅度随着时间的增加而增 加。
同相输入电路
STEP 01
STEP 02
STEP 03
输出电压与输入电压的增 益由反馈电阻决定。
输出电压与输入电压的相 位相同。
输出电压与输入电压成正 比关系。
加法器电路
可以将多个输入信号 相加。
可以通过改变反馈电 阻实现比例系数调整。
输出电压等于所有输 入信号的电压之和。
减法器电路
集成运算放大器的基本应用实验报告
集成运算放大器的基本应用实验报告一、实验目的。
本实验旨在通过对集成运算放大器的基本应用进行实验操作,加深对集成运算放大器的工作原理和基本应用的理解,掌握集成运算放大器的基本特性和应用技巧,提高实验操作能力和动手能力。
二、实验仪器与设备。
1. 集成运算放大器实验箱。
2. 示波器。
3. 直流稳压电源。
4. 电阻、电容等元器件。
5. 万用表。
6. 示波器探头。
三、实验原理。
集成运算放大器(Operational Amplifier,简称Op-Amp)是一种高增益、直流耦合的差动放大器,具有输入阻抗高、输出阻抗低、增益稳定、频率响应宽等特点,广泛应用于模拟电路中。
在本实验中,我们将学习集成运算放大器的基本特性和应用技巧,包括集成运算放大器的基本参数、基本电路和基本应用。
四、实验内容。
1. 集成运算放大器的基本参数测量。
a. 输入失调电压的测量。
c. 增益带宽积的测量。
2. 集成运算放大器的基本电路实验。
a. 非反相放大电路。
b. 反相放大电路。
c. 比较器电路。
d. 电压跟随器电路。
3. 集成运算放大器的基本应用实验。
a. 信号运算电路。
b. 信号滤波电路。
c. 信号调理电路。
五、实验步骤。
1. 连接实验仪器与设备,按照实验要求进行电路连接。
2. 分别测量集成运算放大器的输入失调电压、输入失调电流和增益带宽积。
3. 搭建集成运算放大器的基本电路,观察输出波形并记录实验数据。
4. 进行集成运算放大器的基本应用实验,观察输出波形并记录实验数据。
六、实验数据与分析。
1. 输入失调电压测量数据。
输入失调电压,0.5mV。
平均输入失调电压,0.55mV。
2. 输入失调电流测量数据。
输入失调电流,10nA。
输入失调电流,12nA。
平均输入失调电流,11nA。
3. 增益带宽积测量数据。
增益带宽积,1MHz。
4. 实验数据分析。
通过测量数据的分析,我们可以得出集成运算放大器的输入失调电压较小,输入失调电流也较小,增益带宽积较大,符合集成运算放大器的基本特性。
集成运算放大器的应用实验报告
集成运算放大器的应用实验报告实验目的,通过本次实验,我们将学习集成运算放大器的基本原理和应用,掌握运算放大器的基本参数测量方法,了解运算放大器在电路中的应用。
实验仪器,集成运算放大器、示波器、信号发生器、直流稳压电源、电阻、电容、万用表等。
实验原理,运算放大器是一种高增益、差分输入、单端输出的电子放大器。
在实验中,我们将通过测量运算放大器的输入偏置电压、输入失调电压、输入失调电流、增益带宽积等参数,来了解运算放大器的基本性能。
实验步骤:1. 连接电路,按照实验指导书上的电路图,连接好运算放大器的电路。
2. 测量输入偏置电压,将输入端接地,测量输出端的电压,计算出输入偏置电压。
3. 测量输入失调电压和输入失调电流,将输入端接地,测量输出端的电压,再将输出端接地,测量输入端的电压和电流,计算出输入失调电压和输入失调电流。
4. 测量增益带宽积,通过改变输入信号的频率,测量输出信号的幅度,计算出增益带宽积。
5. 测量共模抑制比,通过改变输入信号的幅度,测量输出信号的幅度,计算出共模抑制比。
实验结果与分析:通过实验测量,我们得到了运算放大器的各项参数,分析结果如下:1. 输入偏置电压为0.5mV,说明运算放大器的输入端存在微小的偏置电压。
2. 输入失调电压为1mV,输入失调电流为10nA,说明运算放大器的输入端存在微小的失调电压和失调电流。
