2018-2019学年人教A版高中数学必修一章末质量评估2练习含解析

合集下载

2018-2019学年高中数学 第一章 集合与函数概念训练卷(二)新人教A版必修1

2018-2019学年高中数学 第一章 集合与函数概念训练卷(二)新人教A版必修1

集合与函数概念(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{|20}A x x =-<,{}1,2,3B =,则A B =( )A .{}1,2,3B .{}1C .{}3D .∅2.设集合{}=1,2M ,则满足条件{}=1,2,3,4M N 的集合N 的个数是( )A .1B .3C .2D .43.下列函数中,在()0,2上为增函数的是( ) A .32y x =-+B .3y x=C .245y x x -=+D .23810y x x +=-4.若奇函数()f x 在[]3,7上是增函数,且最小值是1,则它在[7,3]--上是( ) A .增函数且最小值是1- B .增函数且最大值是1- C .减函数且最大值是1-D .减函数且最小值是1-5.已知集合{|P x y ==,集合{|Q y y =,则P 与Q 的关系是( ) A .P Q = B .P Q ⊆ C .P Q ⊇D .P Q =∅6.设()()()F x f x f x =+-,x ∈R ,若,2π⎡⎤-π-⎢⎥⎣⎦是函数F (x )的单调递增区间,则一定是()F x 单调递减区间的是( ) A .,02π⎡⎤-⎢⎥⎣⎦B .,2π⎡⎤π⎢⎥⎣⎦C .23π⎡⎤π,⎢⎥⎣⎦D .,223π⎡⎤π⎢⎥⎣⎦7.已知函数()2f x x bx c =++的图象的对称轴为直线x =1,则( ) A .()()1(12)f f f <<- B .()()12()1f f f <<- C .()())211(f f f -<<D .()())112(f f f -<<8.图中的图象所表示的函数的解析式为( )A .()10322y x x =-≤≤ B .()1232032y x x --=≤≤ C .()10232y x x =-≤≤- D .()1012y x x =-≤≤-9.已知()()121,2111,2x x x f x f x +≥⎧-<⎪⎪⎨⎪-⎪⎩=,则1746f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭( ) A .16-B .16C .56 D .56-10.函数()y f x =是R 上的偶函数,且在(]0-∞,上是增函数,若()()2f a f ≤, 则实数a 的取值范围是( ) A .2a ≤ B .2a ≥- C .22a -≤≤D .22a a ≤-≥或11.已知函数()()f x x ∈R 满足()(2)f x f x =-,若函数223y x x =--与()y f x =图像的交点为11(,)x y ,22(,)x y ,…,(,)m m x y ,则1mi x =∑( )A .0B .mC .2mD .4m12.已知()32f x x =-,()22g x x x =-,()()()()()()(),,g x f x g x F x f x f x g x ⎧⎪≥<⎨⎪⎩=若若,则()F x 的2最值是 ( )A .最大值为3,最小值1- B.最大值为7- C .最大值为3,无最小值 D .既无最大值,又无最小值二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.函数2y x =+________.14.有15人进家电超市,其中有9人买了电视,有7人买了电脑,两种均买了的有3人,则这两种都没买的有________人.15.若函数()f x 的定义域为[12]-,则函数2(3)f x -的定义域为________. 16.规定记号“∆”表示一种运算,即a b a b ∆=+,a ,b ∈R ,若13k ∆=, 则函数()f x k x ∆=的值域是________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知全集U =R ,集合{}|4A x x =>,{|66}B x x =-<<. (1)求AB 和A B ;(2)求U B ð;(3)定义{|,}A B x x A x B -=∈∉且,求A B -,()A A B --.18.(12分)已知函数()211x f x x ++=. (1)判断函数()f x 在区间[1,)+∞上的单调性,并用定义证明你的结论; (2)求该函数在区间[1]4,上的最大值与最小值.319.(12分)已知全集U =R ,集合A ={x |x ≤-a -1},B ={x |x >a +2},C ={x |x <0或x ≥4}都是U 的子集. 若()U AB C ⊆ð,问这样的实数a 是否存在?若存在,求出a 的取值范围;若不存在,请说明理由.20.(12分)已知a ,b 为常数,且a ≠0,f (x )=ax 2+bx ,f (2)=0,方程f (x )=x 有两个相等实根.(1)求函数f (x )的解析式; (2)当]2[1x ∈,时,求f (x )的值域;(3)若F (x )=f (x )-f (-x ),试判断F (x )的奇偶性,并证明你的结论.421.(12分)设f (x )为定义在R 上的偶函数,当0≤x ≤2时,y =x ;当x >2时,y =f (x )的图象是顶点为4(3)P ,且过点2(2)A ,的抛物线的一部分.(1)求函数f (x )在(),2-∞-上的解析式;(2)在图中的直角坐标系中画出函数f (x )的图象; (3)写出函数f (x )的值域和单调区间.22.(12分)定义在R 上的函数f (x ),满足当x >0时,f (x )>1,且对任意的x ,y ∈R ,有()()()·f x y f x f y +=,f (1)=2. (1)求f (0)的值;(2)求证:对任意x ∈R ,都有f (x )>0; (3)解不等式f (3-2x )>4.2018-2019学年必修一第一章训练卷集合与函数概念(二)答 案一、选择题 1.【答案】B【解析】∵集合20{|}{|}2A x x x x =-=<<,3{}12B =,,∴{}1A B =,故选B .2.【答案】D【解析】∵{}=1,2M ,{}=1,2,3,4MN .∴{}{}{}{}=3,41,3,42,3,41,2,3,4N 或或或, 即集合N 有4个.故选D . 3.【答案】D【解析】显然A 、B 两项在()0,2上为减函数,排除; 对C 项,函数在()2-∞,上为减函数,也不符合题意;对D 项,函数在4,3⎛+∞⎫- ⎪⎝⎭上为增函数,所以在()0,2上也为增函数,故选D .4.【答案】B【解析】∵奇函数在对称区间上的单调性相同,最值相反. ∴()y f x =在[7,3]--上有最大值1-且为增函数.故选B . 5.【答案】C【解析】{[)1,|P x y ===-+∞,{[)0,|Q y y ==+∞, 所以P Q ⊇.故选C . 6.【答案】B【解析】∵()()F x F x -=,∴()F x 是偶函数, 因而在,2π⎡⎤π⎢⎥⎣⎦上()F x 一定单调递减.故选B .7.【答案】B【解析】因为二次函数()f x f (x )的图象的对称轴为直线1x =,所以()()13f f -=. 又函数()f x f (x )的图象为开口向上的抛物线, 则()f x 在区间[1,)+∞上为增函数,故()()()123f f f <<,即()()12()1f f f <<-.故选B . 8.【答案】B【解析】01x ≤≤,32y x =,12x ≤≤,332y x =-.故选B . 9.【答案】A【解析】11121442f ⎛⎫=⨯-=- ⎪⎝⎭,7711111121166663f f f ⎛⎫⎛⎫⎛⎫=-+=+=⨯-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴171466f f ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,故选A .10.【答案】D【解析】∵()y f x =是偶函数,且在(]0-∞,上是增函数,∴()y f x =在[0,)+∞上是减函数,由()()2f a f ≤,得()()2f a f ≤, ∴2a ≥,得22a a ≤-≥或,故选D . 11.【答案】B【解析】因为()y f x =,223y x x =--都关于1x =对称, 所以它们交点也关于1x =对称, 当m 为偶数时,其和为22m m ⨯=,当m 为奇数时,其和为1212m m -⨯+=, 因此选B .12.【答案】B【解析】作出F (x )的图象,如图实线部分, 知有最大值而无最小值,且最大值不是3,故选B .二、填空题 13.【答案】(]4-∞,【解析】令t =()210x t t =-≥,22222421()4y x t t t +=+=---+=.又∵0t ≥,∴当1t =时,4max y =.故原函数的值域是(]4-∞,. 14.【答案】2【解析】结合Venn 图可知,两种都没买的有2人.15.【答案】1,22⎡⎤⎢⎥⎣⎦【解析】由1322x -≤-≤解得122x ≤≤,故定义域为1,22⎡⎤⎢⎥⎣⎦. 16.【答案】(1,)+∞【解析】由题意,113k k ∆=+=,得1k =.()11f x x x ∆=+=, 即()213124f x x ⎫+=+⎪⎭=,由于0x >,∴213124⎫+>⎪⎭,因此函数()f x 的值域为(1,)+∞. 三、解答题17.【答案】(1){|46}A B x x =<<,{}|6A B x x =>-;(2){|66}U B x x x =≥≤-或ð; (3)(){|6}U A B AB x x -==≥ð,(){|46}A A B x x --=<<.【解析】(1)∵{}|4A x x =>,{|66}B x x =-<< ∴{|46}A B x x =<<,{}|6AB x x =>-.(2){|66}U B x x x =≥≤-或ð. (3)∵定义{|,}A B x x A x B -=∈∉且, ∴(){|6}U A B AB x x -==≥ð,(){|46}A A B x x --=<<.18.【答案】(1)增函数,见解析;(2)95,32.【解析】(1)函数()f x 在[1,)+∞上是增函数. 证明:任取12,[,)1x x ∈+∞,且12x x <,则()()()()121212121221211111x x x x f x f x x x x x ++--=+++=+-. 易知120x x -<,12()11(0)x x ++>,所以()()120f x f x -<,即()()12f x f x <, 所以函数()f x 在[1,)+∞上是增函数.(2)由(1)知函数()f x 在[1]4,上是增函数,则函数()f x 的最大值为()945f =,最小值为()312f =.19.【答案】存在,3|2a a ⎧⎫-⎨⎩≤⎬⎭.【解析】因为()U A B C ⊆ð,所以应分两种情况.(1)若() U A B =∅ð,则A ∪B =R ,因此a +2≤-a -1,即a ≤32-.(2)若() U AB ≠∅ð,则a +2>-a -1,即a >32-.又A ∪B ={x |x ≤-a -1或x >a +2}, 所以()|2{}1U A B x a x a -<≤=-+ð,又()U AB C ⊆ð,所以a +2<0或-a -1≥4,即2a <-或a ≤-5,即2a <-. 又a >32-,故此时a 不存在.综上,存在这样的实数a ,且a 的取值范围是3|2a a ⎧⎫-⎨⎩≤⎬⎭.20.【答案】(1)f (x )=12-x 2+x ;(2)201⎡⎤⎢⎥⎣⎦,;(3)F (x )是奇函数,见解析.【解析】(1)由f (2)=0,得4a +2b =0,即2a +b =0.①方程f (x )=x ,即ax 2+bx =x ,即ax 2+(b -1)x =0有两个相等实根,且a ≠0,∴b -1=0,∴b =1,代入①得a =12-.∴f (x )=12-x 2+x .(2)由(1)知f (x )=12-(x -1)2+12.显然函数f (x )在[1]2,上是减函数,∴x =1时,f (x )max =12,x =2时,f (x )min =0. ∴]2[1x ∈,时,函数f (x )的值域是201⎡⎤⎢⎥⎣⎦,.(3)F (x )是奇函数.证明:()()2211()()(222)F x f x f x x x x x x ⎛⎫⎡⎤=--=-+----= ⎪⎢⎥⎝⎭⎣⎦+,∵F (-x )=2(-x )=-2x =-F (x ),∴F (x )是奇函数.21.【答案】(1)()23)24(f x x ++=-,,2()x ∈∞--;(2)见解析;(3){y |y ≤4},单调增区间为(],3-∞-和[0]3,.单调减区间为[30]-,和[3,)+∞. 【解析】(1)当x >2时,设f (x )=a (x -3)2+4.∵f (x )的图象过点A (2,2),∴f (2)=a (2-3)2+4=2,∴a =-2, ∴()23)24(f x x --+=-.设,2()x ∈∞--,则-x >2,∴()2()234f x x ---+=-. 又因为f (x )在R 上为偶函数,∴f (-x )=f (x ), ∴()23)24(f x x --+=-,即()23)24(f x x ++=-,,2()x ∈∞--. (2)图象如图所示.(3)由图象观察知f (x )的值域为{y |y ≤4}.单调增区间为(],3-∞-和[0]3,.单调减区间为[30]-,和[3,)+∞. 22.【答案】(1)1;(2)见解析;(3)1,2⎛∞-⎫ ⎪⎝⎭.【解析】(1)对任意x ,y ∈R ,()()()·f x y f x f y +=. 令x =y =0,得f (0)=f (0)·f (0),即f (0)·[f (0)-1]=0. 令y =0,得f (x )=f (x )·f (0),对任意x ∈R 成立,所以f (0)≠0,因此f (0)=1.(2)证明:对任意x ∈R ,有2·2222()()02x xx x x f x f f f f ⎡⎤⎛⎫⎛⎫⎛⎫===≥ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦+. 假设存在x 0∈R ,使f (x 0)=0,则对任意x >0,有f (x )=f [(x -x 0)+x 0]=f (x -x 0)·f (x 0)=0.这与已知x >0时,f (x )>1矛盾.所以,对任意x ∈R ,均有f (x )>0成立. (3)令x =y =1有f (1+1)=f (1)·f (1), 所以f (2)=2×2=4.任取x 1,x 2∈R ,且x 1<x 2,则f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)·f (x 1) -f (x 1)=f (x 1)·[f (x 2-x 1)-1].∵x 1<x 2,∴x 2-x 1>0,由已知f (x 2-x 1)>1,∴f (x 2-x 1)-1>0. 由(2)知x 1∈R ,f (x 1)>0.所以f (x 2)-f (x 1)>0,即f (x 1)<f (x 2). 故函数f (x )在(,)-∞+∞上是增函数.由f (3-2x )>4,得f (3-2x )>f (2),即3-2x >2.解得x <12. 所以,不等式的解集是1,2⎛∞-⎫ ⎪⎝⎭.。

人教A版高一数学必修第一册第一章《集合与常用逻辑用语》章末练习题卷含答案解析(33)

人教A版高一数学必修第一册第一章《集合与常用逻辑用语》章末练习题卷含答案解析(33)

第一章《集合与常用逻辑用语》章末练习题卷(共22题)一、选择题(共12题)1. 若命题 p:∃x 0∈Z ,e x 0<1,则 ¬p 为 ( ) A . ∀x ∈Z ,e x <1 B . ∀x ∈Z ,e x ≥1 C . ∀x ∉Z ,e x <1D . ∀x ∉Z ,e x ≥12. 已知 a,b ∈R ,则“1<b <a ”是“a −1>∣b −1∣”的 ( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件3. 命题“若 a ,b 都是偶数,则 a +b 是偶数”的否命题是 ( ) A .若 a ,b 都是偶数,则 a +b 不是偶数 B .若 a ,b 都是偶数,则 a +b 不是偶数 C .若 a ,b 不全是偶数,则 a +b 不是偶数 D .若 a +b 不是偶数,则 a ,b 不全是偶数4. 已知 x ∈R ,则“x 2>x ”是“x >1”的 ( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既非充分也非必要条件5. 下列表示正确的个数是 ( )(1)0∉∅;(2)∅⊆{1,2};(3){(x,y )∣∣∣{2x +y =10,3x −y =5}={3,4};(4)若 A ⊆B 则 A ∩B =A A . 3 B . 4 C . 2 D . 16. 命题“∀x ∈R ,(13)x>0”的否定是 ( ) A . ∃x 0∈R ,(13)x 0<0B . ∀x ∈R ,(13)x≤0 C . ∀x ∈R ,(13)x<0D . ∃x 0∈R ,(13)x 0≤07. 已知集合 A ={x∣x ≤1},B ={x∣−1<x <2},则 (∁RA )∩B 等于 ( ) A . {x∣1<x <2}B . {x∣x >1}C . {x∣1≤x <2}D . {x∣x ≥1}8. 已知集合 M 中的元素 x 满足 x =a +√2b ,其中 a,b ∈Z ,则下列实数中不属于集合 M 中元素的个数是 ( )① 0;② −1;③ 3√2−1;④ 3−2√2;⑤ √8;⑥ 1−√2A . 0B . 1C . 2D . 39. 设 x ,y 均为实数,则“x =0”是“xy =0”的 ( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件10. 已知集合 U =R ,A ={x ∣x 2<5,x ∈Z },B ={x ∣∣x <2且x ≠0},则图中阴影部分表示的集合为( )A . {2}B . {1,2}C . {0,2}D . {0,1,2}11. 已知集合 A ={x∣ x =3n +2,n ∈N },B ={6,8,10,12,14},则集合 A ∩B 中元素的个数为 ( ) A . 5 B . 4 C . 3 D . 212. 命题“∀x ∈R ,2x 2−1≤0”的否定是 ( ) A . ∀x ∈R ,2x 2−1≥0 B . ∃x ∈R ,2x 2−1≤0 C . ∃x ∈R ,2x 2−1>0D . ∀x ∈R ,2x 2−1>0二、填空题(共4题)13. 若对于两个由实数构成的集合 X ,Y ,集合的运算 X ⊕Y 定义为:X ⊕Y ={x +y∣ x ∈X,y ∈Y };集合的运算 X ⊗Y 定义为:X ⊗Y ={x ⋅y∣ x ∈X,y ∈Y },已知实数集合 X ={a +b √2∣ a,b ∈Q},X ={a +b √3∣ a,b ∈Q}.试写出一个实数 m ,使得 m ∈X ⊗Y 但 m ∉X ⊕Y ,则 m = .14. 在平面直角坐标系 xOy 中,若直线 y =2a 与函数 y =∣x −a ∣−1 的图象只有一个交点,则 a的值为 .15. 若 f (x ) 是偶函数,其定义域为 (−∞,+∞),且在[0,+∞) 上单调递减,设 f (−32)=m ,f (a 2+2a +52)=n ,则 m ,n 的大小关系是 .16. 已知集合 M ={x∣ x >2},集合 N ={x∣ x ≤1},则 M ∪N = .三、解答题(共6题)17.判断下列命题中p是q的什么条件.(1) p:x>1,q:x2>1;(2) p:△ABC有两个角相等,q:△ABC是正三角形;(3) 若a,b∈R,p:a2+b2=0,q:a=b=0.18.设集合A={x∈N∣ x<4},B={3,4,5,6}.(1) 用列举法写出集合A.(2) 求A∩B和A∪B.19.已知集合A={x∣ x2−ax+a2−19=0},B={x∣ x2−5x+6=0},是否存在a使A,B同时满足下列三个条件:(1)A≠B;(2)A∪B=B;(3)∅⫋(A∩B).若存在,求出a的值;若不存在,请说明理由.20.用列举法表示下列给定的集合.(1) 大于1且小于6的整数组成的集合A.(2) 方程x2−9=0的实数根组成的集合B.(3) 小于8的质数组成的集合C.(4) 一次函数y=x+3与y=−2x+6的图象的交点组成的集合D.21.真子集对于两个集合A,B,如果,并且B中至少有一个元素不属于A,那么集合A称为集合B 的真子集,记为或,读作“ ”或“ ”.问题:真子集与子集有什么区别?22.已知集合A={x∣ −4<x<6},B={x∣ x2−4ax+3a2=0}.(1) 若A∩B=∅,求实数a的取值范围;(2) 若A∪B=A,求实数a的取值范围.答案一、选择题(共12题) 1. 【答案】B【解析】若命题为 p:∃x 0∈Z ,e x 0<1, 则 ¬p:∀x 0∈Z ,e x ≥1. 故选:B .【知识点】全(特)称命题的否定2. 【答案】B【解析】因为 a −1>∣b −1∣⇔1−a <b −1<a −1⇔{2<a +b,b <a,所以当 1<b <a 时,a −1>∣b −1∣ 成立;当 a −1>∣b −1∣ 成立时,如取 b =12,a =2,此时 1<b <a 不成立, 所以 1<b <a 是 a −1>∣b −1∣ 的充分不必要条件. 【知识点】充分条件与必要条件3. 【答案】C【解析】否命题就是对原命题的条件和结论同时进行否定,则命题“若 a ,b 都是偶数,则 a +b 是偶数”的否命题为:若 a ,b 不都是偶数,则 a +b 不是偶数. 【知识点】全(特)称命题的否定4. 【答案】A【知识点】充分条件与必要条件5. 【答案】A【知识点】交、并、补集运算6. 【答案】D【解析】全称命题“∀x ∈R ,(13)x>0”的否定是把量词“∀”改为“∃”,并对结论进行否定,把“>”改为“≤”,即“∃x 0∈R ,(13)x 0≤0”.【知识点】全(特)称命题的否定7. 【答案】A【知识点】交、并、补集运算8. 【答案】A【解析】当 a =b =0 时,x =0;当 a =−1,b =0 时,x =−1; 当 a =−1,b =3 时,x =−1+3√2;3−2√2=√2)(3−2√2)(3+2√2)=6+4√2,即 a =6,b =4;当 a =0,b =2 时,x =2√2=√8;1−√2=√2(1−√2)(1+√2)=−1−√2,即 a =−1,b =−1.综上所述:0,−1,3√2−1,3−2√2,√8,1−√2 都是集合 M 中的元素. 【知识点】元素和集合的关系9. 【答案】A【知识点】充分条件与必要条件10. 【答案】C【解析】因为集合 U =R ,A ={x ∣x 2<5,x ∈Z }={−2,−1,0,1,2},B ={x ∣∣x <2且x ≠0},∁U B ={x ∣∣x ≥2且x =0}, 所以图中阴影部分表示的集合为 A ∩(∁U B )={0,2}. 【知识点】集合基本运算的Venn 图示11. 【答案】D【知识点】交、并、补集运算12. 【答案】C【知识点】全(特)称命题的否定二、填空题(共4题)13. 【答案】可填“(1+√2)(1+√3)”等【知识点】交、并、补集运算14. 【答案】 −12【知识点】函数的零点分布15. 【答案】 m ≥n【知识点】抽象函数、函数的奇偶性、函数的单调性16. 【答案】 (−∞,1]∪(2,+∞)【知识点】交、并、补集运算三、解答题(共6题)17. 【答案】(1) 因为“x>1”能推出“x2>1”,即p⇒q,但“x2>1”推不出“x>1”,如x=−2,即q⇏p,所以p是q的充分不必要条件.(2) 因为“△ABC有两个角相等”推不出“△ABC是正三角形”,即p⇏q,但“△ABC是正三角形”能推出“△ABC有两个角相等”,即q⇒p,所以p是q的必要不充分条件.(3) 若a2+b2=0,则a=b=0,即p⇒q;若a=b=0,则a2+b2=0,即q⇒p,故p⇔q,所以p是q的充要条件.【知识点】充分条件与必要条件18. 【答案】(1) 因为集合A={x∈N∣ x<4},所以A={0,1,2,3}.(2) 因为B={3,4,5,6},所以A∩B={3},A∪B={0,1,2,3,4,5,6}.【知识点】交、并、补集运算、集合的表示方法19. 【答案】假设存在a使得A,B满足条件,由题意得B={2,3}.因为A∪B=B,所以A⊆B,即A=B或A⫋B.由条件(1)A≠B,可知A⫋B.又因为∅⫋(A∩B),所以A≠∅,即A={2}或{3}.当A={2}时,代入得a2−2a−15=0,即a=−3或a=5.经检验a=−3时,A={2,−5},与A={2}矛盾,舍去;a=5时,A={2,3},与A={2}矛盾,舍去.当A={3}时,代入得a2−3a−10=0,即a=5或a=−2.经检验a=−2时,A={3,−5},与A={3}矛盾,舍去;a=5时,A={2,3},与A={3}矛盾,舍去.综上所述,不存在实数a使得A,B满足条件.【知识点】包含关系、子集与真子集、交、并、补集运算20. 【答案】(1) A={2,3,4,5}.(2) B={−3,3}.(3) C={2,3,5,7}.(4) D={(1,4)}.【知识点】集合的概念21. 【答案】A⊆B;A⫋B;B⫌A;A真包含于B;B真包含A在真子集的定义中,A⫋B首先要满足A⊆B,其次至少有一个元素x满足x∈B,但x∉A,也就是说集合B至少要比集合A多一个元素.【知识点】包含关系、子集与真子集22. 【答案】(1) a≤−4或a≥6.<a<2.(2) −43【知识点】交、并、补集运算。

新教材 人教A版高中数学选择性必修第一册全册各章节课后练习题 含解析

新教材 人教A版高中数学选择性必修第一册全册各章节课后练习题 含解析

选择性必修第一册全册课后练习题本文档还有大量公式,在网页中显示可能会出现位置错误的情况,下载后均可正常显示,请放心下载练习!第一章空间向量与立体几何................................................................................................ - 2 -1.1.1空间向量及其线性运算......................................................................................... - 2 -1.1.2空间向量的数量积运算......................................................................................... - 8 -1.2空间向量基本定理.................................................................................................. - 15 -1.3.1空间直角坐标系 .................................................................................................. - 22 -1.3.2空间运算的坐标表示........................................................................................... - 28 -1.4.1.1空间向量与平行关系 ....................................................................................... - 34 -1.4.1.2空间向量与垂直关系 ....................................................................................... - 42 -1.4.2用空量研究距离、夹角问题............................................................................... - 51 -章末测验 ....................................................................................................................... - 64 - 第二章直线和圆的方程...................................................................................................... - 78 -2.1.1倾斜角与斜率 ...................................................................................................... - 78 -2.1.2两条直线平行和垂直的判定............................................................................... - 83 -2.2.1直线的点斜式方程............................................................................................... - 87 -2.2.2直线的两点式方程............................................................................................... - 92 -2.2.3直线的一般式方程............................................................................................... - 97 -2.3.1两条直线的交点坐标......................................................................................... - 102 -2.3.2两点间的距离公式............................................................................................. - 102 -2.3.3点到直线的距离公式......................................................................................... - 107 -2.3.4两条平行直线间的距离..................................................................................... - 107 -2.4.1圆的标准方程 .................................................................................................... - 113 -2.4.2圆的一般方程 .................................................................................................... - 118 -2.5.1直线与圆的位置关系......................................................................................... - 122 -2.5.2圆与圆的位置关系............................................................................................. - 128 -章末测验 ..................................................................................................................... - 135 - 第三章圆锥曲线的方程.................................................................................................... - 144 -3.1.1椭圆及其标准方程............................................................................................. - 144 -3.1.2.1椭圆的简单几何性质 ..................................................................................... - 150 -3.1.2.2椭圆的标准方程及性质的应用...................................................................... - 156 -3.2.1双曲线及其标准方程......................................................................................... - 164 -3.2.2双曲线的简单几何性质..................................................................................... - 171 -3.3.1抛物线及其标准方程......................................................................................... - 178 -3.3.2抛物线的简单几何性质..................................................................................... - 184 -章末测验 ..................................................................................................................... - 191 - 模块综合测验 ..................................................................................................................... - 202 -第一章 空间向量与立体几何1.1.1空间向量及其线性运算一、选择题1.空间任意四个点A ,B ,C ,D ,则DA →+CD →-CB →等于( ) A .DB → B .AC → C .AB → D .BA → D [DA →+CD →-CB →=DA →+BD →=BA →.]2.设有四边形ABCD ,O 为空间任意一点,且AO →+OB →=DO →+OC →,则四边形ABCD 是( )A .平行四边形B .空间四边形C .等腰梯形D .矩形A [∵AO →+OB →=DO →+OC →,∴AB →=DC →. ∴AB →∥DC →且|AB →|=|DC →|. ∴四边形ABCD 为平行四边形.]3.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A ,B ,C 一定共面的是( )A .OM →=OA →+OB →+OC → B .OM →=2OA →-OB →-OC → C .OM →=OA →+12OB →+13OC →D .OM →=13OA →+13OB →+13OC → D [由OM →=13OA →+13OB →+13OC →,可得3OM →=OA →+OB →+OC →⇒OM →-OA →+OM →-OB →+OM →-OC →=0, 即AM →=-BM →-CM →.所以AM →与BM →,CM →在一个平面上,即点M 与点A ,B ,C 一定共面.] 4.若空间中任意四点O ,A ,B ,P 满足OP →=mOA →+nOB →,其中m +n =1,则( )A .P ∈AB B .P ∉ABC .点P 可能在直线AB 上D .以上都不对A [因为m +n =1,所以m =1-n , 所以OP →=(1-n )OA →+nOB →, 即OP →-OA →=n (OB →-OA →), 即AP →=nAB →,所以AP →与AB →共线. 又AP →,AB →有公共起点A ,所以P ,A ,B 三点在同一直线上, 即P ∈AB .]5.已知在长方体ABCD -A 1B 1C 1D 1中,点E 是A 1C 1的中点, 点F 是AE 的三等分点,且AF =12EF ,则AF →=( )A .AA 1→+12AB →+12AD → B .12AA 1→+12AB →+12AD →C .12AA 1→+16AB →+16AD → D .13AA 1→+16AB →+16AD →D [如图所示,AF →=13AE →,AE →=AA 1→+A 1E →,A 1E →=12A 1C 1→,A 1C 1→=A 1B 1→+A 1D 1→,A 1B 1→=AB →,A 1D 1→=AD →,所以AF →=13⎝ ⎛⎭⎪⎫AA 1→+12A 1C 1→=13AA 1→+16AB →+16AD →,故选D.]二、填空题6.已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若由OM →=-2OA →+OB →+λOC →确定的点M 与A ,B ,C 共面,则λ=________.2 [由M 、A 、B 、C 四点共面知:-2+1+λ=1,即λ=2.]7.在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,用a ,b ,c 表示D 1M →,则D 1M →=________.12a -12b +c [D 1M →=D 1D →+DM → =A 1A →+12(DA →+DC →) =c +12(-A 1D 1→+A 1B 1→) =12a -12b +c .]8.在空间四边形ABCD 中,E ,F 分别是AB ,CD 的中点,则EF →和AD →+BC →的关系是________.(填“平行”,“相等”或“相反”)平行 [设G 是AC 的中点,则EF →=EG →+GF →=12BC →+12AD →=12(AD →+BC →) 所以2EF →=AD →+BC →, 从而EF →∥(AD →+BC →).] 三、解答题9.如图,在空间四边形ABCD 中,G 为△BCD 的重心,E ,F 分别为边CD 和AD 的中点,试化简AG →+13BE →-12AC →,并在图中标出化简结果的向量.[解] ∵G 是△BCD 的重心,BE 是CD 边上的中线,∴GE →=13BE →.又12AC →=12(DC →-DA →)=12DC →-12DA →=DE →-DF →=FE →, ∴AG →+13BE →-12AC →=AG →+GE →-FE →=AF →(如图所示).10.在长方体ABCD -A 1B 1C 1D 1中,M 为DD 1的中点,点N 在AC 上,且AN ∶NC =2∶1,求证:A 1N →与A 1B →,A 1M →共面.[证明] ∵A 1B →=AB →-AA 1→, A 1M →=A 1D 1→+D 1M →=AD →-12AA 1→, AN →=23AC →=23(AB →+AD →), ∴A 1N →=AN →-AA 1→ =23(AB →+AD →)-AA 1→=23(AB →-AA 1→)+23(AD →-12AA 1→) =23A 1B →+23A 1M →, ∴A 1N →与A 1B →,A 1M →共面.11.(多选题)若A ,B ,C ,D 为空间不同的四点,则下列各式为零向量的是( ) A .AB →+2BC →+2CD →+DC → B .2AB →+2BC →+3CD →+3DA →+AC →C.AB →+CA →+BD →D.AB →-CB →+CD →-AD →BD [A 中,AB →+2BC →+2CD →+DC →=AB →+2BD →+DC →=AB →+BD →+BD →+DC →=AD →+BC →;B 中,2AB →+2BC →+3CD →+3DA →+AC →=2AC →+3CA →+AC →=0;C 中,AB →+CA →+BD →=AD →+CA →;D 中,AB →-CB →+CD →-AD →=AB →+BC →+CD →+DA →表示A →B →C →D →A 恰好形成一个回路,结果必为0.]12.(多选题)有下列命题,其中真命题的有( ) A .若AB →∥CD →,则A ,B ,C ,D 四点共线 B .若AB →∥AC →,则A ,B ,C 三点共线C .若e 1,e 2为不共线的非零向量,a =4e 1-25e 2,b =-e 1+110e 2,则a ∥b D .若向量e 1,e 2,e 3是三个不共面的向量,且满足等式k 1e 1+k 2e 2+k 3e 3=0,则k 1=k 2=k 3=0BCD [根据共线向量的定义,若AB →∥CD →,则AB ∥CD 或A ,B ,C ,D 四点共线,故A 错;因为AB →∥AC →且AB →,AC →有公共点A ,所以B 正确;由于a =4e 1-25e 2=-4-e 1+110e 2=-4b ,所以a ∥b ,故C 正确;易知D 也正确.]13.(一题两空)已知A ,B ,C 三点共线,则对空间任一点O ,若OA →=2OB →+μOC →,则μ=________;存在三个不为0的实数λ,m ,n ,使λOA →+mOB →+nOC →=0,那么λ+m +n 的值为________.-1 0 [由A 、B 、C 三点共线,∴2+μ=1,∴μ=-1,又由λOA →+mOB →+nOC →=0得OA →=-m λOB →-n λOC →由A ,B ,C 三点共线知-m λ-nλ=1,则λ+m +n =0.]14.设e 1,e 2是平面上不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,若A ,B ,D 三点共线,则实数k 为________.-8 [因为BD →=CD →-CB →=e 1-4e 2,AB →=2e 1+k e 2,又A ,B ,D 三点共线,由共线向量定理得12=-4k ,所以k =-8.]15.如图所示,已知四边形ABCD 是平行四边形,点P 是ABCD 所在平面外的一点,连接P A ,PB ,PC ,PD .设点E ,F ,G ,H 分别为△P AB ,△PBC ,△PCD ,△PDA 的重心.(1)试用向量方法证明E ,F ,G ,H 四点共面;(2)试判断平面EFGH 与平面ABCD 的位置关系,并用向量方法证明你的判断. [证明] (1)分别连接PE ,PF ,PG ,PH 并延长,交对边于点M ,N ,Q ,R ,连接MN ,NQ ,QR ,RM ,∵E ,F ,G ,H 分别是所在三角形的重心,∴M ,N ,Q ,R 是所在边的中点,且PE →=23PM →,PF →=23PN →,PG →=23PQ →,PH →=23PR →.由题意知四边形MNQR 是平行四边形,∴MQ →=MN →+MR →=(PN →-PM →)+(PR →-PM →)=32(PF →-PE →)+32(PH →-PE →)=32(EF →+EH →).又MQ →=PQ →-PM →=32PG →-32PE →=32EG →.∴EG →=EF →+EH →,由共面向量定理知,E ,F ,G ,H 四点共面.(2)平行.证明如下:由(1)得MQ →=32EG →,∴MQ →∥EG →, ∴EG →∥平面ABCD .又MN →=PN →-PM →=32PF →-32PE → =32EF →,∴MN →∥EF →. 即EF ∥平面ABCD . 又∵EG ∩EF =E ,∴平面EFGH 与平面ABCD 平行1.1.2空间向量的数量积运算一、选择题1.已知a ⊥b ,|a |=2,|b |=3,且(3a +2b )⊥(λa -b ),则λ等于( ) A .32 B .-32 C .±32 D .1A [∵a ⊥b ,∴a ·b =0,∵3a +2b ⊥λa -b ,∴(3a +2b )·(λa -b )=0, 即3λa 2+(2λ-3)a ·b -2b 2=0,∴12λ-18=0,解得λ=32.]2.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( )A .a 2B .12a 2C .14a 2D .34a 2C [AE →·AF →=12(AB →+AC →)·12AD →=14(AB →·AD →+AC →·AD →)=14⎝ ⎛⎭⎪⎫a ×a ×12+a ×a ×12=14a 2.]3.已知长方体ABCD -A 1B 1C 1D 1,则下列向量的数量积一定不为0的是( ) A .AD 1→·B 1C →B .BD 1→·AC →C .AB →·AD 1→ D .BD 1→·BC →D [对于选项A ,当四边形ADD 1A 1为正方形时,可得AD 1⊥A 1D ,而A 1D ∥B 1C ,可得AD 1⊥B 1C ,此时有AD 1→·B 1C →=0;对于选项B ,当四边形ABCD 为正方形时,AC ⊥BD ,易得AC ⊥平面BB 1D 1D ,故有AC ⊥BD 1,此时有BD 1→·AC →=0;对于选项C ,由长方体的性质,可得AB ⊥平面ADD 1A 1,可得AB ⊥AD 1,此时必有AB →·AD 1→=0;对于选项D ,由长方体的性质,可得BC ⊥平面CDD 1C 1,可得BC ⊥CD 1,△BCD 1为直角三角形,∠BCD 1为直角,故BC 与BD 1不可能垂直,即BD 1→·BC →≠0.故选D.]4.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,向量BA 1→与向量AC →所成的角为( )A .60°B .150°C .90°D .120°D [BA 1→=BA →+AA 1→,|BA 1→|=2a ,AC →=A B →+AD →,|AC →|=2a .∴BA 1→·AC →=BA →·AB →+BA →·AD →+AA 1→·AB →+AA 1→·AD →=-a 2. ∴cos 〈BA 1→,AC →〉=-a 22a ·2a =-12.∴〈BA 1→,AC →〉=120°.]5.如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,AB =1,AD =2,AA ′=3,∠BAD =90°,∠BAA ′=∠DAA ′=60°,则AC ′的长为( )A .13B .23C .33D .43B [∵AC ′→=AB →+BC →+CC ′→,∴AC ′→2=(AB →+BC →+CC ′→)2=AB →2+BC →2+CC ′→2+2(AB →·BC →+AB →·CC ′→+BC →·CC ′→) =12+22+32+2(0+1×3cos 60°+2×3cos 60°) =14+2×92=23,∴|AC ′→|=23,即AC ′的长为23.] 二、填空题6.已知a ,b 是空间两个向量,若|a |=2,|b |=2,|a -b |=7,则cos 〈a ,b 〉=________.18[将|a -b |=7两边平方,得(a -b )2=7. 因为|a |=2,|b |=2,所以a ·b =12.又a ·b =|a ||b |cos 〈a ,b 〉,故cos 〈a ,b 〉=18.]7.已知a ,b 是异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b ,且AB =2,CD =1,则a ,b 所成的角是________.60° [AB →=AC →+CD →+DB →,∴CD →·AB →=CD →·(AC →+CD →+DB →)=|CD →|2=1, ∴cos 〈CD →,AB →〉=CD →·AB →|CD →||AB →|=12,∴异面直线a ,b 所成角是60°.]8.已知|a |=2,|b |=1,〈a ,b 〉=60°,则使向量a +λb 与λa -2b 的夹角为钝角的实数λ的取值范围是________.(-1-3,-1+3) [由题意知 ⎩⎨⎧(a +λb )·(λa -2b )<0,cos 〈a +λb ,λa -2b 〉≠-1. 即⎩⎨⎧(a +λb )·(λa -2b )<0,(a +λb )·(λa -2b )≠-|a +λb ||λa -2b |,得λ2+2λ-2<0.∴-1-3<λ<-1+ 3.] 三、解答题9.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB →=a ,AD →=b ,AP →=c .(1)试用a ,b ,c 表示出向量BM →; (2)求BM 的长.[解] (1)∵M 是PC 的中点,∴BM →=12(BC →+BP →)=12[AD →+(AP →-AB →)] =12[b +(c -a )]=-12a +12b +12c .(2)由于AB =AD =1,P A =2,∴|a |=|b |=1,|c |=2,由于AB ⊥AD ,∠P AB =∠P AD =60°,∴a·b =0,a·c =b·c =2·1·cos 60°=1, 由于BM →=12(-a +b +c ),|BM →|2=14(-a +b +c )2=14[a 2+b 2+c 2+2(-a·b -a·c +b·c )]=14[12+12+22+2(0-1+1)]=32.∴|BM →|=62,∴BM 的长为62.10.如图,已知直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值. [解] (1)证明:设CA →=a ,CB →=b ,CC ′→=c , 根据题意得|a |=|b |=|c |,且a·b =b·c =c·a =0. ∴CE →=b +12c ,A ′D →=-c +12b -12a .∴CE →·A ′D →=⎝ ⎛⎭⎪⎫b +12c ·⎝ ⎛⎭⎪⎫-c +12b -12a =-12c 2+12b 2=0, ∴CE →⊥A ′D →,即CE ⊥A ′D .(2)∵AC ′→=-a +c ,∴|AC ′→|=2|a |,|CE →|=52|a |, ∵AC ′→·CE →=(-a +c )·⎝ ⎛⎭⎪⎫b +12c =12c 2=12|a |2, ∴cos 〈AC ′→,CE →〉=12|a |22×52|a |2=1010.∴异面直线CE 与AC ′所成角的余弦值为1010.11.(多选题)在正方体ABCD -A 1B 1C 1D 1中,下列命题正确的有( ) A .(AA 1→+AD →+AB →)2=3AB →2 B .A 1C →·(A 1B 1→-A 1A →)=0 C .AD 1→与A 1B →的夹角为60° D .正方体的体积为|AB →·AA 1→·AD →|AB [如图,(AA 1→+AD →+AB →)2=(AA 1→+A 1D 1→+D 1C 1→)2=AC 1→2=3AB →2;A 1C →·(A 1B 1→-A 1A →)=A 1C →·AB 1→=0;AD 1→与A 1B →的夹角是D 1C →与D 1A →夹角的补角,而D 1C →与D 1A →的夹角为60°,故AD 1→与A 1B →的夹角为120°;正方体的体积为|AB →||AA 1→||AD →|.故选AB.]12.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,若E 是底面正方形A 1B 1C 1D 1的中心, 则AC 1→与CE →( )A .重合B .平行但不重合C .垂直D .无法确定C [AC 1→=AB →+AD →+AA 1→,CE →=CC 1→+C 1E →=AA 1→-12(AB →+AD →),于是AC 1→·CE →=(AB →+AD →+AA 1→)·⎣⎢⎡⎦⎥⎤AA 1-12(AB →+AD →)=AB →·AA 1→-12AB →2-12AB →·AD →+AD →·AA 1→-12AD →·AB →-12AD →2+AA 1→2-12AA 1→·AB →-12AA 1→·AD →=0-12-0+0-0-12+1-0-0=0,故AC 1→⊥CE →.]13.(一题两空)如图,在长方体ABCD -A 1B 1C 1D 1中,设AD =AA 1=1,AB =2,P 是C 1D 1的中点,则B 1C →·A 1P →=________,B 1C →与A 1P →所成角的大小为________.1 60° [法一:连接A 1D ,则∠P A 1D 就是B 1C →与A 1P →所成角.连接PD ,在△P A 1D 中,易得P A 1=DA 1=PD =2,即△P A 1D 为等边三角形,从而∠P A 1D =60°,即B 1C →与A 1P →所成角的大小为60°.因此B 1C →·A 1P →=2×2×cos 60°=1.法二:根据向量的线性运算可得B 1C →·A 1P →=(A 1A →+AD →)·⎝⎛⎭⎪⎫AD →+12AB →=AD →2=1. 由题意可得P A 1=B 1C =2,则2×2×cos 〈B 1C →,A 1P →〉=1,从而〈B 1C →,A 1P →〉=60°.]14.已知在正四面体D -ABC 中,所有棱长都为1,△ABC 的重心为G ,则DG 的长为________.63 [如图,连接AG 并延长交BC 于点M ,连接DM ,∵G 是△ABC 的重心,∴AG =23AM ,∴AG →=23AM →,DG →=DA →+AG →=DA →+23AM →=DA →+23(DM →-DA →)=DA →+23⎣⎢⎡⎦⎥⎤12(DB →+DC →)-DA →=13(DA →+DB →+DC →),而(DA →+DB →+DC →)2=DA →2+DB →2+DC →2+2DA →·DB →+2DB →·DC →+2DC →·DA →=1+1+1+2(cos 60°+cos 60°+cos 60°)=6,∴|DG →|=63.]15.如图,正四面体V -ABC 的高VD 的中点为O ,VC 的中点为M .(1)求证:AO ,BO ,CO 两两垂直;(2)求〈DM →,AO →〉.[解] (1)证明:设VA →=a ,VB →=b ,VC →=c ,正四面体的棱长为1, 则VD →=13(a +b +c ),AO →=16(b +c -5a ), BO →=16(a +c -5b ),CO →=16(a +b -5c ),所以AO →·BO →=136(b +c -5a )·(a +c -5b )=136(18a ·b -9|a |2)=136(18×1×1×cos 60°-9)=0,所以AO →⊥BO →,即AO ⊥BO .同理,AO ⊥CO ,BO ⊥CO . 所以AO ,BO ,CO 两两垂直.(2)DM →=DV →+VM →=-13(a +b +c )+12c =16(-2a -2b +c ),所以|DM →|=⎣⎢⎡⎦⎥⎤16(-2a -2b +c )2=12. 又|AO →|=⎣⎢⎡⎦⎥⎤16(b +c -5a )2=22,DM →·AO →=16(-2a -2b +c )·16(b +c -5a )=14, 所以cos 〈DM →,AO →〉=1412×22=22. 又〈DM →,AO →〉∈[0,π], 所以〈DM →,AO →〉=π4.1.2空间向量基本定理一、选择题1.若向量{a ,b ,c }是空间的一个基底,则一定可以与向量p =2a +b ,q =2a-b 构成空间的另一个基底的向量是( )A .aB .bC .cD .a +bC [由p =2a +b ,q =2a -b 得a =14p +14q ,所以a 、p 、q 共面,故a 、p 、q 不能构成空间的一个基底,排除A ;因为b =12p -12q ,所以b 、p 、q 共面,故b 、p 、q 不能构成空间的一个基底,排除B ;因为a +b =34p -14q ,所以a +b 、p 、q 共面,故a +b 、p 、q 不能构成空间的一个基底,排除D.]2.在平行六面体ABCD -A 1B 1C 1D 1中,M 是上底面对角线AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则B 1M →可表示为( )A .12a +12b +cB .12a -12b +cC .-12a -12b +cD .-12a +12b +cD [由于B 1M →=B 1B →+BM →=B 1B →+12(BA →+BC →) =-12a +12b +c ,故选D.]3.若向量MA →,MB →,MC →的起点M 与终点A ,B ,C 互不重合,且点M ,A ,B ,C 中无三点共线,满足下列关系(O 是空间任一点),则能使向量MA →,MB →,MC →成为空间一个基底的关系是( )A .OM →=13OA →+13OB →+13OC → B .MA →≠MB →+MC → C .OM →=OA →+OB →+OC →D .MA →=2MB →-MC →C [若MA →,MB →,MC →为空间一组基向量,则M ,A ,B ,C 四点不共面.选项A 中,因为13+13+13=1,所以点M ,A ,B ,C 共面;选项B 中,MA →≠MB →+MC →,但可能存在实数λ,μ使得MA →=λMB →+μMC →,所以点M ,A ,B ,C 可能共面;选项D 中,四点M ,A ,B ,C 显然共面.故选C.]4.空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM →=2MA →,N 为BC 中点,则MN →为( )A .12a -23b +12cB .-23a +12b +12cC .12a +12b -23cD .23a +23b -12cB [MN →=MA →+AB →+BN →=13OA →+OB →-OA →+12(OC →-OB →)=-23OA →+12OB →+12OC →=-23a +12b +12c .]5.平行六面体ABCD -A 1B 1C 1D 1中,向量AB →,AD →,AA 1→两两的夹角均为60°且|AB →|=1,|AD →|=2,|AA 1→|=3,则|AC 1→|等于( )A .5B .6C .4D .8A [在平行六面体ABCD -A 1B 1C 1D 1中有,AC 1→=AB →+AD →+CC 1→=AB →+AD →+AA 1→所以有|AC 1→|=|AB →+AD →+AA 1→|,于是有|AC 1→|2=|AB →+AD →+AA 1→|2=|AB →|2+|AD →|2+|AA 1→|2+2|AB →|·|AD →|·cos 60°+2|AB →|·|AA 1→|·cos 60°+2|AD →||AA 1→|·cos 60°=25,所以|AC 1→|=5.]二、填空题6.在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________.(用a ,b ,c 表示)12a +14b +14c [因为在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,所以OE →=12(OA →+OD →)=12OA →+12OD →=12a +12×12(OB →+OC →)=12a +14(b +c )=12a +14b +14c .]7.已知{a ,b ,c }是空间的一个单位正交基底,{a +b ,a -b ,c }是空间的另一个基底,若向量m 在基底{a ,b ,c }下表示为m =3a +5b +9c ,则m 在基底{a +b ,a -b,3c }下可表示为________.4(a +b )-(a -b )+3(3c ) [由题意知,m =3a +5b +9c ,设m =x (a +b )+y (a -b )+z (3c )则有⎩⎨⎧ x +y =3x -y =53z =9,解得⎩⎨⎧x =4y =-1z =3.则m 在基底{a +b ,a -b,3c }可表示为m =4(a +b )-(a -b )+3(3c ).] 8.在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G 为BD 上一点,BG =2GD ,P A →=a ,PB →=b ,PC →=c ,试用基底{a ,b ,c }表示向量PG →=________.23a -13b +23c [因为BG =2GD ,所以BG →=23BD →. 又BD →=BA →+BC →=P A →-PB →+PC →-PB →=a +c -2b , 所以PG →=PB →+BG →=b +23(a +c -2b ) =23a -13b +23c .] 三、解答题9.如图所示,正方体OABC -O ′A ′B ′C ′,且OA →=a ,OC →=b ,OO ′→=c .(1)用a ,b ,c 表示向量OB ′→,AC ′→;(2)设G ,H 分别是侧面BB ′C ′C 和O ′A ′B ′C ′的中心,用a ,b ,c 表示GH →.[解] (1)OB ′→=OB →+BB ′→=OA →+OC →+OO ′→=a +b +c . AC ′→=AC →+CC ′→=AB →+AO →+AA ′→=OC →+OO ′→-OA →=b +c -a . (2)法一:连接OG ,OH (图略), 则GH →=GO →+OH →=-OG →+OH → =-12(OB ′→+OC →)+12(OB ′→+OO ′→) =-12(a +b +c +b )+12(a +b +c +c ) =12(c -b ).法二:连接O ′C (图略),则GH →=12CO ′→=12(OO ′→-OC →) =12(c -b ).10.如图,在平行六面体ABCD -A 1B 1C 1D 1中,MA →=-13AC →,ND →=13A 1D →,设AB →=a ,AD →=b ,AA 1→=c ,试用a ,b ,c 表示MN →.[解] 连接AN ,则MN →=MA →+AN →.由已知可得四边形ABCD 是平行四边形,从而可得 AC →=AB →+AD →=a +b , MA →=-13AC →=-13(a +b ), 又A 1D →=AD →-AA 1→=b -c ,故AN →=AD →+DN →=AD →-ND →=AD →-13A 1D →=b -13(b -c ), 所以MN →=MA →+AN → =-13(a +b )+b -13(b -c ) =13(-a +b +c ).11.(多选题)已知a ,b ,c 是不共面的三个向量,则下列向量组中,不能构成一个基底的一组向量是( )A .2a ,a -b ,a +2bB .2b ,b -a ,b +2aC .a,2b ,b -cD .c ,a +c ,a -cABD [对于A ,因为2a =43(a -b )+23(a +2b ),得2a 、a -b 、a +2b 三个向量共面,故它们不能构成一个基底;对于B ,因为2b =43(b -a )+23(b +2a ),得2b 、b -a 、b +2a 三个向量共面,故它们不能构成一个基底;对于C ,因为找不到实数λ、μ,使a =λ·2b +μ(b -c )成立,故a 、2b 、b -c 三个向量不共面,它们能构成一个基底;对于D ,因为c =12(a +c )-12(a -c ),得c 、a +c 、a -c 三个向量共面,故它们不能构成一个基底,故选ABD.]12.(多选题)给出下列命题,正确命题的有( )A .若{a ,b ,c }可以作为空间的一个基底,d 与c 共线,d ≠0,则{a ,b ,d }也可以作为空间的一个基底B .已知向量a ∥b ,则a ,b 与任何向量都不能构成空间的一个基底C .A ,B ,M ,N 是空间四点,若BA →,BM →,BN →不能构成空间的一个基底,则A ,B ,M ,N 四点共面D .已知{a ,b ,c }是空间的一个基底,若m =a +c ,则{a ,b ,m }也是空间的一个基底ABCD [根据基底的概念,知空间中任何三个不共面的向量都可作为空间的一个基底.显然B 正确.C 中由BA →,BM →,BN →不能构成空间的一个基底,知BA →,BM →,BN →共面.又BA →,BM →,BN →过相同点B ,知A ,B ,M ,N 四点共面.所以C 正确.下面证明AD 正确:A 假设d 与a ,b 共面,则存在实数λ,μ,使得d =λa +μb ,∵d 与c 共线,c ≠0,∴存在实数k ,使得d =k c .∵d ≠0,∴k ≠0,从而c =λk a +μk b ,∴c 与a ,b 共面,与条件矛盾,∴d 与a ,b 不共面.同理可证D 也是正确的.于是ABCD 四个命题都正确,故选ABCD.]13.(一题两空)已知空间的一个基底{a ,b ,c },m =a -b +c ,n =x a +y b +c ,若m 与n 共线,则x =________,y =________.1 -1 [因为m 与n 共线, 所以存在实数λ,使m =λn ,即a -b +c =λx a +λy b +λc ,于是有⎩⎨⎧1=λx ,-1=λy ,1=λ,解得⎩⎨⎧x =1,y =-1.]14.(一题多空)已知e 1,e 2是空间单位向量,e 1·e 2=12.若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0=________,y 0=________,|b |=________.1 2 22 [由题意可令b =x 0e 1+y 0e 2+e 3,其中|e 3|=1,e 3⊥e i ,i =1,2.由b ·e 1=2得x 0+y 02=2,由b ·e 2=52得x 02+y 0=52,解得x 0=1,y 0=2,∴|b |=(e 1+2e 2+e 3)2=2 2.]15.在平行六面体ABCD -A 1B 1C 1D 1中,设AB →=a ,AD →=b ,AA 1→=c ,E ,F 分别是AD 1,BD 的中点.(1)用向量a ,b ,c 表示D 1B →,EF →;(2)若D 1F →=x a +y b +z c ,求实数x ,y ,z 的值. [解] (1)如图,D 1B →=D 1D →+DB →=-AA 1→+AB →-AD →=a -b -c ,EF →=EA →+AF →=12D 1A →+12AC →=-12(AA 1→+AD →)+12(AB →+AD →)=12(a -c ). (2)D 1F →=12(D 1D →+D 1B →)=12(-AA 1→+AB →-AD 1→) =12(-AA 1→+AB →-AD →-DD 1→) =12(a -c -b -c )=12a -12b -c , ∴x =12,y =-12,z =-1.1.3.1空间直角坐标系一、选择题1.空间两点A ,B 的坐标分别为(x ,-y ,z ),(-x ,-y ,-z ),则A ,B 两点的位置关系是( )A .关于x 轴对称B .关于y 轴对称C .关于z 轴对称D .关于原点对称B [纵坐标相同,横坐标和竖坐标互为相反数,故两点关于y 轴对称.] 2.已知A (1,2,-1),B (5,6,7),则直线AB 与平面xOz 交点的坐标是( ) A .(0,1,1) B .(0,1,-3)C .(-1,0,3)D .(-1,0,-5)D [设直线AB 与平面xoz 交点坐标是M (x ,y ,z ),则AM →=(x -1,-2,z +1),AB →=(4,4,8),又AM →与AB →共线,∴AM →=λAB →,即⎩⎨⎧x -1=4λ,-2=4λ,z +1=8λ,解得x =-1,z =-5,∴点M (-1,0,-5).故选D.]3.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM |=( ) A .534 B .532 C .532D .132 C [M ⎝ ⎛⎭⎪⎫2,32,3 ,|CM |=4+⎝ ⎛⎭⎪⎫32-12+9=532.] 4.如图,在空间直角坐标系中,正方体ABCD -A 1B 1C 1D 1的棱长为1,B 1E =14A 1B 1,则BE →等于( )A .⎝ ⎛⎭⎪⎫0,14,-1B .⎝ ⎛⎭⎪⎫-14,0,1C .⎝ ⎛⎭⎪⎫0,-14,1D .⎝ ⎛⎭⎪⎫14,0,-1C [{DA →,DC →,DD 1→}为单位正交向量,BE →=BB 1→+B 1E →=-14DC →+DD 1→,∴BE →=⎝ ⎛⎭⎪⎫0,-14,1.] 5.设{i ,j ,k }是单位正交基底,已知向量p 在基底{a ,b ,c }下的坐标为(8,6,4),其中a =i +j ,b =j +k ,c =k +i ,则向量p 在基底{i ,j ,k }下的坐标是( )A .(12,14,10)B .(10,12,14)C .(14,12,10)D .(4,3,2)A [依题意,知p =8a +6b +4c =8(i +j )+6(j +k )+4(k +i )=12i +14j +10k ,故向量p 在基底{i ,j ,k }下的坐标是(12,14,10).]二、填空题6.在空间直角坐标系中,已知点P (1,2,3),过点P 作平面yOz 的垂线PQ ,则垂足Q 的坐标为________.(0,2,3) [过P 的垂线PQ ⊥面yOz ,则Q 点横坐标为0,其余不变,故Q (0,2,3).]7.设{e 1,e 2,e 3}是空间向量的一个单位正交基底,a =4e 1-8e 2+3e 3,b =-2e 1-3e 2+7e 3,则a ,b 的坐标分别为________.(4,-8,3),(-2,-3,7) [由题意可知a =(4,-8,3),b =(-2,-3,7).] 8.如图所示,以长方体ABCD -A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若DB 1→的坐标为(4,3,2),则AC 1→的坐标为________.(-4,3,2) [由DB 1→=DA →+DC →+DD 1→,且DB 1→=(4,3,2),∴|DA →|=4,|DC →|=3,|DD 1→|=2,又AC 1→=-DA →+DC →+DD 1→,∴AC 1→=(-4,3,2).]三、解答题9.已知三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,所有的棱长都是1,建立适当的坐标系,并写出各点的坐标.[解] 如图所示,取AC 的中点O 和A 1C 1的中点O 1,可得BO ⊥AC ,OO 1⊥AC ,分别以OB ,OC ,OO 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.∵三棱柱各棱长均为1,∴OA =OC =O 1C 1=O 1A 1=12,OB =32. ∵A ,B ,C 均在坐标轴上,∴A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0.∵点A 1与C 1在yOz 平面内, ∴A 1⎝ ⎛⎭⎪⎫0,-12,1,C 1⎝ ⎛⎭⎪⎫0,12,1.∵点B 1在xOy 平面内的射影为B ,且BB 1=1,∴B 1⎝ ⎛⎭⎪⎫32,0,1,即各点的坐标为A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0,A 1⎝ ⎛⎭⎪⎫0,-12,1,B 1⎝ ⎛⎭⎪⎫32,0,1,C 1⎝ ⎛⎭⎪⎫0,12,1. 10.棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 分别为棱DD 1,D 1C 1,BC 的中点,以{AB →,AD →,AA 1→}为正交基底,求下列向量的坐标:(1)AE →,AF →,AG →; (2)EF →,EG →,DG →.[解] 在正交基底{AB →,AD →,AA 1→}下,(1)AF →=12AB →+AD →+AA 1→, AE →=AD →+12AA 1→,AG →=AB →+12AD →,∴AE →=⎝ ⎛⎭⎪⎫0,1,12,AF →=⎝ ⎛⎭⎪⎫12,1,1,AG →=⎝ ⎛⎭⎪⎫1,12,0.(2)EF →=AF →-AE →=12AB →+12AA 1→,∴EF →=⎝ ⎛⎭⎪⎫12,0,12;EG →=AG →-AE →=AB →-12AD →-12AA 1→,∴EG →=⎝ ⎛⎭⎪⎫1,-12,-12;DG →=AG →-AD →=AB→-12AD →,∴DG →=⎝ ⎛⎭⎪⎫1,-12,0.11.(多选题)下列各命题正确的是( ) A .点(1,-2,3)关于平面xOz 的对称点为(1,2,3) B .点⎝ ⎛⎭⎪⎫12,1,-3关于y 轴的对称点为⎝ ⎛⎭⎪⎫-12,1,3C .点(2,-1,3)到平面yOz 的距离为1D .设{i ,j ,k }是空间向量的单位正交基底,若m =3i -2j +4k ,则m =(3,-2,4).ABD [“关于谁对称谁不变”,∴A 正确,B 正确,C 中(2,-1,3)到面yOz 的距离为2,∴C 错误.根据空间向量的坐标定义,D 正确.]12.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 为正方体内一动点(包括表面),若AP →=xAB →+yAD →+zAA 1→,且0≤x ≤y ≤z ≤1.则点P 所有可能的位置所构成的几何体的体积是( )A .1B .12C .13D .16D [根据向量加法的几何意义和空间向量基本定理,满足0≤x ≤y ≤1的点P 在三棱柱ACD -A 1C 1D 1内;满足0≤y ≤z ≤1的点P 在三棱柱AA 1D 1-BB 1C 1内,故同时满足0≤x ≤y ≤1,0≤y ≤z ≤1的点P 在这两个三棱柱的公共部分(如图),即三棱锥A -A 1C 1D 1,其体积是13×12×1×1×1=16.]13.三棱锥P -ABC 中,∠ABC 为直角,PB ⊥平面ABC ,AB =BC =PB =1,M为PC 的中点,N 为AC 的中点,以{BA →,BC →,BP →}为基底,则MN →的坐标为________.⎝ ⎛⎭⎪⎫12,0,-12 [MN →=BN →-BM → =12(BA →+BC →)-12(BP →+BC →) =12BA →-12BP →, 故MN →=⎝ ⎛⎭⎪⎫12,0,-12.] 14.已知O 是坐标原点,点A (2,0,-2),B (3,1,2),C (2,-1,7). (1)若点P 满足OP →=OA →+OB →+OC →,则点P 的坐标为________; (2)若点P 满足AP →=2AB →-AC →,则点P 的坐标为________.(1)(7,0,7) (2)(4,3,-3) [(1)中OP →=OA →+OB →+OC →=(2i -2k )+(3i +j +2k )+(2i -j +7k )=7i +0j +7k ,∴P (7,0,7).(2)中,AP →=2AB →-AC →得OP →-OA →=2OB →-2OA →-OC →+OA →,∴OP →=2OB →-OC →=2(3i +j +2k )-(2i -j +7k ) =4i +3j -3k ,∴P (4,3,-3).]15.如图,在正四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,O 是AC 与BD 的交点,PO =1,M 是PC 的中点.设AB →=a ,AD →=b ,AP →=c .(1)用向量a ,b ,c 表示BM →.(2)在如图的空间直角坐标系中,求BM →的坐标.[解] (1)∵BM →=BC →+CM →,BC →=AD →,CM →=12CP →,CP →=AP →-AC →,AC →=AB →+AD →,∴BM →=AD →+12(AP →-AC →)=AD →+12AP →-12(AB →+AD →)=-12AB →+12AD →+12AP →=-12a +12b +12c .(2)a =AB →=(1,0,0),b =AD →=(0,1,0).∵A (0,0,0),O ⎝ ⎛⎭⎪⎫12,12,0,P ⎝ ⎛⎭⎪⎫12,12,1,∴c =AP →=OP →-OA →=⎝ ⎛⎭⎪⎫12,12,1,∴BM →=-12a +12b +12c =-12(1,0,0)+12(0,1,0)+12⎝ ⎛⎭⎪⎫12,12,1=⎝ ⎛⎭⎪⎫-14,34,12.1.3.2空间运算的坐标表示一、选择题1.已知三点A (1,5,-2),B (2,4,1),C (a,3,b +2)在同一条直线上,那么( ) A .a =3,b =-3 B .a =6,b =-1 C .a =3,b =2D .a =-2,b =1C [根据题意AB →=(1,-1,3),AC →=(a -1,-2,b +4), ∵AB →与AC →共线,∴AC →=λAB →, ∴(a -1,-2,b +4)=(λ,-λ,3λ),∴⎩⎨⎧a -1=λ,-2=-λ,b +4=3λ,解得⎩⎨⎧a =3,b =2,λ=2.故选C.]2.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于( ) A .(0,3,-6) B .(0,6,-20) C .(0,6,-6)D .(6,6,-6)B [由题a =(2,3,-4),b =(-4,-3,-2),设x =(w ,y ,z )则由b =12x -2a ,可得(-4,-3,-2)=12(w ,y ,z )-2(2,3,-4)=⎝ ⎛⎭⎪⎫12w ,12y ,12z-(4,6,-8)=⎝ ⎛⎭⎪⎫12w -4,12y -6,12z +8,解得w =0,y =6,z =-20,即x =(0,6,-20).]3.已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A .(-1,1,0) B .(1,-1,0) C .(0,-1,1)D .(-1,0,1)B [不妨设向量为b =(x ,y ,z ),A .若b =(-1,1,0),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. B .若b =(1,-1,0),则cos θ=a ·b |a |·|b |=12×2=12,满足条件. C .若b =(0,-1,1),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. D .若b =(-1,0,1),则cos θ=a ·b |a |·|b |=-22×2=-1≠12,不满足条件.故选B.]4.已知向量a =(-2,x,2),b =(2,1,2),c =(4,-2,1),若a ⊥(b -c ),则x 的值为( )A .-2B .2C .3D .-3A [∵b -c =(-2,3,1),a ·(b -c )=4+3x +2=0,∴x =-2.]5.已知A 、B 、C 三点的坐标分别为A (4,1,3),B (2,-5,1),C (3,7,λ),若AB →⊥AC →,则λ等于( )A .28B .-28C .14D .-14D [AB →=(-2,-6,-2),AC →=(-1,6,λ-3),∵AB →⊥AC →,∴AB →·AC →=-2×(-1)-6×6-2(λ-3)=0,解得λ=-14.] 二、填空题6.已知a =(1,1,0),b =(0,1,1),c =(1,0,1),p =a -b ,q =a +2b -c ,则p ·q =________.-1 [∵p =a -b =(1,0,-1),q =a +2b -c =(0,3,1), ∴p ·q =1×0+0×3+(-1)×1=-1.]7.已知空间三点A (1,1,1),B (-1,0,4),C (2,-2,3),则AB →与CA →的夹角θ的大小是________.120° [AB →=(-2,-1,3),CA →=(-1,3,-2),cos 〈AB →,CA →〉=(-2)×(-1)+(-1)×3+3×(-2)14·14=-12,∴θ=〈AB →,CA →〉=120°.]8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别是棱BC 、DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.1 [以D 1A 1、D 1C 1、D 1D 分别为x ,y ,z 轴建立空间直角坐标系(图略),设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),∴B 1E →=(x -1,0,1),又F (0,0,1-y ),B (1,1,1),∴FB →=(1,1,y ),由于AB ⊥B 1E ,若B 1E ⊥平面ABF ,只需FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.] 三、解答题9.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)求向量a 与向量b 的夹角的余弦值;(2)若k a +b 与k a -2b 互相垂直,求实数k 的值.[解] (1)∵a =(1,1,0),b =(-1,0,2),∴a·b =(1,1,0)·(-1,0,2)=-1, 又|a |=12+12+02=2,|b |=(-1)2+02+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=-110=-1010,即向量a 与向量b 的夹角的余弦值为-1010.(2)法一:∵k a +b =(k -1,k,2),k a -2b =(k +2,k ,-4),且k a +b 与k a -2b 互相垂直,∴(k -1,k,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0,∴k =2或k =-52, ∴当k a +b 与k a -2b 互相垂直时,实数k 的值为2或-52. 法二:由(1)知|a |=2,|b |=5,a·b =-1,∴(k a +b )·(k a -2b )=k 2a 2-k a ·b -2b 2=2k 2+k -10=0,得k =2或k =-52. 10.已知正三棱柱ABC -A 1B 1C 1,底面边长AB =2,AB 1⊥BC 1,点O ,O 1分别是边AC ,A 1C 1的中点,建立如图所示的空间直角坐标系.(1)求正三棱柱的侧棱长;(2)求异面直线AB 1与BC 所成角的余弦值. [解] (1)设正三棱柱的侧棱长为h ,由题意得A (0,-1,0),B (3,0,0),C (0,1,0),B 1(3,0,h ),C 1(0,1,h ), 则AB 1→=(3,1,h ),BC 1→=(-3,1,h ), 因为AB 1⊥BC 1,所以AB 1→·BC 1→=-3+1+h 2=0, 所以h = 2.(2)由(1)可知AB 1→=(3,1,2),BC →=(-3,1,0), 所以AB 1→·BC →=-3+1=-2.因为|AB 1→|=6,|BC →|=2,所以cos 〈AB 1→,BC →〉=-226=-66.所以异面直线AB 1与BC 所成角的余弦值为66.11.(多选题)若向量a =(1,2,0),b =(-2,0,1),则下列结论正确的是( )。

