材料科学基础习题及参考答案复习过程

合集下载

《材料科学基础》经典习题及答案全解

《材料科学基础》经典习题及答案全解

材料科学与基础习题集和答案第七章回复再结晶,还有相图的内容。

第一章1.作图表示立方晶体的()()()421,210,123晶面及[][][]346,112,021晶向。

2.在六方晶体中,绘出以下常见晶向[][][][][]0121,0211,0110,0112,0001等。

3.写出立方晶体中晶面族{100},{110},{111},{112}等所包括的等价晶面。

4.镁的原子堆积密度和所有hcp 金属一样,为0.74。

试求镁单位晶胞的体积。

已知Mg 的密度3Mg/m 74.1=mg ρ,相对原子质量为24.31,原子半径r=0.161nm 。

5.当CN=6时+Na 离子半径为0.097nm ,试问:1) 当CN=4时,其半径为多少?2) 当CN=8时,其半径为多少?6. 试问:在铜(fcc,a=0.361nm )的<100>方向及铁(bcc,a=0.286nm)的<100>方向,原子的线密度为多少?7.镍为面心立方结构,其原子半径为nm 1246.0=Ni r 。

试确定在镍的(100),(110)及(111)平面上12mm 中各有多少个原子。

8. 石英()2SiO 的密度为2.653Mg/m 。

试问: 1) 13m 中有多少个硅原子(与氧原子)?2) 当硅与氧的半径分别为0.038nm 与0.114nm 时,其堆积密度为多少(假设原子是球形的)?9.在800℃时1010个原子中有一个原子具有足够能量可在固体内移动,而在900℃时910个原子中则只有一个原子,试求其激活能(J/原子)。

10.若将一块铁加热至850℃,然后快速冷却到20℃。

试计算处理前后空位数应增加多少倍(设铁中形成一摩尔空位所需要的能量为104600J )。

11.设图1-18所示的立方晶体的滑移面ABCD 平行于晶体的上、下底面。

若该滑移面上有一正方形位错环,如果位错环的各段分别与滑移面各边平行,其柏氏矢量b ∥AB 。

太原理工大学材料科学基础习题及参考答案(全)

太原理工大学材料科学基础习题及参考答案(全)

太原理⼯⼤学材料科学基础习题及参考答案(全)太原理⼯⼤学材料科学基础习题及参考答案第⼀章原⼦结构与结合键习题1-1计算下列粒⼦的德布罗意波长:(1) 质量为10-10 kg,运动速度为0.01 m?s-1的尘埃;(2) 速度为103 m/s的氢原⼦;(3) 能量为300 eV的⾃由电⼦。

1-2怎样理解波函数ψ的物理意义?1-3在原⼦结构中,ψ2和ψ2dτ代表什么?1-4写出决定原⼦轨道的量⼦数取值规定,并说明其物理意义。

1-5试绘出s、p、d轨道的⼆维⾓度分布平⾯图。

1-6多电⼦原⼦中,屏蔽效应和钻穿效应是怎样影响电⼦的能级的?1-7写出下列原⼦的基态电⼦组态(括号内为原⼦序号):C (6),P (15),Cl (17),Cr (24) 。

1-8 形成离⼦键有哪些条件?其本质是什么?1-9 试述共价键的本质。

共价键理论包括哪些理论?各有什么缺点?1-10 何谓⾦属键?⾦属的性能与⾦属键关系如何?1-11 范德华键与氢键有何特点和区别?参考答案:1-1 利⽤公式λ = h/p = h/mv 、E = hν计算德布罗意波长λ。

1-8 离⼦键是由电离能很⼩、易失去电⼦的⾦属原⼦与电⼦亲合能⼤的⾮⾦属原⼦相互作⽤时,产⽣电⼦得失⽽形成的离⼦固体的结合⽅式。

1-9 共价键是由相邻原⼦共有其价电⼦来获得稳态电⼦结构的结合⽅式。

共价键理论包括价键理论、分⼦轨道理论和杂化轨道理论。

1-10 当⼤量⾦属原⼦的价电⼦脱离所属原⼦⽽形成⾃由电⼦时,由⾦属的正离⼦与⾃由电⼦间的静电引⼒使⾦属原⼦结合起来的⽅式为⾦属建。

由于存在⾃由电⼦,⾦属具有⾼导电性和导热性;⾃由电⼦能吸收光波能量产⽣跃迁,表现出有⾦属光泽、不透明;⾦属正离⼦以球星密堆⽅式组成,晶体原⼦间可滑动,表现出有延展性。

