新人教版初中数学9年级下册29章投影与视图导学案(28页)

合集下载

29章投影与试图导学案

29章投影与试图导学案

3.由于中心投影与平行投影的投射线具有不同的性质,因此,在这两种投影下,物体的影子也就有明显的差别。

如图4-14,当线段AB与投影面平行时,AB的中心投影A…B‟把线段AB 了,且AB A‟B…,△OAB OA…B‟.又如图4-15,当△ABC所在的平面与投影面平行时,△ABC的中心投影△A…B‟C…也把△ABC 了,从△ABC到△A…B‟C…是我们熟悉的变换。

源的确定:分别自两个物体的顶端)两幅图表示两根标杆在同一时刻的投影图中画出形成投影的光线.它们是平行投影还是中心投影?并说明理由。

第二学习时间:课堂巩固案(根据同学们的展示,认真完成以下的练习,如有不会的可以向其他同学请教,找到自己在练习中存在的问题,并认真改正)8、如果在阳光下你的身影的方向是北偏东60°方向,太阳在你的方向?第三学习案:自主测试案(请同学们独立完成下面的题目,做完后举手示意,老师会给你批改)1.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.2.平面直角坐标系中,一点光源位于A(0,5),线段CD⊥x轴于D,C(3,1),求:(1)CD在x轴上的影长;(2)点C的影子的坐标.BD,当他走到点P的底部,当他向前再步行20BD的底部,已知丁轩,则两路灯之间的距离是( )学习感悟(1)当纸板P平行于投影面Q时. P的正投影与P的形状、大小如何?(1)当正方体如图的位置时,正方体的一个面ABCD及与其相对的另一面与投影面平行,这两个面的正投影是与正方体的一个面的形状、大小A´B´C´D´.正方形A´B´C´D´的四条边分别是(这些面垂直于投影面)的投影.因此,正方体的正投影是一个正方形.投影图是( ),这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面形成阴影的示意图。

已知桌面的直径为1.2米,桌面距离地面1米。

若灯泡距离地米,则地面上阴影部分的面积为()π平方米B、0.81π平方米C、2π平方米D、3.24π平方米第三学习案:自主测试案(请同学们独立完成下面的题目,做完后举手示意,老师会给你批改)3.(2010山东淄博模拟灯的底部(点O)20时,人影的53,在Rt△ABC中,∠C=090,在阳光的垂直照射下⑴试探究线段AC、AB和AD之间的关系,并说明理由之间也有类似的关系吗?(一)、问题1:如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为A C2011安徽芜湖,)如图所示,下列几何体中主视图、左视图、俯视图都相同的是反思:通过这节课的学习,你有什么特殊的收获?好记性不如烂笔头,赶快请写下课题:29.2视图(2)桌面上放着1个长方体和1个圆柱体,按下图所示的方式摆放在一起,其左(011江西,3,3分)右图是一根钢管的直观图,画出它的三视图3 (2011山东聊城,2,3分)如图,空心圆柱的左视图是()分)如图所示的几何体的左视图是(是一个三视图,则此三视图所对应的直观图是10(2009,本溪)有一个铁制零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是()A.B.C. D(A)(B)3.(2010 福建德化)如图是一个立体图形的三视图,则这个立体图形的名称叫.主,益阳)一个物体由多个完全相同的小正方体组成,它的三视图如图D. 55.(2011湖南湘潭市,4,3分)一个几何体的三视图如下图所示,这个几何第三学习案:自主测试案(请同学们独立完成下面的题目,做完后举手示意,老师会给你批改)某个长方体主视图是边长为1cm形的对角线向垂直于正方形的方向将长方体切开,截面是一个正方形.那3(2010广东广州,7,3分)长方体的主视图与俯视图如图所示,则这个长方体的体积是()A.52 B.323。

新人教版初中数学9年级下册29章精品:29.1.2投影(二)导学案

新人教版初中数学9年级下册29章精品:29.1.2投影(二)导学案

29.1投影(2)导学案
【学习目标】
1、了解正投影的概念;
2、能根据正投影的性质画出简单的平面图形的正投影
3、培养动手实践能力,发展空间想象能力。

【学习重点】
正投影的含义及能根据正投影的性质画出简单的平面图形的正投影
【学习难点】
归纳正投影的性质,正确画出简单平面图形的正投影
【导学过程】
一、知识链接:
下图表示一块三角尺在光线照射下形成投影,其中哪个是平行投影哪个是中心投影?图(2) (3)的投影线与投影面的位置关系有什么区别?
二、自学提纲:
(1)正投影的定义: 叫做正投影.在实际制图中,经常采用正投影.
(2)物体的位置与其正投影的关系:当物体平行于投影面时,其正投影与原物体的形状、大小 ;当物体倾斜于投影面时,其正投影与原物体的形状、大小 ;当物体垂直于投影面时,其正投影成 。

三、教师点拨:
例1:如图3,在Rt △ABC 中,∠C=0
90,在阳光的垂直照射下,点C 落在斜边AB 上的D 点. ⑴试探究线段AC 、AB 和AD 之间的关系,并说明理由.
⑵线段BC 、AB 和BD 之间也有类似的关系吗?
例2:一个圆柱的轴截面平行于投影面,圆柱的正投影是一个边长为10的正方形,求圆柱的体积和表面积.
解析:本题的关键是求圆柱的高和底面半径,圆柱的轴截面是一个长方形,圆柱体的高和底面圆的直径是它的两邻边的长,由于长方形平行于投影面,因此其投影与它全等,即该长方形的两邻边相等.可求出圆柱的高和地面半径,从而求出圆柱的体积和表面积.
四、针对练习:
图3 C
A。

新人教版初中数学9年级下册29章精品导学案(28页)

新人教版初中数学9年级下册29章精品导学案(28页)

29.1投影(第一课时)【学习目标】(一)知识技能:1、了解投影的有关概念,能根据光线的方向辨认物体的投影。

2、了解平行投影和中心投影的区别。

3、了解物体正投影的含义,能根据正投影的性质画出简单平面图形的正投影。

(二)数学思考:在探究物体与其投影关系的活动中,体会立体图形与平面图形的相互转化关系,发展学生的空间观念。

(三)解决问题:通过对物体投影的学习,使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。

(四)情感态度:通过学习,培养学生积极主动参与数学活动的意识,增强学好数学的信心。

【学习重点】了解正投影的含义,能根据正投影的性质画出简单平面图形的正投影。

【学习难点】归纳正投影的性质,正确画出简单平面图形的正投影。

【学习准备】手电筒、三角尺、作图工具等。

【学习过程】【情境引入】活动1设问:你注意观察过周围物体在日光或灯光下的影子吗?影子与物体有着怎样的联系呢?教师展示实物及图片,学生观察、思考,感知物体与投影之间的关系。

学生讨论、发表观点;教师归纳。

总结出投影、投影线、投影面的概念。

总结:一般地,用光线照射物体,在上,得到的叫做物体的投影,叫做投影线,投影所在的叫做投影面。

【自主探究】活动2教师给学生展示一组阳光下的投影图片,设问:下列投影中,投影线、投影面分别是什么?这些投影线有何共同特征?学生观察、思考、归纳,教师指导。

归纳总结:由形成的投影叫做平行投影。

试举出平行投影在生活中的应用实例。

活动3出示一组灯光下的投影,学生观察投影线、投影面分别是什么?这些投影线有何共同特征?学生分析、回答。

归纳总结:由发出的光线形成的投影叫做中心投影。

试举出中心投影在生活中的应用实例。

活动4出示教材88页练习:将物体与它们的投影用线连接起来。

【合作探究】活动5:问题1联系:。

区别:。

问题2图中三角板的投影各是什么投影?它们的投影线与投影面的位置关系有什么区别?学生观察、思考、互相交流。

联系:图中的投影都是投影。

人教版九年级下册数学导学案 第二十九章 投影与视图

人教版九年级下册数学导学案  第二十九章   投影与视图

第二十九章 投影与视图第一课时 投 影课前自习1. 同学们,我们几千年前的古人就已经对物体的影子进行了研究和利用,例如河南的皮影戏,古代人用来计时的日晷(gui ∨),课本P101图。

这一节课,我们来学习图形的投影。

2. 用光线照射物体,在某一个平面内形成的影子称为投影,照射光线称为: 投影所在的平面称为: 。

3. 投影分为两种A :一种是平行光线所成的投影它称为: ,例如:太阳光线下物体所成的影子。

B :还有一种是由同一点发出的光线形成的投影叫做 例如放影机的投影,小灯泡发光成的影子,其实这种投影形成的影子与实物是成位似变换的。

当然这一章我们主要学习平行投影中的平行正投影。

4.正投影是指投影线 投影面产生的投影。

练习: P101练习5.如图P102探究 第一种情况:当铁丝平行于投影面时,这时,我们可得:1111111111//,AA //BB AA B B AA B B =AB A B AB A B ∴∴∴Q Y 而光线是平行光线四边形是平行四边形在中 第二种情况当铁丝不平行于投影面时,这时,我们可得:2222222AC BB AA B C AC=A B R ACB AB>ACAB(_____)A B t ⊥∴∴∆∴Q Q 作由第一种情况可得:为平行四边形又在中第三种情况:当AB 的倾斜角慢慢增大,最后和投影面垂直时,这时的正投影就只是一个点了。

6.P103探究,对于一个平面图形来讲,也有一种这样的关系,当物体与投影面垂直时,影子和物体是全等的。

例P104例题由同学们自学习。

练习P105练习题 第一种情况:这时的正投影形状应该是一个矩形。

这个好多同学都明白,但是在画图时,我们需注意,我们画出的长方形的长应该等于圆柱的长,我们画出的长方形的宽应该等于圆柱的直径。

第二种情况:此时的投影应是一个圆,注意这个圆的半径应该等于 半径。

课后巩固练习: A 组P105习题29.1第1、2、3、4、5、6题。

人教版九年级数学教案 第29章《投影与视图》全章导学案(共4课时)

人教版九年级数学教案 第29章《投影与视图》全章导学案(共4课时)