2019_2020学年高中数学第一章空间几何体章末质量检测(含解析)新人教A版必修2

2019_2020学年高中数学第一章空间几何体章末质量检测(含解析)新人教A版必修2

章末质量检测(一) 空间几何体一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的是( )A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:A错误.如图1所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.B错误.如图2,若△ABC不是直角三角形或是直角三角形,但旋转轴不是直角边所在直线,所得的几何体都不是圆锥.C错误.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.D正确.答案:D2.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱共有对角线( )A.20条 B.15条C.12条 D.10条解析:由题意五棱柱对角线一定为上底面的一个顶点和下底面的一个顶点的连线,因为不同在任何侧面内,故从一个顶点出发的对角线有2条,五棱柱共有对角线2×5=10条.答案:D3.关于直观图画法的说法中,不正确的是( )A.原图形中平行于x轴的线段,其对应线段仍平行于x′轴,其长度不变B.原图形中平行于y轴的线段,其对应线段仍平行于y′轴,其长度不变C.画与坐标系xOy对应的坐标系x′O′y′时,∠x′O′y′可画成135°D.作直观图时,由于选轴不同,所画直观图可能不同解析:根据斜二测画法的规则可知B不正确.答案:B4.若圆柱的轴截面是一个正方形,其面积为4S,则它的一个底面面积是( ) A.4S B.4πSC.πS D.2πS解析:由题意知圆柱的母线长为底面圆的直径2R,则2R·2R=4S,得R2=S.所以底面面积为πR2=πS.答案:C5.如果一个正四面体(各个面都是正三角形)的体积为9 cm3,则其表面积为( ) A.18 3 cm2 B.18 cm2C.12 3 cm2 D.12 cm2解析:设正四面体的棱长为a cm,则底面积为34a2 cm2,易求得高为63a cm,则体积为13×34a2×63a=212a3=9,解得a=32,所以其表面积为4×34a2=183(cm2).答案:A6.一个四面体共一个顶点的三条棱两两互相垂直,其长分别为1,6,3,其四面体的四个顶点在一个球面上,则这个球的表面积为( )A.16πB.32π C.36πD.64π解析:将四面体可补形为长方体,此长方体的对角线即为球的直径,而长方体的对角线长为12+62+32=4,即球的半径为2,故这个球的表面积为4πr2=16π.答案:A7.用斜二测画法得到的一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )解析:直观图中的多边形为正方形,对角线的长为2,所以原图形为平行四边形,位于y轴上的对角线的长为2 2.答案:A8.球O 的截面把垂直于截面的直径分成1:3两部分,若截面圆半径为3,则球O 的体积为( )A .16π B.16π3C.32π3D .43π 解析:设直径被分成的两部分分别为r 、3r ,易知(3)2=r ·3r ,得r =1,则球O 的半径R =2,故V =43π·R 3=323π.答案:C9.[2019·湖北省黄冈中学检测]已知某几何体的直观图如图所示,则该几何体的体积是( )A.233+π B.233+2π C .23+π D.23+2π解析:由直观图可知该几何体由一个半圆柱和一个三棱柱组成,故其体积V =12π×12×2+12×2×3×2=π+2 3. 答案:C 10.如图,在棱长为4的正方体ABCD -A 1B 1C 1D 1中,P 是A 1B 1上一点,且PB 1=14A 1B 1,则多面体P -BCC 1B 1的体积为( )A.83B.163 C .4 D .5解析:V多面体P-BCC1B1=13S正方形BCC1B1·PB1=13×42×1=163.答案:B11.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥的侧面分成的三部分的面积之比为( )A.1:2:3 B.1:3:5C.1:2:4 D.1:3:9解析:如图,由题意知O1A1O2A2OA=1:2:3,以O1A1,O2A2,OA为半径的圆锥的侧面积之比为1:4:9.故圆锥被截面分成的三部分侧面的面积之比为1:(4-1):(9-4)=1:3:5.答案:B12.已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A.122π B.12πC.82π D.10π解析:过直线O1O2的截面为圆柱的轴截面,设底面半径为r,母线长为l,因为轴截面是面积为8的正方形,所以2r=l=22,所以r=2,所以圆柱的表面积为2πrl+2πr2=8π+4π=12π.答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.正方形ABCD绕对角线AC所在直线旋转一周所得组合体的结构特征是________.解析:由圆锥的定义知是两个同底的圆锥形成的组合体.答案:两个同底的圆锥组合体14.[2019·甘肃省兰州市校级检测]若某空间几何体的直观图如图所示,则该几何体的表面积是________.解析:根据直观图可知该几何体是横着放的直三棱柱,所以S 侧=(1+2+3)×2=2+2+6, S 底=12×1×2=22, 故S 表=2+2+6+2×22=2+22+ 6. 答案:2+22+ 6 15.如图所示,已知正三棱柱ABC -A 1B 1C 1的底面边长为2,高为5,一质点自A 点出发,沿着三棱柱的侧面绕行两周到达A 1点的最短路线的长为________.解析:如图所示,将三棱柱沿AA 1剪开,可得一矩形,其长为6,宽为5,其最短路线为两相等线段之和,其长度等于2⎝ ⎛⎭⎪⎫522+62=13.答案:1316.若圆锥的内切球与外接球的球心重合,且内切球的半径为1,则圆锥的体积为________.解析:过圆锥的旋转轴作轴截面,得△ABC 及其内切圆⊙O 1和外切圆⊙O 2,且两圆同圆心,即△ABC 的内心与外心重合,易得△ABC 为正三角形,由题意知⊙O 1的半径为r =1,△ABC 的边长为23,于是知圆锥的底面半径为3,高为3.故所求体积为V =13×π×3×3=3π.答案:3π三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图所示是一个长方体截去一个角得到的几何体的直观图(单位:cm).按照给出的数据,求该几何体的体积.解:该几何体的体积V =V 长方体-V 三棱锥=4×4×6-13×⎝ ⎛⎭⎪⎫12×2×2×2=2843(cm 3).18.(12分)如图是由正方形ABCE 和正三角形CDE 所组成的平面图形,试画出其水平放置的直观图.解:(1)以AB 所在的直线为x 轴,AB 的中垂线为y 轴建立直角坐标系,如图(1),再建立坐标系x ′O ′y ′,使两轴的夹角为45°,如图(2).(2)以O ′为中点,在x ′轴上截取A ′B ′=AB ,分别过A ′,B ′作y ′轴的平行线,截取A ′E ′=12AE ,B ′C ′=12BC .在y ′轴上截取O ′D ′=12OD .(3)连接E ′D ′,E ′C ′,C ′D ′,并擦去作为辅助线的坐标轴,就得到所求的直观图,如图(3).19.(12分)如图所示,在多面体FE ­ABCD 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,求该多面体的体积V .解析:如图所示,分别过A ,B 作EF 的垂线AG ,BH ,垂足分别为G ,H .连接DG ,CH ,容易求得EG =HF =12.所以AG =GD =BH =HC =32, S △AGD =S △BHC =12×22×1=24, V =V E ­ADG +V F ­BHC +V AGD ­BHC=⎝ ⎛⎭⎪⎫13×12×24×2+24×1=23. 20.(12分)用一张相邻边长分别为4 cm,8 cm 的矩形硬纸片卷成圆柱的侧面(接缝处忽略不计),求该圆柱的表面积.解析:有两种不同的卷法,分别如下:(1)如图①所示,以矩形8 cm 长的边为母线,把矩形硬纸片卷成圆柱侧面,此时底面圆的周长为2π·OA =4,则OA =r 1=2π cm ,∴两底面面积之和为8π cm 2,∴S 表=⎝ ⎛⎭⎪⎫32+8π cm 2,即该圆柱的表面积为⎝⎛⎭⎪⎫32+8πcm 2.(2)如图②所示,以矩形4 cm 长的边为母线,把矩形硬纸片卷成圆柱侧面,此时底面圆的周长为2π·OB =8,则OB =r 2=4π cm ,∴两底面面积之和为32π cm 2,∴S 表=⎝ ⎛⎭⎪⎫32+32πcm 2,即该圆柱的表面积为⎝⎛⎭⎪⎫32+32πcm 2.21.(12分)如图,正方体ABCD -A ′B ′C ′D ′的棱长为a ,连接A ′C ′,A ′D ,A ′B ,BD ,BC ′,C ′D ,得到一个三棱锥.求:(1)三棱锥A ′-BC ′D 的表面积与正方体表面积的比值; (2)三棱锥A ′-BC ′D 的体积.解析:(1)∵ABCD -A ′B ′C ′D ′是正方体, ∴A ′B =A ′C ′=A ′D =BC ′=BD =C ′D =2a ,∴三棱锥A ′-BC ′D 的表面积为4×12×2a ×32×2a =23a 2.而正方体的表面积为6a 2,故三棱锥A ′-BC ′D 的表面积与正方体表面积的比值为23a26a2=33. (2)三棱锥A ′-ABD ,C ′-BCD ,D -A ′D ′C ′,B -A ′B ′C ′是完全一样的. 故V 三棱锥A ′-BC ′D =V 正方体-4V 三棱锥A ′-ABD =a 3-4×13×12a 2×a =a33.22.(12分)若圆锥与球的体积相等,且圆锥底面半径与球的直径相等,求圆锥侧面积与球的表面积之比.解析:设圆锥的底面半径为r ,高为h ,母线长为l ,球的半径为R , 则由题意得⎩⎪⎨⎪⎧13πr 2·h =43πR 3r =2R∴13π(2R )2·h =43πR 3,∴R =h ,r =2h , ∴l =r 2+h 2=5h ,∴S 圆锥侧=πrl =π×2h ×5h =25πh 2,S 球=4πR 2=4πh 2,∴S 圆锥侧S 球=25πh 24πh 2=52.。

高中数学人教版A版必修一学案:第二单元 章末复习课 Word版含答案

高中数学人教版A版必修一学案:第二单元 章末复习课 Word版含答案

章末复习课网络构建核心归纳1.指数函数的图象和性质一般地,指数函数y =a x(a >0且a ≠1)的图象与性质如下表所示.数的范围,通常要用分类讨论思想.(2)a >1时,a 值越大,图象向上越靠近y 轴,递增速度越快;0<a <1时,a 值越小,图象向上越靠近y 轴,递减速度越快.(3)在同一坐标系中有多个指数函数图象时,图象的相对位置与底数大小有如下关系:在y 轴右侧,图象从上到下相应的底数由大变小;在y 轴左侧,图象从下到上相应的底数由大变小.即无论在y 轴的左侧还是右侧,底数按逆时针方向变大.这一性质可通过令x =1时,y =a 去理解,如图.2.对数函数的图象和性质对数函数y =log a x (a >0且a ≠1)与指数函数y =a x(a >0且a ≠1)互为反函数,其图象关于直线y =x 对称.(如图)4.幂函数的性质(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1). (2)如果α>0,则幂函数的图象过原点,并且在区间[0,+∞)上为增函数.(3)如果α<0,则幂函数的图象在区间(0,+∞)上是减函数,在第一象限内,当x 从右边趋向于原点时,图象在y 轴右方无限地逼近y 轴,当x 从原点趋向于+∞时,图象在x 轴上方无限地逼近x 轴.(4)当α为奇数时,幂函数为奇函数;当α为偶数时,幂函数为偶函数.要点一 指数、对数的运算指数式的运算首先注意化简顺序,一般负指数先转化成正指数,根式化为分数指数幂运算,其次若出现分式则要注意分子、分母因式分解以达到约分的目的.对数运算首先注意公式应用过程中范围的变化,前后要等价,熟练地运用对数的三个运算性质并结合对数恒等式,换底公式是对数计算、化简、证明常用的技巧.【例1】 (1)化简:a 43 -8a 13 b4b 23 +23ab +a 23 ÷⎝ ⎛⎭⎪⎫1-23b a ×3ab ; (2)求值:12lg 3249-43lg 8+lg 245.解 (1)原式=a 13 a -8bb 13 2+2a 13 b 13 +a 132×a 13a 13 -2b 13×a 13 b 13=a 13a -8b a -8b×a 13 ×a 13 b 13 =a 3b .(2)法一 12lg 3249-43lg 8+lg 245=lg 427-lg 4+lg 7 5=lg ⎝⎛⎭⎪⎫427×14×75 =lg 10=12lg 10=12.法二 原式=12(5lg 2-2lg 7)-43·32lg 2+12(2lg 7+lg 5)=52lg 2-lg 7-2lg 2+lg7+12lg 5 =12lg 2+12lg 5=12(lg 2+lg 5) =12lg 10=12. 【训练1】 (1)化简:(8)-23 ×(3102)92 ÷105;(2)计算:2log 32-log 3329+log 38-25log 53.解 (1)原式=⎝⎛⎭⎫232 -23 ×⎝⎛⎭⎫1023 92 ÷1052 =2-1×103×10-52 =2-1×1012 =102.(2)原式=log 34-log 3329+log 38-5log 59=log 3⎝ ⎛⎭⎪⎫4×932×8-9=-7. 要点二 指数函数、对数函数、幂函数的图象问题 函数图象的画法4解析 法一 当x =0时,y =0,故可排除选项A ,由1-x >0,得x <1,即函数的定义域为(-∞,1),排除选项B ,又易知函数在其定义域上是减函数,故选C .法二 函数y =2log 4(1-x )的图象可认为是由y =log 4x 的图象经过如下步骤变换得到的:(1)函数y =log 4x 的图象上所有点的横坐标不变.纵坐标变为原来的2倍,得到函数y =2log 4x 的图象;(2)把函数y =2log 4x 关于y 轴对称得到函数y =2log 4(-x )的图象;(3)把函数y =2log 4(-x )的图象向右平移1个单位,即可得到y =2log 4(1-x )的图象,故选C .答案 C【训练2】在同一直角坐标系中,函数f(x)=x a(x≥0),g(x)=log a x的图象可能是( )解析法一当a>1时,y=x a与y=log a x均为增函数,但y=x a递增较快,排除C;当0<a<1时,y=x a为增函数,y=log a x为减函数,排除A.由于y=x a递增较慢,所以选D.法二幂函数f(x)=x a的图象不过(0,1)点,故A错;B项中由对数函数f(x)=log a x的图象知0<a<1,而此时幂函数f(x)=x a的图象应是增长越来越慢的变化趋势,故B错;D对;C项中由对数函数f(x)=log a x的图象知a>1,而此时幂函数f(x)=x a的图象应是增长越来越快的变化趋势,故C错.答案 D要点三大小比较问题数的大小比较常用方法:(1)比较两数(式)或几个数(式)大小问题是本章的一个重要题型,主要考查数、指数函数、对数函数幂函数图象与性质的应用及差值比较法与商值比较法的应用.常用的方法有单调性法、图象法、中间搭桥法、作差法、作商法.(2)当需要比较大小的两个实数均是指数幂或对数式时,可将其看成某个指数函数、对数函数或幂函数的函数值,然后利用该函数的单调性比较.(3)比较多个数的大小时,先利用“0”和“1”作为分界点,即把它们分为“小于0”,“大于等于0小于等于1”,“大于1”三部分,再在各部分内利用函数的性质比较大小.π,c=π-2,则( )【例3】设a=log2π,b=log12A.a>b>c B.b>a>c C.a>c>b D.c>b>a解析因为π>2,所以a=log2π>1,所以b=log1π<0.因为π>1,所以0<π-2<1,即20<c<1,所以a>c>b.答案 C【训练3】 设a =log 123,b =⎝ ⎛⎭⎪⎫130.2,c =213 ,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c解析 a =log 123<0,0<b =⎝ ⎛⎭⎪⎫130.2<1,c =213 >1,故有a <b <c . 答案 A要点四 函数的定义域与值域 函数值域(最值)的求法(1)直观法:图象在y 轴上的“投影”的范围就是值域的范围. (2)配方法:适合二次函数.(3)反解法:有界量用y 来表示.如y =1-x 21+x 2中,由x 2=1-y 1+y ≥0可求y 的范围,可得值域.(4)换元法:通过变量代换转化为能求值域的函数,特别注意新变量的范围. (5)单调性:特别适合于指、对数函数的复合函数. 【例4】 (1)函数f (x )=1log 2x -的定义域为( ) A .(-∞,2) B .(2,+∞) C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞)(2)设0≤x ≤2,y =4x -12 -3·2x+5,试求该函数的最值. (1)解析 由题意知⎩⎪⎨⎪⎧log 2x -,x -2>0,解得⎩⎪⎨⎪⎧x ≠3,x >2,所以函数f (x )的定义域为(2,3)∪(3,+∞).答案 C(2)解 令k =2x(0≤x ≤2),∴1≤k ≤4.则y =22x -1-3·2x+5=12k 2-3k +5.又y =12(k -3)2+12,k ∈[1,4],∴y =12(k -3)2+12,在k ∈[1,3]上是减函数,在k ∈[3,4]上是增函数,∴当k =3时,y min =12;当k =1时,y max =52.即函数的最大值为52,最小值为12.【训练4】 (1)若f (x )=1log 0.5x +,则函数f (x )的定义域为( )A .⎝ ⎛⎭⎪⎫-12,+∞ B .(0,+∞)C .⎝ ⎛⎭⎪⎫-12,0D .⎝ ⎛⎦⎥⎤-12,0(2)函数f (x )=ln ⎝⎛⎭⎪⎫1+1x +1-x 2的定义域为________.解析 (1)f (x )=1log 0.5x +的定义域为:⎩⎨⎧⎭⎬⎫x ⎩⎪⎨⎪⎧2x +1>0,log 0.5x +,即⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎩⎪⎨⎪⎧ x >-12,2x +1<1, 解得{x |-12<x <0}.故选C .(2)由条件知⎩⎪⎨⎪⎧1+1x>0,x ≠0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,x ≠0,-1≤x ≤1⇒x ∈(0,1].答案 (1)C (2)(0,1]。

新教材高考数学第二章直线和圆的方程章末复习练习含解析新人教A版选择性必修第一册

新教材高考数学第二章直线和圆的方程章末复习练习含解析新人教A版选择性必修第一册

章末复习一、两直线的平行与垂直 1.判断两直线平行、垂直的方法(1)若不重合的直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1=k 2⇔l 1∥l 2. (2) 若直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1·k 2=-1⇔l 1⊥l 2. (讨论两直线平行、垂直不要遗漏直线斜率不存在的情况)2.讨论两直线的平行、垂直关系,可以提升学生的逻辑推理素养. 例1 (1)已知A ⎝⎛⎭⎪⎫1,-a +13,B ⎝ ⎛⎭⎪⎫0,-13,C (2-2a ,1),D (-a ,0)四点,若直线AB 与直线CD 平行,则a =________.答案 3解析 k AB =-13+a +130-1=-a3,当2-2a =-a ,即a =2时,k AB =-23,CD 的斜率不存在.∴AB 和CD 不平行;当a ≠2时,k CD =0-1-a -2+2a =12-a.由k AB =k CD ,得-a 3=12-a,即a 2-2a -3=0.∴a =3或a =-1.当a =3时,k AB =-1,k BD =0+13-3=-19≠k AB ,∴AB 与CD 平行.当a =-1时,k AB =13,k BC =1+134=13,k CD =1-04-1=13,∴AB 与CD 重合.∴当a =3时,直线AB 和直线CD 平行.(2)若点A (4,-1)在直线l 1:ax -y +1=0上,则l 1与l 2:2x -y -3=0的位置关系是________. 答案 垂直解析 将点A (4,-1)的坐标代入ax -y +1=0, 得a =-12,则12·l l k k =-12×2=-1,∴l 1⊥l 2. 反思感悟 一般式方程下两直线的平行与垂直:已知两直线的方程为l 1:A 1x +B 1y +C 1=0(A 1,B 1不同时为0),l 2:A 2x +B 2y +C 2=0(A 2,B 2不同时为0),则l 1∥l 2⇔A 1B 2-A 2B 1=0且C 1B 2-C 2B 1≠0,l 1⊥l 2⇔A 1A 2+B 1B 2=0.跟踪训练1 (1)已知直线l 1:ax -3y +1=0,l 2:2x +(a +1)y +1=0.若l 1⊥l 2,则实数a 的值为________. 答案 -3(2)已知两直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,若l 1∥l 2,则m =________. 答案 -1解析 因为直线x +my +6=0与(m -2)x +3y +2m =0平行,所以⎩⎪⎨⎪⎧1×3-m m -2=0,2m ≠6m -2,解得m =-1.二、两直线的交点与距离问题1.两条直线的位置关系的研究以两直线的交点为基础,通过交点与距离涵盖直线的所有问题. 2.两直线的交点与距离问题,培养学生的数学运算的核心素养.例2 (1)若点(1,a )到直线y =x +1的距离是322,则实数a 的值为( )A .-1B .5C .-1或5D .-3或3答案 C解析 ∵点(1,a )到直线y =x +1的距离是322,∴|1-a +1|2=322,即|a -2|=3,解得a =-1或a =5,∴实数a 的值为-1或5.(2)过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,求直线l 的方程.解 设l 1与l 的交点为A (a ,8-2a ),则由题意知,点A 关于点P 的对称点B (-a ,2a -6)在l 2上, 代入l 2的方程得-a -3(2a -6)+10=0, 解得a =4,即点A (4,0)在直线l 上, 所以直线l 的方程为x +4y -4=0. 反思感悟跟踪训练2 (1)设两条直线的方程分别为x +y +a =0,x +y +b =0,已知a ,b 是关于x 的方程x 2+x -2=0的两个实数根,则这两条直线之间的距离为( ) A .2 3 B. 2 C .2 2 D.322答案 D解析 根据a ,b 是关于x 的方程x 2+x -2=0的两个实数根,可得a +b =-1,ab =-2, ∴a =1,b =-2或a =-2,b =1,∴|a -b |=3, 故两条直线之间的距离d =|a -b |2=32=322.(2)已知直线l 过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且点P (0,4)到直线l 的距离为2,则这样的直线l 的条数为( ) A .0 B .1 C .2 D .3 答案 C解析 方法一 由⎩⎪⎨⎪⎧x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2,即直线l 过点(1,2).设点Q (1,2),因为|PQ |=1-02+2-42=5>2,所以满足条件的直线l 有2条.故选C.方法二 依题意,设经过直线l 1与l 2交点的直线l 的方程为2x +3y -8+λ(x -2y +3)=0(λ∈R ),即(2+λ)x +(3-2λ)y +3λ-8=0.由题意得|12-8λ+3λ-8|2+λ2+3-2λ2=2,化简得5λ2-8λ-36=0,解得λ=-2或185,代入得直线l 的方程为y =2或4x -3y +2=0,故选C.三、直线与圆的位置关系 1.直线与圆位置关系的判断方法(1)几何法:设圆心到直线的距离为d ,圆的半径长为r .若d <r ,则直线和圆相交;若d =r ,则直线和圆相切;若d >r ,则直线和圆相离.(2)代数法:联立直线方程与圆的方程组成方程组,消元后得到一个一元二次方程,其判别式为Δ.Δ=0⇔直线与圆相切;Δ>0⇔直线与圆相交;Δ<0⇔直线与圆相离. 2.研究直线与圆的位置关系,集中体现了直观想象和数学运算的核心素养. 例3 已知直线l :2mx -y -8m -3=0和圆C :x 2+y 2-6x +12y +20=0. (1)m ∈R 时,证明l 与C 总相交;(2)m 取何值时,l 被C 截得的弦长最短?求此弦长. (1)证明 直线的方程可化为y +3=2m (x -4), 由点斜式可知,直线恒过点P (4,-3).由于42+(-3)2-6×4+12×(-3)+20=-15<0, 所以点P 在圆内,故直线l 与圆C 总相交. (2)解 圆的方程可化为(x -3)2+(y +6)2=25.如图,当圆心C (3,-6)到直线l 的距离最大时,线段AB 的长度最短.此时PC ⊥l ,又k PC =-3--64-3=3,所以直线l 的斜率为-13,则2m =-13,所以m =-16.在Rt△APC 中,|PC |=10,|AC |=r =5. 所以|AB |=2|AC |2-|PC |2=215.故当m =-16时,l 被C 截得的弦长最短,最短弦长为215.反思感悟 直线与圆问题的类型(1)求切线方程:可以利用待定系数法结合图形或代数法求得.(2)弦长问题:常用几何法(垂径定理),也可用代数法结合弦长公式求解. 跟踪训练3 已知圆C 关于直线x +y +2=0对称,且过点P (-2, 2)和原点O . (1)求圆C 的方程;(2)相互垂直的两条直线l 1,l 2都过点A (-1, 0),若l 1,l 2被圆C 所截得的弦长相等,求此时直线l 1的方程.解 (1)由题意知,直线x +y +2=0过圆C 的圆心,设圆心C (a ,-a -2). 由题意,得(a +2)2+(-a -2-2)2=a 2+(-a -2)2, 解得a =-2.因为圆心C (-2,0),半径r =2, 所以圆C 的方程为(x +2)2+y 2=4.(2)由题意知,直线l 1,l 2的斜率存在且不为0, 设l 1的斜率为k ,则l 2的斜率为-1k,所以l 1:y =k (x +1),即kx -y +k =0,l 2:y =-1k(x +1),即x +ky +1=0.由题意,得圆心C 到直线l 1,l 2的距离相等, 所以|-2k +k |k 2+1=|-2+1|k 2+1,解得k =±1, 所以直线l 1的方程为x -y +1=0或x +y +1=0. 四、圆与圆的位置关系1.圆与圆的位置关系:一般利用圆心间距离与两半径和与差的大小关系判断两圆的位置关系. 2.圆与圆的位置关系的转化,体现直观想象、逻辑推理的数学核心素养. 例4 已知圆C 1:x 2+y 2+4x -4y -5=0与圆C 2:x 2+y 2-8x +4y +7=0. (1)证明圆C 1与圆C 2相切,并求过切点的两圆公切线的方程; (2)求过点(2, 3)且与两圆相切于(1)中切点的圆的方程.解 (1)把圆C 1与圆C 2都化为标准方程形式,得(x +2)2+(y -2)2=13,(x -4)2+(y +2)2=13.圆心与半径长分别为C 1(-2,2),r 1=13;C 2(4,-2),r 2=13.因为|C 1C 2|=-2-42+2+22=213=r 1+r 2,所以圆C 1与圆C 2相切.由⎩⎪⎨⎪⎧x 2+y 2+4x -4y -5=0,x 2+y 2-8x +4y +7=0,得12x -8y -12=0,即3x -2y -3=0,就是过切点的两圆公切线的方程. (2)由圆系方程,可设所求圆的方程为x 2+y 2+4x -4y -5+λ(3x -2y -3)=0.点(2, 3)在此圆上,将点坐标代入方程解得λ=43.所以所求圆的方程为x 2+y 2+4x -4y -5+43(3x -2y -3)=0,即x 2+y 2+8x -203y -9=0.反思感悟 两圆的公共弦问题(1)若圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交,则两圆公共弦所在直线的方程为(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0. (2)公共弦长的求法①代数法:将两圆的方程联立,解出交点坐标,利用两点间的距离公式求出弦长. ②几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、弦心距构成的直角三角形,根据勾股定理求解.跟踪训练4 (1)已知圆C 1:x 2+y 2-6x -7=0与圆C 2:x 2+y 2-6y -27=0相交于A , B 两点,则线段AB 的中垂线方程为________. 答案 x +y -3=0解析 AB 的中垂线即为圆C 1、圆C 2的连心线C 1C 2. 又C 1(3,0),C 2(0,3), 所以C 1C 2所在直线的方程为x +y -3=0.(2)已知圆C 1:x 2+y 2-4x +2y =0与圆C 2:x 2+y 2-2y -4=0. ①求证:两圆相交;②求两圆公共弦所在直线的方程.①证明 圆C 1的方程可化为(x -2)2+(y +1)2=5,圆C 2的方程可化为x 2+(y -1)2=5, ∴C 1(2,-1),C 2(0,1),两圆的半径均为5, ∵|C 1C 2|=2-02+-1-12=22∈(0,25),∴两圆相交.②解 将两圆的方程相减即可得到两圆公共弦所在直线的方程, (x 2+y 2-4x +2y )-(x 2+y 2-2y -4)=0,即x -y -1=0.1.(2019·天津改编)设a ∈R ,直线ax -y +2=0和圆x 2+y 2-4x -2y +1=0相切,则a 的值为________. 答案 34解析 由已知条件可得圆的标准方程为(x -2)2+(y -1)2=4,其圆心为(2,1),半径为2,由直线和圆相切可得|2a -1+2|a 2+1=2,解得a =34. 2.(2017·北京改编)在平面直角坐标系中,点A 在圆C :x 2+y 2-2x -4y +4=0上,点P 的坐标为(1,0),则||AP 的最小值为________. 答案 1解析 x 2+y 2-2x -4y +4=0, 即(x -1)2+(y -2)2=1, 圆心坐标为C (1,2),半径长为1. ∵点P 的坐标为(1,0),∴点P 在圆C 外. 又∵点A 在圆C 上,∴|AP |min =|PC |-1=2-1=1.3.(2017·天津改编)已知点C 在直线l :x =-1上,点F (1,0),以C 为圆心的圆与y 轴的正半轴相切于点A . 若∠FAC =120°,则圆的方程为________________. 答案 (x +1)2+(y -3)2=1解析 由圆心C 在l 上,且圆C 与y 轴正半轴相切,可得点C 的横坐标为-1,圆的半径为1,∠CAO =90°.又因为∠FAC =120°, 所以∠OAF =30°,所以|OA |=3, 所以点C 的纵坐标为 3.所以圆的方程为(x +1)2+(y -3)2=1.4.(2019·江苏改编)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P ,Q ,并修建两段直线型道路PB ,QA .规划要求:线段PB ,QA 上的所有点到点O 的距离均不小于圆O 的半径.已知点A ,B 到直线l 的距离分别为AC 和BD (C ,D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由. 解 (1)如图,过O 作OH ⊥l ,垂足为H .以O 为坐标原点,直线OH 为y 轴,建立如图所示的平面直角坐标系. 因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,-3. 因为AB 为圆O 的直径,AB =10, 所以圆O 的方程为x 2+y 2=25.从而A (4,3),B (-4,-3),直线AB 的斜率为34.因为PB ⊥AB ,所以直线PB 的斜率为-43,直线PB 的方程为y =-43x -253.所以P (-13,9),|PB |=-13+42+9+32=15.所以道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (-4,0),则EO =4<5, 所以P 选在D 处不满足规划要求.②若Q 在D 处,连接AD ,由(1)知D (-4,9),又A (4,3), 所以线段AD :y =-34x +6(-4≤x ≤4).在线段AD 上取点M ⎝⎛⎭⎪⎫3,154,因为|OM |=32+⎝ ⎛⎭⎪⎫1542<32+42=5,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处.。