第⼆章材料的结构习题2-1定义下述术语,并注意它们之间的联系和区别。

晶系,空间群,平移群,空间点阵。

2-2名词解释:晶胞与空间格⼦的平⾏六⾯体,并⽐较它们的不同点。

材料科学基础-作业参考答案与解析

材料科学基础-作业参考答案与解析

材料科学基础练习题参考答案第一章原子排列1. 作图表示立方晶系中的(123),(012),(421)晶面和[102],[211],[346]晶向.附图1-1 有关晶面及晶向2. 分别计算面心立方结构与体心立方结构的{100},{110}和{111}晶面族的面间距, 并指出面间距最大的晶面(设两种结构的点阵常数均为a).解由面心立方和体心立方结构中晶面间的几何关系, 可求得不同晶面族中的面间距如附表1-1所示.附表1-1 立方晶系中的晶面间距晶面{100} {110} {111}面间距FCC2a24a33aBCC2a22a36a显然, FCC中{111}晶面的面间距最大, 而BCC中{110}晶面的面间距最大.注意:对于晶面间距的计算, 不能简单地使用公式, 应考虑组成复合点阵时, 晶面层数会增加.3. 分别计算fcc和bcc中的{100},{110}和{111}晶面族的原子面密度和<100>,<110>和<111>晶向族的原子线密度, 并指出两种结构的差别. (设两种结构的点阵常数均为a) 解原子的面密度是指单位晶面内的原子数; 原子的线密度是指晶面上单位长度所包含的原子数. 据此可求得原子的面密度和线密度如附表1-2所示.附表1-2 立方晶系中原子的面密度和线密度晶面/晶向{100} {110} {111} <100> <110> <111>面/线密度BCC21a22a233a1a22a233aFCC22a22a2433a1a2a33a可见, 在BCC中, 原子密度最大的晶面为{110}, 原子密度最大的晶向为<111>; 在FCC 中, 原子密度最大的晶面为{111}, 原子密度最大的晶向为<110>.4. 在(0110)晶面上绘出[2113]晶向.解详见附图1-2.附图1-2 六方晶系中的晶向5. 在一个简单立方二维晶体中, 画出一个正刃型位错和一个负刃型位错. 试求:(1) 用柏氏回路求出正、负刃型位错的柏氏矢量.(2) 若将正、负刃型位错反向时, 说明其柏氏矢量是否也随之反向.(3) 具体写出该柏氏矢量的方向和大小.(4) 求出此两位错的柏氏矢量和.解正负刃型位错示意图见附图1-3(a)和附图1-4(a).(1) 正负刃型位错的柏氏矢量见附图1-3(b)和附图1-4(b).(2) 显然, 若正、负刃型位错线反向, 则其柏氏矢量也随之反向.(3) 假设二维平面位于YOZ坐标面, 水平方向为Y轴, 则图示正、负刃型位错方向分别为[010]和[010], 大小均为一个原子间距(即点阵常数a).(4) 上述两位错的柏氏矢量大小相等, 方向相反, 故其矢量和等于0.6. 设图1-72所示立方晶体的滑移面ABCD平行于晶体的上下底面, 该滑移面上有一正方形位错环. 如果位错环的各段分别与滑移面各边平行, 其柏氏矢量b // AB, 试解答:(1) 有人认为“此位错环运动离开晶体后, 滑移面上产生的滑移台阶应为4个b”, 这种说法是否正确? 为什么?(2) 指出位错环上各段位错线的类型, 并画出位错移出晶体后, 晶体的外形、滑移方向和滑移量. (设位错环线的方向为顺时针方向)图1-72 滑移面上的正方形位错环 附图1-5 位错环移出晶体引起的滑移解 (1) 这种看法不正确. 在位错环运动移出晶体后, 滑移面上下两部分晶体相对移动的距离是由其柏氏矢量决定的. 位错环的柏氏矢量为b , 故其相对滑移了一个b 的距离.(2) A ′B ′为右螺型位错, C ′D ′为左螺型位错, B ′C ′为正刃型位错, D ′A ′为负刃型位错. 位错运动移出晶体后滑移方向及滑移量见附图1-5.7. 设面心立方晶体中的(111)晶面为滑移面, 位错滑移后的滑移矢量为[110]2a .(1) 在晶胞中画出此柏氏矢量b 的方向并计算出其大小.(2) 在晶胞中画出引起该滑移的刃型位错和螺型位错的位错线方向, 并写出此二位错线的晶向指数.解 (1) 柏氏矢量等于滑移矢量, 因此柏氏矢量的方向为[110], 大小为2/2a .(2) 刃型位错与柏氏矢量垂直, 螺型位错与柏氏矢量平行, 晶向指数分别为[112]和[110], 详见附图1-6.附图1-6 位错线与其柏氏矢量、滑移矢量8. 若面心立方晶体中有[101]2a b =的单位位错及[121]6a b =的不全位错, 此二位错相遇后产生位错反应.(1) 此反应能否进行? 为什么?(2) 写出合成位错的柏氏矢量, 并说明合成位错的性质.解 (1) 能够进行.因为既满足几何条件:[111]3a b b ==∑∑后前,又满足能量条件: . 22222133b a b a =>=∑∑后前. (2) [111]3a b =合, 该位错为弗兰克不全位错. 9. 已知柏氏矢量的大小为b = 0.25nm, 如果对称倾侧晶界的取向差θ = 1° 和10°, 求晶界上位错之间的距离. 从计算结果可得到什么结论?解 根据bD θ≈, 得到θ = 1°,10° 时, D ≈14.3nm, 1.43nm. 由此可知, θ = 10°时位错之间仅隔5~6个原子间距, 位错密度太大, 表明位错模型已经不适用了.第二章 固体中的相结构1. 已知Cd, In, Sn, Sb 等元素在Ag 中的固熔度极限(摩尔分数)分别为0.435, 0.210, 0.130, 0.078; 它们的原子直径分别为0.3042 nm, 0.314 nm, 0.316 nm, 0.3228 nm; Ag 的原子直径为0.2883 nm. 试分析其固熔度极限差异的原因, 并计算它们在固熔度极限时的电子浓度.答: 在原子尺寸因素相近的情况下, 熔质元素在一价贵金属中的固熔度(摩尔分数)受原子价因素的影响较大, 即电子浓度e /a 是决定固熔度(摩尔分数)的一个重要因素, 而且电子浓度存在一个极限值(约为1.4). 电子浓度可用公式A B B B (1)c Z x Z x =-+计算. 式中, Z A , Z B 分别为A, B 组元的价电子数; x B 为B 组元的摩尔分数. 因此, 随着熔质元素价电子数的增加, 极限固熔度会越来越小.Cd, In, Sn, Sb 等元素与Ag 的原子直径相差不超过15%(最小的Cd 为5.5%, 最大的Sb 为11.96%), 满足尺寸相近原则, 这些元素的原子价分别为2, 3, 4, 5价, Ag 为1价, 据此推断它们的固熔度极限越来越小, 实际情况正好反映了这一规律; 根据上面的公式可以计算出它们在固熔度(摩尔分数)极限时的电子浓度分别为1.435, 1.420, 1.390, 1.312.2. 碳可以熔入铁中而形成间隙固熔体, 试分析是α-Fe 还是γ-Fe 能熔入较多的碳. 答: α-Fe 为体心立方结构, 致密度为0.68; γ-Fe 为面心立方结构, 致密度为0.74. 显然, α-Fe 中的间隙总体积高于γ-Fe, 但由于α-Fe 的间隙数量多, 单个间隙半径却较小, 熔入碳原子将会产生较大的畸变, 因此, 碳在γ-Fe 中的固熔度较α-Fe 的大.3. 为什么只有置换固熔体的两个组元之间才能无限互熔, 而间隙固熔体则不能?答: 这是因为形成固熔体时, 熔质原子的熔入会使熔剂结构产生点阵畸变, 从而使体系能量升高. 熔质原子与熔剂原子尺寸相差越大, 点阵畸变的程度也越大, 则畸变能越高, 结构的稳定性越低, 熔解度越小. 一般来说, 间隙固熔体中熔质原子引起的点阵畸变较大,故不能无限互熔, 只能有限熔解.第三章 凝固1. 分析纯金属生长形态与温度梯度的关系.答: 纯金属生长形态是指晶体宏观长大时固-液界面的形貌. 界面形貌取决于界面前沿液相中的温度梯度.(1) 平面状长大: 当液相具有正温度梯度时, 晶体以平直界面方式推移长大. 此时, 界面上任何偶然的、小的凸起深入液相时, 都会使其过冷度减小, 长大速率降低或停止长大, 而被周围部分赶上, 因而能保持平直界面的推移. 长大过程中晶体沿平行温度梯度的方向生长, 或沿散热的反方向生长, 而其它方向的生长则受到限制.(2) 树枝状长大: 当液相具有负温度梯度时, 晶体将以树枝状方式生长. 此时, 界面上偶然的凸起深入液相时, 由于过冷度的增大, 长大速率越来越大; 而它本身生长时又要释放结晶潜热, 不利于近旁的晶体生长, 只能在较远处形成另一凸起. 这就形成了枝晶的一次轴, 在一次轴成长变粗的同时, 由于释放潜热使晶枝侧旁液体中也呈现负温度梯度, 于是在一次轴上又会长出小枝来, 称为二次轴, 在二次轴上又长出三次轴……由此而形成树枝状骨架, 故称为树枝晶(简称枝晶).2. 简述纯金属晶体长大机制及其与固-液界面微观结构的关系.答: 晶体长大机制是指晶体微观长大方式, 即液相原子添加到固相的方式, 它与固-液界面的微观结构有关.(1) 垂直长大方式: 具有粗糙界面的物质, 因界面上约有50% 的原子位置空着, 这些空位都可以接受原子, 故液相原子可以进入空位, 与晶体连接, 界面沿其法线方向垂直推移, 呈连续式长大.(2) 横向(台阶)长大方式: 包括二维晶核台阶长大机制和晶体缺陷台阶长大机制, 具有光滑界面的晶体长大往往采取该方式. 二维晶核模式, 认为其生长主要是利用系统的能量起伏, 使液相原子在界面上通过均匀形核形成一个原子厚度的二维薄层状稳定的原子集团, 然后依靠其周围台阶填充原子, 使二维晶核横向长大, 在该层填满后, 则在新的界面上形成新的二维晶核, 继续填满, 如此反复进行.晶体缺陷方式, 认为晶体生长是利用晶体缺陷存在的永不消失的台阶(如螺型位错的台阶或挛晶的沟槽)长大的.第四章 相图1. 在Al-Mg 合金中, x Mg 为0.15, 计算该合金中镁的w Mg 为多少.解 设Al 的相对原子量为M Al , 镁的相对原子量为M Mg , 按1mol Al-Mg 合金计算, 则镁的质量分数可表示为Mg MgMg Al Al Mg Mg 100%x M w x M x M =⨯+.将x Mg = 0.15, x Al = 0.85, M Mg = 24, M Al = 27代入上式中, 得到w Mg = 13.56%.2. 根据图4-117所示二元共晶相图, 试完成:(1) 分析合金I, II的结晶过程, 并画出冷却曲线.(2) 说明室温下合金I, II的相和组织是什么, 并计算出相和组织组成物的相对量.(3) 如果希望得到共晶组织加上相对量为5%的β初的合金, 求该合金的成分.图4-117 二元共晶相图附图4-1 合金I的冷却曲线附图4-2 合金II的冷却曲线解 (1) 合金I的冷却曲线参见附图4-1, 其结晶过程如下:1以上, 合金处于液相;1~2时, 发生匀晶转变L→α, 即从液相L中析出固熔体α, L和α的成分沿液相线和固相线变化, 达到2时, 凝固过程结束;2时, 为α相;2~3时, 发生脱熔转变, α→βII.