人教版九年级数学《投影与视图》全章导学案第1课时投影的概念和分类知识点1:平行投影【例1】下列光线所形成的是平行投影的是( A )A. 太阳光线B. 台灯的光线C. 手电筒的光线D. 路灯的光线,1. 把一个正六棱柱如图1-29-90-1摆放,光线由上向下照射此正六棱柱时的正投影是( A )图1-29-90-1知识点2:中心投影【例2】如图1-29-90-2,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子( B )图1-29-90-2A. 逐渐变短B. 先变短后变长C. 先变长后变短D. 逐渐变长,2. 如图1-29-90-3,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子( B )图1-29-90-3A. 越长B. 越短C. 一样长D. 随时间变化而变化知识点3:运用投影的知识解决相关问题【例3】如图1-29-90-4,AB和DE是直立在地面上的两根立柱,AB=4 m,某一时刻AB在阳光下的投影BC=3 m,同一时刻测得DE的影长为4.5 m,则DE=6m.图1-29-90-4,3. 如图1-29-90-5,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=1.5 m,CD=4.5 m,点P到CD的距离为2.7 m,则AB与CD间的距离是1.8m.图1-29-90-5A组4. 下列现象不属于投影的是( B )A. 皮影B. 素描画C. 手影D. 树影,5. 一个人离开灯光的过程中人的影长( A )A. 变长B. 变短C. 不变D. 不确定6. 正方形的正投影不可能是( D )A. 线段B. 矩形C. 正方形D. 梯形,7. 在阳光的照射下,一个矩形框的影子的形状不可能是( C )A. 线段B. 平行四边形C. 等腰梯形D. 矩形B组8. 在阳光照射下的升旗广场的旗杆从上午九点到十一点的影子长的变化规律为( B )A. 逐渐变长B. 逐渐变短C. 影子长度不变D. 影子长短变化无规律,9. 小红和小花在路灯下的影子一样长,则她们的身高关系是( D )A. 小红比小花高B. 小红比小花矮C. 小红和小花一样高D. 不确定10. 下列图中是在太阳光下形成的影子的是( A ),11. 如图1-29-90-6是同一天四个不同时刻树的影子,其时间由早到晚的顺序为( B )图1-29-90-6A. 1234B. 4312C. 3421D. 4231C组12. 如图1-29-90-7,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为3m.图1-29-90-7,13. 如图1-29-90-8,圆桌面(桌面中间有一个直径为0.4 m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图的圆环形阴影. 已知桌面直径为1.2 m,桌面离地面1 m,若灯泡离地面3 m,则地面圆环形阴影的面积是( D )图1-29-90-8A. 0.324πm2B. 0.288πm2C. 1.08πm2D. 0.72πm2第2课时简单物体的三视图知识点1:简单几何体的三视图【例1】如图1-29-91-1的圆柱体从正面看得到的图形可能是( B )图1-29-91-1,1. 如图1-29-91-2是一个正六棱柱的茶叶盒,其俯视图为( B )图1-29-91-2知识点2:简单组合体的三视图【例2】如图1-29-91-3是由几个相同的正方体搭成的一个几何体,从上面看得到的平面图形是( B )图1-29-91-3,2. 如图1-29-91-4是由一个正方体和一个正四棱锥组成的立体图形,它的俯视图是( C )图1-29-91-4知识点3:三视图的特征及画法【例3】如图1-29-91-5,画出这个几何体的三视图.图1-29-91-5解:如答图29-91-1.答图29-91-1,3. 图1-29-91-6是由大小相同的小立方块搭成的几何体,请在图中的方格纸中画出该几何体的三视图.解:如答图29-91-2.答图29-91-24. 由4个相同的小立方体搭成的几何体如图1-29-91-7,则它的俯视图是( D )图1-29-91-75. 如图1-29-91-8的立体图形,从左面看可能是( A )图1-29-91-86. 如图1-29-91-9的几何体从左面看到的图形是( A )图1-29-91-97. 如图1-29-91-10的几何体的主视图是( B )图1-29-91-10B组8. 在下面的四个几何体中,从它们各自的正面和左面看,不相同的是( B ),9. 如图1-29-91-11的四个几何体中,主视图与左视图相同的几何体有( D )图1-29-91-11A. 1个B. 2个C. 3个D. 4个C组10. 画出图1-29-91-12的空间几何体的三视图.图1-29-91-12答图29-91-3解:如答图29-91-3.,11. 如图1-29-91-13,在平整的地面上,用若干个棱长完全相同的小正方体堆成一个几何体. 请画出这个几何体的三视图.解:如答图29-91-4.第3课时由三视图确定物体的形状【例1】如图1-29-92-1是某个几何体的主视图、左视图、俯视图,该则几何体是( C )图1-29-92-1A. 圆柱B. 球C. 圆锥D. 棱锥,1. 某几何体的三视图如图1-29-92-2,则这个几何体是( D )图1-29-92-2A. 圆柱B. 长方体C. 三棱锥D. 三棱柱知识点2:根据三视图描述物体原来的形状——简单组合体【例2】如图1-29-92-3是由三个相同的小正方体组成的几何体的主视图,那么这个几何体可以是( A )图1-29-92-3,2. 如图1-29-92-4是一个几何体的三视图,则这个几何体是( B )图1-29-92-4知识点3:由三视图确定小正方体的个数【例3】由一些大小相同的小正方体组成的几何体的三视图如图1-29-92-5,那么,组成这个几何体的小正方体有( B )图1-29-92-5A. 6块B. 5块C. 4块D. 3块,3. 如图1-29-92-6是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是( D )图1-29-92-6A. 7个B. 8个C. 9个D. 10个知识点4:利用三视图计算几何体的表面积和体积【例4】如图1-29-92-7是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据数据计算这个几何体的表面积.图1-29-92-7解:(1)由三视图得几何体为圆锥.(2)圆锥的表面积是16π. ,4. 如图1-29-92-8是一个包装盒的三视图.(1)写出这个几何体的名称;(2)求这个几何体的体积.(结果保留π)图1-29-92-8解:(1)这个几何体是圆柱.(2)体积是2 000π.A组5. 某几何体的三种视图是全等的,这个几何体可能是( C )A. 圆柱B. 圆锥C. 球D. 三棱柱,6. 如图1-29-92-9是某几何体的三视图,那么该几何体是( D )图1-29-92-9A. 球B. 正方体C. 圆锥D. 圆柱B组7. 已知某物体的三视图如图1-29-92-10,那么与它对应的物体是( B )图1-29-92-10,8. 某几何体的左视图如图1-29-92-11,则该几何体不可能是( D )图1-29-92-119. 如图1-29-92-12,这是一个几何体的三视图,根据图中数据计算这个几何体的侧面积.图1-29-92-12解:几何体的侧面积为10π.,10. 如图1-29-92-13是一个几何体的三视图,其中俯视图是等边三角形. (1)请写出这个几何体的名称; (2)求这个几何体的表面积.图1-29-92-13解:(1)这个几何体为三棱柱.(2)这个几何体的表面积为44 33(cm 2).C 组11. 某一几何体的三视图均如图1-29-92-14,则搭成该几何体的小立方体的个数为( C )图1-29-92-14A. 9B. 5C. 4D. 3,12. 几个相同的小正方体所搭成的几何体的俯视图和左视图如图1-29-92-15,则小正方体的个数最多是( B )图1-29-92-15A. 5个B. 7个C. 8个D. 9个第4课时投影与视图单元复习课知识点1:投影的定义及分类【例1】人往路灯下行走的影子变化情况是( A )A. 长⇒短⇒长B. 短⇒长⇒短C. 长⇒长⇒短D. 短⇒短⇒长,1. 在阳光照射下的升旗广场的旗杆从上午十点到十二点的影子长的变化规律为( B )A. 逐渐变长B. 逐渐变短C. 影子长度不变D. 影子长短变化无规律知识点2:三视图【例2】下列几何体中,主视图、俯视图、左视图都相同的是( B )2. 如图1-29-93-1是某几何体的三视图,该几何体是( B )图1-29-93-1A. 三棱柱B. 长方体C. 圆锥D. 圆柱知识点3:三视图的相关计算【例3】已知圆锥的三视图如图1-29-93-2,则这个圆锥的侧面展开图的面积为( B )图1-29-93-2A. 60πcm2B. 65πcm2C. 120πcm2D. 130πcm2,3. 如图1-29-93-3是按1∶10的比例画出的一个几何体的三视图,则该几何体的侧面积是( D )图1-29-93-3A. 200 cm2B. 600 cm2C. 100πcm2D. 200πcm2知识点4:画三视图【例4】画出如图1-29-93-4的几何体的主视图、左视图和俯视图.图1-29-93-4答图29-93-1解:如答图29-93-1.4. 如图1-29-93-5的几何体是由棱长为1的正方体摆放成的形状. 请画出这个几何体的三视图.图1-29-93-5解:如答图29-93-2.答图29-93-2A组5. 在阳光下摆弄一个矩形,它的影子不可能是( C )A. 线段B. 矩形C. 等腰梯形D. 平行四边形,6. 下图的四幅图中,灯光与影子的位置合理的是( B )7. 如图1-29-93-6是一个几何体的主视图和俯视图,则这个几何体是( A )图1-29-93-6A. 三棱柱B. 正方体C. 三棱锥D. 长方体,8. 如图1-29-93-7的正六棱柱的主视图是( A )图1-29-93-7B组9. 用5个棱长为1的正方体组成如图1-29-93-8的几何体. 请在方格纸中用实线画出它的三个视图.图1-29-93-8解:如答图29-93-3.答图29-93-310. 某几何体从正面、左面、上面看到的平面图形如图1-29-93-9,其中从正面看到的图形和从左面看到的图形完全一样.(1)求该几何体的侧面面积(结果保留π);(2)求该几何体的体积(结果保留π).图1-29-93-9解:(1)该几何体的侧面面积为π·6×8=48π.(2)此圆柱体的体积为72π.C组11. 由一些大小相同的小正方体搭成的几何体的主视图和俯视图如图1-29-93-10,则搭成该几何体的小正方体最多是7个.图1-29-93-1012. 如图1-29-93-11是由一些小正方体搭成的几何体从上面看的图形(俯视图),数字表示该位置小正方体的个数,请画出这个几何体从正面看的图形(主视图)、从左面看的图形(左视图).图1-29-93-11答图29-93-4解:如答图29-93-4.。

新人教版九年级数学下册《二十九章 投影与视图 29.1 投影 正投影》教案_28

新人教版九年级数学下册《二十九章 投影与视图 29.1 投影 正投影》教案_28

第二十九章投影与视图29. 1投影(2课时)教学目标知识技能1.经历实践探索,了解投影、投影面、平行投影和中心投影的概念.2.通过观察、比较,了解平行投影和中心投影的含义.数学思考与问题解决先联系生活中的实例,初步感知投影,再通过图片认识中心投影和平行投影的区别与联系.情感态度使学生学会关注生活中有关投影的数学问题,提高数学的应用意识,增强学好数学的信心.重点难点重点:理解平行投影和中心投影的特征.难点:在投影面上画出物体的平行投影或中心投影.教学设计一、引入新课日晷是我国古代利用日影测定时刻的仪器,它由“晷面”与“晷针”组成,当太阳光照在日晷上时,晷针的影子就会投向晷面,随着时间的推移,晷针的影子在晷面上慢慢移动,聪明的古人以此来显示时刻.(教师出示图片,引入新课.学生观察思考,初步感知.)设计意图:通过介绍日晷引入新课,让学生初步感知投影,为本节课学习做好铺垫.二、探究新知1.影子随处可见,请问你能举出生活中关于物体在光线的照射下形成影子的实例吗?投影定义:一般地,用光线照射物体,在某个平面(地面或墙壁)上得到的影子,叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.2.观察下列图片,你认为太阳光线有什么特征?太阳离我们非常遥远,太阳光线可以看成平行光线,像这样的由平行光线形成的投影是平行投影.3.由同一点(点光源)发出的光线形成的投影叫做中收投影.例如,物体在灯泡发出的光照射下形成的影子就是中心投影.(教师引导学生大胆举出身边的例子.生小组内合作交流,师生共同归纳得出投影及相关的概念.教师投影,引导学生观察、分析,归纳平行投影的概念.教师结合实例引导学生识记中心投影.学生观察,理解记忆中心投影.)设计意图:让学生亲自观察、分析、探究出结论.激发学生学习数学的兴趣,培养学生的观察能力、实践能力.三、学以致用例1(补充)如下图中的两幅图表示两根标杆在同一时刻的投影.请在图中画出形成投影的光线,它们是平行投影还是中心投影?并说明理由.图(1) 图(2)解:分别连接标杆的顶端与投影上的对应点(如下图).很明显,下图(1)的投影线互相平行,是平行投影.下图(2)的投影线能相交于一点,是中心投影.图(1) 图(2)例2(补充)如下图是一棵小树在路灯下的影子.请画出形成树影的光线,确定光源的位置.解:如下图,连接CB,并延长相交路灯杆于点O,则OC就是形成树影的光线,点O就是光源所在的位置.(教师出示问题,引导学生分析解决,师生共同点评.学生尝试分析,小组内交流后,解决例题.教师投影例2,学生作图解决.)设计意图:通过设置例题,达到巩固平行投影、中心投影的目的,同时也提高了学生的应用意识和能力.四、巩固练习1.教材第88页练习.答案:2.贝贝和他爸爸在阳光下的沙滩上漫步,他不想让爸爸看到他的影子,那么你能画出贝贝的大致活动范围吗?(用线段表示其影子)答案:只要贝贝的影子与爸爸的影子重合,爸爸就看不到贝贝的影子.所以,贝贝的大致活动范围是爸爸的影子除了从头部到N的线段,即MN上.(教师引导、点拨方法,总结规律,共性问题做好补教,组织学生独立完成练习后,小组交流.学生独立思考解决问题,小组内交流.)设计意图:通过引导学生自主、合作、探究,培养学生分析问题、解决问题的意识和能力.通过练习,及时反馈学生学习的情况,便于教师把握教学效果,并能及时查漏补缺,进一步优化教学.五、师生小结1.通过这节课,同学们学到了什么?2.对本节课你有什么困惑?3.布置作业:教材习题29.1第1,2题.(学生总结发言.教师补充完善.教师布置作业.学生按要求课外完成.)设计意图:梳理学习的内容、方法,形成知识体系.养成系统整理知识的习惯.加强教学反思,进一步提高教学效果.板书设计一、引入新课三、学以致用二、探究新知例1(补充)例2(补充)投影:投影线:四、巩固练习投影面:平行投影:五、师生小结中心投影:。