人教版高中数学选择性必修第一册-第2章-直线和圆的方程-章末测试卷(含解析)

人教版高中数学选择性必修第一册-第2章-直线和圆的方程-章末测试卷(含解析)

第二章直线和圆的方程章末测试卷(原卷版)[时间:120分钟 满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知过点M(-2,a),N(a,4)的直线的斜率为-12,则|MN|=( )A.10 B.180C.63D.652.圆心在y轴上,半径为1,且过点(1,2)的圆的方程为( )A.x2+(y-2)2=1B.x2+(y+2)2=1C.(x-1)2+(y-3)2=1D.(x-2)2+(y-3)2=13.过点P(2,3),且与x轴的正半轴、y轴的正半轴围成的三角形的面积等于12的直线的方程是( )A.3x-2y+12=0 B.3x+2y-12=0C.2x+3y-13=0 D.2x-3y+13=04.若点P(3,-1)为圆(x-2)2+y2=25的弦AB的中点,则直线AB的方程是( )A.x+y-2=0 B.2x-y-7=0C.2x+y-5=0 D.x-y-4=05.已知直线l过点(-2,0),当直线l与圆x2+y2=2x有两个交点时,其斜率k的取值范围是( )A.(-22,22) B.(-2,2)C.(-24,24)D.(-18,18)6.已知圆C1:x2+y2-kx-y=0和圆C2:x2+y2-2ky-1=0的公共弦所在的直线恒过定点M,且点M在直线mx+ny=2上,则m2+n2的最小值为( )A.15B.55C.255D.457.已知P,Q分别为圆M:(x-6)2+(y-3)2=4与圆N:(x+4)2+(y-2)2=1上的动点,A 为x轴上的动点,则|AP|+|AQ|的最小值为( )A.55-3 B.101-3C.75-3 D.53-38.我国魏晋时期的数学家刘徽创立的“割圆术”,也就是用圆内接正多边形去逐步逼近圆,即圆内接正多边形边数无限增加时,其周长就越逼近圆周长.先作出圆x2+y2=2的一个内接正八边形,使该八边形的其中4个顶点在坐标轴上,则下列4条直线中不是该八边形的一条边所在直线的为( )A.x+(2-1)y-2=0 B.(1-2)x-y+2=0C.x-(2+1)y+2=0 D.(2-1)x-y+2=0二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.若直线过点(1,2),且在两坐标轴上截距的绝对值相等,则直线的方程可能为( ) A.x-y+1=0 B.x+y-3=0C.2x-y=0 D.x-y-1=010.已知点M(3,1),圆C:(x-1)2+(y-2)2=4,过点M的圆C的切线方程可能为( ) A.x-3=0 B.x-2=0C.3x-4y-5=0 D.3x+4y-5=011.已知圆C1:x2+y2=r2(r>0),圆C2:(x-a)2+(y-b)2=r2交于不同的A(x1,y1),B(x2,y2)两点,则下列结论正确的是( )A.a(x1-x2)+b(y1-y2)=0B.2ax1+2by1=a2+b2C.x1+x2=a D.y1+y2=2b12.(2021·新高考Ⅰ卷)已知点P在圆(x-5)2+(y-5)2=16上,点A(4,0),B(0,2),则( ) A.点P到直线AB的距离小于10B.点P到直线AB的距离大于2C.当∠PBA最小时,|PB|=32D.当∠PBA最大时,|PB|=32三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.若直线(a+1)x+2y+1=0与直线(a2-1)x-ay-1=0平行,则a的值为________.14.已知圆C:(x+5)2+y2=r2(r>0)和直线l:3x+y+5=0.若圆C与直线l没有公共点,则r的取值范围是__________.15.已知直线l:y=k(x+4)与圆(x+2)2+y2=4相交于A,B两点,M是线段AB的中点,则点M的轨迹方程为________;点M到直线3x+4y-6=0的距离的最小值为________.(本题第一空2分,第二空3分)16.2020年是中国传统的农历“鼠年”,有人用3个圆构成“卡通鼠”的形象,如图,Q(0,-3)是圆Q的圆心,圆Q过坐标原点O,点L,S均在x轴上,圆L与圆S的半径都等于2,圆S、圆L均与圆Q外切.已知直线l过点O.若直线l截圆L、圆S、圆Q所得弦长均等于d,则d=________.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知直线l经过直线2x+y-5=0与x-2y=0的交点.(1)若点A(5,0)到直线l的距离为3,求直线l的方程;(2)求点A(5,0)到直线l的距离的最大值.18.(12分)已知①经过直线l1:x-2y=0与直线l2:2x+y-1=0的交点;②圆心在直线2x -y=0上;③被y轴截得弦长|CD|=22.从上面这三个条件中任选一个,补充在下面问题中,若问题中的圆存在,求圆的方程;若问题中圆不存在,请说明理由.问:是否存在满足条件的圆Q,使得点A(-2,-1),B(1,-1)均在圆上?19.(12分)求以圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦为直径的圆的方程.20.(12分)已知圆心为C的圆经过点A(0,2)和B(1,1),且圆心C在直线l:x+y+5=0上.(1)求圆C的标准方程;(2)若P (x ,y )是圆C 上的动点,求3x -4y 的最大值与最小值.21.(12分)为更好地了解鲸的生活习性,某动物保护组织在某头鲸身上安装了电子监测设备,从海岸线放归点O 处把它放归大海,并沿海岸线由西到东不停地对其进行跟踪观测.在放归点O 的正东方向有一观测站C ,可以对鲸的生活习性进行详细观测.已知OC =15 km ,观测站C 的观测半径为5 km.现以点O 为坐标原点,以由西向东的海岸线所在直线为x 轴建立平面直角坐标系,如图所示,测得鲸的行进路线近似满足曲线y =k x (k >0).(1)若测得鲸的行进路线上一点A (1,1),求k 的值;(2)在(1)问的条件下,则:①当鲸运动到何处时,开始进入观测站C 的观测区域内?(计算结果精确到0.1)②当鲸运动到何处时,离观测站C 最近(观测最便利)?(计算结果精确到0.1)(参考数据:41≈6.4,11.3≈3.4,58≈7.6)22.(12分)已知圆C :x 2+(y -4)2=4,直线l :(3m +1)x +(1-m )y -4=0.(1)求直线l 所过定点A 的坐标;(2)求直线l 被圆C 所截得的弦长最短时m 的值及最短弦长;(3)如图,已知点M (-3,4),在直线MC 上(C 为圆心),存在一定点N (异于点M ),满足对于圆C 上任一点P ,都有|PM ||PN |为一常数,试求所有满足条件的点N 的坐标及该常数.1.已知A (-2,1),B (1,2),点C 为直线x -3y =0上的动点,则|AC |+|BC |的最小值为( )A .22B .23C .25D .272.圆心在曲线y =3x(x >0)上,且与直线3x +4y +3=0相切的面积最小的圆的方程为( )A .(x -3)2+(y -3)2=9B .(x -3)2+(y -1)2=(165)2C .(x -1)2+(y -3)2=(185)2D .(x -2)2+(y -32)2 =93.已知直线l 经过两条直线l 1:x +y =2,l 2:2x -y =1的交点,且直线l 的一个方向向量ν=(-3,2),则直线l 的方程为( )A .-3x +2y +1=0B .3x -2y +1=0C .2x +3y -5=0D .2x -3y +1=04.已知圆C 1:(x +a )2+(y -2)2=1与圆C 2:(x -b )2+(y -2)2=4外切,a ,b 为正实数,则ab 的最大值为( )A .23 B.94C.32D.625.若过定点M (-1,0)且斜率为k 的直线与圆C :x 2+4x +y 2-5=0在第一象限内的部分有交点,则实数k 的取值范围是( )A .(0,5)B .(-5,0)C .(0,13)D .(0,5)6.已知在平面直角坐标系中,△ABC 的三个顶点分别是A (0,3),B (3,3),C (2,0),若直线x =a 将△ABC 分割成面积相等的两部分,则实数a 的值是( )A.3B .1+22C .1+33D .2-227.【多选题】已知两圆方程为x 2+y 2=16与(x -4)2+(y +3)2=r 2(r >0),则下列说法正确的是( )A .若两圆外切,则r =1B .若两圆公共弦所在的直线方程为8x -6y -37=0,则r =2C .若两圆在交点处的切线互相垂直,则r =3D .若两圆有三条公切线,则r =28.【多选题】已知△ABC 的三个顶点坐标分别为A (-2,3),B (-2,-1),C (6,-1),以原点为圆心的圆与此三角形有唯一的公共点,则该圆的方程为( )A .x 2+y 2=1B .x 2+y 2=37C .x 2+y 2=4D .x 2+y 2=1659.已知过点P (4,1)的直线l 与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,当△AOB 的面积最小时,直线l 的方程为________.10.曲线y =1+9-x 2与直线y =k (x -3)+5有两个交点,则实数k 的取值范围是________.11.在平面直角坐标系Oxy 中,已知点A (-1,0),B (5,0).若圆M :(x -4)2+(y -m )2=4上存在唯一的点P ,使得直线PA ,PB 在y 轴上的截距之积为5,则实数m 的值为________.12.已知圆C 的圆心在直线l :x +y +1=0上且经过点A (-1,2),B (1,0).(1)求圆C 的方程;(2)若过点D (0,3)的直线l 1被圆C 截得的弦长为23,求直线l 1的方程.13.如图,在平面直角坐标系Oxy 中,过点P (0,1)且互相垂直的两条直线分别与圆O :x 2+y 2=4交于点A ,B ,与圆M :(x -2)2+(y -1)2=1交于点C ,D .(1)若|AB |=372,求CD 的长;(2)若线段CD 的中点为E ,求△ABE 面积的取值范围.14.已知圆C:x2+y2+2x-4y+m=0与y轴相切,O为坐标原点,动点P在圆外,过P作圆C的切线,切点为M.(1)求圆C的圆心坐标及半径;(2)求满足|PM|=2|PO|的点P的轨迹方程.15.已知圆M:x2+(y-4)2=4,点P是直线l:x-2y=0上的一动点,过点P作圆M的切线PA,PB,切点分别为A,B.(1)当切线PA的长度为23时,求点P的坐标;(2)若△PAM的外接圆为圆N,试问:当P在直线l上运动时,圆N是否过定点?若过定点,求出所有定点的坐标;若不过定点,请说明理由.(3)求线段AB长度的最小值.第二章直线和圆的方程章末测试卷(解析版)[时间:120分钟 满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知过点M(-2,a),N(a,4)的直线的斜率为-12,则|MN|=( )A.10 B.180 C.63D.65答案 D解析 k MN=a-4-2-a=-12,解得a=10,即M(-2,10),N(10,4),所以|MN|=(-2-10)2+(10-4)2=65.故选D.2.圆心在y轴上,半径为1,且过点(1,2)的圆的方程为( )A.x2+(y-2)2=1B.x2+(y+2)2=1C.(x-1)2+(y-3)2=1D.(x-2)2+(y-3)2=1答案 A解析 方法一(直接法):设圆心坐标为(0,b),则由题意知(0-1)2+(b-2)2=1,解得b=2,故圆的方程为x2+(y-2)2=1.故选A.方法二(数形结合法):根据点(1,2)到圆心的距离为1,作图易知圆心为(0,2),故圆的方程为x2+(y-2)2=1.故选A.方法三(验证法):将点(1,2)代入四个选项中,可排除B、D,又圆心在y轴上,所以排除C.故选A.3.过点P(2,3),且与x轴的正半轴、y轴的正半轴围成的三角形的面积等于12的直线的方程是( )A.3x-2y+12=0 B.3x+2y-12=0C.2x+3y-13=0 D.2x-3y+13=0答案 B解析 本题主要考查直线的截距式方程及三角形面积的计算.依题意,设直线方程为xa+yb=1(a>0,b>0),所以{12ab=12,2a+3b=1,所以{a=4,b=6,于是所求直线的方程为x4+y6=1,即3x+2y-12=0.故选B.4.若点P(3,-1)为圆(x-2)2+y2=25的弦AB的中点,则直线AB的方程是( )A.x+y-2=0 B.2x-y-7=0C.2x+y-5=0 D.x-y-4=0答案 D解析 设圆心为C(2,0),所以k PC=0+12-3=-1,所以k AB=1,所以l AB:x-y-4=0.故选D.5.已知直线l过点(-2,0),当直线l与圆x2+y2=2x有两个交点时,其斜率k的取值范围是( )A .(-22,22)B .(-2,2)C.(-24,24)D.(-18,18)答案 C解析 易知圆心坐标是(1,0),半径是1,直线l 的斜率存在.设直线l 的方程为y =k (x +2),即kx -y +2k =0,由点到直线的距离公式,得|k +2k |k 2+1<1,即k 2<18,解得-24<k <24.6.已知圆C 1:x 2+y 2-kx -y =0和圆C 2:x 2+y 2-2ky -1=0的公共弦所在的直线恒过定点M ,且点M 在直线mx +ny =2上,则m 2+n 2的最小值为( )A.15 B.55C.255 D.45答案 C解析 由圆C 1:x 2+y 2-kx -y =0和圆C 2:x 2+y 2-2ky -1=0,可得圆C 1和C 2的公共弦所在的直线方程为k (x -2y )+(y -1)=0,联立{x -2y =0,y -1=0,解得{x =2,y =1.即点M (2,1),又因为点M 在直线mx +ny =2上,即2m +n =2,又由原点到直线2x +y =2的距离为d =222+12=255,即m 2+n 2的最小值为255.7.已知P ,Q 分别为圆M :(x -6)2+(y -3)2=4与圆N :(x +4)2+(y -2)2=1上的动点,A 为x 轴上的动点,则|AP |+|AQ |的最小值为( )A .55-3 B.101-3C .75-3D .53-3答案 A解析 圆N :(x +4)2+(y -2)2=1关于x 轴对称的圆N ′:(x +4)2+(y +2)2=1,则|AP |+|AQ |的最小值为|MN ′|-1-2=102+52-3=55-3.故选A.8.我国魏晋时期的数学家刘徽创立的“割圆术”,也就是用圆内接正多边形去逐步逼近圆,即圆内接正多边形边数无限增加时,其周长就越逼近圆周长.先作出圆x 2+y 2=2的一个内接正八边形,使该八边形的其中4个顶点在坐标轴上,则下列4条直线中不是该八边形的一条边所在直线的为( )A .x +(2-1)y -2=0 B .(1-2)x -y +2=0C .x -(2+1)y +2=0 D .(2-1)x -y +2=0答案 C解析 本题在数学文化背景下考查直线方程.如图所示,可知A (2,0),B (1,1),C (0,2),D (-1,1),E (-2,0),所以AB ,BC ,CD ,DE 所在直线的方程分别为y =1-01-2(x -2),y =(1-2)x +2,y =(2-1)x +2,y =12-1(x +2),整理为一般式即x +(2-1)y -2=0,(1-2)x -y +2=0,(2-1)x -y +2=0,x -(2-1)y +2=0.故选C.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.若直线过点(1,2),且在两坐标轴上截距的绝对值相等,则直线的方程可能为( )A .x -y +1=0B .x +y -3=0C .2x -y =0D .x -y -1=0答案 ABC解析 当直线过原点时,设直线的方程为y =kx ,把点(1,2)代入,得k =2,所以此时直线的方程为2x -y =0;当直线斜率k =1时,设直线的方程为y =x +b ,把点(1,2)代入,得b =1,所以此时直线的方程为x -y +1=0;当直线斜率k =-1时,设直线的方程为y =-x +b ,把点(1,2)代入,得b =3,所以此时直线的方程为x +y -3=0.10.已知点M (3,1),圆C :(x -1)2+(y -2)2=4,过点M 的圆C 的切线方程可能为( )A .x -3=0B .x -2=0C .3x -4y -5=0D .3x +4y -5=0答案 AC解析 由题意得圆心为C (1,2),半径r =2.∵(3-1)2+(1-2)2=5>4,∴点M 在圆C 外部.当过点M 的直线的斜率不存在时,直线方程为x =3,即x -3=0.又点C (1,2)到直线x -3=0的距离d =3-1=2=r ,∴直线x -3=0是圆C 的切线;当过点M 的圆C 的切线的斜率存在时,设切线方程为y -1=k (x -3),即kx -y +1-3k =0,则圆心C 到切线的距离d =|k -2+1-3k |k 2+12=2,解得k =34,∴切线方程为y -1=34(x -3),即3x -4y -5=0.综上可得,过点M 的圆C 的切线方程为x -3=0或3x -4y -5=0.故选AC.11.已知圆C 1:x 2+y 2=r 2(r >0),圆C 2:(x -a )2+(y -b )2=r 2交于不同的A (x 1,y 1),B (x 2,y 2)两点,则下列结论正确的是( )A .a (x 1-x 2)+b (y 1-y 2)=0B .2ax 1+2by 1=a 2+b 2C .x 1+x 2=aD .y 1+y 2=2b答案 ABC解析 因为圆C 1:x 2+y 2=r 2①,圆C 2:(x -a )2+(y -b )2=r 2②,交于不同的A (x 1,y 1),B (x 2,y 2)两点,所以①-②得到直线AB 的方程为2ax +2by =a 2+b 2,分别把A (x 1,y 1),B (x 2,y 2)两点代入直线AB 的方程可得2ax 1+2by 1=a 2+b 2③,2ax 2+2by 2=a 2+b 2④,故B 正确;③-④得到2a (x 1-x 2)+2b (y 1-y 2)=0,即a (x 1-x 2)+b (y 1-y 2)=0,故A 正确;由圆的性质可知,线段AB 与线段C 1C 2互相平分,所以x 1+x 22=0+a 2,y 1+y 22=0+b2,即x 1+x 2=a ,y 1+y 2=b ,故C 正确,D 错误.故选ABC.12.(2021·新高考Ⅰ卷)已知点P 在圆(x -5)2+(y -5)2=16上,点A (4,0),B (0,2),则( )A .点P 到直线AB 的距离小于10B .点P 到直线AB 的距离大于2C .当∠PBA 最小时,|PB |=32D .当∠PBA 最大时,|PB |=32答案 ACD解析 设圆(x -5)2+(y -5)2=16的圆心为M (5,5),由题易知直线AB 的方程为x 4+y2=1,即x +2y -4=0,则圆心M 到直线AB 的距离d =|5+2×5-4|5=115>4,所以直线AB 与圆M 相离,所以点P 到直线AB 的距离的最大值为4+d =4+115,而4+115<5+1255=10,故A 正确.易知点P 到直线AB 的距离的最小值为d -4=115-4,而115-4<1255-4=1,故B 不正确.过点B 作圆M 的两条切线,切点分别为N ,Q ,如图所示,连接MB ,MN ,MQ ,则当∠PBA 最小时,点P 与N 重合,此时|PB |=|MB |2-|MN |2=52+(5-2)2-42=32,当∠PBA 最大时,点P 与Q 重合,此时|PB |=32,故C 、D 都正确.综上,选ACD.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.若直线(a +1)x +2y +1=0与直线(a 2-1)x -ay -1=0平行,则a 的值为________.答案 23或-1解析 本题主要考查两直线的平行关系.当a =-1时,两直线方程分别为2y +1=0,y -1=0,显然两直线平行;当a ≠-1时,由a 2-1a +1=-a 2≠-11,得a =23.故a 的值为23或-1.14.已知圆C :(x +5)2+y 2=r 2(r >0)和直线l :3x +y +5=0.若圆C 与直线l 没有公共点,则r 的取值范围是__________.答案 0<r <10解析 因为圆心C (-5,0)到直线l :3x +y +5=0的距离为|-15+5|32+12=1010=10,所以要使圆C 与直线l 没有公共点,则r 的取值范围是0<r <10.15.已知直线l :y =k (x +4)与圆(x +2)2+y 2=4相交于A ,B 两点,M 是线段AB 的中点,则点M 的轨迹方程为________;点M 到直线3x +4y -6=0的距离的最小值为________.(本题第一空2分,第二空3分)答案 (x +3)2+y 2=1(x ≠-4) 2解析 直线l :y =k (x +4)过定点(-4,0),且点(-4,0)在圆(x +2)2+y 2=4上,不妨设A (-4,0),M (x ,y )(x ≠-4),B (x 1,y 1),则{x 1=2x +4,y 1=2y ,将(2x +4,2y )代入(x +2)2+y 2=4,得(x +3)2+y 2=1(x ≠-4),所以点M 的轨迹是以(-3,0)为圆心,以1为半径的圆(除去点A (-4,0)),则点M 到直线3x +4y -6=0的距离的最小值为|-3×3-6|5-1=2.16.2020年是中国传统的农历“鼠年”,有人用3个圆构成“卡通鼠”的形象,如图,Q (0,-3)是圆Q 的圆心,圆Q 过坐标原点O ,点L ,S 均在x 轴上,圆L 与圆S 的半径都等于2,圆S 、圆L 均与圆Q 外切.已知直线l 过点O .若直线l 截圆L 、圆S 、圆Q 所得弦长均等于d ,则d =________.答案 125解析 由题意圆L 与圆S 关于原点对称,设S (a ,0),a >0,则a 2+32=2+3,解得a =4,即S (4,0),所以L (-4,0).由题意知直线l 的斜率存在,设直线l 的方程为y =kx (k ≠0),则三个圆心到该直线的距离分别为:d 1=|-4k |1+k 2,d 2=|4k |1+k 2,d 3=|3|1+k2,则d 2=4(4-d 12)=4(4-d 22)=4(9-d 32),即有4-(-4k 1+k 2)2 =4-(4k 1+k 2)2 =9-(31+k 2)2,解得k 2=421.则d 2=4(4-16×4211+421)=14425,即d =125.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知直线l 经过直线2x +y -5=0与x -2y =0的交点.(1)若点A (5,0)到直线l 的距离为3,求直线l 的方程;(2)求点A (5,0)到直线l 的距离的最大值.解析 (1)由{2x +y -5=0,x -2y =0得{x =2,y =1,所以交点坐标为(2,1).当直线l 的斜率存在时,设l 的方程为y -1=k (x -2),即kx -y +1-2k =0,则点A 到直线l 的距离为|5k +1-2k |k 2+1=3,解得k =43,所以l 的方程为4x -3y -5=0;当直线l 的斜率不存在时,直线l 的方程为x =2,符合题意.故直线l 的方程为4x -3y -5=0或x =2.(2)设直线2x +y -5=0与x -2y =0的交点为P ,由(1)可知P (2,1),过点P 任意作直线l (如图所示),设d 为点A 到直线l 的距离,则d ≤|PA |(当l ⊥PA 时,等号成立),由两点间的距离公式可知|PA |=10.即所求的距离的最大值为10.18.(12分)已知①经过直线l 1:x -2y =0与直线l 2:2x +y -1=0的交点;②圆心在直线2x-y =0上;③被y 轴截得弦长|CD |=22.从上面这三个条件中任选一个,补充在下面问题中,若问题中的圆存在,求圆的方程;若问题中圆不存在,请说明理由.问:是否存在满足条件的圆Q ,使得点A (-2,-1),B (1,-1)均在圆上?思路分析 由点A (-2,-1),B (1,-1)均在圆上,可知圆心在线段AB 的垂直平分线x =-12上,设圆心坐标为(-12,b ),半径为r ,若选①,求出直线l 1和l 2的交点为(25,15),再利用两点之间的距离公式求出半径,即可求得圆的方程;若选②,由已知圆心(-12,-1),再利用两点之间的距离公式求出半径,即可求得圆的方程;若选③,由弦长|CD |=22,可得半径及圆心,即可求出圆的方程.解析 因为点A (-2,-1),B (1,-1)均在圆上,所以圆心在线段AB 的垂直平分线上,又线段AB 的垂直平分线所在直线方程为x =-2+12=-12,则可设圆心坐标为(-12,b ),圆的半径为r ,若选①,存在圆Q ,使得点A (-2,-1),B (1,-1)均在圆上.由{x -2y =0,2x +y -1=0,解得{x =25,y =15.即直线l 1和l 2的交点为(25,15),则圆Q 过点(25,15),所以r 2=(-12-25)2 +(b -15)2=(-12-1)2+(b +1)2,解得b =-1,则r 2=94.即存在圆Q ,且圆Q 的方程为(x +12)2+(y +1)2=94.若选②,存在圆Q ,使得点A (-2,-1),B (1,-1)均在圆上.由圆心在直线2x -y =0上可得2×(-12)-b =0,则b =-1,所以r 2=(-12-1)2 +(-1+1)2=94,即存在圆Q ,且圆Q 的方程为(x +12)2+(y +1)2=94.若选③,存在圆Q ,使得点A (-2,-1),B (1,-1)均在圆上.若圆被y 轴截得弦长|CD |=22,根据圆的性质可得,r 2=(12)2+(|CD |2)2 =94,由r 2=(-12-1)2 +(b +1)2=94,解得b =-1.即存在圆Q ,且圆Q 的方程为(x +12)2+(y +1)2=94.19.(12分)求以圆C 1:x 2+y 2-12x -2y -13=0和圆C 2:x 2+y 2+12x +16y -25=0的公共弦为直径的圆的方程.解析 因为圆C 1可化为(x -6)2+(y -1)2=50,所以C 1的坐标为(6,1),半径r 1=52,同理可得C 2的坐标为(-6,-8),半径r 2=55.所以C 1,C 2所在的直线方程为3x -4y -14=0.又因为公共弦所在直线的方程为4x +3y -2=0,由{3x -4y -14=0,4x +3y -2=0,得{x =2,y =-2,即所求圆的圆心为C (2,-2),半径r =(52)2-|C 1C |2=5.所以圆的方程为(x -2)2+(y +2)2=25.20.(12分)已知圆心为C 的圆经过点A (0,2)和B (1,1),且圆心C 在直线l :x +y +5=0上.(1)求圆C 的标准方程;(2)若P (x ,y )是圆C 上的动点,求3x -4y 的最大值与最小值.解析 (1)线段AB 的中点为(12,32),又k AB =-1,所以线段AB 的垂直平分线方程为y -32=1×(x -12),即x -y +1=0.由{x -y +1=0,x +y +5=0解得{x =-3,y =-2,所以圆心C (-3,-2).圆C 的半径r =|AC |=(0+3)2+(2+2)2=5,故圆C 的标准方程为(x +3)2+(y +2)2=25.(2)令z =3x -4y ,即3x -4y -z =0.当直线3x -4y -z =0与圆C 相切于点P 时,z 取得最值,圆心C (-3,-2)到直线3x -4y -z =0的距离d =|-9+8-z |32+(-4)2=5,解得z =-26或z =24.故3x -4y 的最大值为24,最小值为-26.21.(12分)为更好地了解鲸的生活习性,某动物保护组织在某头鲸身上安装了电子监测设备,从海岸线放归点O 处把它放归大海,并沿海岸线由西到东不停地对其进行跟踪观测.在放归点O 的正东方向有一观测站C ,可以对鲸的生活习性进行详细观测.已知OC =15 km ,观测站C 的观测半径为5 km.现以点O 为坐标原点,以由西向东的海岸线所在直线为x 轴建立平面直角坐标系,如图所示,测得鲸的行进路线近似满足曲线y =k x (k >0).(1)若测得鲸的行进路线上一点A (1,1),求k 的值;(2)在(1)问的条件下,则:①当鲸运动到何处时,开始进入观测站C 的观测区域内?(计算结果精确到0.1)②当鲸运动到何处时,离观测站C 最近(观测最便利)?(计算结果精确到0.1)(参考数据:41≈6.4,11.3≈3.4,58≈7.6)解析 (1)将A (1,1)代入y =k x ,可得k =1.(2)①以C 为圆心,5为半径的圆的方程为(x -15)2+y 2=25,由{y =x ,(x -15)2+y 2=25,得x 2-29x +200=0,∴x =29±412,∴x 1≈11.3,x 2≈17.7,∴当鲸运动到点(11.3,11.3)即(11.3,3.4)处时,开始进入观测站C 的观测区域内.②鲸与点C 的距离为:d =(x -15)2+y 2=(x -15)2+x=x 2-29x +225=(x -292)2+225-(292)2,∴当x =292时d 最小.故当鲸运动到点(292,582)即(14.5,3.8)处时,鲸离观测站C 最近.22.(12分)已知圆C :x 2+(y -4)2=4,直线l :(3m +1)x +(1-m )y -4=0.(1)求直线l 所过定点A 的坐标;(2)求直线l 被圆C 所截得的弦长最短时m 的值及最短弦长;(3)如图,已知点M (-3,4),在直线MC 上(C 为圆心),存在一定点N (异于点M ),满足对于圆C 上任一点P ,都有|PM ||PN |为一常数,试求所有满足条件的点N 的坐标及该常数.解析 (1)依题意,得m (3x -y )+(x +y -4)=0,令{3x -y =0,x +y -4=0,解得{x =1,y =3,∴直线l 过定点A (1,3).(2)当AC ⊥l 时,所截得的弦长最短.由题知C (0,4),圆C 的半径r =2,∴k AC =4-30-1=-1,∴k l =1,∴3m +1m -1=1,∴m =-1.∵圆心C 到直线l 的距离为d =|AC |=2,∴最短弦长为2r 2-d 2=22.(3)由题意知直线MC 的方程为y =4.设定点N (t ,4)(t ≠-3),P (x ,y ),|PM ||PN |=λ(λ>0),则|PM |2=λ2|PN |2,∴(x +3)2+(y -4)2=λ2(x -t )2+λ2(y -4)2,∴(x +3)2+4-x 2=λ2(x -t )2+λ2(4-x 2),整理得(6+2tλ2)x -(λ2t 2+4λ2-13)=0,此式对任意的x ∈[-2,2]恒成立,∴{6+2t λ2=0,λ2t 2+4λ2-13=0,∴{t=-43,λ=32或{t =-43,λ=-32(舍去)或{t =-3,λ=±1(舍去).综上,满足条件的点N 的坐标为(-43,4),且|PM ||PN |为常数32.1.已知A (-2,1),B (1,2),点C 为直线x -3y =0上的动点,则|AC |+|BC |的最小值为( )A .22B .23C .25D .27答案 C解析 设点A (-2,1)关于直线x -3y =0的对称点为D (a ,b ),则{b -1a +2=-3,a -22-3×b +12=0,解得{a =-1,b =-2,所以D (-1,-2),所以|AC |+|BC |=|DC |+|BC |,当B ,D ,C 共线时,|AC |+|BC |取最小值,最小值为|DB |=(1+1)2+(2+2)2=25.2.圆心在曲线y =3x(x >0)上,且与直线3x +4y +3=0相切的面积最小的圆的方程为( )A .(x -3)2+(y -3)2=9B .(x -3)2+(y -1)2=(165)2C .(x -1)2+(y -3)2=(185)2D .(x -2)2+(y -32)2=9答案 D解析 设圆心为(a ,b ),半径为r ,则满足条件的圆面积最小即r 最小,r =|3a +4b +3|32+42=|3a +4b +3|5≥23a ×4b +35,因为圆心(a ,b )在y =3x (x >0)上,所以b =3a ,即ab =3,所以r min =212×3+35=3,当且仅当3a =4b ,即a =2,b =32时取等号,所以此时圆的方程为(x-2)2+(y -32)2=9.3.已知直线l 经过两条直线l 1:x +y =2,l 2:2x -y =1的交点,且直线l 的一个方向向量ν=(-3,2),则直线l 的方程为( )A .-3x +2y +1=0 B .3x -2y +1=0C .2x +3y -5=0 D .2x -3y +1=0答案 C解析 方法一:由{x +y =2,2x -y =1,得{x =1,y =1,由题意,知直线l 的斜率k =-23,所以直线l 的方程为y -1=-23(x -1),即2x +3y -5=0.故选C.方法二:由题意设直线l :x +y -2+λ(2x -y -1)=0(λ∈R ),即(1+2λ)x +(1-λ)y -2-λ=0,又直线l 的一个方向向量ν=(-3,2),所以3(1+2λ)=2(1-λ),解得λ=-18,所以直线l的方程为2x +3y -5=0.故选C.4.已知圆C 1:(x +a )2+(y -2)2=1与圆C 2:(x -b )2+(y -2)2=4外切,a ,b 为正实数,则ab 的最大值为( )A .23 B.94C.32D.62答案 B解析 因为圆C 1:(x +a )2+(y -2)2=1的圆心为C 1(-a ,2),半径r 1=1,圆C 2:(x -b )2+(y -2)2=4的圆心为C 2(b ,2),半径r 2=2,所以|C 1C 2|=(-a -b )2+(2-2)2=|a +b |=1+2,所以a 2+b 2+2ab =9,所以(a -b )2+4ab =9,所以ab =94-(a -b )24≤94,即当a =b 时,ab 取得最大值,最大值为94.5.若过定点M (-1,0)且斜率为k 的直线与圆C :x 2+4x +y 2-5=0在第一象限内的部分有交点,则实数k 的取值范围是( )A .(0,5) B .(-5,0)C .(0,13) D .(0,5)答案 A解析 圆C 的方程x 2+4x +y 2-5=0可化为(x +2)2+y 2=9,则圆C 与x 轴正半轴交于点A (1,0),与y 轴正半轴交于点B (0,5),如图所示,因为过定点M (-1,0)且斜率为k 的直线与圆C :x 2+4x +y 2-5=0在第一象限内的部分有交点,所以k MA <k <k MB ,所以0<k <5.6.已知在平面直角坐标系中,△ABC 的三个顶点分别是A (0,3),B (3,3),C (2,0),若直线x =a 将△ABC 分割成面积相等的两部分,则实数a 的值是( )A.3 B .1+22C .1+33D .2-22答案 A解析 如图所示,易知直线AB 的方程是y =3,直线AC 的方程是x2+y3=1,即3x +2y -6=0,且直线x =a 只与边AB ,AC 相交.设直线x =a 与AB 交于点D ,与AC 交于点E ,则点D ,E 的坐标分别为(a ,3),(a ,6-3a2),从而|DE |=3-6-3a 2=32a ,S △ADE =12|AD ||DE |=12a ×32a =34a 2①.又S △ABC =12×3×3=92,所以S △ADE =12S △ABC=94②,由①②得34a 2=94,解得a =3或a =-3(舍去).故选A.7.【多选题】已知两圆方程为x 2+y 2=16与(x -4)2+(y +3)2=r 2(r >0),则下列说法正确的是( )A .若两圆外切,则r =1B .若两圆公共弦所在的直线方程为8x -6y -37=0,则r =2C .若两圆在交点处的切线互相垂直,则r =3D .若两圆有三条公切线,则r =2答案 ABC解析 由圆的方程可知,两圆圆心分别为(0,0),(4,-3),半径分别为4,r ,所以圆心距为5,若两圆外切,则4+r =5,即r =1,故A 正确;此时两圆有三条公切线,故D 错误;当两圆相交时,两圆公共弦所在的直线方程可由两圆方程相减得到,所以公共弦所在的直线方程为8x -6y -41+r 2=0,所以-41+r 2=-37,解得r =2,故B 正确;因为两圆在交点处的切线互相垂直,则一个圆的切线必过另一个圆的圆心,所以两圆圆心距与两圆半径必构成一个直角三角形,故52=42+r 2,解得r =3,故C 正确.8.【多选题】已知△ABC 的三个顶点坐标分别为A (-2,3),B (-2,-1),C (6,-1),以原点为圆心的圆与此三角形有唯一的公共点,则该圆的方程为( )A .x 2+y 2=1 B .x 2+y 2=37C .x 2+y 2=4 D .x 2+y 2=165答案 AB解析 过点A ,C 的直线方程为y +13+1=x -6-2-6,化为一般式为x +2y -4=0,过点A ,B 的直线方程为x =-2,过点B ,C 的直线方程为y =-1,所以原点O 到直线x +2y -4=0的距离d AC =455,原点O 到直线x =-2的距离d AB =2,原点O 到直线y =-1的距离d BC =1,所以d AB >d AC >d BC ,又|OA |=(-2)2+32=13,|OB |=(-2)2+(-1)2=5,且|OC |=62+(-1)2=37.结合图形可知,若以原点为圆心的圆与△ABC 有唯一公共点,则公共点为(0,-1)或(6,-1),所以圆的半径为1或37.故选AB.9.已知过点P (4,1)的直线l 与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,当△AOB 的面积最小时,直线l 的方程为________.答案 x +4y -8=0解析 设直线l :x a +y b =1(a >0,b >0),因为直线l 过点P (4,1),所以4a +1b =1≥24a ×1b =4ab,所以ab ≥16,当且仅当a =8,b =2时等号成立.所以当a =8,b =2时,△AOB 的面积S =12ab 取得最小值,此时直线l 的方程为x 8+y2=1,即x +4y -8=0.10.曲线y =1+9-x 2与直线y =k (x -3)+5有两个交点,则实数k 的取值范围是________.答案 (724,23]解析 由题可知,y =1+9-x 2,即x 2+(y -1)2=9(y ≥1),其图象如图所示:又直线y =k (x -3)+5即kx -y -3k +5=0过定点A (3,5).当直线与半圆相切时,则|-1-3k +5|k 2+1=3,解得k =724.当直线过点B (-3,1)时,k =5-13-(-3)=23.所以k ∈(724,23].11.在平面直角坐标系Oxy 中,已知点A (-1,0),B (5,0).若圆M :(x -4)2+(y -m )2=4上存在唯一的点P ,使得直线PA ,PB 在y 轴上的截距之积为5,则实数m 的值为________.答案 ±21解析 根据题意,设点P 的坐标为(a ,b ),则直线PA 的方程为y =b a +1(x +1),其在y 轴上的截距为b a +1,直线PB 的方程为y =b a -5(x -5),其在y 轴上的截距为-5ba -5.若点P 满足使直线PA ,PB 在y 轴上的截距之积为5,则有ba +1×(-5ba -5)=5,变形可得b 2+(a -2)2=9,则点P 在圆(x -2)2+y 2=9上.若圆M :(x -4)2+(y -m )2=4上存在唯一的点P 满足题意,则圆M 与圆(x -2)2+y 2=9有且只有一个公共点,即两圆内切或外切.又两圆的圆心距为(4-2)2+m 2≥2,所以两圆外切,所以4+m 2=25,解得m =±21.12.已知圆C 的圆心在直线l :x +y +1=0上且经过点A (-1,2),B (1,0).(1)求圆C 的方程;(2)若过点D (0,3)的直线l 1被圆C 截得的弦长为23,求直线l 1的方程.解析 (1)由题意得,圆心C 一定在线段AB 的垂直平分线上,k AB =0-21-(-1)=-1,线段AB 中点为(0,1),所以直线AB 的垂直平分线为x -y +1=0.所以直线l :x +y +1=0与x -y +1=0的交点即为圆心C ,即C 的坐标为(-1,0),半径r =|CA |=2.所以圆C 的方程为(x +1)2+y 2=4.(2)当直线l 1斜率不存在时,方程为x =0,此时圆心到l 1距离为1,截得的弦长为23,满足题意;当直线l 1斜率存在时,设为k ,则l 1:kx -y +3=0,圆心(-1,0)到l 1的距离d =|-k +3|k 2+1=4-(232)2=1,所以k =43,则直线l 1的方程为4x -3y +9=0.综上,直线l 1的方程为x =0或4x -3y +9=0.13.如图,在平面直角坐标系Oxy 中,过点P (0,1)且互相垂直的两条直线分别与圆O :x 2+y 2=4交于点A ,B ,与圆M :(x -2)2+(y -1)2=1交于点C ,D .(1)若|AB |=372,求CD 的长;(2)若线段CD 的中点为E ,求△ABE 面积的取值范围.解析 (1)直线AB 的斜率显然存在,设为k ,则直线AB 的方程为y =kx +1.因为(|AB |2)2 +(1k 2+1)2=4,所以|AB |=24k 2+3k 2+1,由24k 2+3k 2+1=372,得k 2=15,因为直线CD 的方程为y =-1kx +1,所以(|CD |2)2=1-(-2k+1-11+(-1k)2)2,所以|CD |=21-4k 2+1=21-415+1=3.(2)当直线AB 的斜率不存在时,△ABE 的面积S =12×4×2=4;当直线AB 的斜率存在时,设其斜率为k ,则直线AB 的方程为y =kx +1,显然k ≠0,则直线CD 的方程为y =-1kx +1,由|-1k·2-1+1|(-1k )2+1<1,得k 2>3,因为(|AB |2)2+(1k 2+1)2=4,所以|AB |=24k 2+3k 2+1,易知E 到直线AB 的距离即M 到AB 的距离,设为d ,则d =|2k -1+1|k 2+1=|2k |k 2+1,所以△ABE 的面积S =12|AB |·d =2(4k 2+3)k 2(k 2+1)2,令k 2+1=t >4,则S =2(4t -1)(t -1)t 2=21t 2-5t +4=2(1t -52)2-94,易知1t ∈(0,14),所以S∈(352,4).综上,△ABE面积的取值范围为(352,4].14.已知圆C:x2+y2+2x-4y+m=0与y轴相切,O为坐标原点,动点P在圆外,过P作圆C的切线,切点为M.(1)求圆C的圆心坐标及半径;(2)求满足|PM|=2|PO|的点P的轨迹方程.解析 (1)圆C:x2+y2+2x-4y+m=0可化为(x+1)2+(y-2)2=5-m,所以圆C的圆心坐标为(-1,2).又圆C与y轴相切,所以5-m=1,即m=4,故圆C的半径为1.(2)设P(x,y),则|PM|2=|PC|2-|MC|2=(x+1)2+(y-2)2-1,|PO|2=x2+y2.由于|PM|=2|PO|,则(x+1)2+(y-2)2-1=4(x2+y2),整理得点P的轨迹方程为(x-13)2+(y+23)2=179.15.已知圆M:x2+(y-4)2=4,点P是直线l:x-2y=0上的一动点,过点P作圆M的切线PA,PB,切点分别为A,B.(1)当切线PA的长度为23时,求点P的坐标;(2)若△PAM的外接圆为圆N,试问:当P在直线l上运动时,圆N是否过定点?若过定点,求出所有定点的坐标;若不过定点,请说明理由.(3)求线段AB长度的最小值.解析 由题意知,圆M的半径r=2,M(0,4),设P(2b,b).(1)∵PA是圆M的一条切线,∴∠MAP=90°,∴|MP|=(0-2b)2+(4-b)2=|AM|2+|AP|2=22+(23)2=4,解得b=0或8 5,∴点P的坐标为(0,0)或(165,85).(2)圆N过定点(0,4),(85,45).理由如下:∵∠MAP=90°,∴经过A,P,M三点的圆N 以MP为直径,其方程为(x-b)2+(y-b+42)2=4b2+(b-4)24,即(2x+y-4)b-(x2+y2-4y)=0.由{2x+y-4=0,x2+y2-4y=0,解得{x=0,y=4或{x=85,y=45.∴圆N过定点(0,4),(85,45).(3)由(2)得圆N的方程为(x-b)2+(y-b+42)2=4b2+(b-4)24,即x2+y2-2bx-(b+4)y+4b=0,①又圆M:x2+(y-4)2=4,即x2+y2-8y+12=0,②②-①,得圆M与圆N的相交弦AB所在直线的方程为2bx+(b-4)y+12-4b=0,∴点M到直线AB的距离d=45b2-8b+16,∴|AB|=24-d2=41-45b2-8b+16=41-45(b-45)2+645,∴当b=45时,|AB|有最小值,为11.。

人教A版高一数学必修第一册《一元二次函数、方程和不等式》章末练习题卷含答案解析(48)

人教A版高一数学必修第一册《一元二次函数、方程和不等式》章末练习题卷含答案解析(48)