合金II的冷却曲线参见附图4-2, 其结晶过程如下:1以上, 处于均匀液相;1~2时, 进行匀晶转变L →β;2时, 两相平衡共存, 0.50.9L β;2~2′ 时, 剩余液相发生共晶转变0.50.20.9L βα+;2~3时, 发生脱熔转变α→βII .(2) 室温下, 合金I 的相组成物为α + β, 组织组成物为α + βII .相组成物相对量计算如下:αβ0.900.20100%82%0.900.050.200.05100%18%0.900.05w w -=⨯=--=⨯=- 组织组成物的相对量与相的一致.室温下, 合金II 的相组成物为α + β, 组织组成物为β初 + (α+β).相组成物相对量计算如下:αβ0.900.80100%12%0.900.050.800.05100%88%0.900.05w w -=⨯=--=⨯=- 组织组成物相对量计算如下:β(α+β)0.800.50100%75%0.900.500.900.80100%25%0.900.50w w -=⨯=--=⨯=-初 (3) 设合金的成分为w B = x , 由题意知该合金为过共晶成分, 于是有β0.50100%5%0.900.50x w -=⨯=-初 所以, x = 0.52, 即该合金的成分为w B = 0.52.3. 计算w C 为0.04的铁碳合金按亚稳态冷却到室温后组织中的珠光体、二次渗碳体和莱氏体的相对量, 并计算组成物珠光体中渗碳体和铁素体及莱氏体中二次渗碳体、共晶渗碳体与共析渗碳体的相对量.解 根据Fe-Fe 3C 相图, w C = 4%的铁碳合金为亚共晶铸铁, 室温下平衡组织为 P + Fe 3C II + L d ′, 其中P 和Fe 3C II 系由初生奥氏体转变而来, 莱氏体则由共晶成分的液相转变而成, 因此莱氏体可由杠杆定律直接计算, 而珠光体和二次渗碳体则可通过两次使用杠杆定律间接计算出来.L d ′ 相对量: d L 4 2.11100%86.3%4.3 2.11w '-=⨯=-. Fe 3C II 相对量: 3II Fe C 4.34 2.110.77100% 3.1%4.3 2.11 6.690.77w --=⨯⨯=--.P 相对量: P 4.34 6.69 2.11100%10.6%4.3 2.11 6.690.77w --=⨯⨯=--. 珠光体中渗碳体和铁素体的相对量的计算则以共析成分点作为支点, 以w C = 0.001%和w C = 6.69%为端点使用杠杆定律计算并与上面计算得到的珠光体相对量级联得到.P 中F 相对量: F P 6.690.77100%9.38%6.690.001w w -=⨯⨯=-. P 中Fe 3C 相对量: 3Fe C 10.6%9.38% 1.22%w =-=.至于莱氏体中共晶渗碳体、二次渗碳体及共析渗碳体的相对量的计算, 也需采取杠杆定律的级联方式, 但必须注意一点, 共晶渗碳体在共晶转变线处计算, 而二次渗碳体及共析渗碳体则在共析转变线处计算.L d ′ 中共晶渗碳体相对量: d Cm L 4.3 2.11100%41.27%6.69 2.11w w '-=⨯⨯=-共晶L d ′ 中二次渗碳体相对量: d Cm L 6.69 4.3 2.110.77100%10.2%6.69 2.11 6.690.77w w '--=⨯⨯⨯=--II L d ′ 中共析渗碳体相对量:d Cm L 6.69 4.3 6.69 2.110.770.0218100% 3.9%6.69 2.11 6.690.77 6.690.0218w w '---=⨯⨯⨯⨯=---共析 4. 根据下列数据绘制Au-V 二元相图. 已知金和钒的熔点分别为1064℃和1920℃. 金与钒可形成中间相β(AuV 3); 钒在金中的固熔体为α, 其室温下的熔解度为w V = 0.19; 金在钒中的固熔体为γ, 其室温下的熔解度为w Au = 0.25. 合金系中有两个包晶转变, 即1400V V V 1522V V V (1) β(0.4)L(0.25)α(0.27)(2) γ(0.52)L(0.345)β(0.45)w w w w w w =+===+==℃℃解 根据已知数据绘制的Au-V 二元相图参见附图4-3.附图4-3 Au-V 二元相图第五章 材料中的扩散1. 设有一条直径为3cm 的厚壁管道, 被厚度为0.001cm 的铁膜隔开, 通过输入氮气以保持在膜片一边氮气浓度为1000 mol/m 3; 膜片另一边氮气浓度为100 mol/m 3. 若氮在铁中700℃时的扩散系数为4×10-7 cm 2 /s, 试计算通过铁膜片的氮原子总数.解 设铁膜片左右两边的氮气浓度分别为c 1, c 2, 则铁膜片处浓度梯度为7421510010009.010 mol /m 110c c c c x x x --∂∆-≈===-⨯∂∆∆⨯ 根据扩散第一定律计算出氮气扩散通量为 722732410(10)(9.010) 3.610 mol/(m s)c J D x---∂=-=-⨯⨯⨯-⨯=⨯∂ 于是, 单位时间通过铁膜片的氮气量为 3-22-63.610(310) 2.5410 mol/s 4J A π-=⨯⨯⨯⨯=⨯最终得到单位时间通过铁膜片的氮原子总数为-62318-1A () 2.5410 6.02102 3.0610 s N J A N =⨯=⨯⨯⨯⨯=⨯第六章 塑性变形1. 铜单晶体拉伸时, 若力轴为 [001] 方向, 临界分切应力为0.64 MPa, 问需要多大的拉伸应力才能使晶体开始塑性变形?解 铜为面心立方金属, 其滑移系为 {111}<110>, 4个 {111} 面构成一个八面体, 详见教材P219中的图6-12.当拉力轴为 [001] 方向时, 所有滑移面与力轴间的夹角相同, 且每个滑移面上的三个滑移方向中有两个与力轴的夹角相同, 另一个为硬取向(λ = 90°). 于是, 取滑移系(111)[101]进行计算.222222222222k s cos 3001111cos 2001(1)01cos cos 60.646 1.57 MPa.m mϕλϕλτσ==++⨯++==++⨯-++=====即至少需要1.57 MPa 的拉伸应力才能使晶体产生塑性变形.2. 什么是滑移、滑移线、滑移带和滑移系? 作图表示α-Fe, Al, Mg 中的最重要滑移系. 那种晶体的塑性最好, 为什么?答: 滑移是晶体在切应力作用下一部分相对于另一部分沿一定的晶面和晶向所作的平行移动; 晶体的滑移是不均匀的, 滑移部分与未滑移部分晶体结构相同. 滑移后在晶体表面留下台阶, 这就是滑移线的本质. 相互平行的一系列滑移线构成所谓滑移带. 晶体发生滑移时, 某一滑移面及其上的一个滑移方向就构成了一个滑移系.附图6-1 三种晶体点阵的主要滑移系α-Fe具有体心立方结构, 主要滑移系可表示为 {110}<111>, 共有6×2 = 12个; Al 具有面心立方结构, 其滑移系可表示为 {111}<110>, 共有4×3 = 12个; Mg具有密排六方结构, 主要滑移系可表示为{0001}1120<>, 共有1×3 = 3个. 晶体的塑性与其滑移系的数量有直接关系, 滑移系越多, 塑性越好; 滑移系数量相同时, 又受滑移方向影响, 滑移方向多者塑性较好, 因此, 对于α-Fe, Al, Mg三种金属, Al的塑性最好, Mg的最差, α-Fe 居中. 三种典型结构晶体的重要滑移系如附图6-1所示.3. 什么是临界分切应力? 影响临界分切应力的主要因素是什么? 单晶体的屈服强度与外力轴方向有关吗? 为什么?答:滑移系开动所需的作用于滑移面上、沿滑移方向的最小分切应力称为临界分切应力.临界分切应力τk的大小主要取决于金属的本性, 与外力无关. 当条件一定时, 各种晶体的临界分切应力各有其定值. 但它是一个组织敏感参数, 金属的纯度、变形速度和温度、金属的加工和热处理状态都对它有很大影响.如前所述, 在一定条件下, 单晶体的临界分切应力保持为定值, 则根据分切应力与外加轴向应力的关系: σs= τk/ m, m为取向因子, 反映了外力轴与滑移系之间的位向关系, 因此, 单晶体的屈服强度与外力轴方向关系密切. m越大, 则屈服强度越小, 越有利于滑移.4. 孪生与滑移主要异同点是什么? 为什么在一般条件下进行塑性变形时锌中容易出现挛晶, 而纯铁中容易出现滑移带?答: 孪生与滑移的异同点如附表6-1所示.附表6-1 晶体滑移与孪生的比较锌为密排六方结构金属, 主要滑移系仅3个, 因此塑性较差, 滑移困难, 往往发生孪生变形, 容易出现挛晶; 纯铁为体心立方结构金属, 滑移系较多, 共有48个, 其中主要滑移系有12个, 因此塑性较好, 往往发生滑移变形, 容易出现滑移带.第七章 回复与再结晶1. 已知锌单晶体的回复激活能为8.37×104J/mol, 将冷变形的锌单晶体在-50 ℃进行回复处理, 如去除加工硬化效应的25% 需要17 d, 问若在5 min 内达到同样效果, 需将温度提高多少摄氏度?解 根据回复动力学, 采用两个不同温度将同一冷变形金属的加工硬化效应回复到同样程度, 回复时间、温度满足下述关系:122111exp t Q t R T T ⎛⎫⎛⎫=-- ⎪ ⎪ ⎪⎝⎭⎝⎭整理后得到221111ln T t R T Q t =+.将41211223 K,/5/(172460),8.3710 J/mol, 8.314 J/(mol K)4896T t t Q R ==⨯⨯==⨯=⋅代入上式得到2274.7 K T =.因此, 需将温度提高21274.722351.7 T T T ∆=-=-=℃.2. 纯铝在553 ℃ 和627 ℃ 等温退火至完成再结晶分别需要40 h 和1 h, 试求此材料的再结晶激活能.解 再结晶速率v 再与温度T 的关系符合阿累尼乌斯(Arrhenius)公式, 即exp()Q v A RT=-再 其中, Q 为再结晶激活能, R 为气体常数.如果在两个不同温度T 1, T 2进行等温退火, 欲产生同样程度的再结晶所需时间分别为t 1, t 2, 则122112122111exp[()]ln(/)t Q t R T T RTT t t Q T T =--⇒=-依题意, 有T 1 = 553 + 273 = 826 K, T 2 = 627 + 273 = 900 K, t 1 = 40 h, t 2 = 1 h, 则58.314826900ln(40/1)3.0810J/mol 900826Q ⨯⨯⨯=⨯-3. 说明金属在冷变形、回复、再结晶及晶粒长大各阶段的显微组织、机械性能特点与主要区别.答: 金属在冷变形、回复、再结晶及晶粒长大各阶段的显微组织、机械性能特点与主要区别详见附表7-1.附表7-1 金属在冷变形、回复、再结晶及晶粒长大各阶段的显微组织、机械性能第八章固态相变。