3. 增益带宽积为1MHz,说明运算放大器在1MHz以下的频率范围内具有较高的增益。
4. 共模抑制比为80dB,说明运算放大器具有较好的共模抑制能力。
结论:通过本次实验,我们对集成运算放大器的基本原理和应用有了更深入的了解,掌握了运算放大器的基本参数测量方法,并了解了运算放大器在电路中的应用。
同时,我们也了解到了运算放大器的一些性能指标,为今后的实际应用提供了参考依据。
总结:集成运算放大器是电子电路中常用的重要器件,具有高增益、差分输入、单端输出等特点,广泛应用于放大、滤波、积分、微分等电路中。
集成运放组成的基本运算电路实验报告
集成运放组成的基本运算电路实验报告【集成运放组成的基本运算电路实验报告】摘要:本实验采用集成运放组成的基本运算电路,通过实际搭建电路和数据测量,验证运算放大器的基本特性和运算电路的功能。
实验结果表明,基本运算电路能够实现加法、减法、放大、求反等基本运算功能,并具有稳定性和线性性。
1. 引言运算放大器是一种具有高增益、高输入阻抗和低输出阻抗的放大器,常用于运算电路和信号处理。
本实验采用TL081型集成运放,通过搭建基本运算电路,验证其基本特性和功能。
2. 实验仪器与材料2.1 实验仪器- 示波器- 信号发生器- 直流电源- 电阻箱- 万用表2.2 实验材料- TL081集成运放- 电阻、电容3. 实验过程3.1 实验电路搭建根据实验要求,搭建如下基本运算电路:- 加法电路- 减法电路- 放大电路- 反相电路3.2 电压测量使用万用表测量电路中各节点的电压值,记录在实验数据表格中。
3.3 实验数据处理根据测得的电压值,计算放大倍数、增益、输入输出电压关系等,绘制相应的实验曲线和图表。
4. 实验结果与分析根据实验数据处理的结果,得到以下实验结果和分析:4.1 加法电路通过测量加法电路中各节点的电压,计算得到输入电压与输出电压的关系,实验结果显示加法电路能够实现两个输入电压的相加功能,并对输入电压进行放大。
4.2 减法电路减法电路采用了反相输入,通过测量各节点电压,计算得到输入电压与输出电压的关系,实验结果表明减法电路能够实现两个输入电压的相减功能,并对输入电压进行放大。
4.3 放大电路通过测量放大电路中各节点的电压,计算得到输入电压与输出电压的关系,实验结果显示放大电路能够对输入电压进行放大,并具有一定的放大倍数。
4.4 反相电路反相电路采用了反相输入,通过测量各节点电压,计算得到输入电压与输出电压的关系,实验结果表明反相电路能够实现输入电压的反向输出,并对输入电压进行放大。
5. 结论与总结通过实际搭建基本运算电路并进行数据测量,本实验验证了集成运放的基本特性和运算电路的功能。
集成运算放大器的基本运算电路
集成运算放大器的基本运算电路:从入门到精通集成运算放大器(Op Amp)是现代电路设计中不可或缺的一部分。
它不仅应用广泛,而且其基本运算电路掌握起来相对容易。
下面我们将从入门到精通,详细讲解Op Amp的基本运算电路。
一、基本概念Op Amp是一种特殊的放大器,它的运算功能主要包括放大、求反相、求同相等等。
它通常由一个差分放大器和一个后级输出阶段组成。
Op Amp由于主要应用于线性电路中,因此它的线性度、带宽及噪声等参数都非常重要。
而根据Op Amp的运算特性,我们可以将其分为基本运算电路,包括反相放大电路、同相放大电路、差分放大电路、积分电路、微分电路、纹波功能放大电路等。
二、反相放大电路反相放大电路是Op Amp中最基本的一种电路,通过输入信号与反馈电路的串联,将输入信号放大后输出。
反相放大电路的电压增益与反馈电阻之比成反比,因此我们可以通过选择合适的反馈电阻,调节电压增益的大小。
具体的电路图及分析方法详见相关书籍。
三、同相放大电路同相放大电路的输入信号与反馈信号同相,因此同增益的比例很难调整,但其却是实现微小信号放大的好选择。
同相放大电路常用于信号放大后的滤波电路中。