人教版数学九年级下(初三)导学案:29章 投影与视图

人教版数学九年级下(初三)导学案:29章 投影与视图

29.1投影(1)导学案【学习目标】1、经历实践探索,了解投影、投影面、平行投影和中心投影的概念;2、了角平行投影和中心投影的区别;3、学会关注生活中有关投影的数学问题,提高数学的应用意识.【学习重点】理解平行投影和中心投影的特征【学习难点】在投影面上画出平面图形的平行投影或中心投影【导学过程】一、合作学习,探究新知自学提纲:1、投影的定义:一般地,叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.2、投影的分类(1)平行投影①平行投影的定义:是平行投影.如物体在太阳光的照射下形成影子(简称日影)就是平行投影.②太阳光与影子的关系:物体在太阳光照射的不同时刻,不但影子的大小在变化,而且影子的方向也在变化.(2)中心投影①中心投影的定义:叫做中心投影.如物体在灯泡发出的光线照射下形成影子就是中心投影.②产生中心投影光源的确定:分别自两个物体的顶端及其影子的顶端作一条直线,这两条直线的交点即为光源的位置.(3)如何判断平行投影与中心投影:分别自两个物体的顶端及其影子的顶端作一条直线,若两直线平行,则为平行投影;若两直线相交,则为中心投影,其交点是光源的位置.二、教师点拨:例1:王丽和赵亮两个小朋友晚上在广场的一盏灯下玩,如图1,AB 的长表示王丽的身高,BM 表示她的影子,CD 的长表示赵亮的身高,DN 表示他的影子,请画出这盏灯的位置.例2:某时刻两根木棒在同一平面内的影子如图所示,此时,第三根木棒的影子表示正确的是【 】例3:如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O )20米的点A 处,沿OA 所在的直线行走14米到点B 时,人影的长度【 】A .增大1.5米 B. 减小1.5米 C. 增大3.5米 D. 减小3.5米三、针对练习:1.探照灯、手电筒、路灯等的光线可以看成是从______个点发出的,像这样的光线所形成的投影称为________.2.投影可分为_____和_____;一个立体图形,共有_______种视图.图13.在太阳光的照射下,矩形窗框在地面上的影子常常是______形,在不同时刻,这些形状一般不一样.4.下列物品①探照灯;②车灯;③太阳;④月亮;⑤台灯中所成的投影是中心投影的是()A.①②B.①③C.①②③D.①②⑤5.太阳发出的光照在物体上是______,车灯发出的光照在物体上是_____()A.中心投影,平行投影B.平行投影,中心投影C.平行投影,平行投影D.中心投影,中心投影6.下图是一天中四个不同时刻两个建筑物的影子:将它们按时间先后顺序进行排列,正确的是()A、③④②①B、②④③①C、③④①②D、③①②④图17.如图,身高为1.6m的某学生想测量一棵大树的高度,她沿着树影BA由B 到A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m,CA=0.8m,则树的高度为()A、4.8mB、6.4mC、8mD、10m8.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( )A 、小明的影子比小强的影子长B 、小明的影子比小强的影子短C 、小明的影子和小强的影子一样长D 、无法判断谁的影子长9.某数学课外实验小组想利用树影测量树高.他们在同一时刻测得一身高为1.5m 的同学影长为1.35m ,因为大树靠近一幢建筑物,影子不会在地面上(如下图),他们测得地面部分的影长BC =3.6m ,墙上影长CD =1.8m ,则树高AB为 .10.张明同学想利用树影测量校园内的树高.他在某一时刻测得小树高为1.5米时,其影长为1.2米.当他测量教学楼旁的一棵大树影长时,因大树靠近教学楼,有一部分影子在墙上.经测量,地面部分影长为6.4米,墙上影长为1.4米,那么这棵大树高约 米.11.如下图,晚上,小亮在广场上乘凉.图2中线段AB 表示站立在广场上的小亮,线段PO 表示直立在广场上的灯杆,点P 表示照明灯.(1)请你在图中画出小亮在照明灯(P )照射下的影子;(2)如果灯杆高PO =12m ,小亮的身高AB =1.6m ,小亮与灯杆的距离BO =13m ,请求出小亮影子的长度.AB C DE12.一位同学身高1.6米,晚上站在路灯下,他身体在地面上的影长是2米,若他沿着影长的方向移动2米站立时,影长增加了0.5米,求路灯的高度.13.如图,现有m、n两堵墙,两个同学分别站在A处和B处,请问小明在哪个区域内活动才不被则两个同学发现(画图用阴影表示).14.路灯下站着小赵、小芳、小刚三人,小芳和小刚的影长如图,确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.29.1 投影(2)导学案【学习目标】1、了解正投影的概念;2、能根据正投影的性质画出简单的平面图形的正投影3、培养动手实践能力,发展空间想象能力。

人教版九年级数学下册 第29章 投影与视图小结与复习 精品导学案 新人教版

人教版九年级数学下册 第29章 投影与视图小结与复习 精品导学案 新人教版

第29章投影与视图课题:小结与复习序号:学习目标:1、知识和技能:1)、通过本节复习,使学生对本章知识点有一个系统的认识。

2)、通过习题演练,达到灵活运用知识点的目的。

3)、认识本节内容与生活实际的紧密联系。

2、过程和方法:经历复习知识的过程,使学生对本章知识点有一个系统的认识。

提高学生整合知识的能力。

3、情感、态度、价值观:感受数学来源于生活又服务于生活。

学习重点:复习已学知识,并能灵活运用知识解决问题。

学习难点:掌握知识,解决问题。

导学方法:课时:导学过程一、课前预习:结合教材回顾本章所学内容。

二、课堂导学:1、导入前面我们系统的学习了本章内容,这节课我们共同来回顾所学内容。

2、出示任务自主学习回顾本章所学内容,回答下列问题:投影是怎么得到的?什么是中心投影?平行投影?正投影?图形的正投影有什么特点?什么是三视图?它是怎样得到的?画三视图要注意什么?怎样根据三视图想象物体的形状?举例说明立体图形与其三视图、展开图可以如何转化,体会平面图形与立体图形之间的联系?3、合作探究见《导学》P133难点探究三、展示与反馈:检查自学情况,解释学生疑惑。

四、学习小结:1、掌握常见的几何体的三视图画法。

2、掌握投影的性质。

3、将投影与相似三角形相结合。

4、将视图与展开图相结合,会据视图求图形的表面积和体积等。

五、达标检测1、李刚同学拿一个矩形木框在阳光下摆弄,矩形木框在地面上形成的投影不可能是()2、学校里旗杆的影子整个白天的变化情况是()A、不变B、先变短后变长C、一直在变短D、一直在变长3、晚上,人在马路上走过一盏灯的过程,其影子的长度变化情况是()A、先变短后变长B、先变长后变短C、逐渐变短D、逐渐变长4、如图是由一些相同的小正方体构成的几何体的三视图,则构成这个几何体的小正方体的个数是()A、5B、6C、7D、85、如图,上体育课时,甲、乙两名同学分别站在C、D的位置时,乙的影子顶端恰好和甲的影子顶端重合,已知甲、乙同学相距1米,甲身高1.8米,乙身高1.5米,则甲的影长是米。

九年级数学第29章投影与视图导学案

九年级数学第29章投影与视图导学案


105页练习题
106页第4题、第5题。
三视图(第一课时)
学习目标】
会从投影角度理解视图的概念。
会画简单几何体的三视图。
培养学生自主学习与合作学习相结合的学习方式,使学生体会从生活中发现数学。
在应用数学解决生活中问题的过程中,品尝成功的喜悦,激发学生应用数学的热情。
学习重点】
相交 B. 平行 C. 垂直 D. 无法确定
、球的正投影是( )
圆面. (B)椭圆面. (C)点. (D)圆环.
、正方形在太阳光的投影下得到的几何图形一定是( )
正方形. (B)平行四边形或一条线段. (C)矩形. (D)菱形.
、如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是( )
培养学生自主学习与合作学习相结合的学习方式,使学生体会从生活中发现数学。
在应用数学解决生活中问题的过程中,品尝成功的喜悦,激发学生应用数学的热情。
学习重点】
学习难点】
对三视图概念理解的升华。
正确画出实际生活中物体的三视图。
学习过程】

.圆柱对应的主视图是( )。
A) (B) (C) (D)
、将一个三角形放在太阳光下,它所形成的投影是 ;
、在同一时刻,身高1.6m的小强的影长是1.2m,旗杆的影长是15m,则旗杆高为 ( )
、 16m B、 18m C、 20m D、 22m
从投影的角度加深对三视图概念的理解。
会画简单几何体的三视图。
【学习难点】
对三视图概念理解的升华。
正确画出三棱柱的三视图和小零件的三视图。
学习过程】

人教版数学九下《第29章投影与视图》word全章导学案

人教版数学九下《第29章投影与视图》word全章导学案

第29章投影与视图单元复习导学案课题:第29章单元复习课型:复习执笔人:鞠盈崇使用时间:2011年3.7 审核人:教导主任签字:一、知识梳理学习目标:1. 了解投影的含义和种类,知道正投影概念,了解三视图的形成,,能画出简单组合体的三视图。

2. 能确定物体的平行投影和中心投影.会判断三视图。

重点:投影与视图含义和种类,并能进行判断。

难点:理解并掌握三视图的投影规律及平行投影和中心投影的判别。

学法指导:具体实物、小组讨论。

一.知识梳理(1)主视图:1.三视图(2)左视图:(3)俯视图:2.画三视图原则:长(),高(),宽();画图时,看得见的轮廓线画成实线,看不见的轮廓线画成虚线。

三个图的位置展示:(1)平行投影:平行光线照射形成的投影(如太阳光线)。

当平行光线垂直投影面时3.投影叫正投影。

三视图都是正投影。

2)中心投影:一点出发的光线形成的投影(如手电筒,路灯,台灯)4.圆柱体的侧面展开图是矩形,这个矩形的长等于圆柱体的()这个矩形的宽(高)是圆柱体的(),圆柱体的主视图和左视图也是矩形,这个矩形的长等于圆柱体的(),这个矩形的宽(高)等于圆柱体的()。

2.圆锥体的侧面展开图是扇形,这个扇形的半径是圆锥体的(),这个扇形的弧长是圆锥体的(),圆锥体的主视图和左视图是(等腰三角形),这个等腰三角形的腰长等于圆锥体的(),这个等腰三角形的高等于圆锥体的()。

二、知识应用(一.)选择题1.下列各几何体三视图都是圆的是()A 球体B 圆锥C 圆柱D 圆台12.下图中是在太阳光线下形成的影子是()A B C D3.)ABCD4.)ACD5. 如右图由多块同样大小的正方体搭成的几何体的俯视图,则该几何体的主视图是( )A C D6. 如图分别由多块同样大小的正方体搭成的几何体的主视图和俯视图,则该几何体最少有( )块小正方体搭成的?A 5B 4C 3D 27.一个圆柱体的主视图是一个面积为12的矩形,则该圆柱体的侧面积为( )A 12B 12πC 6D 6π8. .如图一个几何体的主视图和左视图都是边长为1 的正三角形,俯视图是一个圆,那么这个几何体的全面积是( )A2π B π412+ C π422+ D43π2(二.)解答题9.两根竹竿AB CD 和他们在地面上的影子EB FD ,请在图中画出光源P 的位置。