材料科学基础习题含答案

材料科学基础习题含答案

材料科学基础考前重点复习题1.Mn 的同素异构体有一为立方结构,其晶格常数为0.632nm,密度为7.26 g/cm 3,原子半径r等于0.122nm,问Mn 晶胞中有几个原子,其致密度为多少?答案解析:习题册P9 2-22.2.如图1 所示,设有两个相晶粒与一个相晶粒相交于一公共晶棱,并形成三叉晶界,已知相所张的两面角为80℃,界面能为0.60Jm-2, 试求相与相的界面能。

图1答案解析:习题册P17 3-42.3.有两种激活能分别为Q1=53.7kJ/mol和Q2=201kJ/mol 的扩散反应,观察在温度从25℃升高到800℃时对这两种扩散的影响,并对结果进行评述。

答案解析:习题册P21 4-8.4.论述强化金属材料的方法、特点和机理。

答:(1)结晶强化。

通过控制结晶条件,在凝固结晶以后获得良好的宏观组织和显微组织,提高金属材料的性能。

包括细化晶粒,提高金属材料纯度。

(2)形变强化。

金属材料在塑性变形后位错运动的阻力增加,冷加工塑性变形提高其强度。

(3)固溶强化。

通过合金化(加入合金元素)组成固溶体,使金属材料强化。

(4)相变强化。

合金化的金属材料,通过热处理等手段发生固态相变,获得需要的组织结构,使金属材料强化。

(5)晶界强化。

晶界部位自由能较高,存在着大量缺陷和空穴。

低温时,晶界阻碍位错运动,晶界强度高于晶粒本身;高温时,沿晶界扩散速度比晶内扩散速度快,晶界强度显著降低。

强化晶界可强化金属材料。

5.什么是回复,请简述金属材料冷变形后回复的机制。

试举例说明回复的作用。

答:(1)回复是冷变形金属在低温加热时,其显微组织无可见变化,但物理性能、力学性能却部分恢复到冷变形以前的过程。

(2)回复机制:低温回复主要与点缺陷迁移有关,冷变形时产生大量的点缺陷,空穴与间隙原子。

温度较高时,中温回复会发生位错运动和重新分布。

位错滑移,异号位错相遇而抵消,位错缠结重新排列,位错密度降低。

高温回复,刀刃位错可获得足够的能量产生攀移,垂直排列形成亚晶界,多边化亚晶粒,位错弹性畸变能降低。

材料科学基础复习题及答案

材料科学基础复习题及答案

单项选择题:(每一道题1分)第1章原子结构与键合1.高分子材料中的C-H化学键属于。

(A)氢键(B)离子键(C)共价键2.属于物理键的是。

(A)共价键(B)范德华力(C)氢键3.化学键中通过共用电子对形成的是。

(A)共价键(B)离子键(C)金属键第2章固体结构4.面心立方晶体的致密度为 C 。

(A)100% (B)68% (C)74%5.体心立方晶体的致密度为 B 。

(A)100% (B)68% (C)74%6.密排六方晶体的致密度为 C 。

(A)100% (B)68% (C)74%7.以下不具有多晶型性的金属是。

(A)铜(B)锰(C)铁8.面心立方晶体的孪晶面是。

(A){112} (B){110} (C){111}9.fcc、bcc、hcp三种单晶材料中,形变时各向异性行为最显著的是。

(A)fcc (B)bcc (C)hcp10.在纯铜基体中添加微细氧化铝颗粒不属于一下哪种强化方式?(A)复合强化(B)弥散强化(C)固溶强化11.与过渡金属最容易形成间隙化合物的元素是。

(A)氮(B)碳(C)硼12.以下属于正常价化合物的是。

(A)Mg2Pb (B)Cu5Sn (C)Fe3C第3章晶体缺陷13.刃型位错的滑移方向与位错线之间的几何关系?(A)垂直(B)平行(C)交叉14.能进行攀移的位错必然是。

(A)刃型位错(B)螺型位错(C)混合位错15.在晶体中形成空位的同时又产生间隙原子,这样的缺陷称为。

(A)肖特基缺陷(B)弗仑克尔缺陷(C)线缺陷16.原子迁移到间隙中形成空位-间隙对的点缺陷称为(A)肖脱基缺陷(B)Frank缺陷(C)堆垛层错17.以下材料中既存在晶界、又存在相界的是(A)孪晶铜(B)中碳钢(C)亚共晶铝硅合金18.大角度晶界具有____________个自由度。

(A)3 (B)4 (C)5第4章固体中原子及分子的运动19.菲克第一定律描述了稳态扩散的特征,即浓度不随变化。

(A)距离(B)时间(C)温度20.在置换型固溶体中,原子扩散的方式一般为。

材料科学基础课后习题及参考答案

材料科学基础课后习题及参考答案

绪论1、仔细观察一下白炽灯泡,会发现有多少种不同的材料每种材料需要何种热学、电学性质2、为什么金属具有良好的导电性和导热性3、为什么陶瓷、聚合物通常是绝缘体4、铝原子的质量是多少若铝的密度为cm3,计算1mm3中有多少原子5、为了防止碰撞造成纽折,汽车的挡板可有装甲制造,但实际应用中为何不如此设计说出至少三种理由。

6、描述不同材料常用的加工方法。

7、叙述金属材料的类型及其分类依据。

8、试将下列材料按金属、陶瓷、聚合物或复合材料进行分类:黄铜钢筋混凝土橡胶氯化钠铅-锡焊料沥青环氧树脂镁合金碳化硅混凝土石墨玻璃钢9、 Al2O3陶瓷既牢固又坚硬且耐磨,为什么不用Al2O3制造铁锤晶体结构1、解释下列概念晶系、晶胞、晶胞参数、空间点阵、米勒指数(晶面指数)、离子晶体的晶格能、原子半径与离子半径、配位数、离子极化、同质多晶与类质同晶、正尖晶石与反正尖晶石、反萤石结构、铁电效应、压电效应.2、(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求出该晶面的米勒指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的米勒指数。

3、在立方晶系的晶胞中画出下列米勒指数的晶面和晶向:(001)与[210],(111)与[112],(110)与[111],(322)与[236],(257)与[111],(123)与[121],(102),(112),(213),[110],[111],[120],[321]4、写出面心立方格子的单位平行六面体上所有结点的坐标。

5、已知Mg2+半径为,O2-半径为,计算MgO晶体结构的堆积系数与密度。

6、计算体心立方、面心立方、密排六方晶胞中的原子数、配位数、堆积系数。

7、从理论计算公式计算NaC1与MgO的晶格能。

MgO的熔点为2800℃,NaC1为80l℃, 请说明这种差别的原因。

8、根据最密堆积原理,空间利用率越高,结构越稳定,金钢石结构的空间利用率很低(只有%),为什么它也很稳定9、证明等径圆球面心立方最密堆积的空隙率为25.9%;10、金属镁原子作六方密堆积,测得它的密度为克/厘米3,求它的晶胞体积。

材料科学基础课后习题答案

材料科学基础课后习题答案

材料科学基础课后习题答案第一篇:材料科学基础课后习题答案第1章习题1-10 纯铁点阵常数0.286nm,体心立方结构,求1cm3中有多少铁原子。

解:体心立方结构单胞拥有两个原子,单胞的体积为V=(0.286×10-8)3 cm3,所以1cm3中铁原子的数目为nFe= 122⨯2=8.55⨯10(2.86⨯10-8)31-11 一个位错环能否各部分都是螺型位错,能否各部分都是刃型位错?为什么?解:螺型位错的柏氏矢量与位错线平行,一根位错只有一个柏氏矢量,而一个位错环不可能与一个方向处处平行,所以一个位错环不能各部分都是螺型位错。

刃位错的柏氏矢量与位错线垂直,如果柏氏矢量垂直位错环所在的平面,则位错环处处都是刃型位错。

这种位错的滑移面是位错环与柏氏矢量方向组成的棱柱面,这种位错又称棱柱位错。

1-15 有一正方形位错线,其柏氏矢量及位错线的方向如图1-51所示。

试指出图中各段位错线的性质,并指出刃型位错额外串原子面所处的位置。

D CA B解:由柏氏矢量与位错线的关系可以知道,DC是右螺型位错,BA是左螺型位错。

由右手法则,CB为正刃型位错,多余半原子面在纸面上方。

AD为负刃型位错,多余半原子面在纸面下方。

第二篇:会计学基础课后习题答案《会计学基础》(第五版)课后练习题答案第四章习题一1、借:银行存款400 000贷:实收资本——A企业400 0002、借:固定资产400 000贷:实收资本——B企业304 000资本公积——资本溢价0003、借:银行存款000贷:短期借款0004、借:短期借款000应付利息(不是财务费用,财务费用之前已经记过)000贷:银行存款0005、借:银行存款400 000贷:长期借款400 0006、借:长期借款000应付利息000贷:银行存款000习题二1、4月5日购入A材料的实际单位成本=(53 000+900)/980=55(元/公斤)4月10日购入A材料的实际单位成本=(89 000+1 000)/1 500=60(元)2、本月发出A材料的实际成本=(600×50+600×55)+(380×55+1 020×60)=63 000+82 100=145 100(元)3、月末结存A材料的实际成本=(600×50)+[(53 000+900)+(89 000+1 000)]-145 100=28 800(元)习题三1、借:生产成本——A产品000——B产品000贷:原材料——甲材料000——乙材料0002、借:生产成本——A产品000 ——B产品000制造费用000贷:应付职工薪酬0003、借:制造费用500贷:原材料——丙材料5004、借:制造费用000贷:银行存款0005、借:制造费用000贷:累计折旧0006、本月发生的制造费用总额=5 000+500+2 000+1 000=8 500(元)制造费用分配率=8 500/(20 000+10 000)×100%=28.33%A产品应负担的制造费用=20 000×28.33%=5 666(元)B产品应负担的制造费用=8 500-5 666=2 834(元)借:生产成本——A产品——B产品贷:制造费用7、借:库存商品——A产品贷:生产成本——A产品习题四1、借:银行存款贷:主营业务收入2、借:应收账款——Z公司贷:主营业务收入银行存款3、借:主营业务成本贷:库存商品——A产品——B产品4、借:营业税金及附加贷:应交税费——应交消费税5、借:营业税金及附加贷:应交税费6、借:销售费用贷:银行存款7、借:销售费用贷:银行存款8、借:银行存款贷:其他业务收入借:其他业务成本贷:原材料——乙材料9、借:管理费用贷:应付职工薪酬10、借:管理费用贷:累计折旧11、借:管理费用贷:库存现金12、借:财务费用贷:银行存款13、借:银行存款贷:营业外收入14、借:主营业务收入其他业务收入营业外收入666 2 834 500 47 666 47 666 80 000 80 000 201 000200 000 000 142 680 42 680000 14 000 14 000 1 400 400 3 000 000 1 000 000 4 000 000 3 000 000 4 560 560 2 000 000300300400400 3 000 000 280 000 4 000 3 000贷:本年利润287 000借:本年利润172 340贷:主营业务成本680其他业务成本000营业税金及附加400销售费用000管理费用860财务费用400 本月实现的利润总额=287 000-172 340=114 660(元)本月应交所得税=114 660×25%=28 665(元)本月实现净利润=114 660-28 665=85 995(元)习题五1、借:所得税费用贷:应交税费——应交所得税借:本年利润贷:所得税费用2、2007的净利润=6 000 000-1 500 000=4 500 000(元)借:本年利润贷:利润分配——未分配利润3、借:利润分配——提取法定盈余公积贷:盈余公积——法定盈余公积4、借:利润分配——应付现金股利贷:应付股利第五章习题一1、借:银行存款固定资产贷:实收资本——M公司——N公司2、借:原材料——A材料——B材料贷:银行存款3、借:应付账款——丙公司贷:银行存款4、借:银行存款贷:短期借款5、借:固定资产贷:银行存款6、借:生产成本——甲产品——乙产品贷:原材料——A材料——B材料 500 000500 000 1 500 000500 000 4 500 000 4 500 000450 000450 000 1 000 000 1 000 000 1 000 000 1 000 000 1 000 000 1 000 000 50 000 50 000000 50 000 50 000500 000500 000200 000200 000000 80 000000 80 0007、借:其他应收款——王军000贷:库存现金0008、借:制造费用000管理费用贷:原材料——A材料0009、借:管理费用500贷:库存现金50010、借:原材料——A材料000贷:应付账款00011、借:应付职工薪酬200 000贷:银行存款200 00012、借:银行存款320 000贷:主营业务收入——甲产品320 00013、借:应收账款250 000贷:主营业务收入——乙产品250 00014、借:短期借款200 000应付利息000财务费用000贷:银行存款209 00015、借:销售费用贷:银行存款00016、借:管理费用300贷:其他应收款——王军000库存现金30017、借:生产成本——甲产品000——乙产品000制造费用000管理费用000贷:应付职工薪酬200 00018、借:制造费用000管理费用000贷:累计折旧00019、借:生产成本——甲产品000——乙产品000制造费用000管理费用000贷:应付职工薪酬000 20、借:主营业务成本381 000贷:库存商品——甲产品196 000——乙产品185 00021、制造费用总额=5 000+10 000+35 000+1 000=51 000(元)制造费用分配率=51 000/(90 000+70 000)×100%=31.875% 甲产品应分配的制造费用=90 000×31.875%=28 687.5(元)乙产品应分配的制造费用=70 000×31.875%=22 312.5(元)借:生产成本——甲产品687.5——乙产品312.5贷:制造费用00022、甲产品的实际成本=120 000+150 000+90 000+9 000+28 687.5=397 687.5(元)借:库存商品——甲产品397 687.5贷:生产成本——甲产品397 687.523、借:主营业务收入——甲产品320 000——乙产品250 000贷:本年利润借:本年利润贷:主营业务成本管理费用销售费用财务费用24、本月利润总额=570 000-487 800=82 200(元)本月应交所得税=82 200×25%=20 550(元)借:所得税费用贷:应交税费——应交所得税借:本年利润贷:所得税费用25、本月净利润=82 200-20 550=61 650(元)提取法定盈余公积=61 650×10%=6 165(元)借:利润分配——提取法定盈余公积贷:盈余公积——法定盈余公积26、借:利润分配——应付现金股利贷:应付股利570 000 487 800381 000 53 800 50 000 000 20 550 20 550 20 550 20 550 6 165 165 30 825 30 825第三篇:《机械设计基础》课后习题答案模块八一、填空1、带传动的失效形式有打滑和疲劳破坏。

