【山东省新人教B版数学(文科)2012届高三单元测试5:必修2第二章《平面解析几何初步》)
数学人教B必修2单元检测:第二章 平面解析几何初步(附答案) Word版含解析
数学人教B必修2第二章平面解析几何初步单元检测(时间:90分钟,满分:100分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.圆心为(1,-1),半径为2的圆的方程是().A.(x-1)2+(y+1)2=2B.(x+1)2+(y-1)2=4C.(x+1)2+(y-1)2=2D.(x-1)2+(y+1)2=42.已知点A(1,2),B(-2,3),C(4,t)在同一直线上,则t的值为().A.12B.32C.1 D.-13.直线ax+2y-1=0与直线x+(a-1)y+2=0平行,则a等于().A.32B.2 C.-1 D.2或-14.在空间直角坐标系Oxyz中,点M的坐标是(1,3,5),则其关于x轴的对称点的坐标是().A.(-1,-3,-5) B.(-1,-3,5)C.(1,-3,-5) D.(1,3,-5)5.若方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a的取值范围是().A.(-∞,-2) B.2,23⎛⎫- ⎪⎝⎭C.(-2,0) D.22,3⎛⎫- ⎪⎝⎭6.到直线2x+y+1=0().A.直线2x+y-2=0B.直线2x+y=0C.直线2x+y=0或直线2x+y+2=0D.直线2x+y=0或直线2x+2y+1=07.过点P(5,4)作圆C:x2+y2-2x-2y-3=0的切线,切点分别为A,B,四边形P ACB 的面积是().A.5 B.10 C.15 D.208.圆22142x y⎛⎫++=⎪⎝⎭与圆(x-1)2+(y-3)2=m2的公切线的条数为4,则m的取值范围是().A .3737,44⎛⎫- ⎪⎝⎭B .0,22⎛⎫- ⎪ ⎪⎝⎭C .2222⎛⎫-- ⎪ ⎪⎝⎭D .以上均不对9.若圆心在x O 位于y 轴左侧,且与直线x +2y =0相切,则圆O 的方程是( ).A .(x 2+y 2=5B .(x 2+y 2=5C .(x -5)2+y 2=5D .(x +5)2+y 2=510.已知集合A ={(x ,y )|y =},B ={(x ,y )|y =x +m },且A ∩B ≠,则m 的取值范围是( ).A .-7≤m ≤B .-m ≤C .-7≤m ≤7D .0≤m ≤二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.P (-1,3)在直线l 上的射影为Q (1,-1),则直线l 的方程是____________.12.圆x 2+y 2-2x -6y +6=0与圆x 2+y 2-6x -10y +30=0的公共弦所在的直线方程是______________.13.直线3ax -y -1=0与直线2103a x y ⎛⎫-++= ⎪⎝⎭垂直,则a 的值是__________. 14.过点A (1,-1),B (-1,1)且圆心在直线x +y -2=0上的圆的方程是__________.15.已知圆x 2+y 2+2x -4y +a =0关于直线y =2x +b 成轴对称,则a -b 的取值范围是__________.三、解答题(本大题共2小题,共25分.解答时应写出文字说明、证明过程或演算步骤)16.(10分)三角形ABC 的边AC ,AB 的高所在直线方程分别为2x -3y +1=0,x +y =0,顶点A (1,2),求BC 边所在的直线方程.17.(15分)已知圆C 经过P (4,-2),Q (-1,3)两点,且在y 轴上截得的线段长为半径小于5.求:(1)直线PQ 与圆C 的方程;(2)求过点(0,5)且与圆C 相切的直线方程.参考答案1.答案:D2.答案:C∵点A,B,C共线,∴k AB=k BC,即3232142t--=---(-),解得t=1.3.答案:D由a(a-1)-2=0得a=2或a=-1.经检验a=2或a=-1均符合题意.4.答案:C点M关于x轴对称,则x坐标不变,y,z的新坐标与原来的坐标互为相反数.5.答案:D由a2+(2a)2-4(2a2+a-1)>0,解得-2<a<2 36.答案:C设到直线2x+y+1=0的距离为5的点的坐标为(x,y),则点(x,y)为直线2x+y+m=0上的点.5=,∴|m-1|=1,解得m=2或m=0,∴所求点的集合为直线2x+y=0或2x+y+2=0.7.答案:B8.答案:C9.答案:D设圆O的方程为(x-a)2+y2=5(a<0),则O到直线x+2y=0的距离d===∴a=-5.∴圆O的方程是(x+5)2+y2=5.10.答案:A∵A∩B≠,∴半圆弧y与直线y=x+m有公共点.如图所示,当直线与半圆相切时m=,当直线过点(7,0)时,m=-7,∴m∈[-7,.11.答案:x-2y-3=0设直线l的斜率为k,由于PQ⊥l,所以k PQ k=-1,所以12k=,则直线l的方程是y+1=12(x-1),即x-2y-3=0.12.答案:x+y-6=0两圆的方程相减得4x+4y-24=0,即公共弦所在的直线方程为x+y-6=0.13.答案:13-或1由23(1)103a a⎛⎫-+-⨯=⎪⎝⎭,得13a=-或a=1.14.答案:(x-1)2+(y-1)2=4易求得AB的中点为(0,0),斜率为-1,从而其垂直平分线为直线y=x,根据圆的几何性质,这条直线应该过圆心,将它与直线x+y-2=0联立得到圆心O(1,1),半径r=|OA|=2.15.答案:(-∞,1)圆方程化为(x+1)2+(y-2)2=5-a,∴圆心为(-1,2),且5-a>0,即a<5.又圆关于y=2x+b成轴对称,∴点(-1,2)在直线y=2x+b上,∴b=4,∴a-b<1.16.答案:解:AC边上的高线2x-3y+1=0,所以k AC=3 2 -.所以AC的方程为y-2=32-(x-1),即3x+2y-7=0,同理可求直线AB的方程为x-y+1=0. 下面求直线BC的方程,由3270,0,x y x y +-=⎧⎨+=⎩得顶点C (7,-7), 由10,2310,x y x y -+=⎧⎨-+=⎩得顶点B (-2,-1). 所以k BC =23-,直线BC :y +1=23-(x +2),即2x +3y +7=0.17. 答案:解:(1)直线PQ 的方程为y -3=3214+--×(x +1),即x +y -2=0,由题意圆心C 在PQ 的中垂线3241122y x --⎛⎫-=⨯- ⎪⎝⎭,即y =x -1上,设C (n ,n -1),则r 2=|CQ |2=(n +1)2+(n -4)2,由题意,有222||r n =+, ∴n 2+12=2n 2-6n +17,解得n =1或5,∴r 2=13或37(舍),∴圆C 的方程为(x -1)2+y 2=13.(2)当切线斜率存在时,设其方程为y =kx +5,=,解得32k =或23-,∴方程为3x -2y +10=0或2x +3y -15=0,当切线斜率不存在时,不满足题意,∴切线方程为3x -2y +10=0或2x +3y -15=0.。
【山东省新人教B版数学(文科)2012届高三单元测试4:必修2第一章《立体几何初步》
山东省新人教B 版2012届高三单元测试4必修2第一章《立体几何初步》(本卷共150分,考试时间120分钟)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列命题中,正确的是( )A .经过不同的三点有且只有一个平面B .分别在两个平面内的两条直线一定是异面直线C .垂直于同一个平面的两条直线是平行直线D .垂直于同一个平面的两个平面平行解析:选C.A 中,可能有无数个平面,B 中,两条直线还可能平行,相交,D 中,两个平面可能相交.2.有一个几何体的三视图及其尺寸如图(单位:cm),则该几何体的表面积及体积为( )A .24π cm 2,12π cm 3B .15π cm 2,12π cm 3 C .24π cm 2,36π cm 3D .以上都不正确解析:选A.由三视图知该几何体为一个圆锥,其底面半径为3 cm ,母线长为5 cm ,高为4 cm ,求表面积时不要漏掉底面积.3.若正四棱锥的侧面是正三角形,则它的高与底面边长之比为( ) A .1∶2 B .2∶1 C .1∶ 2 D.2∶1解析:选C.设正四棱锥底边长为a ,则斜高为32a ,高h =(32a )2-(12a )2=22a ∴高与底边长之比为22a ∶a =1∶ 2. 4.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是( )A .30°B .45°C .60°D .90°解析:选C.本题主要考查圆锥侧面展开图的有关性质及侧面展开图中心角公式.设圆锥底面半径为r ,母线长为l ,依条件则有2πr =πl ,如图所示,∴r l =12,即∠ASO =30°,∴圆锥顶角为60°. 5.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )A .2πR 2 B.94πR 2 C.83πR 2 D.52πR 2解析:选B.如图所示,设圆柱底面半径为r ,则其高为3R -3r ,全面积S =2πr 2+2πr (3R-3r )=6πRr -4πr 2=-4π(r -34R )2+94πR 2,故当r =34R 时全面积有最大值94πR 2.6.在正四面体P -ABC 中,D 、E 、F 分别是AB 、BC 、CA 的中点,下面四个结论中不成立的是( )A .BC ∥面PDFB .DF ⊥面P AEC .面PDE ⊥面ABCD .面P AE ⊥面ABC解析:选C.因为BC ∥DF ,所以BC ∥面PDF ,即A 正确;由中点有BC ⊥PE ,BC ⊥AE ,所以BC ⊥平面P AE ,所以DF ⊥平面P AE ,即B 正确;由BC ⊥平面P AE 可得平面P AE ⊥平面ABC ,即D 正确.7.在纬度为α的纬线圈上有A ,B 两点,这两点间的纬线圈上的弧长为πR cos α,其中R 为地球半径,则这两点间的球面距离是( )A.⎝⎛⎭⎫π2-2αRB.⎝⎛⎭⎫π2-αR C .(π-2α)R D .(π-α)R解析:选C.由题意易求得球心角为π-2α,所以球面距离为(π-2α)R . 8.正方体的外接球与内切球的球面面积分别为S 1和S 2则( ) A .S 1=2S 2 B .S 1=3S 2 C .S 1=4S 2 D .S 1=23S 2解析:选B.不妨设正方体的棱长为1,则外接球直径为正方体的体对角线长为3,而内切球直径为1,所以S 1S 2=(31)2=3,所以S 1=3S 2.9.棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应的截面面积分别为S 1、S 2、S 3,则( )A .S 1<S 2<S 3B .S 3<S 2<S 1C .S 2<S 1<S 3D .S 1<S 3<S 2解析:选A.设底面积为S ,由截面性质可知. S S 1=(21)2⇒S 1=14S ; S S 2=21⇒S 2=12S ; ( S S 3)3=21⇒S 3=134S .可知S 1<S 2<S 3,故选A. 10.平行六面体ABCD -A 1B 1C 1D 1的所有棱长都相等,且∠A 1AB =∠A 1AD =∠BAD =60°,则对角面B 1BDD 1是( )A .平行四边形B .菱形C .矩形D .正方形解析:选D.AA 1在面ABCD 内的射影在底面的一条对角线上,∵AC ⊥BD ,∴AA 1⊥BD ,∴BB 1⊥BD .又∵∠BAD =60°,∴BD =AB =BB 1,∴B 1BDD 1是正方形.11.一个正四棱台(上、下底面是正方形,各侧面均为全等的等腰梯形)的上、下底面的边长分别为a ,b ,高为h ,且侧面积等于两底面积之和,则下列关系正确的是( )A.1h =1a +1bB.1h =1a +bC.1a =1b +1hD.1b =1a +1h解析:选A.S 侧=4×h 2+(b -a 2)2×a +b 2=a 2+b 2,即4[h 2+(b -a 2)2]·(a +b )2=(a 2+b 2)2,化简得h (a +b )=ab , ∴1h =1a +1b. 12. 如图所示,三棱锥P -ABC 的高PO =8,AC =BC =3,∠ACB =30°,M 、N 分别在BC 和PO 上,且CM =x ,PN =2x (x ∈[0,3]),下列四个图象大致描绘了三棱锥N -AMC 的体积V 与x 的变化关系,其中正确的是( )解析:选A.V =13S △AMC ·NO =13(12×3x ×sin30°)·(8-2x )=-12(x -2)2+2,x ∈[0,3],故选A.二、填空题(本大题共4小题,请把答案填在题中横线上)13.若一个底面边长为62,侧棱长为6的正六棱柱的所有顶点都在一个球面上,则此球的体积为________.解析:球的直径等于正六棱柱的体对角线的长.设球的半径为R ,由已知可得2R = (62×2)2+(6)2=23,R = 3.所以球的体积为43πR 3=4π3×(3)3=43π.答案:43π 14.一根细金属丝下端挂着一个半径为1 cm 的金属球,将它浸没在底面半径为2 cm 的圆柱形容器内的水中,现将金属丝向上提升,当金属球全部被提出水面时,容器内的水面下降的高度是________cm.解析:由题意知,金属球的体积等于下降的水的体积,设水面下降h cm ,则有4π3=π×22×h ,解得h =13.答案:1315.如果规定:x =y ,y =z ,则x =z 叫做x 、y 、z 关于等量关系具有传递性,那么空间三直线a 、b 、c 关于相交、垂直、平行、异面、共面这五种关系具有传递性的是________.答案:平行16.点M 是线段AB 的中点,若点A 、B 到平面α的距离分别为4 cm 和6 cm ,则点M 到平面α的距离为________.解析:(1)如图(1),当点A 、B 在平面α的同侧时,分别过点A 、B 、M 作平面α的垂线AA ′、BB ′、MH ,垂足分别为A ′、B ′、H ,则线段AA ′、BB ′、MH 的长分别为点A 、B 、M 到平面α的距离.由题设知AA ′=4 cm ,BB ′=6 cm.因此MH =AA ′+BB ′2=4+62=5(cm).(2)如图(2),当点A 、B 在平面α的异侧时,设AB 交平面α于点O , ∵AA ′∶BB ′=4∶6,∴AO ∶OB =4∶6. 又∵M 为AB 的中点, ∴MH ∶AA ′=1∶4, 即MH =1(cm).故点M 到平面α的距离为5 cm 或1 cm. 答案:5 cm 或1 cm三、解答题(本大题共6小题,解答时应写出必要的文字说明、证明过程或演算步骤) 17.已知正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为D 1C 1,C 1B 1的中点,AC ∩BD =P ,A 1C 1∩EF =Q .求证:(1)D ,B ,E ,F 四点共面;(2)若A 1C 交平面BDEF 于R 点,则P ,Q ,R 三点共线. 证明:如图所示.(1)连接B 1D 1.∵E ,F 分别为D 1C 1,C 1B 1的中点,∴EF ∥B 1D 1,又∵B 1D 1∥BD , ∴EF ∥BD , ∴EF 与BD 共面, ∴E ,F ,B ,D 四点共面. (2)∵AC ∩BD =P ,∴P ∈平面AA 1C 1C ∩平面BDEF .同理,Q ∈平面AA 1C 1C ∩平面BDEF . ∵A 1C ∩平面DBFE =R , ∴R ∈平面AA 1C 1C ∩平面BDEF ,∴P ,Q ,R 三点共线.18.一球内切于圆锥,已知球和圆锥的底面半径分别为r ,R ,求圆锥的体积. 解:如图,设圆锥的高AD =h ,由△AOE ∽△ACD ,可得AO AC =OECD ,即h -r h 2+R2=r R ,解得h =2rR 2R 2-r2, 所以圆锥的体积为V =π3R 2·h =2πrR 43(R 2-r 2).19.在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是BB 1、CD 的中点,设AA 1=2,求三棱锥F -A 1ED 1的体积.解:如图,连接AE ,容易证明AE ⊥D 1F . 又∵A 1D 1⊥AE , ∴AE ⊥平面A 1FD 1.∵A 1D 1∥AD ,A 1D 1∥平面ABCD , 设平面A 1FD 1∩平面ABCD =FG , 则A 1D 1∥FG 且G 为AB 的中点, ∴AE ⊥平面A 1GFD 1,AE ⊥A 1G ,设垂足为点H,则EH即为点E到平面A1FD1的距离,∵A1A=2,∴AE=5,AH=25,∴EH=35.又∵S△A1FD1=12S▱A1GFD1=5,∴V F-A1ED1=13×5×35=1,故三棱锥F-A1ED1的体积为1.20. 如图△ABC中,AC=BC=22AB,四边形ABED是边长为a的正方形,平面ABED⊥平面ABC,若G、F分别是EC、BD的中点.(1)求证:GF∥平面ABC;(2)求证:平面EBC⊥平面ACD;(3)求几何体ADEBC的体积V.解:(1)证明:如图,取BE的中点H,连接HF,GH.∵G,F分别是EC和BD的中点,∴HG∥BC,HF∥DE.又∵四边形ADEB为正方形,∴DE∥AB,从而HF∥AB.∴HF∥平面ABC,HG∥平面ABC.∴平面HGF∥平面ABC.∴GF∥平面ABC.(2)证明:∵ADEB为正方形,∴EB⊥AB.又∵平面ABED⊥平面ABC,∴BE⊥平面ABC.∴BE⊥AC.又∵CA2+CB2=AB2,∴AC⊥BC.∴AC⊥平面BCE.从而平面EBC⊥平面ACD.(3)取AB 的中点N ,连接CN ,∵AC =BC ,∴CN ⊥AB ,且CN =12AB =12a .又平面ABED ⊥平面ABC , ∴CN ⊥平面ABED .∵C -ABED 是四棱锥,∴V C -ABED =13S ABED ·CN =13a 2·12a =16a 3.21.如图是一个直三棱柱(以A 1B 1C 1为底面)被一平面所截得到的几何体,截面为ABC .已知A 1B 1=B 1C 1=1,∠A 1B 1C 1=90°,AA 1=4,BB 1=2,CC 1=3.设点O 是AB 的中点,求证:OC ∥平面A 1B 1C 1.证明:作OD ∥AA 1交A 1B 1于点D ,连接C 1D ,则OD ∥BB 1∥CC 1. 因为O 是AB 的中点,所以OD =12(AA 1+BB 1)=3=CC 1,则四边形ODC 1C 是平行四边形,因此有OC ∥C 1D .因为C 1D ⊂平面C 1B 1A 1且OC ⊄平面C 1B 1A 1,所以OC ∥平面A 1B 1C 1.22.如图所示的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连接BC ′,求证:BC ′∥面EFG . 解:(1)如图所示.(2)所求多面体体积V =V 长方体-V 正三棱锥=4×4×6-13×(12×2×2)×2=2843(cm 3).(3)证明:如图,在长方体ABCD -A ′B ′C ′D ′中, 连接AD ′,则AD ′∥BC ′.因为E ,G 分别为AA ′,A ′D ′的中点, 所以AD ′∥EG ,从而EG ∥BC ′. 又BC ′⊄平面EFG ,所以BC ′∥面EFG .。
山东省2012届高三数学第一章《立体几何初步》单元测试4理新人教B版必修2
OC∥平
则四边形 ODC1C 是平行四边形,因此有 所以 OC∥平面 A1B1C1.
