2017年高考数学专题七立体几何第57练立体几何的综合应用练习

合集下载

2017年高考数学试题分项版—立体几何(原卷版)

2017年高考数学试题分项版—立体几何(原卷版)

2017年高考数学试题分项版—立体几何(原卷版)一、选择题1.(2017·全国Ⅰ文,6)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )2.(2017·全国Ⅱ文,6)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π3.(2017·全国Ⅲ文,9)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4C .π2D .π44.(2017·全国Ⅲ文,10)在正方体ABCDA 1B 1C 1D 1中,E 为棱CD 的中点,则( )A .A 1E ⊥DC 1B .A 1E ⊥BDC .A 1E ⊥BC 1D .A 1E ⊥AC5.(2017·北京文,6)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A .60B .30C .20D .106.(2017·浙江,3)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A .π2+1 B .π2+3 C .3π2+1 D .3π2+3 7.(2017·浙江,9)如图,已知正四面体DABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP =PB ,BQ QC =CR RA=2,分别记二面角DPRQ ,DPQR ,DQRP 的平面角为α,β,γ,则( )A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α8.(2017·全国Ⅰ理,7)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .169.(2017·全国Ⅱ理,4)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π10.(2017·全国Ⅱ理,10)已知直三棱柱ABCA 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( ) A.32 B.155 C.105 D.3311.(2017·全国Ⅲ理,8)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B.3π4 C.π2 D.π412.(2017·北京理,7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A .3 2B .2 3C .2 2D .2二、填空题1.(2017·全国Ⅰ文,16)已知三棱锥SABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥SABC 的体积为9,则球O 的表面积为________.2.(2017·全国Ⅱ文,15)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为________.3.(2017·天津文,11)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.4.(2017·山东文,13)由一个长方体和两个14圆柱构成的几何体的三视图如图,则该几何体的体积为________.5.(2017·浙江,11)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S 6,S 6=________.6.(2017·江苏,6)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.7.(2017·全国Ⅰ理,16)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为________.8.(2017·全国Ⅲ理,16)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角;②当直线AB 与a 成60°角时,AB 与b 成60°角;③直线AB 与a 所成角的最小值为45°;④直线AB 与a 所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号)9.(2017·天津理,10)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.10.(2017·山东理,13)由一个长方体和两个14圆柱体构成的几何体的三视图如下,则该几何体的体积为________.三、解答题1.(2017·全国Ⅰ文,18)如图,在四棱锥P ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,且四棱锥P ABCD 的体积为83,求该四棱锥的侧面积.2.(2017·全国Ⅱ文,18)如图,四棱锥P ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面P AD ;(2)若△PCD 的面积为27,求四棱锥P ABCD 的体积.因为侧面P AD 为等边三角形且垂直于底面ABCD ,平面P AD ∩平面ABCD =AD ,所以PM ⊥AD ,PM ⊥底面ABCD .因为CM ⊂底面ABCD ,所以PM ⊥CM .3.(2017·全国Ⅲ文,19)如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.4.(2017·北京文,18)如图,在三棱锥P-ABC中,P A⊥AB,P A⊥BC,AB⊥BC,P A=AB =BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:P A⊥BD;(2)求证:平面BDE⊥平面P AC;(3)当P A∥平面BDE时,求三棱锥E-BCD的体积.5.(2017·天津文,17)如图,在四棱锥P ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD =1,BC=3,CD=4,PD=2.(1)求异面直线AP与BC所成角的余弦值;(2)求证:PD⊥平面PBC;(3)求直线AB与平面PBC所成角的正弦值.6.(2017·山东文,18)由四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.(1)证明:A1O∥平面B1CD1;(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.7.(2017·浙江,19)如图,已知四棱锥P ABCD,△P AD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(1)证明:CE∥平面P AB;(2)求直线CE与平面PBC所成角的正弦值.8.(2017·江苏,15)如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.9.(2017·江苏,18)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32 cm,容器Ⅰ的底面对角线AC的长为107 cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14 cm和62 cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12 cm.现有一根玻璃棒l,其长度为40 cm.(容器厚度、玻璃棒粗细均忽略不计).(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.10.(2017·江苏,22)如图,在平行六面体ABCDA1B1C1D1中,AA1⊥平面ABCD,且AB=AD =2,AA1=3,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角BA1DA的正弦值.11.(2017·全国Ⅰ理,18)如图,在四棱锥P ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,求二面角APBC 的余弦值.12.(2017·全国Ⅱ理,19)如图,四棱锥P ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE ∥平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角MABD 的余弦值.13.(2017·全国Ⅲ理,19)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角DAEC 的余弦值.14.(2017·北京理,16)如图,在四棱锥P ABCD中,底面ABCD为正方形,平面P AD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,P A=PD=6,AB=4.(1)求证:M为PB的中点;(2)求二面角BPDA的大小;(3)求直线MC与平面BDP所成角的正弦值.15.(2017·天津理,17)如图,在三棱锥P ABC中,P A⊥底面ABC,∠BAC=90°.点D,E,N 分别为棱P A,PC,BC的中点,M是线段AD的中点,P A=AC=4,AB=2.(1)求证:MN∥平面BDE;(2)求二面角CEMN的正弦值;(3)已知点H在棱P A上,且直线NH与直线BE所成角的余弦值为721,求线段AH的长.16.(2017·山东理,17)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G是DF的中点.(1)设P是CE上的一点,且AP⊥BE,求∠CBP的大小;(2)当AB=3,AD=2时,求二面角E—AG—C的大小.。

2017高考试题分类汇编之立体几何(精校版)

2017高考试题分类汇编之立体几何(精校版)

2017 年高考试题分类汇编之立体几何一、选择题(在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1.( 2017 课标 I 理)某多面体的三视图如下图,此中正视图和左视图都由正方形和等腰直角三角形构成,正方形的边长为2 ,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形, 这些梯形的面积之和为() A.10B.12C.12D.16(第 1题)(第 2题)(第 3题)2.( 2017 课标 II1理)如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为()A.90B.63C.42D.363. ( 2017 北京理) 某四棱锥的三视图如下图,则该四棱锥的最长棱的长度为()A.3 2B.2 3C.2 2D.24.( 2017 课标 II 理)已知直三棱柱ABCA 1B 1C 1中, ABC 1200 , AB 2, BCCC 1 1,则异面直线AB 1 与 BC 1 所成角的余弦值为(3 15 C . 10 3) A. B.5D .2535. ( 2017 课标 III 理) 已知圆柱的高为 1,它的两个底面的圆周在直径为2 的同一个球的球面上,则该圆柱的体积为()A.B.3C.D .4246.( 2017 浙江)某几何体的三视图如下图(单位: cm ),则该几何体的体积 (单位: cm 3)是()A.2 1 B.3 C .31D.332227.( 2017 浙江)如图, 已知正四周体 D ABC (全部棱长均相等的三棱锥), P,Q, R 分别为 AB, BC, CA上的点, AP PB,BQCR 2 ,分别记二面角 D PR Q, DPQ R,D QRP 的平面角为 , ,QCRA则() A. B. C. D.O2OO1(第 6题)(第 7题)(第 8题)二、填空题(将正确的答案填在题中横线上)8.( 2017江苏)如图 ,在圆柱 O1 ,O2内有一个球 O ,该球与圆柱的上、下边及母线均相切.记圆柱 O1 , O2的体积为 V1,球 O 的体积为 V2 ,则V1的值是. V29. ( 2017 天津理)已知一个正方体的全部极点在一个球面上,若这个正方体的表面积为18 ,则这个球的积为.10. ( 2017 山东理)由一个长方体和两个1 圆柱体构成的几何体的三视图如右图,则该几何体的体积4为.(第10 题)(第11 题)11.( 2017课标I 理)如图,圆形纸片的圆心为O ,半径为5cm,该纸片上的等边三角形ABC 的中心为O.D,E,F为圆剪开后,分别以O 上的点,BC ,CA, ABDBC , ECA, FAB 分别是以 BC ,CA, AB 为底边的等腰三角形.沿虚线为折痕折起DBC , ECA , FAB ,使得 D , E, F 重合,获得三棱锥.当ABC 的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______.12. ( 2017课标III理)a,b 为空间中两条相互垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与 a, b都垂直,斜边AB 以直线AC 为旋转轴旋转,有以下结论:①当直线AB 与a 成 600角时,AB 与b 成300角;②当直线AB 与a成600角时,AB 与b 成600角;③直线AB 与a所成角的最小值为450;④直线AB与 a 所成角的最小值为600.________.(填写全部正确结论的编号)此中正确的选项是三、解答题(应写出必需的文字说明、证明过程或演算步骤)13.( 2017 课标I 理)如图,在四棱锥P ABCD 中,AB // CD,且BAP CDP90o.( 1)证明:平面PAB平面PAD ;( 2)若PA PD AB DC ,APD90 0,求二面角A PB C 的余弦值.14.( 2017 课标II 理)如图,四棱锥P ABCD 中,侧面PAD 为等比三角形且垂直于底面ABCD ,AB BC 1AD ,BAD ABC90o , E 是PD 的中点。

