关于勾股定理的应用折叠和展开问题课件
合集下载
探索勾股定理(19张PPT)数学八年级上册
在公元前300年左右,著名的数学家希腊的欧几里得提出了一套简洁而准确的几何方法,以求证在给定直角三角形中已知两直角边与斜边,斜边与另外两条边的平方和的关系。
1637年,路易十四命令巴黎学院组织了一场盛大的比赛,将法国的贵族们集结起来解决了这道难题,当时获胜的人可以得到很丰厚的奖品。
有关于勾股定理的趣味历史
勾股定理的介绍
目录
什么是勾股定理
有关于勾股定理的趣味历史
用勾股定理解决实际问题
勾股定理的跨学科
勾股定理的验证推导
什么是勾股定理
什么是勾股定理
有关于勾股定理的趣味历史
有关于勾股定理的趣味历史
据说在古埃及文明中,他们建造金字塔时使用了“几何法则”来确定石块之间的距离和角度。这个神秘的几何法则据说与古代建筑物的外形有关系,可能就是指勾股定理。
折叠毕达哥拉斯定律
勾股定理的验证推导
任何一个学过代数或几何的人,都会听到毕达哥拉斯定理.这一著名的定理,在许多数学分支、建筑以及测量等方面,有着广泛的应用.古埃及人用他们对这个定理的知识来构造直角.他们把绳子按3,4和5单位间隔打结,然后把三段绳子拉直形成一个三角形.他们知道所得三角形最大边所对的角总是一个直角。毕达哥拉斯定理;给定一个直角三角形,则该直角三角形斜边的平方,等于同一直角三角形两直角边平方的和。反过来也是对的;如果一个三角形两边的平方和等于第三边的平方,则该三角形为直角三角形。
在语文课堂上的应用
在科学实验中的应用
用勾股定理解决实际问题
物理学中的应用
勾股定理在物理学中被广泛运用,可以用于建筑结构分析、机械设计以及其他类似问题的解决,同时也是桥梁设计的重要理论基础之一。
有不少现代的编程语言内置了计算器功能,提供了简便易用的库支持。而且在算法领域也能看到它的踪影,如分治算法、动态规划算法等
1637年,路易十四命令巴黎学院组织了一场盛大的比赛,将法国的贵族们集结起来解决了这道难题,当时获胜的人可以得到很丰厚的奖品。
有关于勾股定理的趣味历史
勾股定理的介绍
目录
什么是勾股定理
有关于勾股定理的趣味历史
用勾股定理解决实际问题
勾股定理的跨学科
勾股定理的验证推导
什么是勾股定理
什么是勾股定理
有关于勾股定理的趣味历史
有关于勾股定理的趣味历史
据说在古埃及文明中,他们建造金字塔时使用了“几何法则”来确定石块之间的距离和角度。这个神秘的几何法则据说与古代建筑物的外形有关系,可能就是指勾股定理。
折叠毕达哥拉斯定律
勾股定理的验证推导
任何一个学过代数或几何的人,都会听到毕达哥拉斯定理.这一著名的定理,在许多数学分支、建筑以及测量等方面,有着广泛的应用.古埃及人用他们对这个定理的知识来构造直角.他们把绳子按3,4和5单位间隔打结,然后把三段绳子拉直形成一个三角形.他们知道所得三角形最大边所对的角总是一个直角。毕达哥拉斯定理;给定一个直角三角形,则该直角三角形斜边的平方,等于同一直角三角形两直角边平方的和。反过来也是对的;如果一个三角形两边的平方和等于第三边的平方,则该三角形为直角三角形。
在语文课堂上的应用
在科学实验中的应用
用勾股定理解决实际问题
物理学中的应用
勾股定理在物理学中被广泛运用,可以用于建筑结构分析、机械设计以及其他类似问题的解决,同时也是桥梁设计的重要理论基础之一。
有不少现代的编程语言内置了计算器功能,提供了简便易用的库支持。而且在算法领域也能看到它的踪影,如分治算法、动态规划算法等
勾股定理数学优秀ppt课件
实际应用
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
《勾股定理》复习课件ppt
答案5
根据勾股定理和相似三角形的性质,BD² = AB² - AD² = AC² + BC² - (AC + CD)² = 4² + 6² - (4 + 2)² = 20。 所以 BD = √20 = 2√5。
THANKS
感谢您的观看
勾股定理公式
a² + b² = c²,其中a和b是直角三 角形的两条直角边,c是斜边。
勾股定理的证明方法
欧几里得证明法
利用相似三角形的性质和比例关系, 通过一系列的逻辑推理证明勾股定理 。
毕达哥拉斯证明法
利用正方形的性质和勾股定理的关系 ,通过构造两个正方形证明勾股定理 。
勾股定理的应用场景
