大学物理矢量

合集下载

《大学物理》矢量运算

《大学物理》矢量运算

一、矢量和标量的定义及表示
1.标量:只有大小和正负而无方向的量,如质量、时间、 温度、功、能量。 表示:一般字母:m、t、T, 运算法则:代数法则
2.矢量:既有大小又有方向的量,如位移、加速度、电场强度
表示:粗体字母A 或 A ,其大小用 A 或 A 表示 。
A A A0
(3) A B Ax B x A y B y Az Bz
(4)引入矢量标积后,功就可以表示为 W F s Fcos s
3.矢量的叉乘
矢积
两矢量相乘得到矢量的乘法叫叉乘,其乘积称为矢积(叉积)
大小: C ABsin
C A B
垂直于A 、 B 组成的平面, 方向: 指向用右手螺旋法则确定。
位移、速度等 的合成
矢量作业
1. 矢量应如何正确表示? 2. 矢量减法满足什么规律(请附图说明)?
3. 写出矢量点乘的解析表达式。
4. 矢量叉乘的右手螺旋法则如何操作?
5. 已知: a与b 夹角为45 , a 6, b 2 2 , 求 a 2b a 3b
2 2 Ax Ay Az2




Az
z
k
Ax x
cos 2 cos 2 cos 2 1
4.矢量合成的解析法
A B ( Ax Bx ) i ( Ay By ) j
y 已知 A、B,(如图)求 A B 、B 用平行四边形法则合成 C 解:先将 A A C A B 然后将 A、B 正交分解,其解析式为 O A Ax i Ay j B Bx i B y j

大学物理通用矢量知识

大学物理通用矢量知识

A 1即模为1的矢量 ——单位矢量 A 0即模为0的矢量 —— 零矢量
零矢量的方向可以认为是任意的,记 作0 。
大学物理通用矢量知识
5
大学物理
数学知识:矢量
A
与矢量 A 同方向的单位矢量记作 e 。 在直角坐标系O-xyx中,记x、y、z三个 方向的单位矢量为 i 、j 、k 。 z 矢量具有大小与方向两个 y 要素,只有当同类的两个矢 x 量大小相等且方向相同时, 两个矢量才相等。记为 A B 。而标量 和矢量由于不同类,故不能相比较,也 不能相加减。
Ax Bx i i Ax By i j Ax Bz i k Ay Bx j i Ay By j j Ay Bz j k Az Bx k i Az By k j Az Bz k k
( Ay Bz Az By )i ( Az Bx Ax Bz ) j ( Ax By Ay Bx )k
大学物理
数学知识:矢量
§0.1 矢量 物理学中常会遇到两类不同性质的物 理量:标量(Scalar)和矢量(Vector)。 其中只用数值即可表示的量叫标量, 这里数值的含义包括大小和正负。 比如时间、路程、质量、能量、电量 等就是这样的量。
大学物理通用矢量知识
1
大学物理
数学知识:矢量
而既有大小、正负,还有方向,且其 加法遵从平行四边形法则或三角形法则 的量叫做矢量。 力、速度、加速度、电场强度等都是 这样的量。矢量可以用有方向的几何线 段表示。
( ) A A A
满足交换律
( A) ( A) ( A)
大学物理通用矢量知识
14
大学物理
数学知识:矢量

大学物理矢量运算公式(一)2024

大学物理矢量运算公式(一)2024

大学物理矢量运算公式(一)引言概述:
大学物理中,矢量运算是一门重要的基础课程。

矢量运算公式是在处理矢量量的运算过程中所使用的关键工具。

本文将介绍大学物理矢量运算公式的一些基本概念和常见公式,以帮助读者更好地理解和应用矢量运算。

正文内容:
一、矢量的表示和性质
1. 矢量的定义和表示方法
2. 矢量的加法和减法运算
3. 矢量的数量积和矢量积定义及其性质
4. 矢量的分解和合成
5. 矢量的单位化和模长计算
二、矢量的坐标表示
1. 直角坐标系和矢量的坐标表示
2. 极坐标系和矢量的坐标表示
3. 球坐标系和矢量的坐标表示
三、矢量的运算公式
1. 矢量的加法和减法公式
2. 矢量的数量积公式和性质
3. 矢量的矢量积公式和性质
4. 矢量的混合积公式和性质
5. 矢量的分解和合成公式
四、应用举例
1. 矢量运算在力学中的应用
2. 矢量运算在电磁学中的应用
3. 矢量运算在波动学中的应用
4. 矢量运算在光学中的应用
5. 矢量运算在热学中的应用
五、矢量运算的常见错误和注意事项
1. 矢量运算中常见的错误类型
2. 矢量运算中需要注意的细节
3. 矢量运算的常见问题及解答
4. 矢量运算的常见应用技巧
5. 矢量运算的进一步深入学习建议
总结:
本文概述了大学物理矢量运算公式的基本概念和常见公式,包括矢量的表示和性质、矢量的坐标表示、矢量的运算公式、应用举例以及矢量运算的常见错误和注意事项。