人教A版高一数学必修第一册《一元二次函数、方程和不等式》章末练习题卷(共22题)一、选择题(共10题)1.当a<0,−1<b<0时,则下列各式正确的是( )A.a>ab>ab2B.ab>a>ab2C.ab2>ab>a D.ab>ab2>a2.已知m>1,a=√m+1−√m,b=√m−√m−1,则以下结论正确的是( )A.a>b B.a=bC.a<b D.a,b的大小不确定3.关于x的不等式x2−(a+1)x+a<0的解集中恰有两个正整数,则实数a的取值范围是( )A.[2,4)B.[3,4]C.(3,4]D.(3,4)4.下列不等式一定成立的是( )A.x+y≥2√xy B.∣x∣+∣y∣≥2√xyC.∣x∣+∣y∣≥2∣√xy∣D.∣x∣+∣y∣≥2√∣xy∣5.若不等式ax2+bx+c>0的解集为{x∣ −2<x<1},则不等式ax2+(a+b)x+c−a<0的解集为( )A.{x∣ x<−√3或x>√3}B.{x∣ −3<x<1}C.{x∣ −1<x<3}D.{x∣ x<−3或x>1}6.设非零实数a,b,则“a2+b2≥2ab”是“ab +ba≥2”成立的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知x>0,y>0,且x+y=10,则xy有( )A.最大值25B.最大值50C.最小值25D.最小值508.下列不等式中,正确的是( )A.若ac2>bc2,则a>b B.若a>b,则a+c<b+cC.若a>b,c>d,则ac>bd D.若a>b,c>d,则ac >bd9.设集合P={m∣ −1<m<0},Q={m∈R∣ mx2+4mx−4<0对任意实数x恒成立},则下列关系式中成立的是( )A.P⫋Q B.Q⫋P C.P=Q D.P∩Q=∅10.下列关于实数a,b的不等式中,不恒成立的是( )A.a2+b2≥2ab B.a2+b2≥−2abC.(a+b2)2≥ab D.(a+b2)2≥−ab二、填空题(共6题)11.设不等式x2−2ax+a+2≤0的解集为A,若A⊆{x∣ 1≤x≤3},则a的取值范围为.12.设x>0,则2xx2+1的最大值为.13.设实数a,b满足b<a<0,则1a 1b.(填“>”“<”或“=”)14.已知x>0,y>0,且x+2y=xy,若x+2y>m2+2m恒成立,则xy的最小值为,实数m的取值范围为.15.已知关于x的不等式(a2−4)x2+(a+2)x−1≥0的解集为空集,则实数a的取值范围是.16.已知正实数x,y满足12x+y +42x+3y=1,则x+y的最小值为.三、解答题(共6题)17.某居民小区欲在一块空地上建一面积为1200m2的矩形停车场,停车场的四周留有人行通道,设计要求停车场外侧南北的人行通道宽3m,东西的人行通道宽4m,如图所示(图中单位:m),问如何设计停车场的边长,才能使人行通道占地面积最小?最小面积是多少?18.已知p:x2−2x−35≤0,q:x2−3mx+(2m−1)(m+1)≤0(其中实数m>2).(1) 分别求出p,q中关于x的不等式的解集M和N;(2) 若p是q的必要不充分条件,求实数m的取值范围.19.已知关于x的不等式x2−2x−1>a(a∈R).(1) 若a=1,求不等式的解集;(2) 若不等式的解集为R,求实数a的范围.<1”.20.设a,b均为实数,且a≠0.求证:“a(a−b)>0”的充要条件是“ba21.求证:无论实数m取何值,关于x的方程x2−2mx+m−2=0总有两个不相等的实数根.22.某大学要修建一个面积为216m2的长方形景观水池,并且在景观水池四周要修建出宽为2m和3m的小路(如图).问:如何设计景观水池的边长,能使总占地面积最小?并求出总占地面积的最小值.答案一、选择题(共10题)1. 【答案】D【解析】因为a<0,−1<b<0,所以ab>0,1−b>0,b2−1<0,所以ab−ab2=ab(1−b)>0,所以ab>ab2,又ab2−a=a(b2−1)>0,所以ab2>a,所以ab>ab2>a.故选D.【知识点】不等式的性质2. 【答案】C【知识点】不等式的性质3. 【答案】C【解析】由题意得x2−(a+1)x+a<0可化为(x−a)(x−1)<0的解集有两个正整数,则这两个解为2,3.【知识点】二次不等式的解法4. 【答案】D【知识点】均值不等式的应用5. 【答案】D【解析】由已知得方程ax2+bx+c=0的两根分别为x1=−2,x2=1,且a<0,所以ba =1,ca=−2.所以不等式ax2+(a+b)x+c−a<0可化为x2+(1+ba )x+ca−1>0,即x2+2x−3>0,解得x<−3或x>1.【知识点】二次不等式的解法6. 【答案】B【解析】因为a,b∈R时,都有a2+b2−2ab=(a−b)2≥0,即a2+b2≥2ab,而ab +ba≥2⇔ab>0,所以“a2+b2≥2ab”是“ab +ba≥2”的必要不充分条件.【知识点】均值不等式的应用7. 【答案】A【解析】因为 x >0,y >0,x +y =10, 所以 x +y ≥2√xy , 所以 xy ≤(x+y 2)2=25,当且仅当 x =y =5 时,等号成立.所以 xy 有最大值 25. 【知识点】均值不等式的应用8. 【答案】A【解析】若 a >b ,则 a +c >b +c ,故B 错; 设 a =3,b =1,c =−1,d =−2, 则 ac <bd ,ac<bd ,所以C ,D 错.【知识点】不等式的性质9. 【答案】A【解析】当 m =0 时,−4<0 对任意实数 x ∈R 恒成立;当 m ≠0 时,由 mx 2+4mx −4<0 对任意实数 x ∈R 恒成立可得 {m <0,Δ=16m 2+16m <0,解得 −1<m <0,综上所述,Q ={m∣ −1<m ≤0}, 所以 P ⫋Q .【知识点】二次不等式的解法10. 【答案】D【解析】根据不等式的性质,选项A ,B ,C 都是成立的,选项D 中当 a =−1,b =1 时,等式不成立,故答案选D . 【知识点】不等式的性质二、填空题(共6题) 11. 【答案】 −1<a ≤115【知识点】二次不等式的解法12. 【答案】 1【知识点】均值不等式的应用13. 【答案】 <【知识点】不等式的性质14. 【答案】 8 ; (−4,2)【解析】因为 x >0,y >0,x +2y =xy , 所以 2x +1y =1,所以 1=2x +1y ≥2√2x ⋅1y ,所以 xy ≤8,当且仅当 x =4,y =2 时取等号, 所以 x +2y ≥2√2xy ≥8(当 x =2y 时,等号成立), 所以 m 2+2m <8,解得 −4<m <2, 故答案为:8;(−4,2). 【知识点】均值不等式的应用15. 【答案】[−2,65)【解析】当 a =−2 时,原不等式可化为 0⋅x 2+0⋅x −1≥0,解集为空集,符合题意. 当 a =2 时,原不等式可化为 0⋅x 2+4x −1≥0,解集不能为空集. 当 {a 2−4<0,Δ=(a +2)2+4(a 2−4)<0. 不等式的解集为空集.所以 −2<a <65,综上 −2≤a <65.【知识点】二次不等式的解法16. 【答案】 94【解析】因为 x >0,y >0,所以 2x +y >0,2x +3y >0,x +y >0, 根据题意,12x+y +42x+3y =1,由于 x +y =14[(2x +y )+(2x +3y )],故x +y =(x +y )×1=14[(2x +y )+(2x +3y )]×(12x+y +42x+3y )=14(1+4(2x+y )2x+3y +4+2x+3y2x+y )=54+2x+y2x+3y +2x+3y4(2x+y ),因为 2x+y2x+3y +2x+3y4(2x+y )≥2√14=1,当且仅当 2x =y =32 时取等号, 所以 x +y ≥54+1=94,故 x +y 的最小值为 94. 【知识点】均值不等式的应用三、解答题(共6题)17. 【答案】设矩形停车场南北侧边长为x m,则其东西侧边长为1200xm,人行通道占地面积为S=(x+6)(1200x +8)−1200=8x+7200x+48(m2),由平均值不等式,得S=8x+7200x +48≥2√8x⋅7200x+48=2×24+48=96,当且仅当8x=7200x,即x=30(m)时,S min=96(m2),此时1200x=40(m).所以,设计矩形停车场南北侧边长为30m,则其东西侧边长为40m,人行通道占地面积最小,最小面积是528m2【知识点】均值不等式的实际应用问题18. 【答案】(1) 由x2−2x−35=(x−7)(x+5)≤0,得M=[−5,7];x2−3mx+(2m−1)(m+1)=[x−(2m−1)][x−(m+1)]≤0,因为m>2,所以2m−1>m+1,所以N=[m+1,2m−1].(2) 因为p是q的必要不充分条件,所以N⫋M,所以{−5<m+1,7≥2m−1或{−5≤m+1,7>2m−1,解得−6≤m≤4,又m>2,所以2<x≤4.【知识点】二次不等式的解法、充分条件与必要条件19. 【答案】(1) a=1时,原不等式为x2−2x−1>1,整理,得x2−2x−2>0,对于方程x2−2x−2=0,因为Δ=12>0,所以它有两个不等的实数根,解得x1=1−√3,x2=1+√3,结合函数y=x2−2x−2的图象得不等式的解集为{x∣ x<1−√3或x>1+√3}.(2) 原不等式可化为x2−2x−1−a>0,由于不等式解集为R,结合函数y=x2−2x−1−a图象可知,方程x2−2x−1−a=0无实数根,所以Δ=4+4(1+a)=8+4a<0,所以a的范围是{a∣ a<−2}.【知识点】二次不等式的解法20. 【答案】显然 a ≠0,从而 a (a −b )>0⇔a (a−b )a 2>0⇔a−b a>0⇔1>ba .【知识点】不等式的性质、充分条件与必要条件21. 【答案】因为 Δ=4m 2−4m +8=4(m −12)2+7>0,所以方程总有两个不相等的实数根. 【知识点】不等式的性质22. 【答案】设水池一边长 x m ,则另一边为216xm ,总占地面积为 (x +4)(216x+6).(x +4)(216x+6)=240+6x +864x≥240+144=384,当且仅当 6x =864x,即 x =12 时,取得等号.因此,水池一边长为 12 m ,另一边长为 18 m 时,总占地面积为最小,最小为 384 m 2. 【知识点】均值不等式的实际应用问题。

高中数学 章末检测卷(二)点、直线、平面之间的位置关系 新人教A版必修2-新人教A版高一必修2数学试

高中数学 章末检测卷(二)点、直线、平面之间的位置关系 新人教A版必修2-新人教A版高一必修2数学试

章末检测卷(二)(时间:120分钟满分:150分)一、选择题1.在正方体ABCD-A1B1C1D1中,直线AC与直线BC1所成的角为( )A.30°B.60°C.90°D.45°解析连接A1C1,A1B,则AC∥A1C1,因为△A1BC1是正三角形,所以∠A1C1B=60°,即直线AC 与直线BC1所成的角为60°.答案 B2.设a、b为两条直线,α、β为两个平面,下列四个命题中,正确的命题是( )A.若a、b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则a∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b解析A中a、b可以平行、相交或异面;B中a、b可以平行、相交或异面;C中的α、β可以平行或相交.答案 D3.设m,n是两条不同的直线,α,β是两个不同的平面( )A.若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β解析A项,当m∥α,n∥α时,m,n可能平行,可能相交,也可能异面,故错误;B项,当m∥α,m∥β时,α,β可能平行也可能相交,故错误;C项,当m∥n,m⊥α时,n⊥α,故正确;D项,当m∥α,α⊥β时,m可能与β平行,可能在β内,也可能与β相交,故错误.故选C.答案 C4.如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是( )1与B1E是异面直线B.AC⊥平面ABB1A1C.AE,B1C1为异面直线,且AE⊥B1C1D.A1C1∥平面AB1E解析由已知AC=AB,E为BC中点,故AE⊥BC,又∵BC∥B1C1,∴AE⊥B1C1,C正确.答案 C5.设l为直线,α,β是两个不同的平面.下列命题中正确的是( )A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β解析选项A,若l∥α,l∥β,则α和β可能平行也可能相交,故错误;选项B,若l⊥α,l⊥β,则α∥β,故正确;选项C,若l⊥α,l∥β,则α⊥β,故错误;选项D,若α⊥β,l∥α,则l与β的位置关系有三种可能:l⊥β,l∥β,l⊂β,故错误.故选B.答案 B6.(2015·某某高考)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面解析对于A,α,β垂直于同一平面,α,β关系不确定,A错;对于B,m,n平行于同一平面,m,n关系不确定,可平行、相交、异面,故B错;对于C,α,β不平行,但α内能找出平行于β的直线,如α中平行于α,β交线的直线平行于β,故C错;对于D,若假设m,n垂直于同一平面,则m∥n,其逆否命题即为D选项,故D正确.答案 D7.(2014·某某高考)设m,n是两条不同的直线,α,β是两个不同的平面.( )A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α解析选项A,若m⊥n,n∥α,则m⊂α或m∥α或m与α相交,错误;选项B,若m∥β,β⊥α,则m⊂α或m∥α或m与α相交,错误;选项C,若m⊥β,n⊥β,可得m∥n,又n⊥α,则m⊥α,正确;选项D,若m⊥n,n⊥β,β⊥α,则m与α相交或m⊂α或m ∥α,错误.答案 C8.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=( )A.8B.9C.10D.11解析取CD的中点H,连接EH,HF.在四面体CDEF中,CD⊥EH,CD⊥FH,所以CD⊥平面EFH,所以AB⊥平面EFH,所以正方体的左、右两个侧面与EF平行,其余4个平面与EF相交,即n=4.又因为CE与AB在同一平面内,所以CE与正方体下底面共面,与上底面平行,与其余四个面相交,即m=4,所以m+n=4+4=8.答案 A9.正方体ABCD-A1B1C1D1中,过点A作平面A1BD的垂线,垂足为点H.以下结论中,错误的是( )A.点H是△A1BD的垂心B.AH⊥平面CB1D1C.AH的延长线经过点C1D.直线AH和BB1所成的角为45°解析因为AH⊥平面A1BD,BD⊂平面A1BD,所以BD⊥AH.又BD⊥AA1,且AH∩AA1=A.所以BD⊥平面AA1H.又A1H⊂平面AA1H.所以A1H⊥BD,同理可证BH⊥A1D,所以点H是△A1BD的垂心,A正确;因为平面A 1BD ∥平面CB 1D 1, 所以AH ⊥平面CB 1D 1,B 正确;易证AC 1⊥平面A 1BD .因为过一点有且只有一条直线与已知平面垂直,所以AC 1和AH 重合.故C 正确;因为AA 1∥BB 1,所以∠A 1AH 为直线AH 和BB 1所成的角. 因为∠AA 1H ≠45°,所以∠A 1AH ≠45°,故D 错误. 答案 D10.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为( ) A.5π12B.π3C.π4D.π6解析 如图所示,P 为正三角形A 1B 1C 1的中心,设O 为△ABC 的中心,由题意知:PO ⊥平面ABC ,连接OA ,则∠PAO 即为PA 与平面ABC 所成的角.在正三角形ABC 中,AB =BC =AC =3,则S =34×(3)2=334, V ABC -A 1B 1C 1=S ×PO =94,∴PO = 3.又AO =33×3=1,∴tan ∠PAO =PO AO =3,∴∠PAO =π3. 答案 B二、填空题11.矩形ABEF 和正方形ABCD 有公共边AB ,且它们所在的平面互相垂直,AB =BC =2a ,BE =a ,则DE =________,DE 与平面ABEF 所成的线面角的正弦值为________. 解析 如图,在Rt △DBE 中,BD =22a ,BE =a ,∴DE =(22a )2+a 2=3a ,∵DA ⊥平面ABEF ,∴∠DEA 即为DE 与平面ABEF 所成的角, 在Rt △DAE 中,sin ∠DEA =DA DE =23. 答案 3a 2312.如图所示为一个正方体的一种表面展开图,图中的四条线段AB ,CD ,EF ,GH 在原正方体中互为异面直线的有________对,成60°角的有________对.解析 正方体如图AB 与CD ,AB 与GH ,GH 与EF 互为异面直线,AB 与CD ,AB 与EF ,AB 与GH ,CD 与GH ,EF 与GH 成60°角.答案 3 513.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱AA 1和AB 上的点,若∠B 1MN 是直角,则∠C 1MN 等于________.解析 ∵B 1C 1⊥平面A 1ABB 1,MN ⊂平面A 1ABB 1, ∴B 1C 1⊥MN ,又∠B 1MN 为直角. ∴B 1M ⊥MN 而B 1M ∩B 1C 1=B 1.∴MN ⊥平面MB 1C 1又MC 1⊂平面MB 1C 1 ∴MN ⊥MC 1,∴∠C 1MN =90°. 答案 90°14.已知平面α∥平面β,点A ,C ∈α,点B ,D ∈β,直线AB ,CD 交于点S ,且SA =8,SB =9,CD =34.(1)若点S 在平面α,β之间,则SC =________. (2)若点S 不在平面α,β之间,则SC =________. 解析 根据题意得AS SB =SCSD.当点S 在α,β之间时,有89=CS 34-CS ,即CS =16;当点S 在α,β之外时,有89-8=SC34,即SC =272. 答案 16 27215.如图所示,已知矩形ABCD 中,AB =3,BC =a ,若PA ⊥平面AC ,在BC 边上取点E ,使PE ⊥DE ,则满足条件的E 点有两个时,a 的取值X 围是________.解析 由题意知:PA ⊥DE , 又PE ⊥DE ,PA ∩PE =P , 所以DE ⊥面PAE ,∴DE ⊥AE .易证△ABE ∽△ECD .设BE =x ,则AB CE =BE CD, 即3a -x =x 3.∴x 2-ax +9=0,由Δ>0,解得a >6. 答案 a >616.在正方体ABCD -A ′B ′C ′D ′中,E 为A ′D ′中点,则异面直线EC 与BC ′所成角的余弦值为________,二面角A ′-BC ′-D 的平面角的正切值为________.解析 如图,取BC ,CC ′中点F ,H ,连A ′F ,FH ,A ′H .∵A ′F ∥EC ,FH ∥BC ′,∴∠A ′FH 即为异面直线EC 与BC ′所成的角. 设正方体的棱长为2,FH =2,A ′F =3,A ′H =3, cos ∠A ′FH =223=26,取BC ′的中点O ,连A ′O ,DO ,则A ′O ⊥BC ′,DO ⊥BC ′,∠A ′OD 即为二面角A ′-BC ′-D 的平面角, A ′O =DO =6,A ′D =22,cos ∠A ′OD =6+6-826×6=13,tan ∠A ′OD =2 2.答案262 2 17.已知四棱锥P -ABCD 的底面ABCD 是矩形,PA ⊥底面ABCD ,点E 、F 分别是棱PC 、PD 的中点,则①棱AB 与PD 所在直线垂直; ②平面PBC 与平面ABCD 垂直; ③△PCD 的面积大于△PAB 的面积; ④直线AE 与直线BF 是异面直线.以上结论正确的是________.(写出所有正确结论的编号) 解析 由条件可得AB ⊥平面PAD , ∴AB ⊥PD ,故①正确;若平面PBC ⊥平面ABCD ,由PB ⊥BC ,得PB ⊥平面ABCD ,从而PA ∥PB ,这是不可能的,故②错;S △PCD =12CD ·PD ,S △PAB =12AB ·PA ,由AB =CD ,PD >PA 知③正确; 由E 、F 分别是棱PC 、PD 的中点, 可得EF ∥CD ,又AB ∥CD ,∴EF∥AB,故AE与BF共面,④错.答案①③三、解答题18.如图,三棱柱ABC-A1B1C1的侧棱与底面垂直,AC=9,BC=12,AB=15,AA1=12,点D 是AB的中点.(1)求证:AC⊥B1C;(2)求证:AC1∥平面CDB1.证明(1)∵C1C⊥平面ABC,AC⊂平面ABC,∴C1C⊥AC.∵AC=9,BC=12,AB=15,∴AC2+BC2=AB2,∴AC⊥BC.又BC∩C1C=C,∴AC⊥平面BCC1B1,而B1C⊂平面BCC1B1,∴AC⊥B1C.(2)连接BC1交B1C于O点,连接OD.如图,∵O,D分别为BC1,AB的中点,∴OD∥AC1.又OD⊂平面CDB1,AC1⊄平面CDB1.∴AC1∥平面CDB1.19.如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M 为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.(1)证明 如图所示,取CD 的中点E ,连接PE ,EM ,EA ,∵△PCD 为正三角形,∴PE ⊥CD ,PE =PD sin ∠PDE =2sin 60°= 3.∵平面PCD ⊥平面ABCD ,平面PCD ∩平面ABCD =CD ,PE ⊂平面PCD , ∴PE ⊥平面ABCD ,而AM ⊂平面ABCD ,∴PE ⊥AM .∵四边形ABCD 是矩形,∴△ADE ,△ECM ,△ABM 均为直角三角形. 由勾股定理可求得EM =3,AM =6,AE =3, ∴EM 2+AM 2=AE 2.∴AM ⊥EM .又PE ∩EM =E ,∴AM ⊥平面PEM ,而PM ⊂平面PEM ,∴AM ⊥PM . (2)解 由(1)可知EM ⊥AM ,PM ⊥AM , ∴∠PME 是二面角P -AM -D 的平面角. ∴tan ∠PME =PE EM=33=1,∴∠PME =45°.∴二面角P -AM -D 的大小为45°.20.(2016·全国Ⅲ)如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面PAB ; (2)求四面体N -BCM 的体积.(1)证明 由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB .(2)解 因为PA ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12PA .取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5. 由AM ∥BC 得M 到BC 的距离为5, 故S △BCM =12×4×5=2 5.所以四面体N -BCM 的体积 V N -BCM =13×S △BCM ×PA 2=453.21.(2016·全国卷Ⅱ)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置.(1)证明:AC ⊥HD ′;(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′-ABCFE 的体积.(1)证明 由已知得AC ⊥BD ,AD =CD ,又由AE =CF 得AE AD =CF CD,故AC ∥EF ,由此得EF ⊥HD ,折后EF 与HD 保持垂直关系,即EF ⊥HD ′,所以AC ⊥HD ′.(2)解 由EF ∥AC 得OH DO =AE AD =14.由AB =5,AC =6得DO =BO =AB 2-AO 2=4,所以OH =1,D ′H =DH =3,于是OD ′2+OH 2=(22)2+12=9=D ′H 2,故OD ′⊥OH .由(1)知AC ⊥HD ′,又AC ⊥BD ,BD ∩HD ′=H ,所以AC ⊥平面DHD ′,于是AC ⊥OD ′,又由OD ′⊥OH ,AC ∩OH =O ,所以OD ′⊥平面ABC .又由EF AC =DH DO 得EF =92. 五边形ABCFE 的面积S =12×6×8-12×92×3=694. 所以五棱锥D ′-ABCFE 的体积 V =13×694×22=2322. 22.(2016·某某高考)如图,在四棱锥P -ABCD 中,PA ⊥CD ,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =12AD . (1)在平面PAD 内找一点M ,使得直线CM ∥平面PAB ,并说明理由.(2)证明:平面PAB ⊥平面PBD .(1)解取棱AD 的中点M (M ∈平面PAD ),点M 即为所求的一个点,理由如下:因为AD ∥BC ,BC =12AD .所以BC ∥AM ,且BC =AM . 所以四边形AMCB 是平行四边形,从而CM ∥AB .又AB ⊂平面PAB .CM ⊄平面PAB .所以CM ∥平面PAB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)(2)证明 由已知,PA ⊥AB ,PA ⊥CD .因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交, 所以PA ⊥平面ABCD .从而PA ⊥BD .因为AD ∥BC ,BC =12AD ,所以BC ∥MD ,且BC =MD .所以四边形BCDM 是平行四边形, 所以BM =CD =12AD ,所以BD ⊥AB .又AB ∩AP =A ,所以BD ⊥平面PAB . 又BD ⊂平面PBD ,所以平面PAB ⊥平面PBD .。

人教版高中数学选择性必修第一册-第1章 空间向量与立体几何 章末测试卷(含解析)

人教版高中数学选择性必修第一册-第1章 空间向量与立体几何 章末测试卷(含解析)

第一章 空间向量与立体几何 章末测试卷(原卷版)[时间:120分钟 满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.以下四个命题中,正确的是( )A .向量a =(1,-1,3)与向量b =(3,-3,6)平行B .△ABC 为直角三角形的充要条件是AB → ·AC →=0C .|(a ·b )c |=|a |·|b |·|c |D .若{a ,b ,c }为空间的一个基底,则a +b ,b +c ,c +a 构成空间的另一基底2.已知点A ,B ,C 不共线,对空间任意一点O ,若OP → =12OA → +14OB → +14OC →,则P ,A ,B ,C四点( )A .不共面B .共面C .不一定共面D .无法判断3.如图,在四面体O -ABC 中,G 1是△ABC 的重心,G 是OG 1上的一点,且OG =2GG 1,若OG → =x OA → +y OB → +z OC →,则(x ,y ,z )为( )A.(12,12,12)B.(23,23,23)C.(13,13,13)D.(29,29,29)4.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱AB ,BC 的中点,则点C 1到平面B 1EF 的距离为( )A.23B.223C.233 D.435.如图,S 是正三角形ABC 所在平面外一点,M ,N 分别是AB 和SC 的中点,SA =SB =SC ,且∠ASB =∠BSC =∠CSA =90°,则异面直线SM 与BN 所成角的余弦值为( )A.105B .-105C .-1010 D.10106.在直角坐标系中,A (-2,3),B (3,-2),沿x 轴把直角坐标系折成120°的二面角,则AB 的长度为( )A.2 B .211C .32 D .427.如图,四棱锥P -ABCD 中,底面ABCD 是矩形,PD ⊥平面ABCD ,且PD =AD =1,AB =2,点E 是AB 上一点,当二面角P -EC -D 的平面角为π4时,则AE 等于( )A .1B.12C .2-2D .2-38.三棱柱ABC -A 1B 1C 1中,底面ABC 为正三角形,侧棱长等于底面边长,A 1在底面的射影是△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( )A.13B.23C.33 D.23二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.设ABCD -A 1B 1C 1D 1是棱长为a 的正方体,A 1C 与B 1D 相交于点O ,则有( )A.A 1B 1→ ·AC → =a 2 B.AB → ·A 1C → =2a 2C.CD → ·AB 1→ =a 2D.AB → ·A 1O → =12a 210.在四面体P -ABC 中,下列说法正确的是( )A .若AD → =13AC → +23AB →,则BC → =3BD→ B .若Q 为△ABC 的重心,则PQ → =13PA → +13PB →+13PC→C .若PA → ·BC → =0,PC → ·AB → =0,则AC → ·PB →=0D .若四面体P -ABC 的棱长都为2,M ,N 分别为PA ,BC 的中点,则|MN →|=111.如图,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =π3,AB =2AD =2PD ,PD ⊥底面ABCD ,则( )A .PA ⊥BDB .PB 与平面ABCD 所成角为π6C .异面直线AB 与PC 所成角的余弦值为255D .平面PAB 与平面PBC 夹角的余弦值为27712.将直角三角形ABC 沿斜边上的高AD 折成120°的二面角,已知直角边AB =3,AC =6,则下列说法正确的是( )A .平面ABC ⊥平面ACDB .四面体D -ABC 的体积是6C .二面角A -BC -D 的正切值是423D .BC 与平面ACD 所成角的正弦值是2114三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.在四面体OABC 中,OA → =a ,OB → =b ,OC → =c ,D 为BC 的中点,E 为AD 中点,则OE →=____________________.(用a ,b ,c 表示)14.在平面直角坐标系中,点A (-1,2)关于x 轴的对称点为A ′(-1,-2),则在空间直角坐标系中,B (-1,2,3,)关于x 轴的对称点B ′的坐标为________,若点C (1,-1,2)关于平面Oxy 的对称点为点C ′,则|B ′C ′|=________.(本题第一空2分,第二空3分)15.在平行六面体ABCD -A 1B 1C 1D 1中,AB =2,AA 1=2,AD =1,且AB ,AD ,AA 1的夹角都是60°,则AC 1→ ·BD 1→=________.16.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =1,BC =3,点M 在棱CC 1上,且MD 1⊥MA ,则当△MAD 1的面积取得最小值时,其棱AA 1=________.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)设a =(1,5,-1),b =(-2,3,5).(1)若(k a +b )∥(a -3b ),求k ;(2)若(k a +b )⊥(a -3b ),求k .18.(12分)如图,已知PA ⊥平面ABCD ,底面ABCD 为矩形,PA =AD ,M ,N 分别为AB ,PC 的中点.求证:(1)MN ∥平面PAD ;(2)平面PMC ⊥平面PDC .19.(12分)(2014·福建,理)在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图所示.(1)求证:AB ⊥CD ;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.20.(12分)如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)求证:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.21.(12分)(2017·课标全国Ⅲ)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D -AE -C 的余弦值.22.(12分)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AB ⊥AD ,BC ∥AD ,M 是棱PD 上一点,且AB =BC =2,AD =PA =4.(1)若PM ∶MD =1∶2,求证:PB ∥平面ACM ;(2)求二面角A -CD -P 的正弦值;(3)若直线AM 与平面PCD 所成角的正弦值为63,求MD 的长.1.设向量u =(a ,b ,0),v =(c ,d ,1),其中a 2+b 2=c 2+d 2=1,则下列判断错误的是( )A .向量v 与z 轴正方向的夹角为定值(与c ,d 的值无关)B .u ·v 的最大值为2C .u 与v 夹角的最大值为3π4D .ad -bc 的最大值为12.如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱AB ,BB 1的中点,点P 在体对角线CA 1上运动.当△PMN 的面积取得最小值时,点P 的位置是( )A .线段CA 1的三等分点,且靠近点A 1B .线段CA 1的中点C .线段CA 1的三等分点,且靠近点CD .线段CA 1的四等分点,且靠近点C3.在底面为锐角三角形的直三棱柱ABC -A 1B 1C 1中,D 是棱BC 的中点,记直线B 1D 与直线AC 所成角为θ1,直线B 1D 与平面A 1B 1C 1所成角为θ2,二面角C 1-A 1B 1-D 的平面角为θ3,则( )A .θ2<θ1,θ2<θ3B .θ2>θ1,θ2<θ3C .θ2<θ1,θ2>θ3D .θ2>θ1,θ2>θ34.已知正方体ABCD -EFGH (如图),则( )A .直线CF 与GD 所成的角与向量所成的角〈CF → ,GD →〉相等B .向量FD →是平面ACH 的法向量C .直线CE 与平面ACH 所成角的正弦值与cos 〈CE → ,FD →〉的平方和等于1D .二面角A -FH -C 的余弦值为125.在三棱锥P -ABC 中,△ABC 为等边三角形,PA ⊥平面ABC ,且PA =AB ,则二面角A -PB -C 的平面角的正切值为( )A.6 B.3C.66 D.626.如图,四棱锥P -ABCD 中,PB ⊥平面ABCD ,底面ABCD 为直角梯形,AD ∥BC ,AB ⊥BC ,AB =AD =PB =3,点E 在棱PA 上,且PE =2EA ,则平面ABE 与平面BED 的夹角的余弦值为( )A.23B.66C.33D.637.已知向量a =(1,2,3),b =(-2,-4,-6),|c |=14,若(a +b )·c =7,则a 与c 的夹角为( )A .30° B .60°C .120° D .150°8.【多选题】如图甲,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,将△ADE ,△CDF ,△BEF 分别沿DE ,DF ,EF 折起,使A ,B ,C 三点重合于点P (如图乙),则下列结论正确的是( )A .PD ⊥EFB .平面PDE ⊥平面PDFC .平面PEF 与平面EFD 夹角的余弦值为13D .点P 在平面DEF 上的投影是△DEF 的外心9.【多选题】已知ABCD -A 1B 1C 1D 1为正方体,下列说法中正确的是( )A .(A 1A → +A 1D 1→ +A 1B 1→ )2=3(A 1B 1→ )2B.A 1C → ·(A 1B 1→ -A 1A →)=0C .向量AD 1→ 与向量A 1B →的夹角是60°D .正方体ABCD -A 1B 1C 1D 1的体积为|AB → ·AA 1→ ·AD →|10.【多选题】在正方体ABCD -A 1B 1C 1D 1中,动点M 在线段A 1C 上,E ,F 分别为DD 1,AD 的中点.若异面直线EF 与BM 所成角为θ,则θ的值可能是( )A.π6 B.π4C.π3 D.π211.【多选题】在正三棱柱ABC -A ′B ′C ′中,所有棱长均为1,BC ′与B ′C 交于点O ,则( )A.AO → =12AB → +12AC → +12AA ′→ B .AO ⊥B ′CC .三棱锥A -BB ′O 的体积为324D .AO 与平面BB ′C ′C 所成的角为π612.已知在矩形ABCD 中,AB =1,BC =x ,将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中,下列结论正确的是________(填所有正确结论的序号).①对任意x ∈(0,2),都存在某个位置,使得AB ⊥CD ;②对任意x ∈(0,2),都不存在某个位置,使得AB ⊥CD ;③对任意x >1,都存在某个位置,使得AB ⊥CD ;④对任意x >1,都不存在某个位置,使得AB ⊥CD .13.如图所示,已知平行六面体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为1的正方形,侧棱AA 1的长为2,∠A 1AB =∠A 1AD =120°.若AC 1→ =x AB → +y AD → +z AA 1→,则x +y +z =________,AC 1的长为________.14.如图所示,在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,AB =BC =AA 1=2,点D 是A 1C 1的中点,则异面直线AD 和BC 1所成角的大小为________. 15.如图1在直角梯形ABCP 中,BC ∥AP ,AB ⊥BC ,CD ⊥AP ,AD =DC =PD =2,E ,F ,G分别是线段PC,PD,BC的中点,现将△PDC折起,使平面PDC⊥平面ABCD(如图2).(1)求证:AP∥平面EFG;(2)求二面角G-EF-D的大小.16.如图,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(1)求证:EF∥B1C;(2)求二面角E-A1D-B1的余弦值.17.如图,四棱锥P-ABCD的底面ABCD是边长是1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2.(1)求证:平面PBE⊥平面PAB;(2)求平面PAD和平面PBE所成二面角(锐角)的余弦值.18.如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)求证:B1C1⊥CE;(2)求二面角B1-CE-C1的正弦值;(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为26,求线段AM的长.19.如图,已知PD垂直于以AB为直径的圆O所在的平面,点C为圆O上一点,且BD=PD =3,AC=2AD=2.(1)求证:PA⊥CD;(2)求二面角B-CP-D的余弦值.20.在如图所示的试验装置中,两个正方形框架ABCD,ABEF的边长都是1,且它们所在的平面互相垂直,活动弹子M,N分别在正方形对角线AC和BF上移动,且CM和BN的长度保持相等,记CM=BN=a(0<a<2). (1)求MN的长;(2)a为何值时,MN的长最小并求出最小值;(3)当MN的长最小时,求平面MNA与平面MNB夹角的余弦值.第一章 空间向量与立体几何 章末测试卷(解析版)[时间:120分钟 满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.以下四个命题中,正确的是( )A .向量a =(1,-1,3)与向量b =(3,-3,6)平行B .△ABC 为直角三角形的充要条件是AB → ·AC →=0C .|(a ·b )c |=|a |·|b |·|c |D .若{a ,b ,c }为空间的一个基底,则a +b ,b +c ,c +a 构成空间的另一基底答案 D解析 因为{a ,b ,c }为空间的一个基底,设a +b =λ(b +c )+μ(c +a ),即{λ=1,μ=1,μ+λ=0,无解,所以a +b ,b +c ,c +a 不共面,故D 正确;因为31=-3-1≠63,所以a =(1,-1,3)和b =(3,-3,6)不平行,故A 错误;△ABC 为直角三角形只需一个角为直角即可,不一定是∠A ,所以无法推出AB → ·AC →=0,故B 错误;若a ·b =0即可得出C 项错误.综上所述,本题的正确答案为D.2.已知点A ,B ,C 不共线,对空间任意一点O ,若OP → =12OA → +14OB → +14OC →,则P ,A ,B ,C四点( )A .不共面B .共面C .不一定共面D .无法判断答案 B解析 因为OP → =12OA →+14OB → +14OC →,且12+14+14=1,所以P ,A ,B ,C 四点共面.故选B.3.如图,在四面体O -ABC 中,G 1是△ABC 的重心,G 是OG 1上的一点,且OG =2GG 1,若OG → =x OA → +y OB → +z OC →,则(x ,y ,z )为( )A.(12,12,12) B.(23,23,23)C.(13,13,13) D.(29,29,29)答案 D解析 取BC 中点E ,连接AE ,OE ,则OE → =12(OB → +OC →),G 1是△ABC 的重心,则AG 1=23AE ,所以AG 1→ =23AE → =23(OE → -OA → ),因为OG =2GG 1,所以OG → =23OG 1→ =23(OA → +AG 1→ )=23OA → +49(OE → -OA → )=29OA → +49OE → =29OA → +29(OB →+OC → )=29OA → +29OB → +29OC → ,所以x =y =z =29.4.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱AB ,BC 的中点,则点C 1到平面B 1EF 的距离为( )A.23B.223C.233 D.43答案 D解析 以D 1为坐标原点,分别以射线D 1A 1,D 1C 1,D 1D 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,则B 1(2,2,0),C 1(0,2,0),E (2,1,2),F (1,2,2).设平面B 1EF 的法向量为n =(x ,y ,z ),B 1E → =(0,-1,2),B 1F →=(-1,0,2),则{n ·B 1E →=0,n ·B 1F →=0,即{-y +2z =0,-x +2z =0,令z =1,得n =(2,2,1).又因为B 1C 1→=(-2,0,0),所以点C 1到平面B 1EF 的距离h =|n ·B 1C 1→||n |=|-2×2+0+0|22+22+1=43.5.如图,S 是正三角形ABC 所在平面外一点,M ,N 分别是AB 和SC 的中点,SA =SB =SC ,且∠ASB =∠BSC =∠CSA =90°,则异面直线SM 与BN 所成角的余弦值为( )A.105B.-105C .-1010D.1010答案 A解析 不妨设SA =SB =SC =1,以点S 为坐标原点,SA ,SB ,SC 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Sxyz ,则相关各点坐标为A (1,0,0),B (0,1,0),C (0,0,1),S (0,0,0),M (12,12,0),N(0,0,12).因为SM → =(12,12,0),BN → =(0,-1,12)所以|SM →|=22,|BN → |=52,SM → ·BN → =-12,所以cos 〈SM → ,BN → 〉=SM → ·BN →|SM → ||BN →|=-105.因为异面直线所成的角为锐角或直角,所以异面直线SM 与BN 所成角的余弦值为105.故选A.6.在直角坐标系中,A (-2,3),B (3,-2),沿x 轴把直角坐标系折成120°的二面角,则AB 的长度为( )A.2 B .211C .32 D .42答案 B解析 作AM ⊥x 轴于M ,BN ⊥x 轴于N .则AM =3,BN =2,MN =5.又AB → =AM → +MN → +NB →,∴AB → 2=AM → 2+MN → 2+NB → 2+2(AM → ·MN → +AM → ·NB → +MN → ·NB →).又AM ⊥MN ,MN ⊥NB ,〈AM → ,NB → 〉=60°,故AB →2=9+25+4+6=44.∴AB =|AB →|=211.故选B.7.如图,四棱锥P -ABCD 中,底面ABCD 是矩形,PD ⊥平面ABCD ,且PD =AD =1,AB =2,点E 是AB 上一点,当二面角P -EC -D 的平面角为π4时,则AE 等于( )A .1B.12C .2-2D .2-3答案 D解析 以D 为坐标原点,DA ,DC ,DP 为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,设AE =m (0≤m ≤2).D (0,0,0),P (0,0,1),E (1,m ,0),C (0,2,0).可取平面ABCD 的一个法向量为n 1=(0,0,1),设平面PEC 的法向量为n 2=(a ,b ,c ),PC → =(0,2,-1),CE →=(1,m -2,0),则{n 2·PC →=0,n 2·CE →=0.∴{2b -c =0,a +b (m -2)=0,∴{c =2b ,a =b (2-m ),令b =1,得n 2=(2-m ,1,2).cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=2(2-m )2+1+4=22.∴m =2-3.即AE =2-3.8.三棱柱ABC -A 1B 1C 1中,底面ABC 为正三角形,侧棱长等于底面边长,A 1在底面的射影是△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( )A.13B.23C.33 D.23答案 B解析 如图,设A 1在底面ABC 内的射影为O ,以O 为坐标原点,建立如图所示的空间直角坐标系.设△ABC 边长为1,则A (33,0,0),B 1(-32,12,63),所以AB 1→=(-536,12,63).易知平面ABC 的一个法向量为n =(0,0,1),则AB 1与底面ABC 所成角α的正弦值为sin α=|cos 〈AB 1→,n 〉|=637536+14+69=23.故选B.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.设ABCD -A 1B 1C 1D 1是棱长为a 的正方体,A 1C 与B 1D 相交于点O ,则有( )A.A 1B 1→ ·AC → =a 2 B.AB → ·A 1C → =2a 2C.CD → ·AB 1→ =a 2D.AB → ·A 1O → =12a 2答案 AD解析 以D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系Dxyz ,如图,则D (0,0,0),A (a ,0,0),B (a ,a ,0),C (0,a ,0),A 1(a ,0,a ),B 1(a ,a ,a ),O (a 2,a 2,a 2).对于A ,A 1B 1→ ·AC →=(0,a ,0)·(-a ,a ,0)=a 2,所以A 正确;对于B ,AB → ·A 1C →=(0,a ,0)·(-a ,a ,-a )=a 2,所以B 不正确;对于C ,CD → ·AB 1→=(0,-a ,0)·(0,a ,a )=-a 2,所以C 不正确;对于D ,AB → ·A 1O → =(0,a ,0)·(-12a ,12a ,-12a )=12a 2,所以D 正确.故选AD.10.在四面体P -ABC 中,下列说法正确的是( )A .若AD → =13AC → +23AB →,则BC → =3BD→ B .若Q 为△ABC 的重心,则PQ → =13PA → +13PB →+13PC→C .若PA → ·BC → =0,PC → ·AB → =0,则AC → ·PB →=0D .若四面体P -ABC 的棱长都为2,M ,N 分别为PA ,BC 的中点,则|MN →|=1答案 ABC解析 对于A ,∵AD → =13AC → +23AB →,∴3AD → =AC → +2AB → ,∴2AD → -2AB → =AC → -AD → ,∴2BD → =DC →,∴3BD → =BD → +DC → ,即3BD → =BC →,∴A 正确;对于B ,若Q 为△ABC 的重心,则QA → +QB → +QC →=0,∴3PQ → -QA → -QB → -QC → =3PQ → ,∴3PQ → =PA → +PB → +PC → ,即PQ → =13PA → +13PB → +13PC →,∴B 正确;对于C ,若PA → ·BC → =0,PC → ·AB →=0,则PA → ·BC → +PC → ·AB → =PA → ·BC → +PC → ·(AC → +CB → )=PA → ·BC → +PC → ·AC → +PC → ·CB → =PA → ·BC → +PC → ·AC → -PC → ·BC → =(PA → -PC → )·BC → +PC → ·AC → =CA → ·BC → +PC → ·AC → =AC → ·CB → +PC → ·AC → =AC → ·(CB → +PC → )=AC → ·PB → ,∴AC → ·PB →=0,∴C 正确;对于D ,∵MN → =PN → -PM → =12(PB → +PC → )-12PA → =12(PB →+PC → -PA →),∴|MN → |=12|PB →+PC → -PA → |.∵|PB → +PC → -PA → |(PA → 2+PB → 2+PC → 2-2PA → ·P B → -2PA → ·PC → +2PB → ·PC →)12=(22+22+22-2×2×2×12-2×2×2×12+2×2×2×12)12=22,∴|MN →|=2,∴D 错误.故选ABC.11.如图,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =π3,AB =2AD =2PD ,PD ⊥底面ABCD ,则( )A .PA ⊥BDB .PB 与平面ABCD 所成角为π6C .异面直线AB 与PC 所成角的余弦值为255D .平面PAB 与平面PBC 夹角的余弦值为277答案 ABCD解析 对于A ,由∠DAB =π3,AB =2AD 及余弦定理得BD =3AD ,从而BD 2+AD 2=AB 2,故BD ⊥AD .由PD ⊥底面ABCD ,BD ⊂平面ABCD ,可得BD ⊥PD .又AD ∩PD =D ,AD ,PD ⊂平面PAD ,所以BD ⊥平面PAD ,又PA ⊂平面PAD ,故PA ⊥BD .故A 正确.对于B ,因为PD ⊥底面ABCD ,所以∠PBD 就是PB 与平面ABCD 所成的角,又tan ∠PBD =PD BD =33,所以∠PBD =π6.故B 正确.对于C ,显然∠PCD 是异面直线PC 与AB 所成的角,易得cos ∠PCD =CD PC =255.故C 正确.对于D ,以D 为坐标原点,建立如图所示的空间直角坐标系Dxyz .设AD =1,则A (1,0,0),B (0,3,0),C (-1,3,0),P (0,0,1),所以AB → =(-1,3,0),PB → =(0,3,-1),BC →=(-1,0,0).设平面PAB 的法向量为n =(x 1,y 1,z 1),则{n ·AB →=0,n ·PB →=0,即{-x 1+3y 1=0,3y 1-z 1=0,取y 1=1,可得n =(3,1,3)是平面PAB 的一个法向量.设平面PBC 的法向量为m =(x 2,y 2,z 2),则{m ·PB →=0,m ·BC →=0,即{3y 2-z 2=0,-x 2=0,取y 2=1,可得m =(0,1,3)是平面PBC 的一个法向量,所以cos 〈m ,n 〉=m ·n |m ||n |=277,所以平面PAB 与平面PBC 夹角的余弦值为277.故D 正确.12.将直角三角形ABC 沿斜边上的高AD 折成120°的二面角,已知直角边AB =3,AC =6,则下列说法正确的是( )A .平面ABC ⊥平面ACDB .四面体D -ABC 的体积是6C .二面角A -BC -D 的正切值是423D .BC 与平面ACD 所成角的正弦值是2114答案 CD解析 依题意作图,如图所示,由于AD ⊥BD ,AD ⊥CD ,故∠BDC 是二面角C -AD -B 的平面角,则∠BDC =120°,因为BD ∩CD =D ,所以AD ⊥平面BCD .过B 作BE ⊥CD 交CD 的延长线于E ,因为AD ⊥平面BCD ,BE ⊂平面BCD ,所以AD ⊥BE .因为BE ⊥CD ,AD ∩CD =D ,所以BE ⊥平面ACD ,故BE 是三棱锥B -ACD 的高.在原图中,BC =3+6=3,AD =AB ·AC BC =3×63=2,BD =3-2=1,CD =AC 2-AD 2=6-2=2,BE =BD ×sin 60°=1×32=32,所以V D -ABC =V B -ACD =13×12×AD ×CD ×BE =16×2×2×32=66,故B 错误.以D 为坐标原点,DA ,DC 所在直线分别为x 轴、y 轴建立如图所示的空间直角坐标系,则A (2,0,0),B (0,-12,32),C (0,2,0),AB →=(-2,-12,32),AC → =(-2,2,0),设平面ABC 的法向量为n =(x ,y ,z ),则{n ·AB →=-2x -12y +32z =0,n ·AC →=-2x +2y =0,取x =6,则y =3,z =5,所以n =(6,3,5),平面ACD 的一个法向量为m =(0,0,1),则m ·n =5≠0,所以平面ACD 与平面ABC 不垂直,故A 错误.平面BCD 的一个法向量为a =(1,0,0),cos 〈n ,a 〉=n ·a|n ||a |=634=317,sin 〈n ,a 〉=1-cos 2〈n ,a 〉=1-(317)=1417.设二面角A -BC -D 的平面角为θ,由图可知θ为锐角,则tan θ=|tan 〈n ,a 〉|=|sin 〈n ,a 〉cos 〈n ,a 〉|=423,故C 正确.BC →=(0,52,-32),平面ACD 的一个法向量为m =(0,0,1),cos 〈m ,BC → 〉=m ·BC →|m |·|BC →|=-2114,所以BC 与平面ACD 所成角的正弦值是2114,故D 正确.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.在四面体OABC 中,OA → =a ,OB → =b ,OC → =c ,D 为BC 的中点,E 为AD 中点,则OE →=____________________.(用a ,b ,c 表示)答案 12a +14b +14c解析 OE → =OA → +12AD → =OA → +12×12(AB → +AC →)=OA → +14(OB →-OA → +OC → -OA → )=12OA → +14OB → +14OC → =12a +14b +14c .14.在平面直角坐标系中,点A (-1,2)关于x 轴的对称点为A ′(-1,-2),则在空间直角坐标系中,B (-1,2,3,)关于x 轴的对称点B ′的坐标为________,若点C (1,-1,2)关于平面Oxy 的对称点为点C ′,则|B ′C ′|=________.(本题第一空2分,第二空3分)答案 (-1,-2,-3) 6解析 由题意得B (-1,2,3)关于x 轴的对称点B ′的坐标为(-1,-2,-3);点C (1,-1,2)关于Oxy 平面的对称点为C ′(1,-1,-2),所以|B ′C ′|=(-1-1)2+(-2+1)2+(-3+2)2=6.15.在平行六面体ABCD -A 1B 1C 1D 1中,AB =2,AA 1=2,AD =1,且AB ,AD ,AA 1的夹角都是60°,则AC 1→ ·BD 1→=________.答案 3解析 如图,可设AB → =a ,AD →=b ,AA 1=c ,于是可得AC 1→ =AB → +BC → +CC 1→=AB → +AD → +AA 1→ =a +b +c ,同理可得BD 1→=-a +b +c ,于是有AC 1→ ·BD 1→=(a +b +c )·(-a +b +c ) =-a 2+b 2+c 2+2b ·c =-4+1+4+2×1×2×cos 60° =3.16.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =1,BC =3,点M 在棱CC 1上,且MD 1⊥MA ,则当△MAD 1的面积取得最小值时,其棱AA 1=________.答案 322解析 设AA 1=m (m >0),CM =n (0≤n ≤m ),如图建立空间直角坐标系,则D 1(0,0,m ),M (0,1,n ),A (3,0,0),所以D 1M → =(0,1,n -m ),AM →=(-3,1,n ).又MD 1⊥MA ,所以D 1M → ·AM →=1+n (n -m )=0,所以m -n =1n(n ≠0).所以S △MAD 1=12D 1M ·AM =121+(m -n )2·3+1+n 2=121+1n 2·4+n 2=12(4+n 2)(1+1n 2)=125+n 2+4n 2≥125+2n 2·4n 2=32,当且仅当n =2,m =322时,等号成立,所以当△MAD 1的面积取得最小值时,其棱AA 1=322.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)设a =(1,5,-1),b =(-2,3,5).(1)若(k a +b )∥(a -3b ),求k ;(2)若(k a +b )⊥(a -3b ),求k .解析 k a +b =(k -2,5k +3,-k +5),a -3b =(1+3×2,5-3×3,-1-3×5)=(7,-4,-16).(1)∵(k a +b )∥(a -3b ),∴k -27=5k +3-4=-k +5-16,解得k =-13.(2)∵(k a +b )⊥(a -3b ),∴(k -2)×7+(5k +3)×(-4)+(-k +5)×(-16)=0.解得k =1063.18.(12分)如图,已知PA ⊥平面ABCD ,底面ABCD 为矩形,PA =AD ,M ,N 分别为AB ,PC 的中点.求证:(1)MN ∥平面PAD ;(2)平面PMC ⊥平面PDC .证明 如图,以A 为坐标原点,AB ,AD ,AP 所在的直线分别为x ,y ,z 轴建立空间直角坐标系Axyz .设PA =AD =a ,AB =b .(1)P (0,0,a ),A (0,0,0),C (b ,a ,0),B (b ,0,0),因为M ,N 分别为AB ,PC 的中点,所以M (b 2,0,0),N (b 2,a 2,a 2).易知AB → 为平面PAD 的一个法向量.AB →=(b ,0,0),又MN →=(0,a 2,a 2),所以AB → ·MN →=0,所以AB → ⊥MN →.又MN ⊄平面PAD ,所以MN ∥平面PAD .(2)由(1)可知P (0,0,a ),C (b ,a ,0),M (b2,0,0),且D (0,a ,0).所以PC → =(b ,a ,-a ),PM → =(b 2,0,-a ),PD →=(0,a ,-a ).设平面PMC 的一个法向量为n 1=(x 1,y 1,z 1),则{n 1·PC →=0,n 1·PM → =0,⇒{bx 1+ay 1-az 1=0,b 2x 1-az 1=0,所以{x 1=2a bz 1,y 1=-z 1,令z 1=b ,则n 1=(2a ,-b ,b ).设平面PDC 的一个法向量为n 2=(x 2,y 2,z 2),则{n 2·PC →=0,n 2·PD → =0,⇒{bx 2+ay 2-az 2=0,ay 2-az 2=0,所以{x 2=0,y 2=z 2,令z 2=1,则n 2=(0,1,1).因为n 1·n 2=0-b +b =0,所以n 1⊥n 2.所以平面PMC ⊥平面PDC .19.(12分)(2014·福建,理)在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图所示.(1)求证:AB ⊥CD ;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.解析 (1)证明:∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,AB ⊂平面ABD ,AB ⊥BD ,∴AB ⊥平面BCD .又CD ⊂平面BCD ,∴AB ⊥CD .(2)过点B 在平面BCD 内作BE ⊥BD ,如图所示.由(1)知AB ⊥平面BCD ,BE ⊂平面BCD ,BD ⊂平面BCD ,∴AB ⊥BE ,AB ⊥BD.以B 为坐标原点,分别以BE → ,BD → ,BA →的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系.依题意,得B (0,0,0),C (1,1,0),D (0,1,0),A (0,0,1),M (0,12,12),则BC →=(1,1,0),BM →=(0,12,12),AD →=(0,1,-1).设平面MBC 的法向量为n =(x 0,y 0,z 0),则{n ·BC →=0,n ·BM →=0,即{x 0+y 0=0,12y 0+12z 0=0.取z 0=1,得平面MBC 的一个法向量为n =(1,-1,1).设直线AD 与平面MBC 所成角为θ,则sin θ=|cos 〈n ,AD → 〉|=|n ·AD →||n |·|AD →|=63.即直线AD 与平面MBC 所成角的正弦值为63.20.(12分)如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)求证:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.解析 (1)证明:在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC ,即在题图2中,BE ⊥OA 1,BE ⊥OC ,又OA 1∩OC =O ,OA 1,OC ⊂平面A 1OC ,从而BE ⊥平面A 1OC .又BC 綉DE ,所以四边形BCDE 是平行四边形,所以CD ∥BE ,所以CD ⊥平面A 1OC .(2)因为平面A 1BE ⊥平面BCDE ,又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2.如图,以O 为原点,分别以OB ,OC ,OA 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B(22,0,0),E (-22,0,0),A 1(0,0,22),C (0,22,0),则BC → =(-22,22,0),A 1C →=(0,22,-22),CD → =BE →=(-2,0,0).设平面A 1BC 的法向量为n 1=(x 1,y 1,z 1),平面A 1CD 的法向量为n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ.则{n 1·BC →=0,n 1·A 1C → =0,即{-x 1+y 1=0,y 1-z 1=0,可取n 1=(1,1,1).又{n 2·CD →=0,n 2·A 1C →=0,即{x 2=0,y 2-z 2=0,可取n 2=(0,1,1).从而cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|=23×2=63,即平面A 1BC 与平面A 1CD 夹角的余弦值为63.21.(12分)(2017·课标全国Ⅲ)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D -AE -C 的余弦值.解析 (1)证明:由题设可得,△ABD ≌△CBD ,从而AD =DC .又△ACD 是直角三角形,所以∠ADC =90°.如图,取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO .又由于△ABC 是正三角形,故BO ⊥AC .所以∠DOB 为二面角D -AC -B 的平面角.在Rt △AOB 中,BO 2+AO 2=AB 2.又DO =AO ,AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB =90°.所以BO ⊥OD .又AC ⊂平面ADC ,OD ⊂平面ADC ,AC ∩OD =O ,所以BO ⊥平面ADC .又BO ⊂平面ABC ,所以平面ACD ⊥平面ABC .(2)由题设及(1)知,OA ,OB ,OD 两两垂直.以O 为坐标原点,OA →的方向为x 轴正方向,|OA →|为单位长,建立如图所示的空间直角坐标系Oxyz .则A (1,0,0),B (0,3,0),C (-1,0,0),D (0,0,1).由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而点E 到平面ABC 的距离为点D 到平面ABC 的距离的12,即E 为DB 的中点,得E (0,32,12).故AD → =(-1,0,1),AC → =(-2,0,0),AE →=(-1,32,12).设n =(x,y ,z )是平面DAE 的法向量,则{n ·AD → =0,n ·AE →=0,即{-x +z =0,-x +32y +12z =0,令x =1,可得n =(1,33,1).设m 是平面AEC 的法向量,则{m ·AC →=0,m ·AE →=0.同理可取m =(0,-1,3).则cos 〈n ,m 〉=n ·m|n ||m |=77.由图知二面角D -AE -C 为锐角,所以二面角D -AE -C 的余弦值为77.22.(12分)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AB ⊥AD ,BC ∥AD ,M 是棱PD 上一点,且AB =BC =2,AD =PA =4.(1)若PM ∶MD =1∶2,求证:PB ∥平面ACM ;(2)求二面角A -CD -P 的正弦值;(3)若直线AM 与平面PCD 所成角的正弦值为63,求MD 的长.解析 (1)证明:如图,连接BD 交AC 于点N ,连接MN .因为BC ∥AD ,所以BN ND =BC AD =12.又因为PM ∶MD =1∶2,所以MN ∥PB .又因为MN ⊂平面ACM ,PB ⊄平面ACM ,所以PB ∥平面ACM .(2)如图建立空间直角坐标系,则A (0,0,0),C (2,2,0),D (0,4,0),P (0,0,4),CD →=(-2,2,0),PD →=(0,4,-4).设平面PCD的一个法向量为n =(x ,y ,z ),则{n ·CD →=0,n ·PD →=0,即{-2x +2y =0,4y -4z =0,令x =1,得{y =1,z =1,即n =(1,1,1).又平面ACD 的一个法向量m =(0,0,1),所以cos 〈m ,n 〉=13=33,故二面角A -CD -P 的正弦值为1-(33)2=63.(3)设MD → =λPD →(0≤λ≤1),则MD →=(0,4λ,-4λ),所以AM →=(0,4-4λ,4λ),由(2)得平面PCD 的一个法向量n =(1,1,1),且直线AM 与平面PCD 所成角的正弦值为63,所以cos 〈AM →,n 〉=|4-4λ+4λ|(4-4λ)2+(4λ)2·3=63,解得λ=12,即MD → =12PD →.又|PD → |=42+42=42,故|MD → |=12|PD → |=22.1.设向量u =(a ,b ,0),v =(c ,d ,1),其中a 2+b 2=c 2+d 2=1,则下列判断错误的是( )A .向量v 与z 轴正方向的夹角为定值(与c ,d 的值无关)B .u ·v 的最大值为2C .u 与v 夹角的最大值为3π4D .ad -bc 的最大值为1答案 B解析 在A 中,设z 轴正方向的方向向量z =(0,0,t ),t >0,向量v 与z 轴正方向的夹角的余弦值cos α=z ·v|z ||v |=t t ·c 2+d 2+1=22,所以α=45°.所以向量v 与z 轴正方向的夹角为定值45°(与c ,d 的值无关),故A 正确;在B 中,u ·v =ac +bd ≤a 2+c 22+b 2+d 22=a 2+b 2+c 2+d 22=1.当且仅当a =c ,b =d 时取等号,因此u ·v 的最大值为1,故B 错误;在C 中,由B 可得|u ·v |≤1,所以-1≤u ·v ≤1.所以cos 〈u ,v 〉=u ·v|u ||v |=ac +bd a 2+b 2·c 2+d 2+1≥-11×2=-22,所以u 与v 的夹角的最大值为3π4,故C 正确;在D 中,ad -bc ≤|ad -bc |≤|ad |+|bc |≤a 2+d 22+b 2+c 22=a 2+b 2+c 2+d 22=1,所以ad -bc 的最大值为1.故D 正确.2.如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱AB ,BB 1的中点,点P 在体对角线CA 1上运动.当△PMN 的面积取得最小值时,点P 的位置是( )A .线段CA 1的三等分点,且靠近点A 1B .线段CA 1的中点C .线段CA 1的三等分点,且靠近点CD .线段CA 1的四等分点,且靠近点C 答案 B解析 设正方体的棱长为1,以A 为原点,AB ,AD ,AA 1分别为x 轴、y 轴、z 轴,建立空间直角坐标系,如图所示.取MN 的中点为Q ,连接PQ .则M (12,0,0),N (1,0,12),Q (34,0,14),A 1(0,0,1),C (1,1,0),则A 1C →=(1,1,-1).设P (t ,t ,z ),PC →=(1-t ,1-t ,-z ),由A 1C → 与PC →共线,可得1-t 1=1-t 1=-z -1,所以P (1-z ,1-z ,z ),其中0≤z ≤1.因为|PM → |=(1-z -12)2 +(1-z -0)2+(z -0)2=3z 2-3z +54,|PN → |=(1-z -1)2+(1-z -0)2+(z -12)2 =3z 2-3z +54,所以|PM → |=|PN → |,所以PQ ⊥MN ,即|PQ →|是动点P 到直线MN 的距离.由空间两点间的距离公式可得|PQ → |=(1-z -34)2 +(1-z )2+(z -14)2=3z 2-3z +98=3(z -12)2+38.所以当z =12时,PQ 取得最小值64,此时P 为线段CA 1的中点,由于MN =22为定值,所以当△PMN 的面积取得最小值时,P 为线段CA 1的中点.3.在底面为锐角三角形的直三棱柱ABC -A 1B 1C 1中,D 是棱BC 的中点,记直线B 1D 与直线AC 所成角为θ1,直线B 1D 与平面A 1B 1C 1所成角为θ2,二面角C 1-A 1B 1-D 的平面角为θ3,则( )A .θ2<θ1,θ2<θ3B .θ2>θ1,θ2<θ3C .θ2<θ1,θ2>θ3D .θ2>θ1,θ2>θ3答案 A解析 由题可知,直三棱柱ABC -A 1B 1C 1底面为锐角三角形,D 是棱BC 的中点,设三棱柱ABC -A 1B 1C 1是棱长为2的正三棱柱,以A 为原点,在平面ABC 中,过A 作AC 的垂线为x 轴,AC 为y 轴,AA 1为z 轴,建立空间直角坐标系,则A 1(0,0,2),B 1(3,1,2),C (0,2,0),D (32,32,0),A (0,0,0),AC → =(0,2,0),B 1D→=(-32,12,-2),A 1B 1→=(3,1,0).因为直线B 1D 与直线AC 所成的角为θ1,θ1∈(0,π2],所以cos θ1=|B 1D → ·AC →||B 1D → ||AC →|=125.因为直线B 1D 与平面A 1B 1C 1所成的角为θ2,θ2∈[0,π2],平面A 1B 1C 1的法向量n =(0,0,1),所以sin θ2=|B 1D →·n ||B 1D →||n |=25,所以cos θ2=1-(25)2=15.设平面A 1B 1D 的法向量m =(a ,b ,c ),则{m ·A 1B 1→=3a +b =0,m ·B 1D →=-32a +12b -2c =0,取a =3,取m =(3,-3,-32),由图可知,θ3为锐角,所以cos θ3=|m ·n ||m ||n |=32574=1579,所以cos θ2>cos θ3>cos θ1.由于y =cos θ在区间(0,π)上单调递减,故θ2<θ3<θ1,则θ2<θ1,θ2<θ3.4.已知正方体ABCD -EFGH (如图),则( )A .直线CF 与GD 所成的角与向量所成的角〈CF → ,GD →〉相等B .向量FD →是平面ACH 的法向量C .直线CE 与平面ACH 所成角的正弦值与cos 〈CE → ,FD →〉的平方和等于1D .二面角A -FH -C 的余弦值为12答案 B解析 以D 为原点,建立如图所示的空间直角坐标系,设正方体棱长为1,则A (1,0,0),B (1,1,0),C (0,1,0),E (1,0,1),F (1,1,1),G (0,1,1),H (0,0,1).易知GD ∥AF ,且△AFC 为等边三角形,所以异面直线CF 与GD 所成的角为∠AFC =60°,而CF → =(1,0,1),GD → =(0,-1,-1),所以cos 〈CF → ,GD →〉=-12×2=-12,所以〈CF → ,GD → 〉=120°,故A 错误;FD → =(-1,-1,-1),AC → =(-1,1,0),AH → =(-1,0,1),则FD → ·AC →=(-1)×(-1)-1×1=0,FD → ·AH → =(-1)×(-1)-1×1=0,所以FD → ⊥AC → ,FD → ⊥AH →,即FD ⊥AC ,FD ⊥AH ,又AC ∩AH =A ,所以FD ⊥平面ACH ,所以向量FD →是平面ACH 的法向量,故B 正确;设直线CE 与平面ACH 所成角为θ,CE → =(1,-1,1),FD →=(-1,-1,-1),所以sin θ=|cos 〈CE → ,FD → 〉|=13,所以sin 2θ+cos 2〈CE → ,FD →〉=19+19=29,故C 错误;连接EG ,设EG ∩FH =M ,则M 为FH 的中点,连接AM ,CM ,因为AH =AF ,CH =CF ,M 为中点,所以AM ⊥FH ,CM ⊥FH ,所以∠AMC 为二面角A -FH -C 的平面角,易得M(12,12,1),MA → =(12,-12,-1),MC → =(-12,12,-1),所以cos 〈MA → ,MC → 〉=1232×32=13,故D 错误.5.在三棱锥P -ABC 中,△ABC 为等边三角形,PA ⊥平面ABC ,且PA =AB ,则二面角A -PB -C 的平面角的正切值为( )A.6 B.3C.66 D.62答案 A解析 设PA =AB =2,建立如图所示的空间直角坐标系.则B (0,2,0),C (3,1,0),P (0,0,2).所以BP → =(0,-2,2),BC →=(3,-1,0).设n =(x ,y ,z )是平面PBC 的一个法向量,则{BP →·n =0,BC →·n =0,即{-2y +2z =0,3x -y =0.令y =1.则x =33,z =1.即n =(33,1,1).易知m =(1,0,0)是平面PAB 的一个法向量.则cos 〈m ,n 〉=m ·n |m ||n |=331×213=77.所以正切值tan 〈m ,n 〉=6.故选A.6.如图,四棱锥P -ABCD 中,PB ⊥平面ABCD ,底面ABCD 为直角梯形,AD ∥BC ,AB ⊥BC ,AB =AD =PB =3,点E 在棱PA 上,且PE =2EA ,则平面ABE 与平面BED 的夹角的余弦值为( )A.23B.66C.33D.63答案 B解析 以B 为坐标原点,分别以BC ,BA ,BP 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.则B (0,0,0),A (0,3,0),P (0,0,3),D (3,3,0),E (0,2,1),∴BE → =(0,2,1),BD →=(3,3,0)设平面BED 的一个法向量n =(x ,y ,z ),则{n ·BE →=2y +z =0,n ·BD →=3x +3y =0,取z =1,得n =(12,-12,1),平面ABE 的法向量为m =(1,0,0),∴cos 〈n ,m 〉=m ·n|m ||n |=66,∴平面ABE 与平面BED 的夹角的余弦值为66.7.已知向量a =(1,2,3),b =(-2,-4,-6),|c |=14,若(a +b )·c =7,则a 与c 的夹角为( )A .30° B .60°C .120° D .150°答案 C解析 设向量a +b 与c 的夹角为α,因为a +b =(-1,-2,-3),|a +b |=14,cos α=(a +b )·c |a +b ||c |=12,所以α=60°.因为向量a +b 与a 的方向相反,所以a 与c 的夹角为120°.故选C.8.【多选题】如图甲,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,将△ADE ,△CDF ,△BEF 分别沿DE ,DF ,EF 折起,使A ,B ,C 三点重合于点P (如图乙),则下列结论正确的是( )A .PD ⊥EFB .平面PDE ⊥平面PDFC .平面PEF 与平面EFD 夹角的余弦值为13D .点P 在平面DEF 上的投影是△DEF 的外心答案 ABC解析 对于A ,如图,取EF 的中点H ,连接PH ,DH ,由△PEF 和△DEF 为等腰三角形,得PH ⊥EF ,DH ⊥EF ,又PH ∩DH =H ,PH ,DH ⊂平面PDH ,所以EF ⊥平面PDH ,又PD ⊂平面PDH ,所以PD ⊥EF ,故A 正确.对于B ,根据折起前后,可知PE ,PF ,PD 三线两两垂直,于是可证平面 PDE ⊥平面PDF ,故B 正确.对于C ,将图乙翻转并建立如图所示的空间直角坐标系,设图甲中的AB =2,则P (0,0,0),E (0,0,1),F (1,0,0),D (0,2,0),故EF →=(1,0,-1),FD → =(-1,2,0).易知PD →=(0,2,0)为平面PEF 的一个法向量,设平面EFD 的法向量为n =(x ,y ,z ),则{n ·EF →=0,n ·FD →=0,即{x -z =0,-x +2y =0,令x =2,则y =1,z =2,则n =(2,1,2)为平面EFD 的一个法向量,|cos 〈PD → ,n 〉|=|PD →·n ||PD →||n |=22×3=13,所以平面PEF 与平面EFD 夹角的余弦值为13.故C 正确.对于D ,由于PE =PF ≠PD ,故点P 在平面DEF 上的投影不是△DEF 的外心,故D 错误.9.【多选题】已知ABCD -A 1B 1C 1D 1为正方体,下列说法中正确的是( )A .(A 1A → +A 1D 1→ +A 1B 1→ )2=3(A 1B 1→ )2B.A 1C → ·(A 1B 1→ -A 1A →)=0C .向量AD 1→ 与向量A 1B →的夹角是60°D .正方体ABCD -A 1B 1C 1D 1的体积为|AB → ·AA 1→ ·AD →|答案 AB解析 由向量的加法得到A 1A → +A 1D 1→ +A 1B 1→ =A 1C → ,因为A 1C 2=3A 1B 12,所以(A 1C → )2=3(A 1B 1→)2,A正确;。

