天津市河西区八年级上册数学期中考试卷(含答案)
天津市河西区2019-2020学年八年级上期中数学模拟试卷含解析
天津市河西区2019-2020学年八年级上期中数学模拟试卷含解析一、选择题(共12小题,每小题3分,满分36分)1.下列图案中既是中心对称图形,又是轴对称图形的是()A.B.C.D.2.下列说法:①能够完全重合的图形叫做全等形;②全等三角形的对应边相等、对应角相等;③全等三角形的周长相等、面积相等;④所有的等边三角形都全等;⑤面积相等的三角形全等.其中正确的说法有()A.5个B.4个C.3个D.2个3.在△ABC内一点P满足PA=PB=PC,则点P一定是△ABC()A.三条角平分线的交点B.三边垂直平分线的交点C.三条高的交点D.三条中线的交点4.等腰三角形的一个角是80°,则它的顶角的度数是()A.30°B.80°或20°C.80°或50°D.20°5.如图,把△ABC沿AD折叠,使点C落在AB上点E处,那么折痕AD是△ABC的()A.角平分线B.中线C.高线D.角平分线6.如图,∠CBD、∠ADE为△ABD的两个外角,∠CBD=70°,∠ADE=149°,则∠A的度数是()A.28°B.31°C.39°D.42°7.如图是由线段AB,CD,DF,BF,CA组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F 的度数为()A.62°B.152°C.208°D.236°8.如图,∠x的两条边被一直线所截,用含α和β的式子表示∠x为()A.α﹣βB.β﹣αC.180°﹣α+βD.180°﹣α﹣β9.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.30°B.40°C.50°D.60°10.如图所示,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论:①AS=AR;②QP∥AR;③△BPR≌△QPS中()A.全部正确B.仅①和③正确C.仅①正确D.仅①和②正确11.如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则()A.∠1=∠EFD B.BE=EC C.BF=DF=CD D.FD∥BC12.为了加快灾后重建的步伐,我市某镇要在三条公路围成的一块平地上修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址()A.仅有一处B.有四处C.有七处D.有无数处二、填空题:13.如图,△ABC中,∠A=40°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF= 度.14.如图,若△ABC≌△ADE,且∠B=65°,则∠BAD= .15.直角三角形的两个锐角的平分线所交成的角的度数是.16.如图:(1)在△ABC中,BC边上的高是;(2)在△AEC中,AE边上的高是;(3)在△FEC中,EC边上的高是;(4)若AB=CD=2cm,AE=3cm,则S= ,CE= ,BE= .△ACE17.如图,OP平分∠AOB,PD⊥OA于点D,点Q是射线OB上一个动点,若PD=2,则PQ的取值范围为.18.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为64和42,则△EDF的面积为.19.如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是.20.如图,已知AB=A1B,A1C=A1A2,A2D=A2A3,A3E=A3A4,…,以此类推,若∠B=20°,则∠A= .三、综合题:21.如图,∠AOB=30°,OA表示草地边,OB表示河边,点P表示家且在∠AOB内.某人要从家里出发先到草地边给马喂草,然后到河边喂水,最后回到家里.(1)请用尺规在图上画出此人行走的最短路线图(保留作图痕迹,不写作法和理由).(2)若OP=30米,求此人行走的最短路线的长度.22.如图,∠ABC=38°,∠ACB=100°,AD平分∠BAC,AE是BC边上的高,求∠DAE的度数.23.已知:如图,在四边形ABCD中,AD∥BC,∠BDC=∠BCD,点E是线段BD上一点,且BE=AD.证明:△ADB≌△EBC.24.如图,△ABC 中,AD 平分∠CAB ,BD ⊥AD ,DE ∥AC .求证:AE=BE .25.如图,OC 是∠AOB 平分线,点P 为OC 上一点,若∠PDO+∠PEO=180°,试判断PD 和PE 大小关系,并说明理由.26.已知△ABC 中,∠A=50°.(1)如图①,∠ABC 、∠ACB 的角平分线交于点O ,则∠BOC= °.(2)如图②,∠ABC 、∠ACB 的三等分线分别对应交于O 1、O 2,则∠BO 2C= °.(3)如图③,∠ABC 、∠ACB 的n 等分线分别对应交于O 1、O 2…O n ﹣1(内部有n ﹣1个点),求∠BO n ﹣1C (用n 的代数式表示).(4)如图③,已知∠ABC 、∠ACB 的n 等分线分别对应交于O 1、O 2…O n ﹣1,若∠BO n ﹣1C=60°,求n 的值.27.已知△ABC 中,∠A=90°,AB=AC ,D 为BC 的中点.(1)如图,若E 、F 分别是AB 、AC 上的点,且BE=AF .求证:△DEF 为等腰直角三角形;(2)若E ,F 分别为AB ,CA 延长线上的点,仍有BE=AF ,其他条件不变,那么△DEF 是否仍为等腰直角三角形?证明你的结论.28.如图,△ABC和△ADE都是等边三角形,BD与CE相交于O.(1)求证:BD=CE;(2)OA平分∠BOE吗?说明理由.-学年河八年级(上)期中数学模拟试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.下列图案中既是中心对称图形,又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.故选:A.【点评】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下列说法:①能够完全重合的图形叫做全等形;②全等三角形的对应边相等、对应角相等;③全等三角形的周长相等、面积相等;④所有的等边三角形都全等;⑤面积相等的三角形全等.其中正确的说法有()A.5个B.4个C.3个D.2个【考点】全等三角形的判定与性质.【专题】推理填空题.【分析】理清全等形以及全等三角形的判定及性质,即可熟练求解此题.【解答】解:①中能够完全重合的图形叫做全等形,正确;②中全等三角形的对应边相等、对应角相等,正确;③全等三角形的周长相等、面积相等,也正确;④中所有的等边三角形角都是60°,但由于边不相等,所以不能说其全等,④错误;⑤中面积相等的三角形并不一定是全等三角形,⑤中说法错误;故题中①②③说法正确,④⑤说法错误,此题选C.【点评】本题主要考查了全等三角形的判定及性质,能够掌握并熟练运用.3.在△ABC内一点P满足PA=PB=PC,则点P一定是△ABC()A.三条角平分线的交点B.三边垂直平分线的交点C.三条高的交点D.三条中线的交点【考点】线段垂直平分线的性质.【分析】由在△ABC内一点P满足PA=PB=PC,可判定点P在AB,BC,AC的垂直平分线上,则可求得答案.【解答】解:∵在△ABC内一点P满足PA=PB=PC,∴点P一定是△ABC三边垂直平分线的交点.故选B.【点评】此题考查了线段垂直平分线的性质.此题比较简单,注意熟记定理是解此题的关键.4.等腰三角形的一个角是80°,则它的顶角的度数是()A.30°B.80°或20°C.80°或50°D.20°【考点】等腰三角形的性质.【分析】分80°角是顶角与底角两种情况讨论求解.【解答】解:①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.故选:B.【点评】本题考查了等腰三角形两底角相等的性质,难点在于要分情况讨论求解.5.如图,把△ABC沿AD折叠,使点C落在AB上点E处,那么折痕AD是△ABC的()A.角平分线B.中线C.高线D.角平分线【考点】翻折变换(折叠问题).【分析】根据折叠的性质即可得到结论.【解答】解:∵把△ABC沿AD折叠得到△ADE,∴△ACD≌△AED,∴∠CAD=∠EAD,∴AD是△ABC的角平分线.故选A.【点评】本题考查了翻折变换﹣折叠问题,正确理解折叠的性质是本题的关键.6.如图,∠CBD、∠ADE为△ABD的两个外角,∠CBD=70°,∠ADE=149°,则∠A的度数是()A.28°B.31°C.39°D.42°【考点】三角形的外角性质;对顶角、邻补角.【专题】计算题.【分析】根据平角的定义求出∠ABD,根据三角形的外角性质得出∠ADE=∠ABD+∠A,代入即可求出答案.【解答】解:∵∠ABD+∠CBD=180°,∠CBD=70°,∴∠AB D=110°,∵∠ADE=∠ABD+∠A,∠ADE=149°,∴∠A=39°.故选C.【点评】本题主要考查对三角形的外角性质,邻补角的定义等知识点的理解和掌握,能灵活运用三角形的外角性质进行计算是解此题的关键.7.如图是由线段AB,CD,DF,BF,CA组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F 的度数为()A.62°B.152°C.208°D.236°【考点】三角形内角和定理.【分析】首先求出∠F+∠B=∠D+∠EGD,然后证明出∠C+∠A+∠F+∠B﹣∠D=180°,最后结合题干∠D=28°求出∠A+∠B+∠C+∠F的度数.【解答】解:∵如图可知∠BED=∠F+∠B,∠CGE=∠C+∠A,又∵∠BED=∠D+∠EGD,∴∠F+∠B=∠D+∠EGD,又∵∠CGE+∠EGD=180°,∴∠C+∠A+∠F+∠B﹣∠D=180°,又∵∠D=28°,∴∠A+∠B+∠C+∠F=180°+28°=208°,故选:C.【点评】本题主要考查了三角形内角和定理的知识,解答本题的关键是求出∠C+∠A+∠F+∠B﹣∠D=180°,此题难度不大.8.如图,∠x的两条边被一直线所截,用含α和β的式子表示∠x为()A.α﹣βB.β﹣αC.180°﹣α+βD.180°﹣α﹣β【考点】三角形的外角性质.【分析】根据β为角x和α的对顶角所在的三角形的外角,再根据三角形一个外角等于和它不相邻的两个内角的和解答.【解答】解:如图,∵α=∠1,∴β=x+∠1整理得:x=β﹣α.故选B.【点评】本题主要利用三角形外角的性质求解,需要熟练掌握并灵活运用.9.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.30°B.40°C.50°D.60°【考点】全等三角形的性质.【分析】根据邻补角的定义求出∠AED,再根据全等三角形对应边相等可得AD=AE,然后利用等腰三角形的两底角相等列式计算即可得解.【解答】解:∵∠AEC=110°,∴∠AED=180°﹣∠AEC=180°﹣110°=70°,∵△ABD≌△ACE,∴AD=AE,∴∠AED=∠ADE,∴∠DAE=180°﹣2×70°=180°﹣140°=40°.故选B.【点评】本题考查了全等三角形的性质,等腰三角形的判定与性质,熟记性质并准确识图是解题的关键.10.如图所示,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论:①AS=AR;②QP∥AR;③△BPR≌△QPS中()A.全部正确B.仅①和③正确C.仅①正确D.仅①和②正确【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】易证RT△APR≌RT△APS,可得AS=AR,∠BAP=∠1,再根据AQ=PQ,可得∠1=∠2,即可求得QP∥AB,即可解题.【解答】解:如图,在RT△APR和RT△APS中,,∴RT△APR≌RT△APS(HL),∴∠AR=AS,①正确;∠BAP=∠1,∵AQ=PQ,∴∠1=∠2,∴∠BAP=∠2,∴QP∥AB,②正确,∵△BRP和△QSP中,只有一个条件PR=PS,再没有其余条件可以证明△BRP≌△QSP,故③错误.故选:D.【点评】本题利用了全等三角形的判定和性质,等边对等角,平行线的判定和性质求解.11.如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则()A.∠1=∠EFD B.BE=EC C.BF=DF=CD D.FD∥BC【考点】全等三角形的判定与性质.【分析】根据题中的条件可证明出△ADF≌△ABF,由全等三角形的性质可的∠ADF=∠ABF,再由条件证明出∠ABF=∠C,由角的传递性可得∠ADF=∠C,根据平行线的判定定理可证出FD∥BC.【解答】解:在△AFD和△AFB中,∵AF=AF,∠1=∠2,AD=AB,∴△ADF≌△ABF,∴∠ADF=∠ABF.∵AB⊥BC,BE⊥AC,即:∠BAC+∠C=∠BAC+∠ABF=90°,∴∠ABF=∠C,即:∠ADF=∠ABF=∠C,∴FD∥BC,故选D.【点评】本题主要考查全等三角形的性质,涉及到的知识点还有平行线的判定定理,关键在于运用全等三角形的性质证明出角与角之间的关系.12.为了加快灾后重建的步伐,我市某镇要在三条公路围成的一块平地上修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址()A.仅有一处B.有四处C.有七处D.有无数处【考点】角平分线的性质.【专题】作图题.【分析】利用角平分线性质定理:角的平分线上的点,到这个角的两边的距离相等.又要求砂石场建在三条公路围成的一块平地上,所以是三个内角平分线的交点一个,外角的平分线的交点三个.【解答】解:满足条件的点有一个,三角形内部:三个内角平分线交点一个.三角形外部,外角的角平分线三个(不合题意).故选A.【点评】此题考查学生对角平分线的性质的理解和掌握,解答此题的关键是熟练掌握角平分线性质定理.二、填空题:13.如图,△ABC中,∠A=40°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF= 75 度.【考点】三角形内角和定理.【分析】首先根据三角形的内角和定理求得∠ACB的度数,以及∠BCD的度数,根据角平分线的定义求得∠BCE的度数,则∠ECD可以求解,然后在△CDF中,利用内角和定理即可求得∠CDF的度数.【解答】解:∵∠A=40°,∠B=70°,∴∠ACB=180°﹣∠A﹣∠B=70°.∵CE平分∠ACB,∴∠ACE=∠ACB=35°.∵CD⊥AB于D,∴∠CDA=90°,∠ACD=180°﹣∠A﹣∠CDA=50°.∴∠ECD=∠ACD﹣∠ACE=15°.∵DF⊥CE,∴∠CFD=90°,∴∠CDF=180°﹣∠CFD﹣∠DCF=75°.故答案为:75.【点评】本题考查了三角形的内角和等于180°以及角平分线的定义,是基础题,准确识别图形是解题的关键14.