人教版九年级数学下册第二十九章《投影与视图》导学案

人教版九年级数学下册第二十九章《投影与视图》导学案

第二十九章投影与视图29.1 投影第1课时平行投影与中心投影一、导学1.课题导入情景:放映电影《小兵张嘎》片段——小胖墩和他爸在日军炮台内为日本鬼子表演皮影戏.问题:皮影戏里蕴含了一个什么数学原理呢?这就是我们这节课要研究的问题.(板书课题)2.学习目标(1)知道投影、投影面、平行投影和中心投影的概念.(2)能说出平行投影和中心投影的区别.3.学习重、难点重点:理解平行投影和中心投影的特征.难点:在投影面上画出平面图形的平行投影或中心投影.4.自学指导(1)自学内容:教材P87~P88练习上面的内容.(2)自学时间:5分钟.(3)自学方法:观察,阅读,思考.(4)自学参考提纲:①一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.②由平行光线形成的投影叫做平行投影,如太阳光是一组互相平行的射线,物体在它的照射下形成的影子,就是平行投影.③由同一点(点光源)发出的光线形成的投影叫做中心投影.④平行投影的光源一般有探照灯,其光线是平行的;中心投影的光源有灯泡,其光线相交于一点.⑤有两根木棒AB、CD在同一平面上直立着,其中木棒AB在太阳光下的影子为BE(如图所示),请你在图中画出这时木棒CD的影子.解:如图所示,DF为木棒CD的影子.⑥确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.⑦下列现象中是投影现象的有CD(填序号)A.电视上的画面B.电影屏幕上的画面C.地上旗杆的影子D.墙上的树影E.水中的月亮⑧下列光源发出的光线形成的投影是平行投影的是(B)A.车头灯B.太阳C.蜡烛D.路灯⑨把下列物体与它们的投影用线连接起来.⑩小华在不同时间于天安门前拍了几幅照片,下面哪幅照片是小华在下午拍摄的?第三幅照片.二、自学学生结合自学指导进行自学.三、助学1.师助生:(1)明了学情:明了学生能否区分平行投影和中心投影.(2)差异指导:根据学情进行个别或分类指导.2.生助生:生生互动、交流、研讨、订正错误.四、强化1.平行投影和中心投影的概念及其联系和区别.2.展示自学参考提纲第⑤、⑥题的答案并讲解,点学生口答自学参考提纲第⑦~⑩题并点评.五、评价1.学生学习的自我评价:这节课你学到了哪些知识?还有什么疑惑?2.教师对学生的评价:(1)表现性评价:点评学生学习的态度、积极性、学习方法、效果及存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时通过引入具体情境,让学生感受平行投影与中心投影的特征,进而探讨中心投影与平行投影的区别与联系,增强学生的抽象概括能力.对于空间观念不强的学生,可借助太阳光线进行投影实例帮助理解,这样不仅直观而且富有真实感,也能激发学生的学习兴趣.一、基础巩固(70分)1.(10分)皮影戏中的皮影是由中心投影得到的.2.(10分)下面四幅图是两个物体不同时刻在太阳光下的影子,按照时间的先后顺序正确的是(C)A.abcdB.dbcaC.cdabD.acbd3.(10分)小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能是(A)A B C D4.(20分)下面两幅图表示两根标杆在同一时刻的投影.请在图中画出形成投影的光线.它们是平行投影还是中心投影?并说明理由.解:第(1)幅图为平行投影,因为其投影线互相平行;第(2)幅图为中心投影,因为其投影线相交于一点.5.(20分)小明希望测量出电线杆AB的高度,于是在阳光明媚的一天,他在电线杆旁的点D处立一标杆CD,在某时刻标杆的影子DE与电线杆的影子BE部分重叠(即点E、C、A在一条直线上),量得ED=2米,DB=4米,CD=1.5米,求电线杆AB的高度.解:∵CD∥AB,∴△ECD∽△EAB,∴CD ED AB EB=,即.AB=1526.解得AB=4.5(米).∴电线杆AB的高度是4.5米.二、综合应用(20分)6.(20分)如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点沿OA所在的直线行走14米到B点时,影子的长度是变长了还是变短了?变长或变短了多少米?解:影子的长度变短了.∵CA∥PO,∴△MCA∽△MPO,∴CA MA PO MO=,即.MAMA=+16820,解得MA=5(米).同理DB BN PO ON=,即.BNBN=+16820,解得BN=1.5(米).5-1.5=3.5(米).所以变短了3.5米.三、拓展延伸(10分)7.(10分)某校墙边有两根木杆.(1)某一时刻甲木杆在阳光下的影子如图1所示,你能画出乙木杆的影子吗?(用线段表示影子)(2)当乙木杆移动到什么位置时,其影子刚好不落在墙上? 在图2中画出木杆移动后的位置及其影子.29.1 投影第2课时正投影一、新课导入1.课题导入下图表示一块三角尺在光线照射下形成的投影,其中哪个是平行投影?哪个是中心投影? 图(2) (3)的投影线与投影面的位置关系有什么区别?像图(3)这样,投影线垂直于投影面产生的投影叫做正投影.这节课我们研究正投影.(板书课题)2.学习目标(1)知道什么是正投影.(2)能画出简单物体的正投影.3.学习重、难点重点:正投影的概念及性质.难点:正确画出简单物体的正投影.二、分层学习1.自学指导(1)自学内容:教材P88~P90归纳.(2)自学时间:8分钟.(3)自学方法:观察、归纳.(4)探究提纲:①投影线垂直于投影面产生的投影叫做正投影.②如图所示:当AB平行于投影面P时,AB=A1B1;当AB倾斜于投影面P时,AB>A2B2;当AB垂直于投影面P时,它的正投影是一个点.③如图所示:当纸板P平行于投影面Q时,P的正投影与P的形状、大小一样;当纸板P倾斜于投影面Q时,P的正投影与P的形状、大小不完全一样;当纸板P垂直于投影面Q时,P的正投影成为一条线段.④物体的正投影的形状、大小与它相对于投影面的位置有关.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.2.自学:学生结合自学指导进行自学.3.助学(1)师助生:①明了学情:观察学生探究提纲的完成情况和是否理解正投影的性质.②差异指导:根据学情进行相应指导,条件许可时,还可通过实验验证.(2)生助生:小组相互交流、研讨.4.强化:正投影的性质.1.自学指导(1)自学内容:教材P90~P92.(2)自学时间:10分钟.(3)自学方法:仔细阅读例题的分析和解题过程,体会画正投影的操作要点.(4)自学参考提纲:①教材P90例题第(1)问中,面ABCD和与它平行的面的正投影重合,投影都是正方形A′B′C′D′,其余四个面都与投影面垂直,所以它们的正投影分别是线段A′B′,B′C′,C′D′,A′D′.②例题第(2)问中,面ABCD和面CDEH的正投影重合,投影都是矩形A′B′C′D′,面ABGF和面GHEF的正投影重合,投影都是矩形A′B′G′F′,面ADEF的正投影是线段D′F′,面BCHG的正投影是线段C′G′;棱AB 和棱HE的正投影重合,投影都是线段A′B′,棱GF的正投影是线段G′F′,棱CD的正投影是线段C′D′.③如图,投影线的方向如箭头所示,画出圆柱体的正投影.2.自学:学生参考自学参考提纲进行自学.3.助学(1)师助生:①明了学情:观察学生能否画出简单物体的正投影.②差异指导:根据学情进行个别指导或分类指导.(2)生助生:小组内相互交流、研讨.4.强化:物体正投影的画法.三、评价1.学生学习的自我评价:这节课你学到了哪些知识?掌握了哪些解题技能?2.教师对学生的评价:(1)表现性评价:点评学生学习的态度、积极性、学习方法、效果和存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时是在上一课时的基础上进一步学习投影的有关知识.教学时要注意让学生自己动手操作,学生在经历观察、探究、思考、归纳的过程中,掌握正投影的特征.教师在教学过程中应注意让学生在实际操作中发现问题,教师对于学生的疑问要进行收集并及时解答,另外还要充分提升学生的空间想象力.一、基础巩固(70分)1.(10分) 如图,投影线的方向如箭头所示,则图中圆柱体的投影是(B)A.圆B.矩形C.梯形D.圆柱2.(10分)一条线段在阳光下的投影可能是(D)①线段②射线③直线④点A.①③B.②③C.①②D.①④3.(10分)三角形的正投影是(D)A.三角形B.线段C.直线或三角形D.线段或三角形4.(10分)当棱长为20 cm正方体的某个面平行于投影面时,这个正方体的正投影的面积为(C)A.20 cm2B.300 cm2C.400 cm2D.600 cm25.(10分)有一个窗户是田字形,阳光倾斜的照进窗户,地面便现出它的影子,你认为可能为窗户的影子的是(D)①②③④A.④B.②④C.①②D.①③6.(20分)水平面上放置的球、正三棱锥、竖直放置的圆锥和水平放置的圆柱在水平面上的正投影分别是圆、正三角形、圆、矩形.二、综合应用(20分)7.(10分)如图是由上到下的光线照射一个正五棱柱的正投影,请你指出这时正五棱柱的各个面的正投影分别是什么.解:上下表面的正投影相同,是正五边形;五个侧面的正投影都是一条线段.8.(10分)一个圆锥的轴截面平行于投影面,它的正投影是边长为3的等边三角形.求圆锥的体积和表面积.解:圆锥的体积:ππ⎛⎫⨯⨯⨯= ⎪⎝⎭21339333228;圆锥的表面积:πππ⎛⎫⨯+⨯⨯= ⎪⎝⎭2312733224.三、拓展延伸(10分)9.(10分)画出如图摆放的正六棱柱的正投影: (1)投影线由物体前方照射到后方; (2)投影线由物体左方照射到右方; (3)投影线由物体下方照射到上方. 解:29.2三视图第1课时三视图一、新课导入1.课题导入情景:展示图片,如图是从三个方向看我国海军115导弹驱逐舰的图象,你能根据这三个图象,想象出该舰的大致形状吗?这三个图象就是该舰的三视图.(板书课题)2.学习目标(1)了解视图、三视图的概念.(2)能说出三视图与正投影的关系及三视图中的位置、大小关系.3.学习重、难点重点:三视图的概念.难点:三个视图之间的关系.二、分层学习1.自学指导(1)自学内容:教材P94~P96例1上面的内容.(2)自学时间:5分钟.(3)自学方法:阅读、观察、理解、想象.(4)自学参考提纲:①当我们从某一方向观察一个物体时,所看到的平面图形叫做物体的一个视图.②一个物体在三个互相垂直的投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的由左向右观察物体的视图,叫做左视图.③三视图的摆放:主视图要放在左上方,它的正下方应是俯视图,它的正右方应是左视图.④主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.⑤画三视图时,看得见部分的轮廓线画成实线,看不见部分的轮廓线画成虚线.⑥将图中的几何体与其对应的三视图用线连起来.2.自学:学生结合自学指导进行自学.3.助学(1)师助生:①明了学情:明了学生是否弄清三视图的含义及其画法要求.②差异指导:根据学情确定指导对象和内容.(2)生助生:小组内相互交流、研讨.4.强化:点一名学生口答自学参考提纲第⑥题并点评.1.自学指导(1)自学内容:教材P96~P97.(2)自学时间:8分钟.(3)自学方法:阅读、理解例题中分析部分的内容.(4)自学参考提纲:①画三视图的方法:第一步,确定主视图的位置,画出主视图;第二步,在主视图正下方画出俯视图,注意与主视图长对正;第三步,在主视图正右方画出左视图,注意与主视图高平齐,与俯视图宽相等.②为表示圆柱、圆锥等的对称轴,规定在视图中加画点划线表示对称轴.③画出如图所示的正三棱柱、圆锥和半球的三视图.2.自学:学生结合自学指导进行自学.3.助学(1)师助生:①明了学情:明了学生是否能按画三视图的要求准确地画出三视图.②差异指导:根据学情进行个别或分类指导.(2)生助生:小组内相互交流、研讨.4.强化(1)画三视图的方法.(2)点3名学生板演自学参考提纲第③题并点评.三、评价1.学生学习的自我评价:这节课你学到了哪些知识?还存在什么疑惑?2.教师对学生的评价:(1)表现性评价:点评学生学习的态度、积极性、学习方法、存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时的教学应在教师的指导下由学生自己动手作图,观察、发现并归纳三视图的基本要点,明确主视图反映的是物体的长和高,俯视图反映的是物体的长和宽,左视图反映的是物体的宽和高.“长对正,高平齐,宽相等”是画三视图必须遵从的规律.一、基础巩固(70分)1.(10分)下列几何体中,主视图、左视图和俯视图是全等形的几何体是(B )A.圆柱B.正方体C.棱柱D.圆锥2.(10分)沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图是(D )3.(10分)如图是小亮送给他外婆的礼品盒,礼品盒的主视图是(A )4.(10分)某长方体的主视图和左视图如图所示(单位:cm),则其俯视图是面积为6cm2的长方形.5.(30分)画出下列几何体的三视图:解:二、综合应用(20分)6.(20分)分别画出图中由7个小正方体组合而成的几何体的三视图.解:三、拓展延伸(10分)7.(10分)分别画出下面组合体的三视图. 解:29.2 三视图第2课时由三视图确定几何体一、导学1.课题导入情景:根据下图中的椅子的视图,工人就能制造出符合设计要求的椅子.你能说明其中的数学道理吗?由于三视图不仅反映了物体的形状,还反映了各个方向的尺寸大小,设计人员可以把自己构思的创造物用三视图表示出来,再由工人制造出符合各种要求的机器、工具、生活用品等,因此三视图在许多行业有着广泛的应用.这节课我们研究由三视图想象几何体的问题.(板书课题)2.学习目标能由三视图描述几何体的基本形状或实物原型.3.学习重、难点根据物体的三视图描述出几何体的基本形状或实物原型.4.自学指导(1)自学内容:教材P98~P99例3和例4.(2)自学时间:8分钟.(3)自学方法:阅读、观察、归纳.(4)自学参考提纲:①由三视图想象立体图形时,要先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面,然后再综合起来考虑整体图形.②教材P98例4中,由主视图知,物体的正面是正五边形;由俯视图知,由上向下看物体有两个面的视图是矩形,它们的交线是一条棱,可见到,另有两条棱被遮挡;由左视图知,物体的左侧有两个面的视图是矩形,它们的交线是一条棱,可见到.综合各视图可知,该物体是正五棱柱形状的.③由三视图想象实物形状:④根据三视图描述物体的形状:这是一个由半圆柱(上部)和长方体(下部)组合而成的几何体.⑤下图是由几个小立方体所搭成的几何体的主视图和俯视图,小正方形中的数字表示该位置上的小立方体的个数.确定x、y的值;完成这个几何体的左视图.x=3,y=2;这个几何体的左视图如图所示.二、自学学生结合自学指导进行自学.三、助学1.师助生:(1)明了学情:明了学生能否根据三视图发挥自己的想象得到相应的实物原型.(2)差异指导:根据学情对学困生进行个别或分类指导.2.生助生:小组内相互交流、研讨、订正.四、强化1.解题要领.2.点4名学生展示自学参考提纲第③题,然后老师给出点评;点2名学生口答自学参考提纲第④、⑤题并点评.五、评价1.学生学习的自我评价:这节课你有哪些收获?还有哪些疑惑?2.教师对学生的评价:(1)表现性评价:点评学生学习的态度、积极性、学习方法、存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时教学要充分发挥学生的空间想象能力和动手能力,对于一些较复杂的立体图形,可借助多媒体进行展示,使图形变得更加直观.根据物体的三视图想象物体的形状,可由俯视图确定物体在平面上的形状,然后再根据左视图、主视图嫁接出它在空间里的形状,从而确定物体的形状.鼓励学生多想、多练,提高自己的空间想象能力.一、基础巩固(70分)1.(10分)一个立体图形的三视图是一个正方形和两个长方形,则这个图形是(B )A.正方体B.长方体C.四面体D.四棱锥2.(10分)若一个物体的俯视图是圆,则这个物体可能的形状是(D)①球②圆柱③圆锥A.①B.②C.①②D.①②③3.(10分)在下面的四个几何体中,它们各自的左视图与主视图不一样的是(B)A B C D4.(10分)如图是一个几何体的三视图,则该几何体的形状为正六棱柱.第4题图第5题图5.(10分)由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是 4 .6.(10分)如图①是一个几何体的主视图和左视图.某班同学在探究它的俯视图时,画出了如图②的几个图形,其中,可能是该几何体俯视图的有a、b、c、e、f .图①图②7.(10分)某几何体的三视图如图所示,画出该几何体.解:如图所示.二、综合应用(20分)8.(10分)某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,俯视图如图所示,则此工件的左视图是(A)9.(10分)右图表示一个由相同小立方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方体的个数,则该几何体的主视图是(C)三、拓展延伸(10分)10.(10分)由5个相同的小正方体搭成的几何体的俯视图如图所示,这个几何体有几种搭法?解:一共有3种搭法.29.2 三视图第3课时由三视图确定几何体的表面积或体积一、导学1.课题导入问题:某工厂要加工一批密封罐,设计者给出了密封罐的三视图(如图),请按照三视图确定制作每个密封罐所需钢板的面积(图中尺寸单位:mm).这节课我们研究根据物体的三视图求其平面展开图形的面积问题.2.学习目标能由三视图想象立体图形,由立体图形想象其平面展开图并计算图形面积.3.学习重、难点重点:根据三视图描述基本几何体或实物原型.难点:知识的综合运用.4.自学指导(1)自学内容:教材P99~P100例5.(2)自学时间:10分钟.(3)自学方法:阅读、理解例题中的分析部分.(4)自学参考提纲:①如图所示是一个立体图形的三视图,则该立体图形是圆锥.②一张桌子摆放若干碟子,其三视图如图所示,则这张桌子上共有12 个碟子.③某几何体的三视图如图所示,那么这个几何体可能是(B)A.长方体B.圆柱C.圆锥D.球④某工厂要加工一批密封罐,设计者给出了密封罐的三视图(如图),请按照三视图确定制作每个密封罐所需钢板的面积(图中尺寸单位:mm).由三视图可知,密封罐的形状是正六棱柱.密封罐的高为50 mm,底面正六边形的直径100 mm,边长为50 mm.画出它的展开图:由展开图可知,制作一个密封罐所需钢板的面积为6个侧面与2个底面的面积和,即:6×50×50+2×6×12×50×50sin60°=6×502×(1+32)≈27990(mm2)⑤某工厂加工一批无底帐篷,设计者给出了帐篷的三视图,请你按照三视图确定每顶帐篷的表面积(图中尺寸单位:cm).(结果保留π)300×π×200+12×240×300×π=96000π(cm2).二、自学学生结合自学指导进行自学.三、助学1.师助生:(1)明了学情:观察学生自学参考提纲的答题情况.(2)差异指导:根据学情进行个别指导或分类指导.2.生助生:小组内相互交流、研讨、总结、归纳.四、强化总结交流解决例题的思路:(1)由三视图想象实物形状;(2)由实物图再结合三视图分析出实物图中各已知量,并画出其平面展开图;(3)根据平面展开图计算表面积.五、评价1.学生学习的自我评价:这节课你有哪些收获?掌握了哪些解题技能和方法?2.教师对学生的评价:(1)表现性评价:点评学生小组合作、交流、探讨的情况,学习效果和存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本节课由学生日常生活中的实例引入,让学生在认识三视图、探索由三视图求物体表面积或体积的过程中,深切体会到数学知识来源于生活、运用于生活.教师引导学生进行合理的探索,培养学生的空间想象能力和整体思维能力.一、基础巩固(70分)1.(10分)右图是一个多面体的表面展开图,那么这个多面体是(C)A.四棱柱B.四棱锥C.三棱柱D.三棱锥2.(10分)一个几何体的三视图如图所示,那么这个几何体的侧面积是(B )A.4π cm2B.6π cm2C.8π cm2D.12π cm2第2题图第3题图3.(10分)如图是一个包装盒的三视图,则这个包装盒的体积是(C)A.1923cm3B.11523cm3C.2883cm3D.3843cm34.(20分)根据展开图,画出这个物体的三视图,并求出这个物体的体积和表面积(图中尺寸单位:cm,结果保留π).解:体积:20×π×(102)2=500π(cm3).表面积:2×π×(102)2+20×10×π=50π+200π=250π(cm2).第4题图第5题图5.(20分)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积.解:4×π×6×12+π×(42)2=12π+4π=16π(cm2).二、综合应用(20分)6.(20分)根据三视图,画出这个几何体的展开图,并求几何体的表面积.解:20×10×π+12×10×π×(2255)+π×(102)2=225π+252π=(225+252)π.三、拓展延伸(10分)7.(10分)如图是一个几何体的三视图,根据所示数据,求该几何体的侧面积和体积.解:侧面积:32×20×π+(40×30+40×25)×2=(640π+4400)(cm2).体积:32×π×(202)2+40×30×25=(3200π+30000)(cm3).29.3 课题学习制作立体模型一、导学1.课题导入问题:怎样由视图转化为立体图形?这节课我们通过动手实践来体会这个过程.2.学习目标(1)体验平面图形向立体图形转化的过程.(2)体会用三视图表示立体图形的作用.(3)进一步感受平面图形与立体图形之间的关系.3.学习重、难点重点:根据三视图制作立体模型.难点:具体操作.4.自学指导(1)自学内容:教材P105~P106.(2)自学时间:30分钟.(3)自学方法:准备刻度尺、剪刀、小刀、胶水、硬纸板、马铃薯等参与活动.(4)课题活动参考提纲:①以硬纸板为主要材料,分别做出下面的两组三视图所表示的立体模型.图1 图2②按照下面给出的两组三视图,用马铃薯做出相应的实物模型.图3 图4③下面每组平面图形都是由四个等边三角形组成.a.其中哪些可以折叠成多面体,把上面的图形描在纸上,剪下来,叠一叠,验证你的答案;b.画出由上面图形能折叠成的多面体的三视图,并指出图中是怎样体现“长对正,高平齐,宽相等”的;c.如果上图中小三角形的边长都是1,那么对应的多面体的表面积是多少?(3cm2)④下面的图形由一个扇形和一个圆组成.a.把上面的图形描在纸上,剪下来,围成一个圆锥.b.画出由上面图形围成的圆锥的三视图.c.如果上图中扇形的半径为13 cm,圆的半径为5 cm,那么对应的圆锥的体积是多少?1 3×π×52×221353).⑤结合具体实例,写一篇介绍三视图、展开图的应用的短文.二、自学学生结合自学指导进行自学.三、助学1.师助生:(1)明了学情:观察学生具体操作中的情况.(2)差异指导:根据学情进行个别指导或分类指导.2.生助生:小组内相互交流、研讨、总结、归纳.四、强化1.由三视图想象实物形状.2.由展开图折叠立体图形,再制作模型. 五、评价1.学生学习的自我评价:这节课你有哪些收获?掌握了哪些解题技能和方法?2.教师对学生的评价:(1)表现性评价:点评学生小组合作、交流、探讨的情况,学习效果和存在的问题等.(2)纸笔评价:课堂评价检测. 3.教师的自我评价(教学反思).本节课的核心是学生动手实践,通过动手完成立体模型的制作过程,体验平面图形如何向立体图形转化和用三视图表示立体图形的作用,进一步感受平面图形与立体图形之间的联系.明白知识来源于实践、观察是得到知识的重要途径的道理.通过创设问题情境,让学生主动参与,激发学生的学习热情和兴趣,激活学生的思维.一、基础巩固(70分)1.(10分)某几何体的三视图如图所示,则这个几何体是(A )2.(10分)下列平面展开图是由5个大小相同的正方形组成的,其中沿正方形的边不能折成无盖小方盒的是(B )A B C D3.(10分)如图,在长方形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y 和x ,求y与x 的函数式是y x π⎛⎫=+ ⎪⎝⎭122.。