OC∥ C1D. 因为 C1 D? 平面 C1B1A1 且 OC?平面 C1B1A1,
22.如图所示的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的 正视图和侧视图在下面画出 ( 单位: cm).
(3) 取 AB的中点 N,连接 CN,∵ AC= BC,
11 ∴CN⊥ AB,且 CN= 2AB= 2a.
又平面 ABED⊥平面 ABC,
∴CN⊥平面 ABED.
∵C- ABED是四棱锥,
∴
VC-
= ABED
1 3
S · ABED
CN=
13a2·
1 2
a=
16a3.
21.如图是一个直三棱柱 ( 以 A1B1C1 为底面 ) 被一平面所截得到的几何体, 截面为 ABC. 已知
5
5
1
S S 又∵ = = △ A1FD1
?A1GFD1
5,
2
1
3
∴VF-A = 1ED1 3×
5×
= 1, 5
故三棱锥 F-A1ED1 的体积为 1.
2 20. 如图△ ABC中, AC= BC= 2 AB,四边形 ABED是边长为 a 的正方形,平面 ABED⊥平面 ABC,若 G、 F 分别是 EC、BD的中点.
2]
·(a+ b)
2= (
a2+ b2)
2,
化简得 h( a+b) = ab,
111
∴
h=
a+
. b
12. 如图所示,三棱锥 P- ABC的高 PO=8, AC= BC= 3,∠ ACB=30°, M、 N 分别在 BC
最新人教版高中数学必修二第二章《平面》精选习题(含答案解析)
最新人教版高中数学必修二第二章《平面》精选习题(含答案解析)一、选择题(每小题5分,共40分)1.下列叙述正确的是()A.若P∈α,Q∈α,则PQ∈αB.若P∈α,Q∈β,则α∩β=PQC.若AB∈α,C∈AB,D∈AB,则CD∈αD.若AB∈α,AB∈β,则A∈α∩β且B∈α∩β2.下面说法中(其中A,B表示点,a表示直线,α表示平面):∈因为A∈α,B∈α,所以AB∈α;∈因为A∈α,B∈α,所以AB∈α;∈因为A∈a,a∈α,所以A∈α;∈因为A∈α,a∈α,所以A∈a.其中正确的说法的序号是()A.∈∈B.∈∈C.∈D.∈3.下列说法中正确的个数为()∈三角形一定是平面图形;∈若四边形的两对角线相交于一点,则该四边形是平面图形;∈圆心和圆上两点可确定一个平面;∈三条平行线最多可确定三个平面.A.1B.2C.3D.44.已知A,B是点,a,b,l是直线,α是平面,如果a∈α,b∈α,l∩a=A,l∩b=B,那么下列关系中成立的是()A.l∈αB.l∈αC.l∩α=AD.l∩α=B5.用符号语言表示下列语句,正确的个数是()(1)点A在平面α内,但不在平面β内:A∈α,A∈β.(2)直线a经过平面α外的点A,且a不在平面α内:A∈a,A∈α,a∈α.(3)平面α与平面β相交于直线l,且l经过点P:α∩β=l,P∈l.(4)直线l经过平面α外一点P,且与平面α相交于点M:P∈l,l∩α=M.A.1B.2C.3D.46.一条直线和直线外三个点最多能确定的平面个数是() A.4 B.6 C.7 D.107个,将条件作了转换,由原来的一条直线转换成两个点.7.如图所示,平面α∩平面β=l,点A∈α,点B∈α,且点C∈β,点C∈l.又AB∩l=R,设过A,B,C三点的平面为γ,则β∩γ是()A.直线ACB.直线BCC.直线CRD.以上均错8.在空间四边形ABCD的边AB,BC,CD,DA上分别取E,F,G,H四点,如EF与HG交于点M,那么()A.M一定在直线AC上B.M一定在直线BD上C.M可能在直线AC上,也可能在直线BD上D.M既不在直线AC上,也不在直线BD上二、填空题(每小题5分,共10分)9.AB,AD∈α,CB,CD∈β,E∈AB,F∈BC,G∈CD,H∈DA,若直线EH与FG相交于点P,则点P必在直线________上.10.若直线l与平面α相交于点O,A,B∈l,C,D∈α,且AC∈BD,则O,C,D三点的位置关系是__________.三、解答题11.(10分)如图,∈ABC与∈A1B1C1不全等,且A1B1∈AB,B1C1∈BC,C1A1∈CA.求证:AA1,BB1,CC1交于一点.参考答案与解析1【解析】选D.点在直线或平面上,记作A∈l,A∈α,直线在平面内记作AB∈α或l∈α,故D 正确.2【解析】选C.点在平面上,用“∈”表示,不能用“∈”表示,故∈不正确;AB在α内,用“∈”表示,不能用“∈”表示,故∈不正确;由A∈a,a∈α,不能得出A∈α,故∈不正确;由A∈α,a∈α,知A∈a,故∈正确.3【解析】选C.由公理2可知∈正确;因为两对角线相交,故可确定一平面,故∈正确;当圆上两点与圆心共线时,不能确定平面,故∈错误;每两条平行线可确定一个平面,故最多可确定3个平面,∈正确.4【解析】选A.因为l∩a=A,a∈α,所以A∈α,又l∩b=B,b∈α,所以B∈α,故l∈α.5【解析】选B.(1)错误,点A和平面的关系应是A∈α,A∈β,(4)错误,缺少P∈α,(2)(3)正确. 6【解析】选A.当直线外这三点不共线且任意两点的连线不平行于该直线时,确定的平面个数最多为4个.7【解析】选C.由C,R是平面β和γ的两个公共点,可知β∩γ=CR.8【解析】选A.如图,因为EF∩HG=M,所以M∈EF,M∈HG,又EF∈平面ABC,HG∈平面ADC,故M∈平面ABC,M∈平面ADC,所以M∈平面ABC∩平面ADC=AC.9【解析】P∈EH,EH∈α,故P∈α,同理P∈β,而α∩β=BD,所以P∈BD.答案:BD10【解析】如图,因为AC∈BD,所以AC与BD确定一个平面,记为β,则α∩β=CD,因为l∩α=O,所以O∈α,又O∈AB∈β,所以O∈β,所以O∈CD.故O,C,D共线.答案:共线11【证明】如图所示,因为A1B1∈AB,所以A1B1与AB确定一平面,记为平面α.同理,将B1C1与BC所确定的平面记为平面β,C1A1与CA所确定的平面记为平面γ.易知β∩γ=C1C.又∈ABC与∈A1B1C1不全等,所以AA1与BB1相交,设交点为P,P∈AA1,P∈BB1.而AA1∈γ,BB1∈β,所以P∈γ,P∈β,所以P在平面β与平面γ的交线上.又β∩γ=C1C,所以P∈C1C,所以AA1,BB1,CC1交于一点.。
新人教B版届高三单元测试5必修2第二章《平面解析几何初步》.doc
新人教B 版201X 届高三单元测试5 必修2第二章《平面解析几何初步》(本卷共150分,考试时间120分钟)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线3ax -y -1=0与直线(a -23)x +y +1=0垂直,则a 的值是( )A .-1或13B .1或13C .-13或-1D .-13或1解析:选D.由3a (a -23)+(-1)×1=0,得a =-13或a =1.2.直线l 1:ax -y +b =0,l 2:bx -y +a =0(a ≠0,b ≠0,a ≠b )在同一坐标系中的图形大致是图中的( )解析:选C.直线l 1:ax -y +b =0,斜率为a ,在y 轴上的截距为b , 设k 1=a ,m 1=b .直线l 2:bx -y +a =0,斜率为b ,在y 轴上的截距为a , 设k 2=b ,m 2=a .由A 知:因为l 1∥l 2,k 1=k 2>0,m 1>m 2>0,即a =b >0,b >a >0,矛盾. 由B 知:k 1<0<k 2,m 1>m 2>0,即a <0<b ,b >a >0,矛盾. 由C 知:k 1>k 2>0,m 2>m 1>0,即a >b >0,可以成立.由D 知:k 1>k 2>0,m 2>0>m 1,即a >b >0,a >0>b ,矛盾.3.已知点A (-1,1)和圆C :(x -5)2+(y -7)2=4,一束光线从A 经x 轴反射到圆C 上的最短路程是( )A .62-2B .8C .4 6D .10解析:选 B.点A 关于x 轴对称点A ′(-1,-1),A ′与圆心(5,7)的距离为(5+1)2+(7+1)2=10.∴所求最短路程为10-2=8.4.圆x 2+y 2=1与圆x 2+y 2=4的位置关系是( ) A .相离 B .相切 C .相交 D .内含解析:选D.圆x 2+y 2=1的圆心为(0,0),半径为1,圆x 2+y 2=4的圆心为(0,0),半径为2,则圆心距0<2-1=1,所以两圆内含.5.已知圆C :(x -a )2+(y -2)2=4(a >0)及直线l :x -y +3=0,当直线l 被圆C 截得的弦长为23时,a 的值等于( )A. 2B.2-1 C .2- 2 D.2+1 解析:选B.圆心(a,2)到直线l :x -y +3=0的距离d =|a -2+3|2=|a +1|2,依题意⎝ ⎛⎭⎪⎫|a +1|22+⎝⎛⎭⎫2322=4,解得a =2-1. 6.与直线2x +3y -6=0关于点(1,-1)对称的直线是( ) A .3x -2y -6=0 B .2x +3y +7=0 C .3x -2y -12=0 D .2x +3y +8=0解析:选D.∵所求直线平行于直线2x +3y -6=0, ∴设所求直线方程为2x +3y +c =0, 由|2-3+c |22+32=|2-3-6|22+32,∴c =8,或c =-6(舍去),∴所求直线方程为2x +3y +8=0.7.若直线y -2=k (x -1)与圆x 2+y 2=1相切,则切线方程为( )A .y -2=34(1-x )B .y -2=34(x -1)C .x =1或y -2=34(1-x )D .x =1或y -2=34(x -1)解析:选B.数形结合答案容易错选D ,但要注意直线的表达式是点斜式,说明直线的斜率存在,它与直线过点(1,2)要有所区分.8.圆x 2+y 2-2x =3与直线y =ax +1的公共点有( ) A .0个 B .1个C .2个D .随a 值变化而变化解析:选C.直线y =ax +1过定点(0,1),而该点一定在圆内部.9.过P (5,4)作圆C :x 2+y 2-2x -2y -3=0的切线,切点分别为A 、B ,四边形P ACB 的面积是( )A .5B .10C .15D .20解析:选B.∵圆C 的圆心为(1,1),半径为 5. ∴|PC |=(5-1)2+(4-1)2=5,∴|P A |=|PB |=52-(5)2=25,∴S =12×25×5×2=10.10.若直线mx +2ny -4=0(m 、n ∈R ,n ≠m )始终平分圆x 2+y 2-4x -2y -4=0的周长,则mn 的取值范围是( )A .(0,1)B .(0,-1)C .(-∞,1)D .(-∞,-1)解析:选C.圆x 2+y 2-4x -2y -4=0可化为(x -2)2+(y -1)2=9,直线mx +2ny -4=0始终平分圆周,即直线过圆心(2,1),所以2m +2n -4=0,即m +n =2,mn =m (2-m )=-m 2+2m =-(m -1)2+1≤1,当m =1时等号成立,此时n =1,与“m ≠n ”矛盾,所以mn <1.11.已知直线l :y =x +m 与曲线y =1-x 2有两个公共点,则实数m 的取值范围是( ) A .(-2,2) B .(-1,1) C .[1,2) D .(-2,2) 解析:选C. 曲线y =1-x 2表示单位圆的上半部分,画出直线l 与曲线在同一坐标系中的图象,可观察出仅当直线l 在过点(-1,0)与点(0,1)的直线与圆的上切线之间时,直线l与曲线有两个交点.当直线l 过点(-1,0)时,m =1;当直线l 为圆的上切线时,m =2(注:m =-2,直线l 为下切线).12.过点P (-2,4)作圆O :(x -2)2+(y -1)2=25的切线l ,直线m :ax -3y =0与直线l 平行,则直线l 与m 的距离为( )A .4B .2 C.85 D.125解析:选A.∵点P 在圆上,∴切线l 的斜率k =-1k OP =-11-42+2=43.∴直线l 的方程为y -4=43(x +2),即4x -3y +20=0. 又直线m 与l 平行, ∴直线m 的方程为4x -3y =0. 故两平行直线的距离为d =|0-20|42+(-3)2=4.二、填空题(本大题共4小题,请把答案填在题中横线上)13.过点A (1,-1),B (-1,1)且圆心在直线x +y -2=0上的圆的方程是________. 解析:易求得AB 的中点为(0,0),斜率为-1,从而其垂直平分线为直线y =x ,根据圆的几何性质,这条直线应该过圆心,将它与直线x +y -2=0联立得到圆心O (1,1),半径r=|OA |=2.答案:(x -1)2+(y -1)2=414.过点P (-2,0)作直线l 交圆x 2+y 2=1于A 、B 两点,则|P A |·|PB |=________.解析:过P 作圆的切线PC ,切点为C ,在Rt △POC 中,易求|PC |=3,由切割线定理,|P A |·|PB |=|PC |2=3. 答案:315.若垂直于直线2x +y =0,且与圆x 2+y 2=5相切的切线方程为ax +2y +c =0,则ac 的值为________.解析:已知直线斜率k 1=-2,直线ax +2y +c =0的斜率为-a2.∵两直线垂直,∴(-2)·(-a 2)=-1,得a =-1.圆心到切线的距离为5,即|c |5=5,∴c =±5,故ac =±5. 答案:±516.若直线3x +4y +m =0与圆x 2+y 2-2x +4y +4=0没有公共点,则实数m 的取值范围是__________.解析:将圆x 2+y 2-2x +4y +4=0化为标准方程,得(x -1)2+(y +2)2=1,圆心为(1,-2),半径为1.若直线与圆无公共点,即圆心到直线的距离大于半径,即d =|3×1+4×(-2)+m |32+42=|m -5|5>1,∴m <0或m >10.答案:(-∞,0)∪(10,+∞)三、解答题(本大题共6小题,解答时应写出必要的文字说明、证明过程或演算步骤) 17.三角形ABC 的边AC ,AB 的高所在直线方程分别为2x -3y +1=0,x +y =0,顶点A (1,2),求BC 边所在的直线方程.解:AC 边上的高线2x -3y +1=0,所以k AC =-32.所以AC 的方程为y -2=-32(x -1),即3x +2y -7=0,同理可求直线AB 的方程为x -y +1=0. 下面求直线BC 的方程,由⎩⎪⎨⎪⎧ 3x +2y -7=0,x +y =0,得顶点C (7,-7), 由⎩⎪⎨⎪⎧x -y +1=0,2x -3y +1=0,得顶点B (-2,-1). 所以k BC =-23,直线BC :y +1=-23(x +2),即2x +3y +7=0.18.