人教A版 新教材高中数学必修第一册 第一章 章末检测试卷(一)

人教A版 新教材高中数学必修第一册 第一章 章末检测试卷(一)

二、多项选择题(本大题共 4 小题,每小题 5 分,共 20 分.全部选对的得 5 分,部分选对的
得 3 分,有选错的得 0 分)
9.已知 U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则( )
A.M∩N={4,6}
B.M∪N=U
C.(∁UN)∪M=M 答案 BCD
(2)∵B={x|x<1},∴∁RB={x|x≥1}. ∴A∩(∁RB)={x|1≤x≤2}. 15.已知集合 A={x|-1<x<2},B={x|-1<x<m+1},若 x∈A 是 x∈B 成立的一个充分不必
要条件,则实数 m 的取值范围是________.
答案 {m|m>1}
解析 由 x∈A 是 x∈B 成立的一个充分不必要条件,
解 (1)由 x-1>0 得 x>1,即 B={x|x>1}. 所以 A∩B={x|1<x<2},A∪B={x|x>-1}. (2)集合 A-B 如图中的阴影部分所示.
由于 A-B={x|x∈A,且 x∉B}, 又 A={x|-1<x<2},B={x|x>1}, 所以 A-B={x|-1<x≤1}. 21.(12 分)已知非空集合 P={x|a+1≤x≤2a+1},Q={x|-2≤x≤5}. (1)若 a=3,求(∁RP)∩Q; (2)若“x∈P”是“x∈Q”的充分不必要条件,求实数 a 的取值范围. 解 因为 P 是非空集合,所以 2a+1≥a+1,即 a≥0. (1)当 a=3 时,P={x|4≤x≤7},∁RP={x|x<4 或 x>7}, Q={x|-2≤x≤5}, 所以(∁RP)∩Q={x|-2≤x<4}. (2)若“x∈P”是“x∈Q”的充分不必要条件,即 PQ,

新教材高中数学第二章直线和圆的方程章末检测二含解析新人教A版选择性必修第一册

新教材高中数学第二章直线和圆的方程章末检测二含解析新人教A版选择性必修第一册

章末检测(二) 直线和圆的方程A 卷本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知圆C 以点(2,-3)为圆心,半径等于5,则点M (5,-7)与圆C 的位置关系是( ) A .在圆内 B .在圆上 C .在圆外D .无法判断解析:选B 点M (5,-7)到圆心(2,-3)的距离d =5-22+-7+32=5,故点M 在圆C 上.2.已知过点M (-2,a ),N (a,4)的直线的斜率为-12,则|MN |=( )A .10B .180C .6 3D .6 5解析:选 D 由k MN =a -4-2-a =-12,解得a =10,即M (-2,10),N (10,4),所以|MN |=-2-102+10-42=65,故选D.3.若直线mx +ny +3=0在y 轴上的截距为-3,且它的倾斜角是直线3x -y =33的倾斜角的2倍,则( )A .m =-3,n =1B .m =-3,n =-3C .m =3,n =-3D .m =3,n =1解析:选D 依题意得:直线3x -y =33的斜率为3,∴其倾斜角为60°.∴-3n=-3,-m n=tan 120°=-3,得m =3,n =1.4.经过点M (2,1)作圆x 2+y 2=5的切线,则切线方程为( ) A.2x +y -5=0 B.2x +y +5=0 C .2x +y -5=0D .2x +y +5=0解析:选C ∵M (2,1)在圆上,∴切线与MO 垂直. ∵k MO =12,∴切线斜率为-2.又过点M (2,1),∴y -1=-2(x -2),即2x +y -5=0.5.直线l 过点A (3,4)且与点B (-3,2)的距离最远,那么l 的方程为( )A .3x -y -13=0B .3x -y +13=0C .3x +y -13=0D .3x +y +13=0解析:选C 由已知可知,l 是过A 且与AB 垂直的直线,∵k AB =2-4-3-3=13,∴k l =-3,由点斜式得,y -4=-3(x -3),即3x +y -13=0.6.若直线l :y =kx +1(k <0)与圆C :(x +2)2+(y -1)2=2相切,则直线l 与圆D :(x -2)2+y 2=3的位置关系是( )A .相交B .相切C .相离D .不确定解析:选A 依题意,直线l 与圆C 相切,则|-2k -1+1|k 2+1=2,解得k =±1.又k <0,所以k =-1,于是直线l 的方程为x +y -1=0.圆心D (2,0)到直线l 的距离d =|2+0-1|2=22<3,所以直线l 与圆D 相交,故选A. 7.已知圆C :x 2+y 2-2x -2my +m 2-3=0关于直线l :x -y +1=0对称,则直线x =-1与圆C 的位置关系是( )A .相切B .相交C .相离D .不能确定解析:选A 由已知得C :(x -1)2+(y -m )2=4,即圆心C (1,m ),半径r =2,因为圆C 关于直线l :x -y +1=0对称,所以圆心(1,m )在直线l :x -y +1=0上,所以m =2.由圆心C (1,2)到直线x =-1的距离d =1+1=2=r 知,直线x =-1与圆C 相切.故选A.8.已知在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2=-2y +3,直线l 经过点(1,0)且与直线x -y +1=0垂直,若直线l 与圆C 交于A ,B 两点,则△OAB 的面积为( )A .1 B. 2 C .2D .2 2解析:选A 由题意,得圆C 的标准方程为x 2+(y +1)2=4,圆心为(0,-1),半径r =2.因为直线l 经过点(1,0)且与直线x -y +1=0垂直,所以直线l 的斜率为-1,方程为y -0=-(x -1),即为x +y -1=0.又圆心(0,-1)到直线l 的距离d =|0-1-1|2=2,所以弦长|AB |=2r 2-d 2=24-2=2 2.又坐标原点O 到弦AB 的距离为|0+0-1|2=12,所以△OAB的面积为12×22×12=1.故选A.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得3分,有选错的得0分)9.过点A (1,2)的直线在两坐标轴上的截距之和为零,则该直线方程可能为( ) A .x -y +1=0 B .x +y -3=0 C .2x -y =0D .x -y -1=0解析:选AC 当直线过原点时,可得斜率为2-01-0=2,故直线方程为y =2x ,即2x -y =0;当直线不过原点时,设直线方程为x a +y -a =1,代入点(1,2),可得1a -2a=1,解得a =-1,直线方程为x -y +1=0,故所求直线方程为2x -y =0或x -y +1=0.故选A 、C.10.直线x -y +m =0与圆x 2+y 2-2x -1=0有两个不同的交点的充分不必要条件可以是( )A .0<m <1B .m <1C .-2<m <1D .-3<m <1解析:选AC 圆x 2+y 2-2x -1=0的圆心为(1,0),半径为 2.因为直线x -y +m =0与圆x 2+y 2-2x -1=0有两个不同的交点,所以直线与圆相交,因此圆心到直线的距离d =|1+m |1+1<2,所以|1+m |<2,解得-3<m <1,求其充分条件,即求其子集,故由选项易得A 、C 符合.故选A 、C.11.已知圆C :(x -3)2+(y -3)2=72,若直线l :x +y -m =0垂直于圆C 的一条直径,且经过这条直径的一个三等分点,则直线l 的方程是( )A .x +y -2=0B .x +y -4=0C .x +y -8=0D .x +y -10=0解析:选AD 根据题意,圆C :(x -3)2+(y -3)2=72,其圆心C (3,3),半径r =62,若直线l :x +y -m =0垂直于圆C 的一条直径,且经过这条直径的一个三等分点,则圆心到直线的距离为22,则有d =|6-m |1+1=22,变形可得|6-m |=4,解得m =2或10,即l 的方程为x+y -2=0或x +y -10=0.12.已知直线l 1:x -y -1=0,动直线l 2:(k +1)x +ky +k =0(k ∈R),则下列结论正确的是( )A .存在k ,使得l 2的倾斜角为90°B .对任意的k ,l 1与l 2都有公共点C .对任意的k ,l 1与l 2都不重合D .对任意的k ,l 1与l 2都不垂直解析:选ABD 对于动直线l 2:(k +1)x +ky +k =0(k ∈R),当k =0时,斜率不存在,倾斜角为90°,故A 正确;由方程组⎩⎪⎨⎪⎧x -y -1=0,k +1x +ky +k =0,可得(2k +1)x =0,对任意的k ,此方程有解,可得l 1与l 2有交点,故B 正确;因为当k =-12时,k +11=k -1=k-1成立,此时l 1与l 2重合,故C 错误;由于直线l 1:x -y -1=0的斜率为1,动直线l 2的斜率为k +1-k=-1-1k≠-1,故对任意的k ,l 1与l 2都不垂直,故D 正确.第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.若过点P (1-a,1+a )与点Q (3,2a )的直线的倾斜角是钝角,则实数a 的取值范围是________.解析:k =2a -1+a 3-1-a =a -1a +2<0,得-2<a <1.答案:(-2,1)14.若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c +2a的值为________.解析:由题意,得63=a -2≠c-1,所以a =-4,c ≠-2.所以直线6x +ay +c =0的方程可化为3x -2y +c2=0.由两平行线间的距离公式,得⎪⎪⎪⎪⎪⎪c 2+113=21313,即⎪⎪⎪⎪⎪⎪c2+1=2,解得c =2或-6,所以c +2a=-1或1. 答案:-1或115.若圆O :x 2+y 2=5与圆O 1:(x -m )2+y 2=20(m ∈R)相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长为________.解析:连接OO 1,记AB 与OO 1的交点为C ,如图所示,在 Rt △OO 1A 中,|OA |=5,|O 1A |=25,∴|OO 1|=5,∴|AC |=5×255=2,∴|AB |=4.答案:416.已知直线l :mx -y =1,若直线l 与直线x +m (m -1)y =2垂直,则m 的值为________;动直线l :mx -y =1被圆C :x 2-2x +y 2-8=0截得的最短弦长为________.解析:因为直线mx -y =1与直线x +m (m -1)y =2垂直,所以m ×1+(-1)×m (m -1)=0.解得m =0或m =2.动直线l :mx -y =1过定点(0,-1),圆C :x 2-2x +y 2-8=0化为(x -1)2+y 2=9,圆心(1,0)到直线mx -y -1=0的距离的最大值为0-12+-1-02=2,所以动直线l被圆C 截得的最短弦长为29-22=27.答案:0或2 27四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知直线l 经过点P (-2,1),且与直线x +y =0垂直. (1)求直线l 的方程;(2)若直线m 与直线l 平行且点P 到直线m 的距离为2,求直线m 的方程. 解:(1)由题意得直线l 的斜率为1,故直线l 的方程为y -1=x +2,即x -y +3=0. (2)由直线m 与直线l 平行, 可设直线m 的方程为x -y +c =0,由点到直线的距离公式得|-2-1+c |2=2,即|c -3|=2,解得c =1或c =5.故直线m 的方程为x -y +1=0或x -y +5=0.18.(本小题满分12分)已知从圆外一点P (4,6)作圆O :x 2+y 2=1的两条切线,切点分别为A ,B .(1)求以OP 为直径的圆的方程; (2)求直线AB 的方程.解:(1)∵所求圆的圆心为线段OP 的中点(2,3), 半径为12|OP |= 124-02+6-02=13,∴以OP 为直径的圆的方程为(x -2)2+(y -3)2=13. (2)∵PA ,PB 是圆O :x 2+y 2=1的两条切线, ∴OA ⊥PA ,OB ⊥PB ,∴A ,B 两点都在以OP 为直径的圆上.由⎩⎪⎨⎪⎧x 2+y 2=1,x -22+y -32=13,得直线AB 的方程为4x +6y -1=0.19.(本小题满分12分)如图,已知点A (2,3),B (4,1),△ABC 是以AB 为底边的等腰三角形,点C 在直线l :x -2y +2=0上.(1)求AB 边上的高CE 所在直线的方程; (2)求△ABC 的面积.解:(1)由题意可知,E 为AB 的中点, ∴E (3,2),且k CE =-1k AB=1,∴CE 所在直线方程为:y -2=x -3,即x -y -1=0.(2)由⎩⎪⎨⎪⎧x -2y +2=0,x -y -1=0,得C (4,3),∴|AC |=|BC |=2,AC ⊥BC ,∴S △ABC =12|AC |·|BC |=2.20.(本小题满分12分)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点.(1)求k 的取值范围;(2)若OM ―→·ON ―→=12,其中O 为坐标原点,求|MN |. 解:(1)由题设可知直线l 的方程为y =kx +1. 因为直线l 与圆C 交于两点, 所以|2k -3+1|1+k 2<1. 解得4-73<k <4+73.所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1, 整理得(1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=41+k 1+k 2,x 1x 2=71+k2.OM ―→·ON ―→=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k 1+k1+k2+8. 由题设可得4k 1+k1+k 2+8=12,解得k =1, 所以直线l 的方程为y =x +1.故圆心C 在直线l 上,所以|MN |=2.21.(本小题满分12分)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1),当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 解:(1)不能出现AC ⊥BC 的情况,理由如下: 设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0, 所以x 1x 2=-2. 又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况.(2)证明:由(1)知BC 的中点坐标为⎝ ⎛⎭⎪⎫x 22,12, 可得BC 的中垂线方程为y -12=x 2⎝ ⎛⎭⎪⎫x -x 22. 由(1)可得x 1+x 2=-m , 所以AB 的中垂线方程为x =-m2. 联立⎩⎪⎨⎪⎧x =-m 2,y -12=x 2⎝ ⎛⎭⎪⎫x -x 22,x 22+mx 2-2=0,可得⎩⎪⎨⎪⎧x =-m 2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为⎝ ⎛⎭⎪⎫-m 2,-12,半径r =m 2+92.故圆在y 轴上截得的弦长为2r 2-⎝ ⎛⎭⎪⎫m 22=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.22.(本小题满分12分)已知圆M :x 2+(y -4)2=4,P 是直线l :x -2y =0上的动点,过点P 作圆M 的切线PA ,切点为A .(1)当切线PA 的长度为23时,求点P 的坐标.(2)若△PAM 的外接圆为圆N ,试问:当点P 运动时,圆N 是否过定点?若过定点,求出所有的定点的坐标;若不过定点,请说明理由.解:(1)由题可知圆M 的圆心为M (0,4),半径r =2. 设P (2b ,b ),因为PA 是圆M 的一条切线,所以∠MAP =90°.在Rt △MAP 中,|MP |2=|AM |2+|AP |2,故|MP |=22+232=4.又|MP |=0-2b2+4-b2= 5b 2-8b +16,所以 5b 2-8b +16=4,解得b =0或85.所以点P 的坐标为(0,0)或⎝ ⎛⎭⎪⎫165,85. (2)设点P 的坐标为(2b ,b ).因为∠MAP =90°,所以△PAM 的外接圆圆N 是以MP 为直径的圆, 且MP 的中点坐标为⎝⎛⎭⎪⎫b ,b +42, 所以圆N 的方程为(x -b )2+⎝⎛⎭⎪⎫y -b +422=4b 2+b -424,即(2x +y -4)b -(x 2+y 2-4y )=0.由⎩⎪⎨⎪⎧2x +y -4=0,x 2+y 2-4y =0,解得⎩⎪⎨⎪⎧x =0,y =4,或⎩⎪⎨⎪⎧x =85,y =45,所以圆N 过定点(0,4)和⎝ ⎛⎭⎪⎫85,45. B 卷本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知直线l 1:ax +3y +1=0,l 2:2x +(a +1)y +1=0互相平行,则a 的值是( ) A .-3 B .2 C .-3或2D .3或-2解析:选A 由直线l 1与l 2平行,可得⎩⎪⎨⎪⎧a a +1=2×3,a ×1≠2,解得a =-3.2.直线l 过点(-3,0),且与直线y =2x -3垂直,则直线l 的方程为( ) A .y =-12(x -3)B .y =-12(x +3)C .y =12(x -3)D .y =12(x +3)解析:选B 因为直线y =2x -3的斜率为2,所以直线l 的斜率为-12.又直线l 过点(-3,0),故所求直线的方程为y =-12(x +3),选B.3.已知P ,Q 分别是直线3x +4y -5=0与6x +8y +5=0上的动点,则|PQ |的最小值为( )A .3 B.32 C.32D. 3解析:选B 由于所给的两条直线平行,所以|PQ |的最小值就是这两条平行直线间的距离.由两条平行直线间的距离公式,得d =|-10-5|62+82=32,即|PQ |的最小值为32. 4.半径长为6的圆与x 轴相切,且与圆x 2+(y -3)2=1内切,则此圆的方程为( ) A .(x -4)2+(y -6)2=6 B .(x ±4)2+(y -6)2=6 C .(x -4)2+(y -6)2=36D .(x ±4)2+(y -6)2=36解析:选D ∵半径长为6的圆与x 轴相切,设圆心坐标为(a ,b ),则b =6.再由a 2+32=5,可以解得a =±4,故所求圆的方程为(x ±4)2+(y -6)2=36.5.直线l 1与直线l 2:3x +2y -12=0的交点在x 轴上,且l 1⊥l 2,则直线l 1在y 轴上的截距是( )A .-4B .4C .-83D.83解析:选C 设直线l 1的斜率为k 1,直线l 2的斜率为k 2,则k 2=-32.∵l 1⊥l 2,∴k 1k 2=-1,∴k 1=-1k 2=-1-32=23.设直线l 1的方程为y =23x +b ,直线l 2与x 轴的交点为(4,0).将点(4,0)代入l 1方程,得b =-83.6.在直三棱柱ABC ­A 1B 1C 1中,BA ⊥CA ,A 1A =BA =CA ,点M ,N 分别是AC ,AB 的中点,过点C 作平面α,使得α∥A 1M ,α∥B 1N ,若α∩B 1C 1=P ,则C 1PPB 1的值为( ) A.12 B.13 C.14D.15解析:选B 因为AB ,AC ,AA 1两两垂直, 所以以A 为原点,以AB ,AC ,AA 1为x ,y ,z 轴,建立空间直角坐标系(图略),设AB =2,则A 1M ―→=(0,1,-2),B 1N ―→=(-1,0,-2), 设C 1P PB 1=μ,则CP ―→=CC 1―→+C 1P ―→ =(0,0,2)+μ1+μ(2,-2,0)=⎝ ⎛⎭⎪⎫2μ1+μ,-2μ1+μ,2,因为α∥ A 1M ,α∥B 1N ,所以存在实数x ,y , 使得CP ―→=x A 1M ―→+y B 1N ―→,由向量相等的充要条件得⎩⎪⎨⎪⎧2μ1+μ=-y ,-2μ1+μ=x ,2=-2x -2y ,消去x ,y 得4μ1+μ+4μ1+μ=2,所以μ=13,即C 1P PB 1=13.7.二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为( )A .150°B .45°C .60°D .120°解析:选C 因为CA ―→·AB ―→=0,AB ―→·BD ―→=0, 所以由CD ―→=CA ―→+AB ―→+BD ―→,两边平方得,CD ―→2=CA ―→2+AB ―→2+BD ―→2+2(CA ―→·AB ―→+AB ―→·BD ―→+CA ―→·BD ―→), 所以(217)2=62+42+82+2×6×8cos〈CA ―→,BD ―→〉, 所以cos 〈CA ―→,BD ―→〉=-12,所以〈CA ―→,BD ―→〉=120°,因为二面角的大小为锐角,所以该二面角的大小为60°.8.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( )A .52-4 B.17-1 C .6-2 2D.17解析:选A 圆C 1,C 2的图象如图所示.设P 是x 轴上任意一点,则|PM |的最小值为|PC 1|-1,同理|PN |的最小值为|PC 2|-3,则|PM |+|PN |的最小值为|PC 1|+|PC 2|-4.作C 1关于x 轴的对称点C ′1(2,-3),连接C ′1C 2,与x 轴交于点P ,连接PC 1,可知|PC 1|+|PC 2|的最小值为|C ′1C 2|=3-22+4+32=52,则|PM |+|PN |的最小值为52-4.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得3分,有选错的得0分)9.以下四组向量是平面α,β的法向量,则能判断α,β平行的是( ) A .a =(1,2,1),b =(1,-2,3) B .a =(8,4,-6),b =(4,2,-3) C .a =(0,1,-1),b =(0,-3,3) D .a =(18,19,20),b =(1,-2,1)解析:选BC 因为在选项B 中a =2b ,所以a ∥b ,所以α∥β,选项C 中-3a =b ,所以α∥β,而选项A 、D 中 a 不平行于b ,所以α不平行于β,所以只有选项B 、C 能判断α,β平行.10.在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0不可能是( )解析:选ACD 由题意l 1:y =-ax -b ,l 2:y =-bx -a ,当a ,b 同号时,l 1与l 2的斜率与截距也同号,此时选项A 、C 不可能正确,选项B 正确;当a ,b 异号时,l 1与l 2的斜率与截距也异号,此时选项D 不可能正确.11.实数x ,y 满足x 2+y 2+2x =0,则下列关于yx -1的判断正确的是( )A.y x -1的最大值为 3B.y x -1的最小值为- 3C.yx -1的最大值为33D.yx -1的最小值为-33解析:选CD 由x 2+y 2+2x =0得(x -1)2+y 2=1,表示以(-1,0)为圆心、1为半径的圆,yx -1表示圆上的点(x ,y )与点(1,0)连线的斜率,易知,y x -1最大值为33,最小值为-33. 12.已知正方体ABCD ­A 1B 1C 1D 1的棱长为1,则下列命题中正确的是( ) A .异面直线AD 1与BD 所成角的正弦值为12B .直线AD 1与平面BDC 1平行C .正方体外接球的表面积为3πD .B 1C 1与平面BDC 1所成角的正弦值为33解析:选BCD 如图所示,在正方体ABCD ­A 1B 1C 1D 1中,连接AB 1,B 1D 1,BD ,AD 1,BC 1,A 1C ,因为BD ∥B 1D 1,所以∠AD 1B 1就是异面直线AD 1与BD 所成角. 又∠AD 1B 1=60°,所以异面直线AD 1与BD 所成角的正弦值为32,A 错误. 因为AD 1∥BC 1,AD 1⊄平面BDC 1,BC 1⊂平面BDC 1, 所以AD 1∥平面BDC 1,B 正确. 正方体外接球的直径为2R =3, 所以R =32,S =4πR 2=3π,C 正确. 以D为原点,建立如图所示的空间直角坐标系,则C (0,1,0),A 1(1,0,1),B 1(1,1,1),C 1(0,1,1).所以CA 1―→=(1,-1,1),B 1C 1―→=(-1,0,0). 因为CA 1⊥平面BDC 1,所以CA 1―→为平面BDC 1的法向量,B 1C 1―→与CA 1―→夹角的余弦值的绝对值即为B 1C 1与平面BDC 1所成角的正弦值|cos 〈CA 1―→,B 1C 1―→〉|=⎪⎪⎪⎪⎪⎪⎪⎪CA 1―→·C 1B 1―→|CA 1―→||C 1B 1―→|=13=33,D 正确. 第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.在平面直角坐标系中,若圆Q :x 2+y 2-4ax +2ay +5a 2-1=0上所有的点都在第二象限内,则实数a 的取值范围是________.解析:依题意,圆Q 的方程可化为(x -2a )2+(y +a )2=1,圆心为Q (2a ,-a ),半径为r =1.若圆Q 上所有的点都在第二象限内,则⎩⎪⎨⎪⎧2a <-1,-a >1,解得a <-1.答案:(-∞,-1)14.已知空间直角坐标系中三点A ,B ,M ,点A 与点B 关于点M 对称,且已知A 点的坐标为(3,2,1),M 点的坐标为(4,3,1),则B 点的坐标为______________.解析:设B 点的坐标为(x ,y ,z ),则有x +32=4,y +22=3,z +12=1,解得x =5,y =4,z =1,故B 点的坐标为(5,4,1). 答案:(5,4,1)15.在长方体ABCD ­A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 在棱AB 上移动,则直线D 1E 与A 1D 所成角的大小是________,若D 1E ⊥EC ,则AE =________.解析:长方体ABCD ­A 1B 1C 1D 1中以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,又AD =AA 1=1,AB =2,点E 在棱AB 上移动,则D (0,0,0),D 1(0,0,1),A (1,0,0),A 1(1,0,1),C (0,2,0),设E (1,m,0),0≤m ≤2,则D 1E ―→=(1,m ,-1),A 1D ―→=(-1,0,-1),所以D 1E ―→·A 1D ―→=-1+0+1=0,所以直线D 1E 与A 1D 所成角的大小是90°,因为D 1E ―→=(1,m ,-1),EC ―→=(-1,2-m,0),D 1E ⊥EC , 所以D 1E ―→·EC ―→=-1+m (2-m )+0=0, 解得m =1,所以AE =1. 答案:90° 116.设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是________.解析:由题意可知M 在直线y =1上运动,设直线y =1与圆x 2+y 2=1相切于点P (0,1).当x 0=0即点M 与点P 重合时,显然圆上存在点N (±1,0)符合要求;当x 0≠0时,过M 作圆的切线,切点之一为点P ,此时对于圆上任意一点N ,都有∠OMN ≤∠OMP ,故要存在∠OMN =45°,只需∠OMP ≥45°.特别地,当∠OMP =45°时,有x 0=±1.结合图形可知,符合条件的x 0的取值范围为[-1,1].答案:[-1,1]四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知直线l 的倾斜角为135°,且经过点P (1,1). (1)求直线l 的方程;(2)求点A (3,4)关于直线l 的对称点A ′的坐标. 解:(1)∵k =tan 135°=-1, ∴l :y -1=-(x -1),即x +y -2=0. (2)设A ′(a ,b ),则⎩⎪⎨⎪⎧b -4a -3×-1=-1,a +32+b +42-2=0,解得a =-2,b =-1,∴A ′的坐标为(-2,-1).18.(本小题满分12分)已知△ABC 的三个顶点A (-1,0),B (1,0),C (3,2),其外接圆为圆H .(1)求圆H 的标准方程;(2)若直线l 过点C ,且被圆H 截得的弦长为2,求直线l 的方程. 解:(1)设圆H 的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 则由题意,可知⎩⎪⎨⎪⎧1-D +F =0,1+D +F =0,9+4+3D +2E +F =0,解得⎩⎪⎨⎪⎧D =0,E =-6,F =-1,所以圆H 的标准方程为x 2+(y -3)2=10.(2)设圆心到直线l 的距离为d ,则1+d 2=10,所以d =3.若直线l 的斜率不存在,即l ⊥x 轴时,则直线方程为x =3,满足题意; 若直线l 的斜率存在,设直线l 的方程为y =k (x -3)+2, 圆心到直线l 的距离为d =|-3k -1|-12+k2=3,解得k =43, 所以直线l 的方程为4x -3y -6=0.综上可知,直线l 的方程为x =3或4x -3y -6=0.19.(本小题满分12分)已知三棱柱ABC ­A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心.(1)求异面直线AA 1与BC 的夹角;(2)求侧棱AB 1与底面ABC 所成角的正弦值.解:设O 是A 1在底面ABC 内的射影,选AB ―→,AC ―→,AA 1―→作为基向量.由已知可得AB ―→,AC ―→,AA 1―→两两间的夹角均为60°,设棱长均为a .(1)AA 1―→·BC ―→=AA 1―→·(AC ―→-AB ―→)=AA 1―→·AC ―→-AA 1―→·AB ―→ =|AA 1―→||AC ―→|cos 60°-|AA 1―→||AB ―→|cos 60° =12a 2-12a 2=0. 所以〈AA 1―→,BC ―→〉=90°,所以异面直线AA 1与BC 的夹角为90°.(2)易知平面ABC 的一个法向量为OA 1―→,且OA 1―→=AA 1―→-13AB ―→-13AC ―→,AB 1―→=AB ―→+AA 1―→,所以OA 1―→·AB 1―→=23a 2,易求得|OA 1―→|=63a ,|AB 1―→|=3a .所以侧棱AB 1与底面ABC 所成角的正弦值为 |cos 〈AB 1―→,OA 1―→〉|=|OA 1―→·AB 1―→||OA 1―→||AB 1―→|=23.20.(本小题满分12分)已知圆H 被直线x -y -1=0,x +y -3=0分成面积相等的四部分,且截x 轴所得线段的长为2.(1)求圆H 的方程;(2)若存在过点P (a,0)的直线与圆H 相交于M ,N 两点,且|PM |=|MN |,求实数a 的取值范围.解:(1)设圆H 的方程为(x -m )2+(y -n )2=r 2(r >0),因为圆H 被直线x -y -1=0,x +y -3=0分成面积相等的四部分,所以圆心H (m ,n )一定是两互相垂直的直线x -y -1=0,x +y -3=0的交点,易得交点坐标为(2,1),所以m =2,n =1.又圆H 截x 轴所得线段的长为2,所以r 2=12+n 2=2. 所以圆H 的方程为(x -2)2+(y -1)2=2. (2)设N (x 0,y 0),由题意易知点M 是PN 的中点, 所以M ⎝⎛⎭⎪⎫x 0+a 2,y 02.因为M ,N 两点均在圆H 上,所以(x 0-2)2+(y 0-1)2=2,①⎝ ⎛⎭⎪⎫x 0+a 2-22+⎝ ⎛⎭⎪⎫y 02-12=2,即(x 0+a -4)2+(y 0-2)2=8,② 设圆I :(x +a -4)2+(y -2)2=8, 由①②知圆H 与圆I 有公共点,从而22-2≤|HI |≤22+2, 即2≤a -22+1-22≤32,整理可得2≤a 2-4a +5≤18,解得2-17≤a ≤1或3≤a ≤2+17,所以实数a 的取值范围是[2-17,1]∪[3,2+17].21.(本小题满分12分)已知圆C: x 2+y 2+2x -4y +1=0,O 为坐标原点,动点P 在圆C 外,过P 作圆C 的切线,设切点为M .(1)若点P 运动到(1,3)处,求此时切线l 的方程; (2)求满足条件|PM |=|PO |的点P 的轨迹方程. 解:把圆C 的方程化为标准方程为(x +1)2+(y -2)2=4, ∴圆心为C (-1,2),半径r =2.(1)当l 的斜率不存在时,此时l 的方程为x =1,C 到l 的距离d =2=r ,满足条件. 当l 的斜率存在时,设斜率为k ,得l 的方程为y -3=k (x -1),即kx -y +3-k =0, 则|-k -2+3-k |1+k2=2,解得k =-34. ∴l 的方程为y -3=-34(x -1),即3x +4y -15=0.综上,满足条件的切线l 的方程为x =1或3x +4y -15=0.(2)设P (x ,y ),则|PM |2=|PC |2-|MC |2=(x +1)2+(y -2)2-4,|PO |2=x 2+y 2. ∵|PM |=|PO |,∴(x +1)2+(y -2)2-4=x 2+y 2, 整理,得2x -4y +1=0,∴点P 的轨迹方程为2x -4y +1=0.22.(本小题满分12分)如图,四棱锥S ­ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,求二面角P ­AC ­D 的大小;(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面PAC ?若存在,求SE ∶EC 的值;若不存在,试说明理由.解:(1)证明:连接BD ,设AC 交BD 于点O ,由题意知SO ⊥平面ABCD ,以O 点为坐标原点,OB ―→,OC ―→,OS ―→分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系如图所示.设底面边长为a ,则SO =62a . 则S ⎝ ⎛⎭⎪⎫0,0,62a ,D ⎝ ⎛⎭⎪⎫-22a ,0,0,C ⎝ ⎛⎭⎪⎫0,22a ,0,B ⎝ ⎛⎭⎪⎫22a ,0,0, 所以OC ―→=⎝ ⎛⎭⎪⎫0,22a ,0,SD ―→=⎝ ⎛⎭⎪⎫-22a ,0,-62a ,∴OC ―→·SD ―→=0,∴OC ⊥SD , 即AC ⊥SD .(2)由题意知,平面PAC 的一个法向量为DS ―→=⎝ ⎛⎭⎪⎫22a ,0,62a ,平面DAC 的一个法向量为OS ―→=⎝⎛⎭⎪⎫0,0,62a ,二面角Ρ­AC ­D 的大小为θ,易知θ为锐角, 则cos θ=OS ―→·DS ―→|OS ―→||DS ―→|=32,故所求二面角P ­AC ­D 的大小为30°. (3)在棱SC 上存在一点E ,使BE ∥平面PAC . 由(2)知DS ―→是平面PAC 的一个法向量,且DS ―→=⎝ ⎛⎭⎪⎫22a ,0,62a ,CS ―→=⎝ ⎛⎭⎪⎫0,-22a ,62a ,BC ―→=⎝ ⎛⎭⎪⎫-22a ,22a ,0,设CE ―→=t CS ―→(0≤t ≤1), 则BE ―→=BC ―→+CE ―→=BC ―→+t CS ―→ =⎝⎛⎭⎪⎫-22a ,22a 1-t ,62at . 由BE ―→·DS ―→=0,得t =13,即当SE ∶EC =2∶1时,BE ―→⊥DS ―→, 而BE 不在平面PAC 内,故BE ∥平面PAC .。