《材料科学基础》习题附答案

《材料科学基础》习题附答案

第二章思考题与例题1. 离子键、共价键、分子键和金属键的特点,并解释金属键结合的固体材料的密度比离子键或共价键固体高的原因?2. 从结构、性能等方面描述晶体与非晶体的区别。

3. 何谓理想晶体?何谓单晶、多晶、晶粒及亚晶?为什么单晶体成各向异性而多晶体一般情况下不显示各向异性?何谓空间点阵、晶体结构及晶胞?晶胞有哪些重要的特征参数?4. 比较三种典型晶体结构的特征。

(Al、α-Fe、Mg三种材料属何种晶体结构?描述它们的晶体结构特征并比较它们塑性的好坏并解释。

)何谓配位数?何谓致密度?金属中常见的三种晶体结构从原子排列紧密程度等方面比较有何异同?5. 固溶体和中间相的类型、特点和性能。

何谓间隙固溶体?它与间隙相、间隙化合物之间有何区别?(以金属为基的)固溶体与中间相的主要差异(如结构、键性、性能)是什么?6. 已知Cu的原子直径为 2.56A,求Cu的晶格常数,并计算1mm3Cu的原子数。

7. 已知Al相对原子质量Ar(Al)=26.97,原子半径γ=0.143nm,求Al晶体的密度。

8 bcc铁的单位晶胞体积,在912℃时是0.02464nm3;fcc铁在相同温度时其单位晶胞体积是0.0486nm3。

当铁由bcc转变为fcc时,其密度改变的百分比为多少?9. 何谓金属化合物?常见金属化合物有几类?影响它们形成和结构的主要因素是什么?其性能如何?10. 在面心立方晶胞中画出[012]和[123]晶向。

在面心立方晶胞中画出(012)和(123)晶面。

11. 设晶面(152)和(034)属六方晶系的正交坐标表述,试给出其四轴坐标的表示。

反之,求(31)及(2112)的正交坐标的表示。

(练习),上题中均改为相应晶向指数,求12相互转换后结果。

12.在一个立方晶胞中确定6个表面面心位置的坐标,6个面心构成一个正八面体,指出这个八面体各个表面的晶面指数,各个棱边和对角线的晶向指数。

13. 写出立方晶系的{110}、{100}、{111}、{112}晶面族包括的等价晶面,请分别画出。

材料科学基础课后习题答案

材料科学基础课后习题答案

《材料科学基础‎》课后习题答案‎第一章材料结构的基‎本知识4. 简述一次键和‎二次键区别答:根据结合力的‎强弱可把结合‎键分成一次键‎和二次键两大‎类。

其中一次键的‎结合力较强,包括离子键、共价键和金属‎键。

一次键的三种‎结合方式都是‎依靠外壳层电‎子转移或共享‎以形成稳定的‎电子壳层,从而使原子间‎相互结合起来‎。

二次键的结合‎力较弱,包括范德瓦耳‎斯键和氢键。

二次键是一种‎在原子和分子‎之间,由诱导或永久‎电偶相互作用‎而产生的一种‎副键。

6. 为什么金属键‎结合的固体材‎料的密度比离‎子键或共价键‎固体为高?答:材料的密度与‎结合键类型有‎关。

一般金属键结‎合的固体材料‎的高密度有两‎个原因:(1)金属元素有较‎高的相对原子‎质量;(2)金属键的结合‎方式没有方向‎性,因此金属原子‎总是趋于密集‎排列。

相反,对于离子键或‎共价键结合的‎材料,原子排列不可‎能很致密。

共价键结合时‎,相邻原子的个‎数要受到共价‎键数目的限制‎;离子键结合时‎,则要满足正、负离子间电荷‎平衡的要求,它们的相邻原‎子数都不如金‎属多,因此离子键或‎共价键结合的‎材料密度较低‎。

9. 什么是单相组‎织?什么是两相组‎织?以它们为例说‎明显微组织的‎含义以及显微‎组织对性能的‎影响。

答:单相组织,顾名思义是具‎有单一相的组‎织。

即所有晶粒的‎化学组成相同‎,晶体结构也相‎同。

两相组织是指‎具有两相的组‎织。

单相组织特征‎的主要有晶粒‎尺寸及形状。

晶粒尺寸对材‎料性能有重要‎的影响,细化晶粒可以‎明显地提高材‎料的强度,改善材料的塑‎性和韧性。

单相组织中,根据各方向生‎长条件的不同‎,会生成等轴晶‎和柱状晶。

等轴晶的材料‎各方向上性能‎接近,而柱状晶则在‎各个方向上表‎现出性能的差‎异。

对于两相组织‎,如果两个相的‎晶粒尺度相当‎,两者均匀地交‎替分布,此时合金的力‎学性能取决于‎两个相或者两‎种相或两种组‎织组成物的相‎对量及各自的‎性能。

材料科学基础习题 含答案

材料科学基础习题 含答案

材料科学基础考前重点复习题1. Mn 的同素异构体有一为立方结构,其晶格常数α为0.632nm ,密度ρ为26.7g/cm 3,原子半径r 等于0.122nm ,问Mn 晶胞中有几个原子,其致密度为多少?答案解析:习题册 P9 2-22.2. 如图1所示,设有两个α相晶粒与一个β相晶粒相交于一公共晶棱,并形成三叉晶界,已知β相所张的两面角为80℃,界面能ααγ为0.60Jm -2, 试求α相与β相的界面能αβγ。

图1答案解析:习题册 P17 3-42.3. 有两种激活能分别为1Q =53.7kJ/mol 和2Q =201kJ/mol 的扩散反应,观察在温度从25℃升高到800℃时对这两种扩散的影响,并对结果进行评述。