一束光线l 自A (-3,3)发出,射到x 轴上,被x 轴反射后与圆C :x 2+y 2-4x -4y +7=0有公共点.(1)求反射光线通过圆心C 时,光线l 所在直线的方程; (2)求在x 轴上,反射点M 的横坐标的取值范围.解:圆C 的方程可化为(x -2)2+(y -2)2=1.(1)圆心C 关于x 轴的对称点为C ′(2,-2),过点A ,C ′的直线的方程x +y =0即为光线l 所在直线的方程.(2)A 关于x 轴的对称点为A ′(-3,-3), 设过点A ′的直线为y +3=k (x +3).当该直线与圆C 相切时,有|2k -2+3k -3|1+k 2=1,解得k =43或k =34,所以过点A ′的圆C 的两条切线分别为y +3=43(x +3),y +3=34(x +3).令y =0,得x 1=-34,x 2=1,所以在x 轴上反射点M 的横坐标的取值范围是[-34,1].19.已知圆x 2+y 2-2x -4y +m =0. (1)此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线x +2y -4=0相交于M 、N 两点,且OM ⊥ON (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程.解:(1)方程x 2+y 2-2x -4y +m =0,可化为 (x -1)2+(y -2)2=5-m , ∵此方程表示圆, ∴5-m >0,即m <5.(2)⎩⎪⎨⎪⎧x 2+y 2-2x -4y +m =0,x +2y -4=0,消去x 得(4-2y )2+y 2-2×(4-2y )-4y +m =0, 化简得5y 2-16y +m +8=0. 设M (x 1,y 1),N (x 2,y 2),则⎩⎪⎨⎪⎧y 1+y 2=165, ①y 1y 2=m +85. ②由OM ⊥ON 得y 1y 2+x 1x 2=0 即y 1y 2+(4-2y 1)(4-2y 2)=0, ∴16-8(y 1+y 2)+5y 1y 2=0. 将①②两式代入上式得16-8×165+5×m +85=0,解之得m =85.(3)由m =85,代入5y 2-16y +m +8=0,化简整理得25y 2-80y +48=0,解得y 1=125,y 2=45.∴x 1=4-2y 1=-45,x 2=4-2y 2=125.∴M ⎝⎛⎭⎫-45,125,N ⎝⎛⎭⎫125,45, ∴MN 的中点C 的坐标为⎝⎛⎭⎫45,85. 又|MN |=⎝⎛⎭⎫125+452+⎝⎛⎭⎫45-1252=855,∴所求圆的半径为455.∴所求圆的方程为⎝⎛⎭⎫x -452+⎝⎛⎭⎫y -852=165. 20. 已知圆O :x 2+y 2=1和定点A (2,1),由圆O 外一点P (a ,b )向圆O 引切线PQ ,切点为Q ,|PQ |=|P A |成立,如图.(1)求a 、b 间关系; (2)求|PQ |的最小值;(3)以P 为圆心作圆,使它与圆O 有公共点,试在其中求出半径最小的圆的方程. 解:(1)连接OQ 、OP ,则△OQP 为直角三角形,又|PQ |=|P A |,所以|OP |2=|OQ |2+|PQ |2 =1+|P A |2,所以a 2+b 2=1+(a -2)2+(b -1)2, 故2a +b -3=0.(2)由(1)知,P 在直线l :2x +y -3=0上, 所以|PQ |min =|P A |min ,为A 到直线l 的距离, 所以|PQ |min =|2×2+1-3|22+12=255.(或由|PQ |2=|OP |2-1=a 2+b 2-1=a 2+9-12a +4a 2-1=5a 2-12a +8=5(a -1.2)2+0.8,得|PQ |min =255.)(3)以P 为圆心的圆与圆O 有公共点,半径最小时为与圆O 相切的情形,而这些半径的最小值为圆O 到直线l 的距离减去圆O 的半径,圆心P 为过原点与l 垂直的直线l ′与l 的交点P 0,所以r =322+12-1=355-1,又l ′:x -2y =0,联立l :2x +y -3=0得P 0(65,35).所以所求圆的方程为(x -65)2+(y -35)2=(355-1)2.21.有一圆与直线l :4x -3y +6=0相切于点A (3,6),且经过点B (5,2),求此圆的方程. 解:法一:由题意可设所求的方程为(x -3)2+(y -6)2+λ(4x -3y +6)=0,又因为此圆过点(5,2),将坐标(5,2)代入圆的方程求得λ=-1,所以所求圆的方程为x 2+y 2-10x -9y +39=0.法二:设圆的方程为(x -a )2+(y -b )2=r 2, 则圆心为C (a ,b ),由|CA |=|CB |,CA ⊥l ,得⎩⎪⎨⎪⎧ (3-a )2+(6-b )2=r 2,(5-a )2+(2-b )2=r 2,b -6a -3×43=-1,解得⎩⎨⎧a =5,b =92,r 2=254.所以所求圆的方程为(x -5)2+(y -92)2=254. 法三:设圆的方程为x 2+y 2+Dx +Ey +F =0,由CA ⊥l ,A (3,6),B (5,2)在圆上,得⎩⎪⎨⎪⎧32+62+3D +6E +F =0,52+22+5D +2E +F =0,-E 2-6-D 2-3×43=-1,解得⎩⎪⎨⎪⎧D =-10,E =-9,F =39.所以所求圆的方程为x 2+y 2-10x -9y +39=0.法四:设圆心为C ,则CA ⊥l ,又设AC 与圆的另一交点为P ,则CA 的方程为y -6=-34(x -3), 即3x +4y -33=0.又因为k AB =6-23-5=-2,所以k BP =12,所以直线BP 的方程为x -2y -1=0.解方程组⎩⎪⎨⎪⎧ 3x +4y -33=0,x -2y -1=0,得⎩⎪⎨⎪⎧x =7,y =3.所以P (7,3).所以圆心为AP 的中点(5,92),半径为|AC |=52.所以所求圆的方程为(x -5)2+(y -92)2=254.22.如图在平面直角坐标系xOy 中,已知圆C 1:(x +3)2+(y -1)2=4和圆C 2:(x -4)2+(y -5)2=4.(1)若直线l 过点A (4,0),且被圆C 1截得的弦长为23,求直线l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被C 2截得的弦长相等.试求所有满足条件的点P 的坐标.解:(1)由于直线x =4与圆C 1不相交,所以直线l 的斜率存在.设直线l 的方程为y =k (x -4),圆C 1的圆心到直线l 的距离为d ,因为圆C 1被直线l 截得的弦长为23,所以d =22-(3)2=1.由点到直线的距离公式得d =|1-k (-3-4)|1+k 2,从而k (24k +7)=0,即k =0或k =-724,所以直线l 的方程为y =0或7x +24y -28=0.(2)设点P (a ,b )满足条件,不妨设直线l 1的方程为y -b =k (x -a ),k ≠0,则直线l 2的方程为y -b =-1k (x -a ).因为圆C 1和C 2的半径相等,且圆C 1被直线l 1截得的弦长与圆C 2被直线l 2截得的弦长相等,所以圆C 1的圆心到直线l 1的距离和圆C 2的圆心到直线l 2的距离相等,即|1-k (-3-a )-b |1+k 2=|5+1k (4-a )-b |1+1k2, 整理得|1+3k +ak -b |=|5k +4-a -bk |,从而1+3k +ak -b =5k +4-a -bk 或1+3k +ak -b =-5k -4+a +bk ,即(a +b -2)k =b -a +3或(a -b +8)k =a +b -5,因为k 的取值有无穷多个,所以⎩⎪⎨⎪⎧ a +b -2=0,b -a +3=0,或⎩⎪⎨⎪⎧a -b +8=0,a +b -5=0,解得⎩⎨⎧a =52,b =-12,或⎩⎨⎧a =-32,b =132.这样点P 只可能是点P 1⎝⎛⎭⎫52,-12或点P 2⎝⎛⎭⎫-32,132.经检验点P1和P2满足题目条件.。
高中数学人教B版必修2作业与测评:2.1.1 数轴上的基本公式 Word版含解析
第二章 平面解析几何初步A .M(-x)与N(x)B .M(x)与N(x +a)C .M(x 3)与N(x 2)D .M(2x)与N(2x -1) 答案 D解析 A 项,x 的符号不确定,∴-x 与x 的大小关系不确定,故不能确定两点的相对位置.B 项,由于a 的值不确定,故不能确定x 与x +a 的相对位置.C 项,x 3与x 2的大小关系不确定,故不能确定x 3与x 2的相对位置.D 项,∵2x>2x -1对任意实数x 都成立,∴点M 一定位于点N 的右侧.A .数轴上任意一个点的坐标有正负和大小,它是一个位移向量B .两个相等的向量的起点可以不同C .每一个实数都对应数轴上的唯一的一个位移向量D .AB →的大小是数轴上A ,B 两点到原点距离之差的绝对值 答案 B解析 一个点的坐标没有大小,每一个实数对应着无数个位移向量.|AB →|=|x B -x A |,不一定为|AB →|=|||x B |-|x A|.故选B .3.若A(a)与B(-5)两点对应的向量AB 的数量为-10,则a =______,若A与B 的距离为10,则a =______.答案 5 5或-15解析 ∵AB =x B -x A ,|AB|=|x A -x B |, ∴-5-a =-10,解得a =5. |-5-a|=10,解得a =5或a =-15. 4.已知数轴上三点A(x),B(2),P(3). (1)当AP =2BP 时,求x ;(2)当AP >2BP 时,求x 的取值范围; (3)当AP =2PB 时,求x .解 由题意,可知AP =3-x ,BP =3-2=1. (1)当AP =2BP 时,有3-x =2,解得x =1. (2)当AP >2BP 时,有3-x >2,解得x <1. (3)由AP =2PB ,可得3-x =2(-1),解得x =5.一、选择题1.下列说法正确的是( )A .零向量有确定的方向B .数轴上等长的向量叫做相等的向量C .向量AB →的坐标AB =-BAD .|AB →|=AB 答案 C解析 零向量的方向是任意的,数轴上等长的向量方向不一定相同,不一定是相等向量;向量AB→的坐标AB =-BA ,正确;AB 为负数,|AB →|=AB 不正确.2.数轴上的点A(-2),B(3),C(-7),则有:①AB +AC =0;②AB +BC =0;③BC>CA ;④|AB →|+|AC →|>|BC →|.其中,正确结论的个数为( ) A .3个 B .2个 C .1个 D .0个 答案 C解析 由数轴上的点A(-2),B(3),C(-7)得,AB +AC =5-5=0,①正确; AB +BC =5-10=-5,②不正确; BC =-10>CA =5,③不正确;|AB→|+|AC →|=5+5=10=|BC →|,④不正确. 3.已知数轴上两点A ,B ,若点B 的坐标为3,且A ,B 两点间的距离d(A ,B)=5,则点A 的坐标为( )A .8B .-2C .-8D .8或-2 答案 D解析 已知B(3),记点A(x 1),则d(A ,B)=|AB|=|3-x 1|=5,解得x 1=-2或x 1=8.4.数轴上点P(x),A(-8),B(-4),若|PA|=2|PB|,则x 等于( )A .0B .-163 C .163 D .0或-163 答案 D解析 ∵|PA|=2|PB|,∴|x +8|=2|x +4|,解得x =0或-163.5.当数轴上的三个点A ,B ,O 互不重合时,它们的位置关系共有六种情况,其中使AB =OB -OA 和|AB→|=|OB →|-|OA →|同时成立的情况有( )A .1种B .2种C .3种D .4种 答案 B解析 AB =OB -OA 恒成立,而|AB →|=|OB →|-|OA →|成立,则只有点A 在O 和B 中间,共有2种可能.二、填空题6.已知A(2),B(-3)两点,则AB =________,|AB|=________. 答案 -5 5解析 AB =-3-2=-5,|AB|=|-5|=5.7.在数轴上,已知AB →=2,BC →=3,CD →=-6,则AD →=________.答案 -1解析 AD→=AB →+BC →+CD →=2+3-6=-1.8.数轴上的点A(3a +1)总在点B(1-2a)的右侧,则a 的取值范围是________. 答案 (0,+∞)解析 因为A(3a +1)在B(1-2a)的右侧,所以3a +1>1-2a ,所以a >0. 三、解答题9.已知数轴上的点P(x)的坐标分别满足以下情况,试指出x 的各自的取值范围.(1)|x|=2;(2)|x|>2;(3)|x -2|<1.解 (1)|x|=2表示与原点距离等于2的点, ∴x =2或x =-2.(2)|x|>2表示与原点距离大于2的点, ∴x>2或x<-2.(3)|x -2|<1表示与点P(2)的距离小于1的点, ∴1<x<3.10.在数轴上,已知AB →=3,BC →=-2, (1)求|AM→+BC →+MB →|; (2)若A(-1),线段BC 的中点为D ,求DC . 解 (1)|AM →+BC →+MB →|=|AM →+MB →+BC →|=|AB→+BC →|=1. (2)由于A(-1),AB→=3,BC →=-2,得x B -x A =3,x C -x B =-2, 即x B =3+x A =2,x C =x B -2=0.所以线段BC 的中点D 的坐标为1.∴DC =-1.►2.1.2 平面直角坐标系中的基本公式1.已知A(1,2),B(a ,6),且|AB|=5,则a 的值为( ) A .4 B .-4或2 C .-2 D .-2或4 答案 D 解析(a -1)2+(6-2)2=5,∴a =4或-2.2.已知△ABC 的三个顶点A(-1,0),B(1,0)和C ⎝ ⎛⎭⎪⎫12,32,则△ABC 的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .斜三角形 答案 C解析 ∵d(A ,B)=[1-(-1)]2+02=2,d(B ,C)=⎝ ⎛⎭⎪⎫12-12+⎝ ⎛⎭⎪⎫32-02=1, d(A ,C)=⎣⎢⎡⎦⎥⎤12-(-1)2+⎝ ⎛⎭⎪⎫32-02=3, ∴|AC|2+|BC|2=|AB|2,∴△ABC 为直角三角形.故选C .点的距离是( )A .4B .13C .15D .130 答案 D解析 根据中点坐标公式,得⎩⎨⎧-3=x +12,-2=5+y2,解得⎩⎪⎨⎪⎧x =-7,y =-9.∴|PO|=(-7)2+(-9)2=130.4.