如图,若△ABC≌△ADE,且∠B=65°,则∠BAD= 50°.【考点】全等三角形的性质.【分析】由全等三角形的性质可知AB=AD,再根据等腰三角形的性质和三角形内角和定理即可得到答案.【解答】解:∵△ABC≌△ADE,∴AB=AD,∴∠B=∠ADB,∵∠B=65°,∴∠BAD=180°﹣2×65°=50°,故答案为50°.【点评】本题主要考查的是全等三角形的性质:对应角相等,仔细读图,利用图形上的关系做题时比较好的一种方法.15.直角三角形的两个锐角的平分线所交成的角的度数是45°或135°.【考点】三角形内角和定理.【分析】根据直角三角形的两个锐角互余、角平分线的定义求较小的夹角,由邻补角定义即可求得较大夹角的度数.【解答】解:直角三角形的两个锐角的平分线所交成的锐角是×90°=45°,则直角三角形的两个锐角的平分线所交成的钝角是180°﹣45°=135°.故答案为:45°或135°.【点评】本题考查了三角形内角和定理,注意两条直线相交所成的角有两个不同度数的角.16.如图:(1)在△ABC中,BC边上的高是AB ;(2)在△AEC中,AE边上的高是CD ;(3)在△FEC中,EC边上的高是EF ;= 3cm2,CE= 3cm ,BE= cm .(4)若AB=CD=2cm,AE=3cm,则S△ACE【考点】三角形的面积;三角形的角平分线、中线和高.【分析】根据三角形高的定义和三角形的面积公式即可得到结论.【解答】解:如图:(1)在△ABC中,BC边上的高是AB;(2)在△AEC中,AE边上的高是CD;(3)在△FEC中,EC边上的高是EF;(4)∵CD⊥AE,=AE•CD=3×2=3cm2,∴S△ACE在△ABE与△CDE中,,∴△ABE≌△CDE,∴CE=AE=3,∴BE==,故答案为:AB,CD,EF,3cm2,3cm, cm.【点评】本题考查了三角形的中线,高,角平分线,三角形的面积,正确的识别图形是解题的关键.17.如图,OP平分∠AOB,PD⊥OA于点D,点Q是射线OB上一个动点,若PD=2,则PQ的取值范围为PQ≥2 .【考点】角平分线的性质.【分析】根据垂线段最短可得PQ⊥OB时,PQ最短,再根据角平分线上的点到角的两边距离相等可得PQ=PD.【解答】解:由垂线段最短可得PQ⊥OB时,PQ最短,∵OP平分∠AOB,PD⊥OA,∴PQ=PD=2,即线段PQ的最小值是2.∴PQ的取值范围为PQ≥2,故答案为PQ≥2.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短,熟记性质并判断出PN与OB垂直时PN的值最小是解题的关键.18.如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE=DG ,△ADG 和△AED 的面积分别为64和42,则△EDF 的面积为 9 .【考点】角平分线的性质.【分析】过点D 作DH ⊥AC 于H ,根据角平分线上的点到角的两边距离相等可得DF=DH ,再利用“HL”证明Rt △ADF 和Rt △ADH 全等,Rt △DEF 和Rt △DGH 全等,然后根据全等三角形的面积相等列方程求解即可.【解答】解:如图,过点D 作DH ⊥AC 于H ,∵AD 是△ABC 的角平分线,DF ⊥AB ,∴DF=DH ,在Rt △ADF 和Rt △ADH 中,,∴Rt △ADF ≌Rt △ADH (HL ),∴S Rt △ADF =S Rt △ADH ,在Rt △DEF 和Rt △DGH 中,, ∴Rt △DEF ≌Rt △DGH (HL ),∴S Rt △DEF =S Rt △DGH ,∵△ADG 和△AED 的面积分别为64和42,∴42+S Rt △DEF =64﹣S Rt △DGH ,∴S Rt △DEF =9.故答案为:9.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记性质并作辅助线构造出全等三角形是解题的关键.19.如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).【考点】坐标与图形性质;全等三角形的性质.【专题】压轴题.【分析】因为△ABD与△ABC有一条公共边AB,故本题应从点D在AB的上边、点D在AB 的下边两种情况入手进行讨论,计算即可得出答案.【解答】解:△ABD与△ABC有一条公共边AB,当点D在AB的下边时,点D有两种情况:①坐标是(4,﹣1);②坐标为(﹣1,﹣1);当点D在AB的上边时,坐标为(﹣1,3);点D的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).【点评】本题综合考查了图形的性质和坐标的确定,是综合性较强,难度较大的综合题,分情况进行讨论是解决本题的关键.20.如图,已知AB=A1B,A1C=A1A2,A2D=A2A3,A3E=A3A4,…,以此类推,若∠B=20°,则∠A= .【考点】等腰三角形的性质.【分析】先根据等腰三角形的性质求出∠BA 1A 的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律即可得出∠A n 的度数.【解答】解:∵在△ABA 1中,∠B=20°,AB=A 1B ,∴∠BA 1A==80°,∵A 1A 2=A 1C ,∠BA 1A 是△A 1A 2C 的外角,∴∠CA 2A 1==40°;同理可得,∠DA 3A 2=20°,∠EA 4A 3=10°,∴∠A n =.故答案为:.【点评】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律是解答此题的关键.三、综合题:21.如图,∠AOB=30°,OA 表示草地边,OB 表示河边,点P 表示家且在∠AOB 内.某人要从家里出发先到草地边给马喂草,然后到河边喂水,最后回到家里.(1)请用尺规在图上画出此人行走的最短路线图(保留作图痕迹,不写作法和理由).(2)若OP=30米,求此人行走的最短路线的长度.【考点】作图—应用与设计作图;轴对称-最短路线问题.【分析】(1)利用轴对称最短路线求法得出P点关于OA,OB的对称点,进而得出行走路线;(2)利用等边三角形的判定方法以及其性质得出此人行走的最短路线长为P′P″进而得出答案.【解答】解:(1)如图所示:此人行走的最短路线为:PC→CD→DP;(2)连接OP′,OP″,由题意可得:OP′=OP″,∠P′OP″=60°,则△P′OP″是等边三角形,∵OP=30米,∴PC+CD+DP=P′P″=30(m),答;此人行走的最短路线的长度为30m.【点评】此题主要考查了利用轴对称求最值问题,得出最短行走路径是解题关键.22.如图,∠ABC=38°,∠ACB=100°,AD平分∠BAC,AE是BC边上的高,求∠DAE的度数.【考点】三角形内角和定理;三角形的外角性质.【分析】先根据三角形内角和定理求出∠BAC的度数,由角平分线的定义得出∠BAD的度数,根据三角形外角的性质求出∠ADE的度数,由两角互补的性质即可得出结论.【解答】解:∵∠ABC=38°,∠ACB=100°(己知)∴∠BAC=180°﹣38°﹣100°=42°(三角形内角和180°).又∵AD平分∠BAC(己知),∴∠BAD=21°,∴∠ADE=∠ABC+∠BAD=59°(三角形的外角性质).又∵AE是BC边上的高,即∠E=90°,∴∠DAE=90°﹣59°=31°.【点评】此题考查的是三角形的内角和定理,熟知三角形内角和是180°是解答此题的关键.23.已知:如图,在四边形ABCD中,AD∥BC,∠BDC=∠BCD,点E是线段BD上一点,且BE=AD.证明:△ADB≌△EBC.【考点】全等三角形的判定.【专题】证明题.【分析】利用平行线的性质得出∠ADB=∠CBE,进而利用等腰三角形的性质得出BD=BC,再利用SAS得出△ADB≌△EBC.【解答】证明:∵AD∥BC,∴∠ADB=∠CBE,∵∠BDC=∠BCD,∴BD=BC,在△ABD和△ECB中,,∴△ABD≌△ECB(SAS).【点评】此题主要考查了全等三角形的判定,正确掌握全等三角形的判定方法是解题关键.24.如图,△ABC中,AD平分∠CAB,BD⊥AD,DE∥AC.求证:AE=BE.【考点】等腰三角形的判定与性质.【专题】证明题.【分析】由AD平分∠CAB,DE∥AC可证得∠DAE=∠ADE,得到AE=DE,再结合BD⊥AD,可得∠EDB=∠EBD,得到ED=EB,从而可得出结论.【解答】证明:∵DE∥AC,∴∠CAD=∠ADE,∵AD平分∠CAB,∴∠CAD=∠EAD,∴∠EAD=∠ADE,∴AE=ED,∵BD⊥AD,∴∠ADE+∠EDB=90°,∠DAB+∠ABD=90°,又∠ADE=∠DAB,∴∠EDB=∠ABD,∴DE=BE,∴AE=BE.【点评】本题主要考查等腰三角形的性质和判定,利用DE作中介得到AE=DE,BE=DE是解题的关键.25.如图,OC是∠AOB平分线,点P为OC上一点,若∠PDO+∠PEO=180°,试判断PD和PE大小关系,并说明理由.【考点】全等三角形的判定与性质.【分析】先过点P作PM⊥OA,PN⊥OE,证明△PMD≌△PNE,根据全等三角形的性质即可解决问题.【解答】解:PD=PE.理由:如图,过点P作PM⊥OA,PN⊥OE;∵OC平分∠AOB,∴PM=PN;∵∠OEP+∠ODP=180°,∠ODP+∠PDM=180°,∴∠OEP=∠PDM,在△PMD与△PNE中,,∴△PMD≌△PNE(AAS),∴PD=PE.【点评】本题主要考查了角平分线的性质、全等三角形的判定及其性质等知识点的应用,作辅助线构造全等三角形是解题的关键.26.已知△ABC中,∠A=50°.(1)如图①,∠ABC、∠ACB的角平分线交于点O,则∠BOC= 115 °.(2)如图②,∠ABC 、∠ACB 的三等分线分别对应交于O 1、O 2,则∠BO 2C= °.(3)如图③,∠ABC 、∠ACB 的n 等分线分别对应交于O 1、O 2…O n ﹣1(内部有n ﹣1个点),求∠BO n ﹣1C (用n 的代数式表示).(4)如图③,已知∠ABC 、∠ACB 的n 等分线分别对应交于O 1、O 2…O n ﹣1,若∠BO n ﹣1C=60°,求n 的值.【考点】三角形内角和定理.【分析】(1)△ABC 中,已知∠A 即可得到∠ABC 与∠ACB 的和,而BO 、CO 是∠ABC ,∠ACB 的两条角平分线,即可求得∠OBC 与∠OCB 的度数,根据三角形的内角和定理即可求解;(2)先根据三角形内角和定理求得∠ABC+∠ACB ,再根据三等分线的定义求得∠O 2BC+∠O 2CB ,即可求出∠BO 2C ;(3)先根据三角形内角和定理求得∠ABC+∠ACB ,再根据n 等分线的定义求得∠O n ﹣1BC+∠O n ﹣1CB ,即可求出∠BO n ﹣1C .(4)依据(3)的结论即可求出n 的值.【解答】解:(1)∵△ABC 中,∠ABC+∠ACB=180°﹣∠A=180°﹣50°=130°,BO 、CO 是∠ABC ,∠ACB 的两条角平分线.∴∠OBC=∠ABC ,∠OCB=∠ACB ,∴∠OBC+∠OCB=(∠ABC+∠ACB )=65°,∴△OBC 中,∠BOC=180°﹣(∠OBC+∠OCB )=115°.故答案为:115°;(2)∵点O 2是∠ABC 与∠ACB 的三等分线的交点,∴∠O 2BC+∠O 2CB=(∠ABC+∠ACB )=×130°=()°,∴∠BO 2C=180°﹣()°=()°.故答案为:; (3)∵点O n ﹣1是∠ABC 与∠ACB 的n 等分线的交点,∴∠O n ﹣1BC+∠O n ﹣1CB=(∠ABC+∠ACB )=×130°,∴∠BO n ﹣1C=180°﹣×130°;(4)∵∠BO n ﹣1C=60°,∴180°﹣×130°=60°,解得n=13. 【点评】本题考查的是三角形内角和定理及角平分线的性质,熟知三角形内角和是180°是解答此题的关键.27.已知△ABC 中,∠A=90°,AB=AC ,D 为BC 的中点.(1)如图,若E 、F 分别是AB 、AC 上的点,且BE=AF .求证:△DEF 为等腰直角三角形;(2)若E ,F 分别为AB ,CA 延长线上的点,仍有BE=AF ,其他条件不变,那么△DEF 是否仍为等腰直角三角形?证明你的结论.【考点】等腰直角三角形;直角三角形斜边上的中线.【分析】1)题要通过构建全等三角形来求解.连接AD ,可通过证△ADF 和△BDE 全等来求本题的结论.(2)与(1)题的思路和解法一样.【解答】解:(1)证明:连接AD∵AB=AC ,∠A=90°,D 为BC 中点∴AD==BD=CD且AD平分∠BAC∴∠BAD=∠CAD=45°在△BDE和△ADF中,,∴△BDE≌△ADF(SAS)∴DE=DF,∠BDE=∠ADF∵∠BDE+∠ADE=90°∴∠ADF+∠ADE=90°即:∠EDF=90°∴△EDF为等腰直角三角形.(2)解:仍为等腰直角三角形.理由:∵△AFD≌△BED∴DF=DE,∠ADF=∠BDE∵∠ADF+∠FDB=90°∴∠BDE+∠FDB=90°即:∠EDF=90°∴△EDF为等腰直角三角形.【点评】本题综合考查了等腰三角形的性质及判定、全等三角形的判定和性质等知识,难度较大.28.(秋•自贡期末)如图,△ABC和△ADE都是等边三角形,BD与CE相交于O.(1)求证:BD=CE;(2)OA平分∠BOE吗?说明理由.【考点】等边三角形的性质;全等三角形的判定与性质;角平分线的性质.【专题】证明题.【分析】(1)根据等边三角形的性质得到AB=AC,AD=AE,∠BAC=∠DAE=60°,则易得∠BAD=∠CAE,根据“SAS”有△BAD≌△CAE,利用全等三角形的性质即可得到结论;(2)作AF⊥BD,AG⊥CE,垂足分别是F、G,由△BAD≌△CAE,根据全等三角形的性质有AF=AG,再根据角平分线的判定定理即可得到OA平分∠BOE.【解答】(1)证明:∵△ABC和△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE;(2)OA平分∠BOE.理由如下:作AF⊥BD,AG⊥CE,垂足分别是F、G,如图,∵AF、AG恰好是两个全等三角形△BAD与△CAE对应边上的高,∴AF=AG,∴OA平分∠BOE.【点评】本题考查了等边三角形的性质:等边三角形三条边相等,三个角相等,都为60°;也考查了全等三角形的判定与性质以及角平分线的判定方法.31 / 31。
2020-2021学年天津市河西区八年级(上)期中数学试卷Word+答案
2020-2021学年天津市河西区八年级(上)期中数学试卷
一、选择题《(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,将答案填入下面的表格中)
1.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()
A.B.C.D.
2.(3分)如图各图中,正确画出AC边上的高的是()
A.B.
C.D.