实际问题求解
要点一
勾股定理在三维空间的应用
要点二
勾股定理在三维空间的应用示例
勾股定理不仅适用于平面图形,还可以应用于三维空间中 的几何体。
在解决三维几何问题时,可以使用勾股定理来计算空间几 何体的边长或体积。
04
勾股定理的解题技
巧和策略
利用勾股定理求边长
总结词
勾股定理是解决直角三角形问题的重要工具 ,通过已知两边长,可以求出第三边长。
详细描述
勾股定理公式为$c^2 = a^2 + b^2$,其中 $c$为斜边长,$a$和$b$为直角边长。已知 $a$、$b$和$angle C = 90^circ$,可以通
过勾股定理求出第三边长$c$。
利用勾股定理证明三角形为直角三角形
总结词
勾股定理也可以用来证明一个三角形是否为直角三角形。
详细描述
勾股定理复习课件理的回顾 • 勾股定理的常见题型解析 • 勾股定理的变式和推广 • 勾股定理的解题技巧和策略 • 勾股定理的练习题和答案解析
勾股定理的应用(折叠和展开问题)课件
∴X+1=12+1=13(米)
答:水池的深度为12米,芦苇高为13米.
(3)有一个边长为50dm 的正方形洞口, 想用一个圆盖去盖住这个洞口,圆的直径 至少多长?(结果保留整数)
∵木板的宽2.2米大于1米,
∴ 横着不能从门框C通过;
∵木板的宽2.2米大于2米,
∴竖着也不能从门框通2过m.
∴ 只能试试斜着能否通过,
对 要角 求线 出AACC的 的A长 长1最 ,m大 怎, 样B因 求此呢需?
想一想
例1 一个门框的尺寸如图所示,一块长3 m,宽 2.2 m的长方形薄木板能否从门框内通过?为什么?
解得x 9
B
x D14-x C 14
AD AB2 BD2 152 92 12
1
1
SABC
BC 2
AD 1412 84 2
练习1:
蚂蚁从A点经B到C点的最少要爬了多少厘米?
A 4G
3
5B
12
E
5 13
C
(小方格的边长为1厘米)
练习2:
小明在平坦无障碍物的草地上,从A地向东走 3 m ,
302 x2 202 (50 x)2 解得x 20 (尺)
30 x
20 50-x
练习&1 ☞
小明想知道学校旗杆的高,他发现旗杆顶端的绳子 垂到地面还多1米,当他把绳子的下端拉开5米后, 发现下端刚好接触地面,求旗杆的高度。
x2 52 ( x 1)2 x2 52 x2 2x 1
在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦
苇拉向岸边,它的顶端恰好到达岸边的水面,问这个水池的深度
和这根芦苇的长度各是多少?
D
解:设水池的深度AC为X米,
勾股定理在折叠问题中的应用讲PPT课件
.
3
C D
B
E
A
E
A
A
E
DD
F
B
F
C
C
A
.
B D
EC
CA
B
B
D E FC
4
项目一、折叠 直角三角形
例 1: 如图,小颍同学折叠一个直角三角形 的纸片,使A与B重合,折痕为DE,若已知 AC=8cm,BC=6cm,你能求出CE的长吗?
B
D
A
E
C
.
5
练习:如图,有一张直角三角形纸片,两直 角边AC=6cm,BC=8cm, 现将直角边沿直 线AD折叠,使点C落在斜边AB上的点E, 求CD的长.
E
A
D
B
(D)
F
C
(C)
.
8
❖2、如图,把矩形纸片ABCD沿对角线AC 折叠,点B落在点E处,EC与AD相交于点 F.若AB=6,BC=8,
❖求:
(1)△FAC是等腰三角形
(2)求CF的长
A
E FD
(3)求△FAC的周长和面积.
.
B
9C
这节课你有哪些收获?
1、折叠的实质:轴对称. 2、选择合适的直角三角形利用勾 股定理列方程解决折叠问题.
.
6
项目二、折叠长方形
例2:如图所示,长方形ABCD沿AE折叠,使点D落在
BC边上的点F处,已知AB=8cm,BC=10cm,求CE的
长。 A
8
B
解:根据折叠可知,△AFE≌△ADE,
10
D
∴AF=AD=10cm,EF=ED, AB=8 cm,EF+EC=DC=8cm,
∴在Rt△ABF中
微专题6 方法技巧 巧用勾股定理解决折叠问题课件 2024-2025学年 华东师大版数学八年级上册
【解析】操作一:(1)由翻折的性质可知:BD=AD,∴AD+DC=BC=7.∴△ACD的周
长为CD+AD+AC=BC+AC=7+5=12(cm).