已知点P(a +3,a -2)在y 轴上,则点P 关于原点的对称点的坐标为________. 答案 (0,5)解析 由点P(a +3,a -2)在y 轴上,得a +3=0, a =-3,∴a -2=-5,即点P(0,-5)关于原点的对称点的坐标为P ′(0,5).解 取AB 的中点为坐标原点,AB 所在直线为x 轴建立平面直角坐标系xOy(如图).设A 点,B 点,C 点的坐标分别为A(-a ,0),B(a ,0)(a>0),C(b ,c), 由平行四边形的性质知D 点的坐标为(-2a +b ,c).再设AC ,BD 的中点分别为E(x 1,y 1),F(x 2,y 2),由中心公式得⎩⎨⎧x 1=-a +b 2,y 1=0+c2,即E -a +b 2,c 2.⎩⎨⎧x 2=a -2a +b 2,y 2=0+c 2,即F -a +b 2,c 2.∴点E 与点F 重合,∴▱ABCD 的对角线相交且平分.一、选择题1.点A(2,-3)关于坐标原点的中心对称点是( ) A .(3,-2) B .(-2,-3) C .(-2,3) D .(-3,2) 答案 C解析 设所求点的坐标为B(x ,y),则由题意知坐标原点是点A ,B 的中点,则⎩⎨⎧2+x2=0,-3+y2=0,解得⎩⎪⎨⎪⎧x =-2,y =3.故选C .2.已知直线上两点A(a ,b),B(c ,d),且a 2+b 2-c 2+d 2=0,则( ) A .原点一定是线段AB 的中点 B .A ,B 一定都与原点重合C .原点一定在线段AB 上,但不是中点D .以上结论都不对 答案 D 解析 由a 2+b 2-c 2+d 2=0得a 2+b 2=c 2+d 2,即A ,B 两点到坐标原点的距离相等,所以原点在线段AB 的垂直平分线上,故选D .3.已知A(1,3),B(5,-2),点P 在x 轴上,则使|AP|-|BP|取最大值时的点P 的坐标是( )A .(4,0)B .(13,0)C .(5,0)D .(1,0) 答案 B解析 如图,点A(1,3)关于x 轴的对称点为A ′(1,-3),连接A ′B 交x 轴于点P ,即为所求.利用待定系数法可求出一次函数的表达式为:y =14x -134,令y =0,得x =13. 所以点P 的坐标为(13,0).4.已知A ,B 的坐标分别为(1,1),(4,3),点P 在x 轴上,则|PA|+|PB|的最小值为( )A .20B .12C .5D .4答案C解析 如图,作点A 关于x 轴的对称点A ′(1,-1),由平面几何知识得|PA|+|PB|的最小值为|A ′B|=(1-4)2+(-1-3)2 =9+16=5.5.如果一条平行于x 轴的线段的长为5,它的一个端点是(2,1),那么它的另一个端点是( )A .(-3,1)或(7,1)B .(2,-3)或(2,7)C .(-3,1)或(5,1)D .(2,-3)或(2,5) 答案 A解析 由线段平行于x 轴知,两个端点的纵坐标相等,都是1,故可设另一个端点为(x ,1),则|x -2|=5,所以x =7或x =-3,即端点坐标为(7,1)或(-3,1).二、填空题6.已知点M(2,2)平分线段AB ,且A(x ,3),B(3,y),则x =________,y =________.答案 1 1解析 “点M(2,2)平分线段AB ”的含义就是点M 是线段AB 的中点,可以用中点坐标公式把题意转化为方程组进行求解.∵点M(2,2)平分线段AB ,∴⎩⎨⎧x +32=2,3+y2=2,解得⎩⎪⎨⎪⎧x =1,y =1.7.已知A(1,5),B(5,-2),则在坐标轴上与A ,B 等距离的点有________个.答案 2解析 若点在x 轴上,设为(x ,0),则有(x -1)2+25=(x -5)2+4,∴x =38;若点在y 轴上,设为(0,y),则有1+(5-y)2=25+(-2-y)2,∴y =-314.8.已知点A(5,2a -1),B(a +1,a -4),则当|AB|取得最小值时,实数a 等于________.答案 12解析 |AB|2=(5-a -1)2+(2a -1-a +4)2=2a 2-2a +25=2⎝ ⎛⎭⎪⎫a -122+492,所以当a =12时,|AB|取得最小值.三、解答题9.已知△ABC 的两个顶点A(3,7),B(-2,5),若AC ,BC 的中点都在坐标轴上,求点C 的坐标.解 设点C(x ,y).由直线AB 与x 轴不平行,可设边AC 的中点为D ,BC的中点为E ,则DE 綊12AB .线段AC 的中点D 的坐标为⎝ ⎛⎭⎪⎫3+x 2,7+y 2, 线段BC 的中点E 的坐标为⎝ ⎛⎭⎪⎫-2+x 2,5+y 2. 若点D 在y 轴上,则3+x 2=0,所以x =-3,此时点E 的横坐标不为零,点E要在坐标轴上只能在x 轴上,所以5+y 2=0,所以y =-5,即C(-3,-5).若点D 在x 轴上,则7+y 2=0,所以y =-7,此时点E 只能在y 轴上,即-2+x 2=0,所以x =2,此时C(2,-7).如图所示.综上可知,符合题意的点C 的坐标为(2,-7)或(-3,-5).10.已知正三角形ABC 的边长为a ,在平面上求点P ,使|PA|2+|PB|2+|PC|2最小,并求出最小值.解 以正三角形的一边所在直线为x 轴,此边中线所在直线为y 轴建立坐标系,如图.则A ⎝ ⎛⎭⎪⎫-a 2,0,B ⎝ ⎛⎭⎪⎫a 2,0,C ⎝⎛⎭⎪⎫0,32a . 设P(x ,y),则有|PA|2+|PB|2+|PC|2=⎝ ⎛⎭⎪⎫x +a 22+y 2+⎝ ⎛⎭⎪⎫x -a 22+y 2+x 2+⎝⎛⎭⎪⎫y -32a 2 =3x 2+3y 2-3ay +54a 2=3x 2+3⎝⎛⎭⎪⎫y -36a 2+a 2, ∴当P ⎝⎛⎭⎪⎫0,36a 时,|PA|2+|PB|2+|PC|2有最小值a 2.。
山东省青岛市2012届高三第二次模拟试题 文科数学.pdf
3.2.2平面直角坐标系2.知道在坐标轴上的点以及与坐标轴平行的直线上点的坐标的特征.知道不同象限点的坐标的特征1:我们学习了平面直角坐标系的定义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系. 水平的数轴叫横轴 或x轴,铅直的数轴叫纵横或y轴,x轴、y轴统称为数轴,它们的公共原点O称为直角坐标系的原点. 师:好,谁还有补充吗? 生2:平面直角坐标系有四个象限:右上方部分为第一象限,按逆时针依次为第二象限、第三象限、第四象限. 生3:点的坐标的确定:先过这一点,向横轴作垂线,垂足所对的数是横坐标.然后过这一点向纵轴作垂线,垂足所对的数是这一点的纵坐标. 点的坐标是一对有序实数对. 师:好!给出以下点的坐标你能说出它们所在的位置吗?(多媒体展示) 练习:指出下列各点所在象限或坐标轴: A(-1,-2.5),B(3,-4),C(,5),D(3,6),E(-2.3,0),F(0,), G(0,0)x轴、y轴上的数字写出它的坐标,反过来,已知坐标,让你在直角坐标系中找点,你能找到吗?这就是本节课要探讨学习的内容. 二、自主探索,合作交流 师:请同学们拿出准备好的方格纸,自己建立平面直角坐 标系,然后按照我给出的坐标尝试在直角坐标系中描点,并依次用线段连接起来. (1)D(-,),(-,),(,),(-3,)(-,3),(-,0),(-,0),(,3)3作垂线,然后在纵轴上找到5作垂线,两直线的交点就是(-3,5)这个点,同样的画法我得到了其它各点,最后我依次连接,得到了这个图形. 师:回答的很好,很清晰.同学们,你们的方法和他一样吗? 生 :一样. 师:结合刚才的画图,哪位同学能够以点(a,b)为例为我们梳理出由坐标描点的一般方法. 生:先在横轴上找到a作垂线,然后在纵轴上找到b作垂线,两直线的交点就是(a,b)这个点. 师:好,这是一个什么图形? 生:“房子”. 师:根据图形解答下列问题: (1)图形中哪些点在坐标轴上,它们的坐标有什么特点? (2)线段 EC 与 x 轴有什么位置关系?点 E 和点 C 的坐标有什么特点?线段 EC 上其他点的坐标呢? (3)点 F 和点G 的横坐标有什么共同特点,线段 FG 与 y 轴有怎样的位置关系? 生:先独立思考,再小组交流. 生1:(1)点A、B都在 x 轴上,它们的纵坐标等于 0;点A、B 都在 y 轴上,它们的横坐标等于 0. 师:谁还有补充吗? 生2:线段 AG 上的点都在 x 轴上,线段 AB 上的点都在 y 轴上. 师:回答的好不好? 生:好! 师:对,请同学们注意应该是线段 AG、线段 AB上的所有点. 生3:(2)线段 EC 平行于 x 轴,点 E 和点 C 的纵坐标相同. 线段 EC 上其他点的纵坐标相同,都是 3. 师:你同意他的看法吗? 生:同意! 生4:(3)点 F 和点G 的横坐标相同,线段 FG 与 y 轴平行. 师:对不对? 生:对! 师:同学们回答的非常好!看来同学们仔细观察了,认真思考了.结合刚才的问题你能发现这些点的坐标有什么规律吗? 生1:(积极踊跃的)平行于x 轴的直线上的各点纵坐标相同,平行于y 轴的直线上的各点横坐标相同. 师:总结很到位,谁还有补充吗? 生2:x 轴上的点的纵坐标为0,y 轴上点的横坐标为0. 师:两位同学总结的好不好? 生:非常好! 师:我们把这两位同学的结论归纳概括 1.位于x轴上的点的坐标的特征是位于y轴上的点的坐标的特征是 2.与x轴平行的直线上点的坐标的特征是与y轴平行的直线上点的坐标的特征是以几个问题让学生观察给出点的特征,经历探究的过程,从而总结出坐标轴上点的特征,及平行坐标轴点的特征 (1)在“笑脸”上找出几个位于第一象限的点,指出它们的坐标,说说这些点的坐标有什么特点(2)在其他象限内分别找几个点,看看其他各个象限内的点的坐标有什么特点不具体标出这些点,分别判断(12),(-1,-3),(2,-1),(-34)这些点所在的象限,说说你是怎么判断的小组交流讨论,并回答总结对于点P(a,b)若点P在第一象限,则a0,b0;若点P在第二象限,则a0,b___0;若点P在第三象限,则a0,b0;若点P在第四象限,则a0,b0. 设计意图:通过组内合作与自主学习相结合的学习方式,培养学生主动学习与合作学习的意识,发挥了学生的主体地位. 三、巩固训练,拓展应用 1.在图的直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来。
人教新课标版数学高一B版必修2 第二章 平面解析几何初步 章末综合检测
综合检测(二)第二章平面解析几何初步(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.圆心为(1,-1),半径为2的圆的方程是()A.(x-1)2+(y+1)2=2B.(x+1)2+(y-1)2=4C.(x+1)2+(y-1)2=2D.(x-1)2+(y+1)2=4【解析】由圆的标准方程的形式直接写出方程即可.【答案】 D2.过点P(-1,3)且垂直于直线x-2y+3=0的直线方程是()A.2x+y-1=0B.2x+y-5=0C.x+2y-5=0 D.x-2y+7=0【解析】设直线方程为2x+y+m=0且过点(-1,3),故m=-1,∴所求直线的方程为2x+y-1=0.【答案】 A3.圆x2+y2=1与圆x2+y2=4的位置关系是()A.相离B.相切C.相交D.内含【解析】圆x2+y2=1的圆心为(0,0),半径为1,圆x2+y2=4的圆心为(0,0),半径为2,故两圆内含.【答案】 D4.直线l1与直线l2:3x+2y-12=0的交点在x轴上,并且l1⊥l2,则l1在y轴上的截距是()A .-4B .4C .-83D.83【解析】 ∵l 1⊥l 2,∴k 1k 2=-1.∴k 1=-1k 2=-1-32=23.∴设l 1方程为y =23x +b ,l 2与x 轴交点为(4,0)代入l 1得b =-83.【答案】 C5.在空间坐标系Oxyz 中,点M 的坐标是(1,3,5),则其关于x 轴的对称点的坐标是( )A .(-1,-3,-5)B .(-1,-3,5)C .(1,-3,-5)D .(1,3,-5)【解析】 点M 关于x 轴对称,则x 坐标不变,y ,z 坐标变为原来的相反数.【答案】 C6.直线3x -y +2=0截圆x 2+y 2-2x +4y =0所得弦长为( ) A.10 B.105 C.1010D.55【解析】 圆的圆心(1,-2),半径r =5,圆心到直线 3x -y +2=0的距离d =|3×1-(-2)+2|32+(-1)2=710,所以弦长为 2(5)2-(710)2=105. 【答案】 B7.已知直线l 1:(k -3)x +(4-k )y +1=0与l 2:2(k -3)x -2y +3=0平行,则k 的值是( )A .1或3B .1或5C .3或5D .1或2【解析】由题意知2(k-3)(4-k)+2(k-3)=0,即(k-3)·(5-k)=0,∴k=3或k=5.故选C.【答案】 C8.若圆C与圆(x+2)2+(y-1)2=1关于原点对称,则圆C的方程是() A.(x-2)2+(y+1)2=1B.(x-2)2+(y-1)2=1C.(x-1)2+(y+2)2=1D.(x+1)2+(y-2)2=1【解析】法一因为点(x,y)关于原点的对称点为(-x,-y),所以圆C 为(-x+2)2+(-y-1)2=1,即(x-2)2+(y+1)2=1.法二已知圆的圆心是(-2,1),半径是1,所以圆C的圆心是(2,-1),半径是1.所以圆C的方程是(x-2)2+(y+1)2=1.【答案】 A9.已知点A(-1,0),B(0,2),点P是圆(x-1)2+y2=1上任意一点,则△PAB 面积的最大值是()A.2 B.4+52C.52 D.2+52【解析】AB所在直线方程为-x+y2=1,即2x-y+2=0.|AB|=(-1-0)2+(0-2)2=5,圆心(1,0)到直线AB的距离d=45,点P到直线AB的最大距离为d′=d+1=45+1.∴△PAB面积的最大值是12×5×(45+1)=4+52.故选B.【答案】 B10.(2013·大连高一检测)设实数x,y满足(x-2)2+y2=3,那么yx的最大值是()A.12 B.33C.32 D. 3【解析】如图所示,设过原点的直线方程为y=kx,则与圆有交点的直线中,k max=3,∴yx的最大值为 3.故选D.【答案】 D二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)11.过两点A(-1,1),B(3,9)的直线,在x轴,y轴上的截距分别是________.【解析】直线AB的方程为y-19-1=x-(-1)3-(-1),即y=2x+3,令x=0,得y=3,令y=0得x=-32.