3.(3分)由下列长度组成的各组线段中,能组成三角形的是()
A.1cm,3cm,3cm B.2cm,5cm,7cm
C.8cm,4cm,2cm D.14cm,7cm,7cm
4.(3分)如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()
A.∠M=∠N B.AM∥CN C.AB=CD D.AM=CN
5.(3分)等腰三角形的两边长分别为4cm和8cm,则它的周长为()
A.16cm B.17cm C.20cm D.16cm或20cm
6.(3分)如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()
第1页(共13页)。
天津初二初中数学期中考试带答案解析
天津初二初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、单选题1.要使式子有意义,则x 的取值范围是( )A .x >1B .x >-1C .x≥1D .x≥-12.下列根式中是最简根式的是( ) A .B .C .D .3.一直角三角形的两直角边长为12和16,则斜边长为( ) A .12 B .16 C .18D .204.如图,在▱ABCD 中,已知AD =5 cm ,AB =3 cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于( )A .1 cmB .2 cmC .3 cmD .4 cm5.把-a 根号外的因式移到根号内的结果是( )A .B .C .-D .-6.下列计算错误的是( ) A .×= 7B .÷=2C .+=8D .3-=37.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A .当AB=BC 时,它是菱形B .当AC ⊥BD 时,它是菱形C .当∠ABC=90°时,它是矩形D .当AC=BD 时,它是正方形8.如图所示,A(-,0),B(0,1)分别为x 轴,y 轴上的点,△ABC 为等边三角形,点P(3,a)在第一象限内,且满足2S △ABP =S △ABC ,则a 的值为( )A .B .C .D .2二、填空题1.已知(x -y +3)2+=0,则x +y =____________.2.如图,在矩形ABCD 中,AB =8,BC =10,E 是AB 上一点,将矩形ABCD 沿CE 折叠后,点B 落在AD 边的点F 上,则DF 的长为____________.3.如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等于____________.4.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过顶点B ,D 作DE ⊥a 于点E ,BF ⊥a 于点F ,若DE =4,BF =3,则EF 的长为____________.5.如图,在图1中,A 1,B 1,C 1分别是△ABC 的边BC ,CA ,AB 的中点,在图2中,A 2,B 2,C 2分别是△A 1B 1C 1的边B 1C 1,C 1A 1,A 1B 1的中点,…,按此规律,则第n 个图形中平行四边形的个数共有______个.三、解答题1.已知x =2-,则代数式(7+4)x 2+(2+)x +的值是____________. 2.计算: (1)2+3--; (2)-÷2+(3-)(1+).3.先化简,再求值:÷(2x —)其中,x=+1.4.已知:a.b.c 满足,求:(1)a,b,c 的值;(2)试问以a,b,c 为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.5.小薇将一副三角尺如图所示摆放在一起,发现只要知道其中一边的长就可以求出其他各边的长,若已知CD=2,求AC 的长.6.如图,铁路上A ,B 两点相距25 km ,C ,D 为两村庄,DA ⊥AB 于点A ,CB ⊥AB 于点B ,已知DA =15 km ,CB =10 km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?7.如图,E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点. (1)判断四边形EFGH 的形状,并证明你的结论;(2)当BD,AC满足什么条件时,四边形EFGH是正方形.(不要求证明)8.如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若AB=AC,求证:四边形BFCE是菱形.9.如图,将矩形ABCD沿BD对折,点A落在E处,BE与CD相交于F,若AD=3,BD=6.(1)求证:△EDF≌△CBF;(2)求∠EBC.10.如图所示,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图(1)中以格点为顶点画一个面积为10的正方形;(2)在图(2)中以格点为顶点画一个三角形,使三角形三边长分别为2, , ;(3)如图(3)所示,点A,B,C是小正方形的顶点,求∠ABC的度数.天津初二初中数学期中考试答案及解析一、单选题1.要使式子有意义,则x的取值范围是()A.x>1B.x>-1C.x≥1D.x≥-1【答案】C【解析】,故选C.2.下列根式中是最简根式的是()A.B.C.D.【答案】B【解析】A. ,故不是最简二次根式;B. 不能化简,故是最简二次根式;C. ,故不是最简二次根式;D. ,故不是最简二次根式;故选B.3.一直角三角形的两直角边长为12和16,则斜边长为()A.12B.16C.18D.20【答案】D【解析】由勾股定理可得:斜边=,故选D.4.如图,在▱ABCD中,已知AD=5 cm,AB=3 cm,AE平分∠BAD交BC边于点E,则EC等于()A.1 cm B.2 cm C.3 cm D.4 cm【答案】B【解析】根据角平分线的性质可得AB=BE=3cm,则EC=BC-BE=5-3=2cm.【考点】角平分线的性质.5.把-a根号外的因式移到根号内的结果是( )A.B.C.-D.-【答案】C【解析】首先根据题意得出a的取值范围,然后再根据二次根式的化简法则进行化简.根据题意可得:a>0,则原式=-a·=-a·=-.【考点】二次根式的化简6.下列计算错误的是()A.×= 7B.÷=2C.+=8D.3-=3【答案】D【解析】D. 3-=2 ,故选D.7.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形【答案】D【解析】A. 根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B. ∵四边形ABCD 是平行四边形,∴BO=OD,∵AC ⊥BD,∴AB²=BO²+AO²,AD²=DO²+AO²,∴AB=AD ,∴四边形ABCD 是菱形,故B 选项正确;C. 有一个角是直角的平行四边形是矩形,故C 选项正确;D. 根据对角线相等的平行四边形是矩形可知当AC=BD 时,它是矩形,不是正方形,故D 选项错误; 综上所述,符合题意是D 选项; 故选:D.8.如图所示,A(-,0),B(0,1)分别为x 轴,y 轴上的点,△ABC 为等边三角形,点P(3,a)在第一象限内,且满足2S △ABP =S △ABC ,则a 的值为( )A .B .C .D .2【答案】C【解析】2S △ABP =S △ABC=S △ABP =,故选C.二、填空题1.已知(x -y +3)2+=0,则x +y =____________.【答案】1【解析】由题意得:2.如图,在矩形ABCD 中,AB =8,BC =10,E 是AB 上一点,将矩形ABCD 沿CE 折叠后,点B 落在AD 边的点F 上,则DF 的长为____________.【答案】6.【解析】根据矩形的性质得出CD=AB=8,∠D=90°,根据折叠性质得出CF=BC=10,根据勾股定理求出即可: ∵四边形ABCD 是矩形,∴AB=DC=8,∠D=90°.∵将矩形ABCD 沿CE 折叠后,点B 落在AD 边的F 点上, ∴CF=BC=10.在Rt △CDF 中,由勾股定理得:DF=. 【考点】1.翻折变换(折叠问题);2.矩形的性质;3.勾股定理.3.如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等于____________.【答案】【解析】根据圆的面积计算公式及勾股定理可得.4.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过顶点B ,D 作DE ⊥a 于点E ,BF ⊥a 于点F ,若DE =4,BF =3,则EF 的长为____________.【答案】7【解析】因为ABCD 是正方形,所以AB=AD ,∠B=∠A=90°,则有∠ABF=∠DAE ,又因为DE ⊥a 、BF ⊥a ,根据AAS 易证△AFB ≌△AED ,所以AF=DE=4,BF=AE=3,则EF=AF+AE=4+3=7. 【考点】正方形的性质5.如图,在图1中,A 1,B 1,C 1分别是△ABC 的边BC ,CA ,AB 的中点,在图2中,A 2,B 2,C 2分别是△A 1B 1C 1的边B 1C 1,C 1A 1,A 1B 1的中点,…,按此规律,则第n 个图形中平行四边形的个数共有______个.【答案】3n 【解析】略因为每次增加一个三角形,就增加3个平行四边形,那么n 次后,就有3n 个平行四边形了三、解答题1.已知x =2-,则代数式(7+4)x 2+(2+)x +的值是____________. 【答案】2+【解析】先把已知条件两边平方,再代入代数式求值即可. 解:x 2=(2﹣)2=7﹣4,原式=(7+4)(7﹣4)+(2+)(2﹣)+ =49﹣48+1+ =2+.2.计算: (1)2+3--; (2)-÷2+(3-)(1+).【答案】(1)(2)【解析】.(1)原式=4+2--=2. (2)原式=4-+3+--1=4-+2.3.先化简,再求值:÷(2x —)其中,x=+1.【答案】【解析】÷(2x —)=把x=+1代入【考点】整式运算点评:本题难度较低,主要考查学生对整式运算知识点的掌握。
2021-2022学年天津市河西区八年级(上)期中数学试题及答案解析
2021-2022学年天津市河西区八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1.在平面直角坐标系中,点(5,2)关于x轴对称的点的坐标为( )A. (5,−2)B. (−5,2)C. (2,5)D. (2,−5)2.如图所示冬奥会图标中,是轴对称图形的是( )A. B.C. D.3.如所示图形中具有稳定性的是( )A. B. C. D.4.如图所示四个图形中,线段BE能表示三角形ABC的高的是( )A. B.C. D.5.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是( )A. 3cm,4cm,8cmB. 8cm,7cm,15cmC. 5cm,5cm,11cmD. 13cm,12cm,20cm6.下列说法错误的是( )A. 三边分别相等的两个三角形全等B. 三角分别相等的两个三角形全等C. 两边和它们的夹角分别相等的两个三角形全等D. 斜边和一条直角边分别相等的两个直角三角形全等7.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C作射线OC.由此作法便可得△MOC≌△NOC,其依据是( )A. SSSB. SASC. ASAD. AAS8.△ABC的两条角平分线AD,BE相交于点F,下列结论一定正确的是( )A. BD=DCB. BE⊥ACC. FA=FBD. 点F到三角形三边的距离都相等9.若一个多边形的每一个内角均为120°,则下列说法错误的是( )A. 这个多边形的内角和为720°B. 这个多边形的边数为6C. 这个多边形一定是正多边形D. 这个多边形的外角和为360°10.在三角形纸片ABC中,∠A=65°,∠B=75°.将纸片的一角对折,使点C落在△ABC内,若∠1=20°,则∠2的度数为( )A. 50°B. 60°C. 70°D. 80°二、填空题(本大题共6小题,共18.0分)11.如图中的x的值为______.12.图中与标号“1”的三角形成轴对称的三角形的个数为______.13.如图,以正方形ABCD的中心O为原点建立平面直角坐标系,若点A的坐标为(−2,−2),则点C的坐标是______.14.如图,已知∠C=∠D,∠ABC=∠BAD,AC与BD相交于点O,请写出图中一组相等的线段______.15.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D,E,AD=3,BE=1,则DE的长是___________.16.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是______.三、解答题(本大题共7小题,共52.0分。
天津市河西区2016-2017学年八年级上期中数学模拟试卷含解析
8.如图,∠x 的两条边被一直线所截,用含 α 和 β 的式子表示∠x 为( )
A.α﹣β B.β﹣α C.180°﹣α+β D.180°﹣α﹣β 9.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为( )
A.30° B.40° C.50° D.60° 10.如图所示,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于 R,PS⊥AC于 S,则三个结论:①AS=AR; ②QP∥AR;③△BPR≌△QPS中( )
A.角平分线 B.中线 C.高线 D.角平分线 6.如图,∠CBD、∠ADE为△ABD的两个外角,∠CBD=70°,∠ADE=149°,则∠A 的度数是 ()
第 1 页(共 30 页)
A.28° B.31° C.39° D.42° 7.如图是由线段 AB,CD,DF,BF,CA组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F 的度数为 ()
22.如图,∠ABC=38°,∠ACB=100°,AD平分∠BAC,AE是 BC边上的高,求∠DAE的度数.
23.已知:如图,在四边形 ABCD中,AD∥BC,∠BDC=∠BCD,点 E 是线段 BD上一点,且 BE=AD.证明:△ADB≌△EBC.
24.如图,△ABC中,AD平分∠CAB,BD⊥AD,DE∥AC.求证:AE=BE.
2016-2017 学年天津市河西区八年级(上)期中数学模拟试卷
一、选择题(共 12 小题,每小题 3 分,满分 36 分) 1.下列图案中既是中心对称图形,又是轴对称图形的是( )
A.
B.
C.
D.
2.下列说法:①能够完全重合的图形叫做全等形;②全等三角形的对应边相等、对应角相等;③ 全等三角形的周长相等、面积相等;④所有的等边三角形都全等;⑤面积相等的三角形全等.其中 正确的说法有( ) A.5 个 B.4 个 C.3 个 D.2 个 3.在△ABC内一点 P 满足 PA=PB=PC,则点 P 一定是△ABC( ) A.三条角平分线的交点 B.三边垂直平分线的交点 C.三条高的交点 D.三条中线的交点 4.等腰三角形的一个角是 80°,则它的顶角的度数是( ) A.30° B.80°或 20° C.80°或 50° D.20° 5.如图,把△ABC沿 AD折叠,使点 C 落在 AB上点 E 处,那么折痕 AD是△ABC的( )
天津市河西区北师大天津附中2015-2016上学期期中初二数学及答案
北师大天津附中2015-2016 学年度第一学期八年级数学期中质量测试一.选择题(本大题共10 小题,每小题3 分,共30 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图案是轴对称图形的有()A.1个B. 2 个C. 3 个D.4 个2.已知等腰三角形的两边长分别为3 和6 ,则它的周长等于()A.12 B.12 或15 C.15 D.15 或18 3.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去A.①B.②C.③D.①和②4.如图,已知∠1=∠2 ,欲得到ABD≌法是()ACD ,还须从下列条件中补选一个,错误的选A.∠ADB=∠ADC B.∠B=∠C C.AB =AC D.DB =DC 5.若一个多边形的内角和的总和是2520︒,则这个多边形的边数是()A.14 B.15 C.16 D.176.如图,在ABC 中,∠C=90︒,AC =BC , AD 平分∠CAB 交BC 于D ,D E ⊥AB 于E ,若AB = 6 cm,则DBE 的周长是()A. 6 cm B.7 cm C.8 cm D.9 cm 7.已知等腰三角形一腰上的高线与另一腰的夹角为50︒,那么这个等腰三角形的顶角等于()A.15︒或75︒B.140︒C.40︒D.140︒或40︒8.如图所示,在ABC 中,已知点D、E、F 分别是BC、AD、CE 的中点,且S∆ABC =4 平方厘米,则S∆BEF的值为()A. 2 平方厘米B.1平方厘米C.1平方厘米D.1平方厘米2 49.如图,∠BAC=110︒,若MP 和NQ 分别垂直平分AB 和AC ,则∠PAQ 的度数是()A.20︒B.40︒C.50︒D.60︒10.如图所示,中,∠C=90︒,点D 在AB 上,BC =BD ,DE ⊥AB 交AC 于ABC点E ,ABC 的周长为12 ,ADE 的周长为6 ,则BC 的长为()A. 3 B. 4 C. 5 D. 6二、填空题:本大题共8 小题,每小题3 分,共24 分.11.若A(x,3)关于y 轴的对称点是B (-2,y),则x = ,y = ,点A 关于x 轴的对称点的坐标是.12.如图,ABC 中,∠C=90︒,AD 平分∠BAC ,AB=5 ,CD=2 ,则△ABD 的面积是.13.如图,在正方形方格中,阴影部分是涂黑7 个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有种.14.如图,已知AE ∥ BF , ∠E =∠F ,要使,可添加的条件是.第12 题第13 题第14 题15.如图,ABC 是等边三角形,CD 是∠ACB 的平分线,过点D 作BC 的平行线交AC 于E ,已知ABC 的边长为a ,则EC 的边长是.16.在平面直角坐标系中,已知A(3,-3),在y 轴上找一点B ,使为等腰三角形,则符合条件的点B 共有个.17.如图,在ABC 中,∠C=90︒,AD 平分∠BAC ,DE ⊥AB ,若∠BAD = 30︒,BC = 6cm,则CD 等于18.如图,在ABC 中,BF 、CF 是角平分线,DE ∥BC ,分别交AB 、AC 于点D、E ,DE 经过点F .结论:①∆BDF 和∆CEF 都是等腰三角形;②D E =BD +CE③ADE 的周长=AB +AC ④BF =CF ,其中正确的有.三、解答题:本大题共7 小题,共46 分.解答应在答题纸上写出必要的过程19.(6分)如图所示,在平面直角坐标系中,A(-1,5),B (-1, 0),C (-4,3).(1)求出ABC 的面积(2)在图形中作出∆ABC 关于y 轴的对称图形∆A1B1C1(3)写出点A1,B1,C1的坐标.ADE ≅BCFABC20.(6 分)探究:要在燃气管道l上修建一个泵站P ,分别向A,B两镇供气.(保留作图痕迹,不写作法)(1)泵站修在管道的什么地方,可使所用的输气管线最短?在图 1 上画出P 点位置.(2)泵站修在管道的什么地方,可使到A、B 的距离相等?在图2 上画出P 点位置.图1 图221.(6 分)如图,点B、F、C、E在同一直线上,AB∥DE,且AB=DE,FB=CE,求证∠A =∠D22.(6 分)已知,点D是ABC的边BC的中点,DE⊥AC,DF⊥AB,垂足分别为E、F ,且BF =CE ,求证:△ABC 是等腰三角形23.(6 分)如图,在ABC中,AB=AD=DC,∠BAD=24︒,求∠B和∠C 的度数24.(8分)如图,在ABC中,于D(1)求证:∠ACB = 90︒,AC =BC ,BE ⊥CE 于E .AD ⊥CE (2)AD =5cm,DE=3 cm,求BE 的长度25.(8 分)如图,点P 为∠AOB内一点,分别作出点P 关于OA、OB的对称点,连接P1,P2交OA 于M ,交OB 于N ,(1)若P1P2=6,则△PMN的周长为(2)已知∠AOB = 30︒,猜想P1、O、P2三点构成什么样的三角形,并证明你的猜想ADC≌ CEB⎩ ⎩ ⎨ ⎩⎨∠ 参考答案:一、选择题 题号 123 4 5 6 7 8 9 10 答案B CCDC A DB B A 题号 11 12 13 14 15 16 17 18 答案2;3; (2,-3)5 3AE =BFa 242①②③19. 解:15 20. 解:⑴⑴ 2 ⑵略⑶ A 1 (1,5) , B 1 (1, 0) , C 1 (4,3)21.证: ∵BF =CE∴BF +FC =FC +CE ∴BC =EF ∵AB ∥DE23.解:∵AB =AD⑵作线段 AB 的垂直平分线,具体过程略24.证明:⑴∵BE ⊥CE ,AD ⊥CE∴∠BEC =90°,∠CDA =90°∴∠B =∠E在△ABC 和△DEF 中⎧ AB = DE ⎪∠B = ∠E ⎪BC = EF ∴△ABC ≌△DEF (SAS ) ∴∠A =∠D ∴∠B =∠ADB ∵AD =CD ∴∠DAC =∠C 设∠DAC =∠C =x ∵∠ADB =∠DAC +∠C ∴∠B =∠ADB =2x∵∠BAD =24°,∠BAD +∠B +∠ADB =180°又∵∠ACB =90° ∴∠BCE +∠ECA =90° ∠ECA +∠DAC =90° ∴∠BCE +∠DAC =90° 在△BCE 和△CAD 中⎧∠BCE = ∠CAD 22.证明:⎪BEC = ∠CDA ∵D 是 BC 的中点∴BD =CD∵DE ⊥AC ,DF ⊥AB ∴∠DFB =∠DEC =90° 在 Rt △DFB 和 Rt △DEC 中⎧BD = CD ⎨BF = CE∴24°+4x =180°∴x =39°∴∠B =78°,∠C =39°⎪BE =AC∴△BCE ≌△CAD (AAS ) ⑵2cm25.⑴6(过程略)⑵等边三角形(过程略)∴△DFB ≌△DEC (HL ) ∴∠B =∠C ∴AB =AC∴△ABC 为等腰三角形。