矢量运算公式在物理学中有着广泛的应用,通过学习和掌握这些公式,读者可以更好地理解和应用矢量运算。

对于进一步深入学习,本文还提出了建议。

《大学物理矢量》课件

《大学物理矢量》课件

VS
加速度的合成
当物体同时参与两个运动,且这两个运动 的加速度共同产生与物体实际加速度相同 的效果时,这两个加速度称为合加速度。 合加速度的计算通过平行四边形法则或三 角形法则进行。
05
总结与展望
矢量在物理中的重要性
描述物理现象
矢量是描述物理现象的重要工具 ,如速度、力、加速度等都是矢 量,它们可以完整地描述物体的
理解矢量运算规则
矢量运算包括向量的加法、减法、数乘、向量的点乘、叉乘等,需 要理解这些运算的规则和几何意义,才能更好地应用矢量。
实践应用
通过解决实际问题,如力的合成与分解、速度和加速度的计算等,将 所学知识应用于实践,加深对矢量的理解。
对未来学习的展望
深入学习矢量理论
矢量理论在数学和物理中具有广泛的应用,可以深入学习 矢量的性质、定理和证明等,为未来的学习和研究打下坚 实的基础。
详细描述
矢量具有独立性,即矢量的数值与其参考系的选择无关。矢量具有可加性,即两个矢量相加得到一个 新的矢量。矢量还具有传递性,即对于三个矢量A、B和C,有A+B+C=A+(B+C)。此外,矢量还具有 分解和投影等性质。
02
矢量的运算
矢量的加法
矢量加法
将两个矢量首尾相接,形成一个 新的矢量。
三角形法则
矢量的表示方法
总结词
矢量可以用箭头表示,箭头的长度代表矢量的大小,箭头的指向代表矢量的方向 。
详细描述
在物理学中,通常用箭头表示矢量。箭头的长度代表矢量的大小,箭头的指向代 表矢量的方向。在数学和物理学中,常用黑体字母来表示矢量,例如A、B、C等 。
矢量的基本性质
总结词
矢量具有独立性、可加性和传递性等基本性质。

大学物理中关于矢量的应用问题探讨

大学物理中关于矢量的应用问题探讨

矢量在大学物理中的应用是非常广泛的,它可以用来描述物理现象,并且可以用来解决物理问题。

本文将探讨矢量在大学物理中的应用,以及它在解决物理问题中的作用。

首先,矢量可以用来描述物理现象。

例如,力是一个矢量,它可以用来描述物体之间的相互作用。

力的大小和方向可以用矢量来表示,这样就可以更清楚地描述物体之间的相互作用。

此外,矢量还可以用来描述物体的运动,例如速度和加速度。

速度和加速度的大小和方向可以用矢量来表示,这样就可以更清楚地描述物体的运动。

其次,矢量可以用来解决物理问题。

例如,可以用矢量来解决力的平衡问题。

如果物体处于力的平衡状态,那么力的矢量和必须满足一定的条件,这些条件可以用矢量来表示,从而可以解决力的平衡问题。

此外,矢量还可以用来解决物体的运动问题。

例如,可以用矢量来求解物体的运动轨迹,从而可以解决物体的运动问题。

综上所述,矢量在大学物理中的应用是非常广泛的,它可以用来描述物理现象,并且可以用来解决物理问题。

矢量的应用可以使物理问题更加清晰,从而使物理学习更加容易。

学习大学物理必备数学知识

学习大学物理必备数学知识

r
r
r
自矢矢 量量的BAr 的 末端末画端出画矢出量矢量 ,CBr,则再从就Cr矢是量 和A的Ar 始端的Br到合
矢量。
4
利用矢量平移不变性: r
d
A r
c
r
C
r
B a

r
B b
A
图4 两矢量相加的平行四边形法则
2、利用计算方法计算合矢量的大小和方向:
r
C A2 B2 2AB cos arctan B sin
r B

r dA
dt
dt
dt
(4)
d
rr A B

r A
r dB

r dA

r B
dt
dt dt
26
2、矢量的积分:

r A

r B
均在同一平面直角坐标系内,且
r dB

Ar,
则有:dBr

r Adt
dt
r B


r Adt



r Axi

Ay
r j
dt
r
r
Axdt i Aydt j
r
的模,用符号 A 表示。
A
图1 矢量的图像表示
2
2、矢量平移的不变性:
r
r
把矢量 A在空间平移,则矢量 A的大小和方向都不
会因平移而改变。
r
r
A
A
r A
图2 矢量平移
3
二 矢量合成的几何方法
1、利用质点在平面上的位移说明矢量相加法则:
r
c