2017-2018年高考数学立体几何汇编及答案解析

2017-2018年高考数学立体几何汇编及答案解析

2017—2018年高考数学试题立体几何汇编及答案解析类型一 空间几何体的结构特征与三视图1.【2017浙江,3】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是A .12+πB .32+πC .123+πD .323+π【答案】A 【解析】2π1211π3(21)1322V ⨯=⨯⨯+⨯⨯=+,选A. 2.【2017北京,理7】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A ) (B )(C ) (D )2 【答案】B 【解析】几何体是四棱锥,如图红色线为三视图还原后的几何体,最长的棱长为正方体的对角线,l == B.3.【2017山东,理13】由一个长方体和两个14圆柱体构成的几何体的三视图如右图,则该几何体的体积为 .【答案】22π+【解析】该几何体的体积为21112211242V π=π⨯⨯⨯+⨯⨯=+. 4.(2018年高考北京卷理科)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A.1 B.2 C.3 D.4【解答】解:四棱锥的三视图对应的直观图为:PA⊥底面ABCD,AC=,CD=,PC=3,PD=2,可得三角形PCD不是直角三角形.所以侧面中有3个直角三角形,分别为:△PAB,△PBC,△PAD.故选:C.5.(2018年高考数学全国卷1理科)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3 D.2【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:=2.故选:B.6.(2018年高考数学全国卷3理科)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A. B . C . D .【解答】解:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A .故选:A .7.(2018年高考浙江卷)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( ) A .2B .4C .6D .8【解答】解:根据三视图:该几何体为底面为直角梯形的四棱柱.如图所示:故该几何体的体积为:V=.故选:C .8.某多面体的三视图如图所示,则该几何体的体积与其 外接球的体积之比为( )A .π186B .π96 C .π36 D .π26选A类型二 空间几何体与空间旋转体的面积、体积问题1、如图,半径为4的球O中有一内接圆柱,当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是______.解:如图,2、设球的一条半径与圆柱相应的母线的夹角为α,圆柱侧面积S =2π×4sin α×2×4cos α=32πsin2α,当α=π4时,S 取最大值32π,此时球的表面积与该圆柱的侧面积之差为32π.3、(2018年高考数学天津卷理科)已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M ﹣EFGH 的体积为 .【解答】解:正方体的棱长为1,M ﹣EFGH 的底面是正方形的边长为:,四棱锥是正四棱锥,棱锥的高为, 四棱锥M ﹣EFGH 的体积:=.故答案为:.4、(2014·课标Ⅱ)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.13解:原来毛坯体积为:π·32·6=54π(cm 3),由三视图知该零件由左侧底面半径为2cm ,高为4cm 的圆柱和右侧底面半径为3cm ,高为2cm 的圆柱构成,故该零件的体积为:π·22·4+π·32·2=34π(cm 3),切削掉部分的体积为54π-34π=20π(cm 3),故切削掉部分的体积与原来毛坯体积的比值为20π54π=1027 .故选C.6.【2017课标3,理8】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A .πB .3π4C .π2D .π4【答案】B【解析】由题可知球心在圆柱体中心,圆柱体上下底面圆半径r =则圆柱体体积23ππ4V r h ==,故选B.7.【2017天津,理10】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 . 【答案】92π 【解析】设正方体边长为a ,则226183a a =⇒= ,外接球直径为34427923,πππ3382R V R ====⨯=. 8.【2017江苏,6】 如图,在圆柱12,O O 内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱12,O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是 ▲ .【答案】32 【解析】设球半径为r ,则2132π2342π3V r r V r ⨯==.故答案为32. 9、(2018年高考数学全国卷3理科)10.(5分)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且面积为9,则三棱锥D ﹣ABC 体积的最大值为( ) A .12B .18C .24D .54【解答】解:△ABC 为等边三角形且面积为9,可得,解得AB=6,球心为O ,三角形ABC 的外心为O′,显然D 在O′O 的延长线与球的交点如图:O′C==,OO′==2,则三棱锥D ﹣ABC 高的最大值为:6, 则三棱锥D ﹣ABC 体积的最大值为:=18.故选:B .10、(2018年高考数学全国卷2理科)16.(5分)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为,SA 与圆锥底面所成角为45°,若△SAB 的面积为5,则该圆锥的侧面积为40π .【解答】解:圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为,可得sin ∠AMB==.△SAB 的面积为5,可得sin ∠AMB=5,即×=5,即SA=4.SA 与圆锥底面所成角为45°,可得圆锥的底面半径为:=2.则该圆锥的侧面积:π=40π.故答案为:40π.11、(2018年高考数学全国卷1理科)12.(5分)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A .B .C .D .【解答】解:正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:所示的正六边形平行的平面,并且正六边形时,α截此正方体所得截面面积的最大,此时正六边形的边长明明就的最大值为:6×=.故选:A.12、(2018年江苏省高考数学试卷)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.【解答】解:正方体的棱长为2,中间四边形的边长为:,八面体看做两个正四棱锥,棱锥的高为1,多面体的中心为顶点的多面体的体积为:2×=.故答案为:.类型三点共线、线共点问题1、如图,E,F,G,H分别是空间四边形内AB,BC,CD,DA上的点,且EH与FG交于点O.求证:B,D,O三点共线.证明:∵点E∈平面ABD,点H∈平面ABD,∴EH⊂平面AB D.∵EH∩FG=O,∴点O∈平面AB D.同理可证点O∈平面BC D.∴点O∈平面ABD∩平面BCD=B D.即B,D,O三点共线.类型四共面问题1、下列如图所示的正方体和正四面体,P、Q、R、S分别是所在棱的中点,则四个点共面的图形是____________.(填所有满足条件图形的序号)解:易知①③中PS ∥Q R ,∴四点共面.在②中构造如图所示的含点P ,S ,R ,Q 的正六边形,易知四点共面.在④中,由点P ,R ,Q 确定平面α,由图象观察知点S 在平面α外,因此四点不共面.综上知,故填①②③.类型五 异面直线问题1.【2017课标II ,理10】已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A ..5 C .5D 【答案】C【解析】如图所示,补成四棱柱1111ABCD A B C D - ,则所求角为1111,BC D BC BD C D AB ∠=====因此1cos 5BC D ∠== ,故选C 。