四、差分放大电路差分放大电路的输入信号分别输入到Op Amp的两个输入端口上,它可以实现输入信号对Op Amp的控制,因此是实现微小信号放大的另一种选择。
五、积分电路积分电路主要用于信号积分运算。
输入电压纹波大小随着积分电容器的电压增加而不断增加,因此有时也被称为“积分放大器”。
六、微分电路微分电路主要用于实现对信号的微分运算。
微分器的C和R分别与输入端和输出端相连,因此其输出电压变化率与输入信号电压变化率成正比。
微分器广泛应用于信号处理、调节和控制等领域。
七、纹波功能放大电路纹波功能放大电路可以将输入电压经过定幅、整流等放大后输出。
它主要应用于滤波电路中,可以被看做是反相放大与同相放大电路的结合体。
以上就是Op Amp基本电路的介绍,希望对初学者有所启发。
集成运放的基本运算电路实验报告
集成运放的基本运算电路实验报告实验报告:集成运放的基本运算电路实验目的:1. 了解集成运放的基本原理和性质;2. 学习基本运算电路的设计和实现方法;3. 实验验证运算放大器的基本运算电路,包括反相放大器、非反相放大器、求和放大器和差分放大器。
实验器材:1. 集成运放(可以使用LM741等常见型号);2. 电阻(包括不同阻值的固定电阻和可变电阻);3. 电源(正负双电源,供应电压根据集成运放的需求确定);4. 示波器;5. 信号源。
实验步骤:1. 反相放大器的设计和实现:a. 准备电阻并连接电路,将集成运放的输入接口连接到信号源,输出接口连接示波器;b. 调整可变电阻的阻值,观察输出信号的变化,记录并分析结果。
2. 非反相放大器的设计和实现:a. 准备电阻并连接电路,将集成运放的输入接口连接到信号源,输出接口连接示波器;b. 调整可变电阻的阻值,观察输出信号的变化,记录并分析结果。
3. 求和放大器的设计和实现:a. 准备电阻并连接电路,将集成运放的输入接口连接到不同信号源,输出接口连接示波器;b. 调整可变电阻的阻值,观察输出信号的变化,记录并分析结果。
4. 差分放大器的设计和实现:a. 准备电阻并连接电路,将集成运放的输入接口分别连接到两个信号源,输出接口连接示波器;b. 调整可变电阻的阻值,观察输出信号的变化,记录并分析结果。
实验结果:1. 反相放大器实验结果:记录输入和输出信号的幅度和相位差,并绘制输入-输出特性曲线。
2. 非反相放大器实验结果:记录输入和输出信号的幅度和相位差,并绘制输入-输出特性曲线。
3. 求和放大器实验结果:记录输入和输出信号的幅度和相位差,并绘制输入-输出特性曲线。
4. 差分放大器实验结果:记录输入和输出信号的幅度和相位差,并绘制输入-输出特性曲线。
实验分析:1. 通过对实验结果的观察和分析,可以验证集成运放的基本运算电路的原理和性质。
2. 在实验中可以调整电阻的数值来改变放大倍数或增益,验证运算放大器的增益特性。
集成运算放大器加法运算电路的功能
集成运算放大器加法运算电路的功能
集成运算放大器加法运算电路是一种常见的电子电路,主要用于实现两个或多个信号的加法运算。
它具有以下功能:
1. 信号相加:加法运算电路可以将输入的多个信号按照一定的比例进行相加,得到一个输出信号。
这个输出信号是输入信号之和的模拟量,即实现了数学上的加法操作。
2. 增益控制:通过设置电阻网络的阻值,可以控制加法运算电路的增益。
增益决定了输入信号与输出信号之间的比例关系,使得电路能够对不同幅度的信号进行合适的放大或衰减。
3. 信号隔离:加法运算电路可以在输入信号之间提供一定的隔离,使得各个输入信号相互独立,不会相互影响。
这有助于提高电路的抗干扰能力和稳定性。
4. 多通道处理:加法运算电路可以同时处理多个输入信号,实现多通道信号的相加。
这种功能在音频处理、信号合成等领域中有广泛的应用。
5. 滤波器应用:通过改变电阻和电容的组合,可以将加法运算电路转化为低通、高通或带通滤波器。
这样,加法运算电路不仅可以实现加法功能,还可以对信号进行滤波处理。
6. 线性特性:集成运算放大器具有良好的线性特性,能够在较大的输入信号范围内保持较高的精度和稳定性。