天津市河西区2019-2020学年八年级(上)期中数学试卷(含解析)
2019-2020学年天津市河西区八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列标志中,可以看作是轴对称图形的是()A.B.C.D.2.要使四边形木架(用四根木条钉成)不变形,至少要再钉上的木条的根数为()A.一条B.两条C.三条D.四条3.在△ABC中,∠A=45°,∠B=45°,则下列判断错误的是()A.△ABC是直角三角形B.△ABC是锐角三角形C.△ABC是等腰三角形D.∠A和∠B互余4.由下列长度组成的各组线段中,不能组成三角形的是()A.1cm,3cm,3cm B.2cm,5cm,6cmC.8cm,6cm,4cm D.14cm,7cm,7cm5.已知等腰三角形的两边长分别是5和11,则这个等腰三角形的周长为()A.21B.16C.27D.21或276.在下面的四组全等的三角形中,可以看作把△ABC经过翻折(轴对称)而得到△DEF的是()A.B.C.D.7.如图,足球图片正中的黑色正五边形的内角和是()A.180°B.360°C.540°D.720°8.如图,为了促进当地旅游发展,某地要在三条公路围成的一块三角形平地ABC上修建一个度假村,要使这个度假村到三条公路的距离相等,应该修在()A.△ABC三边中线的交点B.△ABC三个角的平分线的交点C.△ABC三边高线的交点D.△ABC三边垂直平分线的交点9.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CDC.AD=AE D.AE=CE10.“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动、C点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°二、填空题:本大题共6小题,每小题3分,共18分.11.点M(3,3)关于x轴对称的点的坐标为.12.有一角为60°的等腰三角形是.13.如图,已知AC=FE,BC=DE,点A、D、B、F在一条直线上,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是.14.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB的度数为.15.如图,A(m,0),B(0,n),以B点为直角顶点在第二象限作等腰直角△ABC,则C 点的坐标为.(用字母m、n表示)16.如图,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于.三、解答题:本大题共7小题,共52分.解答应写出文字说明,演算步骤或证明过程.17.在直角坐标系中,△ABC的三个顶点的位置如图所示.(1)请画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C 的对应点,不写画法);(2)直接写出A′,B′,C′三点的坐标:A′(),B′(),C′().18.已知:∠α.求作:∠CAB,使得∠CAB=∠α.(尺规作图,保留作图痕迹,不写作法.)19.如图,在△ABC中,BO,CO分别平分∠ABC和∠ACB.(Ⅰ)若∠A=60°,则∠BOC的度数为;(Ⅱ)若∠A=100°,则∠BOC的度数;(Ⅲ)若∠A=α,求∠BOC的度数,并说明理由.20.如图,在△ABC中,∠ACB=90°,CD是高,∠A=30°.(Ⅰ)求∠BCD的度数;(Ⅱ)若BD=a,求AB的长度(用a表示).21.在平面直角坐标系中,点A(2,0),点B(0,3)和点C(0,2).(Ⅰ)请直接写出OB的长度:OB=;(Ⅱ)如图:若点D在x轴上,且点D的坐标为(﹣3,0),求证:△AOB≌△COD.22.如图,在等边△ABC中,点D,E分别在边BC,AB上,AD交CE于点P,且BD=AE.求证:(Ⅰ)AD=CE;(Ⅱ)求∠DPC的度数.23.已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.2019-2020学年天津市河西区八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列标志中,可以看作是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选:C.2.要使四边形木架(用四根木条钉成)不变形,至少要再钉上的木条的根数为()A.一条B.两条C.三条D.四条【解答】解:根据三角形的稳定性可得,至少要再钉上1根木条,故选:A.3.在△ABC中,∠A=45°,∠B=45°,则下列判断错误的是()A.△ABC是直角三角形B.△ABC是锐角三角形C.△ABC是等腰三角形D.∠A和∠B互余【解答】解:∵在△ABC中,∠A=45°,∠B=45,∴∠C=90°,即△ABC是等腰直角三角形,∠A和∠B互余故选:B.4.由下列长度组成的各组线段中,不能组成三角形的是()A.1cm,3cm,3cm B.2cm,5cm,6cmC.8cm,6cm,4cm D.14cm,7cm,7cm【解答】解:A、∵1+3>3,∴能构成三角形,不符合题意;B、∵2+5>6,∴能构成三角形,不符合题意;C、∵6+4>8,∴能构成三角形,不符合题意;D、∵7+7=14,∴不能构成三角形,符合题意.故选:D.5.已知等腰三角形的两边长分别是5和11,则这个等腰三角形的周长为()A.21B.16C.27D.21或27【解答】解:当等腰三角形的腰为5时,三边为5,5,11,5+5=10<11,三边关系不成立,当等腰三角形的腰为11时,三边为5,11,11,三边关系成立,周长为5+11+11=27.故选:C.6.在下面的四组全等的三角形中,可以看作把△ABC经过翻折(轴对称)而得到△DEF的是()A.B.C.D.【解答】解:A、△ABC经过平移得到△DEF,故此选项错误;B、△ABC经过旋转180°得到△DEF,故此选项错误;C、△ABC经过旋转得到△DEF,故此选项错误;D、△ABC经过翻折(轴对称)而得到△DEF,故此选项正确;故选:D.7.如图,足球图片正中的黑色正五边形的内角和是()A.180°B.360°C.540°D.720°【解答】解:黑色正五边形的内角和为:(5﹣2)×180°=540°,故选:C.8.如图,为了促进当地旅游发展,某地要在三条公路围成的一块三角形平地ABC上修建一个度假村,要使这个度假村到三条公路的距离相等,应该修在()A.△ABC三边中线的交点B.△ABC三个角的平分线的交点C.△ABC三边高线的交点D.△ABC三边垂直平分线的交点【解答】解:要使这个度假村到三条公路的距离相等,则度假村应该修在△ABC内角平分线的交点,故选:B.9.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CDC.AD=AE D.AE=CE【解答】解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,所以,结论正确的是D选项.故选:D.10.“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动、C点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°【解答】解:∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC,∴∠DCE=∠O+∠ODC=2∠ODC,∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°,∵∠CDE+∠ODC=180°﹣∠BDE=105°,∴∠CDE=105°﹣∠ODC=80°.故选:D.二、填空题:本大题共6小题,每小题3分,共18分.11.点M(3,3)关于x轴对称的点的坐标为(3,﹣3).【解答】解:点M(3,3)关于x轴对称的点的坐标为(3,﹣3).故答案是:(3,﹣3).12.有一角为60°的等腰三角形是等边三角形.【解答】解:若该角为顶角,则其它两底角相等且均为(80°﹣60°)÷2=60°,则这个三角形是等边三角形;若该角为底角,则另一个底角也为60°,则顶角为180°﹣60°﹣60°=60°,则这个三角形为等边三角形.所以有一个角为60°的等腰三角形是等边三角形.故答案为:等边三角形.13.如图,已知AC=FE,BC=DE,点A、D、B、F在一条直线上,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是∠C=∠E(答案不惟一,也可以是AB=FD或AD =FB).【解答】解:增加一个条件:∠C=∠E,显然能看出,在△ABC和△FDE中,利用SAS可证三角形全等.(答案不唯一).故填:∠C=∠E.14.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB的度数为10°.【解答】解:∵∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,∵折叠后点A落在边CB上A′处,∴∠CA′D=∠A=50°,由三角形的外角性质得,∠A′DB=∠CA′D﹣∠B=50°﹣40°=10°.故答案为:10°.15.如图,A(m,0),B(0,n),以B点为直角顶点在第二象限作等腰直角△ABC,则C 点的坐标为(﹣n,n﹣m).(用字母m、n表示)【解答】解:过点C作CD⊥y轴于点D,如图1所示.∵△ABC为等腰直角三角形,∴∠ABC=90°,AB=BC.∵CD⊥BD,BO⊥AO,∴∠CDB=∠BOA=90°.∵∠CBD+∠ABO=90°,∠CBD+∠BCD=90°,∴∠ABO=∠BCD.在△ABO和△BCD中,,∴△ABO≌△BCD(AAS),∴BD=AO,CD=BO,∵A(m,0),B(0,n),∴BD=﹣m,CD=n,∴点C的坐标为(﹣n,n﹣m),故答案为:(﹣n,n﹣m).16.如图,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于15.【解答】解:如图,分别作边AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△AHF、△BGC、△DPE、△GHP都是等边三角形.∴GC=BC=3,DP=DE=2.∴GH=GP=GC+CD+DP=3+3+2=8,F A=HA=GH﹣AB﹣BG=8﹣1﹣3=4,EF=PH ﹣HF﹣EP=8﹣4﹣2=2.∴六边形的周长为1+3+3+2+4+2=15.故答案为:15.三、解答题:本大题共7小题,共52分.解答应写出文字说明,演算步骤或证明过程.17.在直角坐标系中,△ABC的三个顶点的位置如图所示.(1)请画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C 的对应点,不写画法);(2)直接写出A′,B′,C′三点的坐标:A′(2,3),B′(3,1),C′(﹣1,﹣2).【解答】解:(1)(2)A′(2,3),B′(3,1),C′(﹣1,﹣2).18.已知:∠α.求作:∠CAB,使得∠CAB=∠α.(尺规作图,保留作图痕迹,不写作法.)【解答】解:如图所示:∠CAB即为所求:19.如图,在△ABC中,BO,CO分别平分∠ABC和∠ACB.(Ⅰ)若∠A=60°,则∠BOC的度数为120°;(Ⅱ)若∠A=100°,则∠BOC的度数140°;(Ⅲ)若∠A=α,求∠BOC的度数,并说明理由.【解答】解:(Ⅰ)∵BO、CO分别平分∠ABC和∠ACB,∠A=60°,∴∠CBO+∠BCO(180°﹣∠A)(180°﹣60°)=60°,∴∠BOC=180°﹣(∠CBO+∠BCO)=180°﹣60°=120°;故答案为:120°;(Ⅱ)同理,若∠A=100°,则∠BOC=180°(180°﹣∠A)=90°∠A =140°,故答案为140°;(Ⅲ)同理,若∠A=α,则∠BOC=180°(180°﹣∠A)=90°.20.如图,在△ABC中,∠ACB=90°,CD是高,∠A=30°.(Ⅰ)求∠BCD的度数;(Ⅱ)若BD=a,求AB的长度(用a表示).【解答】解:(Ⅰ)∵在△ABC中,∠ACB=90°,∠A=30°,∴∠B=60°,∵CD⊥AB,∴∠CDB=90°,∴∠BCD=90°﹣60°=30°;(Ⅱ)∵∠BDC=90°,∠BCD=30°,BD=a,∴BC=2BD=2a,∵∠ACB=90°,∠A=30°,∴AB=2BC=4a.21.在平面直角坐标系中,点A(2,0),点B(0,3)和点C(0,2).(Ⅰ)请直接写出OB的长度:OB=3;(Ⅱ)如图:若点D在x轴上,且点D的坐标为(﹣3,0),求证:△AOB≌△COD.【解答】(I)解:∵点B(0,3),∴OB=3,故答案为:3;(II)证明:∵点A(2,0),点B(0,3)和点C(0,2),点D的坐标为(﹣3,0),∴OC=OA=2,OB=OD=3,在△AOB和△COD中∴△AOB≌△COD(SAS).22.如图,在等边△ABC中,点D,E分别在边BC,AB上,AD交CE于点P,且BD=AE.求证:(Ⅰ)AD=CE;(Ⅱ)求∠DPC的度数.【解答】证明:(Ⅰ)在△ABC中CA=AB,∠CAE=∠ABD,又∵AE=BD,在△CAE和△ABD中,,∴△CAE≌△ABD(SAS).∴AD=CE;(Ⅱ)∵△CAE≌△ABD,∴∠BAD=∠ACE,∵∠CAF+∠EAF=60°,∴∠DFC=∠F AC+∠ACF=60°.23.已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.【解答】(1)证明:∵点D是AB中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG,又∵BF⊥CE,∴∠CBG+∠BCF=90°,又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG,在△AEC和△CGB中,∴△AEC≌△CGB(ASA),∴AE=CG,(2)解:BE=CM.证明:∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC,又∵∠ACM=∠CBE=45°,在△BCE和△CAM中,,∴△BCE≌△CAM(AAS),∴BE=CM.。
2024-2025学年人教版八年级上册期中数学复习训练试卷(天津)(含答案)
2024-2025学年第一学期人教版八年级期中数学复习训练试卷(天津)试卷满分:120分 考试时间:100分钟一、选择题本大愿共12小题每小题3分共36分在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列图形中,不是轴对称图形的是( )A .B .C .D .2.下列长度的三条线段中,能组成三角形的是( )A .,,B .,,C .,,D .,,3.用直尺和圆规作一个角等于已知角,如图,能得出的依据是( )A .B .C .D .4 . 一个等腰三角形的两边长分别为6和12,则这个等腰三角形的周长为( )A .30B .24C .18D .24或305. 如图,是的两条中线,连接.若,则( )A .1B .1.5C .2.5D .56. 如图,在△ABC 中,根据尺规作图痕迹,下列说法不一定正确的是( )3cm 1cm 1cm 1cm 2cm 3cm2cm 3cm 4cm 4cm 4cm 9cmAOB AO B '''∠=∠SSS SAS ASA AASAD CE ,ABC V ED 10ABC S =△S =阴影A.AF=BF B.AE=ACC.∠DBF+∠DFB=90°D.∠BAF=∠EBC7.如图,Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=( )A.40°B.30°C.20°D.10°8.如图,AC=FD,BC=ED,要利用“SSS”来判定△ABC和△FED全等时,下面的4个条件中:①AE=FB;②AB=FE;③AE=BE;④BF=BE,可利用的是( )A.①或②B.②或③C.①或③D.①或④9.如图,在△ABC中,已知点D,E,F分别为边AC,BD,CE的中点,且阴影部分图形面积等于4平方厘米,则△ABC的面积为( )A .8平方厘米B .12平方厘米C .16平方厘米D .18平方厘米10 . 如图,中,,且,垂直平分,交于点,交于点,若周长为16,,则为( )A .5B .8C .9D .1011. 如图,在中, 垂直平分,点P 为直线上的任意一点,则的最小值是( )A .6B .7C .8D .1012 .如图,C 为线段上一动点(不与点A ,E 重合),在同侧分别作正三角形和正三角形,与交于点O ,与交于点P ,与交于点Q ,连接.以下五个结论:①;②;③;④;其中恒成立的结论有( )个ABC V AB AE =AD BC ⊥EF AC AC F BC E ABC V 6AC =DC ABC V 906810BAC AB AC BC EF ∠=︒===,,,,BC EF AP BP +AE AE ABC CDE AD BE AD BC BE CD PQ AD BE =PQ AE ∥EQ DP =60AOB ∠=︒A .1B .2C .3D .4二、境空题:本大题共6小题,每小题3分,共18分,请将答案直接填在答题纸中对应的横线上。
河西区2021-2022学年八年级上学期期中考试数学试题及答案