2017年高考真题立体几何部分

2017年高考真题立体几何部分

2017年高考真题--立体几何部分学校:___________姓名:___________班级:___________考号:___________一、解答题1.(12分)如图,四棱锥P -ABCD 中,侧面PAD 为等比三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点.(1)证明:直线//CE 平面PAB (2)点M 在棱PC 上,且直线BM 与底面ABCD 所成锐角为o 45 ,求二面角M -AB -D 的余弦值2.(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,求二面角A -PB -C 的余弦值.3.(12分)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD=∠CBD ,AB=BD .(1)证明:平面ACD ⊥平面ABC ; (2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D –AE –C 的余弦值.4.如图,在四棱锥P-ABCD 中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,PD//平面MAC ,PA =PD =6,AB=4.(I )求证:M 为PB 的中点;(II )求二面角B -PD -A 的大小;(III )求直线MC 与平面BDP 所成角的正弦值.5.如图,在三棱锥P -ABC 中,PA ⊥底面ABC ,90BAC ∠=︒.点D ,E ,N 分别为棱PA ,P C ,BC 的中点,M 是线段AD 的中点,PA =AC =4,AB =2.(Ⅰ)求证:MN ∥平面BDE ;(Ⅱ)求二面角C -EM -N 的正弦值;(Ⅲ)已知点H 在棱PA 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长.6.17.如图,几何体是圆柱的一部分,它是由矩形(及其内部)以边所在直线为旋转轴旋转得到的,是的中点. (Ⅰ)设是上的一点,且,求的大小; (Ⅱ)当,,求二面角的大小.7.(本题满分15分)如图,已知四棱锥P–ABCD,△P AD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面P AB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.参考答案1.(1)详见解析(2)cos |cos ,||θ=<>==n k 【解析】(1)取PA 中点F ,连接EF 、BF 、EC ∵E 、F 分别为PD 、PA 中点∴12EF AD ∥,又∵12BC AD ∥∴EF BC ∥,∴四边形BCEF 为平行四边形∴CE ∥平面PAD(2)取AD 中点O ,连PO ,由于PAD △为正三角形∴PO AD ⊥又∵平面PAD ⊥平面ABCD ,平面PAD ∧平面ABCD AD =∴PO ⊥平面ABCD ,连OC ,四边形ABCD 为正方形。

专题07 立体几何小题常考全归类(精讲精练)(原卷版)

专题07 立体几何小题常考全归类(精讲精练)(原卷版)