答案解析:习题册 P21 4-8.4. 论述强化金属材料的方法、特点和机理。

答:(1)结晶强化。

通过控制结晶条件,在凝固结晶以后获得良好的宏观组织和显微组织,提高金属材料的性能。

包括细化晶粒,提高金属材料纯度。

(2)形变强化。

金属材料在塑性变形后位错运动的阻力增加,冷加工塑性变形提高其强度。

(3)固溶强化。

通过合金化(加入合金元素)组成固溶体,使金属材料强化。

(4)相变强化。

合金化的金属材料,通过热处理等手段发生固态相变,获得需要的组织结构,使金属材料强化。

(5)晶界强化。

晶界部位自由能较高,存在着大量缺陷和空穴。

低温时,晶界阻碍位错运动,晶界强度高于晶粒本身;高温时,沿晶界扩散速度比晶内扩散速度快,晶界强度显着降低。

强化晶界可强化金属材料。

5. 什么是回复,请简述金属材料冷变形后回复的机制。

试举例说明回复的作用。

答:(1)回复是冷变形金属在低温加热时,其显微组织无可见变化,但物理性能、力学性能却部分恢复到冷变形以前的过程。

(2)回复机制:低温回复主要与点缺陷迁移有关,冷变形时产生大量的点缺陷,空穴与间隙原子。

温度较高时,中温回复会发生位错运动和重新分布。

位错滑移,异号位错相遇而抵消,位错缠结重新排列,位错密度降低。

材料科学基础复习题及答案

材料科学基础复习题及答案

一、填空题1. 每个面心立方晶胞中的原子数为 4 ,其配位数为12 。

3a, 配2.晶格常数为a的体心立方晶胞, 其原子数为 2 , 原子半径为4/位数为 8 ,致密度为 0.68 。

3. 刃型位错的柏氏矢量与位错线互相垂直 , 螺型位错的柏氏矢量与位错线互相平行。

4. 螺型位错的位错线平行于滑移方向,位错线的运动方向垂直于位错线。

5. 在过冷液体中,晶胚尺寸小于临界尺寸时不能自发长大。

6. 均匀形核既需要结构起伏,又需要能量起伏。

7. 纯金属结晶时,固液界面按微观结构分为光滑界面和粗糙界面。

8.纯金属的实际开始结晶温度总是低于理论结晶温度,这种现象称为过冷,理论结晶温度与实际开始结晶温度之差称为过冷度。

9.合金中的基本相结构,有固溶体和金属化合物两类,其中前者具有较高的综合机械性能,适宜做基体相;后者具有较高的熔点和硬度,适宜做强化相。

10. 间隙相和间隙化合物主要受组元的原子尺寸因素控制。

11.相律是分析相图的重要工具,当系统的压力为常数时,相律的表达式为f=c-p+1。

12.根据相律,二元合金结晶时,最多可有 3 个相平衡共存,这时自由度为0 。

13.根据相区接触法则可以推定,两个单相区之间必定有一个两相区,两个两相区之间必须以单相区或三相共存水平线隔开。

二元相图的三相区是一条水平线,该区必定与两相区以点接触,与单相区以线接触。

14.铸锭的宏观组织是由表层细晶区、柱状晶区、中心等轴晶区三个区组成。

15.莱氏体是共晶转变所形成的奥氏体和渗碳体组成的混合物。

16. 相变反应式L(液)→α(固)+β(固)表示共晶反应;γ(固)→α(固)+β(固)表示共析反应。

17. 固溶体合金结晶时,其平衡分配系数K o 表示固液两平衡相中的 溶质浓度之比。

18. 铁碳合金中,一次渗碳体由 液相 产生,二次渗碳体由 奥氏体 产生,三次渗碳体由 铁素体 产生。

19. 一个滑移系是由 滑移面 和 滑移方向 组成。

20. 面心立方晶格的滑移系有 12 个,体心立方晶格的滑移系有 12 个。

材料科学基础习题及参考答案复习过程

材料科学基础习题及参考答案复习过程

材料科学基础习题及参考答案复习过程材料科学基础习题及参考答案材料科学基础参考答案材料科学基础第⼀次作业1.举例说明各种结合键的特点。

⑴⾦属键:电⼦共有化,⽆饱和性,⽆⽅向性,趋于形成低能量的密堆结构,⾦属受⼒变形时不会破坏⾦属键,良好的延展性,⼀般具有良好的导电和导热性。

⑵离⼦键:⼤多数盐类、碱类和⾦属氧化物主要以离⼦键的⽅式结合,以离⼦为结合单元,⽆⽅向性,⽆饱和性,正负离⼦静电引⼒强,熔点和硬度均较⾼。

常温时良好的绝缘性,⾼温熔融状态时,呈现离⼦导电性。

⑶共价键:有⽅向性和饱和性,原⼦共⽤电⼦对,配位数⽐较⼩,结合牢固,具有结构稳定、熔点⾼、质硬脆等特点,导电能⼒差。

⑷范德⽡⽿斯⼒:⽆⽅向性,⽆饱和性,包括静电⼒、诱导⼒和⾊散⼒。

结合较弱。

⑸氢键:极性分⼦键,存在于HF,H2O,NF3有⽅向性和饱和性,键能介于化学键和范德⽡尔斯⼒之间。

2.在⽴⽅晶体系的晶胞图中画出以下晶⾯和晶向:(1 0 2)、(1 1 -2)、(-2 1 -3),[1 1 0],[1 1 -1],[1 -2 0]和[-3 2 1]。

(213)(112)(102)[111][110][120][321]3. 写出六⽅晶系的{1 1 -20},{1 0 -1 2}晶⾯族和<2 -1 -1 0>,<-1 0 1 1>晶向族中各等价晶⾯及等价晶向的具体指数。

{1120}的等价晶⾯:(1120)(2110)(1210)(1120)(2110)(1210) {1012}的等价晶⾯:(1012)(1102)(0112)(1012)(1102)(0112)(1012)(1102)(0112)(1012)(1102)(0112)2110<>的等价晶向:[2110][1210][1120][2110][1210][1120] 1011<>的等价晶向:[1011][1101][0111][0111][1101][1011][1011][1101][0111][0111][1101][1011]4⽴⽅点阵的某⼀晶⾯(hkl )的⾯间距为M /,其中M 为⼀正整数,为晶格常数。

材料科学基础复习题与部分答案

材料科学基础复习题与部分答案

单项选择题:第 1 章原子结构与键合1.高分子材料中的 C-H 化学键属于。

(A)氢键(B )离子键( C)共价键2.属于物理键的是。

( A )共价键( B)范德华力( C)离子键3.化学键中通过共用电子对形成的是。

( A )共价键( B)离子键( C)金属键第 2章固体结构4.以下不具有多晶型性的金属是。

(A)铜( B)锰( C)铁5.fcc 、 bcc 、hcp 三种单晶材料中,形变时各向异性行为最显著的是。

( A ) fcc( B) bcc( C) hcp6.与过渡金属最容易形成间隙化合物的元素是。

(A)氮( B)碳( C)硼7.面心立方晶体的孪晶面是。

( A ) {112}(B ) {110}( C) {111}8.以下属于正常价化合物的是。

( A ) Mg 2Pb(B ) Cu5Sn( C) Fe3C第 3章晶体缺陷9.在晶体中形成空位的同时又产生间隙原子,这样的缺陷称为。

( A )肖特基缺陷(B )弗仑克尔缺陷( C)线缺陷10.原子迁移到间隙中形成空位 -间隙对的点缺陷称为。

( A )肖脱基缺陷(B ) Frank 缺陷( C)堆垛层错11.刃型位错的滑移方向与位错线之间的几何关系是?( A )垂直(B)平行(C)交叉12.能进行攀移的位错必然是。

( A )刃型位错(B)螺型位错(C)混合位错13.以下材料中既存在晶界、又存在相界的是( A )孪晶铜(B)中碳钢(C)亚共晶铝硅合金14.大角度晶界具有 ____________ 个自由度。

(A)3(B)4(C)5第 4 章固体中原子及分子的运动15.菲克第一定律描述了稳态扩散的特征,即浓度不随变化。

( A )距离(B)时间(C)温度16.在置换型固溶体中,原子扩散的方式一般为。

( A )原子互换机制(B)间隙机制(C)空位机制17.固体中原子和分子迁移运动的各种机制中,得到实验充分验证的是( A )间隙机制(B)空位机制(C)交换机制18.原子扩散的驱动力是。

《材料科学基础》习题及参考答案

《材料科学基础》习题及参考答案

形核功,还是可以成核的。
答案
(7)测定某纯金属铸件结晶时的最大过冷度,其实测
值与用公式ΔT=0.2Tm计算值基本一致。
答案
(8) 某些铸件结晶时,由于冷却较快,均匀形核率N1
提高,非均匀形核率N2也提高,故总的形核率为N=
N1 +N2。
答案
返回
53
(9) 若在过冷液体中,外加10 000颗形核剂,则结晶
❖ ②比较Cu-10% Sn合金铸件和Cu-30%合金铸件的铸造性能 及铸造组织,说明Cu-10% Sn合金铸件中有许多分散砂眼的 原因。
③ω(Sn}分别为2%,11%和15%的青铜合金,哪一种可进行 压力加工?哪种可利用铸造法来制造机件?
答案
返7回8
❖ 9.如下图所示,已知A,B,C三组元固态完全不互溶,质量 分数分别84%A,,10%B,10%C的O合金在冷却过程中将进 行二元共晶反应和三元共晶反应,在二元共晶反应开始时, 该合金液相成分(a点)为60%A,20%B,20%C,而三元共 晶反应开始时的液相成分(E点)为50%A,10%B,40%C。
答案
返回
6
❖ 6.位错受力后运动方向处处垂直于位错线,在运动
过程中是可变的,晶体作相对滑动的方向应是什么
方向?
答案
❖ 7.位错线上的割阶一般如何形成?
答案
❖ 8.界面能最低的界面是什么界面?
答案
❖ 9. “小角度晶界都是由刃型位错排成墙而构成的”这
种说法对吗?
答案
返回
7
三、综合题
❖ 1. 作图表示立方晶体的(123)(0 -1 -2) (421)晶面及[-102][-211][346]晶向。 答案
❖ 9. 在Fe中形成1mol 空位的能量为104. 67kJ,