7.(2024·汉中期末)在数学实验课上,李静同学剪了两张直角三角形纸片,进行了如
图的操作:
操作一:如图1,将Rt△ABC纸片沿某条直线折叠,使斜边两个端点A与B重合,折痕为
AD上的点E处,折痕的一端点G在边BC上.
(2)如图(2),当折痕的另一端F在AD边上且BG=10时,
①求证:EF=EG.
②求HF的长.
【解析】(2)①∵纸片折叠后顶点B落在边AD上的点E处,
∴∠BGF=∠EGF,
∵长方形纸片ABCD的边AD∥BC,
∴∠BGF=∠EFG,
∴∠EGF=∠EFG,
∴EF=EG;
DE.
36°
(2)如果∠CAD∶∠BAD=1∶2,可得∠B的度数为____;
操作二:如图2,李静拿出另一张Rt△ABC纸片,将直角边AC沿直线CD折叠,使点A与
点E重合,若AB=10 cm,BC=8 cm,请求出BE的长.
【解析】(2)设∠CAD=x,则∠BAD=2x.
由翻折的性质可知:∠BAD=∠CBA=2x,
②∵纸片折叠后顶点B落在边AD上的点E处,
∴EG=BG=10,HE=AB=8,FH=AF,
∴EF=EG=10,
在Rt△EFH中,FH= − = − =6.
本课结束
类型一 三角形的折叠问题
1.(2024·天津模拟)如图,在Rt△ABC中,∠B=90°,AB=6,BC=9,将△ABC折叠,使点C与
AB的中点D重合,折痕交AC于点M,交BC于点N,则线段BN的长为
长为CD+AD+AC=BC+AC=7+5=12(cm).
7.(2024·汉中期末)在数学实验课上,李静同学剪了两张直角三角形纸片,进行了如
图的操作:
操作一:如图1,将Rt△ABC纸片沿某条直线折叠,使斜边两个端点A与B重合,折痕为
AD上的点E处,折痕的一端点G在边BC上.
(2)如图(2),当折痕的另一端F在AD边上且BG=10时,
①求证:EF=EG.
②求HF的长.
【解析】(2)①∵纸片折叠后顶点B落在边AD上的点E处,
∴∠BGF=∠EGF,
∵长方形纸片ABCD的边AD∥BC,
∴∠BGF=∠EFG,
∴∠EGF=∠EFG,
∴EF=EG;
DE.
36°
(2)如果∠CAD∶∠BAD=1∶2,可得∠B的度数为____;
操作二:如图2,李静拿出另一张Rt△ABC纸片,将直角边AC沿直线CD折叠,使点A与
点E重合,若AB=10 cm,BC=8 cm,请求出BE的长.
【解析】(2)设∠CAD=x,则∠BAD=2x.
由翻折的性质可知:∠BAD=∠CBA=2x,
②∵纸片折叠后顶点B落在边AD上的点E处,
∴EG=BG=10,HE=AB=8,FH=AF,
∴EF=EG=10,
在Rt△EFH中,FH= − = − =6.