专题07 立体几何小题常考全归类【命题规律】高考对该部分的考查,小题主要体现在两个方面:一是有关空间线面位置关系的命题的真假判断;二是常见一些经典常考压轴小题,难度中等或偏上.【核心考点目录】核心考点一:球与截面面积问题核心考点二:体积、面积、周长、角度、距离定值问题 核心考点三:体积、面积、周长、距离最值与范围问题 核心考点四:立体几何中的交线问题核心考点五:空间线段以及线段之和最值问题 核心考点六:空间角问题 核心考点七:轨迹问题核心考点八:以立体几何为载体的情境题 核心考点九:翻折问题【真题回归】1.(2022·北京·高考真题)已知正三棱锥-P ABC 的六条棱长均为6,S 是ABC 及其内部的点构成的集合.设集合{}5T Q S PQ =∈≤,则T 表示的区域的面积为( ) A .34π B .πC .2πD .3π2.(2022·浙江·高考真题)如图,已知正三棱柱1111,ABC A B C AC AA -=,E ,F 分别是棱11,BC A C 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A --的平面角为γ,则( )A .αβγ≤≤B .βαγ≤≤C .βγα≤≤D .αγβ≤≤3.(多选题)(2022·全国·高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =4.(多选题)(2022·全国·高考真题)已知正方体1111ABCD A B C D -,则( ) A .直线1BC 与1DA 所成的角为90︒ B .直线1BC 与1CA 所成的角为90︒ C .直线1BC 与平面11BB D D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒5.(多选题)(2021·全国·高考真题)在正三棱柱111ABC A B C 中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值 C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥ D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 6.(2020·海南·高考真题)已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 5BCC 1B 1的交线长为________.【方法技巧与总结】1、几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和. (2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应弄清各构成部分,并注意重合部分的删、补. 2、几类空间几何体体积的求法(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,有时可采用等体积转换法求解.(3)锥体体积公式为13V Sh =,在求解锥体体积时,不能漏掉3、求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆 锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形.4、球的截面问题 球的截面的性质: ①球的任何截面是圆面;②球心和截面(不过球心)圆心的连线垂直于截面;③球心到截面的距离d 与球的半径R 及截面的半径r 的关系为=+222R r d .注意:解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的位置关系和数量关系;选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.5、立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.6、解决立体几何问题的思路方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题;涉及某些角的三角函数的最值,借助模型求解,如正四面体模型、长方体模型和三余弦角模θαβ=cos cos cos (θ为平面的斜线与平面内任意一条直线l 所成的角,α为该斜线与该平面所成的角,β为该斜线在平面上的射影与直线l 所成的角).7、立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.8、解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.9、以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等; (2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等; (3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.10、以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读?一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【核心考点】核心考点一:球与截面面积问题 【规律方法】 球的截面问题 球的截面的性质: ①球的任何截面是圆面;②球心和截面(不过球心)圆心的连线垂直于截面;③球心到截面的距离d 与球的半径R 及截面的半径r 的关系为=+222R r d . 【典型例题】例1.(2022·全国·高三阶段练习)已知四棱锥P -ABCD 的底面ABCD 是矩形,且该四棱锥的所有顶点都在球O 的球面上,P A ⊥平面ABCD , 22,PA AB BC === ,点E 在棱PB 上,且2EB PE =, 过E 作球O 的截面,则所得截面面积的最小值是____________. 例2.(2022·湖北省红安县第一中学高三阶段练习)球体在工业领域有广泛的应用,某零件由两个球体构成,球1O 的半径为10,,P Q 为球1O 表面上两动点,16,PQ M =为线段PQ 的中点.半径为2的球2O 在球1O 的内壁滚动,点,,A B C 在球2O 表面上,点2O 在截面ABC 上的投影H 恰为AC 的中点,若21O H =,则三棱锥M ABC -体积的最大值是___________. 例3.(2022·江西·高三阶段练习(理))如图,正方体1111ABCD A B C D -的棱长为6,11113C E CD =,点F 是CD 的中点,则过1B ,E ,F 三点的平面α截该正方体所得截面的面积为_________.例4.(2022·北京市十一学校高三阶段练习)如图,在棱长为2的正方体1111ABCD A B C D -中,,M N 分别是棱1111,A B A D 的中点,点P 在线段CM 上运动,给出下列四个结论:①平面CMN 截正方体1111ABCD A B C D -所得的截面图形是五边形; ②直线11B D 到平面CMN 2; ③存在点P ,使得1190B PD ∠=; ④1PDD △45. 其中所有正确结论的序号是__________.核心考点二:体积、面积、周长、角度、距离定值问题 【规律方法】几类空间几何体体积的求法(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥, 有时可采用等体积转换法求解.(3)锥体体积公式为13V Sh =,在求解锥体体积时,不能漏掉【典型例题】例5.(2022·河南省实验中学高一期中)如图,在正方体1111ABCD A B C D -中,2AB =,M ,N 分别为11A D ,11B C 的中点,E ,F 分别为棱AB ,CD 上的动点,则三棱锥M NEF -的体积( )A .存在最大值,最大值为83B .存在最小值,最小值为23C .为定值43D .不确定,与E ,F 的位置有关例6.(2022·山西运城·模拟预测(文))如图,正方体1111ABCD A B C D -的棱长为1,线段1CD 上有两个动点E ,F ,且12EF =,点P ,Q 分别为111A B BB ,的中点,G 在侧面11CDD C 上运动,且满足1B G ∥平面1CD PQ ,以下命题错误的是( )A .1AB EF ⊥B .多面体1AEFB 的体积为定值C .侧面11CDD C 上存在点G ,使得1B G CD ⊥ D .直线1B G 与直线BC 所成的角可能为6π例7.(2022·全国·高三专题练习)如图所示,在正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交1AA 于E ,交1CC 于F ,给出下面几个命题:①四边形1BFD E 一定是平行四边形; ②四边形1BFD E 有可能是正方形;③平面1BFD E 有可能垂直于平面1BB D ;④设1D F 与DC 的延长线交于M ,1D E 与DA 的延长线交于N ,则M 、N 、B 三点共线; ⑤四棱锥11B BFD E -的体积为定值. 以上命题中真命题的个数为( ) A .2B .3C .4D .5核心考点三:体积、面积、周长、距离最值与范围问题 【规律方法】几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值【典型例题】例8.(2022·全国·高三专题练习)如图,正方形EFGH 的中心为正方形ABCD 的中心,22AB =P EFGH -(A ,B ,C ,D 四点重合于点P ),则此四棱锥的体积的最大值为( )A 1286B 1285C .43D 15例9.(2022·江西南昌·三模(理))已知长方体1111ABCD A B C D -中,2AB =,22BC =13AA =,P 为矩形1111D C B A 内一动点,设二面角P AD C --为α,直线PB 与平面ABCD 所成的角为β,若αβ=,则三棱锥11P A BC -体积的最小值是( ) A 2 B .321C 2D 32例10.(2022·浙江·高三阶段练习)如图,在四棱锥Q EFGH -中,底面是边长为22方形,4QE QF QG QH ====,M 为QG 的中点.