这使得加法运算电路适用于需要高精度信号处理的应用场合。
总之,集成运算放大器加法运算电路在电子工程中具有重要的作用,它可以实现信号的相加、增益控制、信号隔离、多通道处理、滤波器应用等功能,广泛应用于模拟信号处理、仪器仪表、通信系统等领域。
集成运算放大器的基本运算电路
集成运算放大器的基本运算电路《集成运算放大器的基本运算电路》一、简介集成运算放大器(Integrated Circuit Operational Amplifier,简称ICOpamp)是一种功能最为广泛最为重要的放大器,是用来实现幅度放大、均衡、限幅等功能的放大电路,是一种双端输入、单端输出、高增益(G >1000)、低压抗(≤20V)的电路,它可以高效地驱动大电流,提供高灵敏度,具有较低的噪声水平,是数字仪器仪表、信号发生器、电子脉冲变换器等的重要元件。
二、基本电路集成运算放大器的基本电路可以分为四部分:输入放大部分; 电压增益控制部分; 输出放大部分; 和信号跟踪部分。
1、输入放大部分输入放大部分由输入放大漏极,信号增益控制部分由电压增益控制漏极和电容组成,输出放大部分由输出放大源极和输出电容组成,信号跟踪部分由高速信号动态补偿电路组成。
2、电压增益控制部分电压增益控制部分的功能是控制增益,输出信号的幅值与此部分的输入电压成正比,因此所组成电路越复杂,其增益控制动态范围就越大。
3、输出放大部分输出放大部分的功能是把微弱的输入信号放大到较大的幅度,由输出放大源极和输出电容组成,它是集成运算放大器的主要部分,也是它的性能的关键。
4、信号跟踪部分信号跟踪部分的功能是保持输出电平的稳定,当由于外部因素影响把输入信号的幅度和相位变化时,信号跟踪部分使得输出电平与之保持平衡,以保证输出信号的稳定性和准确性。
三、优缺点1、优点集成运算放大器具有体积小、成本低、灵敏度高、动态范围大、高增益等优点,使它在半导体放大器中占据重要地位。
2、缺点集成运算放大器也有一定的缺点,如输入偏置电流较大,输入偏置电容较大,噪声较大,通带幅值较小等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ui1(V) -2.0
-2.5
0.5
Ui2(V) 2.5
1.5
-0.5
Uo(V)
注意:1)Ui1和Ui2要反复调节直到准确,因会互相影响; 2)-15V≦Uo=-[(RF/R1)Ui1+(RF/R2)Ui2]≦15V即-1.5V≦Ui1+Ui2≦1.5V
接线图
图20-3
反相加法运 算电路接线 图
实验20 集成运算放大器的基本应用 一模拟运算电路一
一、实验目的 1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。 2、了解运算放大器在实际应用时应考虑的一些问题。
二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不 同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数 关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电 路。 理想运算放大器特性 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化, 满足下列条件的运算放大器称为理想运放。 开环电压增益 Aud=∞ 输入阻抗 ri=∞ 输出阻抗 ro=0 带宽 fBW=∞
0.5 -0.5 -10
接线图
图20-5
减法运算电 路接线图
返回
1.关闭实验箱的5V、15V,按上边接线,万用表黑表笔固定接地,接好线再开电源;
2.红表笔接输入端,按表20-5的输入值,调节实验板上的电位器,RW1调Ui1、RW2调Ui2,然后
移动万用表红表笔,测量对应的输出值,填在表20-5中; 3.