本课结束
类型一 三角形的折叠问题
1.(2024·天津模拟)如图,在Rt△ABC中,∠B=90°,AB=6,BC=9,将△ABC折叠,使点C与
AB的中点D重合,折痕交AC于点M,交BC于点N,则线段BN的长为
专题训练二--利用勾股定理解决折叠问题(共13张PPT)
长风破浪会有时,直挂云帆济沧海。努力,终会有所收获,功夫不负有心人。以铜为镜,可以正衣冠;以古为镜,可以知兴替;以人为镜,可以明得失。前进的路上 照自己的不足,学习更多东西,更进一步。穷则独善其身,达则兼济天下。现代社会,有很多人,钻进钱眼,不惜违法乱纪;做人,穷,也要穷的有骨气!古之立大 之才,亦必有坚忍不拔之志。想干成大事,除了勤于修炼才华和能力,更重要的是要能坚持下来。士不可以不弘毅,任重而道远。仁以为己任,不亦重乎?死而后已, 理想,脚下的路再远,也不会迷失方向。太上有立德,其次有立功,其次有立言,虽久不废,此谓不朽。任何事业,学业的基础,都要以自身品德的修炼为根基。饭 而枕之,乐亦在其中矣。不义而富且贵,于我如浮云。财富如浮云,生不带来,死不带去,真正留下的,是我们对这个世界的贡献。英雄者,胸怀大志,腹有良策, 吞吐天地之志者也英雄气概,威压八万里,体恤弱小,善德加身。老当益壮,宁移白首之心;穷且益坚,不坠青云之志老去的只是身体,心灵可以永远保持丰盛。乐 其乐;忧民之忧者,民亦忧其忧。做领导,要能体恤下属,一味打压,尽失民心。勿以恶小而为之,勿以善小而不为。越是微小的事情,越见品质。学而不知道,与 行,与不知同。知行合一,方可成就事业。以家为家,以乡为乡,以国为国,以天下为天下。若是天下人都能互相体谅,纷扰世事可以停歇。志不强者智不达,言不 越高,所需要的能力越强,相应的,逼迫自己所学的,也就越多。臣心一片磁针石,不指南方不肯休。忠心,也是很多现代人缺乏的精神。吾日三省乎吾身。为人谋 交而不信乎?传不习乎?若人人皆每日反省自身,世间又会多出多少君子。人人好公,则天下太平;人人营私,则天下大乱。给世界和身边人,多一点宽容,多一份担 为生民立命,为往圣继绝学,为万世开太平。立千古大志,乃是圣人也。丹青不知老将至,贫贱于我如浮云。淡看世间事,心情如浮云天行健,君子以自强不息。地 载物。君子
勾股定理的应用课件
利用勾股定理确定卫星轨 道参数,提高卫星通信的 覆盖范围和信号质量。
广播信号
在广播信号传输中,勾股 定理用于优化信号传输路 径,提高广播信号的覆盖 范围和清晰度。
勾股定理在日常生活中的应用
航海
在航海中,勾股定理用于确定航行方向 和距离,保证船舶能够准确到达目的地 。
VS
测量
在日常生活中,勾股定理用于测量物体的 高度、长度等参数,方便人们进行各种实 际操作。
勾股定理的应用 ppt课件
目 录
• 勾股定理的介绍 • 勾股定理的应用场景 • 勾股定理的实际应用案例 • 勾股定理的扩展应用 • 总结与展望
01
勾股定理的介绍
勾股定理的定义
勾股定理是几何学中的基本定理之一 ,它描述了直角三角形三边的关系。 具体来说,在一个直角三角形中,直 角边的平方和等于斜边的平方。
导航系统
利用勾股定理计算飞行器的位置和速 度,提高航空和航天导航的精度和可 靠性。
航天器设计
在航天器设计中,勾股定理用于确定 火箭的发射角度和卫星轨道的参数, 以确保航天器能够成功进入预定轨道 。
通信工程中的应用
电波传播
在通信工程中,勾股定理 用于计算电波传播的距离 和范围,优化信号传输质 量。
卫星通信
02
勾股定理的应用场景
几何学领域
确定直角三角形
勾股定理是确定直角三角形的重 要工具,通过已知的两边长度, 可以判断是否为直角三角形,并 进一步求出第三边的长度。
解决几何问题
勾股定理在解决几何问题中有着 广泛的应用,如求三角形面积、 判断三角形的形状、计算最短路 径等。
物理学领域
力的合成与分解
在物理学中,勾股定理常用于力的合 成与分解,特别是在分析斜面上的物 体受力情况时,通过勾股定理可以确 定力的方向和大小。
广播信号
在广播信号传输中,勾股 定理用于优化信号传输路 径,提高广播信号的覆盖 范围和清晰度。
勾股定理在日常生活中的应用
航海
在航海中,勾股定理用于确定航行方向 和距离,保证船舶能够准确到达目的地 。