过EM 作截面将此四棱锥分成上、下两部分,记上、下两部分的体积分别为1V ,2V ,则12V V 的最小值为( )A .12 B .13C .14D .15例11.(2022·河南省实验中学高一期中)如图,在正方体1111ABCD A B C D -中,2AB =,M ,N 分别为11A D ,11B C 的中点,E ,F 分别为棱AB ,CD 上的动点,则三棱锥M NEF -的体积( )A .存在最大值,最大值为83B .存在最小值,最小值为23C .为定值43D .不确定,与E ,F 的位置有关核心考点四:立体几何中的交线问题 【规律方法】 几何法 【典型例题】例12.(2022·浙江宁波·一模)在棱长均相等的四面体ABCD 中,P 为棱AD (不含端点)上的动点,过点A 的平面α与平面PBC 平行.若平面α与平面ABD ,平面ACD 的交线分别为m ,n ,则m ,n 所成角的正弦值的最大值为__________.例13.(2022·全国·高三专题练习)已知一个正四面体的棱长为2,则其外接球与以其一个顶点为球心,1为半径的球面所形成的交线的长度为___________.例14.(2022·福建福州·三模)已知正方体1111ABCD A B C D -31A 为球心,半径为2的球面与底面ABCD 的交线的长度为___________.例15.(2022·陕西·武功县普集高级中学高三阶段练习(理))如图,在四面体ABCD 中,DA ,DB ,DC 两两垂直,2DA DB DC ===D 为球心,1为半径作球,则该球的球面与四面体ABCD 各面交线的长度和为___.核心考点五:空间线段以及线段之和最值问题 【规律方法】几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值【典型例题】例16.(2022·全国·高三专题练习)已知正三棱锥S ABC -2,外接球表面积为3π,2SA <点M ,N 分别是线段AB ,AC 的中点,点P ,Q 分别是线段SN 和平面SCM 上的动点,则AP PQ +的最小值为( ) A 262-B 62+C 32D 2例17.(2022·全国·高三专题练习)在棱长为3的正方体1111ABCD A B C D -中,点E 满足112A E EB =,点F 在平面1BC D 内,则1A F EF +的最小值为( )A 29B .6C 41D .7例18.(2022·全国·高三专题练习)如图所示,在直三棱柱111ABC A B C -中,11AA =,3AB BC ==1cos 3ABC ∠=,P 是1A B 上的一动点,则1AP PC +的最小值为( )A 5B 7C .13+D .3核心考点六:空间角问题 【规律方法】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的. (3)计算:在证明的基础上计算得出结果. 简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin hl,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°. 4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【典型例题】例19.(2022·浙江金华·高三期末)已知正方体1111ABCD A B C D -中,P 为1ACD △内一点,且1113PB D ACD S S =△△,设直线PD 与11A C 所成的角为θ,则cos θ的取值范围为( )A .3⎡⎢⎣⎦B .3⎡⎤⎢⎥⎣⎦C .10,2⎡⎤⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦例20.(2022·浙江·效实中学模拟预测)在等腰梯形ABCD 中,AD BC ∥,12AB AD CD BC ===,AC 交BD 于O 点,ABD △沿着直线BD 翻折成1A BD ,所成二面角1A BD C --的大小为θ,则下列选项中错误的是( )A .1A BC θ∠≤B .1AOC θ∠≥ C .1A DC θ∠≤D .11A BC A DC θ∠+∠≥例21.(2022·浙江·湖州中学高三阶段练习)如图,ABC 中,90C ∠=︒,1AC =,3BC =D 为AB 边上的中点,点M 在线段BD (不含端点)上,将BCM 沿CM 向上折起至'B CM △,设平面'B CM 与平面ACM 所成锐二面角为α,直线'MB 与平面AMC 所成角为β,直线MC 与平面'B CA 所成角为γ,则在翻折过程中,下列三个命题中正确的是( )①3tan βα,②γβ≤,③γα>. A .①B .①②C .②③D .①③例22.(2022·浙江·高三专题练习)已知等边ABC ,点,E F 分别是边,AB AC 上的动点,且满足EF BC ∥,将AEF △沿着EF 翻折至P 点处,如图所示,记二面角P EF B --的平面角为α,二面角P FC B --的平面角为β,直线PF 与平面EFCB 所成角为γ,则( )A .αβγ≥≥B .αγβ≥≥C .βαγ≥≥D .βγα≥≥例23.(2022·全国·高三专题练习)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P AC B --的平面角是γ则三个角α,β,γ中最小的角是( ) A .αB .βC .γD .不能确定核心考点七:轨迹问题 【规律方法】解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.【典型例题】例24.(2022·北京·昌平一中高三阶段练习)设正方体1111ABCD A B C D -的棱长为1,E ,F 分别为AB ,1BD 的中点,点M 在正方体的表面上运动,且满足FM DE ⊥,则下列命题:①点M 可以是棱AD 的中点; ②点M 的轨迹是菱形; ③点M 轨迹的长度为25 ④点M 5. 其中正确的命题个数为( ) A .1B .2C .3D .4例25.(2022·全国·高三专题练习)已知正方体1111ABCD A B C D -的边长为2,点E ,F 分别为棱CD ,1DD 的中点,点P 为四边形11CDD C 内(包括边界)的一动点,且满足1B P ∥平面BEF ,则点P 的轨迹长为( ) A 2B .2C 2D .1例26.(2022·全国·模拟预测(理))如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,P A ⊥平面ABCD ,且2PA =,点E ,F ,G 分别为棱AB ,AD ,PC 的中点,下列说法错误的是( )A .AG ⊥平面PBDB .直线FG 和直线AC 所成的角为π3C .过点E ,F ,G 的平面截四棱锥P ABCD -所得的截面为五边形D .当点T 在平面ABCD 内运动,且满足AGT △的面积为12时,动点T 的轨迹是圆例27.(2022·浙江温州·高三开学考试)如图,正方体1AC ,P 为平面11B BD 内一动点,设二面角11A BD P --的大小为α,直线1A P 与平面11BD A 所成角的大小为β.若cos sin βα=,则点P 的轨迹是( )A .圆B .抛物线C .椭圆D .双曲线例28.(2022·全国·高三专题练习)如图,正方体ABCD A B C D -''''中,M 为BC 边的中点,点P 在底面A B C D ''''和侧面CDD C ''上运动并且使MAC PAC ''∠=∠,那么点P 的轨迹是( )A .两段圆弧B .两段椭圆弧C .两段双曲线弧D .两段抛物线弧核心考点八:以立体几何为载体的情境题 【规律方法】以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读?一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【典型例题】例29.(2022·宁夏·平罗中学高三阶段练习(理))设P 为多面体M 的一个顶点,定义多面体M 在P 处的离散曲率为()()1223111 1.2,3,32k i Q PQ Q PQ Q PQ Q i k π-∠+∠+⋯+∠=⋯≥其中,为多面体M 的所有与点P 相邻的顶点,且平面12Q PQ ,23Q PQ ,……,1k Q PQ 遍及多面体M 的所有以P 为公共点的面如图是正四面体、正八面体、正十二面体和正二十面体,若它们在各顶点处的离散曲率分别是a ,b ,c ,d ,则a ,b ,c ,d 的大小关系是( )A .a b c d >>>B .a b d c >>>C .b a d c >>>D .c d b a >>>例30.(2022·广东·广州市从化区第三中学高三阶段练习)北京大兴国际机场的显著特点之一是各种弯曲空间的运用,在数学上用曲率刻画空间弯曲性.规定:多面体的顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体在每个顶点有3个面角,每个面角是3π,所以正四面体在每个顶点的曲率为233πππ-⨯=,故其总曲率为4π.给出下列三个结论:①正方体在每个顶点的曲率均为2π; ②任意四棱锥的总曲率均为4π;③若某类多面体的顶点数V ,棱数E ,面数F 满足2V E F -+=,则该类多面体的总曲率是常数.其中,所有正确结论的序号是( ) A .①②B .①③C .②③D .①②③例31.(2022·辽宁·沈阳二十中三模)我国南北朝时期的著名数学家祖暅原提出了祖暅原理:“幂势既同,则积不容异.”意思是,夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.运用祖暅原理计算球的体积时,构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图①)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图②),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等,即2311122323V R R R R R πππ=⋅-⋅=球.