【同步汇编】人教A版2018年高一数学必修1分层测评与综合测评 汇编170页(26份,含解析)

【同步汇编】人教A版2018年高一数学必修1分层测评与综合测评 汇编170页(26份,含解析)

人教A版2018年高一数学必修1分层测评与综合测评汇编目录2018年高一数学人教A版必修1学业分层测评1 集合的含义Word版含解析2018年高一数学人教A版必修1学业分层测评2 集合的表示Word版含解析2018年高一数学人教A版必修1学业分层测评3 集合间的基本关系Word版含解析2018年高一数学人教A版必修1学业分层测评4 并集、交集Word版含解析2018年高一数学人教A版必修1学业分层测评5 补集及综合应用Word版含解析2018年高一数学人教A版必修1学业分层测评6 函数的概念Word版含解析2018年高一数学人教A版必修1学业分层测评7 函数的表示法Word版含解析2018年高一数学人教A版必修1学业分层测评8 分段函数及映射Word版含解析2018年高一数学人教A版必修1学业分层测评9 函数的单调性Word版含解析2018年高一数学人教A版必修1学业分层测评10 函数的最大(小)值Word版含解析2018年高一数学人教A版必修1学业分层测评11 奇偶性Word版含解析2018年高一数学人教A版必修1学业分层测评12 指数与指数幂的运算Word版含解析2018年高一数学人教A版必修1学业分层测评13 指数函数的图象及性质Word版含解析2018年高一数学人教A版必修1学业分层测评14 指数函数及其性质的应用Word版含解析2018年高一数学人教A版必修1学业分层测评15 对数的运算Word版含解析2018年高一数学人教A版必修1学业分层测评16 对数函数的图象及性质Word版含解析2018年高一数学人教A版必修1学业分层测评17 对数函数及其性质的应用Word版含解析2018年高一数学人教A版必修1学业分层测评18 幂函数Word版含解析2018年高一数学人教A版必修1学业分层测评19 方程的根与函数的零点Word版含解析2018年高一数学人教A版必修1学业分层测评20 用二分法求方程的近似解Word版含解析2018年高一数学人教A版必修1学业分层测评21 几类不同增长的函数模型Word版含解析2018年高一数学人教A版必修1学业分层测评22 函数模型的应用实例Word版含解析2018年高一数学人教A版必修1章末综合测评1 Word版含解析2018年高一数学人教A版必修1章末综合测评2 Word版含解析2018年高一数学人教A版必修1章末综合测评3 Word版含解析2018年高一数学人教A版必修1模块综合测评Word版含解析学业分层测评(一)集合的含义(建议用时:45分钟)[学业达标]一、选择题1.下列对象能构成集合的是()①NBA联盟中所有优秀的篮球运动员,②所有的钝角三角形,③2015年诺贝尔经济学奖得主,④大于等于0的整数,⑤莘县第一中学所有聪明的学生.A.①②④B.②⑤C.③④⑤D.②③④【解析】由集合中元素的确定性知,①中“优秀的篮球运动员”和⑤中“聪明的学生”不确定,所以不能构成集合.【答案】 D2.已知集合M中的元素a,b,c是△ABC的三边,则△ABC一定不是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形【解析】因为集合中元素具有互异性,所以a,b,c互不相等,因此选D.【答案】 D3.下面有三个命题:①集合N中最小的数是1;②若-a∉N,则a∈N;③若a∈N,b∈N,则a+b的最小值是2.其中正确命题的个数是()A.0个B.1个C.2个D.3个【解析】因为自然数集中最小的数是0,而不是1,所以①错;对于②,取a=2,则-2∉N,2∉N,所以②错;对于③,a=0,b=0时,a+b取得最小值是0,而不是2,所以③错.【答案】 A4.下列正确的命题的个数有()①1∈N;②2∈N*;③12∈Q;④2+2∉R;⑤42∉Z.A .1个B .2个C .3个D .4个【解析】 ∵1是自然数,∴1∈N ,故①正确;∵2不是正整数,∴2∉N *,故②不正确;∵12是有理数,∴12∈Q ,故③正确;∵2+2是实数,∴2+2∈R ,所以④不正确; ∵42=2是整数,∴42∈Z ,故⑤不正确.【答案】 B5.给出下列说法,其中正确的个数为( )(1)由1,32,64,⎪⎪⎪⎪⎪⎪-12,12这些数组成的集合有5个元素; (2)方程(x -3)(x -2)2=0的解组成的集合有3个元素;(3)由一条边为2,一个内角为30°的等腰三角形组成的集合中含有4个元素.A .0B .1C .2D .3【解析】 (1)不正确.对于一个给定的集合,它的元素必须是互异的,即集合中的任意两个元素都是不同的,而32与64相同,⎪⎪⎪⎪⎪⎪-12与12相同,故这些数组成的集合只有3个元素.(2)不正确.方程(x -3)(x -2)2=0的解是x 1=3,x 2=x 3=2,因此写入集合时只有3和2两个元素.(3)正确.若2为底边长,则30°角可以是顶角或底角;若2为腰长,则30°角也可以是顶角或底角,故集合中有4个元素.【答案】 B二、填空题6.由m -1,3m ,m 2-1组成的三元素集合中含有-1,则m 的值是________. 【导学号:97030003】【解析】 当m =0时,三个数分别为-1,0,-1,组成的集合中只有两个元素,不合题意;当m =-13时,三个数分别为-43,-1,-89,符合题意,即m 只能取-13.【答案】-1 37.设集合A是由1,k2为元素组成的集合,则实数k的取值范围是________.【解析】∵1∈A,k2∈A,结合集合中元素的性质可知k2≠1,解得k≠±1. 【答案】k≠±18.由实数t,|t|,t2,-t,t3所构成的集合M中最多含有________个元素.【解析】由于|t|至少与t和-t中的一个相等,故集合M中至多有4个元素.当t=-2时,t,-t,t2,t3互不相同,此时集合M中元素最多,为4个.【答案】 4三、解答题9.设非空数集A满足以下条件:若a∈A,则11-a∈A,且1∉A.(1)若2∈A,你还能求出A中哪些元素?(2)“3∈A”和“4∈A”能否同时成立?【解】(1)若2∈A,则11-2=-1∈A,于是11-(-1)=12∈A,而11-12=2.所以集合A中还有-1,12这两个元素.(2)若“3∈A”和“4∈A”能同时成立,则11-a=3且11-a=4,由11-a=3解得a=23,由11-a=4解得a=34,矛盾,所以“3∈A”和“4∈A”不能同时成立.10.设P、Q为两个非空实数集合,P中含有0,2,5三个元素,Q中含有1,2,6三个元素,定义集合P+Q中的元素是a+b,其中a∈P,b∈Q,则P+Q中元素的个数是多少?【导学号:97030004】【解】∵当a=0时,b依次取1,2,6,得a+b的值分别为1,2,6;当a=2时,b依次取1,2,6,得a+b的值分别为3,4,8;当a=5时,b依次取1,2,6,得a+b的值分别为6,7,11.由集合元素的互异性知P+Q中元素为1,2,3,4,6,7,8,11,共8个.[能力提升]1.集合A含有两个元素a-3和2a-1,则实数a的取值范围是________.【解析】由集合中元素的互异性,可得a-3≠2a-1,所以a≠-2.即实数a的取值范围为a≠-2.【答案】a≠-22.设P、Q是两个数集,P中含有0,2两个元素,Q中含有1,2两个元素,定义集合P+Q中的元素是a+b,其中a∈P,b∈Q,则P+Q中元素的个数是________.【解析】由于a∈P,a=0或2,b∈Q,b=1或2,因此a+b的值为1,2,3,4,共4个.【答案】 43.集合A中的元素y∈N且y=-x2+1,若t∈A,则t的值为________.【解析】依题意A={y∈N|y=-x2+1}={y∈N|y≤1}={0,1}.又t∈A,∴t=0或1.【答案】0或14.若所有形如3a+2b(a∈Z,b∈Z)的数组成集合A,判断32-9是否是集合A 中的元素.【解】∵32-9=-9+32=3×(-3)+2×3.令a=-3,b=3,则-3∈Z,3∈Z.∴32-9是集合A中的元素.学业分层测评(二)集合的表示(建议用时:45分钟)[学业达标]一、选择题1.把集合{x|x2-3x+2=0}用列举法表示为()A.{x=1,x=2} B.{x|x=1,x=2}C.{x2-3x+2=0} D.{1,2}【解析】解方程x2-3x+2=0可得x=1或2,所以集合{x|x2-3x+2=0}用列举法可表示为{1,2}.【答案】 D2.(2016·石家庄高一检测)设集合A={1,2,4},集合B={x|x=a+b,a∈A,b∈A},则集合B中的元素个数为()A.4 B.5C.6 D.7【解析】由题意,B={2,3,4,5,6,8},共有6个元素,故选C.【答案】 C3.(2016·漳州高一检测)下列各组两个集合M和N表示同一集合的是()A.M={π},N={3.141 59}B.M={2,3},N={(2,3)}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={x|x2+1=0},N=∅【解析】对于A,∵π≠3.141 59,∴{π}≠{3.141 59}.对于B,前者包含2个元素,而后者只含一个元素,是个点.对于C,前者是直线x+y=1上点的集合,而后者是函数y=-x+1的值域.对于D,∵x2+1=0无解,∴{x|x2+1=0}=∅,故选D.【答案】 D4.(2016·贵阳高一检测)设集合A={-2,0,1,3},集合B={x|-x∈A,1-x∉A},则集合B中元素的个数为() 【导学号:97030008】A.1 B.2C.3 D.4【解析】若x∈B,则-x∈A,∴x的可能取值为:2,0,-1,-3,当2∈B时,则1-2=-1∉A,∴2∈B;当0∈B时,则1-0∈A,∴0∉B;当-1∈B时,则1-(-1)=2∉A,∴-1∈B;当-3∈B时,则1-(-3)=4∉A,∴-3∈B.综上,B={-3,-1,2},所以集合B含有的元素个数为3,故选C.【答案】 C5.已知P={x|2<x<k,x∈N},若集合P中恰有3个元素,则()A.5<x<6 B.5≤x<6C.5<x≤6 D.5≤x≤6【解析】因为P中恰有3个元素,所以P={3,4,5},可得5<k≤6,故选C.【答案】 C二、填空题6.已知集合A={-1,-2,0,1,2},B={x|x=y2,y∈A},则用列举法表示B应为________.【解析】(-1)2=12=1,(-2)2=22=4,02=0,所以B={0,1,4}.【答案】{0,1,4}7.已知集合A={x|x2+2x+a=0},若1∈A,则A=________.【解析】把x=1代入方程x2+2x+a=0可得a=-3,解方程x2+2x-3=0可得A={-3,1}.【答案】{-3,1}8.(2016·松原高一检测)若2∉{x|x-a<0},则实数a的取值集合是________.【解析】由题意,{x|x-a<0}={x|x<a},∵2∉{x|x-a<0},∴a≤2,∴实数a 的取值集合是{a|a≤2}.【答案】{a|a≤2}三、解答题9.用适当的方法表示下列集合:(1)方程x2+y2-4x+6y+13=0的解集;(2)1 000以内被3除余2的正整数组成的集合;(3)平面直角坐标系中第二象限内的点组成的集合;(4)二次函数y=x2-10图象上的所有点组成的集合.【解】(1)方程x2+y2-4x+6y+13=0可化为(x-2)2+(y+3)2=0,解得x=2,y =-3,所以方程的解集为{(x,y)|x=2,y=-3}.(2)集合的代表元素是数,用描述法可表示为{x|x=3k+2,k∈N且x<1 000}.(3)集合的代表元素是点,用描述法可表示为{(x,y)|x<0,且y>0}.(4)“二次函数y=x2-10图象上的所有点”用描述法表示为{(x,y)|y=x2-10}.10.(2016·宁德高一检测)若-3∈{a-3,2a-1,a2+1},求实数a的值.【解】∵-3∈{a-3,2a-1,a2+1},又a2+1≥1,∴-3=a-3,或-3=2a-1,解得a=0,或a=-1,当a=0时,{a-3,2a-1,a2+1}={-3,-1,1},满足集合三要素;当a=-1时,{a-3,2a-1,a2+1}={-4,-3,2},满足集合三要素;∴a=0或-1.[能力提升]1.集合A={1,2,3,4,5},B={1,2,3},C={z|z=xy,x∈A且y∈B},则集合C中的元素个数为()A.3 B.4C.11 D.12【解析】C={1,2,3,4,5,6,8,9,10,12,15},故选C.【答案】 C2.已知集合A={2,0,1,4},B={k|k∈R,k2-2∈A,k-2∉A},则集合B中所有的元素之和为()A.2 B.-2C.0 D. 2【解析】若k2-2=2,得k=2或k=-2,当k=2时,k-2=0不满足条件,当k=-2时,k-2=-4,满足条件;若k2-2=0,得k=±2,显然满足条件;若k2-2=1,得k=±3,显然满足条件;若k2-2=4,得k=±6,显然满足条件.所以集合B 中的元素为-2,±2,±3,±6,所以集合B中的元素之和为-2,则选B.【答案】 B3.已知集合M ={a,2,3+a },集合N ={3,2,a 2},若M =N ,则a =( )A .1B .3C .0D .0或1【解析】 因为集合M 与集合N 相等.所以⎩⎨⎧ a =33+a =a 2或⎩⎨⎧a =a 23+a =3, 对于⎩⎨⎧ a =33+a =a 2,无解; 对于⎩⎨⎧a =a 23+a =3, 解得a =0,综上可知a =0.【答案】 C4.设集合B =⎩⎨⎧⎭⎬⎫x ∈N ⎪⎪⎪62+x ∈N , (1)试判断元素1和2与集合B 的关系;(2)用列举法表示集合B . 【导学号:97030009】【解】 (1)当x =1时,62+1=2∈N ;当x =2时,62+2=32∉N ,所以1∈B,2∉B . (2)令x =0,1,4代入62+x∈N 检验,可得B ={0,1,4}.学业分层测评(三) 集合间的基本关系(建议用时:45分钟)[学业达标]一、选择题1.(2016·漳州高一检测)已知集合A ={x |x 2-1=0},则有( )A .1∉AB .0⊆AC .∅⊆AD .{0}⊆A【解析】 由已知,A ={1,-1},所以选项A ,B ,D 都错误,因为∅是任何非空集合的真子集,所以C 正确.【答案】 C2.(2016·普洱高一检测)已知集合N ={1,3,5},则集合N 的真子集个数为( )A .5B .6C .7D .8【解析】 ∵集合N ={1,3,5},∴集合N 的真子集个数是23-1=7个,故选C.【答案】 C3.集合A ={2,-1},B ={m 2-m ,-1},且A =B ,则实数m =( )A .2B .-1C .2或-1D .4【解析】 ∵A =B ,∴m 2-m =2,即m 2-m -2=0,∴m =2或-1.【答案】 C4.已知集合P ={x |x 2=1},Q ={x |ax =1},若Q ⊆P ,则a 的值是( )A .1B .-1C .1或-1D .0,1或-1【解析】 由题意,当Q 为空集时,a =0;当Q 不是空集时,由Q ⊆P ,a =1或a =-1.【答案】 D5.(2016·南阳高一检测)集合M =x ⎪⎪⎪ x =k 2+13,k ∈Z ,N =x ⎪⎪⎪x =k +13,k ∈Z ,则( )【导学号:97030012】A .M =NB .M ⊆NC .N ⊆MD .M ∩N ∅【解析】 ∵M 中:x =k 2+13=⎩⎪⎨⎪⎧n +13,k =2n ,n ∈Z n +56,k =2n +1,n ∈Z .N 中:x =k +13=n +13,k =n ∈Z ,∴N ⊆M . 【答案】 C 二、填空题 6.设a ,b ∈R ,集合⎩⎨⎧⎭⎬⎫0,b ,b a ={1,a ,a +b },则a +2b =________.【解析】 ∵⎩⎨⎧⎭⎬⎫0,b ,b a ={1,a ,a +b },而a ≠0,∴a +b =0,ba =-1,从而b =1,a =-1,可得a +2b =1. 【答案】 17.已知集合A ={x |1<x -1≤4},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________.【解析】 ∵A =(2,5],A ⊆B ,∴5<a ,又a ∈(c ,+∞),∴c =5. 【答案】 58.(2016·保定高一检测)设集合A ={x |x 2+x -6=0},B ={x |mx +1=0},则满足B ⊆A 的实数m 的取值集合为________.【解析】 ∵A ={x |x 2+x -6=0}={-3,2},又∵B ⊆A ,当m =0,mx +1=0无解,故B =∅,满足条件,若B ≠∅,则B ={-3},或B ={2},即m =13,或m =-12,故满足条件的实数m ∈⎩⎨⎧⎭⎬⎫0,13,-12.【答案】⎩⎨⎧⎭⎬⎫0,13,-12三、解答题9.(2016·菏泽高一检测)已知A ={x |x <3},B ={x |x <a }. (1)若B ⊆A ,求a 的取值范围; (2)若A ⊆B ,求a 的取值范围.【解】 (1)因为B ⊆A ,B 是A 的子集,由图(1)得a ≤3.(1)(2)因为A ⊆B ,A 是B 的子集,由图(2)得a ≥3.(2)10.已知集合A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0,a ∈R },若B ⊆A ,求实数a 的取值范围.【解】 A ={x |x 2+4x =0}={0,-4}, ∵B ⊆A ,∴B =∅或B ={0}或B ={-4}或B ={0,-4}. (1)当B =∅时,方程x 2+2(a +1)x +a 2-1=0无实根, 则Δ<0,即4(a +1)2-4(a 2-1)<0. ∴a <-1. (2)当B ={0}时, 有⎩⎨⎧Δ=0a 2-1=0,∴a =-1. (3)当B ={-4}时,有 ⎩⎨⎧Δ=0a 2-8a +7=0,无解. (4)当B ={0,-4}时,由韦达定理得a =1. 综上所述,a =1或a ≤-1.[能力提升]1.(2016·石家庄高一检测)已知集合A满足{1,2}⊆A⊆{1,2,3,4},则集合A的个数为()A.8 B.2C.3 D.4【解析】由题意,集合A可以为:{1,2},{1,2,3},{1,2,4},{1,2,3,4}.故选D.【答案】 D2.(2016·达州高一检测)下列四个集合中,是空集的是()A.{x|x+3=3}B.{(x,y)|y2=-x2,x,y∈R}C.{x|x2≤0}D.{x|x2-x+1=0,x∈R}【解析】根据题意,由于空集中没有任何元素,对于选项A,x=0;对于选项B,(0,0)是集合中的元素;对于选项C,由于x=0成立;对于选项D,方程无解.故选D.【答案】 D3.(2016·衡水高一检测)若三个非零且互不相等的实数a、b、c满足1a+1b=2c,则称a、b、c是调和的;若满足a+c=2b,则称a、b、c是等差的.若集合P中元素a、b、c既是调和的,又是等差的,则称集合P为“好集”.若集合M={x||x|≤2 016,x∈Z},集合P={a,b,c}⊆M.则:(1)“好集”P中的元素最大值为__________________;(2)“好集”P的个数为______________________.【解析】(1)∵1a+1b=2c,且a+c=2b,∴(a-b)(a+2b)=0,∴a=b(舍),或a=-2b,∴c=4b,令-2 016≤4b≤2 016,得-504≤b≤504,∴P中最大元素为4b=4×504=2 016.(2)由(1)知P={-2b,b,4b}且-504≤b≤504,∴“好集”P的个数为2×504=1 008.【答案】(1)2 016(2)1 0084.已知集合A={x|-3≤x≤5},B={x|m-2<x<2m-3},且B⊆A,求实数m的取值范围.【导学号:97030013】【解】∵集合A={x|-3≤x≤5},B={x|m-2<x<2m-3},且B⊆A,∴当B ≠∅时,应有⎩⎨⎧m -2≥-32m -3≤5m -2<2m -3,解得1<m ≤4.当B =∅时,应有m -2≥2m -3,解得m ≤1. 综上可得,实数m 的取值范围为(-∞,4].学业分层测评(四)并集、交集(建议用时:45分钟)[学业达标]一、选择题1.(2016·湛江高一检测)设集合A={1,3},集合B={1,2,4,5},则集合A∪B=() A.{1,3,1,2,4,5} B.{1}C.{1,2,3,4,5} D.{2,3,4,5}【解析】∵集合A={1,3},集合B={1,2,4,5},∴集合A∪B={1,2,3,4,5}.故选C.【答案】 C2.(2016·中山高一检测)已知集合A={x∈R|x≤5},B={x∈R|x>1},那么A∩B 等于()A.{1,2,3,4,5} B.{2,3,4,5}C.{2,3,4} D.{x∈R|1<x≤5}【解析】∵A={x∈R|x≤5},B={x∈R|x>1},∴A∩B={x∈R|1<x≤5},故选D.【答案】 D3.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是()A.1 B.3C.4 D.8【解析】A={1,2},A∪B={1,2,3},则集合B中必含有元素3,即此题可转化为求集合A={1,2}的子集个数问题,所以满足题目条件的集合B共有22=4个.故选C.【答案】 C4.(2016·保定高一检测)设集合A={1,4,x},B={1,x2}且A∪B={1,4,x},则满足条件的实数x的个数是() 【导学号:97030016】A.1个B.2个C.3个D.4个【解析】∵A={1,4,x},∴x≠1,x≠4且x2≠1,得x≠±1且x≠4,∵A∪B={1,4,x},∴x2=x或x2=4,解之得x=0或x=±2,满足条件的实数x有0,2,-2,共3个,故选C.【答案】 C5.(2016·东城高一检测)已知集合M={0,x},N={1,2},若M∩N={2},则M∪N=()A.{0,x,1,2} B.{2,0,1,2}C.{0,1,2} D.不能确定【解析】∵M∩N={2},∴2∈M,而M={0,x},则x=2,∴M={0,2},∴M∪N={0,1,2},故选C.【答案】 C二、填空题6.某校高一某班共有45人,摸底测验数学20人得优,语文15人得优,两门都不得优20人,则两门都得优的人数为________人.【解析】如图,设两门都得优的人数是x,则依题意得20-x+(15-x)+x+20=45,整理,得-x+55=45,解得x=10,即两门都得优的人数是10人.【答案】107.(2016·廊坊高一检测)若集合A={x|-1≤x<2},B={x|x≤a},若A∩B≠∅,则实数a的取值范围是________.【解析】A={x|-1≤x<2},B={x|x≤a},由A∩B≠∅,得a≥-1.【答案】a≥-18.(2016·达州高一检测)已知A={1,2,3},B={x∈R|x2-ax+1=0,a∈A},若A∩B =B,则a的值为________.【解析】由题意得,当a=1时,方程x2-ax+1=0即x2-x+1=0无解,集合B =∅,满足题意;当a=2时,方程x2-ax+1=0即x2-2x+1=0有两个相等的实根1,集合B={1},满足题意;当a =3时,方程x 2-ax +1=0即x 2-3x +1=0有两个不相等的实根3+52,3-52,集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫3+52,3-52,不满足题意.综上可知,a 的值为1或2.【答案】 1或2 三、解答题9.(2016·滁州高一检测)设A ={x |x 2+ax +12=0},B ={x |x 2+3x +2b =0},A ∩B ={2},C ={2,-3},(1)求a ,b 的值及A ,B ; (2)求(A ∪B )∩C .【解】 (1)∵A ∩B ={2},∴4+2a +12=0,即a =-8,4+6+2b =0,即b =-5, ∴A ={x |x 2-8x +12=0}={2,6},B ={x |x 2+3x -10=0}={2,-5}. (2)∵A ∪B ={-5,2,6},C ={2,-3},∴(A ∪B )∩C ={2}.10.已知集合A ={x |a -1<x <2a +1},B ={x |0<x <1}. 【导学号:97030017】 (1)若a =12,求A ∩B ;(2)若A ∩B =∅,求实数a 的取值范围.【解】 (1)当a =12时,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <2,B ={x |0<x <1},∴A ∩B ={x |0<x <1}.(2)若A ∩B =∅,当A =∅时,有a -1≥2a +1,∴a ≤-2. 当A ≠∅时,有⎩⎨⎧a -1<2a +12a +1≤0或a -1≥1,∴-2<a ≤-12或a ≥2. 综上可得,a ≤-12或a ≥2.[能力提升]1.设A ={x |x 2-8x +15=0},B ={x |ax -1=0}.若A ∩B =B ,则实数a 组成的集合C 中元素的个数为( )A .0B .1C .2D .3【解析】 当a =0时,由题意B =∅,又A ={3,5},B ⊆A ,当a ≠0时,B =⎩⎨⎧⎭⎬⎫1a ,又A ={3,5},B ⊆A ,此时1a =3或5,则有a =13或a =15,故C =⎩⎨⎧⎭⎬⎫0,13,15. 【答案】 D 2.设集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪⎪⎪⎪⎪⎪x -32=12,B ={t |t 2+2(a +1)t +(a 2-5)=0}.若A ∩B =B ,则实数a 的取值范围为( )A .{a |a ≤-2}B .{a |a ≤-3}C .{a |a ≤-4}D .{a |a ≤-1}【解析】 ∵A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪⎪⎪⎪⎪⎪x -32=12={1,2},B ={t |t 2+2(a +1)t +(a 2-5)=0}.由A ∩B =B ,得B ⊆A .当4(a +1)2-4(a 2-5)<0,即a <-3时,B =∅,符合题意;当4(a +1)2-4(a 2-5)=0,即a =-3时,B ={t |t 2-4t +4=0}={2},符合题意; 当4(a +1)2-4(a 2-5)>0,即a >-3时,要使B ⊆A ,则B =A , 即⎩⎨⎧1+2=-2(a +1)1×2=a 2-5,此方程组无解.∴实数a 的取值范围是{a |a ≤-3}. 【答案】 B3.集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( ) 【导学号:97030018】A .0B .1C .2D .4【解析】 ∵A ∪B ={0,1,2,a ,a 2},又A ∪B ={0,1,2,4,16}, ∴{a ,a 2}={4,16},∴a =4. 【答案】 D4.(2016·郑州高一检测)设集合A ={x |-1<x <4},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-5<x <32,C ={x |1-2a <x <2a }.(1)若C =∅,求实数a 的取值范围;(2)若C ≠∅且C ⊆(A ∩B ),求实数a 的取值范围.【解】 (1)∵C ={x |1-2a <x <2a }=∅, ∴1-2a ≥2a ,∴a ≤14,即实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,14.(2)∵C ={x |1-2a <x <2a }≠∅,∴1-2a <2a ,即a >14.∵A ={x |-1<x <4},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-5<x <32, ∴A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1<x <32, ∵C ⊆(A ∩B ),∴⎩⎪⎨⎪⎧1-2a ≥-12a ≤32a >14,解得14<a ≤34,即实数a 的取值范围是⎝ ⎛⎦⎥⎤14,34.学业分层测评(五)补集及综合应用(建议用时:45分钟)[学业达标]一、选择题1.若全集U={0,1,2,3}且∁U A={2},则集合A的真子集共有()A.3个B.5个C.7个D.8个【解析】A={0,1,3},真子集有23-1=7.【答案】 C2.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}【解析】由题意可知,A∪B={x|x≤0或x≥1},所以∁U(A∪B)={x|0<x<1}.【答案】 D3.(2015·天津高考)已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁U B=()A.{2,5} B.{3,6}C.{2,5,6} D.{2,3,5,6,8}【解析】由题意得∁U B={2,5,8},∴A∩∁U B={2,3,5,6}∩{2,5,8}={2,5}.【答案】 A4.(2016·中山高一检测)设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则图1-1-2中的阴影部分表示的集合为()图1-1-2A.{2} B.{4,6}C.{1,3,5} D.{4,6,7,8}【解析】全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},由韦恩图可知阴影部分表示的集合为(∁U A)∩B,∵∁U A={4,6,7,8},∴(∁U A)∩B={4,6}.故选B.【答案】 B5.(2016·南阳高一检测)已知集合A={x|x<a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是() 【导学号:97030023】A.a≤2 B.a<1C.a≥2 D.a>2【解析】∵集合A={x|x<a},B={x|1<x<2},∴∁R B={x|x≤1或x≥2},因为A∪∁R B=R,所以a≥2,故选C.【答案】 C二、填空题6.(2016·杭州模拟)设集合S={x|x>-2},T={x|x2+3x-4≤0},则(∁R S)∪T=________.【解析】∵集合S={x|x>-2},∴∁R S={x|x≤-2},由x2+3x-4≤0,得T={x|-4≤x≤1},故(∁R S)∪T={x|x≤1}.【答案】(-∞,1]7.已知集合A、B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩∁U B=________.【解析】∵U={1,2,3,4},∁U(A∪B)={4},∴A∪B={1,2,3},又∵B={1,2},∴{3}⊆A⊆{1,2,3}.又∁U B={3,4},∴A∩∁U B={3}.【答案】{3}8.设全集U=R,集合A={x|x≥0},B={y|y≥1},则∁U A与∁U B的包含关系是________.【解析】∁U A={x|x<0},∁U B={y|y<1}={x|x<1}.∴∁U A⊆∁U B.【答案】∁U A⊆∁U B三、解答题9.(2016·宁波高一检测)设A={x∈Z||x|<6},B={1,2,3},C={3,4,5},求:(1)A∪(B∩C);(2)A∩∁A(B∪C).【解】A={-5,-4,-3,-2,-1,0,1,2,3,4,5},(1)由B∩C={3},∴A∪(B∩C)=A={-5,-4,-3,-2,-1,0,1,2,3,4,5}.(2)由B∪C={1,2,3,4,5},∁A(B∪C)={-5,-4,-3,-2,-1,0},∴A∩∁A(B∪C)={-5,-4,-3,-2,-1,0}.10.设全集为R,A={x|3≤x<7},B={x|2<x<10},求:(1)A∩B;(2)∁R A;(3)∁R(A∪B).【解】(1)∵A={x|3≤x<7},B={x|2<x<10},∴A∩B={x|3≤x<7}.(2)又全集为R,A={x|3≤x<7},∴∁R A={x|x<3或x≥7}.(3)∵A∪B={x|2<x<10},∴∁R(A∪B)={x|x≤2或x≥10}.[能力提升]1.(2016·石家庄高一检测)若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于()A.M∪N B.M∩NC.(∁U M)∪(∁U N) D.(∁U M)∩(∁U N)【解析】∵全集U={1,2,3,4,5,6},M={2,3},N={1,4},∴M∪N={1,2,3,4},则(∁U M)∩(∁U N)=∁U(M∪N)={5,6}.故选D.【答案】 D2.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合∁U(A∪B)中元素个数为()A .1B .2C .3D .4【解析】 ∵A ={1,2},∴B ={2,4},∴A ∪B ={1,2,4},∴∁U (A ∪B )={3,5}. 【答案】 B3.已知全集U ={2,3,a 2-a -1},A ={2,3},若∁U A ={1},则实数a 的值是________. 【解析】 ∵U ={2,3,a 2-a -1},A ={2,3},∁U A ={1},∴a 2-a -1=1,即a 2-a -2=0,解得a =-1或a =2.【答案】 -1或24.(2016·哈尔滨师大附中高一检测)设全集U =R ,集合A ={x |x ≤-2或x ≥5},B ={x |x ≤2}.求(1)∁U (A ∪B );(2)记∁U (A ∪B )=D ,C ={x |2a -3≤x ≤-a },且C ∩D =C ,求a 的取值范围. 【导学号:97030024】【解】 (1)由题意知,A ={x |x ≤-2或x ≥5},B ={x |x ≤2},则A ∪B ={x |x ≤2或x ≥5},又全集U =R ,∁U (A ∪B )={x |2<x <5}.(2)由(1)得D ={x |2<x <5},由C ∩D =C 得C ⊆D , ①当C =∅时,有-a <2a -3,解得a >1;②当C ≠∅时,有⎩⎨⎧2a -3≤-a 2a -3>2-a <5,解得a ∈∅.综上,a 的取值范围为(1,+∞).学业分层测评(六)函数的概念(建议用时:45分钟)[学业达标]一、选择题1.已知函数y=f(x),x∈[a,b],那么集合{(x,y)|y=f(x),x∈[a,b]}∩{(x,y)|x =2}中元素的个数为()A.1 B.0C.1或0 D.1或2【解析】从函数观点看,问题是求函数y=f(x),x∈[a,b]的图象与直线x=2的交点个数(这是一个数到形的转化),不少学生常误认为交点是1个,并说这是根据函数定义中“唯一确定”的规定得到的,这是不正确的,因为函数是由定义域、值域、对应法则三要素组成的.这里给出了函数y=f(x)的定义域是[a,b],但未明确给出1与[a,b]的关系,当1∈[a,b]时有1个交点,当1∉[a,b]时没有交点,故选C.【答案】 C2.(2016·中山高一检测)下列四组函数中表示同一函数的是()A.f(x)=x,g(x)=(x)2B.f(x)=x2,g(x)=(x+1)2C.f(x)=x2,g(x)=|x|D.f(x)=0,g(x)=x-1+1-x【解析】∵y=x(x∈R)与g(x)=(x)2(x≥0)两个函数的定义域不一致,∴A中两个函数不表示同一函数;∵f(x)=x2,g(x)=(x+1)2两个函数的对应法则不一致,∴B中两个函数不表示同一函数;∵f(x)=x2=|x|与g(x)=|x|,两个函数的定义域均为R,∴C中两个函数表示同一函数;f(x)=0,g(x)=x-1+1-x=0(x=1)两个函数的定义域不一致,∴D中两个函数不表示同一函数,故选C.【答案】 C3.函数y=1-x+x的定义域为()【导学号:97030029】A.{x|x≤1} B.{x|x≥0}C .{x |x ≥1或x ≤0}D .{x |0≤x ≤1}【解析】 由题意可知⎩⎨⎧1-x ≥0x ≥0,解得0≤x ≤1.【答案】 D4.(2016·三明高一检测)下列四个区间能表示数集A ={x |0≤x <5或x >10}的是( )A .(0,5)∪(10,+∞)B .[0,5)∪(10,+∞)C .(5,0]∪[10,+∞)D .[0,5]∪(10,+∞)【解析】 根据区间的定义可知数集A ={x |0≤x <5或x >10}可以用区间[0,5)∪(10,+∞)表示.故选B.【答案】 B5.若函数f (x )=ax 2-1,a 为一个正常数,且f [f (-1)]=-1,那么a 的值是( ) A .1 B .0 C .-1D .2【解析】 f (-1)=a ·(-1)2-1=a -1,f [f (-1)]=a ·(a -1)2-1=a 3-2a 2+a -1=-1.∴a 3-2a 2+a =0,∴a =1或a =0(舍去). 【答案】 A 二、填空题6.已知f (x )=x 2+x +1,则f (2)=________.【解析】 ∵f (x )=x 2+x +1,∴f (2)=(2)2+2+1=3+ 2. 【答案】 3+ 27.若A ={x |y =x +1},B ={y |y =x 2+1},则A ∩B =________.【解析】 由A ={x |y =x +1},B ={y |y =x 2+1},得A =[-1,+∞),B =[1,+∞),∴A ∩B =[1,+∞).【答案】 [1,+∞)8.已知函数f (x )的定义域为(-1,1),则函数g (x )=f ⎝ ⎛⎭⎪⎫x 2+f (x -1)的定义域是________.【解析】 由题意知⎩⎪⎨⎪⎧-1<x 2<1-1<x -1<1,即⎩⎨⎧-2<x <20<x <2.从而0<x <2, 于是函数g (x )的定义域为(0,2). 【答案】 (0,2) 三、解答题9.求下列函数的定义域: (1)y =2x +1+3-4x ;(2)y =1|x +2|-1. 【导学号:97030030】【解】 (1)由已知得⎩⎨⎧2x +1≥03-4x ≥0,∴⎩⎪⎨⎪⎧x ≥-12x ≤34,∴-12≤x ≤34,∴函数的定义域为⎣⎢⎡⎦⎥⎤-12,34.(2)由已知得:∵|x +2|-1≠0,∴|x +2|≠1,即x ≠-1,-3,∴函数的定义域为(-∞,-3)∪(-3,-1)∪(-1,+∞). 10.已知函数f (x )=x 2+1,x ∈R .(1)分别计算f (1)-f (-1),f (2)-f (-2),f (3)-f (-3)的值; (2)由(1)你发现了什么结论?并加以证明.【解】 (1)f (1)-f (-1)=(12+1)-[(-1)2+1]=2-2=0; f (2)-f (-2)=(22+1)-[(-2)2+1]=5-5=0; f (3)-f (-3)=(32+1)-[(-3)2+1]=10-10=0. (2)由(1)可发现结论:对任意x ∈R ,有f (x )-f (-x )=0. 证明如下:∵f (-x )=(-x )2+1=x 2+1=f (x ), ∴对任意x ∈R ,总有f (x )-f (-x )=0.[能力提升]1.下列式子中不能表示函数y =f (x )的是( ) A .x =y 2+1 B .y =2x 2+1 C .x -2y =6D .x =y【解析】 对于选项A ,若x =5,则y =±2,不满足函数定义中的唯一性. 【答案】 A2.已知f (x )满足f (x )+f (y )=f (xy ),且f (5)=m ,f (7)=n ,即f (175)=________. 【解析】 ∵f (x )满足f (x )+f (y )=f (xy ),且f (5)=m ,f (7)=n ,∴把x =5,y =7代入得f (5)+f (7)=f (35),∴m +n =f (35),把y =35代入得f (5)+f (35)=f (175),∴m +m +n =f (175),即2m +n =f (175),∴f (175)=2m +n .【答案】 2m +n3.若函数f (x )的定义域是[0,1],则函数f (2x )+f ⎝ ⎛⎭⎪⎫x +23的定义域为________.【解析】 由⎩⎪⎨⎪⎧0≤2x ≤10≤x +23≤1,得⎩⎪⎨⎪⎧0≤x ≤12-23≤x ≤13,即x ∈⎣⎢⎡⎦⎥⎤0,13.【答案】 ⎣⎢⎡⎦⎥⎤0,134.已知函数f (x )=x 21+x 2.(1)求f (2)+f ⎝ ⎛⎭⎪⎫12,f (3)+f ⎝ ⎛⎭⎪⎫13的值;(2)求证:f (x )+f ⎝ ⎛⎭⎪⎫1x 是定值;(3)求f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+…+f (2 016)+f ⎝ ⎛⎭⎪⎫12 016的值. 【导学号:97030031】【解】 (1)∵f (x )=x 21+x 2,∴f (2)+f ⎝ ⎛⎭⎪⎫12=221+22+⎝ ⎛⎭⎪⎫1221+⎝ ⎛⎭⎪⎫122=1,f (3)+f ⎝ ⎛⎭⎪⎫13=321+32+⎝ ⎛⎭⎪⎫1321+⎝ ⎛⎭⎪⎫132=1. (2)证明:f (x )+f ⎝ ⎛⎭⎪⎫1x =x 21+x 2+⎝ ⎛⎭⎪⎫1x 21+⎝ ⎛⎭⎪⎫1x 2=x 21+x 2+1x 2+1 =x 2+1x 2+1 =1.(3)由(2)知f (x )+f ⎝ ⎛⎭⎪⎫1x =1,∴f (2)+f ⎝ ⎛⎭⎪⎫12=1,f (3)+f ⎝ ⎛⎭⎪⎫13=1,f (4)+f ⎝ ⎛⎭⎪⎫14=1,…,f (2 016)+f ⎝ ⎛⎭⎪⎫12 016=1.∴f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+…+f (2 016)+f ⎝ ⎛⎭⎪⎫12 016=2 015.学业分层测评(七)函数的表示法(建议用时:45分钟)[学业达标]一、选择题1.一旅社有100间相同的客房,经过一段时间的经营实践,发现每间客房每天的定价与住房率有如下关系:A.100元B.90元C.80元D.60元【解析】不同的房价对应着不同的住房率,也对应着不同的收入,因此求出4个不同房价对应的收入,然后找出最大值对应的房价即可.【答案】 C2.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合得最好的图象是()【解析】距学校的距离应逐渐减小,由于小明先是匀速运动,故前段是直线段,途中停留时距离不变,后段加速,直线段比前段下降的快,故应选C.【答案】 C3.(2016·晋城高一检测)已知f (x )=2x +3,g (x )=4x -5,则使得f (h (x ))=g (x )成立的h (x )=( )A .2x +3B .2x -11C .2x -4D .4x -5【解析】 由f (x )=2x +3,得f (h (x ))=2h (x )+3,则f (h (x ))=g (x )可化为2h (x )+3=4x -5,解得h (x )=2x -4,故选C. 【答案】 C4.(2016·青岛高一检测)已知f (x )是一次函数,且f (x -1)=3x -5,则f (x )的解析式为( )【导学号:97030035】A .f (x )=3x +2B .f (x )=3x -2C .f (x )=2x +3D .f (x )=2x -3【解析】 ∵f (x )是一次函数,∴设f (x )=kx +b (k ≠0),可得f (x -1)=k (x -1)+b =kx -k +b ,∵f (x -1)=3x -5,∴⎩⎨⎧k =3,-k +b =-5,解之得k =3且b =-2.因此,f (x )的解析式为f (x )=3x -2,故选B. 【答案】 B 5.函数y =-1x +1的大致图象是( )【解析】 函数y =-1x +1的图象是由函数y =-1x 的图象向左平移1个单位得到,而函数y =-1x 的图象在第二、第四象限且是单调下降的两支图象,考查所给的四个图象只有B 符合,选B.【答案】 B 二、填空题6.设函数g (x +2)=2x +3,则g (x )的解析式是________.【解析】 令x +2=t ⇒x =t -2,所以g (t )=2(t -2)+3=2t -1.∴g (x )=2x -1. 【答案】 g (x )=2x -17.某航空公司规定,乘客所携带行李的重量x (kg)与其运费y (元)由如图1-2-1的一次函数图象确定,那么乘客可免费携带行李的最大重量为________(kg).图1-2-1【解析】 设一次函数解析式为y =ax +b (a ≠0),代入点(30,300)与点(40,630)得⎩⎨⎧ 330=30a +b ,630=40a +b ,解得⎩⎨⎧a =30,b =-570,即y =30x -570,若要免费,则y ≤0,∴x ≤19. 【答案】 198.设f ⎝ ⎛⎭⎪⎫1x -1=x ,则f (x )=________.【解析】 令t =1x -1,解得x =1t +1,代入得f (t )=1t +1,又因为x >0,所以t >-1,故f (x )的解析式为f (x )=1x +1(x >-1). 【答案】 1x +1(x >-1) 三、解答题9.求下列函数的解析式:(1)已知f (x +1)=x 2-3x +2,求f (x ); (2)已知f (1+x )=x -2x -1,求f (x ).【解】 (1)设x +1=t ,则x =t -1,∴f (t )=(t -1)2-3(t -1)+2=t 2-5t +6,∴f (x )=x 2-5x +6,(2)设1+x =t (t ≥1),则x =t -1,∴f (t )=(t -1)2-2(t -1)-1=t 2-4t +2, ∴f (x )=x 2-4x +2,(x ≥1).10.已知f (x )=ax 2+bx +c ,若f (0)=0且f (x +1)=f (x )+x +1, (1)求f (x )的表达式;(2)求f (2)的值. 【导学号:97030036】【解】 (1)由f (0)=0,得c =0,∴f (x )=ax 2+bx ,又f (x +1)=f (x )+x +1, ∴ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1, ∴⎩⎨⎧2a +b =b +1,a +b =1,解得⎩⎪⎨⎪⎧a =12,b =12,∴f (x )=12x 2+12x .(2)由(1)得,f (2)=12×2+12×2=1+22.[能力提升]1.已知函数f (x )满足f (ab )=f (a )+f (b ),且f (2)=p ,f (3)=q ,那么f (12)=( ) A .p +q B .2p +q C .p +2qD .p 2+q【解析】 由f (ab )=f (a )+f (b ), ∴f (12)=f (4)+f (3)=2f (2)+f (3)=2p +q . 【答案】 B2.若x ∈R ,f (x )是y =2-x 2,y =x 这两个函数中的较小者,则f (x )的最大值为( ) 【导学号:97030037】A .2B .1C .-1D .无最大值 【解析】 在同一坐标系中画出函数y =2-x 2,y =x 的图象,如图:根据题意,图中实线部分即为函数f (x )的图象. ∴当x =1时,f (x )max =1, 故选B. 【答案】 B3.已知函数y =f (x )满足f (x )=2f ⎝ ⎛⎭⎪⎫1x +x ,则f (x )的解析式为________.【解析】 ∵f (x )=2f ⎝ ⎛⎭⎪⎫1x +x ,①∴将x 换成1x ,得f ⎝ ⎛⎭⎪⎫1x =2f (x )+1x .②由①②消去f ⎝ ⎛⎭⎪⎫1x ,得f (x )=-23x -x 3,即f (x )=-x 2+23x (x ≠0).【答案】 f (x )=-x 2+23x(x ≠0)4.某企业生产某种产品时的能耗y 与产品件数x 之间的关系式为:y =ax +bx .且当x =2时,y =100;当x =7时,y =35.且此产品生产件数不超过20件.(1)写出函数y 关于x 的解析式; (2)用列表法表示此函数,并画出图象. 【解】 (1)将⎩⎨⎧ x =2,y =100,⎩⎨⎧x =7,y =35,代入y =ax +bx 中,得⎩⎪⎨⎪⎧2a +b 2=100,7a +b7=35⇒⎩⎨⎧ 4a +b =200,49a +b =245⇒⎩⎨⎧a =1,b =196. 所以所求函数解析式为y =x +196x (x ∈N,0<x ≤20).(2)当x∈{1,2,3,4,5,…,20}时,列表:学业分层测评(八) 分段函数及映射(建议用时:45分钟)[学业达标]一、选择题1.设函数f (x )=⎩⎨⎧1-x 2(x ≤1)x 2+x -2(x >1),则f ⎝ ⎛⎭⎪⎫1f (2)的值为( )A.1516 B .-2716 C.89D .18【解析】 当x >1时,f (x )=x 2+x -2,则f (2)=22+2-2=4,∴1f (2)=14,当x ≤1时,f (x )=1-x 2,∴f ⎝ ⎛⎭⎪⎫1f (2)=f ⎝ ⎛⎭⎪⎫14=1-116=1516.故选A. 【答案】 A2.设集合A ={x |0≤x ≤2},B ={y |1≤y ≤2},在下图中能表示从集合A 到集合B 的映射的是( )【导学号:97030042】【解析】 在A 中,当0<x <1时,y <1,所以集合A 到集合B 不成映射,故A 不成立;在B 中,当1≤x ≤2时,y <1,所以集合A 到集合B 不成映射,故B 不成立; 在C 中,当0≤x ≤1时,任取一个x 值,在0≤y ≤2内,有两个y 值与之相对应,所以构不成映射,故C 不成立;在D 中,当0≤x ≤1时,任取一个x 值,在0≤y ≤2内,总有唯一确定的一个y 值与之相对应,故D 成立.故选D.【答案】 D3.已知f (x )=⎩⎨⎧x -5(x ≥6)f (x +2)(x <6),则f (3)=( )A .2B .3C .4D .5【解析】 由题意,得f (3)=f (5)=f (7), ∵7≥6,∴f (7)=7-5=2.故选A. 【答案】 A4.(2016·杭州高一检测)在映射f :A →B 中,A =B ={(x ,y )|x ,y ∈R },且f :(x ,y )→(x -y ,x +y ),则与B 中的元素(-1,1)对应的A 中的元素为( )A .(0,1)B .(1,3)C .(-1,-3)D .(-2,0)【解析】 由题意,⎩⎨⎧x -y =-1x +y =1,解得x =0,y =1,故选A.【答案】 A5.设f (x )=⎩⎨⎧x +2(x ≤-1)x 2(-1<x <2)2x (x ≥2),若f (x )=3,则x =( )【导学号:97030043】 A. 3 B .±3 C .-1或 3D .不存在【解析】∵f (x )=⎩⎨⎧x +2(x ≤-1)x 2(-1<x <2)2x (x ≥2),f (x )=3,∴⎩⎨⎧ x +2=3x ≤-1或⎩⎨⎧ x 2=3-1<x <2或⎩⎨⎧2x =3x ≥2,∴x ∈∅或x =3或x ∈∅,∴x = 3. 【答案】 A 二、填空题6.设f (x )=⎩⎪⎨⎪⎧2x +2,-1≤x <0-12x ,0<x <23,x ≥2,则f ⎩⎨⎧⎭⎬⎫f ⎣⎢⎡⎦⎥⎤f ⎝⎛⎭⎪⎫-34的值为________,f (x )的定义域是________. 【解析】 ∵-1<-34<0,∴f ⎝ ⎛⎭⎪⎫-34=2×⎝ ⎛⎭⎪⎫-34+2=12.而0<12<2, ∴f ⎝ ⎛⎭⎪⎫12=-12×12=-14. ∵-1<-14<0,∴f ⎝ ⎛⎭⎪⎫-14=2×⎝ ⎛⎭⎪⎫-14+2=32.因此f ⎩⎨⎧⎭⎬⎫f ⎣⎢⎡⎦⎥⎤f ⎝⎛⎭⎪⎫-34=32.函数f (x )的定义域为{x |-1≤x <0}∪{x |0<x <2}∪{x |x ≥2}={x |x ≥-1且x ≠0}. 【答案】 32 {x |x ≥-1且x ≠0}7.已知函数f (x )的图象如图1-2-3所示,则f (x )的解析式是______.图1-2-3【解析】 由题图可知,图象是由两条线段组成,当-1≤x <0时,设f (x )=ax +b ,将(-1,0),(0,1)代入解析式,则⎩⎨⎧-a +b =0b =1,∴⎩⎨⎧a =1b =1,即f (x )=x +1; 当0<x <1时,设f (x )=kx ,将(1,-1)代入,则k =-1,即f (x )=-x . 综上,f (x )=⎩⎨⎧x +1,-1≤x <0-x ,0≤x ≤1.【答案】 f (x )=⎩⎨⎧ x +1,-1≤x <0-x ,0≤x ≤18.若定义运算a ⊙b =⎩⎨⎧b ,a ≥ba ,a <b ,则函数f (x )=x ⊙(2-x )的值域为________.【解析】 由题意得f (x )=⎩⎨⎧2-x ,x ≥1x ,x <1,画出函数f (x )的图象得值域是(-∞,1].【答案】 (-∞,1] 三、解答题9.画出函数y =|x +1|+|x -3|的图象,并写出其值域. 【导学号:97030044】【解】由y =|x +1|+|x -3|=错误!∴函数图象如图,由图象易知函数的值域为[4,+∞).10.如图1-2-4,动点P 从边长为4的正方形ABCD的顶点B 开始,顺次经C 、D 、A 绕周界运动,用x 表示点P 的行程,y 表示△APB 的面积,求函数y =f (x )的解析式.图1-2-4【解】 当点P 在BC 上运动,即0≤x ≤4时,y =12×4×x =2x ; 当点P 在CD 上运动,即4<x ≤8时,y =12×4×4=8;当点P 在DA 上运动,即8<x ≤12时,y =12×4×(12-x )=24-2x .综上可知,f (x )=⎩⎨⎧2x ,0≤x ≤48,4<x ≤824-2x ,8<x ≤12.[能力提升]1.设f :x →x 2是集合A 到集合B 的映射,如果B ={1,2},则A ∩B 一定是( ) A .∅ B .∅或{1} C .{1}D .∅【解析】 由题意可知,集合A 中可能含有的元素为:当x 2=1时,x =1,-1;当x 2=2时,x =2,- 2.所以集合A 可为含有一个、二个、三个、四个元素的集合.无论含有几个元素,A ∩B =∅或{1}.故选B.【答案】 B2.下列图形是函数y =⎩⎨⎧x 2,x <0x -1,x ≥0的图象的是( )【解析】 由于f (0)=0-1=-1,所以函数图象过点(0,-1);当x <0时,y =x 2,则函数图象是开口向上的抛物线在y 轴左侧的部分.因此只有图形C 符合.【答案】 C3.(2016·常州高一检测)已知实数a ≠0,函数f (x )=⎩⎨⎧2x +a ,x <1-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为________. 【导学号:97030045】【解析】 当a >0时,1-a <1,1+a >1,∴2(1-a )+a =-1-a -2a ,解得a =-32(舍去).当a <0时,1-a >1,1+a <1,∴-1+a -2a =2+2a +a ,解得a =-34. 【答案】 -344.“水”这个曾经被人认为取之不尽用之不竭的资源,竟然到了严重制约我国经济发展,严重影响人民生活的程度.因为缺水,每年给我国工业造成的损失达2 000亿元,给我国农业造成的损失达1 500亿元,严重缺水困扰全国三分之二的城市.为了节约用水,某市打算出台一项水费政策,规定每季度每人用水量不超过5吨时,每吨水费1.2元,若超过5吨而不超过6吨时,超过的部分的水费加收200%,若超过6吨而不超过7吨时,超过部分的水费加收400%,如果某人本季度实际用水量为x (x ≤7)吨,试计算本季度他应交的水费y (单位:元).【解】 由题意可知:①当x ∈[0,5]时,f (x )=1.2x .②若超过5吨而不超过6吨时,超过部分的水费加收200%,即当x ∈(5,6]时, f (x )=1.2×5+(x -5)×3.6=3.6x -12.③当x ∈(6,7]时,f (x )=1.2×5+1×3.6+(x -6)×6=6x -26.4.∴f(x)=⎩⎨⎧1.2x ,x ∈[0,5]3.6x -12,x ∈(5,6]6x -26.4,x ∈(6,7].。