【答案】-3 2,312.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y +3=0相切.则圆C的方程为________.【解析】根据题意可知圆心坐标是(-1,0),圆的半径等于|-1+0+3|2=2,故所求的圆的方程是(x+1)2+y2=2.【答案】(x+1)2+y2=213.过原点的直线与圆x2+y2-2x-4y+4=0相交所得弦的长为2,则该直线的方程为________.【解析】 圆的方程化为标准形式为(x -1)2+(y -2)2=1,又相交所得弦长为2,故相交弦为圆的直径,由此得直线过圆心(1,2),故所求直线方程为2x -y =0.【答案】 2x -y =014.直线ax +y -4=0与x -y -2=0相交于第一象限,则实数a 的取值范围是________.【解析】 联立方程组⎩⎪⎨⎪⎧ax +y -4=0x -y -2=0得,x =61+a ,y =4-2a 1+a .∵x >0,y >0.∴-1<a <2. 【答案】 (-1,2)三、解答题(本大题共4小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)求下列各圆的标准方程. (1)圆心在y =0上且过两点A (1,4),B (3,2);(2)圆心在直线2x +y =0上且与直线x +y -1=0切于点M (2,-1). 【解】 (1)设圆心坐标为(a ,b ),半径为r , 则所求圆的方程为(x -a )2+(y -b )2=r 2. ∵圆心在y =0上,故b =0, ∴圆的方程为(x -a )2+y 2=r 2. 又∵该圆过A (1,4),B (3,2)两点,∴⎩⎪⎨⎪⎧(1-a )2+16=r 2,(3-a )2+4=r 2,解得a =-1,r 2=20.∴所求圆的方程为(x +1)2+y 2=20.(2)已知圆与直线x +y -1=0相切,并且切点为M (2,-1),则圆心必在过点M (2,-1)且垂直于x +y -1=0的直线l 上, l 的方程为y +1=x -2,即y =x -3.由⎩⎪⎨⎪⎧ y =x -3,2x +y =0,解得⎩⎪⎨⎪⎧x =1,y =-2,即圆心为O 1(1,-2). r =(2-1)2+(-1+2)2= 2.∴所求圆的方程为(x -1)2+(y +2)2=2.图116.(本小题满分12分)如图1,在长方体ABCD -A 1B 1C 1D 1中,|AB |=|AD |=3,|AA 1|=2,点M 在A 1C 1上,|MC 1|=2|A 1M |,N 在D 1C 上且为D 1C 的中点,建立适当的坐标系,求M 、N 两点间的距离.【解】 如图,分别以AB 、AD 、AA 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系.由题意可知C (3,3,0), D (0,3,0),∵|DD 1|=|CC 1|=2, ∴C 1(3,3,2),D 1(0,3,2).∵N 为CD 1的中点,∴N (32,3,1). M 是A 1C 1的三等分点且靠近点A 1,∴M (1,1,2).由两点间距离公式,得 |MN |=(32-1)2+(3-1)2+(1-2)2=212. 17.(本小题满分12分)(2013·泰兴高一检测)已知圆C 的方程为:x 2+y 2-4mx -2y +8m -7=0,(m ∈R ).(1)试求m 的值,使圆C 的面积最小;(2)求与满足(1)中条件的圆C 相切,且过点(4,-3)的直线方程. 【解】 配方得圆的方程为(x -2m )2+(y -1)2=4(m -1)2+4. (1)当m =1时,圆的半径最小,此时圆的面积最小. (2)当m =1时,圆的方程为(x -2)2+(y -1)2=4. 当斜率存在时设所求直线方程为y +3=k (x -4), 即kx -y -4k -3=0.由直线与圆相切,所以|2k -1-4k -3|k 2+1=2,解得k =-34.所以切线方程为y +3=-34(x -4),即3x +4y =0.又过(4,-3)点,且与x 轴垂直的直线x =4,也与圆相切. 所以所求直线方程为3x +4y =0及x =4.18.(本小题满分14分)已知圆C :x 2+(y -1)2=5,直线l :mx -y +1-m =0(m ∈R ).(1)判断直线l 与圆C 的位置关系;(2)设直线l 与圆C 交于A ,B 两点,若直线l 的倾斜角为120°,求弦AB 的长.【解】 (1)直线l 可变形为y -1=m (x -1),因此直线l 过定点D (1,1),又12+(1-1)2=1<5,所以点D 在圆C 内,则直线l 与圆C 必相交.(2)由题意知m≠0,所以直线l的斜率k=m,又k=tan 120°=-3,即m =- 3.此时,圆心C(0,1)到直线l:3x+y-3-1=0的距离d=|-3|(3)2+12=32,又圆C的半径r=5,所以|AB|=2r2-d2=25-(32)2=17.。
数学必修Ⅱ人教新课标B版第二章平面解析几何初步综合测评
14.经过两条直线2x+y+2=0和3x+4y-2=0的交点,且垂直于直线3x-2y+4=0的直线方程为________.【导学号:60870090】
【解析】由方程组 得交点A(-2,2),因为所求直线垂直于直线3x-2y+4=0,故所求直线的斜率k=- ,由点斜式得所求直线方程为y-2=- (x+2),即2x+3y-2=0.
【答案】A
10.一个几何体的三视图如图1所示,主视图和左视图都是等边三角形,该几何体的四个顶点在空间直角坐标系Oxyz中的坐标分别是(0,0,0),(2,0,0),(2,2,0),(0,2,0),则第五个顶点的坐标可能是()
图1
A.(1,1,1)B.(1,1, )
C.(1,1, )D.(2,2, )
则|AB|=2 ,又d∈[1,3],
7≤42-d2≤15,
所以S△OAB=|AB|∈[2 ,2 ].
【答案】A
二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)
13.若直线l的方程为y-a=(a-1)(x+2),且l在y轴上的截距为6,则a=________.
【解析】令x=0,得y=(a-1)×2+a=6,∴a= .
C.相离D.不确定
【解析】由题意知点在圆外,则a2+b2>1,圆心到直线的距离d= <1,故直线与圆相交.
【答案】B
6.若P(2,-1)为圆C:(x-1)2+y2=25的弦AB的中点,则直线AB的方程是()
A.2x-y-5=0B.2x+y-3=0
C.x+y-1=0D.x-y-3=0
【解析】圆心C(1,0),kPC= =-1,
【答案】
三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)
山东省武城县高中数学 第二章 平面解析几何初步章末测试题(无答案)新人教B版必修2
第二章 平面解析几何初步章末测试题一、选择题1.下列命题中为真命题的是( )A.平行直线的倾斜角相等 B 。
平行直线的斜率相等C.互相垂直的两直线的倾斜角互补D.互相垂直的两直线的斜率互为相反数 2。
直线6210x y ++=的倾斜角是( )A 。
6πB 。
3πC 。
23πD.56π3。
若直线30x y a ++=过圆22240x y x y ++-=的圆心,则a 的值为( )A 。
1-B 。
1C 。
3D 。
3-4。
直线70x ay +-=与直线()4160a x y +-+=互相垂直,则a 的值为( )A.13B.13-C 。
15D.15-5.如图所示,在棱长为1的正方体中,下列各点在正方体外的是( )A 。
()1,0,1B 。
211,,555⎛⎫- ⎪⎝⎭C.111,,522⎛⎫ ⎪⎝⎭D 。
111,,23⎛⎫ ⎪⎝⎭6。
直线1:60l x my ++=和()2:2320l m x y m -++=互相平行,则m 的值为( )A.1-或3B.3C.1-D 。
1或3-7。
已知直线1:l y kx b =+,2:l bx k +,则它们的图象可能为( )8.过点()4,A a 、()5,B b 的直线与直线y x n =+平行,则||AB 的值为( )A. 4B.2 C 2 D.不能确定9。
已知点()0,0O ,()0,A b ,()3,B a a 。
若O AB ∆为直角三角形,则必有( )A.3b a =B.31b a a =+C.()3310b a b a a ⎛⎫---= ⎪⎝⎭D.331||||0b a b a a-+--=10.当点P 在圆221x y +=上运动时,连接它与定点()3,0Q ,线段PQ 的中点M 的轨迹方程是( )A 。
()2231x y ++= B.()2231x y -+= C.()222341x y -+=D 。
()222341x y ++=11。
已知圆C 的半径为2,圆心在x 轴的正半轴上,直线3440x y ++=与圆相切,则圆C 的方程为( )A 。
高中数学 第二章平面解析几何初步综合测试B 新人教B版
【成才之路】2014-2015学年高中数学 第二章平面解析几何初步综合测试B 新人教B 版必修2时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.直线x +(m +1)y +3=0与直线mx +2y -1=0平行,则m 的值为( ) A .1 B .-2 C .2或-1 D .-2或1[答案] D[解析] 由题意,得1×2-m (m +1)=0,即m 2+m -2=0,解得m =-2或1. 经检验知当m =-2或1,满足题意.2.已知A (1-t,1-t ,t ),B (2,t ,t ),则A 、B 两点间距离的最小值是( ) A.55 B.555 C.355D.115[答案] C [解析] |AB |=1+t 2+2t -12+0=5t 2-2t +2=5t -152+95≥355.∴选C. 3.设直线ax +by +c =0的倾斜角为α,且sin α+cos α=0,则a 、b 满足( ) A .a +b =1 B .a -b =1 C .a +b =0 D .a -b =0[答案] D[解析] ∵0°≤α<180°,sin α+cos α=0,∴α=135°,∴a -b =0. 4.直线2x +y -3=0关于点A (1,1)对称的直线方程是( ) A .2x +y +3=0 B .2x +y -3=0 C .2x +y =0 D .2x +y -9=0[答案] B[解析] ∵点A (1,1)在直线2x +y -3=0上,∴直线2x +y -3=0关于点A (1,1)对称的直线仍是它本身,故选B.5.直线(m +2)x +my +1=0与直线(m -1)x +(m -4)y +2=0互相垂直,则m 的值为( )A.12 B .-2 C .-12或2D .-2或12[答案] C[解析] 由题意,得(m +2)(m -1)+m (m -4)=0, 解得m =-12或2.6.对任意的实数k ,直线y =kx +1与圆x 2+y 2=2的位置关系一定是( ) A .相离 B .相切C .相交但直线不过圆心D .相交且直线过圆心 [答案] C[解析] 本题考查直线与圆的位置关系,点到直线的距离公式. 圆心C (0,0)到直线kx -y +1=0的距离d =11+k2≤1< 2.所以直线与圆相交,故选C.7.圆x 2+y 2-2x -1=0关于直线2x -y +3=0对称的圆的方程是( ) A .(x +3)2+(y -2)2=12B .(x -3)2+(y +2)2=12C .(x +3)2+(y -2)2=2 D .(x -3)2+(y +2)2=2 [答案] C[解析] 已知圆的半径为2,故对称圆的半径也为2,排除A 、B ,两圆心的连线的中点在直线2x -y +3=0上,排除D ,故选C.8.方程x 2+y 2+2kx +4y +3k +8=0表示圆,则k 的取值范围是( ) A .k =4或k =-1 B .k >4或k <-1 C .-1<k <4 D .以上都不对[答案] B[解析] 方程x 2+y 2+2kx +4y +3k +8=0,可化为(x +k )2+(y +2)2=k 2-3k -4,由题意,得k 2-3k -4>0,∴k >4或k <-1.9.圆(x -1)2+(y +2)2=5关于原点(0,0)对称的圆的方程为( ) A .(x -1)2+(y -2)2=5B .(x +1)2+(y -2)2=5 C .(x +1)2+(y +2)2=5 D .(x -1)2+(y +2)2=5 [答案] B[解析] 设所求圆的圆心坐标为(a ,b ),由题意,知所求圆的半径与已知圆的半径相等,所求圆的圆心(a ,b )与已知圆圆心(1,-2)关于原点(0,0)对称,∴所求圆的圆心坐标为 (-1,2),故所求圆的方程为(x +1)2+(y -2)2=5.10.已知直线x +3y -7=0,kx -y -2=0与x 轴,y 轴围成的四边形有外接圆,则实数k 的值是( )A .-3B .3C .-6D .6[答案] B[解析] 由题意,知两直线垂直, ∴1·k +3·(-1)=0,∴k =3.11.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -3)2+⎝ ⎛⎭⎪⎫y -732=1B .(x -2)2+(y -1)2=1 C .(x -1)2+(y -3)2=1D.⎝ ⎛⎭⎪⎫x -322+(y -1)2=1 [答案] B[解析] 设圆心坐标为(x ,y ),由题意知x >0,y =1. 由点到直线的距离公式,得|4x -3|42+32=1, ∴4x -3=±5,∵x >0,∴x =2.故所求圆的标准方程是(x -2)2+(y -1)2=1.12.将直线2x -y +λ=0沿x 轴向左平移一个单位,所得直线与圆x 2+y 2+2x -4y =0相切,则实数λ的值为( )A .-3或7B .-2或8C .0或10D .1或11[答案] A[解析] 直线2x -y +λ=0沿x 轴向左平移一个单位后为2(x +1)-y +λ=0,即2x-y +2+λ=0,又直线2x -y +2+λ=0与圆x 2+y 2+2x -4y =0相切,则|-2-2+2+λ|5=5,解得λ=-3或7.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.已知直线l 上有三点A (3,1)、B (4,2)、C (6,y ),则y =__________. [答案] 4[解析] k AB =2-14-3=1,k BC =y -26-4=y -22,由题意,得y -22=1,∴y =4.14.