八年级数学一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)在平面直角坐标系中,点(5,2)关于x轴对称的点的坐标为()(A)(5,-2)(B)(-5,2)(C)(2,5)(D)(2,-5)(2)以下冬奥会图标中,是轴对称图形的是()(A)(B)(C)(D)(3)下面图形中具有稳定性的是()(A)(B)(C)(D)(4)下面四个图形中,线段BE能表示三角形ABC的高的是()(A)(B)(C)(D)(5)下列每组数分别是三根木棒的长度,能用它们首尾相连摆成一个三角形的是()(A )3cm ,4cm ,8cm (B )8cm ,7cm ,15cm (C )5cm ,5cm ,11cm (D )13cm ,12cm ,20cm(6)下列说法错误的是()(A )三边分别相等的两个三角形全等(B )三角分别相等的两个三角形全等(C )两边和它们的夹角分别相等的两个三角形全等(D )斜边和一条直角边分别相等的两个直角三角形全等(7)工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB 是一个任意角,在边OA ,OB 上分别取OM=ON ,移动角尺,使角尺两边相同的到刻度分别与点M ,N 重合,过角尺顶点C 作射线OC 由此作法便可得△MOC ≌△NOC ,其依据是()(A )SSS (B )SAS (C )ASA (D )AAS(8)△ABC 的两条角平分线AD ,BE 相交于点F ,下列结论一定正确的是()(A )BD =DC (B )BE ⊥AC (C )FA =FB(D )点F 到三角形三边的距离都相等(9)若一个多边形的每一个内角均为120°,则下列说法错误的是()(A )这个多边形的内角和为720°(B )这个多边形的边数为6(C )这个多边形是正多边形(D )这个多边形的外角和为360°第(7)题第(8)题(10)如图所示,三角形纸片ABC 中,∠A =65°,∠B =75°,将纸片的一角折叠,使点C 落在△ABC 内,若∠1=20°,则∠2的度数为()(A )25°(B )30°(C )40°(D )60°二、填空题:本大题共6小题,每小题3分,共18分.请将答案直接填在题中横线上.(11)下图中的x 的值为________.(12)图中与标号“1”的三角形成轴对称的三角形的个数为________.(13)如图,以正方形ABCD 的中心O 为原点建立平面直角坐标系,若点A 的坐标为(-2,-2),则点C 的坐标是________.(14)如图,已知∠C =∠D ,∠ABC =∠BAD ,AC 与BD 相交于点E ,请你写出图中一组相等的线段.(写出一组即可)(15)已知,如图,∠ACB =90°,AC=BC ,AD ⊥CE ,BE ⊥CE ,垂足分别是点D ,E .当AD =3,BE =1时,则DE 的长为________.A第(13)题ByCOx D第(10)题第(11)题第(12)题第(14)题第(15)题(16)如图,已知在四边形ABCD 中,90BCD ∠=︒,BD 平分ABC ∠,6AB =,9BC =,4CD =,则四边形ABCD 的面积是________.三、解答题:本大题共7小题,共52分.解答应写出文字说明、演算步骤或证明过程.(17)(本小题6分)在下图给出一个图案的左半部分,其中虚线是这个图案的对称轴.请你画出这个图案的右半部分,使它组成一个完整的图案.第(17)题第(16)题用一条长为18cm的细绳围成一个等腰三角形。
天津河西区八年级上期中模拟数学考试卷(解析版)(初二)期中考试.doc
天津河西区八年级上期中模拟数学考试卷(解析版)(初二)期中考试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】下列图案中既是中心对称图形,又是轴对称图形的是()A. B. C. D.【答案】A【解析】试题分析:根据轴对称图形与中心对称图形的概念求解.A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.考点:中心对称图形;轴对称图形.【题文】下列说法:①能够完全重合的图形叫做全等形;②全等三角形的对应边相等、对应角相等;③全等三角形的周长相等、面积相等;④所有的等边三角形都全等;⑤面积相等的三角形全等.其中正确的说法有()A.5个 B.4个 C.3个 D.2个【答案】C【解析】试题分析:理清全等形以及全等三角形的判定及性质,即可熟练求解此题.①中能够完全重合的图形叫做全等形,正确;②中全等三角形的对应边相等、对应角相等,正确;③全等三角形的周长相等、面积相等,也正确;④中所有的等边三角形角都是60°,但由于边不相等,所以不能说其全等,④错误;⑤中面积相等的三角形并不一定是全等三角形,⑤中说法错误;考点:全等三角形的判定与性质.【题文】在△ABC内一点P满足PA=PB=PC,则点P一定是△ABC()A.三条角平分线的交点B.三边垂直平分线的交点C.三条高的交点D.三条中线的交点【答案】B【解析】试题分析:由在△ABC内一点P满足PA=PB=PC,可判定点P在AB,BC,AC的垂直平分线上,则可求得答案.∵在△ABC内一点P满足PA=PB=PC,∴点P一定是△ABC三边垂直平分线的交点.考点:线段垂直平分线的性质.【题文】等腰三角形的一个角是80°,则它的顶角的度数是()A.30° B.80°或20° C.80°或50° D.20°【答案】B【解析】试题分析:分80°角是顶角与底角两种情况讨论求解.①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.考点:等腰三角形的性质.【题文】如图,把△ABC沿AD折叠,使点C落在AB上点E处,那么折痕AD是△ABC的()A.角平分线 B.中线 C.高线 D.角平分线【答案】A【解析】试题分析:根据折叠的性质即可得到结论.∵把△ABC沿AD折叠得到△ADE,∴△ACD ≌△AED,∴∠CAD=∠EAD,∴AD是△ABC的角平分线考点:翻折变换(折叠问题).【题文】如图,∠CBD、∠ADE为△ABD的两个外角,∠CBD=70°,∠ADE=149°,则∠A的度数是()A.28° B.31° C.39° D.42°【答案】C【解析】试题分析:根据平角的定义求出∠ABD,根据三角形的外角性质得出∠ADE=∠ABD+∠A,代入即可求出答案.∵∠ABD+∠CBD=180°,∠CBD=70°,∴∠ABD=110°,∵∠ADE=∠ABD+∠A,∠ADE=149°,∴∠A=39°.考点:(1)、三角形的外角性质;(2)、对顶角、邻补角.【题文】如图是由线段AB,CD,DF,BF,CA组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F的度数为()A.62° B.152° C.208° D.236°【答案】C【解析】试题分析:首先求出∠F+∠B=∠D+∠EGD,然后证明出∠C+∠A+∠F+∠B﹣∠D=180°,最后结合题干∠D=28°求出∠A+∠B+∠C+∠F的度数.∵如图可知∠BED=∠F+∠B,∠CGE=∠C+∠A,又∵∠BED=∠D+∠EGD,∴∠F+∠B=∠D+∠EGD,又∵∠CGE+∠EGD=180°,∴∠C+∠A+∠F+∠B﹣∠D=180°,又∵∠D=28°,∴∠A+∠B+∠C+∠F=180°+28°=208°,考点:三角形内角和定理.【题文】如图,∠x的两条边被一直线所截,用含α和β的式子表示∠x为()A.α﹣β B.β﹣α C.180°﹣α+β D.180°﹣α﹣β【答案】B【解析】试题分析:根据β为角x和α的对顶角所在的三角形的外角,再根据三角形一个外角等于和它不相邻的两个内角的和解答.如图,∵α=∠1,∴β=x+∠1整理得:x=β﹣α.考点:三角形的外角性质.【题文】如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.30° B.40° C.50° D.60°【答案】B【解析】试题分析:根据邻补角的定义求出∠AED,再根据全等三角形对应边相等可得AD=AE,然后利用等腰三角形的两底角相等列式计算即可得解.∵∠AEC=110°,∴∠AED=180°﹣∠AEC=180°﹣110°=70°,∵△ABD≌△ACE,∴AD=AE ,∴∠AED=∠ADE,∴∠DAE=180°﹣2×70°=180°﹣140°=40°.考点:全等三角形的性质.【题文】如图所示,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论:①AS=AR;②QP ∥AR;③△BPR≌△QPS中()A.全部正确 B.仅①和③正确 C.仅①正确 D.仅①和②正确【答案】D【解析】试题分析:易证RT△APR≌RT△APS,可得AS=AR,∠BAP=∠1,再根据AQ=PQ,可得∠1=∠2,即可求得QP∥AB,即可解题.如图,在RT△APR和RT△APS中,,∴RT△APR≌RT△APS(HL),∴∠AR=AS,①正确;∠BAP=∠1,∵AQ=PQ,∴∠1=∠2,∴∠BAP=∠2,∴QP∥AB,②正确,∵△BRP和△QSP中,只有一个条件PR=PS,再没有其余条件可以证明△BRP≌△QSP,故③错误.考点:(1)、全等三角形的判定与性质;(2)、等腰三角形的性质.【题文】如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则()A.∠1=∠EFD B.BE=EC C.BF=DF=CD D.FD∥BC【答案】D【解析】试题分析:根据题中的条件可证明出△ADF≌△ABF,由全等三角形的性质可的∠ADF=∠ABF,再由条件证明出∠ABF=∠C,由角的传递性可得∠ADF=∠C,根据平行线的判定定理可证出FD∥BC.在△AFD和△AFB中,∵AF=AF,∠1=∠2,AD=AB,∴△ADF≌△ABF,∴∠ADF=∠ABF.∵AB⊥BC,BE⊥AC,即:∠BAC+∠C=∠BAC+∠ABF=90°,∴∠ABF=∠C,即:∠ADF=∠ABF=∠C,∴FD∥BC考点:全等三角形的判定与性质.【题文】为了加快灾后重建的步伐,我市某镇要在三条公路围成的一块平地上修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址()A.仅有一处 B.有四处 C.有七处 D.有无数处【答案】A【解析】试题分析:利用角平分线性质定理:角的平分线上的点,到这个角的两边的距离相等.又要求砂石场建在三条公路围成的一块平地上,所以是三个内角平分线的交点一个,外角的平分线的交点三个.满足条件的点有一个,三角形内部:三个内角平分线交点一个.三角形外部,外角的角平分线三个(不合题意).考点:角平分线的性质.【题文】如图,△ABC中,∠A=40°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=度.【答案】75【解析】试题分析:首先根据三角形的内角和定理求得∠ACB的度数,以及∠BCD的度数,根据角平分线的定义求得∠BCE的度数,则∠ECD可以求解,然后在△CDF中,利用内角和定理即可求得∠CDF的度数.∵∠A=40°,∠B=70°,∴∠ACB=180°﹣∠A﹣∠B=70°.∵CE平分∠ACB,∴∠ACE=∠ACB=35°.∵CD⊥AB于D,∴∠CDA=90°,∠ACD=180°﹣∠A﹣∠CDA=50°.∴∠ECD=∠ACD﹣∠ACE=15°.∵DF⊥CE,∴∠CFD=90°,∴∠CDF=180°﹣∠CFD﹣∠DCF=75°.考点:三角形内角和定理.【题文】如图,若△ABC≌△ADE,且∠B=65°,则∠BAD=.【答案】50°【解析】试题分析:由全等三角形的性质可知AB=AD,再根据等腰三角形的性质和三角形内角和定理即可得到答案.∵△ABC≌△ADE,∴AB=AD,∴∠B=∠ADB,∵∠B=65°,∴∠BAD=180°﹣2×65°=50°考点:全等三角形的性质.【题文】直角三角形的两个锐角的平分线所交成的角的度数是.【答案】45°或135°【解析】试题分析:根据直角三角形的两个锐角互余、角平分线的定义求较小的夹角,由邻补角定义即可求得较大夹角的度数.直角三角形的两个锐角的平分线所交成的锐角是×90°=45°,则直角三角形的两个锐角的平分线所交成的钝角是180°﹣45°=135°.考点:三角形内角和定理.【题文】如图:(1)在△ABC中,BC边上的高是;(2)在△AEC中,AE边上的高是;(3)在△FEC中,EC边上的高是;(4)若AB=CD=2cm,AE=3cm,则S△ACE=,CE=,BE=.【答案】AB,CD,EF,3cm2,3cm, cm.【解析】试题分析:根据三角形高的定义和三角形的面积公式即可得到结论.如图:(1)、在△ABC中,BC边上的高是AB; (2)、在△AEC中,AE边上的高是CD;(3)、在△FEC中,EC边上的高是EF; (4)、∵CD⊥AE,∴S△ACE=AE•CD=3×2=3cm2,在△ABE与△CDE中,,∴△ABE≌△CDE,∴CE=AE=3,∴BE==,考点:(1)、三角形的面积;(2)、三角形的角平分线、中线和高.【题文】如图,OP平分∠AOB,PD⊥OA于点D,点Q是射线OB上一个动点,若PD=2,则PQ的取值范围为.【答案】PQ≥2【解析】试题分析:根据垂线段最短可得PQ⊥OB时,PQ最短,再根据角平分线上的点到角的两边距离相等可得PQ=PD.由垂线段最短可得PQ⊥OB时,PQ最短,∵OP平分∠AOB,PD⊥OA,∴PQ=PD=2,即线段PQ的最小值是2.∴PQ的取值范围为PQ≥2考点:角平分线的性质.【题文】如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为64和42,则△EDF的面积为.【答案】9【解析】试题分析:过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,再利用“HL”证明Rt△ADF和Rt△ADH全等,Rt△DEF和Rt△DGH全等,然后根据全等三角形的面积相等列方程求解即可.如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△ADF和Rt△ADH中,,∴Rt△ADF≌Rt△ADH(HL),∴SRt△ADF=SRt△ADH,在Rt△DEF和Rt△DGH中,,∴Rt△DEF≌Rt△DGH(HL),∴SRt△DEF=SRt△DGH,∵△ADG和△AED的面积分别为64和42,∴42+SRt△DEF=64﹣SRt△DGH,∴SRt△DEF=9.考点:角平分线的性质.【题文】如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是.【答案】(4,﹣1)或(﹣1,3)或(﹣1,﹣1).【解析】试题分析:因为△ABD与△ABC有一条公共边AB,故本题应从点D在AB的上边、点D在AB的下边两种情况入手进行讨论,计算即可得出答案.△ABD与△ABC有一条公共边AB,当点D在AB的下边时,点D有两种情况:①坐标是(4,﹣1);②坐标为(﹣1,﹣1);当点D在AB的上边时,坐标为(﹣1,3);点D的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).考点:(1)、坐标与图形性质;(2)、全等三角形的性质.【题文】如图,已知AB=A1B,A1C=A1A2,A2D=A2A3,A3E=A3A4,…,以此类推,若∠B=20°,则∠A=.【答案】【解析】试题分析:先根据等腰三角形的性质求出∠BA1A的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律即可得出∠An的度数.∵在△ABA1中,∠B=20°,AB=A1B,∴∠BA1A==80°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1==40°;同理可得,∠DA3A2=20°,∠EA4A3=10°,∴∠An=.考点:等腰三角形的性质.【题文】如图,∠AOB=30°,OA表示草地边,OB表示河边,点P表示家且在∠AOB内.某人要从家里出发先到草地边给马喂草,然后到河边喂水,最后回到家里.(1)请用尺规在图上画出此人行走的最短路线图(保留作图痕迹,不写作法和理由).(2)若OP=30米,求此人行走的最短路线的长度.【答案】(1)、答案见解析;(2)、30m.【解析】试题分析:(1)、利用轴对称最短路线求法得出P点关于OA,OB的对称点,进而得出行走路线;(2)、利用等边三角形的判定方法以及其性质得出此人行走的最短路线长为P′P″进而得出答案.试题解析:(1)、如图所示:此人行走的最短路线为:PC→CD→DP;(2)、连接OP′,OP″,由题意可得:OP′=OP″,∠P′OP″=60°,则△P′OP″是等边三角形,∵OP=30米,∴PC+CD+DP=P′P″=30(m),考点:(1)、作图—应用与设计作图;(2)、轴对称-最短路线问题.【题文】如图,∠ABC=38°,∠ACB=100°,AD平分∠BAC,AE是BC边上的高,求∠DAE的度数.【答案】31°【解析】试题分析:先根据三角形内角和定理求出∠BAC的度数,由角平分线的定义得出∠BAD的度数,根据三角形外角的性质求出∠ADE的度数,由两角互补的性质即可得出结论.试题解析:∵∠ABC=38°,∠ACB=100°(己知)∴∠BAC=180°﹣38°﹣100°=42°(三角形内角和180°).又∵AD平分∠BAC(己知),∴∠BAD=21°,∴∠ADE=∠ABC+∠BAD=59°(三角形的外角性质).又∵AE是BC边上的高,即∠E=90°,∴∠DAE=90°﹣59°=31°.考点:(1)、三角形内角和定理;(2)、三角形的外角性质.【题文】已知:如图,在四边形ABCD中,AD∥BC,∠BDC=∠BCD,点E是线段BD上一点,且BE=AD.证明:△ADB≌△EBC.【答案】证明过程见解析【解析】试题分析:利用平行线的性质得出∠ADB=∠CBE,进而利用等腰三角形的性质得出BD=BC,再利用SAS得出△ADB≌△EBC.试题解析:∵AD∥BC,∴∠ADB=∠CBE,∵∠BDC=∠BCD,∴BD=BC ,在△ABD和△ECB中,,∴△ABD≌△ECB(SAS).考点:全等三角形的判定.【题文】如图,△ABC中,AD平分∠CAB,BD⊥AD,DE∥AC.求证:AE=BE.【答案】证明过程见解析【解析】试题分析:由AD平分∠CAB,DE∥AC可证得∠DAE=∠ADE,得到AE=DE,再结合BD⊥AD,可得∠EDB=∠EBD ,得到ED=EB,从而可得出结论.试题解析:∵DE∥AC,∴∠CAD=∠ADE,∵AD平分∠CAB,∴∠CAD=∠EAD,∴∠EAD=∠ADE,∴AE=ED,∵BD⊥AD,∴∠ADE+∠EDB=90°,∠DAB+∠ABD=90°,又∠ADE=∠DAB,∴∠EDB=∠ABD,∴DE=BE,∴AE=BE.考点:等腰三角形的判定与性质.【题文】如图,OC是∠AOB平分线,点P为OC上一点,若∠PDO+∠PEO=180°,试判断PD和PE大小关系,并说明理由.【答案】PD=PE;证明过程见解析【解析】试题分析:先过点P作PM⊥OA,PN⊥OE,证明△PMD≌△PNE,根据全等三角形的性质即可解决问题.试题解析:PD=PE.理由:如图,过点P作PM⊥OA,PN⊥OE;∵OC平分∠AOB,∴PM=PN;∵∠OEP+∠ODP=180°,∠ODP+∠PDM=180°,∴∠OEP=∠PDM,在△PMD与△PNE中,,∴△PMD≌△PNE(AAS),∴PD=PE.考点:全等三角形的判定与性质.【题文】已知△ABC中,∠A=50°.(1)如图①,∠ABC、∠ACB的角平分线交于点O,则∠BOC=°.(2)如图②,∠ABC、∠ACB的三等分线分别对应交于O1、O2,则∠BO2C=°.(3)如图③,∠ABC、∠ACB的n等分线分别对应交于O1、O2…On﹣1(内部有n﹣1个点),求∠BOn﹣1C (用n的代数式表示).(4)如图③,已知∠ABC、∠ACB的n等分线分别对应交于O1、O2…On﹣1,若∠BOn﹣1C=60°,求n的值.【答案】(1)、115°;(2)、;(3)、﹣×130°;(4)、n=13.【解析】试题分析:(1)、△ABC中,已知∠A即可得到∠ABC与∠ACB的和,而BO、CO是∠ABC,∠ACB的两条角平分线,即可求得∠OBC与∠OCB的度数,根据三角形的内角和定理即可求解;(2)、先根据三角形内角和定理求得∠ABC+∠ACB,再根据三等分线的定义求得∠O2BC+∠O2CB,即可求出∠BO2C;(3)、先根据三角形内角和定理求得∠ABC+∠ACB,再根据n等分线的定义求得∠On﹣1BC+∠On﹣1CB,即可求出∠BOn﹣1C.(4)、依据(3)的结论即可求出n的值.试题解析:(1)、∵△ABC中,∠ABC+∠ACB=180°﹣∠A=180°﹣50°=130°,BO、CO是∠ABC,∠ACB的两条角平分线.∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB )=65°,∴△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=115° (2)、∵点O2是∠ABC与∠ACB的三等分线的交点,∴∠O2BC+∠O2CB=(∠ABC+∠ACB)=×130°=()°,∴∠BO2C=180°﹣()°=()°.(3)、∵点On﹣1是∠ABC与∠ACB的n等分线的交点,∴∠On﹣1BC+∠On﹣1CB=(∠ABC+∠ACB)=×130°,∴∠BOn﹣1C=180°﹣×130°;(4)、∵∠BOn﹣1C=60°,∴180°﹣×130°=60°,解得n=13.考点:三角形内角和定理.【题文】已知△ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图,若E、F分别是AB、AC上的点,且BE=AF.求证:△DEF为等腰直角三角形;(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么△DEF是否仍为等腰直角三角形?证明你的结论.【答案】(1)证明过程见解析;(2)证明过程见解析【解析】试题分析:(1)、题要通过构建全等三角形来求解.连接AD,可通过证△ADF和△BDE全等来求本题的结论.(2)、与(1)题的思路和解法一样.试题解析:(1)、连接AD∵AB=AC,∠A=90°,D为BC中点∴AD==BD=CD 且AD平分∠BAC∴∠BAD=∠CAD=45°在△BDE和△ADF中,,∴△BDE≌△ADF(SAS)∴DE=DF,∠BDE=∠ADF∵∠BDE+∠ADE=90°∴∠ADF+∠ADE=90°即:∠EDF=90°∴△EDF为等腰直角三角形.(2)、仍为等腰直角三角形.理由:∵△AFD≌△BED∴DF=DE,∠ADF=∠BDE ∵∠ADF+∠FDB=90°∴∠BDE+∠FDB=90°即:∠EDF=90°∴△EDF为等腰直角三角形.考点:(1)、等腰直角三角形;(2)、直角三角形斜边上的中线.【题文】如图,△ABC和△ADE都是等边三角形,BD与CE相交于O.(1)求证:BD=CE;(2)OA平分∠BOE吗?说明理由.【答案】(1)、证明过程见解析;(2)、证明过程见解析【解析】试题分析:(1)、根据等边三角形的性质得到AB=AC,AD=AE,∠BAC=∠DAE=60°,则易得∠BAD=∠CAE,根据“SAS”有△BAD≌△CAE,利用全等三角形的性质即可得到结论;(2)、作AF⊥BD,AG⊥CE,垂足分别是F、G,由△BAD≌△CAE,根据全等三角形的性质有AF=AG,再根据角平分线的判定定理即可得到OA平分∠BOE.试题解析:(1)、∵△ABC和△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE;(2)、OA平分∠BOE.理由如下:作AF⊥BD,AG⊥CE,垂足分别是F、G,如图,∵AF、AG恰好是两个全等三角形△BAD与△CAE对应边上的高,∴AF=AG,∴OA平分∠BOE.考点:(1)、等边三角形的性质;(2)、全等三角形的判定与性质;(3)、角平分线的性质.。