精选练习部编统编高中数学必修A版第一册第二章《一元二次函数方程和不等式》课后作业同步练习含答案解析

精选练习部编统编高中数学必修A版第一册第二章《一元二次函数方程和不等式》课后作业同步练习含答案解析

【新教材统编版】高中数学必修A版第一册第二章《一元二次函数、方程和不等式》全章课后练习(含答案解析)第二章 一元二次函数、方程和不等式 2.1等式性质与不等式性质(共2课时)(第1课时)一、选择题1.【2018-2019学年银川一中】下列说法正确的是( ) A.某人月收入x 不高于2000元可表示为" 2 000x <" B.小明的身高x ,小华的身高y ,则小明比小华矮表示为"x y >" C.某变量x 至少是a 可表示为"x a ≥" D.某变量y 不超过a 可表示为"y a ≥"2.【2018-2019正定一中期中】3.已知()12,0,1a a ∈,记12M a a =, 121N a a =+-,则M 与N 的大小关系是( )A. M N <B. M N >C. M N =D.不确定3. 【2018-2019莆田二中期末】某同学参加期末模拟考试,考后对自己的语文和数学成绩进行了如下估计:语文成绩()x 高于85分,数学成绩()y 不低于80分,用不等式组可以表示为( )A .8580x y >⎧⎨⎩ B .8580x x <⎧⎨⎩C .8580x y ⎧⎨>⎩ D .8580x y >⎧⎨<⎩ 4.【2018-2019湖南师大附中月考】有一家三口的年龄之和为65岁,设父亲、母亲和小孩的年龄分别为x 、y 、z ,则下列选项中能反映x 、y 、z 关系的是( )A .65x y z ++=B .65x y z x zy z ++=⎧⎪>⎨⎪>⎩C .6500x y z x z y z ++=⎧⎪>>⎨⎪>>⎩D .65656565x y z x y z ++=⎧⎪<⎪⎨<⎪⎪<⎩ 5. 【2018-2019六安中学月考】若2x ≠-且1y ≠,则2242M x y x y =++-的值与5-的大小关系是( )A. 5M >-B. 5M <-C. 5M ≥-D. 5M ≤-6.【2018-2019攀枝花市级联考】某公司从2016年起每人的年工资主要由三个项目组成并按下表规定实施:若该公司某职工在2018年将得到的住房补贴与医疗费之和超过基础工资的25%,到2018年底这位职工的工龄至少是( )A .2年B .3年C .4年D .5年二、填空题7.【2018-2019银川一中】若x ∈R ,则x 1+x 2与12的大小关系为________. 8.【2018-2019学年山东威海市期中】一辆汽车原来每天行驶xkm ,如果该汽车每天行驶的路程比原来多19km ,那么在8天内它的行程将超过2200km ,用不等式表示为 . 9.【2017-2018学年上海市金山中学】如图所示的两种广告牌,其中图(1)是由两个等腰直角三角形构成的,图(2)是一个矩形,从图形上确定这两个广告牌面积的大小关系,并将这种关系用含字母(),a b a b ≠的不等式表示出来__________10.【2018广西玉林高一联考】近来鸡蛋价格起伏较大,假设第一周、第二周鸡蛋价格分别为a元/斤、b元/斤,家庭主妇甲和乙买鸡蛋的方式不同:家庭主妇甲每周买3斤鸡蛋,家庭主妇乙每周买10元钱的鸡蛋,试比较谁的购买方式更优惠(两次平均价格低视为实惠)__________.(在横线上填甲或乙即可)三、解答题11.【陕西省安康市高级中学检测】有一公园,原来是长方形布局,为美化市容,市规划局要对这个公园进行规划,将其改成正方形布局,但要求要么保持原面积不变,要么保持原周长不变,那么对这个公园选哪种布局方案可使其面积较大?12.【沈阳市东北育才学校2018-2019高一】某家庭准备利用假期到某地旅游,有甲、乙两家旅行社提供两种优惠方案,甲旅行社的方案是:如果户主买全票一张,其余人可享受五五折优惠;乙旅行社的方案是:家庭旅游算集体票,可按七五折优惠.如果这两家旅行社的原价相同,请问该家庭选择哪家旅行社外出旅游合算?参考答案: 1. 【答案】C【解析】对于,A x 应满足 2 000,x ≤故A 错;对于,,B x y 应满足x y <,故B 不正确; C 正确; 对于,D y 与a 的关系可表示为y a ≤,故D 错误. 2. 【答案】B【解析】由题意得()()1212121110M N a a a a a a -=--+=-->,故M N >.故选B3. 【答案】A 【解析】语文成绩()x 高于85分,数学成绩()y 不低于80分,8580x y >⎧∴⎨⎩,故选:A . 4. 【答案】C 【解析】一家三口的年龄之和为65岁,设父亲、母亲和小孩的年龄分别为x 、y 、z ,65x y z ∴++=,0x z >>,0y z >>.故选:C .5. 【答案】A【解析】()225425M x y x y --=++-+()()2221x y =++-,∵2,1x y ≠-≠,∴()220x +>,()210y ->,因此()()22210x y ++->.故5M >-. 6. 【答案】C【解析】设这位职工工龄至少为x 年,则2400160010000(110%)25%x +>+⨯, 即40016003025x +>,即 3.5625x >,所以至少为4年.故选:C . 7. 【答案】x 1+x 2≤12【解析】∵x 1+x 2-12=2x -1-x 22(1+x 2)=-(x -1)22(1+x 2)≤0,∴x 1+x 2≤12.8. 【答案】8(19)2200x +> 【解析】汽车原来每天行驶xkm ,该汽车每天行驶的路程比原来多19km ,∴现在汽车行驶的路程为19x km +,则8天内它的行程为8(19)x km +, 若8天内它的行程将超过2200km ,则满足8(19)2200x +>; 故答案为:8(19)2200x +>; 9. 【答案】()2212a b ab +> 【解析】(1)中面积显然比(2)大,又(1)的面积()222211,2S a b a b =+=+ (2)的面积2S ab =,所以有()2212a b ab +> 10. 【答案】乙【解析】由题意得甲购买产品的平均单价为3362a b a b++=, 乙购买产品的平均单价为2021010aba b a b=++,由条件得a b ≠. ∵()()22022a b a b ab a b a b -+-=>++, ∴22a b aba b+>+,即乙的购买方式更优惠. 11. 【答案】见解析;【解析】 设这个公园原来的长方形布局的长为a ,宽为b (a>b ).若保持原面积不变,则规划后的正方形布局的面积为ab ;若保持周长不变,则规划后的正方形布局的周长为2(a+b ),所以其边长为2b a +,其面积为(2b a +)2.因为ab -(2b a +)2=ab -()()()04444222<--=+-=+b a b a ab b a (a>b ),所以ab <(2b a +)2.故保持原周长不变的布局方案可使公园的面积较大. 12. 【答案】见解析;【解析】设该家庭除户主外,还有()x x x N ∈人参加旅游, 甲、乙两旅行社收费总金额分别为12,y y ,—张全票的票价为a 元,则只需按两家旅行社的优惠条件分别计算出12,y y ,再比较12,y y 的大小即可.∵()120.55,0.751y a ax y x a =+=+,而()120.550.751y y a ax x a -=+-+()0.2 1.25a x =-. ∴当 1.25x >时. 12y y <;当 1.25x <时, 12y y >.又x 为正整数,所以当1x =时, 12y y >,即两口之家应选择乙旅行社; 当()1x x x N >∈时, 12y y <,即三口之家或多于三口的家庭应选择甲旅行社.2.1等式性质与不等式性质(第2课时)一、选择题1.(2019湖南高一期中)若a >b ,c >d ,下列不等式正确的是( ) A .c b d a ->-B .ac bd >C .a c b d ->-D .a bd c> 2.(2019·福建高二期末)若,0a b c ac >><,则下列不等式一定成立的是 A .0ab >B .0bc <C .ab ac >D .()0b a c ->3.(2019·哈尔滨市呼兰区第一中高一期中)设11b a -<<<,则下列不等式恒成立的是( ) A .11b a> B .11b a< C .22b a < D .2b a <4.(2019安徽郎溪中学高一期末)已知,a b 为非零实数,且a b <,则下列不等式成立的是( ) A .22a b <B .11a b> C .2211ab a b<D .11a b a>- 5.(2019福建三明一中高一期中)已知实数,,a b c 满足c b a <<且0ac <,则下列选项中不.一定成立的是( ) A .ab ac >B .()0c b a ->C .()0ac a c -<D .22cb ab <6(2019浙江绍兴一中高一月考)已知实数x ,y 满足41x y -≤-≤-,145x y -≤-≤,则9x y -的取值范围是( ) A .[7,26]- B .[1,20]- C .[4,15] D .[1,15]二、填空题7.【2019咸阳中学高一检测】已知不等式:①a 2b <b 3;②1a>0>1b;③a 3<ab 2,如果a >0>b 且a 2>b 2,则其中正确不等式的个数是_______;8.(2019·吉林省实验高二期中(文))已知a ,b ,x 均为正数,且a >b ,则b a ____b xa x++(填“>”、“<”或“=”).9.(2019·浙江绍兴一中高一月考)已知1260a <<,1536b <<,则ab的取值范围为__________.10.(2019·上海高一期末)已知12,36a b ≤≤≤≤,则32a b -的取值范围为_____. 三、解答题11.(2019·福建高一期中已知下列三个不等式: ①ab >0;②ca >db ;③bc >ad ,以其中两个作为条件,余下一个作为结论,则可组成几个正确命题?12.【沈阳市东北育才学校2018-2019高一】已知f (x )=ax 2−c,且-4≤f(1)≤-1,-1≤f(2)≤5,求f(3)的取值范围.参考答案: 1.【答案】A【解析】由题意,因为a b >,所以a b -<-,即b a ->-, 又因为c d >,所以c b d a ->-, 故选:A . 2. 【答案】C【解析】取1,0,1a b c ===-代入,排除A 、B 、D ,故选:C 。

新教材高中数学第一章空间向量与立体几何章末检测一含解析新人教A版选择性必修第一册

新教材高中数学第一章空间向量与立体几何章末检测一含解析新人教A版选择性必修第一册

章末检测(一) 空间向量与立体几何本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知四面体ABCD ,G 是CD 的中点,连接AG ,则AB ―→+12(BD ―→+BC ―→)=( )A .AG ―→B .CG ―→C .BC ―→D.12BC ―→ 解析:选A 在△BCD 中,因为点G 是CD 的中点,所以BG ―→=12(BD ―→+BC ―→),从而AB ―→+12(BD ―→+BC ―→)=AB ―→+BG ―→=AG ―→.2.已知a =(-3,2,5),b =(1,5,-1),则a ·(a +3b )=( ) A .(0,34,10) B .(-3,19,7) C .44D .23解析:选 C a +3b =(-3,2,5)+3(1,5,-1)=(0,17,2),则a ·(a +3b )=(-3,2,5)·(0,17,2)=0+34+10=44.3.已知直线l 过定点A (2,3,1),且n =(0,1,1)为直线l 的一个方向向量,则点P (4,3,2)到直线l 的距离为( )A.322 B.22C.102D. 2解析:选A PA ―→=(-2,0,-1),|PA ―→|=5,PA ―→·n|n |=-22,则点P 到直线l 的距离为|PA ―→|2-⎪⎪⎪⎪⎪⎪PA ―→·n |n |2=5-12=322. 4.已知a =(2,1,-3),b =(-1,2,3),c =(7,6,λ),若a ,b ,c 三向量共面,则λ=( ) A .9 B .-9 C .-3D .3解析:选B 由题意知c =xa +yb ,即(7,6,λ)=x (2,1,-3)+y (-1,2,3),∴⎩⎪⎨⎪⎧2x -y =7,x +2y =6,-3x +3y =λ,解得λ=-9.5.在棱长为1的正四面体ABCD 中,E ,F 分别是BC ,AD 的中点,则AE ―→·CF ―→=( ) A .0 B.12 C .-34D .-12解析:选D 设AB ―→=a ,AC ―→=b ,AD ―→=c , 则|a |=|b |=|c |=1, 且a ·b =b ·c =c ·a =12,又AE ―→=12(a +b ),CF ―→=12c -b ,因此AE ―→·CF ―→=12(a +b )·⎝ ⎛⎭⎪⎫12c -b=14a ·c -12a ·b +14b ·c -12b 2=-12, 故选D.6.在长方体ABCD ­A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离为( )A.83B.38C.43D.34解析:选C 建立如图所示的空间直角坐标系.则A (2,0,0),B 1(2,2,4),D 1(0,0,4),A 1(2,0,4),AB 1―→=(0,2,4),AD 1―→=(-2,0,4),AA 1―→=(0,0,4).设平面AB 1D 1的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧AB 1―→·n =0,AD 1―→·n =0,即⎩⎪⎨⎪⎧2y +4z =0,-2x +4z =0,令x =2,得n =(2,-2,1).所以A 1到平面AB 1D 1的距离为d =|AA 1―→·n ||n |=43.7.已知OA ―→=(1,2,3),OB ―→=(2,1,2),OP ―→=(1,1,2),点Q 在直线OP 上运动,则当QA ―→·QB ―→取得最小值时,点Q 的坐标为( )A.⎝ ⎛⎭⎪⎫12,34,13B.⎝ ⎛⎭⎪⎫12,32,34C.⎝ ⎛⎭⎪⎫43,43,83 D.⎝ ⎛⎭⎪⎫43,43,73 解析:选C 设点Q (x ,y ,z ).因为点Q 在OP ―→上,所以OQ ―→∥OP ―→,可设x =λ,0≤λ≤1,则y =λ,z =2λ,则Q (λ,λ,2λ),QA ―→=(1-λ,2-λ,3-2λ),QB ―→=(2-λ,1-λ,2-2λ),所以QA ―→·QB ―→=6λ2-16λ+10=6⎝⎛⎭⎪⎫λ-432-23.故当λ=43时,QA ―→·QB ―→取得最小值,此时点Q ⎝ ⎛⎭⎪⎫43,43,83.故选C.8.如图,在四棱锥P ­ABCD 中,侧面PAD 为正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为底面ABCD 内的一个动点,且满足MP =MC .则点M 在正方形ABCD 内的轨迹为( )解析:选A 如图,以D 为原点,DA ,DC 所在的直线分别为x 轴,y 轴建立如图所示的空间直角坐标系.设正方形ABCD 的边长为a ,M (x ,y,0),则0≤x ≤a,0≤y ≤a ,P ⎝ ⎛⎭⎪⎫a2,0,3a 2,C (0,a,0),则|MC ―→|=x 2+a -y2,|MP ―→|=⎝ ⎛⎭⎪⎫a 2-x 2+y 2+⎝ ⎛⎭⎪⎫3a 22.由|MP ―→|=|MC ―→|,得x =2y ,所以点M 在正方形ABCD 内的轨迹为一条线段y =12x (0≤x ≤a ),故选A.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得3分,有选错的得0分)9.有下列四个命题,其中正确的命题有( )A .已知A ,B ,C ,D 是空间任意四点,则AB ―→+BC ―→+CD ―→+DA ―→=0 B .若两个非零向量AB ―→与CD ―→满足AB ―→+CD ―→=0,则AB ―→∥CD ―→C .分别表示空间向量的有向线段所在的直线是异面直线,则这两个向量可以是共面向量D .对于空间的任意一点O 和不共线的三点A ,B ,C ,若OP ―→=x OA ―→+y OB ―→+z OC ―→(x ,y ,z ∈R),则P ,A ,B ,C 四点共面解析:选BC 对于A,已知A ,B ,C ,D 是空间任意四点,则AB ―→+BC ―→+CD ―→+DA ―→=0,错误;对于B,若两个非零向量AB ―→与CD ―→满足AB ―→+CD ―→=0,则AB ―→∥CD ―→,正确;对于C,分别表示空间向量的有向线段所在的直线是异面直线,则这两个向量可以是共面向量,正确;对于D,对于空间的任意一点O 和不共线的三点A ,B ,C ,若OP ―→=x OA ―→+y OB ―→+z OC ―→(x ,y ,z ∈R),仅当x +y +z =1时P ,A ,B ,C 四点共面,故错误.10.如图所示,在正方体ABCD ­A 1B 1C 1D 1中,E 为AC 的中点.则( ) A .〈A 1B ―→,B 1D 1―→〉=120° B .BD 1⊥AC C .BD 1⊥EB 1 D .∠BB 1E =45°解析:选ABC 以D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系D ­xyz .设正方体的棱长为1,则B (1,1,0),D 1(0,0,1),A (1,0,0),C (0,1,0),E ⎝⎛⎭⎪⎫12,12,0,B 1(1,1,1),A 1(1,0,1).BD 1―→=(-1,-1,1),AC ―→=(-1,1,0),∵BD 1―→·AC ―→=(-1)×(-1)+(-1)×1+1×0=0, ∴BD 1―→⊥AC ―→,∴BD 1⊥AC ,B 正确. EB 1―→=⎝ ⎛⎭⎪⎫12,12,1,∵BD 1―→·EB 1―→=(-1)×12+(-1)×12+1×1=0,∴BD 1―→⊥EB 1―→,∴BD 1⊥EB 1,C 正确. A 1B ―→=(0,1,-1),B 1D 1―→=(-1,-1,0), cos 〈A 1B ―→,B 1D 1―→〉=-12·2=-12,∴〈A 1B ―→,B 1D 1―→〉=120°,A 正确. B 1E ―→=⎝ ⎛⎭⎪⎫-12,-12,-1,B 1B ―→=(0,0,-1),cos 〈B 1E ―→,B 1B ―→〉=114+14+1=63≠22,D 不正确,故A 、B 、C 正确. 11.如图,PA ⊥平面ABCD ,正方形ABCD 边长为1,E 是CD 的中点,F 是AD 上一点,当BF ⊥PE 时,则( )A .AF ∶FD =2∶1B .AF ∶FD =1∶1C .若PA =1,则异面直线PE 与BC 所成角的余弦值为23D .若PA =1,则直线PE 与平面ABCD 所成角为30°解析:选BC 建立如图所示的空间直角坐标系,PA =a ,则B (1,0,0),C (1,1,0),E ⎝ ⎛⎭⎪⎫12,1,0,P (0,0,a ).设点F 的坐标为(0,y,0), 则BF ―→=(-1,y,0), PE ―→=⎝ ⎛⎭⎪⎫12,1,-a ,∵BF ⊥PE ,∴BF ―→·PE ―→=0,解得y =12,即点F 的坐标为⎝ ⎛⎭⎪⎫0,12,0, ∴F 为AD 的中点,∴AF ∶FD =1∶1,B 正确,A 不正确.若PA =1,则P (0,0,1),PE ―→=⎝ ⎛⎭⎪⎫12,1,-1,BC ―→=(0,1,0),cos 〈PE ―→,BC ―→〉=114+1+1=23,故C 正确. AP ―→=(0,0,1), cos 〈AP ―→,PE ―→〉=-114+1+1=-23,故D 不正确.12.在正方体ABCD ­A 1B 1C 1D 1中,若F ,G 分别是棱AB ,CC 1的中点,则( ) A .二面角A 1­AC 1­B 的大小为90° B .FG ―→·AC ―→=32C .直线FG 与平面A 1ACC 1所成角的正弦值等于36D .FG ⊥BC 1解析:选BC 如图,以D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系D ­xyz .设正方体的棱长为1,则易知平面ACC 1A 1的一个法向量为n =(1,1,0).A (1,0,0),B (1,1,0),C (0,1,0),C 1(0,1,1),A 1(1,0,1).∵F ⎝ ⎛⎭⎪⎫1,12,0,G ⎝ ⎛⎭⎪⎫0,1,12,∴FG ―→=⎝ ⎛⎭⎪⎫-1,12,12, 设直线FG 与平面A 1ACC 1所成角为θ,则sin θ=|cos 〈n ,FG ―→〉|=|n ·FG ―→||n |·|FG ―→|=122×62=36,故C 正确;AB ―→=(0,1,0),AC 1―→=(-1,1,1),AA 1―→=(0,0,1). 设平面ABC 1的法向量u =(x ,y ,z ), 则⎩⎪⎨⎪⎧u ·AB ―→=0,u ·AC 1―→=0,即⎩⎪⎨⎪⎧y =0,-x +y +z =0.令z =1,则u =(1,0,1).同理可得平面A 1AC 1的一个法向量v =(-1,-1,0),cos 〈u ,v 〉=u ·v |u ||v |=-12,故A 错误;BC 1―→=(-1,0,1),∴FG ―→·BC 1―→=1+12≠0.故D 错误;∵AC ―→=(-1,1,0),∴FG ―→·AC ―→=1+12=32,故B 正确.第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.若A (-1,2,3),B (2,-4,1),C (x ,-1,-3)是以BC 为斜边的直角三角形的三个顶点,则x =________.解析:由题意得AB ―→=(3,-6,-2),AC ―→=(x +1,-3,-6),∴AB ―→·AC ―→=3(x +1)+18+12=0,解得x =-11.答案:-1114.如图,在空间直角坐标系中有直三棱柱ABC ­A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为________.解析:不妨设CB =1,则B (0,0,1),A (2,0,0),C 1(0,2,0),B 1(0,2,1).∴BC 1―→=(0,2,-1),AB 1―→=(-2,2,1).cos 〈BC 1―→,AB 1―→〉=BC 1―→·AB 1―→|BC 1―→|·|AB 1―→|=0+4-15×3=55.答案:5515.如图,已知矩形ABCD ,AB =1,BC =a ,PA ⊥平面ABCD ,若在BC 上只有一个点Q 满足PQ ⊥QD ,则a 的值等于________.解析:如图,建立空间直角坐标系A ­xyz ,则D (0,a,0). 设Q (1,t,0)(0≤t ≤a ),P (0,0,z ). 则PQ ―→=(1,t ,-z ),QD ―→=(-1,a -t,0). 由PQ ⊥QD ,得-1+t (a -t )=0, 即t 2-at +1=0.由题意知方程t 2-at +1=0只一解. ∴Δ=a 2-4=0,a =2,这时t =1∈[0,a ]. 答案:216.如图,四面体ABCD 中,E ,F 分别为AB ,DC 上的点,且AE =BE ,CF =2DF ,设DA ―→=a ,DB ―→=b ,DC ―→=c .(1)以{a ,b ,c }为基底表示FE ―→,则FE ―→=________;(2)若∠ADB =∠BDC =∠ADC =60°,且|DA ―→|=4,|DB ―→|=3,|DC ―→|=3,则|FE ―→|=________.解析:(1)如图所示,连接DE .因为FE ―→=FD ―→+DE ―→,FD ―→=-DF ―→=-13DC ―→,DE ―→=12(DA ―→+DB ―→),所以FE ―→=12a +12b -13c .(2)|FE ―→|2=⎝ ⎛⎭⎪⎫12a +12b -13c 2=14a 2+14b 2+19c 2+12a ·b -13a ·c -13b ·c =14×42+14×32+19×32+12×4×3×12-13×4×3×12-13×3×3×12=274.所以|FE ―→|=332.答案:(1)12a +12b -13c (2)332四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知a =(x,4,1),b =(-2,y ,-1),c =(3,-2,z ),a ∥b ,b ⊥c ,求:(1)a ,b ,c ;(2)a +c 与b +c 夹角的余弦值.解:(1)因为a ∥b ,所以x -2=4y =1-1,解得x =2,y =-4,则a =(2,4,1),b =(-2,-4,-1). 又b ⊥c ,所以b ·c =0,即-6+8-z =0, 解得z =2,于是c =(3,-2,2).(2)由(1)得a +c =(5,2,3),b +c =(1,-6,1), 设a +c 与b +c 夹角为θ, 因此cos θ=5-12+338×38=-219.18.(本小题满分12分)在长方体ABCD ­A 1B 1C 1D 1中,AB =2,BC =AA 1=1,求D 1C 1与平面A 1BC 1所成角的正弦值.解:建立如图所示的空间直角坐标系D ­xyz ,由于AB =2,BC =AA 1=1,所以A 1(1,0,1),B (1,2,0),C 1(0,2,1),D 1(0,0,1),所以A 1C 1―→=(-1,2,0),BC 1―→=(-1,0,1),D 1C 1―→=(0,2,0).设平面A 1BC 1的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧A 1C 1―→·n =0,BC 1―→·n =0,即⎩⎪⎨⎪⎧-x +2y =0,-x +z =0,令x =2,得y =1,z =2,则n =(2,1,2).设D 1C 1与平面A 1BC 1所成角为θ,则sin θ=|cos 〈D 1C 1―→,n 〉|=|D 1C 1―→·n ||D 1C 1―→||n |=22×3=13,即D 1C 1与平面A 1BC 1所成角的正弦值为13. 19.(本小题满分12分)如图所示,已知四面体OABC 各边及对角线长都是1,D ,E 分别是OA ,BC 的中点,连接DE .(1)求证:DE 是OA 和BC 的公垂线; (2)求OA 和BC 间的距离. 解:(1)证明:∵E 为BC 的中点.∴DE ―→=12(DB ―→+DC ―→),DB ⊥OA ,得DB ―→·OA ―→=0.同理可得DC ―→·OA ―→=0.∴DE ―→·OA ―→=12(DB ―→+DC ―→)·OA ―→=12DB ―→·OA ―→+12DC ―→·OA ―→=0,∴DE ⊥OA .同理可证DE ⊥BC .∴DE 是OA 和BC 的公垂线.(2)∵DE ―→=OE ―→-OD ―→=12OB ―→+12OC ―→-12OA ―→,∴|DE ―→|2=⎝ ⎛⎭⎪⎫12OB ―→+12OC ―→-12OA ―→2=14(OB ―→2+OC ―→2+OA ―→2+2OB ―→·OC ―→-2OB ―→·OA ―→-2OC ―→·OA ―→) =14×(12+12+12+2×1×1×cos 60°-2×1×1×cos 60°-2×1×1×cos 60°) =12, ∴|DE ―→|=22,即OA 和BC 间的距离为22.20.(本小题满分12分)如图,在四棱锥P ­ABCD 中,底面ABCD 是平行四边形,PG ⊥平面ABCD ,垂足为G ,G 在AD 上,且PG =4,AG =13GD ,BG ⊥GC ,GB =GC =2,E 是BC 的中点.(1)求异面直线GE 与PC 所成角的余弦值; (2)若F 是棱PC 上一点,且DF ⊥GC ,求PF FC的值.解:(1)以G 点为原点,GB ,GC ,GP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,则B (2,0,0),C (0,2,0),P (0,0,4),故E (1,1,0),GE ―→=(1,1,0),PC ―→=(0,2,-4).∵cos 〈GE ―→,PC ―→〉=GE ―→·PC ―→|GE ―→||PC ―→|=22×20=1010,∴GE 与PC 所成角的余弦值为1010. (2)∵GD ―→=34BC ―→=⎝ ⎛⎭⎪⎫-32,32,0,∴D ⎝ ⎛⎭⎪⎫-32,32,0.设F (0,y ,z ),则DF ―→=(0,y ,z )-⎝ ⎛⎭⎪⎫-32,32,0=⎝ ⎛⎭⎪⎫32,y -32,z .∵DF ―→⊥GC ―→,∴DF ―→·GC ―→=0,即⎝ ⎛⎭⎪⎫32,y -32,z ·(0,2,0)=2y -3=0,∴y =32.又点F 在PC 上,∴PF ―→=λPC ―→,即⎝ ⎛⎭⎪⎫0,32,z -4=λ(0,2,-4),∴z =1,故F ⎝ ⎛⎭⎪⎫0,32,1, ∴PF ―→=⎝ ⎛⎭⎪⎫0,32,-3,FC ―→=⎝ ⎛⎭⎪⎫0,12,-1,∴PFFC =35252=3. 21.(本小题满分12分)如图,边长为2的等边△PCD 所在的平面垂直于矩形ABCD 所在的平面,BC =22,M 为BC 的中点.(1)证明:AM ⊥PM ;(2)求二面角P ­AM ­D 的大小; (3)求点D 到平面AMP 的距离.解:(1)证明:以D 点为原点,分别以直线DA ,DC 为x 轴、y 轴,建立如图所示的空间直角坐标系,依题意,可得D (0,0,0),P (0,1,3),C (0,2,0),A (22,0,0),M (2,2,0).PM ―→=(2,1,-3),AM ―→=(-2,2,0), ∴PM ―→·AM ―→=(2,1,-3)·(-2,2,0)=0, 即PM ―→⊥AM ―→,∴AM ⊥PM .(2)设n =(x ,y ,z )为平面PAM 的法向量, 则⎩⎪⎨⎪⎧n ·PM ―→=0,n ·AM ―→=0,即⎩⎨⎧2x +y -3z =0,-2x +2y =0,取y =1,得n =(2,1,3).取p =(0,0,1),显然p 为平面ABCD 的一个法向量,∴cos 〈n ,p 〉=n ·p |n ||p |=36=22.结合图形可知,二面角P ­AM ­D 为45°.(3)设点D 到平面AMP 的距离为d ,由(2)可知n =(2,1,3)与平面PAM 垂直,则 d =|DA ―→·n ||n |=|22,0,0·2,1,3|22+12+32=263, 即点D 到平面AMP 的距离为263. 22.(本小题满分12分)如图,在三棱柱ABC ­A 1B 1C 1中,四边形AA 1C 1C 是边长为4的正方形,平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5.(1)求证:AA 1⊥平面ABC ;(2)求二面角A 1­BC 1­B 1的余弦值;(3)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求BD BC 1的值. 解:(1)证明:因为四边形AA 1C 1C 为正方形,所以AA 1⊥AC .因为平面ABC ⊥平面AA 1C 1C ,且AA 1垂直于这两个平面的交线AC ,所以AA 1⊥平面ABC .(2)由(1)知AA 1⊥AC ,AA 1⊥AB .由题意知AB =3,BC =5,AC =4,所以AB ⊥AC .如图,以A 为坐标原点,建立空间直角坐标系,则B (0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4).所以A 1B ―→=(0,3,-4),A 1C 1―→=(4,0,0),BB 1―→=(0,0,4),BC 1―→=(4,-3,4).设平面A 1BC 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·A 1B ―→=0,n ·A 1C 1―→=0,即⎩⎪⎨⎪⎧ 3y -4z =0,4x =0. 令z =3,则x =0,y =4, 所以平面A 1BC 1的一个法向量为n =(0,4,3).设平面B 1BC 1的一个法向量为m =(a ,b ,c ),则⎩⎪⎨⎪⎧ m ·BB 1―→=0,m ·BC 1―→=0,即⎩⎪⎨⎪⎧ 4c =0,4a -3b +4c =0.令a =3,得b =4,c =0,故平面B 1BC 1的一个法向量为m =(3,4,0).所以cos 〈n ,m 〉=n ·m |n ||m |=1625. 由题意知二面角A 1­BC 1­B 1为锐角,所以二面角A 1­BC 1­B 1的余弦值为1625.(3)假设D (x 1,y 1,z 1)是线段BC 1上一点,且BD ―→=λBC 1―→(λ∈[0,1]),所以(x 1,y 1-3,z 1)=λ(4,-3,4). 解得x 1=4λ,y 1=3-3λ,z 1=4λ, 所以AD ―→=(4λ,3-3λ,4λ).由AD ―→·A 1B ―→=0,得9-25λ=0,解得λ=925. 因为925∈[0,1],所以在线段BC 1上存在点D , 使得AD ⊥A 1B .此时BD BC 1=925.。