经过圆x 2+2x +y 2=0的圆心C ,且与直线x +y =0垂直的直线方程是________. [答案] x -y +1=0[解析] 由x 2+2x +y 2=0得圆心C (-1,0), 所求直线与x +y =0垂直,∴所求直线的斜率为1, ∴所求直线的方程为x -y +1=0.15.已知圆O :x 2+y 2=5和点A (1,2),则过A 且与圆O 相切的直线与两坐标轴围成的三角形的面积等于____________.[答案]254[解析] ∵点A (1,2)在圆x 2+y 2=5上,故过点A 的圆的切线方程为x +2y -5=0,令x =0,得y =52,令y =0,得x =5, ∴S △=12×52×5=254.16.一束光线从点A (-2,2)出发,经x 轴反射到圆C :(x -4)2+(y -6)2=1上的最短路程是______.[答案] 9[解析] A 关于x 轴对称点A 1(-2,-2),⊙C 的圆心C (4,6),|A 1C |=10, ∴最短路程为|A 1C |-1=9.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)已知两直线l 1:mx +8y +n =0和l 2:2x +my -1=0,试确定m 、n 的值,使(1)l 1与l 2相交于点P (m ,-1); (2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1.[解析] (1)由题设条件得⎩⎪⎨⎪⎧m 2-8+n =02m -m -1=0m 2-16≠0,∴⎩⎪⎨⎪⎧m =1n =7.(2)由题设可知⎩⎪⎨⎪⎧m 2-16=0-m -2n ≠0,∴⎩⎪⎨⎪⎧m =4n ≠-2或⎩⎪⎨⎪⎧m =-4n ≠2.(3)由条件得⎩⎪⎨⎪⎧2m +8m =0-8+n =0,∴⎩⎪⎨⎪⎧m =0n =8.18.(本题满分12分)已知直线l 1:x +2y -3=0与l 2:2x -y -1=0的交点是P ,直线l 过点P 及点A (4,3).(1)求l 的方程;(2)求过点P 且与l 垂直的直线l ′的方程.[解析] (1)由⎩⎪⎨⎪⎧x +2y -3=02x -y -1=0,得⎩⎪⎨⎪⎧x =1y =1.∴P (1,1),∴l 的方程为:y -13-1=x -14-1,即l :2x -3y +1=0.(2)∵所求直线l ′与l 垂直, ∴斜率为-32.又∵l ′过点(1,1),∴所求直线l ′的方程为y -1=-32(x -1),即3x +2y -5=0.19.(本题满分12分)(2014·山东东营广饶一中高一期末测试)已知点A (-1,2)和B (3,4).求:(1)线段AB 的垂直平分线的方程;(2)以AB 为直径的圆的方程. [解析] (1)k AB =4-23--1=12,∴线段AB 的垂直平分线的斜率为-2.又线段AB 的中点坐标为(1,3),故线段AB 的垂直平分线的方程为y -3=-2(x -1), 即2x +y -1=0. (2)所求圆的半径r =1-32+3-42=5,故以AB 为直径的圆的方程为(x -1)2+(y -3)2=5.20.(本题满分12分)如图所示,在Rt △ABC 中,已知A (-2,0),直角顶点B (0,-22),点C 在x 轴上.(1)求Rt △ABC 外接圆的方程;(2)求过点(-4,0)且与Rt △ABC 外接圆相切的直线的方程.[解析] (1)由题意可知点C 在x 轴的正半轴上,可设其坐标为(a,0),又AB ⊥BC ,则k AB ·k BC =-1,即-222·22a=-1,解得a =4. 则所求圆的圆心为(1,0),半径为3,故所求圆的方程为(x -1)2+y 2=9.(2)由题意知直线的斜率存在,故设所求直线方程为y =kx +4,即 kx -y +4k =0. 当圆与直线相切时,有d =|5k |k 2+1=3,解得k =±34,故所求直线方程为y =34(x -4)或y =-34(x -4),即3x -4y -12=0或3x +4y -12=0.21.(本题满分12分)一圆与两平行直线x +3y -5=0和x +3y -3=0都相切,圆心在直线2x +y +1=0上,求圆的方程.[解析] 两平行直线之间的距离为|-5+3|1+9=210,∴圆的半径为110,设圆的方程为(x -a )2+(y -b )2=110,则⎩⎪⎨⎪⎧2a +b +1=0|a +3b -5|10=110|a +3b -3|10=110,解得⎩⎪⎨⎪⎧a =-75b =95.故所求圆的方程为⎝ ⎛⎭⎪⎫x +752+⎝ ⎛⎭⎪⎫y -952=110.22.(本题满分14分)已知P 是直线3x +4y +8=0上的动点,PA 、PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A 、B 是切点,C 是圆心,那么四边形PACB 面积的最小值是多少?[解析] 解法一:将圆的一般方程化为标准方程得(x -1)2+(y -1)2=1,圆心C (1,1),r =1,如图所示,当动点P 沿直线3x +4y +8=0向左上方或向右下方无穷远处运动时,Rt△PAC 的面积S Rt △PAC =12|PA |·|AC |,|PA |越来越大,从而S 四边形PACB =|PA |·|AC |也越来越大.当点P 从左上、右下两个方向向中间运动时,S 四边形PACB 变小,显然,当点P 到达一个特殊的位置,即CP 垂直于直线3x +4y +8=0时,S 四边形PACB 取得最小值.此时|PC |=|3×1+4×1+8|32+42=3,∴|PA |=|PC |2-|AC |2=32-12=22,故(S 四边形PACB )最小值=2·12·|PA |·|AC |=2 2.解法二:设点P 的坐标为(x ,y ), 则|PC |=x -12+y -12,由勾股定理及|AC |=1, 得|PA |=|PC |2-|AC |2=x -12+y -12-1,故S 四边形PACB =2S △PAC =2·12·|PA |·|AC |=|PA |=x -12+y -12-1.欲求S 四边形PACB的最小值,只需求|PA |的最小值,即定点C (1,1)与直线上动点P (x ,y )的距离的平方的最小值,也就是点C (1,1),到直线3x +4y +8=0距离的平方,这个最小值d 2=⎝ ⎛⎭⎪⎫|3×1+4×1+8|32+422=9. 故(S 四边形PACB )最小值=9-1=2 2.。
山东省新人教版数学2012届高三单元测试AnlwUH
山东省新人教版数学高三单元测试20【椭圆】本卷共100分,考试时间90分钟一、选择题 (每小题4分,共40分)1. 若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围为 ( )A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)2. 已知1F 、2F 是椭圆的两个焦点,满足12.0MF MF =u u u u r u u u u r 的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1)B . 1(0,]2 C .(0,2D .2 3. 已知椭圆1121622=+y x 的左焦点是1F ,右焦点是2F ,点P 在椭圆上,如果线段1PF 的中点在y 轴上,那么12:PF PF 的值为A .35 B .12 C .56 D .534. 已知椭圆的两个焦点为)0,5(1-F ,)0,5(2F ,M 是椭圆上一点,若021=⋅MF MF ,8=,则该椭圆的方程是( )(A) 12722=+y x (B) 17222=+y x (C) 14922=+y x (D) 19422=+y x 5. 设椭圆22221(00)x y m n m n +=>>,的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为( ) A .2211216x y += B .2211612x y +=C .2214864x y +=D .2216448x y += 6. 椭圆22a x +22by =1(a >b >0)上一点A 关于原点的对称点为B ,F 为其右焦点,若AF ⊥BF ,设∠ABF =α,且α∈[12π,4π],则该椭圆离心率的取值范围为( ) A .[22,1 ) B .[22,36] C .[36,1) D .[22,23]7. 设抛物线)0(22>=p px y 的焦点F 恰好是椭圆12222=+by a x ()0>>b a 的右焦点,且两条曲线的交点的连线过点F ,则该椭圆的离心率为 (A )23-(B )32(C )12-(D )36 8. 在椭圆22221(0)x y a b a b+=>>上有一点M ,12,F F 是椭圆的两个焦点,若2212||||b MF MF =⋅,则椭圆离心率的范围是( ) A .]22,0( B .)1,22[C .)1,23[D .)1,2[9. 设椭圆)0,0(12222>>=+n m n y m x 的右焦点与抛物线x y 82=的焦点相同,离心率为21,则此椭圆的方程为 ( ) A.1161222=+y x B.1121622=+y x C.1644822=+y x D.1486422=+y x10. 在椭圆22221(0)x y a b a b+=>>上有一点M ,12,F F 是椭圆的两个焦点,若2212||||b MF MF =⋅,则椭圆离心率的范围是( )A .]22,0( B .)1,22[ C .)1,23[ D .)1,2[ 二、填空题 (共4小题,每小题4分)11. 已知椭圆C1与双曲线C2有相同的焦点F1、F2,点P 是C1与C2的一个公共点,12PF F ∆是一个以PF1为底的等腰三角形,1||4,PF =C1的离心率为3,7则C2的离心率为 。
数学:第二章《平面向量》同步测试(新人教b版必修1)
第二章平面向量 同步测试一、选择题:1.a 与b 是非零向量,下列结论正确的是 A .|a |+|b |=|a +b | B .|a |-|b |=|a -b | C .|a |+|b |>|a +b |D .|a |+|b |≥|a +b |解析:在三角形中,两边之和大于第三边,当a 与b 同向时,取“=”号. 答案:D2.在四边形ABCD 中,=,且||=||,那么四边形ABCD 为 A .平行四边形 B .菱形 C .长方形D .正方形解析:由=可得四边形ABCD 是平行四边形,由||=||得四边形ABCD 的一组邻边相等,一组邻边相等的平行四边形是菱形.答案:B 3.已知ABCD 的三个顶点A 、B 、C 的坐标分别为(-2,1)、(3,4)、(-1,3),则第四个顶点D 的坐标为A .(2,2)B .(-6,0)C .(4,6)D .(-4,2)解析:设D (x ,y ),则AB =(5,3),=(-1-x ,3-y ),=(x +2,y -1),=(-4,-1).又∵∥,∥,∴5(3-y )+3(1+x )=0,-(x +2)+4(y -1)=0, 解得x =-6,y =0. 答案:B4.有下列命题:①++=0;②(a +b )·c =a ·c +b ·c ;③若a =(m ,4),则|a |=23的充要条件是m =7;④若的起点为A (2,1),终点为B (-2,4),则与x 轴正向所夹角的余弦值是54.其中正确命题的序号是 A .①②B .②③C .②④D .③④解析:∵AC AC BC AB 2=++,∴①错.②是数量积的分配律,正确.当m =-7时,|a |也等于23,∴③错.在④中,=(4,-3)与x 轴正向夹角的余弦值是54,故④正确. 答案:C5.已知a =(-2,5),|b |=2|a |,若b 与a 反向,则b 等于 A .(-1,25) B .(1,-25) C .(-4,10)D .(4,-10)解析:b =-2a =(4,-10),选D. 答案:D6.已知|a |=8,e 是单位向量,当它们之间的夹角为3π时,a 在e 方向上的投影为 A .43B .4C .42D .8+23解析:由两个向量数量积的几何意义可知:a 在e 方向上的投影即:a ·e =|a ||e |cos3π=8×1×21=4. 答案:B7.若|a |=|b |=1,a ⊥b 且2a +3b 与k a -4b 也互相垂直,则k 的值为 A .-6 B .6 C .3 D .-3解析:∵a ⊥b ∴a ·b =0又∵(2a +3b )⊥(k a -4 b ) ∴(2a +3b )·(k a -4 b )=0得2k a 2-12b 2=0又a 2=|a |2=1,b 2=|b |2=1 解得k =6. 答案:B8.已知a =(3,4),b ⊥a ,且b 的起点为(1,2),终点为(x ,3x ),则b 等于A .(-51,1511) B .(-1511,51) C .(-51,154)D .(51,154)解析:b =(x -1,3x -2) ∵a ⊥b ,∴a ·b =0即3(x -1)+4(3x -2)=0, 解得x =1511. 答案:C9.等边△ABC 的边长为1,AB =a ,BC =b ,CA =c ,那么a ·b +b ·c +c ·a 等于 A .0B .1C .-21 D .-23 解析:由已知|a |=|b |=|c |=1, ∴a ·b +b ·c +c ·a =cos1cos1cos1-23. 答案:D10.把函数y =312-x 的图象按a =(-1,2)平移到F ′,则F ′的函数解析式为 A .y =372+x B .y =352-xC .y =392-xD .y =332+x解析:把函数y =312-x 的图象按a =(-1,2)平移到F ′,则F ′的函数解析式为A ,即按图象向左平移1个单位,用(x +1)换掉x ,再把图象向上平移2个单位,用(y -2)换掉y ,可得y -2=31)1(2-+x .整理得y =372+x答案:A11.已知向量e 1、e 2不共线,a =k e 1+e 2,b =e 1+k e 2,若a 与b 共线,则k 等于( ) A .±1B .1C .-1D .0解析:∵a 与b 共线 ∴a =λb (λ∈R ), 即k e 1+e 2=λ(e 1+k e 2), ∴(k -λ)e 1+(1-λk )e 2=0 ∵e 1、e 2不共线.∴⎩⎨⎧=-=-010k k λλ解得k =±1,故选A. 答案:A12.已知a 、b 均为非零向量,则|a +b |=|a -b |是a ⊥b 的A .充分非必要条件B .必要非充分条件C .充要条件D .非充分非必要条件解析:|a +b |=| a -b |⇔(a +b )2=(a -b )2⇔a ·b =0⇔a ⊥b . 