人教版九年级数学下册第29章视图与投影29

人教版九年级数学下册第29章视图与投影29
3.教师点评:对各小组的表现进行评价,指出优点和不足,引导学生进一步思考投影知识的应用。
(四)课堂练习
1.设计练习题:针对本节课所学内容,设计不同难度的练习题,让学生巩固投影知识。
2.学生练习:学生在课堂上独立完成练习题,教师巡回指导,解答学生疑问。
3.评价反馈:收集学生练习成果,进行评价,了解学生对投影知识掌握的情况。
2.创设生活情境,将投影与学生的日常生活紧密联系起来。例如,通过分析建筑物在不同光照条件下的影子,让学生感受平行投影的特点;通过展示摄影作品,让学生理解中心投影的效果。
3.采用任务驱动法,设计具有挑战性的实践活动。例如,让学生分组合作,为教室内的物品绘制三视图,并尝试根据三视图还原物品的三维形状。在此过程中,教师提供必要的指导,帮助学生克服难点。
4.利用多媒体教学资源,展示三视图的绘制过程,让学生在实际操作中掌握三视图的画法。
(三)情感态度与价值观
1.培养学生对投影现象的好奇心,激发他们学习数学的兴趣。
2.培养学生合作学习的意识,让他们在相互交流、探讨中共同成长。
3.培养学生勇于探索、积极思考的精神,使他们体会到数学在生活中的重要作用。
4.培养学生的空间想象能力,提高他们的审美素养,使他们对几何图形产生美感。
1.关注学生个体差异,针对不同学生的学习能力,适当调整教学难度和进度,使他们在原有基础上得到提高。
2.充分发挥学生的主体作用,鼓励他们积极参与课堂讨论和实践活动,培养他们的探究精神和创新能力。
3.注重启发式教学,引导学生运用已学过的几何知识,发现投影现象背后的规律,提高他们的逻辑思维能力。
4.考虑到学生在生活中对投影现象有一定的接触,可以结合实际情境进行教学,使抽象的投影知识变得具体、生动,增强学生的学习兴趣。