2020-2021学年天津市河西区八年级(上)期中数学试卷 (解析版)
2020-2021学年天津市河西区八年级第一学期期中数学试卷一、选择题(共10小题).1.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.2.(3分)如图各图中,正确画出AC边上的高的是()A.B.C.D.3.(3分)由下列长度组成的各组线段中,能组成三角形的是()A.1cm,3cm,3cm B.2cm,5cm,7cmC.8cm,4cm,2cm D.14cm,7cm,7cm4.(3分)如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN 的是()A.∠M=∠N B.AM∥CN C.AB=CD D.AM=CN 5.(3分)等腰三角形的两边长分别为4cm和8cm,则它的周长为()A.16cm B.17cm C.20cm D.16cm或20cm 6.(3分)如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA7.(3分)下列说法中,错误的是()A.三角形中至少有一个内角不小于60°B.三角形的角平分线、中线、高均在三角形的内部C.三角形两边之差小于第三边D.多边形的外角和等于360°8.(3分)如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.99.(3分)如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三边的中垂线的交点10.(3分)点(1,2m﹣1)关于直线x=m的对称点的坐标是()A.(2m﹣1,1)B.(﹣1,2m﹣1)C.(﹣1,1﹣2m)D.(2m﹣1,2m﹣1)二、填空题(共6小题).11.(3分)木工师傅在做完门框后为防止变形,常如图所示那样钉上两条斜拉的木板条,这样做的数学依据是.12.(3分)如图,AB=AC,要使△ABE≌△ACD,依据ASA,应添加的一个条件是.13.(3分)△ABC中,∠A:∠B:∠C=1:3:5,则∠C=.14.(3分)在△ABC中,AC的垂直平分线交AC于E,交BC于D,△ABC的周长是17cm,AC=5cm,△ABD的周长是cm.15.(3分)如图,在等边△ABC中,BD=CE,AD与BE相交于点F,则∠AFE=.16.(3分)如图,在△ABC中,∠A=64°,∠ABC与∠ACD的平分线交于点A1,则∠A1=;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠A n﹣1BC与∠A nCD的平分线相交于点A n,要使∠A n的度数为整数,则n的值最大为.﹣1三、解答题(本大题共7小题,共52分,解答应写出文字说明、演算步骤或推理过程)17.(6分)已知:∠CAB.求作:∠CAB的角平分线AD.(尺规作图,保留作图痕迹,不写作法)18.(6分)已知:如图,已知△ABC中,其中A(0,﹣2),B(2,﹣4),C(4,﹣1).(1)画出与△ABC关于y轴对称的图形△A1B1C1;(2)写出△A1B1C1各顶点坐标;(3)求△ABC的面积.19.(6分)如图所示,∠BAD=∠CAD,AB=AC.求证:BD=CD.20.(8分)已知AE、AD分别是△ABC的高和角平分线,且∠B=46°,∠C=60°,求∠DAE的度数.21.(8分)如图,已知平面直角坐标系中,△AOB是等腰直角三角形,点A坐标为(2,3),求点B的坐标.22.(8分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.23.(10分)如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC,△EFP的边FP 也在直线l上,边EF与边AC重合,且EF=FP.(1)在图1中,请你写出AB与AP所满足的数量关系和位置关系并说明理由;(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想;(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.参考答案一、选择题《(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,将答案填入下面的表格中)1.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,本选项不符合题意;B、是轴对称图形,本选项符合题意;C、不是轴对称图形,本选项不符合题意;D、不是轴对称图形,本选项不符合题意.故选:B.2.(3分)如图各图中,正确画出AC边上的高的是()A.B.C.D.解:根据三角形高线的定义,只有D选项中的BE是边AC上的高.故选:D.3.(3分)由下列长度组成的各组线段中,能组成三角形的是()A.1cm,3cm,3cm B.2cm,5cm,7cmC.8cm,4cm,2cm D.14cm,7cm,7cm解:A、1+3>3,能组成三角形,故此选项符合题意;B、2+5=7,不能组成三角形,故此选项不符合题意;C、2+4<8,不能组成三角形,故此选项不符合题意;D、7+7=14,不能组成三角形,故此选项不符合题意;故选:A.4.(3分)如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN 的是()A.∠M=∠N B.AM∥CN C.AB=CD D.AM=CN解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.C、AB=CD,符合SAS,能判定△ABM≌△CDN,故B选项不符合题意;D、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故C选项符合题意;故选:D.5.(3分)等腰三角形的两边长分别为4cm和8cm,则它的周长为()A.16cm B.17cm C.20cm D.16cm或20cm 解:等腰三角形的两边长分别为4cm和8cm,当腰长是4cm时,则三角形的三边是4cm,4cm,8cm,4cm+4cm=8cm不满足三角形的三边关系;当腰长是8cm时,三角形的三边是8cm,8cm,4cm,三角形的周长是20cm.故选:C.6.(3分)如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:D.7.(3分)下列说法中,错误的是()A.三角形中至少有一个内角不小于60°B.三角形的角平分线、中线、高均在三角形的内部C.三角形两边之差小于第三边D.多边形的外角和等于360°解:三角形中至少有一个内角不小于60°,故A选项说法正确;三角形的角平分线、中线、均在三角形的内部,锐角三角形的高再三角形的内部,钝角三角形的高在三角形的外部,故B选项说法错误;三角形的任意两边之差小于第三边,故C选项说法正确;多边形的外角和等于360°,故D选项说法正确,故选:B.8.(3分)如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.9解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.9.(3分)如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三边的中垂线的交点解:∵凉亭到草坪三条边的距离相等,∴凉亭选择△ABC三条角平分线的交点.故选:B.10.(3分)点(1,2m﹣1)关于直线x=m的对称点的坐标是()A.(2m﹣1,1)B.(﹣1,2m﹣1)C.(﹣1,1﹣2m)D.(2m﹣1,2m﹣1)解:点(1,2m﹣1)关于直线x=m的对称点的坐标为(2m﹣1,2m﹣1),故选:D.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)木工师傅在做完门框后为防止变形,常如图所示那样钉上两条斜拉的木板条,这样做的数学依据是三角形具有稳定性.解:木工师傅在做完门框后为防止变形,常如图所示那样钉上两条斜拉的木板条,这样做的数学依据是三角形具有稳定性,故答案为:三角形具有稳定性.12.(3分)如图,AB=AC,要使△ABE≌△ACD,依据ASA,应添加的一个条件是∠C =∠B.解:添加∠C=∠B,在△ACD和△ABE中,,∴△ABE≌△ACD(ASA).故答案为:∠C=∠B.13.(3分)△ABC中,∠A:∠B:∠C=1:3:5,则∠C=100°.解:设∠C=x,∵∠A:∠B:∠C=1:3:5,∴∠B=3x,∠C=5x,∵∠A+∠B+∠C=180°,∴x+3x+5x=180°,解得x=20°,∴∠C=5x=5×20°=100°.故答案为:100°.14.(3分)在△ABC中,AC的垂直平分线交AC于E,交BC于D,△ABC的周长是17cm,AC=5cm,△ABD的周长是12cm.解:∵DE是AC的垂直平分线,∴AD=CD,∵△ABC的周长是17cm,AC=5cm,∴AB+BC=17﹣5=112(cm),∴△ABD的周长为:AB+BD+AD=AB+BD+CD=AB+BC=12cm.故答案为:12.15.(3分)如图,在等边△ABC中,BD=CE,AD与BE相交于点F,则∠AFE=60°.解:∵△ABC是等边三角形,∴∠ABD=∠C,AB=BC,在△ABD和△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠ABF+∠BAF=∠AFE,∴∠ABF+∠CBE=∠AFE=60°.故答案为:60°.16.(3分)如图,在△ABC中,∠A=64°,∠ABC与∠ACD的平分线交于点A1,则∠A1=32°;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠A n﹣1BC与∠A nCD的平分线相交于点A n,要使∠A n的度数为整数,则n的值最大为6.﹣1解:由三角形的外角性质得,∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∵∠ABC的平分线与∠ACD的平分线交于点A1,∴∠A1BC=∠ABC,∠A1CD=∠ACD,∴∠A1+∠A1BC=(∠A+∠ABC)=∠A+∠A1BC,∴∠A1=∠A=64°=32°;∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1,∴∠A1=∠A,同理可得∠A1=2∠A2,∴∠A2=∠A,∴∠A=2n∠A n,∴∠A n=()n∠A=,∵∠A n的度数为整数,∵n=6.故答案为:32°,6.三、解答题(本大题共7小题,共52分,解答应写出文字说明、演算步骤或推理过程)17.(6分)已知:∠CAB.求作:∠CAB的角平分线AD.(尺规作图,保留作图痕迹,不写作法)解:如图所示:AD即为所求.18.(6分)已知:如图,已知△ABC中,其中A(0,﹣2),B(2,﹣4),C(4,﹣1).(1)画出与△ABC关于y轴对称的图形△A1B1C1;(2)写出△A1B1C1各顶点坐标;(3)求△ABC的面积.解:(1)所作图形如图所示;(2)A1(0,﹣2),B1(﹣2,﹣4),C1(﹣4,﹣1);(3)S△ABC=3×4﹣×2×3﹣×4×1﹣×2×2=12﹣3﹣2﹣2=5.19.(6分)如图所示,∠BAD=∠CAD,AB=AC.求证:BD=CD.【解答】证明:在△ABD和△ACD中,,∴△ABD≌△ACD(SAS),∴BD=CD.20.(8分)已知AE、AD分别是△ABC的高和角平分线,且∠B=46°,∠C=60°,求∠DAE的度数.解:在△ABC中,∠B=46°,∠C=60°∴∠BAC=180°﹣∠B﹣∠C=180°﹣46°﹣60°=74°∵AD是的角平分线∴∵AE是△ABC的高∴∠AEC=90°∴在△AEC中,∠EAC=180°﹣∠AEC﹣∠C=180°﹣90°﹣60°=30°∴∠DAE=∠DAC﹣∠EAC=37°﹣30°=7°.21.(8分)如图,已知平面直角坐标系中,△AOB是等腰直角三角形,点A坐标为(2,3),求点B的坐标.解:过A作AC⊥y轴于C,过B作BD⊥y轴于D,如图所示:则∠ACO=∠BDO=90°,∴∠CAO+∠AOC=90°,∵点A坐标为(2,3),∴AC=2,OC=3,∵△AOB是等腰直角三角形,∴OA=OB,∠AOB=90°,∴∠AOC+∠BOD=90°,∴∠CAO=∠BOD,在△ACO和△ODB中,,∴△ACO≌△ODB(AAS),∴AC=OD=2,OC=BD=3,∴点B的坐标为(3,﹣2).22.(8分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.解:CF⊥DE,CF平分DE,理由是:∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中,∴△ACD≌△BEC(SAS),∴DC=CE,∵CF平分∠DCE,∴CF⊥DE.23.(10分)如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC,△EFP的边FP 也在直线l上,边EF与边AC重合,且EF=FP.(1)在图1中,请你写出AB与AP所满足的数量关系和位置关系并说明理由;(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想;(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.解:(1)AP=AB,AP⊥AB,∵AC⊥BC,且AC=BC,边EF与边AC重合,且EF=FP.∴△ABC与△EFP是全等的等腰直角三角形,∴∠BAC=∠CAP=45°,AB=AP,∴∠BAP=90°,∴AP=AB,AP⊥AB;(2)BQ与AP所满足的数量关系是AP=BQ,位置关系是AP⊥BQ,理由如下:延长BQ交AP于G,由(1)知,∠EPF=45°,∠ACP=90°,∴∠PQC=45°=∠QPC,∴CQ=CP,在△BCQ和△ACP中,,∴△BCQ≌△ACP(SAS),∴AP=BQ,∠CBQ=∠PAC,∵∠ACB=90°,∴∠CBQ+∠BQC=90°,∵∠CQB=∠AQG,∴∠AQG+∠PAC=90°,∴∠AGQ=180°﹣90°=90°,∴AP⊥BQ;(3)成立,理由如下:如图,∵∠EPF=45°,∴∠CPQ=45°,又∵AC⊥BC,∴∠CQP=∠CPQ=45°,∴CQ=CP,在Rt△BCQ和Rt△ACP中,,∴Rt△BCQ≌Rt△ACP(SAS),∴BQ=AP,如图3,延长QB交AP于点N,则∠PBN=∠CBQ,∵Rt△BCQ≌Rt△ACP,∴∠BQC=∠APC,在Rt△BCQ中,∠BQC+∠CBQ=90°,∴∠APC+∠PBN=90°,∴∠PNB=90°,∴QB⊥AP.。
天津初二初中数学期中考试带答案解析
天津初二初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、单选题1.下列长度的三根小木棒能构成三角形的是( )A.2 cm,3 cm,5 cm B.7cm,4 cm,2 cmC.3 cm,4 cm,8 cm D.3 cm,3 cm,4 cm2.下列图形具有稳定性的是A.正五边形B.三角形C.梯形D.正方形3.六边形的内角和为()A.360°B.540°C.720°D.180°4.平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标为( )A.(-2,-3)B.(2,-3)C.(-3,2)D.(3,-2)5.下列命题中正确个数为()①全等三角形对应边相等;②三个角对应相等的两个三角形全等③三边对应相等的两个三角形全等;④有两边对应相等的两个三角形全等.A.4个B.3个C.2个D.1个6.如下图,点O是∠ABC和∠ACB的平分线的交点,∠A=80°,则∠BOC等于()A.120°B.130°C.135°D.无法确定二、选择题1.两个直角三角形全等的条件是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条边对应相等2.下列图形中对称轴最多的是()A.等腰三角形B.正方形C.圆D.线段3.已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论:①A、B关于x轴对称;②A、B关于y 轴对称;③A、B之间的距离为4,其中正确的有()A.1个 B.2个 C.3个 D.0个4.如图:∠EAF=15°,AB=BC=CD=DE=EF,则∠DEF等于()A.90°B.75°C.70°D.60°5.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN6.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16B.18C.26D.287.如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,则下列结论中错误的是()A.PC=PD B.OC=OD C.∠CPO=∠DPO D.OC=PC8.如图所示,在△ABC中,AC⊥BC,AE为∠BAC的平分线,DE⊥AB,AB=7cm,AC=3cm,则BD等于()A. 1cm B. 2cm C. 3cm D. 4cm9.如图所示,是四边形ABCD的对称轴,AD∥BC,现给出下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO="OC" 其中正确的结论有().A.1个B.2个C.3个D.4个三、填空题1.一个多边形的内角和等于外角和的2倍,则这个多边形的边数是___________。
八年级上册天津数学期中精选试卷测试卷(含答案解析)
(1)结论:PM=PN,PM⊥PN.理由如下:
如图1中,连接OP.