大学物理:矢量 (VECTOR)

大学物理:矢量  (VECTOR)


A
2a
3b ,
B
3a
b,
a
2,
b
1
解.
(a,b)
,
求A B,
3
Pr
jA B,
A B (2a 3b) (3a b)
Pr
jB A .
6
a
2
7a
b
3
b
2
28
2 A
A
A
37,
2 B
BB
31,
Pr
jA B
A B
A
28 , 37
Pr
jB A
A B
两矢量A和B的矢量差C可看成为矢量A和矢量(-B)的矢量和
B -B
A
或者直接三角形减法
B A
C
B C
A
物理教研室,药大
2.3 多个矢量的加法
n
F F1 F2 Fn Fi
i 1
逐个矢量相加,可以采用多边形法则
A2
A4 An-1
A1
A3
An
O
2.4矢量加法的性质:
交换律(commutative
3) 两个矢量的夹角
cos A B
AB
4) 性质:
交换律(commutative law): 分配律(distributive law): 结合律(associative law):
AB B A ( A B) C AC B C ( A B) A (B), 为实数
物理教研室,药大
例3.
矢量和标量乘 矢量和矢量乘
结果是一个矢量。大小、方向? 结果是一个标量。大小? 结果是一个矢量。大小、方向?
物理教研室,药大

大学物理矢量PPT课件

大学物理矢量PPT课件
把 [a,b] 分 成 n个 小 y 区 间[ xi 1, xi ], 长 度 为 xi xi xi1;
在每个[ xi1, xi ] 上
任 取 一 点 i,
o
x1
a
xi1 i xi
xn1
b
x
以 [ xi1, xi ]为底,f (i ) 为高的小矩形面积为
Ai f (i )xi
Ax
O Ax
X


如果A Axi Ay j 和 B Bxi By j , 则有:



C Cxi Cy j B A (Ax Bx )i (Ay By ) j
显然:
C x Ax Bx
C y Ay By
第1章 运动的描述
矢量的加法: 两个矢量相加
C AB
AB
矢量的减法: 两个矢量相减
C' A B A (B)
差矢量方向:
减数终端→被减数终端
第1章 运动的描述
A
C
B

C'
A
B
矢量的内积
a

b

ab
(点乘、标乘):

0, cos 1, a b ab
第1章 运动的描述
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
第1章 运动的描述
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
第1章 运动的描述
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
第1章 运动的描述
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.