VS
测量
在日常生活中,勾股定理用于测量物体的 高度、长度等参数,方便人们进行各种实 际操作。
勾股定理的应用 ppt课件
目 录
• 勾股定理的介绍 • 勾股定理的应用场景 • 勾股定理的实际应用案例 • 勾股定理的扩展应用 • 总结与展望
01
勾股定理的介绍
勾股定理的定义
勾股定理是几何学中的基本定理之一 ,它描述了直角三角形三边的关系。 具体来说,在一个直角三角形中,直 角边的平方和等于斜边的平方。
导航系统
利用勾股定理计算飞行器的位置和速 度,提高航空和航天导航的精度和可 靠性。
航天器设计
在航天器设计中,勾股定理用于确定 火箭的发射角度和卫星轨道的参数, 以确保航天器能够成功进入预定轨道 。
通信工程中的应用
电波传播
在通信工程中,勾股定理 用于计算电波传播的距离 和范围,优化信号传输质 量。
卫星通信
02
勾股定理的应用场景
几何学领域
确定直角三角形
勾股定理是确定直角三角形的重 要工具,通过已知的两边长度, 可以判断是否为直角三角形,并 进一步求出第三边的长度。
解决几何问题
勾股定理在解决几何问题中有着 广泛的应用,如求三角形面积、 判断三角形的形状、计算最短路 径等。
物理学领域
力的合成与分解
在物理学中,勾股定理常用于力的合 成与分解,特别是在分析斜面上的物 体受力情况时,通过勾股定理可以确 定力的方向和大小。
勾股定理在折叠问题中的应用ppt课件
(3)若AB=8,BC=4,则重叠部分的面积
为6
解.题策略2:重结果——“叠”.4
2、如图,矩形纸片ABCD中,AB=8cm,把
矩形纸片沿直线AC折叠,点B落在点E处,
AE交DC于点F,若 AF 25 cm ,则AD的
长为( )
4
A.4cm B.5cm
C.6cm D.7cm
E
D
C
F
A
B
5
1.Rt△ABC中,∠C=900,沿AD折叠, 使AC与AE重合,若AC=6,BC=8, 求△BDE的面积。
勾股定理在 折 叠 问 题中的应用
1
试一试
如图,折叠长方形的一边AD,点D落在BC边的 点F处,已知AB=8cm,AD=10cm,求EC的长。
A
10
D 心得:先标等量,再构造方程。
折叠问题中构造方程的方法:
8
10
E
8-x x
B
6 F 4 C 把条件集中到一个Rt△中,根
据勾股定理得方程。
2
1.如图,将一平行四边形纸片沿AE折叠, 再沿EF折叠,使点E,C`,B`在同一直线上,
则 AEF
解题策略1:重过程——“折”.
3
例1.如图,△ACE是将矩形纸片ABCD沿对角 线AC折叠后得到的,(1)图中(包括是线和虚 线在内)共有全等三角形(C )
A.2对
B.3对
C.4对
D.5对
F
(2)若∠BAC=α,则
∠ACE等于( B )
A.2α
B.90°-α
C.180°-2α D.180°-3α
对称性
重结果 叠
精 髓
利用方程思想
11
折叠问题
专题:勾股定理折叠问题 PPT课件
的第一、二个步骤是:①先裁下了一张长BC 20cm宽,AB 16cm
的矩形纸片ABCD,②将纸片沿着直线AE折叠,点D恰好落
在BC边上的F处,…… 请你根据①②步骤解答下列问题:
(1)找出图中∠FEC的余角;
A
D
(2)计算EC的长.
E
B
FC
3.如图,矩形纸片ABCD中,AB=4cm,BC=8cm,现将A、
二、矩形的折叠
1.如图,折叠矩形纸片ABCD,先折出折痕(对角线)BD, 再折叠,使AD落在对角线BD上,得折痕DG,若AB = 2,BC = 1, 求AG。
D
C
• A´
AG
B
2.为了向建国六十周年献礼,某校各班都在开展丰富多彩的
庆祝活动,八年级(3)班开展了手工制作竞赛,每个同学都
在规定时间内完成一件手工作品.陈莉同学在制作手工作品
5、动ห้องสมุดไป่ตู้操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,
使点A落在BC边上的E处,折痕为PQ,当点E在BC边上移动时,折痕的
端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点E
在BC边上可移动的最大距离为
.