九年级数学下册29投影与视图教案(新版)新人教版

九年级数学下册29投影与视图教案(新版)新人教版

第二十九章投影与视图本章的主要内容包括:1.投影的基础知识,包括投影、平行投影、中心投影、正投影等概念以及正投影的成像规律.2.视图、三视图等概念,三视图的位置和度量规定,一些基本几何体的三视图,简单立体图形(包括相应的表面展开图)与它的三视图的相互转化.全章共包括三节:29.1投影;29.2三视图;29.3课题学习制作立体模型.第一节首先从物体在日光或灯光下的影子说起,引出投影、平行投影、中心投影、正投影等概念;然后讨论当直线和平面多边形与投影面成三种不同的位置关系时的正投影,归纳出其中蕴涵的正投影的一般规律;最后以正方体为例,讨论立体图形与投影面成不同的位置关系时的正投影.可以发现,整个讨论过程是按照一维、二维和三维的顺序发展的.第二节讨论的重点是三视图,其中包括三视图的成像原理、三视图的位置和度量规定、一些基本几何体的三视图等,最后通过例题讨论简单立体图形(包括相应的表面展开图)与它的三视图的相互转化.这一节是全章的重点内容,它不仅包括了有关三视图的基本概念和规律,而且包括了反映立体图形和平面图形的联系与转化的内容,与培养空间想象能力有直接的关系.第三节安排了观察、想象、制作相结合的实践活动——“课题学习制作立体模型”,这是结合实际,动脑与动手并重的学习内容,进行这个课题学习既可以采用独立完成的形式,也可以采用合作学习的方式.应该把这个课题学习看作是对前面学习的内容是否切实理解并掌握以及能否灵活运用的一次联系实际的检验.本章内容与其他章有较为明显的区别,它与直观图形的关系密切,需要在图形形状方面进行想象和判断,要完成的题目多是识图、画图、制作模型等类型的问题,而很少涉及定量的计算.1.以分析实际例子为背景,认识投影和视图的基本概念和基本性质.2.通过讨论简单立体图形(包括相应的表面展开图)与它的三视图的相互转化使学生经历画图、识图等过程,分析立体图形和平面图形之间的联系,提高空间想象能力.3.通过制作立体模型的课题学习,在实际动手的过程中进一步加深对投影和视图知识的认识,加强在实践活动中手脑结合的能力.本章教学约需5课时,具体分配如下:29.1 投影2课时29.2 三视图2课时29.3 课题学习制作立体模型1课时29.1投影第1课时投影(1)知识与技能1.经历实践探索,了解投影、投影面、平行投影和中心投影的概念.2.了解平行投影和中心投影的区别.过程与方法使学生学会关注生活中有关投影的数学问题,提高数学的应用意识.情感、态度与价值观理解现实生活中影子的现象,学会用数学知识解答.重点理解平行投影和中心投影的特征.难点在投影面上画出平面图形的平行投影或中心投影.一、问题引入你看过皮影戏吗?皮影戏是用兽皮或纸板做成的人物剪影来表演故事的戏曲,表演时,用灯光把剪影照射在银幕上,艺人在幕后一边操纵剪影,一边演唱,并配以音乐.你知道皮影戏所用的原理吗?二、新课教授问题1.如图所示的图片是物体在生活中的几个图片,请同学们考虑它们是怎样得到的.教师出示图片,引导学生观察图片的形成,让学生感受在日常生活中的一些投影现象.师生共同总结,一起感受.物体在日光或灯光的照射下,会在地面、墙壁等处形成影子,它既与物体的形状有关,也与光线的照射方式有关.问题2.通过观察和自己的认识,你是怎样理解图片的含义的?师生共同总结:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.问题3.请同学们观察下图的投影过程,它们的投影过程有什么不同?师生活动:教师引导学生从两个方面考虑,第一,观察光线的特点;第二,观察照射的方式.结论:图(1)中的投影线集中于一点,由同一点(点光源)发出的光线形成的投影叫做中心投影.例如,物体在灯泡发出的光照射下形成的影子就是中心投影.图(2)、(3)中,投影线是互相平行的射线,由平行光线形成的投影是平行投影.例如,物体在太阳光的照射下形成的影子(简称日影)就是平行投影.问题4.请观察问题3中的图,说说平行投影和中心投影有什么相同点与不同点?教师出示表格,要求学生完成.平行投影与中心投影的区别与联系:区别光线物体与投影面平行时的投影联系平行投影平行的投影线全等中心投影从一点发出的投影线放大都是物体在光线的照射下,在某个平面内形成的影子.(即都是投影)三、例题讲解例(1)地面上直立一根标杆AB,如图,杆长为2 cm.①当阳光垂直照射地面时,标杆在地面上的投影是什么图形?②当阳光与地面的倾斜角为60°时,标杆在地面上的投影是什么图形?画出投影示意图.(2)一个正方形纸板ABCD和投影面平行(如图),投影线和投影面垂直,点C在投影面的对应点为C′,请画出正方形纸板的投影示意图.(3)下面两幅图表示两根标杆在同一时刻的投影,请在图中画出形成投影的光线.它们是平行投影还是中心投影?说明理由.解:(1)①一点②线段(图略)(2)图略(3)分别连接标杆的顶端与投影上的对应点,很明显,图(1)的投影线互相平行,是平行投影.图(2)的投影线相交于一点,是中心投影.四、巩固练习1.圆形的物体在太阳光的投影下是( )A.圆形B.椭圆形C.线段D.以上都有可能答案D2.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( )A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长答案D五、课堂小结1.物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影.2.由同一点(点光源)发出的光线形成的投影叫做中心投影.3.太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影.4.物体在太阳光下形成的影子随着物体与投影面的位置关系的改变而改变.本节课我让学生通过实践、观察、探索了解平行投影、中心投影的含义,学会辨别光源是太阳光线还是灯光光线,学会进行中心投影条件下的物体与其投影之间的相互转化,感悟灯光与影子在现实生活中的应用价值.第2课时投影(2)知识与技能了解正投影的概念;能根据正投影的性质画出简单的平面图形的正投影.过程与方法培养动手实践能力及空间想象能力.情感、态度与价值观学会观察,理解原理,增强自信心.重点理解正投影的含义并能根据正投影的性质画出简单的平面图形的正投影.难点归纳出正投影的性质,正确画出简单平面图形的正投影.一、复习引入1.回忆复习平行投影、中心投影的概念.由同一点(点光源)发出的光线形成的投影叫做中心投影;太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影.2.下图表示一块三角尺在光线照射下形成的投影,其中哪个是平行投影,哪个是中心投影?图(1)中的投影线集中于一点,形成中心投影;图(2)、(3)中,投影线互相平行,形成平行投影.二、新课教授问题1.图(2)、(3)的投影线与投影面的位置关系有什么区别? 教师出示图片,引导学生观察图片的特征.结论:图(2)中,投影线斜着照射投影面;图(3)中投影线垂直照射投影面(即投影线正对着投影面).指出:在平行投影中,如果投射线垂直于投影面,那么这种投影就称为正投影;如果投射线不垂直于投影面,那么这种投影就称为斜投影.问题2.通过学习,我们对投影应如何分类?物体――→光照投影⎩⎨⎧――→点光源中心投影――→平行光线平行投影⎩⎪⎨⎪⎧正投影斜投影 探究1.如图,把一根直的细铁丝(记为线段AB)放在三个不同的位置: (1)铁丝平行于投影面; (2)铁丝倾斜于投影面;(3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点). 三种情形下,铁丝的正投影各是什么形状?通过观察,我们可以发现:(1)当线段AB 平行于投影面P 时,它的正投影是线段A 1B 1,线段与它的投影的大小关系为AB =A 1B 1;(2)当线段AB 倾斜于投影面P 时,它的正投影是线段A 2B 2,线段与它的投影的大小关系为AB>A 2B 2;(3)当线段AB 垂直于投影面P 时,它的正投影是一个点A 3. 探究2.如图,把一块正方形硬纸板P(例如正方形ABCD)放在三个不同位置: (1)纸板平行于投影面; (2)纸板倾斜于投影面; (3)纸板垂直于投影面.结论:(1)当纸板P 平行于投影面Q 时,P 的正投影与P 的形状、大小一样; (2)当纸板P 倾斜于投影面Q 时,P 的正投影与P 的形状、大小发生变化;(3)当纸板P垂直于投影面Q时,P的正投影成为一条线段.归纳:当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.三、例题讲解例画出如图摆放的正方体在投影面P上的正投影.(1)正方体的一个面ABCD平行于投影面P,如图(1);(2)正方体的一个面ABCD倾斜于投影面P,上底面ADEF垂直于投影面P,并且上底面的对角线AE垂直于投影面P,如图(2).解:(1)如图,正方体的正投影为正方形A′B′C′D′,它与正方体的一个面是全等关系;(2)如图,正方体的正投影为矩形F′G′C′D′,这个矩形的长等于正方体的底面对角线的长,矩形的宽等于正方体的棱长.矩形上、下两边中点的连线A′B′是正方体侧棱即它所对的另一条侧棱AB的投影.四、巩固练习1.(1)在一天中,从早晨到傍晚物体的影子由正西向________、________、________和正东方向移动;(2)如图是小明在学校时上午、下午看到的学校操场上的旗杆的影子的俯视图,将它们按时间顺序进行排列为________.答案(1)西北正北东北(2)C,D,B,A2.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是( )答案D五、课堂小结1.在平行投影中,如果投射线垂直于投影面,那么这种投影就称为正投影;如果投射线不垂直于投影面,那么这种投影就称为斜投影.2.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.3.投影的分类:物体――→光照投影⎩⎨⎧――→点光源中心投影――→平行光线平行投影⎩⎪⎨⎪⎧正投影斜投影本节课首先探究正投影的概念,然后以铁丝和正方形纸板的影子为例,讨论当直线和平面多边形与投影面成三种不同的位置关系时的正投影,归纳出其中蕴涵的正投影的一般规律.最后以正方体为例,讨论立体图形与投影面成不同位置关系时的正投影.可以发现,整个讨论过程是按照一维、二维和三维的顺序发展的.29.2 三视图第1课时 三视图(1)知识与技能会从投影的角度理解视图的概念,进一步明确正投影与三视图的关系. 过程与方法培养动手实践能力及空间想象能力. 情感、态度与价值观经历探索简单立体图形的三视图的画法的过程,能识别物体的三视图.重点简单立体图形的三视图的画法. 难点三视图中三个位置关系的理解.一、问题引入如图所示,直三棱柱的侧棱与水平投影面垂直,请与同伴一起探讨下面的问题:1.以水平投影面为投影面,在正投影下这个直三棱柱的三条侧棱的投影是什么图形? 2.画出直三棱柱在水平投影面上的正投影,得到的投影是什么图形?它与直三棱柱的底面有什么关系?这个水平投影能完全反映这个物体的形状和大小吗?如果不能,那么还需哪些投影面? (物体的正投影从一个方向反映了物体的形状和大小,为了全面地反映一个物体的形状和大小,我们常常再选择正面和侧面两个投影面,画出物体的正投影.)二、新课教授 如图(1),我们用三个互相垂直的平面作为投影面,其中正对着我们的面叫做正面,正面下方的面叫做水平面,右边的面叫做侧面.一个物体(例如一个长方体)在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的由左向右观察物体的视图,叫做左视图.如图(2),将三个投影面展开在一个平面内,得到这一物体的一张三视图(由主视图、俯视图和左视图组成).三视图中的各视图,分别从不同方向表示物体,三者结合起来就能够较全面地反映物体的形状.三视图中,主视图与俯视图表示同一物体的长,主视图与左视图表示同一物体的高,左视图与俯视图表示同一物体的宽,因此三个视图的大小是互相联系的.画三视图时,三个视图要放在正确的位置,并且使主视图与俯视图的长对正、主视图与左视图的高平齐、左视图与俯视图的宽相等.师:通过以上的学习,你有什么发现?物体的三视图实际上是物体在三个不同方向的正投影.正投影面上的正投影就是主视图,水平投影面上的正投影就是俯视图,侧投影面上的正投影就是左视图.三、例题讲解例1 画出下图所示的一些基本几何体的三视图.分析:画这些基本几何体的三视图时,要注意从三个方面观察它们.具体画法为:1.确定主视图的位置,画出主视图.2.在主视图正下方画出俯视图,注意与主视图“长对正”.3.在主视图正右方画出左视图,注意与主视图“高平齐”、与俯视图“宽相等”.解:例2 画出如图所示的支架(一种小零件)的三视图.解:如图是支架的三视图:四、巩固练习一个正六棱柱高2 cm,底面是边长为1.5 cm的正六边形,先说说它在正面、水平面、侧面三个方向的正投影分别是什么图形,然后画出它的三视图.答案五、课堂小结1.画一个立体图形的三视图时要考虑从某一个方向看物体获得的平面图形的形状和大小,不要受到该方向的物体结构的干扰.2.在画三视图时,三个视图不要随意乱放,应做到俯视图在主视图的下方、左视图在主视图的右边,三个视图之间保持:长对正,高平齐,宽相等.本节课的教学设计,力求突出具体、生动、直观,因此,学生多以操作、观察实物模型和图片等活动为主,比如正方体在不同位置时的正投影.归纳出物体三视图的概念,并能根据此规律画出简单的立体几何图形的三视图.在介绍三视图时,若条件允许,可采用试验的方法进行实例的观察,这样不仅直观而且富有真实感.第2课时三视图(2)知识与技能学会根据物体的三视图描述出几何体的基本形状或实物原型.过程与方法经历探索简单的几何体的三视图的还原过程,进一步发展空间想象能力.情感、态度与价值观了解将三视图转换成立体图在生活中的作用,使学生体会到所学的知识有重要的实用价值.重点根据三视图描述基本几何体和实物原型及三视图在生活中的作用.难点根据物体的三视图描述出几何体的基本形状或实物原型.一、问题引入1.画一个立体图形的三视图时要注意什么?(三个视图要放在正确的位置,并且使主视图与俯视图的长对正、主视图与左视图的高平齐、左视图与俯视图的宽相等.)2.做一做:画出下面几何体的三视图.二、新课教授例1 根据下面的三视图说出立体图形的名称.分析:由三视图想象立体图形时,要先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面,然后再综合起来考虑整体图形.解:(1)从三个方向看立体图形,图像都是矩形,可以想象出:整体是长方体,如图(a)所示;(2)从正面、侧面看立体图形,图像都是等腰三角形;从上面看,图像是圆,可以想象出:整体是圆锥,如图(b)所示.例2 根据物体的三视图(如图)描述物体的形状.分析:由主视图可知,物体的正面是正五边形,由俯视图可知,由上向下看物体是矩形的,且有一条棱(中间的实线)可见到,两条棱(虚线)被遮挡,由左视图知,物体的侧面是矩形的,且有一条棱(中间的实线)可见到,综合各视图可知,物体是五棱柱形状的.解:物体是五棱柱形状的,如下图所示.例 3 某工厂要加工一批密封罐,设计者给出了密封罐的三视图(如下图),请你按照三视图确定制作每个密封罐所需钢板的面积.分析:对于某些立体图形,若沿其中一些线(例如棱柱的棱)剪开,可以把立体图形的表面展开成一个平面图形,即展开图.在实际的生产中,三视图和展开图往往结合在一起使用.解决本题的思路是,由视图想象出密封罐的立体形状,再进一步画出展开图,从而计算面积.解:由三视图可知,密封罐的形状是正六棱柱.(如图(左)).密封罐的高为50 mm ,底面正六边形的直径为100 mm ,边长为50 mm ,右图是它的展开图.由展开图可知,制作一个密封罐所需钢板的面积为6×50×50+2×6×12×50×50×32=6×502×(1+32) ≈27 990(mm 2).三、巩固练习如图所示的图形是一个多面体的三视图,请根据视图说出该多面体的具体名称.答案正四棱锥四、课堂小结1.一个视图不能确定物体的空间形状,根据三视图要描述几何体或实物原型时,必须将各视图对照起来看.2.一个摆好的几何体的视图是唯一的,但从视图反过来考虑几何体时,它有多种可能性.例如:正方体的主视图是正方形,但主视图是正方形的几何体有直三棱柱、长方体、圆柱等.3.对于较复杂的物体,由三视图想象出物体的原型,应理解并掌握三个视图之间的前后、左右、上下的对应关系.本节课的教学,以课程标准为指南,结合学生的已有知识和经验而设计.重点讲解由三视图判断几何体的结构特征,也就是画三视图时尺寸不作严格要求.教学设计时使用了大量的图片,建议在实际应用时尽量使用信息技术,如画法几何,让学生从动态过程中获得三视图的感性认识,以便从整体上把握三视图的画法.29.3课题学习制作立体模型知识与技能1.通过实际动手进一步加深对投影和视图知识的认识.2.加强在实践活动中手脑结合的能力.3.体会用三视图表示立体图形的作用,进一步感受立体图形与平面图形之间的联系.过程与方法1.通过创设情境让学生自主探索立体图形的制作过程.2.通过自主探索、合作研究讨论使学生加深对投影和视图的认识.3.制作模型,体会由平面图形转化为立体图形的过程与乐趣.情感、态度与价值观1.通过创设问题情境使学生感受平面图形与立体图形的关系.2.通过参与数学实践培养合作探索的精神和尊重理解他人想法的学习品质.3.通过动手实践活动培养学生的创新意识与创造发明的意识.重点让学生亲自经历规律的发现、深入研究、应用的过程.难点学生通过手工制作实现理论与实践的结合;在探索解决实际问题的过程中,养成科学的研究态度.一、问题引入请学生回答下列两个问题:1.主视图反映物体的________和________,俯视图反映物体的________和________,左视图反映物体的________和________.答案长高长宽宽高2.下面是一个立体图形的三视图,请在括号内填上立体图形的名称( )答案圆柱体二、新课教授活动一:根据三视图制作原实物.师:以硬纸板为主要原材料,分别做出下面的两组视图所表示的立体模型.师:用硬纸板制作各面,围成立体图形.说明:教师要给学生提供充分的时间和空间,让学生自己动手去做,最后展示学生的作品,让学生感受到成功的喜悦,激发他们继续学习的兴趣.活动二:根据三视图制作实物模型.师:按照下面给出的两组视图,用马铃薯(或萝卜)制作相应的实物模型.生:学生动手制作,实际动手制作立体物品有利于培养学生的空间想象能力.师:(1)是圆锥,(2)是直五棱柱,它的底面五边形中有三个直角.说明:教师要给学生提供充分的时间和空间,让学生自己动手去做,最后展示学生的作品,让学生感受到成功的喜悦,激发学习的兴趣.活动三:根据平面图形制作相应的实物图.师:下面的每一组平面图形都是由四个等边三角形组成的.(1)指出其中哪些可以叠成多面体.把上面的图形描在纸上,剪下来,叠一叠,验证你的答案;(2)画出由上面的图形能叠成的多面体的三视图,并指出三视图中是怎样体现“长对正,高平齐,宽相等”的;(3)如果图中小三角形的边长为1,那么对应的多面体的体积和表面积各是多少?(1) (2) (3)师:(1)和(3)可折叠成正四面体,正四面体的体积为212,表面积为 3.活动四:课题拓广.三视图和展开图都是与立体图形有关的平面图形,利用课余时间去观察了解或者上网查询了解,结合我们的生活实际和具体的事例,写一篇短文介绍三视图及展开图的应用以及你的感受.三、巩固练习1.小明从正面观察下图所示的两个物体,看到的是( )答案C2.如图,一平面经过圆锥的顶点截圆锥所得到的截面形状是( )答案B3.如图是一个正方体的平面展开图,当把它折成一个正方体时,与空白面相对的字应该是( )A.北B.京C.欢D.迎答案C四、课堂小结从技能上说,认识平面图形与立体图形的联系,有助于根据需要实现它们之间的相互转化,即学会画三视图和由三视图得出立体图形.从能力上说,认识平面图形与立体图形的联系,对于培养空间想象能力是非常重要的.本节是结合实际问题动手与动脑并重的学习内容.“观察、想象、制作、交流”相结合是本节中的主要实践活动.设计这个课题学习的目的是:(1)在具体问题中,对是否切实理解掌握前面学习的三视图的内容以及能否灵活运用知识的一次检验;(2)是采用独立完成与合作学习相结合的方式,使同学之间相互讨论、互助互学,增强协作能力,增进感情.。