材料科学基础复习试题(卷)和部分答案解析

材料科学基础复习试题(卷)和部分答案解析

材料科学基础复习试题(卷)和部分答案解析单项选择题:第1章原⼦结构与键合1.⾼分⼦材料中的C-H化学键属于。

(A)氢键(B)离⼦键(C)共价键2.属于物理键的是。

(A)共价键(B)范德华⼒(C)离⼦键3.化学键中通过共⽤电⼦对形成的是。

(A)共价键(B)离⼦键(C)⾦属键第2章固体结构4.以下不具有多晶型性的⾦属是。

(A)铜(B)锰(C)铁5.fcc、bcc、hcp三种单晶材料中,形变时各向异性⾏为最显著的是。

(A)fcc (B)bcc (C)hcp6.与过渡⾦属最容易形成间隙化合物的元素是。

(A)氮(B)碳(C)硼7.⾯⼼⽴⽅晶体的孪晶⾯是。

(A){112} (B){110} (C){111}8.以下属于正常价化合物的是。

(A)Mg2Pb (B)Cu5Sn (C)Fe3C第3章晶体缺陷9.在晶体中形成空位的同时⼜产⽣间隙原⼦,这样的缺陷称为。

(A)肖特基缺陷(B)弗仑克尔缺陷(C)线缺陷10.原⼦迁移到间隙中形成空位-间隙对的点缺陷称为。

(A)肖脱基缺陷(B)Frank缺陷(C)堆垛层错11.刃型位错的滑移⽅向与位错线之间的⼏何关系是?(A)垂直(B)平⾏(C)交叉12.能进⾏攀移的位错必然是。

(A)刃型位错(B)螺型位错(C)混合位错13.以下材料中既存在晶界、⼜存在相界的是(A)孪晶铜(B)中碳钢(C)亚共晶铝硅合⾦14.⼤⾓度晶界具有____________个⾃由度。

(A)3 (B)4 (C)5第4章固体中原⼦及分⼦的运动15.菲克第⼀定律描述了稳态扩散的特征,即浓度不随变化。

(A)距离(B)时间(C)温度16.在置换型固溶体中,原⼦扩散的⽅式⼀般为。

(A)原⼦互换机制(B)间隙机制(C)空位机制17.固体中原⼦和分⼦迁移运动的各种机制中,得到实验充分验证的是(A)间隙机制(B)空位机制(C)交换机制18.原⼦扩散的驱动⼒是。

(4.2⾮授课内容)(A)组元的浓度梯度(B)组元的化学势梯度(C)温度梯度19.A和A-B合⾦焊合后发⽣柯肯达尔效应,测得界⾯向A试样⽅向移动,则。

《材料科学基础》上册习题与答案(大学期末复习资料).docx

《材料科学基础》上册习题与答案(大学期末复习资料).docx

(a)独立的点阵常数越少;(b)晶体中原子排列越紧密;(c)晶胞中原子越多;(d)晶体结构越复杂。

2、对正方晶系(a=b^c)而言,与[123]等同的晶向是:(a) [132];(b)[ 213];(c) [3 2 1];(d) [231]3、在单胞中画出:1)、(010)、(110)、(1 21)> (312)等晶面2)、[1 11], [ 123]> [ 1 了0]和[211]等晶向。

4、用四轴坐标系画出六方晶系:1)、(11 20)、( 1012)> (10 11)等晶面2)、[11 20]> [ 2113]、[3125]等晶向。

Al5、写出图中晶向的四轴坐标晶向指数。

6、列出三斜、单斜、正交及四方系中{210}面族包含面的数目及其指数;7、列出六方系中{21 30}面族包含面的数目及其指数。

8、(1 10 )> (11 2)> ( 312)面是否同属一个晶带?如是,求岀晶带轴的方向指数。

9、写出正八面体、正四面体、六方柱体及菱面体的对称元素;10、回答以下关于极射赤面投影的问题:1)在立方晶系(001)标准投影图中,列举出2个与(101)及(011)晶面同属一个晶带的晶面;2)这个晶带的晶带轴在什么位置(在图上标出)?写出这个晶带轴的晶向指数;3)(1 3 2)是否也属于这个晶带?为什么?4)投影图赤道上的晶面是否属于一个晶带?为什么?如果属于同一晶带,写出该晶带晶带轴的晶向指数。

1、晶体点阵的对称性越咼,贝1J:(a)独立的点阵常数越少;(b)晶体中原子排列越紧密;(c)晶胞中原子越多;(d)晶体结构越复杂。

2、对正方晶系(a=b#c)而言,与[123]等同的晶向是:(a) [132];(b)[ 213];(c) [3 2 1];(d) [231]3、在单胞中画出:1)、(010)、(110)、(1 21), (312)等晶面2)、[1 11], [ 123]> [ 1 了0]和[211]等晶向。

材料科学基础习题及参考答案

材料科学基础习题及参考答案

材料科学基础参考答案材料科学基础第一次作业1.举例说明各种结合键的特点。

⑴金属键:电子共有化,无饱和性,无方向性,趋于形成低能量的密堆结构,金属受力变形时不会破坏金属键,良好的延展性,一般具有良好的导电和导热性。

⑵离子键:大多数盐类、碱类和金属氧化物主要以离子键的方式结合,以离子为结合单元,无方向性,无饱和性,正负离子静电引力强,熔点和硬度均较高。

常温时良好的绝缘性,高温熔融状态时,呈现离子导电性。

⑶共价键:有方向性和饱和性,原子共用电子对,配位数比较小,结合牢固,具有结构稳定、熔点高、质硬脆等特点,导电能力差。

⑷范德瓦耳斯力:无方向性,无饱和性,包括静电力、诱导力和色散力。

结合较弱。

⑸氢键:极性分子键,存在于HF,H2O,NF3有方向性和饱和性,键能介于化学键和范德瓦尔斯力之间。

2.在立方晶体系的晶胞图中画出以下晶面和晶向:(1 0 2)、(1 1 -2)、(-2 1 -3),[1 1 0],[1 1 -1],[1 -2 0]和[-3 2 1]。

(213)3. 写出六方晶系的{1 1 -20},{1 0 -1 2}晶面族和<2 -1 -1 0>,<-1 0 1 1>晶向族中各等价晶面及等价晶向的具体指数。

{1120}的等价晶面:(1120)(2110)(1210)(1120)(2110)(1210){1012}的等价晶面:(1012)(1102)(0112)(1012)(1102)(0112) (1012)(1102)(0112)(1012)(1102)(0112)2110<>的等价晶向:[2110][1210][1120][2110][1210][1120]1011<>的等价晶向:[1011][1101][0111][0111][1101][1011][1011][1101][0111][0111][1101][1011]4立方点阵的某一晶面(hkl )的面间距为M /,其中M 为一正整数,为晶格常数。

材料科学基础习题答案

材料科学基础习题答案

材料科学基础习题答案《材料科学基础》习题参考答案第一章原子结构与键合★考前复习范围概念:4个量子数、3个准则、金属键、离子键、共价键1.原子中一个电子的空间位置和能量可用哪四个量子数来决定?在多电子的原子中,核外电子的排布应遵循哪些原则?答:1).主量子数n=1、2、3、4(K、L、M、N)决定原子中电子能量以及与核的平均距离,即电子所处的量子壳层。

2).轨道角量子数li=0~(n-1),(s,p,d,f,g)给出电子在同一量子壳层内所处的能级。

(亚层)3).磁量子数mi,给出每个轨道角动量量子数的轨道数或能级数,每个li下的磁量子总数为2li+1。

(能级)4).自旋角量子数si=±1/2, 反映电子不同的自旋方向。

(电子数)Pauli不相容原理:在同一个原子中没有四个量子数完全相同的电子。

能量最低原理:电子在原子中所处的状态,总是尽可能分布到能量最低的轨道上。

Hund规则:电子分布到能量相同的等价轨道上时,总是尽先以自旋相同的方向,单独占据能量相同的轨道。

2.在元素周期表中,同一周期或同一主族元素原子结构有什么共同特点?从左到右或从上到下元素结构有什么区别?性质如何递变?答:同一周期元素具有相同原子核外电子层数,但从左到右,核电荷依次增多,原子半径逐渐减小,电离能增加,失电子能力降低,得电子能力增加,金属性减弱,非金属性增强;同一主族元素核外电子数相同,但从上到下,电子层数增多,原子半径增大,电离能降低,失电子能力增加,得电子能力降低,金属性增加,非金属性降低。

3.何谓同位素?为什么元素的相对原子质量不总为正整数?答:在元素周期表中占据同一位置,尽管它们的质量不同,然它们的化学性质相同的物质称为同位素。

由于各同位素的含中子量不同(质子数相同),故具有不同含量同位素的元素总的相对原子质量不为正整数。

4.铬的原子序数为24,它共有四种同位素:4.31%的Cr原子含有26个中子,83.76%含28个中子,9.55%含有29个中子,且2.38%含有30个中子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料科学基础习题及参考答案材料科学基础参考答案材料科学基础第一次作业1.举例说明各种结合键的特点。

⑴金属键:电子共有化,无饱和性,无方向性,趋于形成低能量的密堆结构,金属受力变形时不会破坏金属键,良好的延展性,一般具有良好的导电和导热性。

⑵离子键:大多数盐类、碱类和金属氧化物主要以离子键的方式结合,以离子为结合单元,无方向性,无饱和性,正负离子静电引力强,熔点和硬度均较高。

常温时良好的绝缘性,高温熔融状态时,呈现离子导电性。

⑶共价键:有方向性和饱和性,原子共用电子对,配位数比较小,结合牢固,具有结构稳定、熔点高、质硬脆等特点,导电能力差。

⑷范德瓦耳斯力:无方向性,无饱和性,包括静电力、诱导力和色散力。

结合较弱。

⑸氢键:极性分子键,存在于HF,H2O,NF3有方向性和饱和性,键能介于化学键和范德瓦尔斯力之间。

2.在立方晶体系的晶胞图中画出以下晶面和晶向:(1 0 2)、(1 1 -2)、(-2 1 -3),[1 1 0],[1 1 -1],[1 -2 0]和[-3 2 1]。

(213)(112)(102) [111][110][120][321]3. 写出六方晶系的{1 1 -20},{1 0 -1 2}晶面族和<2 -1 -1 0>,<-1 0 1 1>晶向族中各等价晶面及等价晶向的具体指数。