答案:C 二、填空题13.如图,M 、N 是△ABC 的一边BC 上的两个三等分点,=a ,=b ,则= .解析:-==b -a , ∴=3131=(b -a ). 答案:31(b -a ) 14.a 、b 、a -b 的数值分别为2,3,7,则a 与b 的夹角为 . 解析:∵(a -b )2=7 ∴a 2-2a ·b +b 2=7 ∴a ·b =3 ∴cos θ=21||||=⋅b a b a∴θ=3π. 答案:3π15.把函数y =-2x 2的图象按a 平移,得到y =-2x 2-4x -1的图象,则a = . 解析:y =-2x 2-4x -1=-2(x +1)2+1 ∴y -1=-2(x +1)2即原函数图象向左平移1个单位,再向上平移1个单位,∴a =(-1,1). 答案:(-1,1)16.已知向量a 、b 的夹角为3π,|a |=2,|b |=1,则|a +b ||a -b |的值是 . 解析:∵a ·b =|a ||b |cos 3π=2×1×21=1∴|a +b |2=a 2+2a ·b +b 2=22+2×1+12=7,|a -b |2=a 2-2 a ·b +b 2=22-2×1+1=3 ∴|a +b |2|a -b |2=3×7=21 ∴|a +b ||a -b |=21. 答案:21 三、解答题:17.(本小题满分10分) 已知A (4,1),B (1,-21),C (x ,-23),若A 、B 、C 共线,求x .解:∵AB =(-3,-23),BC =(x -1,-1) 又∵∥∴根据两向量共线的充要条件得-23(x -1)=3 解得x =-1.18.(本小题满分12分)已知|a |=3,|b |=2,a 与b 的夹角为60°,c =3a +5b ,d =m a -b ,c ⊥d ,求m 的值. 解:a ·b =|a ||b |cos60°=3 ∵c ⊥d ,∴c ·d =0 即(3a +5b )(m a -b )=0 ∴3m a 2+(5m -3)a ·b -5b 2=0 ∴27m +3(5m -3)- 解得m =4229. 19.(本小题满分12分)已知a 、b 都是非零向量,且a +3b 与7a -5b 垂直,a -4b 与7a -2b 垂直,求a 与b 的夹角. 解:由已知,(a +3b )·(7 a -5b )=0, (a -4b )·(7a -2 b )=0, 即7a 2+16a ·b -15 b 2=0 ① 7a -30a ·b +8 b 2=0②①-②得2a ·b =b 2 代入①式得a 2=b 2∴cos θ=21||21||||22==⋅b b b a b a , 故a 与b 的夹角为60°. 本小题满分12分)已知:在△ABC 中,AB =c ,BC =a ,AC =b ,AB 上的中线CD =m ,求证:a 2+b 2=21c 2+2m 2. 证明:∵+=+=,, 两式平方相加可得a 2+b 2=21c 2+2m 2+2(·+·) ∵·+·=|||DC |·cos BDC +|||DC |cos CDA =0 ∴a 2+b 2=21c 2+2m 2. 21.(本小题满分14分)设i 、j 分别是直角坐标系x 轴、y 轴上的单位向量,若在同一直线上有三点A 、B 、C ,且=-2i +m j ,=n i +j ,=5i -j ,⊥,求实数m 、n 的值.解:∵⊥, ∴-2n +m =0①∵A 、B 、C 在同一直线上, ∴存在实数λ使=λ,=-=7i +[-(m +1)j ]AB =OB -OA =(n +2)i +(1-m )j ,∴7=λ(n +2)m +1=λ(m -1)消去λ得mn -5m +n +9=0 ②由①得m =2n 代入②解得m =6,n =3;或m =3,n =23. 22.(本小题满分14分)如图,△ABC的顶点A、B、C所对的边分别为a、b、c,A为圆心,直径P Q=2r,问:当P、Q取什么位置时,·有最大值?解:·=(-)·(-)=(-)·(--)=-r2+·+·设∠BAC=α,PA的延长线与BC的延长线相交于D,∠PDB=θ,则·CQ=-r2+cb cosθ+ra cosθ∵a、b、c、α、r均为定值,∴当cosθ=1,即AP∥BC时,·CQ有最大值.。
【配套K12】高中数学第二章平面解析几何初步检测B新人教B版必修2
第二章平面解析几何初步检测(B)(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1若直线2x+by-4=0经过点-,则其斜率等于()A.-2B.2C.D.-2·+b·(-3)-4=0,则b=-1,故直线方程为2x-y-4=0,斜率等于2.2已知直线ax+y+5=0与直线y=2x平行,则它们之间的距离等于()A. B. C. D.,所以a=-2,两直线即为:2x-y-5=0与2x-y=0,它们之间的距离为d=.3已知点A(1,2,2),B(1,-3,1),点C在yOz平面上,且点C到点A,B的距离相等,则点C的坐标可以为()A.(0,1,-1)B.(0,-1,6)C.(0,1,-6)D.(0,1,6)C的坐标为(0,y,z),则---,即(y-2)2+(z-2)2=(y+3)2+(z-1)2,亦即5y+z+1=0,经检验知,只有选项C满足.4已知过点P(2,2)的直线与圆(x-1)2+y2=5相切,且与直线ax-y+1=0垂直,则a=()A.-B.1C.2D.P(2,2)在圆(x-1)2+y2=5上,设切线的斜率为k,则k·--=-1,解得k=-,直线ax-y+1=0的斜率为a,其与切线垂直,所以-a=-1,解得a=2,故选C.5一个四面体的顶点在空间直角坐标系Oxyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的主视图时,以zOx平面为投影面,则得到的主视图可以为(),该四面体在空间直角坐标系Oxyz的图象为下图:则它在平面zOx上的投影即主视图为,故选A.6设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则|PQ|的最小值为() A.6 B.4 C.3 D.2由圆(x-3)2+(y+1)2=4知,圆心的坐标为(3,-1),半径r=2,∴圆心到直线x=-3的距离d=|3-(-3)|=6.∴|PQ|min=d-r=6-2=4,故选B.7直线x+2y-5+=0被圆x2+y2-2x-4y=0截得的弦长为()A.1B.2C.4D.4:(x-1)2+(y-2)2=5,可知圆心坐标为(1,2),半径为,圆心到直线的距离为=1,由勾股定理可得弦长一半为-=2.故弦长为4.8已知点M(a,b)在圆O:x2+y2=1内,则直线ax+by=1与圆O的位置关系是()A.相切B.相交C.相离D.不确定点M(a,b)在圆x2+y2=1内,∴点M(a,b)到圆心(0,0)的距离要小于半径,即a2+b2<1,而圆心(0,0)到直线ax+by=1的距离为d=>1,∴直线与圆相离.9垂直于直线y=x+1且与圆x2+y2=1相切于第一象限的直线方程是()A.x+y-=0B.x+y+1=0C.x+y-1=0D.x+y+=0y=x+1,可设所求切线方程为x+y+m=0.由圆心到切线的距离等于半径得=1,解得m=±.由于与圆相切于第一象限,则m=-.10直线l:mx+(m-1)y-1=0(m为常数),圆C:(x-1)2+y2=4,则下列说法正确的是()A.当m变化时,直线l恒过定点(-1,1)B.直线l与圆C有可能无公共点C.对任意实数m,圆C上都不存在关于直线l对称的两点D.若直线l与圆C有两个不同交点M,N,则线段MN的长的最小值为2l可化为m(x+y)-(y+1)=0,令得-则l过定点(1,-1),故A错;因为(1-1)2+(-1)2=1<4,所以点(1,-1)在☉C内部,因此l与☉C恒相交,故B错;当l过圆心C(1,0),即m=1时,圆心上存在关于直线l对称的两点,故C错.二、填空题(本大题共5小题,每小题5分,共25分.把答案:填在题中的横线上)11点M(2,1)到直线l:x-y-2=0的距离是.d=-.12直线l与圆x2+y2+2x-4y+1=0相交于A,B两点,若弦AB的中点(-2,3),则直线l的方程为.x2+y2+2x-4y+1=0整理得(x+1)2+(y-2)2=4,得到圆心的坐标为(-1,2),由题意知圆心C与弦AB中点的连线与直线l垂直,因为弦AB的中点为(-2,3),圆心C的坐标为(-1,2),所以圆心与弦AB中点连线的斜率为--=-1,所以直线l的斜率为1,因为直线l过(-2,3),所以直线l的方程为y-3=x+2,即x-y+5=0.5=013若圆C经过坐标原点和点(4,0),且与直线y=1相切,则圆C的方程是.x=2上,则切点坐标为(2,1).设圆心坐标为(2,t),由题意,可得4+t2=(1-t)2,所以t=-,半径r2=.故圆C的方程为(x-2)2+.x-2)2+14直线y=2x-7被圆x2+y2-6x-8y=0所截得的弦长等于.(3,4),半径是5,圆心到直线的距离d=,可知弦长l=2-=4.15过点(3,1)作圆(x-2)2+(y-2)2=4的弦,其中最短弦的长为.,当AB所在直线与AC垂直时弦BD最短,AC=--,CB=r=2, 则BA=-,故BD=2BA=2.三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤)16(本小题满分8分)已知在△ABC中,A(3,2),B(-1,5),点C在直线3x-y+3=0上,若△ABC的面积为10,求点C的坐标.-=5,∵S△ABC=10,∴AB边上的高为4,即点C到直线AB的距离为4.设C(a,b),∵直线AB的方程为3x+4y-17=0,∴--解得-或∴点C的坐标为(-1,0)或.17(本小题满分8分)如图,在Rt△ABC中,已知A(-2,0),直角顶点B(0,-2),点C在x轴上.(1)求Rt△ABC外接圆的方程;(2)求过点(-4,0)且与Rt△ABC外接圆相切的直线的方程.由题意可知点C在x轴的正半轴上,可设其坐标为(a,0),因为AB⊥BC,所以k AB·k BC=-1,即-=-1,解得a=4.所以所求圆的圆心为(1,0),半径为3,故所求圆的方程为(x-1)2+y2=9.(2)由题意知直线的斜率存在,故设所求直线方程为y=k(x+4),即kx-y+4k=0.当圆与直线相切时,有d==3,解得k=±,故所求直线方程为y=(x+4)或y=-(x+4),即3x-4y+12=0或3x+4y+12=0.18(本小题满分9分)已知A(4,-3),B(2,- 1)和直线l:4x+3y-2=0,求一点P,使|PA|=|PB|,且点P到直线l的距离等于2.方法一)设点P(x,y),因为|PA|=|PB|,所以--.①又点P到直线l的距离等于2,所以-=2.②由①②联立方程组,解得P(1,-4),或P-.(方法二)设点P(x,y),因为|PA|=|PB|,所以点P在线段AB的垂直平分线上.由题意知k AB=-1,线段AB的中点为(3,-2),所以线段AB的垂直平分线的方程是y=x-5.设点P(x,x-5),因为点P到直线l的距离等于2,所以--=2.解得x=1,或x=,所以P(1,-4),或-.19(本小题满分10分)圆C与y轴切于点(0,2),与x轴正半轴交于两点M,N(点M在点N的左侧),且|MN|=3.(1)求圆C的方程;(2)过点M任作一直线与圆O:x2+y2=4相交于A,B两点,连接AN,BN,求证:k AN+k BN=0.C与y轴切于点(0,2),可设圆心坐标为(m,2)(m>0),则圆的半径为m,所以m2=4+,得m=,故所求圆的方程为-+(y-2)2=;(1)可得M(1,0),则可设AB:x=1+ty,代入x2+y2-4=0,并整理,得(t2+1)y2+2ty-3=0,设A(x1,y1),B(x2,y2),其中x1≠4,x2≠4,则--因为N(4,0),所以k AN+k BN=-------=0.20(本小题满分10分)已知圆C:(x-3)2+(y-4)2=4,直线l1过定点A(1,0).(1)若l1与圆相切,求l1的方程;(2)若l1与圆相交于P,Q两点,线段PQ的中点为M,又l1与l2:x+2y+2=0的交点为N,求证:AM·AN为定值.若直线l1的斜率不存在,即直线方程为x=1,符合题意.②若直线l1斜率存在,设直线l1为y=k(x-1),即kx-y-k=0.由题意知,圆心(3,4)到已知直线l1的距离等于半径2,即=2,解得k=.此时l1的方程为y=(x-1),即3x-4y-3=0.综上直线l1的方程是x=1或3x-4y-3=0.l1与圆相交,斜率必定存在,且不为0,可设直线l1的方程为kx-y-k=0-.由--,得N--.因为直线CM与l1垂直,由----得M.所以AM·AN=|y M-0|·|y N-0|=|y M·y N|-=6,为定值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省新人教B 版2012届高三单元测试5必修2第二章《平面解析几何初步》(本卷共150分,考试时间120分钟)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线3ax -y -1=0与直线(a -23)x +y +1=0垂直,则a 的值是( )A .-1或13B .1或13C .-13或-1D .-13或1解析:选D.由3a (a -23)+(-1)×1=0,得a =-13或a =1.2.直线l 1:ax -y +b =0,l 2:bx -y +a =0(a ≠0,b ≠0,a ≠b )在同一坐标系中的图形大致是图中的( )解析:选C.直线l 1:ax -y +b =0,斜率为a ,在y 轴上的截距为b ,设k 1=a ,m 1=b .直线l 2:bx -y +a =0,斜率为b ,在y 轴上的截距为a , 设k 2=b ,m 2=a .由A 知:因为l 1∥l 2,k 1=k 2>0,m 1>m 2>0,即a =b >0,b >a >0,矛盾. 由B 知:k 1<0<k 2,m 1>m 2>0,即a <0<b ,b >a >0,矛盾. 由C 知:k 1>k 2>0,m 2>m 1>0,即a >b >0,可以成立. 由D 知:k 1>k 2>0,m 2>0>m 1,即a >b >0,a >0>b ,矛盾.3.已知点A (-1,1)和圆C :(x -5)2+(y -7)2=4,一束光线从A 经x 轴反射到圆C 上的最短路程是( )A .62-2B .8C .4 6D .10 解析:选B.点A 关于x 轴对称点A ′(-1,-1),A ′与圆心(5,7)的距离为(5+1)2+(7+1)2=10.∴所求最短路程为10-2=8.4.