现将椭圆22149x y +=绕y 轴旋转一周后得一橄榄状的几何体(如图③),类比上述方法,运用祖暅原理可求得其体积等于( )A .32πB .24πC .18πD .16π例32.(2022·全国·高三专题练习)将地球近似看作球体.设地球表面某地正午太阳高度角为θ,δ为此时太阳直射纬度(当地夏半年取正值,冬半年取负值),ϕ为该地的纬度值,如图.已知太阳每年直射范围在南北回归线之间,即[]2326,2326δ''∈-︒︒.北京天安门广场的汉白玉华表高为9.57米,北京天安门广场的纬度为北纬395427'''︒,若某天的正午时刻,测得华表的影长恰好为9.57米,则该天的太阳直射纬度为( )A .北纬5527'''︒B .南纬5527'''︒C .北纬5533'''︒D .南纬5533'''︒核心考点九:翻折问题 【规律方法】1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质. 【典型例题】例33.(2022·全国·高三专题练习)如图,已知四边形ABCD ,BCD △是以BD 为斜边的等腰直角三角形,ABD △为等边三角形,2BD =,将ABD △沿对角线BD 翻折到PBD △在翻折的过程中,下列结论中不正确...的是( )A .BD PC ⊥B .DP 与BC 可能垂直C .直线DP 与平面BCD 所成角的最大值是45︒D .四面体PBCD 3例34.(2022·浙江·杭州高级中学模拟预测)如图,已知矩形ABCD 的对角线交于点,,1E AB x BC ==,将ABD △沿BD 翻折,若在翻折过程中存在某个位置,使得ABCE ,则x 的取值范围是( )A .03x <≤B .02x <≤C .01x <≤D .06x ≤<例35.(2022·全国·高三专题练习)如图1,在正方形ABCD 中,点E 为线段BC 上的动点(不含端点),将ABE 沿AE 翻折,使得二面角B AE D --为直二面角,得到图2所示的四棱锥B AECD -,点F 为线段BD 上的动点(不含端点),则在四棱锥B AECD -中,下列说法正确的是( )A .B 、E 、C 、F 四点一定共面 B .存在点F ,使得CF ∥平面BAEC .侧面BEC 与侧面BAD 的交线与直线AD 相交 D .三棱锥B ADC -的体积为定值例36.(2022·全国·高三专题练习)已知直角梯形ABCD 满足:AD ∥BC ,CD ⊥DA ,且△ABC 为正三角形.将△ADC 沿着直线AC 翻折至△AD 'C 如图,且AD BD CD '''<<,二面角D AB C '﹣﹣、D BC A '﹣﹣、D AC B '﹣﹣的平面角大小分别为α,β,γ,直线D A ',D B ',D C '与平面ABC 所成角分别是θ1,θ2,θ3,则( )A .123θθθαγβ>>,>>B .123θθθαβγ<<,>>C .123θθθαβγ>>,<<D .123θθθαβγ<<,<<【新题速递】1.(2022·安徽·高三阶段练习)如图,在棱长为a 的正四面体ABCD 中,点111,,B C D 分别在棱,,AB AC AD 上,且平面111B C D 平面1,BCD A 为BCD △内一点,记三棱锥1111A B C D -的体积为V ,设1AD x AD=,关于函数()V f x =,下列说法正确的是( )A .12220,,,133x x ⎛⎫⎛⎫∀∈∃∈ ⎪ ⎪⎝⎭⎝⎭,使得()()21f x f x =B .函数()f x 在1,12⎛⎫⎪⎝⎭上是减函数C .函数()f x 的图象关于直线12x =对称 D .()00,1x ∃∈,使得()016A BCD f x V ->(其中A BCD V -为四面体ABCD 的体积)2.(2022·重庆市长寿中学校高三阶段练习)如图所示,在直角梯形BCEF 中,90,CBF BCE A ∠∠==、D 分别是BF 、CE 上的点,//AD BC ,且22AB DE BC AF ===(如图1).将四边形ADEF 沿AD 折起,连接BE BF CE 、、(如图2).在折起的过程中,下列说法中错误的个数是( )①AC //平面BEF ; ②B C E F 、、、四点不可能共面;③若EF CF ⊥,则平面ADEF ⊥平面ABCD ; ④平面BCE 与平面BEF 可能垂直. A .1B .2C .3D .43.(2022·四川·成都市第二十中学校一模(理))如图, 在棱长为 2 的正方体1111ABCD A B C D -中,E F G H P 、、、、均为所在棱的中点, 则下列结论正确的有( )①棱 AB 上一定存在点Q , 使得1QC D Q ⊥ ②三棱锥F EPH -的外接球的表面积为8π③过点 E F G ,,作正方体的截面, 则截面面积为33④设点 M 在平面11BB C C 内, 且1//A M 平面AGH , 则1A M 与AB 所成角的余弦值的最大22A .1 个B .2 个C .3 个D .4 个4.(2022·四川·成都市锦江区嘉祥外国语高级中学有限责任公司模拟预测(文))在棱长为2的正方体1111ABCD A B C D -中,N 为11B C 的中点,点P 在正方体各棱及表面上运动且满足AP CN ⊥,则点P 轨迹所围成图形的面积为( )A .25B .42C .23D .45.(2022·上海市实验学校高三阶段练习)直线m ⊥平面α,垂足是O ,正四面体ABCD 的棱长为4,点C 在平面α上运动,点B 在直线m 上运动,则点O 到直线AD 的距离的取值范围是( )A .425425⎡-+⎢⎣⎦B .222,222⎡⎤⎣⎦C .322322⎡-+⎢⎣⎦D .322,322⎡⎤⎣⎦6.(2022·湖南·模拟预测)正三棱柱111ABC A B C 的底面边长是4,侧棱长是6,M ,N 分别为1BB ,1CC 的中点,若点P 是三棱柱内(含棱柱的表面)的动点,MP ∥平面1AB N ,则动点P 的轨迹面积为( ) A .53B .5C 39D 267.(2022·山西·高三阶段练习)已知正方体1111ABCD A B C D -的顶点都在表面积为12π的球面上,过球心O 的平面截正方体所得的截面为一菱形,记该菱形截面为S ,点P 是正方体表面上一点,则以截面S 为底面,以点P 为顶点的四棱锥的体积的最大值为( ) A .83B .73C .2D .538.(2022·浙江·高三阶段练习)在OAB △中,OA AB =,120OAB ∠=︒.若空间点P 满足1=2PABOABSS ,则直线OP 与平面OAB 所成角的正切的最大值是( )A .13B .12C 3D .19.(多选题)(2022·云南曲靖·高三阶段练习)已知正方体1111ABCD A B C D -的棱长为1,点P 为侧面11BCC B 内一点,则( )A .当1113C P C B =时,异面直线CP 与AD 所成角的正切值为2B .当11(01)C P C B λλ=<<时,四面体1D ACP 的体积为定值C .当点P 到平面ABCD 的距离等于到直线11A B 的距离时,点P 的轨迹为拋物线的一部分 D .当1112C P C B =时,四面体BCDP 的外接球的表面积为3π10.(多选题)(2022·辽宁·本溪高中高三阶段练习)如图,矩形BDEF 所在平面与正方形ABCD 所在平面互相垂直,2AD DE ==,G 为线段AE 上的动点,则( )A .AE CF ⊥B .多面体ABCDEF 的体积为83C .若G 为线段AE 的中点,则GB //平面CEFD .点M ,N 分别为线段AF ,AC 上的动点,点T 在平面BCF 内,则MT NT +43 11.(多选题)(2022·广东·东涌中学高三期中)如图,已知正方体1111ABCD A B C D -的棱长为1,E ,F ,G 分别为AB ,AD ,1BB 的中点,点P 在11A C 上,//AP 平面EFG ,则以下说法正确的是( )A .点P 为11A C 的中点B .三棱锥P EFG -的体积为148C .直线1BB 与平面EFG 3D .过点E 、F 、G 作正方体的截面,所得截面的面积是3312.(多选题)(2022·安徽·阜阳师范大学附属中学高三阶段练习)已知ABC 为等腰直角三角形,AB AC =,其高3AD =,E 为线段BD 的中点,将ABC 沿AD 折成大小为32ππθθ⎛⎫< ⎪⎝⎭的二面角,连接BC ,形成四面体A BCD -,动点P 在ACD 内(含边界),且//PE 平面ABC ,则在θ变化的过程中( )A .AD BC ⊥B .E 点到平面ADC 的距离的最大值为322C .点P 在ADC △2D .当BP AC ⊥时,BP 与平面ADC 所成角的正切值的取值范围为)22,⎡+∞⎣13.(多选题)(2022·江苏省泰兴中学高三阶段练习)棱长为1的正方体1111ABCD A B C D -内部有一圆柱12O O ,此圆柱恰好以直线1AC 为轴,且圆柱上下底面分别与正方体中以1A C ,为公共点的3个面都有一个公共点,以下命题正确的是( )A .在正方体1111ABCD ABCD -内作与圆柱12O O 3B .无论点1O 在线段1AC 上如何移动,都有11BO B C ⊥C .圆柱12O O 的母线与正方体1111ABCD A B C D -所有的棱所成的角都相等D .圆柱12O O 外接球体积的最小值为π6 14.(多选题)(2022·江苏盐城·高三阶段练习)已知正四面体ABCD 的棱长为2球的球心为O .点E 满足(01)AE AB λλ=<<,(01)CF CD μμ=<<,过点E 作平面α平行于AC 和BD ,平面α分别与该正四面体的棱BC ,CD ,AD 相交于点M ,G ,H ,则( )A .四边形EMGH 的周长为是变化的B .四棱锥A EMGH -的体积的最大值为6481 C .当14λ=时,平面α截球O 47 D .当12λμ==时,将正四面体ABCD 绕EF 旋转90︒后与原四面体的公共部分体积为43 15.(2022·安徽·石室中学高三阶段练习)已知三棱锥V ABC -的高为3D E F ,,,分别为VC VA VB ,,的中点,若平面ABD ,平面BCE ,平面ACF 相交于O 点,则O 到平面ABC 的距离h 为___________.16.(2022·北京八十中高三期末)如图,在正方体ABCD —1111D C B A 中,E 为棱11B C 的中点.动点P 沿着棱DC 从点D 向点C 移动,对于下列四个结论:。