∵A、B坐标为(6,0)、(0,6),
∴OB=OA=6,∠AOB=90°,
∵P为AB的中点,
∴OP= AB=PB=PA,OP⊥AB,∠PON=∠PAM=45°,
∴∠OPA=90°,
在△PON和△PAM中,
,
∴△PON≌△PAM(SAS),
(2)如图2,若 为线段 上异于 、 的任意一点,过 点作 ,交 、 分别于 、 两点, 为 上一点,且 ,试判断线段 与 的数量关系,并说明理由.
【答案】(1)PM=PN,PM⊥PN,理由见解析;(2)OD=AE,理由见解析
【解析】
【分析】
(1)连接OP.只要证明△PON≌△PAM即可解决问题;
(2)作AG⊥x轴交OP的延长线于G.由△DBO≌△GOA,推出OD=AG,∠BDO=∠G,再证明△PAE≌△PAG即可解决问题;
(2)作DF∥BC交AC的延长线于F,同( 1)证出△DBE≌△CFD,得出EB=DF,即可得出结论.
试题解析:(1)证明:如图,作DF∥BC交AC于F,
则△ADF为等边三角形
∴AD=DF,又∵∠DEC=∠DCB,
∠DEC+∠EDB=60°,
∠DCB+∠DCF=60° ,
∴ ∠EDB=∠DCA ,DE=CD,
在△DEB和△CDF中,
∴△DEB≌△CDF,
∴BD=DF,
∴BE=AD .
(2).EB=AD成立;
理由如下:作DF∥BC交AC的延长线于F,如图所示:
同(1)得:AD=DF,∠FDC=∠ECD,∠FDC=∠DEC,ED=CD,
又∵∠DBE=∠DFC=60°,
天津市河西区2023-2024学年八年级上学期期中数学试题
天津市河西区2023-2024学年八年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形中,可以看作是轴对称图形的是()A .B .C .D .2.下列图形中具有稳定性的是()A .B .C .D .3.以下列长度的各组线段为边,能组成三角形的是()A .3cm ,4cm ,9cmB .8cm ,7cm ,15cmC .13cm ,12cm ,20cmD .5cm ,5cm ,11cm4.n 边形的每个外角都为45︒,则边数n 为()A .6B .7C .8D .95.如图,在ABC 中,DE 是AC 的垂直平分线,3cm AE =,ABD △的周长为13cm ,则ABC 的周长为()A .16cmB .13cmC .19cmD .10cm6.等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为()A .150°B .80°C .50°或80°D .70°7.用直尺和圆规作一个角等于已知角,如图,能得出A O B AOB '''∠=∠的依据是()A .AC BD =B D 9.如图,在ABC 中,根据尺规作图痕迹,下列说法不一定正确的是(A .AF BF=C .DBF DFB ∠+∠=10.点(),1m m +关于直线A .()3,1m m ++B 二、填空题11.点()12A -,关于y 轴的对称点的坐标为12.若一个多边形内角和等于13.如图,△EFG ≌△NMH 14.如图,△ABC 中,∠C AB 的距离是.16.如图为6个边长相等的正方形的组合图形,则三、作图题17.如图,点A 、B 在直线l 同侧,请你在直线l 上画出一点P ,使得PA PB +的值最小,画出图形并保留作图痕迹.18.如图,已知三点()2,3A -,()3,3B -,()3,1C -,ABC 与111A B C △关于x 轴对称,其中1A ,1B ,1C 分别是点A ,B ,C 的对应点.画出111A B C △,并写出三个顶点1A ,1B ,1C 的坐标.四、解答题19.如图,已知点B,C,F,E在同一直线上,∠1=∠2,BF=CE,AB∥DE.求证:△ABC≌△DEF.∠BAD=55︒,∠B=50︒,求∠DEC的度数.21.如图,已知△ABC和△BDE都是等边三角形,且A,E,D三点在一直线上.请你说明DA﹣DB=DC.22.已知:如图,在△ABC中,∠C=90°,AC=BC,BD平分∠CBA,DE⊥AB于点E.求证:(1)△DEB≌△DCB;(2)AD+DE=BE.23.如图1,点A、D在y轴正半轴上,点B、C分别在x轴上,CD平分∠ACB与y轴交于D点,∠CAO=90°﹣∠BDO.(1)求证:AC=BC;(2)如图2,点C的坐标为(4,0),点E为AC上一点,且∠DEA=∠DBO,求BC+EC 的长.。
天津初二初中数学期中考试带答案解析
天津初二初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的是()A.AC=BD,AB∥CD,AB=CDB.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BDD.AO=CO,BO=DO,AB=BC2.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是( )A.3、4、5B.6、8、10C.、2、D.5、12、133.等边三角形的边长为2,则该三角形的面积为()A.B.C.D.3二、解答题1.如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.(1)求DC的长;(2)求AB的长.2.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.3.计算:(1);(2)4.已知x=,y=,求的值.5.如图,在▱ABCD中,已知点E、F分别在边BC和AD上,且BE=DF.求证:AE=CF.三、单选题1.下列计算错误的是()A.B.C.D.2.如图,将一个边长为4和8的长方形纸片ABCD折叠,使C点与A点重合,则折痕EF的长是()A.B.C.D.3.下列二次根式中属于最简二次根式的是()A.B.C.D.4.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>55.若与|x-y-3|互为相反数,则x+y的值为( )A.3B.9C.12D.276.已知a、b、c是三角形的三边长,如果满足(a-5)2+|b-12|+c2-26c+169=0,则三角形的形状是()A:底与边不相等的等腰三角形 B:等边三角形C:钝角三角形 D:直角三角形7.已知平行四边形ABCD中,∠B=4∠A,则∠C=()A.18°B.36°C.72°D.144°8.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是()A.20B.25C.20D.25四、填空题1.代数式有意义的条件是_______.2.已知n是正整数,是整数,则n的最小值是__.3.的整数部分是x,小数部分是y,则y(x+)的值为________ .4.如果直角三角形的三边长为10、6、x,则最短边上的高为_________.5.如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1________S 2(填“>”或“<”或“=”).6.如图,是由两个正方形组成的长方形花坛ABCD ,小明从顶点A 沿着花坛间小路直到走到长边中点O ,再从中点O 走到正方形OCDF 的中心O 1,再从中心O 1走到正方形O 1GFH 的中心O 2,又从中心O 2走到正方形O 2IHJ 的中心O 3,再从中心O 3到正方形O 3KJP 的中心O 4,一共走了31m ,则长方形花坛ABCD 的周长是_______.天津初二初中数学期中考试答案及解析一、选择题1.在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )A .AC=BD ,AB ∥CD ,AB=CDB .AD ∥BC ,∠A=∠CC .AO=BO=CO=DO ,AC ⊥BDD .AO=CO ,BO=DO ,AB=BC【答案】C .【解析】A .不能,只能判定为矩形;B .不能,只能判定为平行四边形;C .能;D .不能,只能判定为菱形.故选C .【考点】正方形的判定.2.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是( )A .3、4、5B .6、8、10C .、2、D .5、12、13【答案】C【解析】将选项逐一验证,,因此不能构成直角三角形的是C .3.等边三角形的边长为2,则该三角形的面积为( ) A . B . C . D .3【答案】C .【解析】 如图,作CD ⊥AB ,则CD 是等边△ABC 底边AB 上的高,根据等腰三角形的三线合一,可得AD=1,所以,在直角△ADC 中,利用勾股定理,可求出CD=,代入面积计算公式,∴S=×2×=;故选C.△ABC【考点】等边三角形的性质.二、解答题1.如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.(1)求DC的长;(2)求AB的长.【答案】(1)12;(2)25.【解析】(1)由题意可知三角形CDB是直角三角形,利用已知数据和勾股定理直接可求出DC的长;(2)由(1)的数据和勾股定理求出AD的长,进而求出AB的长.试题解析:(1)∵CD⊥AB于D,且BC=15,BD=9,AC=20∴∠CDA=∠CDB=90°在Rt△CDB中,CD2+BD2=CB2,∴CD2+92=152∴CD=12;.(2)在Rt△CDA中,CD2+AD2=AC2∴122+AD2=202∴AD="16" .∴AB=AD+BD=16+9=25.【考点】勾股定理.2.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.【答案】(1)证明见解析;(2)当∠BAC=90°时,矩形AEBD是正方形.理由见解析.【解析】(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.3.计算:(1);(2)【答案】(1)原式=;(2)原式=﹣.【解析】本题考查的是二次根式的混合运算.试题解析:(1)原式=4+3﹣2+4=7;(2)原式=(8)=﹣.4.已知x=,y=,求的值.【答案】4【解析】本题先把x化简,在把代数式因式分解,然后整体代入即可.试题解析:∵x==2﹣,y=,∴x2y+xy2=xy(x+y)=(2﹣)(2+)×4="4" .5.如图,在▱ABCD中,已知点E、F分别在边BC和AD上,且BE=DF.求证:AE=CF.【答案】证明见解析【解析】本题利用平行四边形的性质得出AD=BC,AD∥BC,再结合已知条件,判断出四边形AECF是平行四边形,得出结论即可.试题解析:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形,∴AE=CF.点睛:本题的关键是充分利用平行四边形的性质和平行四边形的判定定理,也可以利用三角形全等得出结论.三、单选题1.下列计算错误的是()A.B.C.D.【答案】B【解析】选项A,根据二次根式的乘法法则可得,选项正确;选项B,不是同类二次根式,不能够合并,选项错误;选项C,根据二次根式的除法法则可得,选项正确;选项D,,选项正确,故选B.2.如图,将一个边长为4和8的长方形纸片ABCD折叠,使C点与A点重合,则折痕EF的长是()A.B.C.D.【答案】D【解析】根据折叠的性质知,四边形AFEB与四边形FDCE全等,有EC=AF=AE,由勾股定理得,AB2+BE2=AE2即42+(8﹣AE)2=AE2,解得,AE=AF=5,BE=3,作EG⊥AF于点G,则四边形AGEB是矩形,有AG=3,GF=2,GE=AB=4,由勾股定理得EF=.故选D.3.下列二次根式中属于最简二次根式的是()A.B.C.D.【答案】C【解析】分析:本题考查的是最简二次根式的判断问题.解析:A. =2, B. = , C. 不能化简, D. =2.故选C.4.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>5【答案】C【解析】分析:本题考查的是的运用.解析:∵=x﹣5,∴故选C.5.若与|x-y-3|互为相反数,则x+y的值为( )A.3B.9C.12D.27【答案】D【解析】由题意可得,∴x-2y+9=0,x-y-3=0,∴x=15,y=12.∴x+y=27,故选D.6.已知a、b、c是三角形的三边长,如果满足(a-5)2+|b-12|+c2-26c+169=0,则三角形的形状是()A:底与边不相等的等腰三角形 B:等边三角形C:钝角三角形 D:直角三角形【答案】D【解析】分析:本题考查的是非负数的意义,得出a、b、c的值,利用勾股定理的逆定理得出三角形的形状.解析:∵(a-5)2+|b-12|+c2-26c+169=0,∴a=5,b=12,c=13,∵∴三角形是直角三角形.故选D.7.已知平行四边形ABCD中,∠B=4∠A,则∠C=()A.18°B.36°C.72°D.144°【答案】B【解析】试题解析:如图:∵四边形ABCD是平行四边形,∴∠C=∠A,BC∥AD,∴∠A+∠B=180°,∵∠B=4∠A,∴∠A=36°,∴∠C=∠A=36°,故选B.【考点】1.平行四边形的性质;2.平行线的性质.8.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是()A.20B.25C.20D.25【答案】D【解析】分析:本题考查的是利用勾股定理求线段的长度.解析:根据题意,得出如下图形,最短路径为AB的长,AC=20,BC=15,∴AB=25故选D.点睛:本题的关键是变曲为直,画出矩形,利用勾股定理得出对角线的长度.四、填空题1.代数式有意义的条件是_______.【答案】x>-2【解析】分析:本题考查的是代数式有意义的条件,分母不为零,被开方数大于等于零.解析:根据题意得,故答案为x>-2.2.已知n是正整数,是整数,则n的最小值是__.【答案】3【解析】分析:本题考查的是二次根式的化简.解析:∵,∵n是正整数,是整数,∴n的最小值是3.故答案为3.3.的整数部分是x,小数部分是y,则y(x+)的值为________ .【答案】1【解析】分析:本题考查的是无理数的整数部分和小数部分的相关计算,小数部分要用原数减去整数部分.解析:∵的整数部分是3,∴小数部分是:-3,∴x=3,y=-3,∴y(x+)= . 故答案为1.4.如果直角三角形的三边长为10、6、x ,则最短边上的高为_________.【答案】8或10【解析】分析:本题考查的是利用勾股定理求出第三边,根据等积法求出最短边上的高.解析:当10为斜边时,另一条直角边为8,所以最短边上的高为8;当10为直角边时,最短的直角边为6,则最短边上的高是10.故答案为8或10.5.如图,过矩形ABCD 的对角线BD 上一点K 分别作矩形两边的平行线MN 与PQ ,那么图中矩形AMKP 的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1________S 2(填“>”或“<”或“=”).【答案】=【解析】分析:本题考查的是矩形的性质.解析:因为ABCD 是矩形,所以△ABD 与△BCD 的面积相等,同理△PKD 与△NKD 的面积相等, △BMK 与△BQK 的面积相等,∴S 1=S 2.故答案为=.6.如图,是由两个正方形组成的长方形花坛ABCD ,小明从顶点A 沿着花坛间小路直到走到长边中点O ,再从中点O 走到正方形OCDF 的中心O 1,再从中心O 1走到正方形O 1GFH 的中心O 2,又从中心O 2走到正方形O 2IHJ 的中心O 3,再从中心O 3到正方形O 3KJP 的中心O 4,一共走了31m ,则长方形花坛ABCD 的周长是_______.【答案】64m【解析】分析:本题考查的是正方形的性质,得出各边之间的关系,列出方程解之即可.解析:设O 3 O 4=x ,, ,∴ABCD 的周长是64m. 故答案为64m.点睛:本题的关键是利用正方形的性质,正方形的对角线相等并且互相平分.得出各个线段之间的关系.。
2018~2019学年天津河西区初二上学期期中数学(第三学片)(解析)