大学物理简明教程矢量基础知识

大学物理简明教程矢量基础知识

引言概述:在研究物理学时,矢量是一个非常重要的概念,广泛应用于各个领域。

本文将以大学物理为基础,介绍矢量的基础知识,包括矢量的定义、性质以及运算法则等。

通过学习这些知识,读者将能够更好地理解和应用矢量概念。

正文内容:1.矢量的定义和性质1.1定义:矢量是具有大小和方向的量,用箭头表示,并且满足平行四边形法则。

1.2强调大小和方向:矢量的大小由模和单位来表示,方向由箭头指向表示。

1.3矢量的分类:自由矢量和定向矢量。

1.4坐标系:在空间中表示矢量,一般采用直角坐标系、极坐标系等。

1.5矢量的性质:平移性、相等性、零矢量等。

2.矢量的运算法则2.1矢量的加法法则:满足三角形法则和平行四边形法则。

2.2矢量的减法法则:将减法转化为加法,即AB=A+(B)。

2.3矢量与标量的乘法:数乘,即矢量的模与数的乘积。

2.4矢量的数量积:点乘,模乘以夹角的余弦值。

2.5矢量的向量积:叉乘,模乘以夹角的正弦值。

3.极坐标表示下的矢量3.1极坐标系:用极径和极角来表示矢量。

3.2极坐标系下的加法法则:将加法转化为直角坐标系下的加法。

3.3极坐标系下的减法法则:将减法转化为直角坐标系下的减法。

3.4极坐标系下的数量积和向量积:类似于直角坐标系下的计算方法。

4.平面矢量的应用4.1矢量和标量的关系:矢量可以表示位移、速度、加速度等。

4.2位移矢量:表示物体从一个位置到另一个位置的矢量。

4.3速度矢量:表示物体在单位时间内位移的矢量。

4.4加速度矢量:表示物体在单位时间内速度的变化率的矢量。

4.5矢量和矢量的关系:矢量可以相加、相减、求量积和向量积等。

5.矢量的应用实例5.1力的分解与合成:将力分解为两个矩形方向上的力,合成为一个合力。

5.2刚体平衡问题:通过矢量的平衡条件,求解物体的平衡问题。

5.3物体运动问题:通过矢量的运算法则,分析物体在平面运动中的速度、加速度等。

5.4牛顿定律问题:利用矢量的知识,解决物体的牛顿定律问题。

大学物理矢量分析【普通物理学】

大学物理矢量分析【普通物理学】
个(co矢m量poAn,en可t)以Ax用、它A在y 直和角Az坐来标表系示中:的三个投影分量 A Axi Ay j Az k
i 、j、k:单位矢量,分别指向三个坐标轴的正向。
在球坐标中的表示:
A AeA 其中:A 为矢量A 的模,eA为指向矢量 A方向的单位
矢量(unit vector)。
dt
dt
dt
(3) d ( A B) A dB dA B
dt
dt dt
(4) d ( A B) A dB dA B
dt
dt dt
一 矢量(vector)
标量(scalar quantity):只具有大小而没有方向的物理量,我 们把它称之为标量。
矢量:有一种物理量,仅用大小还不能全面的来描述它,还需 要用方向来描述它。
例如说,我们只知道一个人从学校门口走了1公里,就无法确 定他到了什么地方。但如果还知道了他走的方向是正东,我们 就能确定他到了什么地方了。这种既具有大小又具有方向的物 理量,我们把它称之为矢量。
矢量的标积遵守
(1) 交换率: A B B A
(2) 结合率: ( A B) C AC B C
2. 矢量的矢积(vector product) 矢量的矢积也称为矢量的叉乘,定义为:
A B ABsine
其中 e为由 A 和B 根据右手螺旋定则判定的单位矢量。
由矢积的定义得:
i i j j k k 0
矢量与标量的根本区别是有没有方向。
矢量的模(module):矢量的大小称为矢量的模。矢量 A 的模记为:A 或 | A |。
矢量具有平移不变性(translation invariant):把矢量 在空间中平移,矢量的大小和方向不会改变,这种性 质称为矢量平移的不变性。

矢量运动大学物理简介

矢量运动大学物理简介

To last
v C v −B v A
v B v −B v C
v v v v v A = C − B = C + (− B)
To begin Up Down To last
解析法
v −B
v A
v C
v v v A=C−B
v v v v v v = (C x i + C y j + C z k ) − ( Bx i + B y j + Bz k )
r r r r r r ∴ C = A + B = ( Ax + Bx )i + ( Ay + By ) j + ( Az + Bz ) k
To begin Up Down To last
2、减法:转换为加法实现。
v v v v v A = C − B = C + (− B)
To begin
Up
Down
v v v = (C x − Bx )i + (C y − B y ) j + (C z − Bz )k
To begin Up Down To last
• 交换律
A+ B= B+ A
• 结合律
A + ( B + C ) = ( A + B) + C
• 零矢量
A+0= A
To begin Up Down To last
To begin Up Down To last
r r r ∴C = A× B r r r r r r = ( Ax i + Ay j + Az k ) × ( Bx i + B y j + Bz k )

大学物理常用高数基础知识

大学物理常用高数基础知识

则有
s
v0t
1 2
at 2
,即f
t 或st
v0t
1 2
at 2
下面求某一时刻t0的(瞬时)速度 t 0 匀速运动:瞬时速度等于平均速度 0
t0 t
s0 s
v v s s0 st st0 s
t t0
t t0
t
非匀速运动: t0到t 时间段的平均速度:v
欲求t0的瞬时速度,可令t接近于t0,
若P点(或矢径r)在YOZ平面上,则 x=0; 若P点(或矢径r)在ZOX平面上,则 y=0; 若P点(或矢径 r)在XOY平面上,则 z=0。 若P点(或矢径r)在 x 轴上,则 y=z=0; 若P点(或矢径 r)在 y 轴上,则 x=z=0; 若P点(或矢径 r)在 z 轴上,则 x=y=0。
若P点为原点,则x=y=z=0
d ds dt dt
d 2s dt 2

a
v s
s
这种导数的导数称为二阶导数。
一般地,y对x的二阶导数为:y
d dx
dy dx
d2y dx2
类似地,可定义三阶、四阶…导数,统称高阶导数。
例:匀速直线运动 s s0 vt,
v ds v dt
加速度
a
d 2s dt 2
d dt
dx
dy、dx(以及前面的ds、dt)都叫做微分。
所以,y dy 也称微商(二微分之商)
dx
微分的含义:微小(无限小)增量。如
热胀:
l'
冷缩:
l dl
dl<0 l'
l
注:物理上也常指一个量(分成无限多份)其中
(无限小的)一份:
L