{1120}的等价晶面:(1120)(2110)(1210)(1120)(2110)(1210){1012}的等价晶面:(1012)(1102)(0112)(1012)(1102)(0112)(1012)(1102)(0112)(1012)(1102)(0112)2110<>的等价晶向:[2110][1210][1120][2110][1210][1120]1011<>的等价晶向:[1011][1101][0111][0111][1101][1011][1011][1101][0111][0111][1101][1011]4立方点阵的某一晶面(hkl )的面间距为M /,其中M 为一正整数,为晶格常数。

该晶面的面法线与a ,b ,c 轴的夹角分别为119.0、43.3和60.9度。

请据此确定晶面指数。

h:k:l=cos α:cos β:cos γl k h d a 222hk l ++=5. Cu 具有FCC 结构,其密度为8.9g/cm 3,相对原子质量为63.546,求铜的原子半径。

333363.546108.910A M V N a ρ--⨯====⨯⋅ => R=0.128nm 。

6. 写出溶解在γ-Fe 中碳原子所处的位置,若此类位置全部被碳原子占据,那么试问在这种情况下,γ-Fe 能溶解多少重量百分数的碳?而实际上在γ-Fe 中最大的溶解度是多少?两者在数值上有差异的原因是什么?固溶于γ-Fe 中的碳原子均处于八面体间隙中,且γ-Fe 中的八面体间隙有4个,与一个晶胞中Fe 原子个数相等,所以: C wt%=12/(12+56)×100%=17.6% 实际上C 在γ-Fe 中的最大溶解度为2.11%两者数值上有较大差异,是因为此固溶体中,碳原子尺寸比间隙尺寸大,会 引起点阵晶格畸变,畸变能升高,限制了碳原子的进一步溶解。

7. a )经x 射线衍射测定,在20℃时α-Ti 的点阵常数a =0.295nm ,c=0.468nm ,在882.5℃时α-Ti 转变为γ-Ti ,其点阵常数a =0.331nm. 按晶体的刚球模型,若球的直径不变,当Ti 从室温的hcp 转变为高温的bcc 时,计算其体积膨胀多少?b )计算从α-Ti 转变为γ-Ti 时,其实际体积膨胀为多少?与a )相比,说明其差别原因。

a )hcp:112,/ 1.633a r c a ==,有6个原子bcc24,r =有两个原子,得21a a = ,所以322111%100%8.87%a a c V -∆== 方法二:直接用致密度算:k k k V V VV 112%-=∆=8.87%b)实际上,31%1)100% 2.82%bcc a V ∆=⨯= 差别原因:实际上c/a ≠1.633,即hcp 结构时不符合钢球模型,实际的原子间隙 比钢球模型大,因此实际α-Ti 转变为γ-Ti 后,相对膨胀的百分比会变小。

8. 已知 Cd, In, Sn, Sb 等元素的原子直径分别为0.304nm, 0.314nm, 0.316nm, 0.322nm, 而Ag 为0.288nm ,它们在Ag 中的固溶度(摩尔分数)极限为: x Cd =42%, x In =20%, x Sn =12 %, x Sb =7 %, 。

试分析其固溶度(摩尔分数)极限差别的原因,并计算 它们在固溶度(摩尔分数)极限时的电子浓度。

⑴固溶度极限差别原因:当原子尺寸因素较为有利时,在某些一价金属为基的固溶体中,溶质的原子价越高,其溶解度越小,实际上是由电子浓度所决定。

Cd 、In 、Sn 、Sb 的原子价分别为+2,+3,+4,+5。

⑵电子浓度:100)100(Bx x A a e +-=,A,B 分别为溶剂和溶质的原子价,x 为溶质的原子数分数。

:/12 1.42Cd Cd Cd e a x x =-+=:/13 1.40In In In e a x x =-+=:/14 1.36Sn Sn Sn e a x x =-+=:/15 1.28Sb Sb Sb e a x x =-+=材料科学基础第二次作业1.解释下列术语:合金、组元、相、固溶体、金属间化合物、超结构、负电性和电子浓度。

合金:两种或两种以上的金属或金属与非金属经熔炼、烧结或其它方法组合而成,并具有金属特性的物质。

组元:组成合金的基本的、独立的物质。

相:合金中具有同一聚集状态、同一晶体结构和性质并以界面相互隔开的均匀组成部分。

固溶体:以某一组元为溶剂,在其晶体点阵中溶入其它组元原子(溶质原子)所形成的均匀混合的固态溶体,它保持着溶剂的晶体结构类型;金属间化合物:金属与金属或与类金属元素之间形成的化合物超结构:对某些成分接近于一定原子比的无序固溶体中,当它从高温缓冷到某一临界温度以下时,溶质原子会从统计随机分布状态过渡到占有一定位置的规则排列状态,即发生有序化过程,形成有序固溶体。

长程有序的固溶体在其X 射线衍射图上会产生外加的衍射线,这称为超结构。

所以有序固溶体通常称为超结构或超点阵。

负电性:元素的原子在化合物中吸引电子的能力电子浓度:合金中价电子数目与原子数目的比值,即e/a。

2. 含w(Mn)为12.3% (重量百分比)、w(C)为1.34%的奥氏体钢,点阵常数为0.3624 nm,密度为7.83 g/cm3,C、Fe、Mn的相对原子质量分别为12.01、55.85、54.94,试判断此固溶体的类型。

判断固溶体的类型,可以用该固溶体合金晶胞内实际原子数(n)与纯溶剂晶胞内原子数的(n 0)的比值作为判据,有下式0111n n >⎧⎪=⎨⎪<⎩间隙式置换式缺位式先计算该奥氏体钢的平均分子量:10053.1412.3 1.3486.3654.9412.0155.85M ==++ 晶胞的体积73243(0.362410)47.610()v cm --=⨯=⨯故 24237.8347.610 6.02310 4.2553.14AVN n M ρ-⨯⨯⨯⨯== 对于γ-Fe (奥氏体),n 0=4,故n/n 0>1,即此固溶体必含有间隙原子。

因为C原子半径比Fe ,Mn 原子半径小得多,故易处于间隙位置,形成C 在Fe 中 的间隙固溶体。

设C 处于Fe 间隙位置形成的间隙固溶体的晶胞中平均原子数为n 1,由 于固溶体中C 的原子分数 1.3412.01x 5.9%12.3 1.3486.3654.9412.0155.85c ==++ 且 114 5.9100100c x n n -== 故可得 n 1=4.25由于n 1/n=1,所以Mn 在合金中应为置换式固溶。

综上所述,可以判断此固溶体为C-间隙,Mn-置换式固溶体。

3.Cu-Zn 和Cu-Sn 组成固溶体最多可溶入多少原子数分数的Zn 和Sn ?若Cu 晶体中固溶入Zn 的原子数分数为10%,最多还能溶入多少原子数分数的Sn ? Cu 基固溶体的极限电子浓度为1.36。

1111(100)21.3636100x x x -+=→=,Cu-Zn 固溶体最多可溶入36%Zn ; 2221(100)41.3612100x x x -+=→=,Cu-Sn 固溶体最多可溶入12%Sn ; 若Cu 已溶入10%Zn 后,还可溶入的Sn 最大的原子数分数为3331(10010)21041.368.67100x x x --+⨯+=→=,最多尚能溶入8.67%Sn 。

4,铯与氯的离子半径分别为0.167nm 、0.181nm,试问a)在氯化铯内离子在<100>或<111>方向是否相接触?b)每个单位晶胞内有几个离子?c)各离子的配位数是多少?d) ρ和K ?a)CsCl 型结构系离子晶体结构中最简单的一种,属立方晶系;简单立方点阵,Pm3m 空间群,离子半径之比为0.167/0.181=0.92265,其晶体结构如图所示。

从图中可知,在<100>方向不接触,在<111>方向接触。

b)每个晶胞有1个Cs +和1个Cl -。

c)配位数均为8。

d) 3()()2()3r r Cs Cl A A Cs A Cl r r N ρ+-+=+⨯332324132.935.4534.308(/)2(1.67 1.81)6.0231010g cm-+==⨯+⨯⨯⨯333333444(1.67 1.81)3330.6832()2(1.67 1.81)Cs Clr rKr rπππ+-+-++===+⨯+5. 金刚石是最典型的共价键晶体,其键长为0.1544 nm,试计算金刚石结构的致密度, 当它转换成石墨结构(密度为2.25 g/cm3)时,求其体积改变百分数?Ⅰ.金刚石的晶体结构属于复杂的fcc结构,每个C原子有4个等距离的最邻近原子,符合8-N规则。

而最近邻原子距离即相当于键长,根据金刚石的晶体结构可知,键长=d=故0.3566()a nm==3333440.154488()3320.34(0.3566)rKaππ⨯⨯===Ⅱ.金刚石的每个晶胞中含有8个碳原子。

金刚石的密度37238123.503(/)(0.35710) 6.02310g cmρ-⨯==⨯⨯⨯对于1克碳,当它为金刚石结构时其体积3110.285()3.503V cm==当它为石墨结构时其体积3210.444()2.25V cm==材料科学基础第三次作业参考答案1. Pt 的晶体结构为fcc ,其晶格常数为0.39231nm ,密度为21.45g/cm 3,试计算空位所占的格子之比例 设空位所占的格子比例为x ,34(1)rAx A a N ρ⨯-=832321.45(3.92310) 6.0231010.046%4195.09x -⨯⨯⨯⨯=-=⨯2、在铁中形成1mol 空位的能量为104.675KJ ,试计算从20℃升温之850℃时空位数目增加多少倍?exp()QC A RT-=,取A=1 058501046751exp() 1.3449108.311123C C --=⋅=⨯⨯019201046751exp() 2.1349108.31293C C --=⋅=⨯⨯005138501920 1.344910 6.2310()2.134910C CC C --⨯==⨯⨯倍 3 钨在20℃时每1023个晶胞中有一个空位,从20℃升至1020℃,点阵常数膨胀了(4X10-4)%,而密度下降了0.012%,求钨的空位 形成能及形成熵。

相关文档
最新文档