导学案九(下)29投影与视图

导学案九(下)29投影与视图

人教版数学九年级上导学案第二十九章投影与视图第1课时:§29.1.1 投影第2课时:§29.1.2 投影第3课时:§29.1.2 投影习题课第4课时:§29.2.1 三视图(1)第5课时:§29.2.2三视图(2)第6课时:§29.2.3三视图(3)第7课时:§29.2.4三视图(4)第8课时:§29 全章复习第9课时:§29 全章测试2§29.1.1投影学习目标1.了解投影、投影面、平行投影和中心投影的概念;2.了解角平行投影和中心投影的区别;自主学习一、课前准备(预习教材P106~ P107,找出疑惑之处)二、新课导学※互动探究探究任务一:什么叫做物体的投影问题探究:学生先独立阅读课本第106页,再彼此交流结果,举例。

教师点拨:一般地.用光线照射物体.在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.探究任务二:平行投影和中心投影是什么?问题探究:学生先独立阅读课本第106,107页,再交流结果。

教师点拨:有时光线是一组互相平行的射线.例如太阳光或探照灯光的一束光中的光线.由平行光线形成的投影是平行投影.例如.物体在太阳光的照射下形成的影子(简称日影)就是平行投影.由同一点(点光源)发出的光线形成的投影叫做中心投影.例如.物体在灯泡发出的光照射下形成影子就是中心投影.探究任务三:平行投影与中心投影的区别与联系问题探究:学生以数学习小组为单位,观察在太阳光线和灯光下,木杆和三角形纸板在地面的投影。

教师点拨:平行投影与中心投影的区别与联系新知:1、物体的投影的概念;2、平行投影和中心投影的概念3、平行投影与中心投影的区别与联系学生反思本节课未理解的知识点,写在下面:※探究升华(学生独立完成,并自己总结,教师点拨)例1、地面上直立一根标杆AB如图,杆长为2cm。

人教版九年级数学下册第29章投影与视图全章教案

人教版九年级数学下册第29章投影与视图全章教案

第 29章投影与三视图一、教学内容及教材分析:1、本章的主要内容有测量、一是从不同方向看物体,以及由此而产生的盲区和影子的概念与性质,二是物体的三视图、投影时视图的基础。