BE
C
P
A
QD
6、把图一的矩形纸片ABCD折叠,B,C两点恰好重合落 在AD边上的点P处(如图二),已知∠MPN=90°,PM=3, PN=4,那么矩形纸片ABCD的面积为_______。
C重合,使纸片折叠压平,设折痕为EF,
①求DF的长;
②求重叠部分△AEF的面积;
③求折痕EF的长。
D´
④着色部分的面积为多少? A
FD
BE
C
《勾股定理》精品课件
进阶习题
进阶习题1
已知直角三角形的两边长 度,求其面积。
进阶习题2
已知直角三角形的面积, 求其斜边的长度。
进阶习题3
已知直角三角形的两边长 度,求其第三边的长度。
高阶习题及解答
高阶习题1
已知直角三角形的一条直角边和斜边的长 度,求另一条直角边的长度。
高阶习题解答1
根据勾股定理,可求得另一条直角边的长 度。
04
勾股定理的应用
在几何学中的应用
勾股定理是几何学中的重要定理, 它揭示了直角三角形三边之间的数 量关系。通过应用勾股定理,可以 解决各种与直角三角形有关的几何 问题。
VS
例如,利用勾股定理可以推导出直 角三角形的面积公式,也可以用来 证明一些与三角形内角和、线段相 等有关的定理。
在物理学中的应用
课程大纲
第一部分:勾股定 理的证明
通过拼图游戏等方 式,引导学生猜想 勾股定理的证明方 法。
介绍勾股定理的历 史背景和猜想。
课程大纲
介绍勾股定理的多种证明方法,如欧几里得证明法、毕达哥拉斯证明法等。 第二部分:勾股定理的应用
介绍勾股定理在日常生活中的应用,如测量、建筑等。
课程大纲
通过例题讲解,展示勾股定理在实际问题中的应用。 引导学生自己尝试解决一些实际问题,培养应用能力。
分享使用勾股定理解决日常生活中的有趣实例。
感谢您的观看
THANKS
直角三角形中,斜边和一条直 角边的长度可以确定一个矩形 。
三角形面积的计算方法
三角形面积公式:面积 = (底 × 高) / 2
对于直角三角形,可以将其视为一个矩形的一半,因此其面积也可以用矩形面积 公式计算:面积 = 底 × 高
三角形的稳定性
勾股定理的应用(习题课)课件
一般三角形是指三边长度都不相等的三角形。
在一般三角形中,勾股定理可以用于确定三角形的三边 关系,但需要满足一定的条件。
在一般三角形中,勾股定理的应用相对较少,但仍然有 一些特殊情况可以使用勾股定理。
勾股定理在一般三角形中可以用于解决一些特殊问题, 如判断三角形的形状、求边长等。
03 勾股定理在日常生活中的 应用
在建筑学中的应用
01
02
03
建筑设计
勾股定理在建筑设计中应 用广泛,如确定建筑物的 垂直角度、计算建筑物的 斜率等。
结构分析
勾股定理用于分析建筑物 的结构稳定性,确保建筑 物在各种受力情况下都能 保持安全。
施工测量
利用勾股定理进行施工测 量,确保建筑物的各个部 分按照设计要求进行施工 。
在物理学中的应用
勾股定理的应用(习题课)课件
目 录
• 勾股定理的基本概念 • 勾股定理在几何图形中的应用 • 勾股定理在日常生活中的应用 • 勾股定理习题解析 • 勾股定理的应用练习
01 勾股定理的基本概念
勾股定理的定义
勾股定理定义
勾股定理是几何学中一个重要的定理 ,它描述了直角三角形三边的关系。 具体来说,在一个直角三角形中,直 角边的平方和等于斜边的平方。
力学分析
在物理学中,勾股定理常用于解 决与力矩、扭矩和弹性形变有关
的问题。
光学问题
在光学问题中,勾股定理可以用于 计算折射角、反射角等角度问题。
电磁学
在电磁学中,勾股定理可用于计算 电场强度、磁场强度等物理量。
在其他领域的应用
航海学
在航海学中,勾股定理可 用于计算航程、确定航向 等。
地理学
在地理学中,勾股定理可 用于计算地球上两点之间 的距离和纬度差等。
在一般三角形中,勾股定理可以用于确定三角形的三边 关系,但需要满足一定的条件。
在一般三角形中,勾股定理的应用相对较少,但仍然有 一些特殊情况可以使用勾股定理。
勾股定理在一般三角形中可以用于解决一些特殊问题, 如判断三角形的形状、求边长等。
03 勾股定理在日常生活中的 应用
在建筑学中的应用
01
02
03
建筑设计
勾股定理在建筑设计中应 用广泛,如确定建筑物的 垂直角度、计算建筑物的 斜率等。
结构分析
勾股定理用于分析建筑物 的结构稳定性,确保建筑 物在各种受力情况下都能 保持安全。
施工测量
利用勾股定理进行施工测 量,确保建筑物的各个部 分按照设计要求进行施工 。
在物理学中的应用
勾股定理的应用(习题课)课件
目 录
• 勾股定理的基本概念 • 勾股定理在几何图形中的应用 • 勾股定理在日常生活中的应用 • 勾股定理习题解析 • 勾股定理的应用练习
01 勾股定理的基本概念
勾股定理的定义
勾股定理定义
勾股定理是几何学中一个重要的定理 ,它描述了直角三角形三边的关系。 具体来说,在一个直角三角形中,直 角边的平方和等于斜边的平方。
力学分析
在物理学中,勾股定理常用于解 决与力矩、扭矩和弹性形变有关
的问题。
光学问题
在光学问题中,勾股定理可以用于 计算折射角、反射角等角度问题。
电磁学
在电磁学中,勾股定理可用于计算 电场强度、磁场强度等物理量。
在其他领域的应用
航海学
在航海学中,勾股定理可 用于计算航程、确定航向 等。
地理学
在地理学中,勾股定理可 用于计算地球上两点之间 的距离和纬度差等。
第一章勾股定理的应用+折叠问题课件+-2023-2024学年北师大版数学+八年级上册+
牛刀小试
1.如图,折叠长方形一边AD,点D落在BC边 上的点F处.已知BC=10cm,AB=8cm, (1)EC的长;(2)AE的长.