Ui=0.5V、-0.5V、2V ,测量相应的Uo,记入表20-2。
表20—2 P83
接线图
Ui/V
0.5 -0.5 2
Uo/V(实测值)
Uo/V(计算值) -5
5
-20
2、同相比例运算电路
图20-2
1)按图16-4(a)连接实验电路。实验步骤同内容1,将结果记入表20-3。
表20—3 P83
Ui/V
4、减法运算电路 1)按图20-5连接实验电路。调零和消振。 2)采用直流输入信号,实验步骤同内容3,记入表20—5。
表20—5 -15V≦Uo=RF(Ui2-Ui1)/R1≦15V即-1.5V≦Ui2-Ui1≦1.5V
Ui1(V) 2.0 Ui2(V) 2.5 Uo(V) 5
-2.5 -1.5 10
积分运算电路接线图 返回
谢谢大家!
三、实验设备与器件 1、±12V直流电源 2、函数信号发生器 3、交流毫伏表 4、直流电压表 5、集成运算放大器uA741×1 6、电阻器、电容器若干。
四、实验内容 实验前要看清运放组件各管脚的位置;切忌正、负电源极性接反和输出端短路,否
则将会损坏集成块。
1、反相比例运算电路(直流放大) 1) 按 图 20-2 连 接 实 验 电 路 , 接 通 ±15V 电 源 ( 用 实 验 箱 上 的 ) , 2) 调 节 W1 使 输 入
0.5 -1
Uo/V(实测值)
Uo/V(计算值)
5.5
-11
接线图 2
22
图20-4(a)
反相比例运 算电路(直流 放大)接线图
返回
1.实验箱的5V、15V电源开关往左拨到关,按上边接线,万用表黑表笔固定接地,接好线再开电源; 2.红表笔接输入端,调节实验板上的电位器,按表20-2的输入值,移动万用表红表笔,测量对应的输 出值,填在表20-2中; 3.本实验做完不拆线,把黄色线改接一下就可以做同相比例运算。
同相比例运 算电路(直流 放大)接线图
返回
1.关闭实验箱的5V、15V电源,在反相比例放大电路的基础上改接线,如上图,接好线再 开电源; 2.按表20-3的输入值,测量对应的输出值,填在表20算电路 1)按图20-3连接实验电路。
2)输入信号采用直流信号,图20-7所示电路为简易直流信号源。实验时要注意选择合适 的直流信号幅度以确保集成运放工作在线性区。用万用表直流电压档测量输入电压Ui1、 Ui2及对应的输出电压Uo,记入表20-4。
返回
1.关闭实验箱的5V、15V,按上边接线,万用表黑表笔固定接地,接好线再开电源;
2.红表笔接输入端,按表20-4的输入值,调节实验板上的电位器,RW1调Ui1、RW2调Ui2,然后
移动万用表红表笔,测量对应的输出值,填在表20-4中;
3.本实验做完不拆线,把黄色线改接一下,6.2K换为100K就可以做减法运算电路。
失调与漂移均为零等。
理想运放在线性应用时的两个重要特性: (1)输出电压UO 与输入电压之间满足关系式 UO=Aud(U+-U-) 由于Aud=∞,而UO 为有限值,因此,U+-U-≈0。即U+≈U-,称为“虚短”。 (2)由于ri=∞,故流进运放两个输入端的电流可视为零,即IIB=0,称为“虚断” 。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。
5、积分运算电路
接线图
实验电路如图20—6所示。
1) 调函数信号发生器,使其输出的频率为100Hz,峰峰值为2V的矩形波作为输入。
2) 用示波器同时观察Ui和Uo 的波形,画在图20-8中。注意波形要同步。
图20—6
图20-8
1t
E
Uo(t)=-
R1C
0 Edt uc (0)=- R1C t 0.5t