大学物理+补充-矢量分析简介

大学物理+补充-矢量分析简介

二、标量场的梯度 gradφ
(或 φ) ∇
标量场的梯度定义为这样一个矢量, 标量场的梯度定义为这样一个矢量,它的方向沿方向 微商最大的方向,数值上等于这个最大的方向微商: 微商最大的方向,数值上等于这个最大的方向微商:
∂φ ˆ ∇φ = n ∂n
∂φ r ∂φ r ∂φ r ∇φ = i+ j+ k ∂x ∂y ∂z
φ ( x, y, z ) = 常数
r r A = A ( x, y , z )
的轨迹
2、矢量场:在空间各点存在着一个矢量,它的大小和方向是 、矢量场:在空间各点存在着一个矢量, 空间位置的函数。如电场、磁场、流速场等。 空间位置的函数。如电场、磁场、流速场等。
研究任何矢量场时 常引入“场线”概念,如电场线,磁场线。 研究任何矢量场时,常引入“场线”概念,如电场线,磁场线。 矢量场
3、高斯定理 、
r r r ∫∫ A ⋅ dS = ∫∫∫ (∇ ⋅ A)dV
S V
r r 1、矢量的环量(环流) Γ = A ⋅ dl 、矢量的环量(环流) A ∫ L r r r 2、矢量场的旋度(是个矢量场) curlA (或 rotA , 或∇× A ) 、矢量场的旋度(是个矢量场)
r ΓA (∇ × A) n = lim = lim L ∆S ∆S →0 ∆S ∆S →0
3、谐和场 、 若一矢量场在空间某一范围内,即无散又无旋, 若一矢量场在空间某一范围内,即无散又无旋,称谐和场 无旋: 无旋: 无散: 无散:
——拉普拉斯方程 拉普拉斯方程
即:谐和场的位函数满足拉普拉斯方程。 谐和场的位函数满足拉普拉斯方程。
4、静电场和恒定磁场 、
l
r r r 静电场: 静电场: ∫ E ⋅ dl =0 或 ∇ × E = 0

大学物理通用矢量知识

大学物理通用矢量知识

大学物理
数学知识:矢量
§0.3 矢量的数乘
矢量 A 与一个实数 m的乘积叫做矢量的数乘, 结果仍是一个矢量,记作 mA,模为 mA m A。
若 m 0 ,则 mA与 A 同向,否则反相或等 于零。矢量的数乘有如下性质。
满足分配律
(A B) A B ( )A A A
满足交换律
( A) ( A) ( A)
在直角坐标系中,x、y、z三个方向的单位
矢量分别为 i 、j 、k 。
自矢量 A的矢
又自 A 的矢端向O-xy平 Az
面作垂线,垂足为 A 。
A
再自 A向x轴和y轴作垂 线,垂足分别为 Ax 和 Ay 。 Ax O
y
Ay
x
A
大学物理通用矢量知识
17
大学物理
数学知识:矢量
大学物理通用矢量知识
14
大学物理
数学知识:矢量
那么,如果用 eA表示与 A 同方向的单位 矢量,则 A 可表示为
A AeA r 5i r 3 j r 2k
§0.4 矢量的正交分解
由矢量的加法知道,两个以上的矢量可以
相加合成为一个矢量。所以,一个矢量也可 以分解为两个或两个以上的分矢量。
但一个矢量分解为两个矢量时,结果并不 唯一,而是有无穷多种分解方法。
大学物理通用矢量知识
15
大学物理
数学知识:矢量
A
A
矢量的分解
唯一的分解
但如果限定了两个分矢量的方向,则分解 是唯一的。
我们常将矢量沿相互垂直的方向进行分解, 这种分解当然也是唯一的。这种情况下分矢 量相互垂直(正交),称为正交分解。
大学物理通用矢量知识
16
大学物理

大学物理矢量基础(一)

大学物理矢量基础(一)

大学物理矢量基础(一)引言:矢量是描述物理量的重要工具,它有大小和方向,可以用来表示力、速度、加速度等物理量。

掌握矢量的基础知识对于学习大学物理至关重要。

本文将介绍大学物理中关于矢量的基础知识,包括矢量的定义、表示以及矢量运算,以便读者更好地理解并应用矢量概念于物理学。

正文:一、矢量的定义和性质:1. 矢量的定义及其与标量的区别;2. 矢量的性质:大小、方向和代表的物理量;3. 矢量的分类:自由矢量和固定矢量;4. 矢量的表示方法:箭头、加粗和小写斜体字母。

二、矢量的坐标表示:1. 极坐标和直角坐标系的介绍;2. 矢量在直角坐标系中的表示方法;3. 矢量的坐标分量及其计算方法;4. 矢量的单位矢量表示及其定义;5. 矢量的分解和合成。