2.已知,如图,长方形ABCD中,
AB=3cm,AD=9cm,将此长方形折叠,使点B与 点D重合,折痕为EF,求△ABE的面积.
3.如图所示,在△ABC中,AB=20,AC=12, BC=16,把△ABC折叠,使AB落在直线AC上 ,求重叠部分(阴影部分)的面积.
方法总结
勾股定理可以直接解决直角三角形中已知两边求 第三边的问题;如果只知一边和另两边的关系时, 也可用勾股定理求出未知边,这时往往要列出方程 求解.
针对训练
1.如图,有一张直角三角形纸片, 两直角边AC=6 cm,BC=8 cm, 将△ABC折叠,使点B与点A重合, 折痕是DE,则CD的长为 1.75cm .
3.如图,在长方形ABCD中,AB=3cm,AD=9cm,将 此长方形折叠,使点B与点D重合,折痕为EF,求
△ABE的面积.
解:∵长方形折叠,使点B与点D重合, ∴ED=BE. 设AE=xcm,则ED=BE=(9-x)cm, 在Rt△ABE中, AB2+AE2=BE2, ∴32+x2=(9-x)2, 解∴△得Ax=B4E.的面积为3×4×12 =6(cm2).
1.如图所示,一张直角三角形纸片,两直角边AC =6 cm,BC=8 cm,现将直角边AC沿AD折叠, 使点C落在斜边AB上的点E 处,试求CD的长.
北师大版八年级上 数学 第一章 勾股定理
中考链接之折叠问题
1.如图所示,一张直角三角形纸片,两直角边AC =6 cm,BC=8 cm,现将直角边AC沿AD折叠, 使点C落在斜边AB上的点E 处,试求CD的长.
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
你能解释这是为什么吗?
我们通常所说的29 英寸或74厘米的电视 机,是指其荧屏对角 线的长度
46
58
∵ 582 462 5480 742 5476
荧屏对角线大约为74厘米 ∴售货员没搞错
议一议
以直角三角形三边为边作等边三角形, 这3个等边三角形的面积之间有什么关系?
F
A
D
C
B
E
(2)在长方形ABCD中,宽AB为1m,长BC为 2m ,求AC长.
关于勾股定理的应用折叠和展 开问题
八年级下册
勾股定理---运用
12.如图,△ABC中,∠A=45°, ∠B=30°,BC=8. 求 AC的长.
C
8
4
A
4
B
D
42
练习&2 ☞
1.在ABC中, ∠C=90°,AC=6,CB=8,则 ABC面积为__2_4__,斜边为上的高为__4_.8___.
A
面积法
解:设竹竿长X米,则城门高为 (X-1)米.
根据题意得: 32+ (X-1) 2 =X2
9+X2 -2X+1=X2 10 -2X=0 2X=10
X=5 答:竹竿长5米
有一个小朋友拿着一根竹竿要通过一个长方形的 门,如果把竹竿竖放就比门高出1尺,斜放就恰 好等于门的对角线,已知门宽4尺,求竹竿高与 门高.
在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦
苇拉向岸边,它的顶端恰好到达岸边的水面,问这个水池的深度
和这根芦苇的长度各是多少?
D
解:设水池的深度AC为X米,
C
B
则芦苇高AD为 (X+1)米.
根据题意得: BC2+AC2=AB2
∴52+X2 =(X+1)2
25+X2=X2+2X+1
A
X=12
解:在Rt△ABC中,根据勾股 定理,得 AC2=AB2+BC2=12+22=5.
AC= 5 ≈2.24. 因为 5大于将实木际板问的题宽转2化.2为m数,学问所以 木板能题从,门建框立内几通何模过型.,画出图形,分
析已知量、待求量,让学生掌握解 决实际问题的一般套路.
D
C
A
B
1m
2m
小东拿着一根长竹竿进一个宽为3米的城门,他 先横着拿不进去,又竖起来拿,结果竹竿比城门 高1米,当他把竹竿斜着时,两端刚好顶着城门 的对角,问竹竿长多少米?