2017年高考数学一轮总复习达标训练:第七章 立体几何7

2017年高考数学一轮总复习达标训练:第七章 立体几何7

7.5空间中的垂直关系一、选择题1.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是()A.AB∥m B.AC⊥mC.AB∥βD.AC⊥β2.(2015·深圳调研)如图,在立体图形D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列结论正确的是()A.平面ABC⊥平面ABDB.平面ABD⊥平面BDCC.平面ABC⊥平面BDE,且平面ADC⊥平面BDED.平面ABC⊥平面ADC,且平面ADC⊥平面BDE3.(2015·洛阳检测)如图,P A垂直于圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E, F分别是点A在PB, PC上的射影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥BC.正确命题的个数为()A.1B.2C.3D.44.(2015·天津模拟)如图,以等腰直角三角形ABC的斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:①BD⊥AC;②△BAC是等边三角形;③三棱锥D-ABC是正三棱锥;④平面ADC⊥平面ABC.其中正确的是()A.①②④B.①②③C.②③④D.①③④5.如图,直三棱柱ABC-A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的动点,AB1,DF交于点E.要使AB1⊥平面C1DF,则线段B1F的长为导学号74780074( )A.12 B .1 C.32D .2 答案:1.D 2.C 3.C 4.B 5.A二、填空题6.如图,在直四棱柱ABCD -A 1B 1C 1D 1中,∠ADC =90°,且AA 1=AD =DC =2,M ∈平面ABCD ,当D 1M ⊥平面A 1C 1D 时,DM =________.7.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 、G 分别是AB 、BC 、B 1C 1的中点.下列命题正确的是________(写出所有正确命题的编号).①以正方体的顶点为顶点的三棱锥的四个面最多只有三个面是直角三角形; ②P 在直线FG 上运动时,AP ⊥DE ;③Q 在直线BC 1上运动时,三棱锥A -D 1QC 的体积不变; ④M 是正方体的面A 1B 1C 1D 1内到点D 和C 1距离相等的点,则M 点的轨迹是一条线段.8.如图所示,在四棱锥P ABCD 中,P A ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD .(只要填写一个你认为是正确的条件即可)答案:6.22 7.②③④ 8.DM ⊥PC (不唯一)三、解答题9.如图,在正方体ABCD -A 1B 1C 1D 1中,E 为棱C 1D 1的中点,F 为棱BC 的中点. (1)求证:AE ⊥DA 1;(2)在线段AA 1上求一点G ,使得直线AE ⊥平面DFG .解析:(1)证明:连接AD 1,BC 1,由正方体的性质可知,DA 1⊥AD 1,DA 1⊥AB , 又AB ∩AD 1=A ,∴DA 1⊥平面ABC 1D 1,又AE ⊂平面ABC 1D 1,∴DA 1⊥AE . (2)所求G 点即为A 1点,证明如下: 由(1)可知AE ⊥DA 1,取CD 的中点H , 连接AH ,EH ,由DF ⊥AH ,DF ⊥EH , AH ∩EH =H ,可证DF ⊥平面AHE , ∵AE ⊂平面AHE ,∴DF ⊥AE .又DF ∩A 1D =D ,∴AE ⊥平面DF A 1,即AE ⊥平面DFG .10.如图,在△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥平面BCD ,∠ADB =60°,E 、F 分别是AC 、AD 上的动点,且AE AC =AFAD=λ(0<λ<1).(1)判断EF 与平面ABC 的位置关系并给予证明;(2)是否存在λ,使得平面BEF ⊥平面ACD ,如果存在,求出λ的值,如果不存在,说明理由.导学号74780075解析:(1)EF ⊥平面ABC .证明:∵AB ⊥平面BCD ,∴AB ⊥CD .又∵在△BCD 中,∠BCD =90°,∴BC ⊥CD . 又∵AB ∩BC =B ,∴CD ⊥平面ABC ,又∵在△ACD 中,E 、F 分别是AC 、AD 上的动点, 且AE AC =AFAD=λ(0<λ<1), ∴EF ∥CD ,∴EF ⊥平面ABC .(2)∵CD ⊥平面ABC ,BE ⊂平面ABC ,∴BE ⊥CD , 在Rt △ABD 中,∠ADB =60°,∴AB =BD tan 60°=6,则AC =AB 2+BC 2=7,当BE ⊥AC 时,BE =AB ×BC AC =67,AE =AB 2-BE 2=367,则AE AC =3677=67,即λ=AE AC =67时,BE ⊥AC . 又∵BE ⊥CD ,AC ∩CD =C ,∴BE ⊥平面ACD , ∵BE ⊂平面BEF ,∴平面BEF ⊥平面ACD .∴存在λ,且当λ=67时,平面BEF ⊥平面ACD .如图①,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD 上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图②.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.导学号74780076解析:(1)证明:因为D,E分别为AC,AB的中点,所以DE∥BC.又因为DE⊄平面A1CB,BC⊂平面A1CB,所以DE∥平面A1CB.(2)证明:由已知得AC⊥BC且DE∥BC,所以DE⊥AC.所以DE⊥A1D,DE⊥CD,又A1D∩DE=D,所以DE⊥平面A1DC.而A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,所以A1F⊥平面BCDE,所以A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰△DA1C底边A1C的中点,所以A1C⊥DP,又DE∩DP=D,所以A1C⊥平面DEP.从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.。

备战2017年高考理科数学【解答题】〖立体几何〗专题专练25题(精简版)--含答案与解析

备战2017年高考理科数学【解答题】〖立体几何〗专题专练25题(精简版)--含答案与解析

目录备战2017年高考理科数学解答题---立体几何(精简版)---含答案与解析目录 (1)一.立体几何专练→基础篇 (2)二.立体几何专练→强化篇 (4)(三).立体几何→基础篇答案与解析 (7)(二).立体几何专练→强化篇答案与解析 (14)一.立体几何专练→基础篇基础1. 如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,PA ⊥底面ABCD ,且PA=AB ,M 、N 分别是PA 、BC 的中点.(I)求证:MN ∥平面PCD ;(II)在棱PC 上是否存在点E ,使得AE ⊥平面PBD?若存在,求出AE 与平面PBC 所成角的正弦值,若不存在,请说明理由.基础2. 如图,已知长方体ABCD —A 1B 1C 1D 1的底面ABCD 是边长为4的正方形,高AA 1=42,P 为CC 1的中点。

(Ⅰ)求证:BD ⊥A 1P ;(Ⅱ)求二面角C —PD —B 的大小。

基础3. 如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3,过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC. (1)求证:BC ⊥平面CDE ; (2)求证:FG ∥平面BCD ;(3)在线段AE 上找一点R ,使得平面BDR ⊥平面DCB ,并说明理由.基础 4. 已知斜三棱柱ABC —111A B C ,侧面11A A C C 与底面ABC 垂直,∠o 90 ABC ,32,2==AC BC ,且1AA ⊥C A 1,1AA =C A 1.(1)试判断1A A 与平面1A BC 是否垂直,并说明理由; (2)求侧面11BB C C 与底面ABC 所成锐二面角的余弦值.基础5. 如图,四棱锥ABCD P -中,底面ABCD 是60=∠ADC 的菱形,侧面PDC 是边长为2的正三角形,且与底面ABCD 垂直,M 为PB 的中点.(Ⅰ)求证:⊥PA 平面CDM ; (Ⅱ)求二面角B MC D --的余弦值.基础6. 在直三棱柱111ABC A B C -中,12,AB BC AA === ∠ACB=90°,M是1AA 的中点,N是1BC 的中点 (Ⅰ)求证:MN ∥平面111A B C ; (Ⅱ)求点1C 到平面BMC 的距离;(Ⅲ)求二面角11B C M A --的平面角的余弦值大小基础7. 如图,三棱柱ABC —A 1B 1C 1中, 侧棱与底面垂直,AB=BC=2AA 1,∠ABC=90°,M 是BC 中点。

2017学年高考数学年(理)立体几何(练)专题练习答案

2017学年高考数学年(理)立体几何(练)专题练习答案

3.练原创
1.已知函数
f
(x)

2x

x2
1, x 1 ,若
ax, 1
f
(
f
(0))

4a ,则实数 a
等于(

A. 1 2
B. 4 5
C.2
D.9
2.已知圆 C : (x a)2 ( y a)2 1(a 0) 与直线 y 3x 相交于 P 、Q 两点,则当△CPQ 的面积最大时,实
数 a 的值为________.
3.设双曲线
x2 a2

y2 b2
1(x
5)2 y2 4 相切,则该双曲线的离心率等于_____.
2/2
D. 2x y 5 0 或 2x y 5 0
3.设函数 f (x) xeax bx ,曲线 y f (x) 在点 (2, f (2)) 处的切线方程为 y (e 1)x 4 ,
(1)求 a,b 的值;
(2)求 f (x) 的单调区间.
二.练模拟
1.在等差数列{an} 中, a1 a3 a5 105 , a4 a6 99 ,以 Sn 表示{an} 的前 n 项和,则使 Sn 达到最大值的 n 是( )
2.平行于直线 2x y 1 0 且与圆 x2 y2 5 相切的直线的方程是(