2018~2019学年天津河西区初二上学期期中数学试卷(第三学片)(详解)一、选择题(本题共10小题,每题3分,共30分)1. A.B.C.D.【答案】方法一:方法二:【解析】下列标志中,可以看作是轴对称图形的是( ).D只有图形是轴对称图形,其它的都是中心对称图形.、不是轴对称图形,是中心对称图形,不符合题意;、不是轴对称图形,是中心对称图形,不符合题意;、不是轴对称图形,是中心对称图形,不符合题意;、是轴对称图形,符合题意.故选:.2. A.正方形 B.长方形C.直角三角形D.平行四边形【答案】【解析】下列图形具有稳定性的是( ).C三边构成稳定性,其余均可在一定范围内变形.故选:.3. A.B.C.D.【答案】一个正多边形的内角和为,则这个正多边形的每一个外角等于( ).D【解析】设此多边形为正边形,由题意,得:,∴,∴正多边形的每一个外角.故选.4. A.B. C. D.【答案】【解析】一次数学活动课上,小祥将一副直角三角板按图中方式叠放,则等于( ).A∵图中是一副三角板叠放,∴,,∴,∵是的外角,∴.故选.5.如图,在中,、分别是、的中点,,则的面积为( ).A.B. C. D.【答案】【解析】B ∵是的中点,∴,∵,∴,∵是的中点,∴,故选:.6. A.B. C. D.【答案】【解析】如图,已知在中,,是边上的高,则的度数为( ).A ∵在中,,且,∴,∴,∴,∵是边上的高,∴,∴.故选.7.在内部取一点,使得点到的三边距离相等,则点应是中( ).A.三条高线的交点B.三条角平分线的交点C.三边的垂直平分线的交点D.三条中线交点【答案】【解析】B角平分线上的点到角两边距离相等.8. A.B. C. D.【答案】【解析】如图,已知≌,,,则的度数为( ).C ∵≌,∴,,,∴,,∴.∵,∴,∴,∴.故选.9. A.B. C. D.【答案】如图,在中,,、是的两条中线,是上一个动点,则下列线段的长度等于最小值的是( ).B【解析】如图连接,∵,,∴,∴,∴,∵,∴、、共线时,的值最小,最小值为的长度,故选.10.A.①② B.①③ C.①②③ D.①②③④【答案】【解析】如图,中,,于,平分,且于,与相交于点,于,交于,下列结论:①;②;③;④.其中正确的是( ).A ∵,,∴是等腰直角三角形,∴,故①正确;在和中,∵,,,∴,又∵,,∴≌,∴,,∵,∴,故②正确;在和中,∵平分,∴.故选.二、填空题(本题共6小题,每题3分,共18分)11.【答案】【解析】如果四边形一组对角互补,那么另一组对角也 .(填互余或者互补)互补∵四边形内角和为,一组对角和为,∴另一组对角和为,即另一组对角互补.12.【答案】【解析】三角形的三边长分别为,,,则第三边的取值范围是 .根据三角形的三边关系可得:,∴.故答案为:.13.【答案】【解析】等腰三角形的一个内角是,则它的底角是 .或分两种情况①当的角为等腰三角形的顶角时,底角的度数;②当的角为等腰三角形的底角时,其底角为80°,故它的底角度数是或故答案为:或.14.如图,已知,,的垂直平分线交于点,则 .【答案】【解析】∵,,∴,∵是的垂直平分线,∴,∴.15.【答案】【解析】如图,在中,,为斜边上的两个点,且,,则的大小为 .依题可知,,,.∵,..,.16.【答案】如图,五边形中,,,则这个五边形的面积是 .【解析】延长至,使,连接,,,∵,,∴,在与中,,∴≌,∴,在与中,∴≌,∴五边形的面积是:.故答案为:.五边形三、解答题(共52分)17.【答案】【解析】如图,电信部门要在内部修建一座电视信号发射塔.按照设计要求,发射塔到两个城镇、的距离相等,到两条高速公路、的距离也必须相等.发射塔修建在什么位置?在图上标出它的位置.(保留作图痕迹,不写作法)画图见解析.①以点为圆心,以任意长为半径画弧,交与于点、,再分别以、为圆心,大于长为半径画弧,交于点,连接,即为的角平分线;②分别以、为圆心,大于长为半径在线段两侧画弧,交于、两点,连接交于,即点为发射塔所在位置.如图:18.【答案】【解析】如图,在中,,点是内一点,且,,求的度数..延长交与点,∵,,在中,,∴,∴,又∵,∴,∴.19.已知:如图所示,点,分别在等边的边,上,且,与相交于点.(1)(2)(1)(2)【答案】(1)(2)【解析】求证:≌.求的度数.证明见解析..∵为等边三角形,∴,,在和中,∵,∴≌.∵≌,∴,∵,∴.20.(1)(2)(1)(2)【答案】(1)(2)【解析】如图,在平面直角坐标系中,点,点在轴上,点在轴上,.若,则点坐标为 .(直接写出结果)若≌,点线段上,求证:≌.证明见解析.在中,,∴,∵,∴,∴.∵≌,∴,,,∴,在和中,,∴≌.21.图(1)图(2)(1)(2)【答案】(1)(2)【解析】如图,已知在中,,,分别过,向过的直线作垂线,垂足分别为,.如图①过的直线与斜边不相交时,求证:.如图②过的直线与斜边相交时,其他条件不变,若,,则.证明见解析.,,,,,,在和中,,,,≌.,..,,,,,,在和中,,,,≌.,..22.(1)(2)(3)(1)(2)(3)【答案】(1)(2)(3)【解析】在平面直角坐标系上有点,点,点,点,点.若点与点关于轴对称,则点的坐标为 .若点与点关于直线对称,则点的坐标为 .若点与点也关于直线对称,请你求出点的坐标(用含,的式子表示),并说明理由.,证明见解析.由图可知,点的坐标为.∵点与点关于直线对称,∴点的坐标为,即.设点的坐标,∵点与点关于直线对称,∴,,∴,,∴点的坐标为.23.如图,已知,.(1)(2)(3)(1)(2)(3)【答案】(1)(2)【解析】图若点,关于轴对称,则 .如图,连接,若,于点,、关于轴对称,是线段上的一点,且,连接,试判断线段与之间的关系,并证明你的结论.图如图,在()的条件下,若是线段上的一个动点,是延长线上的一点,且,连接交轴于点,过点作轴于点,当点在线段上运动时线段是否为定值?若是,则该定值为 ;若不是,请说明理由.图,.证明见解析.是定值,定值为.、关于轴对称,∴横坐标互为相反数,∴,,∴.结论:,.理由如下:∵,,,∴,,.(3)∵,,∴.在与中,,∴≌,∴,.∵,∴,∴,.是定值,定值为.理由如下:过作轴于,在与中,,∴≌,,,∴.在与中,,∴≌,∴,∴.。
新人教版–天津河西区初二数学期中试题
天津初二期中试题:2021年河西区数学试题一、选择题:⑴下列各式中正确的是( ); .A 0x y x y +=+ .B 22y y x x= .C 1x y x y -+=-- .D 11x y x y =--+- ⑵一个三角形的面积是212cm ,则它的底边y (单位:cm )是这个底边上的高x (单位:cm )的函数,它们的函数关系式(其中0x >)为( );.A 12y x = .B 6y x = .C 24y x= .D 12y x = ⑶若12a =,则221(1)(1)a a a +++的值为( ); .A 59 .B 12 .C 29 .D 23⑷纳米是非常小的长度单位,已知1纳米610-=毫米,某种病毒的直径为100纳米,若将这种病毒排成1毫米长,则病毒的个数是( );.A 212个 .B 410个 .C 610个 .D 810个⑸在下列以线段,,a b c 的长为三边的三角形中,不能构成直角三角形的是( );.A 9,41,40a b c === .B 5,52a b c ===.C ::3:4:5a b c = .D 11,12,15a b c ===⑹如图,等边三角形的边长为6,则高AD 的长为( ).A 3 .B 23 .C 33 .D 3⑺某农场的粮食总产量为1500吨,设该农场人数为x 人,平均每人占有粮食数为y 吨,则y 与x 之间的函数图像大致是( ).A .B .C .D⑻若直角三角形的两条之角边长分别为6cm 、8cm ,则斜边上的高为( ).A 5cm .B 56cm .C 10cm .D 245cm ⑼已知反比例函数1y x=,下列结论不正确的是( ); .A 当0x <时,y 随着x 的增大而增大 .B 图象经过点(1,1).C 图象经过第一、三象限 .D 当1x >时,01y <<⑽如图,是一种古代计时器——“漏壶”的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间。
天津市河西区2024-2025学年八年级上学期11月期中考试数学试题
天津市河西区2024-2025学年八年级上学期11月期中考试数学试题一、单选题1.下面四个图形分别是垃圾分类的标志,这四个标志中是轴对称图形的是( )A . B .C .D .2.如图,木工师傅做门框时,常用木条EF 固定长方形门框ABCD ,使其不易变形,这种做法的依据是( )A .三角形稳定性B .长方形是轴对称图形C .两点之间线段最短D .两点确定一条直线3.以下列长度的各组线段为边,不能组成三角形的是( )A .3cm ,4cm ,5cmB .7cm ,7cm ,7cmC .15cm ,16cm ,17cmD .5cm ,5cm ,11cm4.n 边形的每个外角都为60︒, 则边数n 为( )A .3B .4C .5D .65.如图,已知ABC ∆,下面甲、乙、丙、丁四个三角形中,与ABC ∆全等的是( )A .甲B .乙C .丙D .丁6.等腰三角形中,一个角为 40︒,则这个等腰三角形的顶角的度数为( )A .40︒或100︒B .40︒ 或 70︒C .140︒D .40︒7.如图,∠BAD =90°,AC 平分∠BAD ,CB =CD ,则∠B 与∠ADC 满足的数量关系为( )A .∠B =∠ADCB .2∠B =∠ADC C .∠B +∠ADC =180°D .∠B +∠ADC =90°8.如图, 等边三角形ABC 中,BD CE =,AD 与BE 相交于点P , 则APE ∠的度数是( )A .45︒B .55︒C .60︒D .70︒9.如图,在ABC V 中,40B ∠=︒,50C ∠=︒,通过观察尺规作图的痕迹,DAE ∠的度数是( )A .25︒B .30︒C .50︒D .90︒10.点(1,2)m +-关于直线1x =-的对称点的坐标是( )A .(1,0)m +B .(3,2)m ---C .(1,2)m +-D .(1,0)m --二、填空题11.点(16,)M -关于y 轴对称的点的坐标为 .12.一个五边形的内角和的度数为 ︒.13.在△ABC 中,::2:3:5A B C ∠∠∠=,则∠C = 度.14.如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是 .15.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP =20°,∠ACP =50°,则∠P = °.16.在如图所示的3×3正方形网格中,123∠+∠+∠= 度.三、解答题17.已知: AOB ∠.求做: A O B ∠''',使 A O B AOB '''∠=∠(画出图形并保留作图痕迹).18.已知:如图所示,已知 ABC V 中,其中()0,2A -,()2,4B -,()4,1C -(1)画出与ABC V 关于x 轴对称的图形111A B C △(2)写出111A B C △各顶点坐标.19.如图,点E 、C 在线段BF 上,BE CF =,AB DE ∥,A D ∠=∠.求证:ABC DEF ≌△△.20.如图,A 岛在B 岛的北偏东30°方向,C 岛在B 岛的北偏东80°方向,A 岛在C 岛北偏西40°方向.从A 岛看B 、C 两岛的视角∠BAC 是多少?21.如图,AD 是ABC V 的中线,延长AD 至点E ,使ED AD =,连接CE .(1)证明ABD ECD ≌;(2)若53AB AC ==,,设AD x =,可得x 的取值范围是________;22.如图,点C 在线段AB 上,AD EB ,ADC BCE AD BC ∠=∠=,,点F 为线段DE 的中点.猜想CF 与DE 的位置关系,并说明理由.23.直线AB CD ∥,点E ,F 分别在直线AB ,CD 上,GE 平分AEF ∠,GF 平分CFE ∠.(1)如图1,求EGF ∠的度数;(2)如图2.13CFH CFG ∠=∠,GEH n AEH ∠=∠,30EHF ∠=︒,求n 的值;(3)如图3,延长EG 交CD 于点K ,点M 在射线KF 上(点M不与点K ,F 重合),EN 平分MEF ∠,画出图形,写出KEN ∠与EMF ∠之间的数量关系,并说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河西区2011—2012学年第一学期八年级期中质量调查
数学试卷
试卷满分100分,考试时间90分钟。
一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案填在下面的表格里.
(1)2的算术平方根是()
(A)2(B)-2(C2
±
±(D) 4
(2)我们用不同数量的正三角形分别组成了四个图形,其中,可以看作是轴对称图形的有()
(A)1个(B)2个(C)个(D) 4个
(3)若等腰三角形的两边长是6cm和3cm,那么它的周长是()
(A)6cm (B)12cm (C) 12cm或15cm
(4)下列判断不正确的是()
(A)形状相同的图形是全等图形(B)能够完全重合的两个三角形全等
(C)全等图形的形状和大小都相同(D) 全等三角形的对应角相等
(5)估计21的值在()
(A)1到2之间(B)2到3之间
(C)3和4之间(D) 4和5之间
(6)如图,AB=AC,∠C=70°,AB的垂直平分线EF交AC于点D,则∠DBC 的度数为()
(A)10°(B)15°(C)°(D)30°
(7)下列命题中,正确的是( )
(A)有两边和其中一边的对角对应相等的两个三角形全等 (B)有两边对应相等,且有一角为30°的两个等腰三角形全等 (C)有两锐角对应相等的两个直角三角形全等
(D) 有两边和这两边的夹角对应相等的两个三角形全等
(8)已知∠AOB=30°,点P 在∠AOB 内部,1P 与P 关于OA 对称,1P 与P 关于OB 对称,则△21OP P 的形状一定是( )
(A)直角三角形 (B)等边三角形
(C)底边和腰不相等的等腰三角形 (D) 钝角三角形
(9)在△ABC 中,点D 是AB 上一点,△ADC 与△BDC 都是等腰三角形且底边分别为AC 、BC ,则∠ACB 的度数为( )
(A)60° (B)72°
(C)° (D)120°
(10)如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )
(A)110° (B)120°
(C
° (D)150°
二、填空题:本大题共8小题,每小题3分,共24分.请将答案直接填在题中横线上.
(11)点(-2,6)关于x 轴对称的点的坐标是________. (12)使2 x 有意义的x 的取值范围是________.
(13)如图,点D 、E 分别在线段AB 、AC 上,BE 、CD 相交于点O ,AE=AD ,要使△ABE ≌△ACD ,需添加一个条件是________________(只要写一个条件即可).
(题13) (题14) (题15)
(14)如图,瓦工师傅盖房时,有时用一块等腰三角板放在梁上,从顶点悬一重物,如果系重物的绳正好经过三角形底边的中点,可以说明该房梁与悬垂线的位
置关系是________.
(15)如图,△ABC 中,∠C=90°,∠ABC=60°,BD 平分∠ABC ,若AD=8cm ,则CD=________.
(16)在平面直角坐标系中,长方形ABCD 的四个顶点的坐标分别是A(2,1),B(5,1),C(5,9),D(2,9),那么这个长方形的两条对称轴的交点坐标为________.
(17)如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE=DG ,△ADG 和△AED 的面积分别为50和39,则△EDF 的面积为________.
(题17) (题18)
(18)如图,六边形ABCDEF 的六个内角相等,若AB=2,BC=CD=6,DE=4,则这个六边形的周长等于________.
三、解答题:本大题共7小题,共46分.解答应写出文字说明、演算步骤或证明过程. (19)(本小题6分) 求下列各数的平方根:
(Ⅰ)49
64
(Ⅱ)0.0001
(Ⅲ)47
1
(20)(本小题6分) 已知:∠AOB
求作:∠'''B O A ,使得∠'''B O A =∠AOB
(要求:不写作法,保留作图痕迹,并简要说明作图的依据.)
(21)(本小题6分)
如图,∠A=36°,∠DBC=36°,∠C=72°,找出图中的所有的等腰三角形,并证明其中的一个.
(22)(本小题6分)
已知:点B、F、C、E在同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,且AB=DE,BF=CE.
求证:(Ⅰ)△ABC≌△DEF;
(Ⅱ)GF=GC.
(23)(本小题6分)
如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B'处,点A落在点A'处
'
(Ⅰ)求证:BF
E
B=
(Ⅱ)设AE=a,AB=b,BF=c,求证:a+b>c
(24)(本小题8分)注意:为了使同学们更好地解答本题,我们提供了思路点拨,你可以依据这个思路填空,并完成本题解答的全过程,当然你也可以不填空,只需按照解答题的一般要求,进行解答即可.
如图,已知AB=AD,∠BAD=60°,∠BCD=120°,延长BC到E,使CE=CD,连结DE.求证:BC+DC=AC.
思路点拨:
(1)由已知条件AB=AD,∠BAD=60,可知:△ABD是_______三角形;
(2)同理由已知条件∠BCD=120°,得到∠DCE=_______,且CE=CD,可
知______________________;
(3)要证BC+DC=AC,可将问题转化为两条线段相等,即______=______.
(4)要证(3)中所填写的两条线段相等,可以先证明……请你完成证明过程:
(25)(本小题8分)
如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D 为顶点作一个60°的角,角的两边分别交AB、AC边于M、N两点,连接MN. (Ⅰ)探究:线段BM、MN、NC之间的关系,并加以证明;
(Ⅱ)若点M是AB的延长线上一点,N是CA的延长线上的点,其他条件不变,请你再探究BM、MN、NC之间的关系,请在图②中画出图形,并说明理由.
图①图②
答案:
填空题:
11.(-2,-6)12.2x ≥-;13.B C ∠=∠;14.垂直平分;15.4cm;16.(3.5,5);17. 5.5 18.30 解答题: 19:(1)87±
(2)0.01±(3)21
7
± 20.作图依据为:()SSS
21.,,ABD BDC ABC ∆∆∆,证明略
22.证明:ABC DEF ∆≅∆即可
23:连BE ,BEF ∆和'B EF ∆是轴对称图形。
则∠''B FE BFE B EF ∠=∠=∠,得证。
(2)三角形两边之和大于第三边.
24.(1)等边三角形(2)60︒
,DCE ∆为等边三角形(3)BE AC =
(4)证明:BED ACD ∆≅∆
25.利用截长补短构造全等:BM NC MN +=
如图,使得CE BM = ,先证明:BMD CED ∆≅,再证明:0MDN EDN ∆≅∆ (1) 如图,使得CE BM =,构造全等。
最后证明:NMD NED ∆≅∆,即可. NC BM MN -=。