新教材 人教A版高中数学选择性必修第一册全册各章节课后练习题 含解析

新教材 人教A版高中数学选择性必修第一册全册各章节课后练习题 含解析

选择性必修第一册全册课后练习题本文档还有大量公式,在网页中显示可能会出现位置错误的情况,下载后均可正常显示,请放心下载练习!第一章空间向量与立体几何................................................................................................ - 2 -1.1.1空间向量及其线性运算......................................................................................... - 2 -1.1.2空间向量的数量积运算......................................................................................... - 8 -1.2空间向量基本定理.................................................................................................. - 15 -1.3.1空间直角坐标系 .................................................................................................. - 22 -1.3.2空间运算的坐标表示........................................................................................... - 28 -1.4.1.1空间向量与平行关系 ....................................................................................... - 34 -1.4.1.2空间向量与垂直关系 ....................................................................................... - 42 -1.4.2用空量研究距离、夹角问题............................................................................... - 51 -章末测验 ....................................................................................................................... - 64 - 第二章直线和圆的方程...................................................................................................... - 78 -2.1.1倾斜角与斜率 ...................................................................................................... - 78 -2.1.2两条直线平行和垂直的判定............................................................................... - 83 -2.2.1直线的点斜式方程............................................................................................... - 87 -2.2.2直线的两点式方程............................................................................................... - 92 -2.2.3直线的一般式方程............................................................................................... - 97 -2.3.1两条直线的交点坐标......................................................................................... - 102 -2.3.2两点间的距离公式............................................................................................. - 102 -2.3.3点到直线的距离公式......................................................................................... - 107 -2.3.4两条平行直线间的距离..................................................................................... - 107 -2.4.1圆的标准方程 .................................................................................................... - 113 -2.4.2圆的一般方程 .................................................................................................... - 118 -2.5.1直线与圆的位置关系......................................................................................... - 122 -2.5.2圆与圆的位置关系............................................................................................. - 128 -章末测验 ..................................................................................................................... - 135 - 第三章圆锥曲线的方程.................................................................................................... - 144 -3.1.1椭圆及其标准方程............................................................................................. - 144 -3.1.2.1椭圆的简单几何性质 ..................................................................................... - 150 -3.1.2.2椭圆的标准方程及性质的应用...................................................................... - 156 -3.2.1双曲线及其标准方程......................................................................................... - 164 -3.2.2双曲线的简单几何性质..................................................................................... - 171 -3.3.1抛物线及其标准方程......................................................................................... - 178 -3.3.2抛物线的简单几何性质..................................................................................... - 184 -章末测验 ..................................................................................................................... - 191 - 模块综合测验 ..................................................................................................................... - 202 -第一章 空间向量与立体几何1.1.1空间向量及其线性运算一、选择题1.空间任意四个点A ,B ,C ,D ,则DA →+CD →-CB →等于( ) A .DB → B .AC → C .AB → D .BA → D [DA →+CD →-CB →=DA →+BD →=BA →.]2.设有四边形ABCD ,O 为空间任意一点,且AO →+OB →=DO →+OC →,则四边形ABCD 是( )A .平行四边形B .空间四边形C .等腰梯形D .矩形A [∵AO →+OB →=DO →+OC →,∴AB →=DC →. ∴AB →∥DC →且|AB →|=|DC →|. ∴四边形ABCD 为平行四边形.]3.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A ,B ,C 一定共面的是( )A .OM →=OA →+OB →+OC → B .OM →=2OA →-OB →-OC → C .OM →=OA →+12OB →+13OC →D .OM →=13OA →+13OB →+13OC → D [由OM →=13OA →+13OB →+13OC →,可得3OM →=OA →+OB →+OC →⇒OM →-OA →+OM →-OB →+OM →-OC →=0, 即AM →=-BM →-CM →.所以AM →与BM →,CM →在一个平面上,即点M 与点A ,B ,C 一定共面.] 4.若空间中任意四点O ,A ,B ,P 满足OP →=mOA →+nOB →,其中m +n =1,则( )A .P ∈AB B .P ∉ABC .点P 可能在直线AB 上D .以上都不对A [因为m +n =1,所以m =1-n , 所以OP →=(1-n )OA →+nOB →, 即OP →-OA →=n (OB →-OA →), 即AP →=nAB →,所以AP →与AB →共线. 又AP →,AB →有公共起点A ,所以P ,A ,B 三点在同一直线上, 即P ∈AB .]5.已知在长方体ABCD -A 1B 1C 1D 1中,点E 是A 1C 1的中点, 点F 是AE 的三等分点,且AF =12EF ,则AF →=( )A .AA 1→+12AB →+12AD → B .12AA 1→+12AB →+12AD →C .12AA 1→+16AB →+16AD → D .13AA 1→+16AB →+16AD →D [如图所示,AF →=13AE →,AE →=AA 1→+A 1E →,A 1E →=12A 1C 1→,A 1C 1→=A 1B 1→+A 1D 1→,A 1B 1→=AB →,A 1D 1→=AD →,所以AF →=13⎝ ⎛⎭⎪⎫AA 1→+12A 1C 1→=13AA 1→+16AB →+16AD →,故选D.]二、填空题6.已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若由OM →=-2OA →+OB →+λOC →确定的点M 与A ,B ,C 共面,则λ=________.2 [由M 、A 、B 、C 四点共面知:-2+1+λ=1,即λ=2.]7.在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,用a ,b ,c 表示D 1M →,则D 1M →=________.12a -12b +c [D 1M →=D 1D →+DM → =A 1A →+12(DA →+DC →) =c +12(-A 1D 1→+A 1B 1→) =12a -12b +c .]8.在空间四边形ABCD 中,E ,F 分别是AB ,CD 的中点,则EF →和AD →+BC →的关系是________.(填“平行”,“相等”或“相反”)平行 [设G 是AC 的中点,则EF →=EG →+GF →=12BC →+12AD →=12(AD →+BC →) 所以2EF →=AD →+BC →, 从而EF →∥(AD →+BC →).] 三、解答题9.如图,在空间四边形ABCD 中,G 为△BCD 的重心,E ,F 分别为边CD 和AD 的中点,试化简AG →+13BE →-12AC →,并在图中标出化简结果的向量.[解] ∵G 是△BCD 的重心,BE 是CD 边上的中线,∴GE →=13BE →.又12AC →=12(DC →-DA →)=12DC →-12DA →=DE →-DF →=FE →, ∴AG →+13BE →-12AC →=AG →+GE →-FE →=AF →(如图所示).10.在长方体ABCD -A 1B 1C 1D 1中,M 为DD 1的中点,点N 在AC 上,且AN ∶NC =2∶1,求证:A 1N →与A 1B →,A 1M →共面.[证明] ∵A 1B →=AB →-AA 1→, A 1M →=A 1D 1→+D 1M →=AD →-12AA 1→, AN →=23AC →=23(AB →+AD →), ∴A 1N →=AN →-AA 1→ =23(AB →+AD →)-AA 1→=23(AB →-AA 1→)+23(AD →-12AA 1→) =23A 1B →+23A 1M →, ∴A 1N →与A 1B →,A 1M →共面.11.(多选题)若A ,B ,C ,D 为空间不同的四点,则下列各式为零向量的是( ) A .AB →+2BC →+2CD →+DC → B .2AB →+2BC →+3CD →+3DA →+AC →C.AB →+CA →+BD →D.AB →-CB →+CD →-AD →BD [A 中,AB →+2BC →+2CD →+DC →=AB →+2BD →+DC →=AB →+BD →+BD →+DC →=AD →+BC →;B 中,2AB →+2BC →+3CD →+3DA →+AC →=2AC →+3CA →+AC →=0;C 中,AB →+CA →+BD →=AD →+CA →;D 中,AB →-CB →+CD →-AD →=AB →+BC →+CD →+DA →表示A →B →C →D →A 恰好形成一个回路,结果必为0.]12.(多选题)有下列命题,其中真命题的有( ) A .若AB →∥CD →,则A ,B ,C ,D 四点共线 B .若AB →∥AC →,则A ,B ,C 三点共线C .若e 1,e 2为不共线的非零向量,a =4e 1-25e 2,b =-e 1+110e 2,则a ∥b D .若向量e 1,e 2,e 3是三个不共面的向量,且满足等式k 1e 1+k 2e 2+k 3e 3=0,则k 1=k 2=k 3=0BCD [根据共线向量的定义,若AB →∥CD →,则AB ∥CD 或A ,B ,C ,D 四点共线,故A 错;因为AB →∥AC →且AB →,AC →有公共点A ,所以B 正确;由于a =4e 1-25e 2=-4-e 1+110e 2=-4b ,所以a ∥b ,故C 正确;易知D 也正确.]13.(一题两空)已知A ,B ,C 三点共线,则对空间任一点O ,若OA →=2OB →+μOC →,则μ=________;存在三个不为0的实数λ,m ,n ,使λOA →+mOB →+nOC →=0,那么λ+m +n 的值为________.-1 0 [由A 、B 、C 三点共线,∴2+μ=1,∴μ=-1,又由λOA →+mOB →+nOC →=0得OA →=-m λOB →-n λOC →由A ,B ,C 三点共线知-m λ-nλ=1,则λ+m +n =0.]14.设e 1,e 2是平面上不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,若A ,B ,D 三点共线,则实数k 为________.-8 [因为BD →=CD →-CB →=e 1-4e 2,AB →=2e 1+k e 2,又A ,B ,D 三点共线,由共线向量定理得12=-4k ,所以k =-8.]15.如图所示,已知四边形ABCD 是平行四边形,点P 是ABCD 所在平面外的一点,连接P A ,PB ,PC ,PD .设点E ,F ,G ,H 分别为△P AB ,△PBC ,△PCD ,△PDA 的重心.(1)试用向量方法证明E ,F ,G ,H 四点共面;(2)试判断平面EFGH 与平面ABCD 的位置关系,并用向量方法证明你的判断. [证明] (1)分别连接PE ,PF ,PG ,PH 并延长,交对边于点M ,N ,Q ,R ,连接MN ,NQ ,QR ,RM ,∵E ,F ,G ,H 分别是所在三角形的重心,∴M ,N ,Q ,R 是所在边的中点,且PE →=23PM →,PF →=23PN →,PG →=23PQ →,PH →=23PR →.由题意知四边形MNQR 是平行四边形,∴MQ →=MN →+MR →=(PN →-PM →)+(PR →-PM →)=32(PF →-PE →)+32(PH →-PE →)=32(EF →+EH →).又MQ →=PQ →-PM →=32PG →-32PE →=32EG →.∴EG →=EF →+EH →,由共面向量定理知,E ,F ,G ,H 四点共面.(2)平行.证明如下:由(1)得MQ →=32EG →,∴MQ →∥EG →, ∴EG →∥平面ABCD .又MN →=PN →-PM →=32PF →-32PE → =32EF →,∴MN →∥EF →. 即EF ∥平面ABCD . 又∵EG ∩EF =E ,∴平面EFGH 与平面ABCD 平行1.1.2空间向量的数量积运算一、选择题1.已知a ⊥b ,|a |=2,|b |=3,且(3a +2b )⊥(λa -b ),则λ等于( ) A .32 B .-32 C .±32 D .1A [∵a ⊥b ,∴a ·b =0,∵3a +2b ⊥λa -b ,∴(3a +2b )·(λa -b )=0, 即3λa 2+(2λ-3)a ·b -2b 2=0,∴12λ-18=0,解得λ=32.]2.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( )A .a 2B .12a 2C .14a 2D .34a 2C [AE →·AF →=12(AB →+AC →)·12AD →=14(AB →·AD →+AC →·AD →)=14⎝ ⎛⎭⎪⎫a ×a ×12+a ×a ×12=14a 2.]3.已知长方体ABCD -A 1B 1C 1D 1,则下列向量的数量积一定不为0的是( ) A .AD 1→·B 1C →B .BD 1→·AC →C .AB →·AD 1→ D .BD 1→·BC →D [对于选项A ,当四边形ADD 1A 1为正方形时,可得AD 1⊥A 1D ,而A 1D ∥B 1C ,可得AD 1⊥B 1C ,此时有AD 1→·B 1C →=0;对于选项B ,当四边形ABCD 为正方形时,AC ⊥BD ,易得AC ⊥平面BB 1D 1D ,故有AC ⊥BD 1,此时有BD 1→·AC →=0;对于选项C ,由长方体的性质,可得AB ⊥平面ADD 1A 1,可得AB ⊥AD 1,此时必有AB →·AD 1→=0;对于选项D ,由长方体的性质,可得BC ⊥平面CDD 1C 1,可得BC ⊥CD 1,△BCD 1为直角三角形,∠BCD 1为直角,故BC 与BD 1不可能垂直,即BD 1→·BC →≠0.故选D.]4.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,向量BA 1→与向量AC →所成的角为( )A .60°B .150°C .90°D .120°D [BA 1→=BA →+AA 1→,|BA 1→|=2a ,AC →=A B →+AD →,|AC →|=2a .∴BA 1→·AC →=BA →·AB →+BA →·AD →+AA 1→·AB →+AA 1→·AD →=-a 2. ∴cos 〈BA 1→,AC →〉=-a 22a ·2a =-12.∴〈BA 1→,AC →〉=120°.]5.如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,AB =1,AD =2,AA ′=3,∠BAD =90°,∠BAA ′=∠DAA ′=60°,则AC ′的长为( )A .13B .23C .33D .43B [∵AC ′→=AB →+BC →+CC ′→,∴AC ′→2=(AB →+BC →+CC ′→)2=AB →2+BC →2+CC ′→2+2(AB →·BC →+AB →·CC ′→+BC →·CC ′→) =12+22+32+2(0+1×3cos 60°+2×3cos 60°) =14+2×92=23,∴|AC ′→|=23,即AC ′的长为23.] 二、填空题6.已知a ,b 是空间两个向量,若|a |=2,|b |=2,|a -b |=7,则cos 〈a ,b 〉=________.18[将|a -b |=7两边平方,得(a -b )2=7. 因为|a |=2,|b |=2,所以a ·b =12.又a ·b =|a ||b |cos 〈a ,b 〉,故cos 〈a ,b 〉=18.]7.已知a ,b 是异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b ,且AB =2,CD =1,则a ,b 所成的角是________.60° [AB →=AC →+CD →+DB →,∴CD →·AB →=CD →·(AC →+CD →+DB →)=|CD →|2=1, ∴cos 〈CD →,AB →〉=CD →·AB →|CD →||AB →|=12,∴异面直线a ,b 所成角是60°.]8.已知|a |=2,|b |=1,〈a ,b 〉=60°,则使向量a +λb 与λa -2b 的夹角为钝角的实数λ的取值范围是________.(-1-3,-1+3) [由题意知 ⎩⎨⎧(a +λb )·(λa -2b )<0,cos 〈a +λb ,λa -2b 〉≠-1. 即⎩⎨⎧(a +λb )·(λa -2b )<0,(a +λb )·(λa -2b )≠-|a +λb ||λa -2b |,得λ2+2λ-2<0.∴-1-3<λ<-1+ 3.] 三、解答题9.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB →=a ,AD →=b ,AP →=c .(1)试用a ,b ,c 表示出向量BM →; (2)求BM 的长.[解] (1)∵M 是PC 的中点,∴BM →=12(BC →+BP →)=12[AD →+(AP →-AB →)] =12[b +(c -a )]=-12a +12b +12c .(2)由于AB =AD =1,P A =2,∴|a |=|b |=1,|c |=2,由于AB ⊥AD ,∠P AB =∠P AD =60°,∴a·b =0,a·c =b·c =2·1·cos 60°=1, 由于BM →=12(-a +b +c ),|BM →|2=14(-a +b +c )2=14[a 2+b 2+c 2+2(-a·b -a·c +b·c )]=14[12+12+22+2(0-1+1)]=32.∴|BM →|=62,∴BM 的长为62.10.如图,已知直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值. [解] (1)证明:设CA →=a ,CB →=b ,CC ′→=c , 根据题意得|a |=|b |=|c |,且a·b =b·c =c·a =0. ∴CE →=b +12c ,A ′D →=-c +12b -12a .∴CE →·A ′D →=⎝ ⎛⎭⎪⎫b +12c ·⎝ ⎛⎭⎪⎫-c +12b -12a =-12c 2+12b 2=0, ∴CE →⊥A ′D →,即CE ⊥A ′D .(2)∵AC ′→=-a +c ,∴|AC ′→|=2|a |,|CE →|=52|a |, ∵AC ′→·CE →=(-a +c )·⎝ ⎛⎭⎪⎫b +12c =12c 2=12|a |2, ∴cos 〈AC ′→,CE →〉=12|a |22×52|a |2=1010.∴异面直线CE 与AC ′所成角的余弦值为1010.11.(多选题)在正方体ABCD -A 1B 1C 1D 1中,下列命题正确的有( ) A .(AA 1→+AD →+AB →)2=3AB →2 B .A 1C →·(A 1B 1→-A 1A →)=0 C .AD 1→与A 1B →的夹角为60° D .正方体的体积为|AB →·AA 1→·AD →|AB [如图,(AA 1→+AD →+AB →)2=(AA 1→+A 1D 1→+D 1C 1→)2=AC 1→2=3AB →2;A 1C →·(A 1B 1→-A 1A →)=A 1C →·AB 1→=0;AD 1→与A 1B →的夹角是D 1C →与D 1A →夹角的补角,而D 1C →与D 1A →的夹角为60°,故AD 1→与A 1B →的夹角为120°;正方体的体积为|AB →||AA 1→||AD →|.故选AB.]12.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,若E 是底面正方形A 1B 1C 1D 1的中心, 则AC 1→与CE →( )A .重合B .平行但不重合C .垂直D .无法确定C [AC 1→=AB →+AD →+AA 1→,CE →=CC 1→+C 1E →=AA 1→-12(AB →+AD →),于是AC 1→·CE →=(AB →+AD →+AA 1→)·⎣⎢⎡⎦⎥⎤AA 1-12(AB →+AD →)=AB →·AA 1→-12AB →2-12AB →·AD →+AD →·AA 1→-12AD →·AB →-12AD →2+AA 1→2-12AA 1→·AB →-12AA 1→·AD →=0-12-0+0-0-12+1-0-0=0,故AC 1→⊥CE →.]13.(一题两空)如图,在长方体ABCD -A 1B 1C 1D 1中,设AD =AA 1=1,AB =2,P 是C 1D 1的中点,则B 1C →·A 1P →=________,B 1C →与A 1P →所成角的大小为________.1 60° [法一:连接A 1D ,则∠P A 1D 就是B 1C →与A 1P →所成角.连接PD ,在△P A 1D 中,易得P A 1=DA 1=PD =2,即△P A 1D 为等边三角形,从而∠P A 1D =60°,即B 1C →与A 1P →所成角的大小为60°.因此B 1C →·A 1P →=2×2×cos 60°=1.法二:根据向量的线性运算可得B 1C →·A 1P →=(A 1A →+AD →)·⎝⎛⎭⎪⎫AD →+12AB →=AD →2=1. 由题意可得P A 1=B 1C =2,则2×2×cos 〈B 1C →,A 1P →〉=1,从而〈B 1C →,A 1P →〉=60°.]14.已知在正四面体D -ABC 中,所有棱长都为1,△ABC 的重心为G ,则DG 的长为________.63 [如图,连接AG 并延长交BC 于点M ,连接DM ,∵G 是△ABC 的重心,∴AG =23AM ,∴AG →=23AM →,DG →=DA →+AG →=DA →+23AM →=DA →+23(DM →-DA →)=DA →+23⎣⎢⎡⎦⎥⎤12(DB →+DC →)-DA →=13(DA →+DB →+DC →),而(DA →+DB →+DC →)2=DA →2+DB →2+DC →2+2DA →·DB →+2DB →·DC →+2DC →·DA →=1+1+1+2(cos 60°+cos 60°+cos 60°)=6,∴|DG →|=63.]15.如图,正四面体V -ABC 的高VD 的中点为O ,VC 的中点为M .(1)求证:AO ,BO ,CO 两两垂直;(2)求〈DM →,AO →〉.[解] (1)证明:设VA →=a ,VB →=b ,VC →=c ,正四面体的棱长为1, 则VD →=13(a +b +c ),AO →=16(b +c -5a ), BO →=16(a +c -5b ),CO →=16(a +b -5c ),所以AO →·BO →=136(b +c -5a )·(a +c -5b )=136(18a ·b -9|a |2)=136(18×1×1×cos 60°-9)=0,所以AO →⊥BO →,即AO ⊥BO .同理,AO ⊥CO ,BO ⊥CO . 所以AO ,BO ,CO 两两垂直.(2)DM →=DV →+VM →=-13(a +b +c )+12c =16(-2a -2b +c ),所以|DM →|=⎣⎢⎡⎦⎥⎤16(-2a -2b +c )2=12. 又|AO →|=⎣⎢⎡⎦⎥⎤16(b +c -5a )2=22,DM →·AO →=16(-2a -2b +c )·16(b +c -5a )=14, 所以cos 〈DM →,AO →〉=1412×22=22. 又〈DM →,AO →〉∈[0,π], 所以〈DM →,AO →〉=π4.1.2空间向量基本定理一、选择题1.若向量{a ,b ,c }是空间的一个基底,则一定可以与向量p =2a +b ,q =2a-b 构成空间的另一个基底的向量是( )A .aB .bC .cD .a +bC [由p =2a +b ,q =2a -b 得a =14p +14q ,所以a 、p 、q 共面,故a 、p 、q 不能构成空间的一个基底,排除A ;因为b =12p -12q ,所以b 、p 、q 共面,故b 、p 、q 不能构成空间的一个基底,排除B ;因为a +b =34p -14q ,所以a +b 、p 、q 共面,故a +b 、p 、q 不能构成空间的一个基底,排除D.]2.在平行六面体ABCD -A 1B 1C 1D 1中,M 是上底面对角线AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则B 1M →可表示为( )A .12a +12b +cB .12a -12b +cC .-12a -12b +cD .-12a +12b +cD [由于B 1M →=B 1B →+BM →=B 1B →+12(BA →+BC →) =-12a +12b +c ,故选D.]3.若向量MA →,MB →,MC →的起点M 与终点A ,B ,C 互不重合,且点M ,A ,B ,C 中无三点共线,满足下列关系(O 是空间任一点),则能使向量MA →,MB →,MC →成为空间一个基底的关系是( )A .OM →=13OA →+13OB →+13OC → B .MA →≠MB →+MC → C .OM →=OA →+OB →+OC →D .MA →=2MB →-MC →C [若MA →,MB →,MC →为空间一组基向量,则M ,A ,B ,C 四点不共面.选项A 中,因为13+13+13=1,所以点M ,A ,B ,C 共面;选项B 中,MA →≠MB →+MC →,但可能存在实数λ,μ使得MA →=λMB →+μMC →,所以点M ,A ,B ,C 可能共面;选项D 中,四点M ,A ,B ,C 显然共面.故选C.]4.空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM →=2MA →,N 为BC 中点,则MN →为( )A .12a -23b +12cB .-23a +12b +12cC .12a +12b -23cD .23a +23b -12cB [MN →=MA →+AB →+BN →=13OA →+OB →-OA →+12(OC →-OB →)=-23OA →+12OB →+12OC →=-23a +12b +12c .]5.平行六面体ABCD -A 1B 1C 1D 1中,向量AB →,AD →,AA 1→两两的夹角均为60°且|AB →|=1,|AD →|=2,|AA 1→|=3,则|AC 1→|等于( )A .5B .6C .4D .8A [在平行六面体ABCD -A 1B 1C 1D 1中有,AC 1→=AB →+AD →+CC 1→=AB →+AD →+AA 1→所以有|AC 1→|=|AB →+AD →+AA 1→|,于是有|AC 1→|2=|AB →+AD →+AA 1→|2=|AB →|2+|AD →|2+|AA 1→|2+2|AB →|·|AD →|·cos 60°+2|AB →|·|AA 1→|·cos 60°+2|AD →||AA 1→|·cos 60°=25,所以|AC 1→|=5.]二、填空题6.在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________.(用a ,b ,c 表示)12a +14b +14c [因为在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,所以OE →=12(OA →+OD →)=12OA →+12OD →=12a +12×12(OB →+OC →)=12a +14(b +c )=12a +14b +14c .]7.已知{a ,b ,c }是空间的一个单位正交基底,{a +b ,a -b ,c }是空间的另一个基底,若向量m 在基底{a ,b ,c }下表示为m =3a +5b +9c ,则m 在基底{a +b ,a -b,3c }下可表示为________.4(a +b )-(a -b )+3(3c ) [由题意知,m =3a +5b +9c ,设m =x (a +b )+y (a -b )+z (3c )则有⎩⎨⎧ x +y =3x -y =53z =9,解得⎩⎨⎧x =4y =-1z =3.则m 在基底{a +b ,a -b,3c }可表示为m =4(a +b )-(a -b )+3(3c ).] 8.在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G 为BD 上一点,BG =2GD ,P A →=a ,PB →=b ,PC →=c ,试用基底{a ,b ,c }表示向量PG →=________.23a -13b +23c [因为BG =2GD ,所以BG →=23BD →. 又BD →=BA →+BC →=P A →-PB →+PC →-PB →=a +c -2b , 所以PG →=PB →+BG →=b +23(a +c -2b ) =23a -13b +23c .] 三、解答题9.如图所示,正方体OABC -O ′A ′B ′C ′,且OA →=a ,OC →=b ,OO ′→=c .(1)用a ,b ,c 表示向量OB ′→,AC ′→;(2)设G ,H 分别是侧面BB ′C ′C 和O ′A ′B ′C ′的中心,用a ,b ,c 表示GH →.[解] (1)OB ′→=OB →+BB ′→=OA →+OC →+OO ′→=a +b +c . AC ′→=AC →+CC ′→=AB →+AO →+AA ′→=OC →+OO ′→-OA →=b +c -a . (2)法一:连接OG ,OH (图略), 则GH →=GO →+OH →=-OG →+OH → =-12(OB ′→+OC →)+12(OB ′→+OO ′→) =-12(a +b +c +b )+12(a +b +c +c ) =12(c -b ).法二:连接O ′C (图略),则GH →=12CO ′→=12(OO ′→-OC →) =12(c -b ).10.如图,在平行六面体ABCD -A 1B 1C 1D 1中,MA →=-13AC →,ND →=13A 1D →,设AB →=a ,AD →=b ,AA 1→=c ,试用a ,b ,c 表示MN →.[解] 连接AN ,则MN →=MA →+AN →.由已知可得四边形ABCD 是平行四边形,从而可得 AC →=AB →+AD →=a +b , MA →=-13AC →=-13(a +b ), 又A 1D →=AD →-AA 1→=b -c ,故AN →=AD →+DN →=AD →-ND →=AD →-13A 1D →=b -13(b -c ), 所以MN →=MA →+AN → =-13(a +b )+b -13(b -c ) =13(-a +b +c ).11.(多选题)已知a ,b ,c 是不共面的三个向量,则下列向量组中,不能构成一个基底的一组向量是( )A .2a ,a -b ,a +2bB .2b ,b -a ,b +2aC .a,2b ,b -cD .c ,a +c ,a -cABD [对于A ,因为2a =43(a -b )+23(a +2b ),得2a 、a -b 、a +2b 三个向量共面,故它们不能构成一个基底;对于B ,因为2b =43(b -a )+23(b +2a ),得2b 、b -a 、b +2a 三个向量共面,故它们不能构成一个基底;对于C ,因为找不到实数λ、μ,使a =λ·2b +μ(b -c )成立,故a 、2b 、b -c 三个向量不共面,它们能构成一个基底;对于D ,因为c =12(a +c )-12(a -c ),得c 、a +c 、a -c 三个向量共面,故它们不能构成一个基底,故选ABD.]12.(多选题)给出下列命题,正确命题的有( )A .若{a ,b ,c }可以作为空间的一个基底,d 与c 共线,d ≠0,则{a ,b ,d }也可以作为空间的一个基底B .已知向量a ∥b ,则a ,b 与任何向量都不能构成空间的一个基底C .A ,B ,M ,N 是空间四点,若BA →,BM →,BN →不能构成空间的一个基底,则A ,B ,M ,N 四点共面D .已知{a ,b ,c }是空间的一个基底,若m =a +c ,则{a ,b ,m }也是空间的一个基底ABCD [根据基底的概念,知空间中任何三个不共面的向量都可作为空间的一个基底.显然B 正确.C 中由BA →,BM →,BN →不能构成空间的一个基底,知BA →,BM →,BN →共面.又BA →,BM →,BN →过相同点B ,知A ,B ,M ,N 四点共面.所以C 正确.下面证明AD 正确:A 假设d 与a ,b 共面,则存在实数λ,μ,使得d =λa +μb ,∵d 与c 共线,c ≠0,∴存在实数k ,使得d =k c .∵d ≠0,∴k ≠0,从而c =λk a +μk b ,∴c 与a ,b 共面,与条件矛盾,∴d 与a ,b 不共面.同理可证D 也是正确的.于是ABCD 四个命题都正确,故选ABCD.]13.(一题两空)已知空间的一个基底{a ,b ,c },m =a -b +c ,n =x a +y b +c ,若m 与n 共线,则x =________,y =________.1 -1 [因为m 与n 共线, 所以存在实数λ,使m =λn ,即a -b +c =λx a +λy b +λc ,于是有⎩⎨⎧1=λx ,-1=λy ,1=λ,解得⎩⎨⎧x =1,y =-1.]14.(一题多空)已知e 1,e 2是空间单位向量,e 1·e 2=12.若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0=________,y 0=________,|b |=________.1 2 22 [由题意可令b =x 0e 1+y 0e 2+e 3,其中|e 3|=1,e 3⊥e i ,i =1,2.由b ·e 1=2得x 0+y 02=2,由b ·e 2=52得x 02+y 0=52,解得x 0=1,y 0=2,∴|b |=(e 1+2e 2+e 3)2=2 2.]15.在平行六面体ABCD -A 1B 1C 1D 1中,设AB →=a ,AD →=b ,AA 1→=c ,E ,F 分别是AD 1,BD 的中点.(1)用向量a ,b ,c 表示D 1B →,EF →;(2)若D 1F →=x a +y b +z c ,求实数x ,y ,z 的值. [解] (1)如图,D 1B →=D 1D →+DB →=-AA 1→+AB →-AD →=a -b -c ,EF →=EA →+AF →=12D 1A →+12AC →=-12(AA 1→+AD →)+12(AB →+AD →)=12(a -c ). (2)D 1F →=12(D 1D →+D 1B →)=12(-AA 1→+AB →-AD 1→) =12(-AA 1→+AB →-AD →-DD 1→) =12(a -c -b -c )=12a -12b -c , ∴x =12,y =-12,z =-1.1.3.1空间直角坐标系一、选择题1.空间两点A ,B 的坐标分别为(x ,-y ,z ),(-x ,-y ,-z ),则A ,B 两点的位置关系是( )A .关于x 轴对称B .关于y 轴对称C .关于z 轴对称D .关于原点对称B [纵坐标相同,横坐标和竖坐标互为相反数,故两点关于y 轴对称.] 2.已知A (1,2,-1),B (5,6,7),则直线AB 与平面xOz 交点的坐标是( ) A .(0,1,1) B .(0,1,-3)C .(-1,0,3)D .(-1,0,-5)D [设直线AB 与平面xoz 交点坐标是M (x ,y ,z ),则AM →=(x -1,-2,z +1),AB →=(4,4,8),又AM →与AB →共线,∴AM →=λAB →,即⎩⎨⎧x -1=4λ,-2=4λ,z +1=8λ,解得x =-1,z =-5,∴点M (-1,0,-5).故选D.]3.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM |=( ) A .534 B .532 C .532D .132 C [M ⎝ ⎛⎭⎪⎫2,32,3 ,|CM |=4+⎝ ⎛⎭⎪⎫32-12+9=532.] 4.如图,在空间直角坐标系中,正方体ABCD -A 1B 1C 1D 1的棱长为1,B 1E =14A 1B 1,则BE →等于( )A .⎝ ⎛⎭⎪⎫0,14,-1B .⎝ ⎛⎭⎪⎫-14,0,1C .⎝ ⎛⎭⎪⎫0,-14,1D .⎝ ⎛⎭⎪⎫14,0,-1C [{DA →,DC →,DD 1→}为单位正交向量,BE →=BB 1→+B 1E →=-14DC →+DD 1→,∴BE →=⎝ ⎛⎭⎪⎫0,-14,1.] 5.设{i ,j ,k }是单位正交基底,已知向量p 在基底{a ,b ,c }下的坐标为(8,6,4),其中a =i +j ,b =j +k ,c =k +i ,则向量p 在基底{i ,j ,k }下的坐标是( )A .(12,14,10)B .(10,12,14)C .(14,12,10)D .(4,3,2)A [依题意,知p =8a +6b +4c =8(i +j )+6(j +k )+4(k +i )=12i +14j +10k ,故向量p 在基底{i ,j ,k }下的坐标是(12,14,10).]二、填空题6.在空间直角坐标系中,已知点P (1,2,3),过点P 作平面yOz 的垂线PQ ,则垂足Q 的坐标为________.(0,2,3) [过P 的垂线PQ ⊥面yOz ,则Q 点横坐标为0,其余不变,故Q (0,2,3).]7.设{e 1,e 2,e 3}是空间向量的一个单位正交基底,a =4e 1-8e 2+3e 3,b =-2e 1-3e 2+7e 3,则a ,b 的坐标分别为________.(4,-8,3),(-2,-3,7) [由题意可知a =(4,-8,3),b =(-2,-3,7).] 8.如图所示,以长方体ABCD -A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若DB 1→的坐标为(4,3,2),则AC 1→的坐标为________.(-4,3,2) [由DB 1→=DA →+DC →+DD 1→,且DB 1→=(4,3,2),∴|DA →|=4,|DC →|=3,|DD 1→|=2,又AC 1→=-DA →+DC →+DD 1→,∴AC 1→=(-4,3,2).]三、解答题9.已知三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,所有的棱长都是1,建立适当的坐标系,并写出各点的坐标.[解] 如图所示,取AC 的中点O 和A 1C 1的中点O 1,可得BO ⊥AC ,OO 1⊥AC ,分别以OB ,OC ,OO 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.∵三棱柱各棱长均为1,∴OA =OC =O 1C 1=O 1A 1=12,OB =32. ∵A ,B ,C 均在坐标轴上,∴A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0.∵点A 1与C 1在yOz 平面内, ∴A 1⎝ ⎛⎭⎪⎫0,-12,1,C 1⎝ ⎛⎭⎪⎫0,12,1.∵点B 1在xOy 平面内的射影为B ,且BB 1=1,∴B 1⎝ ⎛⎭⎪⎫32,0,1,即各点的坐标为A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0,A 1⎝ ⎛⎭⎪⎫0,-12,1,B 1⎝ ⎛⎭⎪⎫32,0,1,C 1⎝ ⎛⎭⎪⎫0,12,1. 10.棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 分别为棱DD 1,D 1C 1,BC 的中点,以{AB →,AD →,AA 1→}为正交基底,求下列向量的坐标:(1)AE →,AF →,AG →; (2)EF →,EG →,DG →.[解] 在正交基底{AB →,AD →,AA 1→}下,(1)AF →=12AB →+AD →+AA 1→, AE →=AD →+12AA 1→,AG →=AB →+12AD →,∴AE →=⎝ ⎛⎭⎪⎫0,1,12,AF →=⎝ ⎛⎭⎪⎫12,1,1,AG →=⎝ ⎛⎭⎪⎫1,12,0.(2)EF →=AF →-AE →=12AB →+12AA 1→,∴EF →=⎝ ⎛⎭⎪⎫12,0,12;EG →=AG →-AE →=AB →-12AD →-12AA 1→,∴EG →=⎝ ⎛⎭⎪⎫1,-12,-12;DG →=AG →-AD →=AB→-12AD →,∴DG →=⎝ ⎛⎭⎪⎫1,-12,0.11.(多选题)下列各命题正确的是( ) A .点(1,-2,3)关于平面xOz 的对称点为(1,2,3) B .点⎝ ⎛⎭⎪⎫12,1,-3关于y 轴的对称点为⎝ ⎛⎭⎪⎫-12,1,3C .点(2,-1,3)到平面yOz 的距离为1D .设{i ,j ,k }是空间向量的单位正交基底,若m =3i -2j +4k ,则m =(3,-2,4).ABD [“关于谁对称谁不变”,∴A 正确,B 正确,C 中(2,-1,3)到面yOz 的距离为2,∴C 错误.根据空间向量的坐标定义,D 正确.]12.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 为正方体内一动点(包括表面),若AP →=xAB →+yAD →+zAA 1→,且0≤x ≤y ≤z ≤1.则点P 所有可能的位置所构成的几何体的体积是( )A .1B .12C .13D .16D [根据向量加法的几何意义和空间向量基本定理,满足0≤x ≤y ≤1的点P 在三棱柱ACD -A 1C 1D 1内;满足0≤y ≤z ≤1的点P 在三棱柱AA 1D 1-BB 1C 1内,故同时满足0≤x ≤y ≤1,0≤y ≤z ≤1的点P 在这两个三棱柱的公共部分(如图),即三棱锥A -A 1C 1D 1,其体积是13×12×1×1×1=16.]13.三棱锥P -ABC 中,∠ABC 为直角,PB ⊥平面ABC ,AB =BC =PB =1,M为PC 的中点,N 为AC 的中点,以{BA →,BC →,BP →}为基底,则MN →的坐标为________.⎝ ⎛⎭⎪⎫12,0,-12 [MN →=BN →-BM → =12(BA →+BC →)-12(BP →+BC →) =12BA →-12BP →, 故MN →=⎝ ⎛⎭⎪⎫12,0,-12.] 14.已知O 是坐标原点,点A (2,0,-2),B (3,1,2),C (2,-1,7). (1)若点P 满足OP →=OA →+OB →+OC →,则点P 的坐标为________; (2)若点P 满足AP →=2AB →-AC →,则点P 的坐标为________.(1)(7,0,7) (2)(4,3,-3) [(1)中OP →=OA →+OB →+OC →=(2i -2k )+(3i +j +2k )+(2i -j +7k )=7i +0j +7k ,∴P (7,0,7).(2)中,AP →=2AB →-AC →得OP →-OA →=2OB →-2OA →-OC →+OA →,∴OP →=2OB →-OC →=2(3i +j +2k )-(2i -j +7k ) =4i +3j -3k ,∴P (4,3,-3).]15.如图,在正四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,O 是AC 与BD 的交点,PO =1,M 是PC 的中点.设AB →=a ,AD →=b ,AP →=c .(1)用向量a ,b ,c 表示BM →.(2)在如图的空间直角坐标系中,求BM →的坐标.[解] (1)∵BM →=BC →+CM →,BC →=AD →,CM →=12CP →,CP →=AP →-AC →,AC →=AB →+AD →,∴BM →=AD →+12(AP →-AC →)=AD →+12AP →-12(AB →+AD →)=-12AB →+12AD →+12AP →=-12a +12b +12c .(2)a =AB →=(1,0,0),b =AD →=(0,1,0).∵A (0,0,0),O ⎝ ⎛⎭⎪⎫12,12,0,P ⎝ ⎛⎭⎪⎫12,12,1,∴c =AP →=OP →-OA →=⎝ ⎛⎭⎪⎫12,12,1,∴BM →=-12a +12b +12c =-12(1,0,0)+12(0,1,0)+12⎝ ⎛⎭⎪⎫12,12,1=⎝ ⎛⎭⎪⎫-14,34,12.1.3.2空间运算的坐标表示一、选择题1.已知三点A (1,5,-2),B (2,4,1),C (a,3,b +2)在同一条直线上,那么( ) A .a =3,b =-3 B .a =6,b =-1 C .a =3,b =2D .a =-2,b =1C [根据题意AB →=(1,-1,3),AC →=(a -1,-2,b +4), ∵AB →与AC →共线,∴AC →=λAB →, ∴(a -1,-2,b +4)=(λ,-λ,3λ),∴⎩⎨⎧a -1=λ,-2=-λ,b +4=3λ,解得⎩⎨⎧a =3,b =2,λ=2.故选C.]2.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于( ) A .(0,3,-6) B .(0,6,-20) C .(0,6,-6)D .(6,6,-6)B [由题a =(2,3,-4),b =(-4,-3,-2),设x =(w ,y ,z )则由b =12x -2a ,可得(-4,-3,-2)=12(w ,y ,z )-2(2,3,-4)=⎝ ⎛⎭⎪⎫12w ,12y ,12z-(4,6,-8)=⎝ ⎛⎭⎪⎫12w -4,12y -6,12z +8,解得w =0,y =6,z =-20,即x =(0,6,-20).]3.已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A .(-1,1,0) B .(1,-1,0) C .(0,-1,1)D .(-1,0,1)B [不妨设向量为b =(x ,y ,z ),A .若b =(-1,1,0),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. B .若b =(1,-1,0),则cos θ=a ·b |a |·|b |=12×2=12,满足条件. C .若b =(0,-1,1),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. D .若b =(-1,0,1),则cos θ=a ·b |a |·|b |=-22×2=-1≠12,不满足条件.故选B.]4.已知向量a =(-2,x,2),b =(2,1,2),c =(4,-2,1),若a ⊥(b -c ),则x 的值为( )A .-2B .2C .3D .-3A [∵b -c =(-2,3,1),a ·(b -c )=4+3x +2=0,∴x =-2.]5.已知A 、B 、C 三点的坐标分别为A (4,1,3),B (2,-5,1),C (3,7,λ),若AB →⊥AC →,则λ等于( )A .28B .-28C .14D .-14D [AB →=(-2,-6,-2),AC →=(-1,6,λ-3),∵AB →⊥AC →,∴AB →·AC →=-2×(-1)-6×6-2(λ-3)=0,解得λ=-14.] 二、填空题6.已知a =(1,1,0),b =(0,1,1),c =(1,0,1),p =a -b ,q =a +2b -c ,则p ·q =________.-1 [∵p =a -b =(1,0,-1),q =a +2b -c =(0,3,1), ∴p ·q =1×0+0×3+(-1)×1=-1.]7.已知空间三点A (1,1,1),B (-1,0,4),C (2,-2,3),则AB →与CA →的夹角θ的大小是________.120° [AB →=(-2,-1,3),CA →=(-1,3,-2),cos 〈AB →,CA →〉=(-2)×(-1)+(-1)×3+3×(-2)14·14=-12,∴θ=〈AB →,CA →〉=120°.]8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别是棱BC 、DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.1 [以D 1A 1、D 1C 1、D 1D 分别为x ,y ,z 轴建立空间直角坐标系(图略),设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),∴B 1E →=(x -1,0,1),又F (0,0,1-y ),B (1,1,1),∴FB →=(1,1,y ),由于AB ⊥B 1E ,若B 1E ⊥平面ABF ,只需FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.] 三、解答题9.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)求向量a 与向量b 的夹角的余弦值;(2)若k a +b 与k a -2b 互相垂直,求实数k 的值.[解] (1)∵a =(1,1,0),b =(-1,0,2),∴a·b =(1,1,0)·(-1,0,2)=-1, 又|a |=12+12+02=2,|b |=(-1)2+02+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=-110=-1010,即向量a 与向量b 的夹角的余弦值为-1010.(2)法一:∵k a +b =(k -1,k,2),k a -2b =(k +2,k ,-4),且k a +b 与k a -2b 互相垂直,∴(k -1,k,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0,∴k =2或k =-52, ∴当k a +b 与k a -2b 互相垂直时,实数k 的值为2或-52. 法二:由(1)知|a |=2,|b |=5,a·b =-1,∴(k a +b )·(k a -2b )=k 2a 2-k a ·b -2b 2=2k 2+k -10=0,得k =2或k =-52. 10.已知正三棱柱ABC -A 1B 1C 1,底面边长AB =2,AB 1⊥BC 1,点O ,O 1分别是边AC ,A 1C 1的中点,建立如图所示的空间直角坐标系.(1)求正三棱柱的侧棱长;(2)求异面直线AB 1与BC 所成角的余弦值. [解] (1)设正三棱柱的侧棱长为h ,由题意得A (0,-1,0),B (3,0,0),C (0,1,0),B 1(3,0,h ),C 1(0,1,h ), 则AB 1→=(3,1,h ),BC 1→=(-3,1,h ), 因为AB 1⊥BC 1,所以AB 1→·BC 1→=-3+1+h 2=0, 所以h = 2.(2)由(1)可知AB 1→=(3,1,2),BC →=(-3,1,0), 所以AB 1→·BC →=-3+1=-2.因为|AB 1→|=6,|BC →|=2,所以cos 〈AB 1→,BC →〉=-226=-66.所以异面直线AB 1与BC 所成角的余弦值为66.11.(多选题)若向量a =(1,2,0),b =(-2,0,1),则下列结论正确的是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

章末质量评估(二)A 基础达标卷(时间:45分钟 满分:75分)一、选择题(本大题共6小题,每小题5分,共30分) 1.计算:log 225·log 522=( ) A .3 B .4 C .5D .6解析:log 225·log 522=lg 25lg 2·lg (8)12lg 5=3.故选A.答案:A2.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤0,log 2x ,x >0,那么f ⎝⎛⎭⎫f ⎝⎛⎭⎫18的值为( ) A .27 B.127 C .-27D .-127解析:f ⎝⎛⎭⎫18=log 218=-3,∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫18=f (-3)=3-3=127. 答案:B3. 下列函数中,满足“f (x +y )=f (x )·f (y )”的单调递增函数是( ) A .f (x )=x 12B .f (x )=x 3C .f (x )=⎝⎛⎭⎫12xD .f (x )=3x解析:由于f (x +y )=f (x )f (y ),故排除选项A ,B.又f (x )=⎝⎛⎭⎫12x为单调递减函数,所以排除选项C .答案:D4.函数f (x )=1ln (x +1)+4-x 2的定义域为( )A .[-2,2]B .(-1,2]C .[-2,0)∪(0,2]D .(-1,0)∪(0,2]解析:要使函数有意义,x 应满足⎩⎪⎨⎪⎧x +1>0,x +1≠1,4-x 2≥0,解得-1<x <0或0<x ≤2,所以该函数的定义域为(-1,0)∪(0,2].故选D.答案:D5.已知函数f (x )=⎝⎛⎭⎫12x,则函数f (x +1)的反函数的图象可能是( )解析:∵f (x )=⎝⎛⎭⎫12x,∴f (x +1)=⎝⎛⎭⎫12x +1,f (x +1)的反函数为y =log 12x -1.故选D. 答案:D6.设函数f (x )定义在R 上,f (2-x )=f (x ),且当x ≥1时,f (x )=log 2x ,则有( ) A .f (-3)<f (2)<f ⎝⎛⎭⎫12 B .f ⎝⎛⎭⎫12<f (2)<f (-3) C .f ⎝⎛⎭⎫12<f (-3)<f (2)D .f (2)<f ⎝⎛⎭⎫12<f (-3)解析:本题主要考查对数函数的单调性.由f (x )=f (2-x ),得f (-3)=f (5),f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32.当x ≥1时,函数f (x )=log 2x 为增函数,可知f ⎝⎛⎭⎫32<f (2)<f (5),即f ⎝⎛⎭⎫12<f (2)<f (-3),故选B.答案:B二、填空题(本大题共4小题,每小题5分,共20分) 7.如果幂函数f (x )的图象过点⎝⎛⎭⎫16,12,那么f (64)=________. 解析:设幂函数f (x )=x α(α为常数),将⎝⎛⎭⎫16,12代入,求得α=-14,则f (x )=x -14 ,所以f (64)=64-14=24. 答案:248.已知(1.40.8)a <(0.81.4)a ,则实数a 的取值范围是________. 解析:∵1.40.8>1,0<0.81.4<1, 且(1.40.8)a <(0.81.4)a ,∴y =x α为减函数, ∴a 的取值范围是(-∞,0). 答案:(-∞,0)9.已知函数f (x )=lg x ,若f (ab )=1,则f (a 2)+f (b 2)=________.解析:由已知可得,lg(ab )=1,故f (a 2)+f (b 2)=lg a 2+lg b 2=lg(a 2b 2)=2lg(ab )=2×1=2.答案:210.定义在R 上的偶函数f (x )在[0,+∞)上单调递减,且f ⎝⎛⎭⎫12=0,则满足f (log 14x )<0的集合为__________________.解析:本题主要考查函数的奇偶性、单调性的应用和对数不等式的解法.因为定义在R 上的偶函数f (x )在[0,+∞)上单调递减,所以在(-∞,0]上单调递增.又f ⎝⎛⎭⎫12=0,所以f ⎝⎛⎭⎫-12=0.由f (log 14 x )<0可得log 14 x <-12,或log 14x >12,解得x ∈⎝⎛⎭⎫0,12∪(2,+∞). 答案:⎝⎛⎭⎫0,12∪()2,+∞ 三、解答题(本大题共2小题,需写出演算过程与文字说明,共25分) 11.(本小题满分12分)计算下列各式的值: (1)⎝⎛⎭⎫21412 -(-9.6)0-⎝⎛⎭⎫338-23 +(1.5)-2; (2)log 34273+lg 25+lg 4+7log 72. 解:(1)原式=⎝⎛⎭⎫942-1-⎝⎛⎭⎫278-23 +⎝⎛⎭⎫32-2 =⎝⎛⎭⎫322×12 -1-⎝⎛⎭⎫32-3×23 +⎝⎛⎭⎫32-2 =32-1-⎝⎛⎭⎫32-2+⎝⎛⎭⎫32-2=12. (2)原式=log 33343+lg(25×4)+2=log 33-14+lg102+2=-14+2+2=154.12.(本小题满分13分)已知函数f (x )=x -2m 2+m +3(m ∈Z )为偶函数,且f (3)<f (5).(1)求函数f (x )的解析式;(2)若g (x )=log a [f (x )-ax ](a >0且a ≠1)在区间[2,3]上为增函数,求实数a 的取值范围. 解:(1)∵f (x )为偶函数,∴-2m 2+m +3为偶数. 又f (3)<f (5),∴3-2m 2+m +3<5-2m 2+m +3,即有⎝⎛⎭⎫35-2m 2+m +3<1. ∴-2m 2+m +3>0.∴-1<m <32.又m ∈Z ,∴m =0或m =1.当m =0时,-2m 2+m +3=3为奇数(舍去);当m =1时,-2m 2+m +3=2为偶数,符合题意. ∴m =1,f (x )=x 2.(2)由(1)知,g (x )=log a [f (x )-ax ]=log a (x 2-ax ) (a >0且a ≠1)在区间[2,3]上为增函数. 令u (x )=x 2-ax ,y =log a u .①当a >1时,y =log a u 为增函数,只需u (x )=x 2-ax 在区间[2,3]上为增函数, 即 ⎩⎪⎨⎪⎧a 2≤2,u (2)=4-2a >0⇒1<a <2; ②当0<a <1时,y =log a u 为减函数,只需u (x )=x 2-ax 在区间[2,3]上为减函数, 即⎩⎪⎨⎪⎧a 2≥3,u (3)=9-3a >0⇒a ∈∅. 综上可知,a 的取值范围为(1,2).B 能力提升卷(时间:45分钟 满分:75分)一、选择题(本大题共6小题,每小题5分,共30分) 1.下列幂函数中过点(0,0),(1,1)的偶函数是( )A .y =x 12B .y =x 4C .y =x -1 D .y =x 3解析:选项A 中y =x 12=x 是非奇非偶的函数,选项C 中y =x-1是奇函数,对于选项D 中y =x 3也是奇函数,均不满足题意;选项B 中y =x 4是偶函数,且过点(0,0),(1,1),满足题意.故选B.答案:B2.三个数a =0.72,b =log 20.7,c =20.7之间的大小关系是( ) A .a <c <b B .a <b <c C .b <a <cD .b <c <a解析:∵0<a =0.72<1,b =log 20.7<0,c =20.7>1.∴b <a <c .故选C. 答案:C3.设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( ) A .奇函数,且在(0,1)上是增函数 B .奇函数,且在(0,1)上是减函数 C .偶函数,且在(0,1)上是增函数 D .偶函数,且在(0,1)上是减函数解析:∵f (x )=ln(1+x )-ln(1-x )的定义域是(-1,1), f (-x )=ln(1-x )-ln(1+x ),∴f (-x )=-f (x ),∴f (x )是奇函数,排除C 、D. ∵y =ln(1+x )在(0,1)上是增函数, y =ln(1-x )在(0,1)上是减函数,∴f (x )=ln(1+x )-ln(1-x )上是增函数,故选A. 答案:A4.函数f (x )=4x -3·2x +3的值域为[1,7],则f (x )的定义域为( ) A .(-1,1)∪[2,4] B .(0,1)∪[2,4] C .[2,4]D .(-∞,0]∪[1,2]解析:设t =2x ,则t >0,且y =t 2-3t +3=⎝⎛⎭⎫t -322+34≥34. ∵函数f (x )=4x -3·2x +3的值域为[1,7], ∴函数y =t 2-3t +3的值域为[1,7] .由y =1得t =1或2,由y =7得t =4或-1(舍去),则0<t ≤1或2≤t ≤4,即0<2x ≤1或2≤2x ≤4,解得x <0或1≤x ≤2, ∴f (x )的定义域是(-∞,0]∪[1,2],故选D. 答案:D5.已知函数f (x )满足:当x ≥4时,f (x )=⎝⎛⎭⎫12x;当x <4时,f (x )=f (x +1),则f (2+log 23)=( )A.124B.112C.18D .38解析:2+log 23=log 24+log 23=log 212<log 216=4,log 224>log 216=4,由于当x <4时,f (x )=f (x +1),则f (2+log 23)=f (log 212)=f (1+log 212)=f (log 224).又当x ≥4时,f (x )=⎝⎛⎭⎫12x,所以f (log 224)=⎝⎛⎭⎫12log 224=2log 2124 =124,故f (2+log 23)=124. 答案:A6.已知函数f (x )=2x -P ·2-x ,则下列结论正确的是( )A .P =1,f (x )为奇函数且为R 上的减函数B .P =-1,f (x )为偶函数且为R 上的减函数C .P =1,f (x )为奇函数且为R 上的增函数D .P =-1,f (x )为偶函数且为R 上的增函数解析:当P =1时,f (x )=2x -2-x ,定义域为R 且f (-x )=2-x -2x =-f (x ),∴f (x )为奇函数.∵2x 是R 上的增函数,2-x 是R 的减函数,∴f (x )=2x -2-x 为R 上的增函数.因此选项C 正确.当P =-1时,f (x )=2x +2-x ,定义域为R 且f (-x )=2-x +2x =f (x ),∴f (x )为偶函数.根据1<2,f (1)<f (2)可知f (x )在R 上的不是减函数;根据-2<-1,f (-2)>f (-1)可知f (x )在R 上的不是增函数.因此选项B 、D 不正确.故选C.答案:C二、填空题(本大题共4小题,每小题5分,共20分) 7.若x 12+x-12=3,则x +x -1=______.解析:本题主要考查指数式的运算.对x 12+x-12=3两边平方得x +x -1+2=9,所以x+x -1=7.答案:7 8.函数y =(2)1x的单调递减区间是__________.解析:本题主要考查指数函数与反比例函数的复合函数的单调性.函数y =(2)1x的单调递减区间即为y =1x的单调递减区间,也即为(-∞,0),(0,+∞).答案:(-∞,0),(0,+∞)9.已知函数f (x )=a 2x -4+n (a >0且a ≠1)的图象恒过定点P (m,2),则m +n =______.解析:本题主要考查指数函数的图象及图象变换.当2x -4=0,即x =2时,f (x )=1+n ,函数图象恒过点(2,1+n ),所以m =2,1+n =2,即m =2,n =1.所以m +n =3.答案:310.已知定义在实数集R 上的偶函数f (x )在区间(-∞,0]上是单调减函数,则不等式f (-1)<f (ln x )的解集是________.解析:由已知f (x )在区间(-∞,0]上是单调减函数,在区间(0,+∞)上是单调增函数,当ln x >0,f (1)<f (ln x )则1<ln x ,有x >e ,当ln x <0,f (-1)<f (ln x ),则-1>ln x ,有0<x <1e.不等式f (-1)<f (ln x )的解集是⎝⎛⎭⎫0,1e ∪(e ,+∞). 答案:⎝⎛⎭⎫0,1e ∪(e ,+∞) 三、解答题(本大题共2小题,需写出演算过程与文字说明,共25分) 11.(本小题满分12分)设函数f (x )=a x -a -x (a >0且a ≠1),(1)若f (1)<0,试判断函数单调性并求使不等式f (x 2+tx )+f (4-x )<0恒成立的t 的取值范围;(2)若f (1)=32, g (x )=a 2x +a -2x -2mf (x )且g (x )在[1,+∞)上的最小值为-2,求m 的值.解:(1)f (x )=a x -a -x (a >0且a ≠1),∵f (1)<0,∴a -1a<0,又a >0,且a ≠1,∴0<a <1.∵a x 单调递减,a -x 单调递增,故f (x )在R 上单调递减.不等式化为f (x 2+tx )<f (x -4),∴x 2+tx >x -4,即x 2+(t -1)x +4>0恒成立. ∴Δ=(t -1)2-16<0,解得-3<t <5. (2)∵f (1)=32,∴a -1a =32,2a 2-3a -2=0,∴a =2或a =-12(舍去).∴g (x )=22x +2-2x-2m (2x -2-x )=(2x -2-x )2-2m (2x -2-x )+2.令t =f (x )=2x -2-x ,由(1)可知f (x )=2x -2-x 为增函数,∵x ≥1,∴t ≥f (1)=32,令h (t )=t 2-2mt +2=(t -m )2+2-m 2.⎝⎛⎭⎫t ≥32 若m ≥32,当t =m 时,h (t )min =2-m 2=-2,∴m =2.若m <32,当t =32时,h (t )min =174-3m =-2,解得m =2512>32,舍去综上可知m =2.12.(本小题满分13分)已知f (x )=log 21+x 1-x .(1)判断f (x )奇偶性并证明;(2)判断f (x )单调性并用单调性定义证明; (3)若f (x -3)+f ⎝⎛⎭⎫-13<0,求实数x 的取值范围. 解:(1)∵1+x1-x >0,∴-1<x <1,∴定义域为(-1,1)关于原点对称,又f (-x )=log 21-x 1+x =log 2⎝ ⎛⎭⎪⎫1+x 1-x -1=-log 21+x 1-x =-f (x ),∴f (x )为(-1,1)上的奇函数.(2) 设-1<x 1<x 2<1, 则f (x 1)-f (x 2)= log 21+x 11-x 1-log 21+x 21-x 2=log 2(1+x 1)(1-x 2)(1-x 1)(1+x 2). 又-1<x 1<x 2<1,∴(1+x 1)(1-x 2)-(1-x 1)(1+x 2)=2(x 1-x 2)<0, 即0<(1+x 1)(1-x 2)<(1-x 1)(1+x 2), ∴0<(1+x 1)(1-x 2)(1-x 1)(1+x 2)<1,∴log 2(1+x 1)(1-x 2)(1-x 1)(1+x 2)<0,∴f (x 1)<(fx 2),∴f (x )在(-1,1)上单调递增. (3)∵f (x )为(-1,1)上的奇函数, ∴f (x -3)<-f ⎝⎛⎭⎫-13=f ⎝⎛⎭⎫13. 又f (x )在(-1,1)上单调递增,∴-1<x -3<13,得2<x <103.。

相关文档
最新文档