三、矢量的运算:1. 矢量的加法及其几何意义;2. 矢量的减法及其几何意义;3. 矢量的数乘及其几何意义;4. 矢量的数量积及其几何意义;5. 矢量的向量积及其几何意义。

四、矢量的运算定律:1. 矢量的交换律和结合律;2. 矢量的分配律和数量积的交换律;3. 矢量的数量积和向量积的分配律;4. 矢量的向量积和数量积的混合积;5. 应用运算定律解决物理问题的例子。

五、矢量的应用:1. 矢量运算在力学中的应用;2. 矢量运算在电磁学中的应用;3. 矢量运算在热学中的应用;4. 矢量运算在光学中的应用;5. 矢量运算在其他学科中的应用。

总结:通过本文的介绍,我们了解了大学物理中关于矢量的基础知识。

我们学习了矢量的定义和性质,以及矢量的坐标表示和运算。

我们还了解了矢量的运算定律和应用示例。

矢量的基础知识是学习物理学的重要基石,它可以帮助我们更好地理解和分析物理现象。

希望本文对读者的物理学习有所帮助。

《大学物理》第三章 二维或三维中的动力学 矢量

《大学物理》第三章 二维或三维中的动力学 矢量

————加速度的方向总是指向轨迹曲线凹的一边
v
a
90o
v
a
速率减小
a v
90o 速率不变
90o
速率增大
思考题
1.质点的运动学方程为x=6+3t-5t3(SI),判断正误:
质点作匀加速直线运动,加速度为正。 质点作匀加速直线运动,加速度为负。 质点作变加速直线运动,加速度为正。 质点作变加速直线运动,加速度为负。
标量与矢量相乘
1、一个正标量乘以一个矢量,只改变其大小不改变其方向。
2、如果一个负标量乘以一个矢量,大小依然是 向和 相反
,但方
3.4 利用矢量的分解计算矢量合成
矢量的分解(沿相互垂直的坐标轴进行分解) (resolving the vector into its components)
uur uur ur Vx Vy V
3、 从第一个矢量的尾部向第二个矢量的顶部连线 并画出箭头,就表示两个矢量的和或合成。 合成矢量的长度表示其大小。保证大小和角度不 变,矢量可以通过平移完成其合成。合成矢量的长 度可用直尺测量,角度可用量角器量度。
相反的相加次序也会得到同样的结果
ur uur uur ur V1 V2 V2 V1
所以 推广到矢量加法
ur V
Vx$i Vy
$j Vz
k$
ur V
Vx$i Vy
$j
ur V1
uur V2
(V1x $i V1y
$j)
(V2x $i V2 y
$j)
(V1x V2x )$i (V1y V2y )$j
3.6 矢量动力学
把位移、速度、加速度的定义扩展到二、三维运动
rr rr2 rr1