2x 25 1 x 12
x+1
x
方程思想
5
1
方程思想 面积法
2.在△ABC中,AB=15,BC=14,AC=13,
ห้องสมุดไป่ตู้
求(1) △ABC的面积; (2)求腰AC上的高
152 x2 132 (14 x)2 152 132 x2 (14 x)2
A
15
E 12 13
28 2 14(2x 14)
∴X+1=12+1=13(米)
答:水池的深度为12米,芦苇高为13米.
(3)有一个边长为50dm 的正方形洞口, 想用一个圆盖去盖住这个洞口,圆的直径 至少多长?(结果保留整数)
A
D
1m
B
2m
C
在Rt△ ABC中,∠B=90°,由勾股定理可知:
AC AB2 BC2 12 22 5
活动2 问题
(1)在长方形ABCD中AB、BC、AC大小关系?
D
C
AB<BC<AC
AC 2 AB2 BC 2
A
B
八年级下册
勾勾股股定定理理---运用
1.在长和宽分别是40cm,30cm的文具盒中,能
D
C
B
1、已知:Rt△ABC中,AB=4,AC=3,则BC
5 或 7 的长为 zxxkw
.
B
B 分类讨论
4
4
C3 A
A3 C
2.三角形ABC中,AB=10,AC=17,BC边上 的高线AD=8,求BC
zxxkw
分类讨论
A
8
17 10
B
C
方程思想
1.小溪边长着两棵树,恰好隔岸相望,一棵树高30 尺,另外一棵树高20尺;两棵树干间的距离是50尺,每 棵树上都停着一只鸟,忽然两只鸟同时看到两树间水面 上游出一条鱼,它们立刻以同样的速度飞去抓鱼,结果 同时到达目标。问这条鱼出现在两树之间的何处?
解:设竹竿高X尺,则门高为 (X-1)尺. 根据题意得: 42+ (X-1) 2 =X2 16+X2 -2X+1=X2 17 -2X=0 2X=17
X=8.5
答:竹竿高8.5尺, 门高为 7.5尺.
例3:在我国古代数学著作《九章算术》中记载了一道有趣的问题
这个问题意思是:有一个水池,水面是一个边长为10尺的正方形,
再向北走 2 m ,再向西走 1 m ,再向北走 6 m ,最后
向东走 4 m 到达 B 地 ,求 A、B 两地的最短距离
是多少?
4 B
AB 62 82 100
10
6
答:A、B 两地的最短距离
10
8
是10 米.
1
2
A
36
c
议 一 议
小明的妈妈买了一部29英寸(74厘 米)的电视机。小明量了电视机的屏 幕后,发现屏幕只有58厘米长和46厘 米宽,他觉得一定是售货员搞错了。
302 x2 202 (50 x)2 解得x 20 (尺)
30 x
20 50-x
练习&1 ☞
小明想知道学校旗杆的高,他发现旗杆顶端的绳子 垂到地面还多1米,当他把绳子的下端拉开5米后, 发现下端刚好接触地面,求旗杆的高度。
x2 52 ( x 1)2 x2 52 x2 2x 1
放进一支长为48cm的铅笔吗?
分析:根据题意,关键是
求对角线的长度。 解:设对角线长为xcm
30cm
x
由勾股定理得:302+402=x2 x2 =2500 解得:x=50
∵50>48
40cm
∴该文具盒能放进一支长为48cm的铅笔z.xx.k
活动2
(2)一个门框尺寸如下图所示.
①若有一块长3米,宽0.8米的薄木板,问怎样从门框通过? ②若薄木板长3米,宽1.5米呢? ③若薄木板长3米,宽2.2米呢?为什么?
∵木板的宽2.2米大于1米,
∴ 横着不能从门框C通过;
∵木板的宽2.2米大于2米,
∴竖着也不能从门框通2过m.
∴ 只能试试斜着能否通过,
对 要角 求线 出AACC的 的A长 长1最 ,m大 怎, 样B因 求此呢需?
想一想
例1 一个门框的尺寸如图所示,一块长3 m,宽 2.2 m的长方形薄木板能否从门框内通过?为什么?
解得x 9
B
x D14-x C 14
AD AB2 BD2 152 92 12
1
1
SABC
BC 2
AD 1412 84 2
练习1:
蚂蚁从A点经B到C点的最少要爬了多少厘米?
A 4G
3
5B
12
E
5 13
C
(小方格的边长为1厘米)
练习2:
小明在平坦无障碍物的草地上,从A地向东走 3 m ,