2、空间观念的形成是一个长期的过程。

本章是第七章内容的继续和发展。

二、重难点与关键1、了解中心投影的概念以及中心投影下线段、平面图形与其投影的关系。

2、认识平行投影及其特征,能够画简单几何体在水平投影面和竖直投影面上的正投影。

3、能通过正投影理解三视图的概念、三视图的投影规律,能画出简单几何体的三视图。

4、能由三视图想象简单几何体。

难点:几何体与其投影的关系及由三视图想象几何体。

三、教学目标:1、通过实例,了解视点、视线、盲区的含义及生活上的应用。

2、通过实例,了解中心投影、平行投影和正投影的概念和基本性质。

3、了解三视图的概念:会画基本几何体的三视图,能判断简单的物体的视图,并会根据视图描述简单的儿何体。

4、通过简单几何体与它的三视图之间的相互转化,体会几何体与平面图形的之间的相互联系,感悟转化的数学思想,发展学生的空间观念。

5、通过三视图的学习,培养学生识图、画图的基本技能。

6、通过实例,了解视图在现实生活中的应用,增强学生的应用意识。

四、教学方法与策略:(一)重视结合实际例子讨论问题,在直观认识的基础上归纳基本规律数学易以数量关系和空间形式为主要研究对象的科学,数量关系和空间形式是从理牢世界中抽象出来的。

很明显,关于投影和视图的知识是从实际需要(建筑、制造等)中产生的,它们与实际模型联系得非常紧密。

在本章之前,学生已经数次接触过“从不同方向看物体”等内容,对投影和视图的知识已有初步的,朦胧的了解,只是还没有明碗地接触过一些基本名词术语,对有关基本规律还缺乏归纳总结。

(二)重视平面图形与立体图形的联系,重在培养空间想象能力在学习本章之前,学生已经具有一定的关于平面图形与立体图形的匆识,并且接鲀过“从不同方向观察物体”,基本儿何体的平面展开图等反映平面图形与立体图形之间的联系的问题。

九年级数学第29章投影与视图导学案

九年级数学第29章投影与视图导学案
a??
【巩固练习】
1. 画出图中的几何体的三视图。
题后小结:
画三视图时,看得见的轮廓线通常画成_______,看不见的部分通常画成_____
2、你能画出下图中几何体的三视图吗?
【总结提高】
(一)师生小结
你的收获(
你的不足(
(二)方法汇总
画基本几何体的三视图时,要注意从个方面观察它们•具体画法为:
1.确定_视图的位置,画出视图;
ABA2B2;
(3)当线段AB垂直于投影面P时,它的正投影是。
设计意图:用细铁丝表示一条线段,通过实验观察,分析它的正投影简单直观,易于发现 结论。
活动2
如图,把一块正方形硬纸板P(记为正方形ABCD放在三个不同位置:
(1)纸板平行于投影面;
(2)纸板倾斜于投影面;
(3)纸板垂直于投影面。
三种情形下纸板的正投影各是什么形状?
(1)铁丝平行于投影面;
(2)铁丝倾斜于投影面:
(3) 铁丝垂直于投影面(铁丝不一定要与投影面有公共点)。 三种情形下铁丝的正投影各是什么形状?
通过观察、讨论可知:
(1)当线段AB平行于投影面P时,它的正投影是线段AB,线段与它的投影的大小关系为
ABAiBi;
(2)当线段AB倾斜于投影面P时,它的正投影是线段A2Ba,线段与它的投影的大小关系为
2.在_视图正下方画出视图,注意与主视图“”。
3.在_视图正右方画出视图.注意与主视图“”,与俯视图
a??
4.看得见的轮廓线通常画成,看不见的部分通常画成
【布置作业】
作业:教科书116页习题29.2复习巩固1、2、3题。
29.2
【学习目标】
(一)知识技能:
会画简单几何体的三视图。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十九章投影与视图29.1投影(第一课时)【学习目标】(一)知识技能:1、了解投影的有关概念,能根据光线的方向辨认物体的投影。

2、了解平行投影和中心投影的区别。

3、了解物体正投影的含义,能根据正投影的性质画出简单平面图形的正投影。

(二)数学思考:在探究物体与其投影关系的活动中,体会立体图形与平面图形的相互转化关系,发展学生的空间观念。

(三)解决问题:通过对物体投影的学习,使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。

(四)情感态度:通过学习,培养学生积极主动参与数学活动的意识,增强学好数学的信心。

【学习重点】了解正投影的含义,能根据正投影的性质画出简单平面图形的正投影。

【学习难点】归纳正投影的性质,正确画出简单平面图形的正投影。

【学习准备】手电筒、三角尺、作图工具等。

【学习过程】【情境引入】活动1设问:你注意观察过周围物体在日光或灯光下的影子吗?影子与物体有着怎样的联系呢?教师展示实物及图片,学生观察、思考,感知物体与投影之间的关系。

学生讨论、发表观点;教师归纳。

总结出投影、投影线、投影面的概念。

总结:一般地,用光线照射物体,在________________ 上,得到的______________ 叫做物体的投影,叫做投影线,投影所在的______________ 叫做投影面。

_______________ 【自主探究】活动2教师给学生展示一组阳光下的投影图片,设问:下列投影中,投影线、投影面分别是什么?这些投影线有何共同特征?学生观察、思考、归纳,教师指导。

归纳总结:由 _______________ 形成的投影叫做平行投影。

试举出平行投影在生活中的应用实例。

__________________________________________________ 。

活动3出示一组灯光下的投影,学生观察投影线、投影面分别是什么?这些投影线有何共同特征?学生分析、回答。

归纳总结:由 _______________ 发出的光线形成的投影叫做中心投影。

试举出中心投影在生活中的应用实例。

__________________________________________________ 。

活动4出示教材88页练习:将物体与它们的投影用线连接起来。

II【合作探究】活动5:问题1出示两幅图,观察中心投影与平行投影的区别与联系。

联系:______________________________________________________________________________区别:______________________________________________________________________________问题2图中三角板的投影各是什么投影?它们的投影线与投影面的位置关系有什么区别?学生观察、思考、互相交流。

联系:图中的投影都是__________________ 投影。

区别:_____________________________________________________________________________________总结出正投影的概念:_ —【巩固练习】一、填空题1 •物体在光线照射下,在地面或墙壁上留下的影子叫做它的__________________ •2. ________________________________________ 手电筒、路灯的光线可以看成是从___________________________________________________ 发出的,它们所形成的投影是_______________ 投影,而太阳光线所形成的投影是 ______________ 投影.3•将一个三角形放在太阳光下,它所形成的投影的形状是______________________________ .二、选择题4•小明从正面观察下图所示的两个物体,看到的是()5.物体的影子在正北方,则太阳在物体的()A .正北B .正南C .正西D .正东6.小明在操场上练习双杠时,发现两横杠在地上的影子()D.无法确定A .相交B .平行C .垂直并画出小赵在灯光下的影子.&确定图中路灯灯泡的位置,n小赵、选择题10.晚上,人在马路上走过一盏路灯的过程中,其影子长度的变化情况是()A .先变短后变长B .先变长后变短C .逐渐变短D .逐渐变长11.下面是一天中四个不同时刻两个建筑物的影子:将它们按时间先后顺序进行排列,正确的是(北)北Jt②南B .②④③①C.③④①②③南D .③①②④北A .③④②①12.如图是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径是1.2m,桌面距离地面则地面上阴影部分的面积是()3m,A . 0.36 二m22C. 2二mB . 0.81 二m2D . 3.24二m2【总结提高】1m ,若灯泡距离地面(一)师生小结你的收获(你的不足(29.1投影(第二课时)【学习目标】(一)知识技能:1、进一步了解投影的有关概念。

2、能根据正投影的性质画出简单平面图形的正投影。

(二)数学思考:在探究物体与其投影关系的活动中,体会立体图形与平面图形的相互转化关系,发展学生的空间观念。

(三)解决问题:通过对物体投影的学习,使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。

(四)情感态度:通过学习,培养学生积极主动参与数学活动的意识,增强学好数学的信心。

【学习重点】能根据正投影的性质画出简单平面图形的正投影。

【学习难点】归纳正投影的性质,正确画出简单平面图形的正投影。

【学习准备】手电筒、三角尺、作图工具等。

【学习过程】【知识回顾】正投影的概念:投影线_______________于投影面产生的投影叫正投影。

【自主探究】活动1 出示探究1如图29.1 —6中,把一根直的细铁丝(记为线段AB放在三个不同位置:(1)铁丝平行于投影面;(2)铁丝倾斜于投影面:(3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点)。

三种情形下铁丝的正投影各是什么形状?B通过观察、讨论可知:(1)当线段AB平行于投影面P时,它的正投影是线段A1B1,线段与它的投影的大小关系为AB A _____ 1B1 ;(2)当线段AB倾斜于投影面P时,它的正投影是线段A2B2,线段与它的投影的大小关系为AB A _____ 2B2 ;(3)当线段AB垂直于投影面P时,它的正投影是___________________ 。

设计意图:用细铁丝表示一条线段,通过实验观察,分析它的正投影简单直观,易于发现结论。

活动2如图,把一块正方形硬纸板P (记为正方形ABCD放在三个不同位置:(1)纸板平行于投影面;(2)纸板倾斜于投影面;(3)纸板垂直于投影面。

三种情形下纸板的正投影各是什么形状?正投影的性质:__________________________________________________________________________ 活动3按照图中所示的投影方向,画出矩形和三角形的正投影。

活动4出示例题:例画出如图摆放的正方体在投影面(1)正方体的一个面ABC[平行于投影面(2)正方体的一个面ABC[倾斜于投影面的对角线AE垂直于投影面P.P上的正投影。

PP,上底面ADEF垂直于投影面P,并且上底面【巩固练习】通过观察、讨论可知:(1)当纸板P平行于投影面时,P的正投影与纸板P的一样;(2)当纸板P倾斜于投影面时,P的正投影与纸板P的(3)当纸板P垂直于投影面时,P的正投影成为C归纳总结:通过活动1、活动2你发现了什么?⑴5^(3)D C1、小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子2、球的正投影是() (A )圆面.(B )椭圆面.(C )点.(D )圆环.3、正方形在太阳光的投影下得到的几何图形一定是 ()(A )正方形.(B )平行四边形或一条线段.(C )矩形.4、如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是 ()D G □ a D(A )(B )(0)( l )>I 第4 题)5、 将一个三角形放在太阳光下,它所形成的投影是 __________________________________ ;6、 在同一时刻,身高1.6m 的小强的影长是1.2m ,旗杆的影长是15m ,则旗杆高为 ( ) A 、16mB 、18mC 、20m D 、22m7、 地面上直立一根标杆 AB 如图,杆长为2cm 。

① 当阳光垂直照射地面时,标杆在地面上的投影是什么图形?② 当阳光与地面的倾斜角为 60°时,标杆在地面上的投影是什么图形?并画出投影示意图;你的收获( 你的不足( 【布置作业】作业:教科书92页练习题A. 相交B. 平行C.垂直 D. 无法确定 (D )菱形.【总结提高】(一)师生小结教科书93页第4题、第5题。

29.2三视图(第一课时)【学习目标】(一)知识技能:1•会从投影角度理解视图的概念。

2•会画简单几何体的三视图。

(二)数学思考:通过具体活动,积累观察,想象物体投影的经验。

(三)解决问题:会画实际生活中简单物体的三视图。

(四)情感态度:1•培养学生自主学习与合作学习相结合的学习方式,使学生体会从生活中发现数学。

2•在应用数学解决生活中问题的过程中,品尝成功的喜悦,激发学生应用数学的热情。

【学习重点】1.从投影的角度加深对三视图概念的理解。

2.会画简单几何体的三视图。

【学习难点】1.对三视图概念理解的升华。

2.正确画出三棱柱的三视图和小零件的三视图。

【学习过程】【情境引入】活动一如图,直三棱柱的侧棱与水平投影面垂直。

请与同伴一起探讨下面的问题:(1)以水平投影面为投影面,在正投影下,这个直棱柱的三条侧棱的投影是什么图形?(2)画出直三棱柱在水平投影面的正投影,得到的投影是什么图形?它与直三棱柱的底面有什么关系?(3)这个水平投影能完全反映这个物体的形状和大小吗?如不能,那么还需哪些投影面?【自主探究】活动二学生观察思考:(1)三个视图位置上的关系。

(2)三个视图除了位置上的关系,在大小尺寸上,彼此之间又存在什么关系?小结:1.________________ 三视图位置有规定,主视图要在__________________ ,俯视图应在_______________ ,左视图要在_________________ 。

2•三视图中各视图的大小也有关系。

主视图与俯视图表示同一物体的 _______ ,主视图与左视图表示同一物体的 ___________ ,左视图与俯视图表示同一物体的 _____________ 。

相关文档
最新文档