大学物理课件矢量的基本概念

大学物理课件矢量的基本概念

大学物理课件矢量的基本概念大学物理课件:矢量的基本概念一、引言在大学物理课程中,矢量是一个基本且重要的概念。

矢量在物理学中具有广泛的应用,如力学、电磁学、热力学等领域。

为了更好地理解物理现象和解决实际问题,我们需要掌握矢量的基本概念、运算规则及其应用。

二、矢量的定义矢量,又称向量,是一种既有大小又有方向的物理量。

与标量不同,标量只有大小,没有方向。

例如,温度、质量、时间等都是标量,而速度、加速度、力等都是矢量。

三、矢量的表示矢量可以用箭头表示,箭头的长度表示矢量的大小,箭头的方向表示矢量的方向。

在二维平面内,矢量可以表示为从原点出发的有向线段;在三维空间中,矢量可以表示为从原点出发的有向线段或箭头。

四、矢量的运算规则1. 矢量的加法两个矢量的加法遵循平行四边形法则。

即将两个矢量的起点放在同一点,以这两个矢量为邻边作平行四边形,第三个顶点所对应的矢量即为这两个矢量的和。

2. 矢量的减法矢量的减法可以看作是矢量的加法,即 a b = a + (-b)。

其中,-b 表示与 b 大小相等、方向相反的矢量。

3. 矢量的数乘矢量的数乘是指将一个矢量与一个实数相乘。

数乘的结果是一个新的矢量,其大小为原矢量的大小与实数的乘积,方向与原矢量相同(实数为正)或相反(实数为负)。

4. 矢量的点乘矢量的点乘,又称数量积、内积,是指两个矢量的乘积。

点乘的结果是一个标量,其大小等于两个矢量大小的乘积与它们夹角余弦值的乘积。

5. 矢量的叉乘矢量的叉乘,又称向量积、外积,是指两个矢量的乘积。

叉乘的结果是一个新的矢量,其大小等于两个矢量大小的乘积与它们夹角正弦值的乘积,方向垂直于原矢量所在的平面,遵循右手定则。

五、矢量的应用1. 力的合成与分解在力学中,力是一种矢量。

多个力的合成与分解遵循矢量的加法与减法规则。

力的合成可以帮助我们求出多个力的合力,力的分解可以将一个力分解为多个分力。

2. 速度与加速度在运动学中,速度和加速度都是矢量。

大学物理预备知识之矢量

大学物理预备知识之矢量
大学物理预备知识之矢量
一 矢量(vector) 标量(scalar quantity):只具有大小而没有方向的物理量,我
们把它称之为标量。
矢量:有一种物理量,仅用大小还不能全面的来描述它,还 需要用方向来描述它。例如说,我们只知道一个人从学校 门口走了1公里,就无法确定他到了什么地方。但如果还知 道了他走的方向是正东,我们就能确定他到了什么地方了。 这种既具有大小又具有方向的物理量,我们把它称之为矢 量。
矢量的标积遵守
(1) 交换率: ABBA
(2) 结合率: (A B )C A C B C
2. 矢量的矢积(vector product) 矢量的矢积也称为矢量的叉乘,定义为:
A B A B s ine
其中 e 为由 A 和 B 根据右手螺旋定则判定的单位矢量。
由矢积的定义得:
i i j j k k 0
2. 矢量相减(minus)
由于矢量 B 与 B 方向相反,大小相等,有:
B B x i B yj B zk
矢量相减
A B(A xiA yjA zk)(B xiB yjB zk)
(A xB x)i(A yB y)j(A zB z)k
矢量的加减合称为矢量的合成(compose,
四 矢量的标积与矢积 1. 矢量的标积(scalar product) 矢量的标积也称为矢量的点乘,定义为
则:
Ax Bxdt
Ay Byபைடு நூலகம்t
2.2对空间的积分
Az Bzdt
A B d s B x d x B y d y B z d z
A B A B c o s
sum)
实质是一 矢量大小 与另一矢 量在其方 向上投影 大小乘积
标积的定义得: iijj kk 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章 运动的描述
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
第1章 运动的描述
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
第1章 运动的描述
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
第1章 运动的描述
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
注意:
转动:物体各点绕轴作圆周运动。
振动:物体各点相对平衡位置作往复运动。
实际物体的运动往往包含两种或两种以上运 动形式的叠加:如汽车的行进、子弹的飞行、 大分子的热运动等等。
第1章 运动的描述
一、运动的绝对性和相对性
• • • • • • • 斗转星移,海陆变迁 自然界是不停运动的 电子饶着原子核运动 铁生锈,事物腐烂 离离原上草,一岁一苦荣 广义运动 少小离家老大还,乡音无改鬓毛衰 小时四条腿,长大两条腿,老了三条腿 奴隶社会-封建社会-资本主义社会-社会主义社 会…… 人类社会也是不停运动
当时间由t时刻增加了一定时间间隔时,通常会表述为 时间增加到 t t时刻。
当改变量为无限小量,如t 0时,符号“ ” 通常会改写,记为“ dt ”。
第1章 运动的描述
(三)积分的含义 一、问题的提出 1 求平面图形的面积
会求梯形的面积, 曲边梯形的面积怎样求?若 会,则可求出各平面图形的面积。 考虑如下曲边梯形面积的求法。
第1章 运动的描述
三、坐标系
为定量地描述物体位置而引入。 常用的有直角坐标系、自然坐标系、极坐标系、球 面坐标系或柱面坐标系等。
y
j
o k
i
直角坐标系 第1章 运动的描述
et
P*
en
en
x
P*
自然坐标系
et
z
四、物理模型 对真实的物理过程和对象,根据所讨论的问题 的基本要求对其进行理想化的简化,抽象为可以用 数学方法描述的理想模型。 如果我们研究某一物体的运动,而可以忽略其 大小和形状对物体运动的影响,若不涉及物体的转 动和形变,我们就可以把物体当作是一个具有质量 的点(即质点)来处理 .
显然:
C x Ax Bx
C y Ay By
第1章 运动的描述
矢量的加法: 两个矢量相加
C A B
A
B
C
C'
A B
B
矢量的减法: 两个矢量相减
C ' A B A (B)
差矢量方向:
A
减数终端→被减数终端
把 [ a , b ] 分 成 n个 小 y 区 间[ xi 1 , xi ], 长 度 为 x i x i x i 1 ;
在 每 个[ xi 1 , xi ] 上 任 取 一 点 i,
x1
xi 1 i x i
xn1
o a
b
x
以 [ xi 1 , xi ]为底, (i ) 为高的小矩形面积为 f
第1章 运动的描述
矢量的内积
(点乘、标乘):
o
180 , cos 1, a b ab , cos 0, a b 0 2
0, cos 1, a b ab
a b ab c abcos
o
z
x
cos x r cos y r cos z r
第1章 运动的描述
1-2 运动的描述
如果质点是运动的,则位矢 r
随时间不断变化,记为:
运动方程
y
y (t )
r (t ) x(t )i y(t ) j z(t )k
或分量式
r (t )
z (t )
点乘的微分
db da d (a b ) a b dt dt dt
db dat dt
叉积的微分
第1章 运动的描述
(二)“Δt”和“dt”的含义 符号“ ”一般表示改变量或者增加量。如果该 值为正,则表明增加;反之,则表明减少。
2. x v0 t 1 2 y 2 gt
g 2 y 2 x 2v 0
y 3 cos
2 2