圆x 2+y 2=1与圆x 2+y 2=4的位置关系是( ) A .相离 B .相切 C .相交 D .内含解析:选D.圆x 2+y 2=1的圆心为(0,0),半径为1,圆x 2+y 2=4的圆心为(0,0),半径为2,则圆心距0<2-1=1,所以两圆内含.5.已知圆C :(x -a )2+(y -2)2=4(a >0)及直线l :x -y +3=0,当直线l 被圆C 截得的弦长为23时,a 的值等于( )A. 2B.2-1 C .2- 2D.2+1解析:选B.圆心(a,2)到直线l :x -y +3=0的距离d =|a -2+3|2=|a +1|2,依题意⎝ ⎛⎭⎪⎫|a +1|22+⎝⎛⎭⎫2322=4,解得a =2-1. 6.与直线2x +3y -6=0关于点(1,-1)对称的直线是( ) A .3x -2y -6=0 B .2x +3y +7=0 C .3x -2y -12=0 D .2x +3y +8=0解析:选D.∵所求直线平行于直线2x +3y -6=0, ∴设所求直线方程为2x +3y +c =0, 由|2-3+c |22+32=|2-3-6|22+32,∴c =8,或c =-6(舍去),∴所求直线方程为2x +3y +8=0.7.若直线y -2=k (x -1)与圆x 2+y 2=1相切,则切线方程为( )A .y -2=34(1-x )B .y -2=34(x -1)C .x =1或y -2=34(1-x )D .x =1或y -2=34(x -1)解析:选B.数形结合答案容易错选D ,但要注意直线的表达式是点斜式,说明直线的斜率存在,它与直线过点(1,2)要有所区分.8.圆x 2+y 2-2x =3与直线y =ax +1的公共点有( ) A .0个 B .1个C .2个D .随a 值变化而变化解析:选C.直线y =ax +1过定点(0,1),而该点一定在圆内部.9.过P (5,4)作圆C :x 2+y 2-2x -2y -3=0的切线,切点分别为A 、B ,四边形P ACB 的面积是( )A .5B .10C .15D .20 解析:选B.∵圆C 的圆心为(1,1),半径为 5. ∴|PC |=(5-1)2+(4-1)2=5, ∴|P A |=|PB |=52-(5)2=25,∴S =12×25×5×2=10.10.若直线mx +2ny -4=0(m 、n ∈R ,n ≠m )始终平分圆x 2+y 2-4x -2y -4=0的周长,则mn 的取值范围是( )A .(0,1)B .(0,-1)C .(-∞,1)D .(-∞,-1)解析:选C.圆x 2+y 2-4x -2y -4=0可化为(x -2)2+(y -1)2=9,直线mx +2ny -4=0始终平分圆周,即直线过圆心(2,1),所以2m +2n -4=0,即m +n =2,mn =m (2-m )=-m 2+2m =-(m -1)2+1≤1,当m =1时等号成立,此时n =1,与“m ≠n ”矛盾,所以mn <1.11.已知直线l :y =x +m 与曲线y =1-x 2有两个公共点,则实数m 的取值范围是( )A .(-2,2)B .(-1,1)C .[1,2)D .(-2,2)解析:选C. 曲线y =1-x 2表示单位圆的上半部分,画出直线l 与曲线在同一坐标系中的图象,可观察出仅当直线l 在过点(-1,0)与点(0,1)的直线与圆的上切线之间时,直线l 与曲线有两个交点.当直线l 过点(-1,0)时,m =1;当直线l 为圆的上切线时,m =2(注:m =-2,直线l 为下切线).12.过点P (-2,4)作圆O :(x -2)2+(y -1)2=25的切线l ,直线m :ax -3y =0与直线l 平行,则直线l 与m 的距离为( )A .4B .2 C.85 D.125 解析:选A.∵点P 在圆上,∴切线l 的斜率k =-1k OP =-11-42+2=43.∴直线l 的方程为y -4=43(x +2),即4x -3y +20=0. 又直线m 与l 平行,∴直线m 的方程为4x -3y =0.故两平行直线的距离为d =|0-20|42+(-3)2=4.二、填空题(本大题共4小题,请把答案填在题中横线上)13.过点A (1,-1),B (-1,1)且圆心在直线x +y -2=0上的圆的方程是________. 解析:易求得AB 的中点为(0,0),斜率为-1,从而其垂直平分线为直线y =x ,根据圆的几何性质,这条直线应该过圆心,将它与直线x +y -2=0联立得到圆心O (1,1),半径r =|OA |=2.答案:(x -1)2+(y -1)2=414.过点P (-2,0)作直线l 交圆x 2+y 2=1于A 、B 两点,则|P A |·|PB |=________.解析:过P 作圆的切线PC ,切点为C ,在Rt △POC 中,易求|PC |=3,由切割线定理,|P A |·|PB |=|PC |2=3.答案:315.若垂直于直线2x +y =0,且与圆x 2+y 2=5相切的切线方程为ax +2y +c =0,则ac 的值为________.解析:已知直线斜率k 1=-2,直线ax +2y +c =0的斜率为-a2.∵两直线垂直,∴(-2)·(-a 2)=-1,得a =-1.圆心到切线的距离为5,即|c |5=5,∴c =±5,故ac =±5. 答案:±516.若直线3x +4y +m =0与圆x 2+y 2-2x +4y +4=0没有公共点,则实数m 的取值范围是__________.解析:将圆x 2+y 2-2x +4y +4=0化为标准方程,得(x -1)2+(y +2)2=1,圆心为(1,-2),半径为 1.若直线与圆无公共点,即圆心到直线的距离大于半径,即d =|3×1+4×(-2)+m |32+42=|m -5|5>1,∴m <0或m >10.答案:(-∞,0)∪(10,+∞)三、解答题(本大题共6小题,解答时应写出必要的文字说明、证明过程或演算步骤) 17.三角形ABC 的边AC ,AB 的高所在直线方程分别为2x -3y +1=0,x +y =0,顶点A (1,2),求BC 边所在的直线方程.解:AC 边上的高线2x -3y +1=0,所以k AC =-32.所以AC 的方程为y -2=-32(x -1),即3x +2y -7=0,同理可求直线AB 的方程为x -y +1=0. 下面求直线BC 的方程, 由⎩⎪⎨⎪⎧3x +2y -7=0,x +y =0,得顶点C (7,-7), 由⎩⎪⎨⎪⎧x -y +1=0,2x -3y +1=0,得顶点B (-2,-1). 所以k BC =-23,直线BC :y +1=-23(x +2),即2x +3y +7=0.18.一束光线l 自A (-3,3)发出,射到x 轴上,被x 轴反射后与圆C :x 2+y 2-4x -4y +7=0有公共点.(1)求反射光线通过圆心C 时,光线l 所在直线的方程; (2)求在x 轴上,反射点M 的横坐标的取值范围. 解:圆C 的方程可化为(x -2)2+(y -2)2=1.(1)圆心C 关于x 轴的对称点为C ′(2,-2),过点A ,C ′的直线的方程x +y =0即为光线l 所在直线的方程.(2)A 关于x 轴的对称点为A ′(-3,-3), 设过点A ′的直线为y +3=k (x +3).当该直线与圆C 相切时,有|2k -2+3k -3|1+k 2=1,解得k =43或k =34,所以过点A ′的圆C 的两条切线分别为y +3=43(x +3),y +3=34(x +3).令y =0,得x 1=-34,x 2=1,所以在x 轴上反射点M 的横坐标的取值范围是[-34,1].19.已知圆x 2+y 2-2x -4y +m =0. (1)此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线x +2y -4=0相交于M 、N 两点,且OM ⊥ON (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程. 解:(1)方程x 2+y 2-2x -4y +m =0,可化为 (x -1)2+(y -2)2=5-m , ∵此方程表示圆, ∴5-m >0,即m <5.(2)⎩⎪⎨⎪⎧x 2+y 2-2x -4y +m =0,x +2y -4=0,消去x 得(4-2y )2+y 2-2×(4-2y )-4y +m =0, 化简得5y 2-16y +m +8=0. 设M (x 1,y 1),N (x 2,y 2),则⎩⎨⎧y 1+y 2=165, ①y 1y 2=m +85. ②由OM ⊥ON 得y 1y 2+x 1x 2=0 即y 1y 2+(4-2y 1)(4-2y 2)=0, ∴16-8(y 1+y 2)+5y 1y 2=0. 将①②两式代入上式得16-8×165+5×m +85=0,解之得m =85.(3)由m =85,代入5y 2-16y +m +8=0,化简整理得25y 2-80y +48=0,解得y 1=125,y 2=45.∴x 1=4-2y 1=-45,x 2=4-2y 2=125.∴M ⎝⎛⎭⎫-45,125,N ⎝⎛⎭⎫125,45, ∴MN 的中点C 的坐标为⎝⎛⎭⎫45,85.又|MN |= ⎝⎛⎭⎫125+452+⎝⎛⎭⎫45-1252=855, ∴所求圆的半径为455.∴所求圆的方程为⎝⎛⎭⎫x -452+⎝⎛⎭⎫y -852=165. 20. 已知圆O :x 2+y 2=1和定点A (2,1),由圆O 外一点P (a ,b )向圆O 引切线PQ ,切点为Q ,|PQ |=|P A |成立,如图.(1)求a 、b 间关系; (2)求|PQ |的最小值;(3)以P 为圆心作圆,使它与圆O 有公共点,试在其中求出半径最小的圆的方程. 解:(1)连接OQ 、OP ,则△OQP 为直角三角形,又|PQ |=|P A |,所以|OP |2=|OQ |2+|PQ |2 =1+|P A |2,所以a 2+b 2=1+(a -2)2+(b -1)2, 故2a +b -3=0.(2)由(1)知,P 在直线l :2x +y -3=0上, 所以|PQ |min =|P A |min ,为A 到直线l 的距离,所以|PQ |min =|2×2+1-3|22+12=255.(或由|PQ |2=|OP |2-1=a 2+b 2-1=a 2+9-12a +4a 2-1=5a 2-12a +8=5(a -1.2)2+0.8,得|PQ |min =255.)(3)以P 为圆心的圆与圆O 有公共点,半径最小时为与圆O 相切的情形,而这些半径的最小值为圆O 到直线l 的距离减去圆O 的半径,圆心P 为过原点与l 垂直的直线l ′与l 的交点P 0,所以r =322+12-1=355-1,又l ′:x -2y =0,联立l :2x +y -3=0得P 0(65,35).所以所求圆的方程为(x -65)2+(y -35)2=(355-1)2.21.有一圆与直线l :4x -3y +6=0相切于点A (3,6),且经过点B (5,2),求此圆的方程. 解:法一:由题意可设所求的方程为(x -3)2+(y -6)2+λ(4x -3y +6)=0,又因为此圆过点(5,2),将坐标(5,2)代入圆的方程求得λ=-1,所以所求圆的方程为x 2+y 2-10x -9y +39=0.法二:设圆的方程为(x -a )2+(y -b )2=r 2, 则圆心为C (a ,b ),由|CA |=|CB |,CA ⊥l ,得⎩⎪⎨⎪⎧ (3-a )2+(6-b )2=r 2,(5-a )2+(2-b )2=r 2,b -6a -3×43=-1,解得⎩⎪⎨⎪⎧a =5,b =92,r 2=254.所以所求圆的方程为(x -5)2+(y -92)2=254.法三:设圆的方程为x 2+y 2+Dx +Ey +F =0,由CA ⊥l ,A (3,6),B (5,2)在圆上,得⎩⎪⎨⎪⎧32+62+3D +6E +F =0,52+22+5D +2E +F =0,-E 2-6-D 2-3×43=-1,解得⎩⎪⎨⎪⎧D =-10,E =-9,F =39.所以所求圆的方程为x 2+y 2-10x -9y +39=0.法四:设圆心为C ,则CA ⊥l ,又设AC 与圆的另一交点为P ,则CA 的方程为y -6=-34(x -3),即3x +4y -33=0.又因为k AB =6-23-5=-2,所以k BP =12,所以直线BP 的方程为x -2y -1=0.解方程组⎩⎪⎨⎪⎧ 3x +4y -33=0,x -2y -1=0,得⎩⎪⎨⎪⎧x =7,y =3.所以P (7,3).所以圆心为AP 的中点(5,92),半径为|AC |=52.所以所求圆的方程为(x -5)2+(y -92)2=254.22.如图在平面直角坐标系xOy 中,已知圆C 1:(x +3)2+(y -1)2=4和圆C 2:(x -4)2+(y -5)2=4.(1)若直线l 过点A (4,0),且被圆C 1截得的弦长为23,求直线l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被C 2截得的弦长相等.试求所有满足条件的点P 的坐标.解:(1)由于直线x =4与圆C 1不相交,所以直线l 的斜率存在.设直线l 的方程为y =k (x -4),圆C 1的圆心到直线l 的距离为d ,因为圆C 1被直线l 截得的弦长为23,所以d =22-(3)2=1.由点到直线的距离公式得d =|1-k (-3-4)|1+k 2,从而k (24k +7)=0,即k =0或k =-724,所以直线l 的方程为y =0或7x +24y -28=0.(2)设点P (a ,b )满足条件,不妨设直线l 1的方程为y -b =k (x -a ),k ≠0,则直线l 2的方程为y -b =-1k(x -a ).因为圆C 1和C 2的半径相等,且圆C 1被直线l 1截得的弦长与圆C 2被直线l 2截得的弦长相等,所以圆C 1的圆心到直线l 1的距离和圆C 2的圆心到直线l 2的距离相等,即|1-k (-3-a )-b |1+k 2=|5+1k (4-a )-b |1+1k2,整理得|1+3k +ak -b |=|5k +4-a -bk |,从而1+3k +ak -b =5k +4-a -bk 或1+3k +ak-b =-5k -4+a +bk ,即(a +b -2)k =b -a +3或(a -b +8)k =a +b -5,因为k 的取值有无穷多个,所以⎩⎪⎨⎪⎧ a +b -2=0,b -a +3=0,或⎩⎪⎨⎪⎧a -b +8=0,a +b -5=0, 解得⎩⎨⎧a =52,b =-12,或⎩⎨⎧a =-32,b =132.这样点P 只可能是点P 1⎝⎛⎭⎫52,-12或点P 2⎝⎛⎭⎫-32,132. 经检验点P 1和P 2满足题目条件.。