6
t
x y 9 z0
为圆周运动
第1章 运动的描述
为抛体运动
1-2 运动的描述 2 位移
y
r1
o
A
r
y
B
yB yA
r2
x
r1
A
r
B
r2
xA xB xB x A
第1章 运动的描述
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
第1章 运动的描述
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
第1章 运动的描述
曲边梯形面积的计算: 在 [a , b] 内插入若干个分点, a x 0 x 1 x 2 x n 1 x n b ,
矢量的外积
(叉乘、矢乘):
a b b a
a b d
k
a a 0
i ax bx
a b
j ay by
i i j j k k 0 i j k, j k i , k i j
yB y A
o
x
称为点 A 到 把 由始点 A 指向终点 B 的有向线段r B 的位移矢量 , 简称位移. r r2 r1
第1章 运动的描述
经过时间间隔 t 后, 质点位置矢量发生变化,
位移 r r2 r1
r1 xAi yA j r2 xBi yB j
补充:(一)矢量和矢量运算
两种物理量: 标量:只有大小,没有方向。如质量, 速率, 温度…
矢量:既有大小又有方向。如速度, 加速度, 动量..
矢量 A : 它的大小和方向可用从始点O指向终
点P的有向线段OP表示,并标记为
o
*
A
A
*p
OP
在直角坐标系下:
A Ax i Ay j Az k
第1章 运动的描述
第1章 运动的描述
质点是经过科学抽象而形成的理想化的物理模 型 . 目的是为了突出研究对象的主要性质 , 暂不考 虑一些次要的因素 .
物体抽象为质点的条件:
1. 物体做平动; 物体不变形,不作转动 (此时物体上各点的速 度及加速度都相同,物 体上任一点可以代表所 有点的运动)。
0 i 1
第1章 运动的描述
记为
积分上限
积分和

积分下限
b
a
f ( x)dx S lim f (i )xi 0
i 1
n
被 积 函 数
被 积 表 达 式
积 分 变 量
[a, b] — —积分区间.
第1章 运动的描述
本章目录
1-0 内容提要
1-1 参考系 坐标系 物理模型 1-2 运动的描述 1-3 相对运动
a z (a y bz az by )i (az bx axbz ) j (axby a y bx )k
bz
第1章 运动的描述

a a (t )
b b (t )
d da (ka ) k , k为常量 dt dt
d da db (a b ) ; dt dt dt
第1章 运动的描述
力学——研究机械运动及其规律的物理学分支。
按研究内容分类
运动学 —— 研究物体运动的规律
力 学
动力学 —— 研究物体运动的原因
静力学 —— 研究物体平衡时的规律
第1章 运动的描述
机械运动:宏观物体之间(或物体内各部分之间)相对 位置的变化。

平动:物体各点的运动情况完全相同。
机械运动
Ai f ( i )xi
第1章 运动的描述
曲边梯形面积的近似值为
A f ( i )xi
i 1
n
当分割无限加细即小区间的最大长度 ,
max{ x1 , x2 ,xn } 0 时,
有,小矩形面积和
f ( )x
i 1 i
n
i
A,
n
即有曲边梯形面积计算公式 A lim f ( i )x i。 :
i j j k k i 0 a b a x bx a y b y a z bz
大小: d ab sin 方向:右手螺旋法则
, • a b b a a a = a 2, i i j j k k 1
第1章 运动的描述
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
第1章 运动的描述
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
第1章 运动的描述
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
第1章 运动的描述
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
第1章 运动的描述
在二维情况下:
Y
A Ax i Ay j
tg Ay Ax
Ay
O Ax X
如果 Ax i Ay j 和 B Bx i By j , 则有: A C Cx i C y j B A ( Ax Bx )i ( Ay By ) j
相关文档
最新文档