A. 2x y 5 0 或 2x y 5 0
B. 2x y 5 0 或 2x y 5 0
C. 2x y 5 0 或 2x y 5 0
2017 年高考数学(理)专题练习(三)
待定系数法(练)
一.练高考
1.函数 y Asin(x ) 的部分图像如图所示,则( )

2017年高考数学—立体几何(选择+填空+答案)

2017年高考数学—立体几何(选择+填空+答案)

2017年高考数学—立体几何(选择+填空+答案)1.(17全国1理7)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .162.(17全国1文6)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是3.(17全国2理4) 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A . 90πB .63πC .42πD .36π4.(17全国3文9)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A .πB .34πC .2πD .4π 5.(17全国2理10) 已知直三棱柱111ABC A B C -中,C 120∠AB =o ,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A .32B .155C .105D .33 6.(17全国3文10)在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥7.(17北京理(7))某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A )32 (B )23 (C )22 (D )28.(17北京文(6))某三棱锥的三视图如图所示,则该三棱锥的体积为(A )60(B )30(C )20(D )109.(17浙江3)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是A .12π+B .32π+C .312π+ D .332π+ 10.(17浙江9)如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),PQR 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CR QC RA ==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面较为,,αβγ,则A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α11.(17全国1文16)已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径。

高考理57练.docx

高考理57练.docx

高中数学学习材料鼎尚图文*整理制作训练目标(1)会利用几何体的表面积、体积公式求几何体的表面积、体积;(2)能通过几何体的三视图还原几何体,求面积、体积.训练题型(1)求简单几何体的表面积、体积;(2)求简单的组合体的表面积、体积;(3)通过三视图还原几何体求几何体的面积、体积.解题策略 由三视图求面积、体积关键在于还原几何体,球的问题关键在确定球半径,不规则几何体可通过分割、补形转化为规则几何体求面积、体积.一、选择题1.已知一个正三棱柱的所有棱长均为2,它的俯视图是一个边长为2的正三角形,那么它的侧视图的面积的最小值是( ) A. 3 B .2 C .2 3D .42.(2015·德阳第一次诊断考试)某几何体的三视图如图所示,当a +b 取最大值时,这个几何体的体积为( )A.16B.13C.23D.123.(2015·河南、河北、山西三省考前质量检测)某几何体的三视图如图所示,若其正视图为等腰梯形,侧视图为正三角形,则该几何体的表面积为( )A .23+2B .43+2C .6D .84.(2015·太原二模)已知某几何体的三视图如图所示,其中俯视图是扇形,则该几何体的体积为( )A .4πB .2π C.4π3D.2π35.(2015·甘肃天水秦安第二中学第五次检测)已知球O 的直径PQ =4,A ,B ,C 是球O 球面上的三点,△ABC 是正三角形,且∠APQ =∠BPQ =∠CPQ =30°,则三棱锥P -ABC 的体积为( ) A.334B.934C.332D.27346.(2015·豫东、豫北十所名校5月联考)如图是某几何体的三视图,正视图是等腰梯形,俯视图是两个同心的半圆组成的半圆环,侧视图是直角梯形,则该几何体的体积等于( )A .12πB .16πC .20πD .24π7.(2015·江西六校3月联考)一个几何体的三视图如图所示,则这个几何体的外接球的体积为( )A.2π3B.2π C .2πD.22π38.(2015·丰台一模)棱长为2的正方体被一个平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是( )A.143 B .4 C.103 D .3二、填空题9.已知三棱锥A —BCD 的所有棱长都为2,则该三棱锥的外接球的表面积为________. 10.如图,AD 与BC 是四面体A -BCD 中互相垂直的棱,BC =2.若AD =2c ,且AB +BD =AC +CD =2a ,其中a 、c 为常数,则四面体A -BCD 的体积的最大值是______________.11.(2015·南昌模拟)已知一个正三棱锥的正视图如图所示,若AC=BC=32,PC=6,则此正三棱锥的表面积为________.12.(2015·武汉部分学校调研)已知矩形ABCD的周长为18,把它沿图中的虚线折成正六棱柱,当这个正六棱柱的体积最大时,它的外接球的表面积为________.答案解析1.C 2.D [由三视图可知其直观图如图所示, P A ,PB ,PC 两两垂直, P A =1,BC =6,AB =b ,AC =a . 则PC =a 2-1, PB =b 2-1.在直角三角形BPC 中有PC 2+PB 2=BC 2=6, 即a 2-1+b 2-1=6,即a 2+b 2=8.可设a =22cos θ,b =22sin θ,θ∈(0,2π), 则a +b =22cos θ+22sin θ=4sin(θ+π4)≤4,当θ=π4时取到最大值,此时a =b =2,验证知符合题意.由此知PC =a 2-1=3,PB =b 2-1=3, 故底面三角形APB 的面积为32, 所以棱锥的体积为13×32×3=12.]3.C [由三视图可知该几何体的直观图如图所示, 其中AB =2,EF =1,AD =1.过点E 作EG ⊥平面ABCD ,垂足为G ,过G 作GH ⊥AD ,垂足为H ,由侧视图为等边三角形可知,EG =32, 侧面ADE 和侧面FBC 是全等的三角形. 因为EG ⊥HG ,所以HG =12,所以EH =1,即侧面三角形ADE 的高为1, 在Rt △AHE 中,可得AE =52, 所以四边形ABEF 的高为1.所以该几何体的表面积为S ▱ABCD +2S △ADE +2S 四边形ABFE=1×2+2×12×1×1+2×(1+2)×12=6.] 4.B 5.B [如图,设球心为M ,截面△ABC 所截小圆的圆心为O . ∵△ABC 是等边三角形,∠APQ =∠BPQ =∠CPQ =30°, ∴P 在平面ABC 上的投影是等边△ABC 的重心O . 设AB 的中点为H ,∵PQ 是直径,∴∠PCQ =90°, ∴PC =4cos 30°=23,∴PO =23cos 30°=3,OC =23sin 30°= 3. ∵O 是等边△ABC 的重心, ∴OC =23CH ,∴等边△ABC 的高CH =332,AC =332sin 60°=3,∴V 三棱锥P -ABC =13PO S △ABC =13×3×12×332×3=934,故选B.]6.A 7.A 8.B 9.3π 解析如图,构造正方体ANDM —FBEC .因为三棱锥A —BCD 的所有棱长都为2,所以正方体ANDM —FBEC 的棱长为1.所以该正方体的外接球的半径为32. 易知三棱锥A —BCD 的外接球就是正方体ANDM —FBEC 的外接球,所以三棱锥A —BCD 的外接球的半径为32.所以三棱锥A —BCD 的外接球的表面积为S 球=4π⎝⎛⎭⎫322=3π. 10.23c a 2-c 2-1 解析如图,当BA =BD =CA =CD =a ,且EF 为AD 和BC 的公垂线段,F 为AD 的中点时,该几何体体积V 最大,V max =13S △AED BC =13×12AD EF BC =2c 3a 2-c 2-1.11.9 3解析 由题设条件及正视图知底面三角形的边长是3,顶点到底面的距离是6,设顶点P 在底面上的投影为M ,由正三棱锥的结构特征知点M 到三角形各边中点的距离是底面三角形高的13,计算得其值为32,故斜高为6+34=332,底面三角形各边上的高为3×32=332.故此正三棱锥的表面积为S =12×332×3+3×12×3×332=9 3.12.13π 解析如图,设正六棱柱的底面边长为x ,高为y ,则6x +y =9,所以0<x <32.正六棱柱的体积V (x )=6×34x 2y =332(9x 2-6x 3),V ′(x )=273(x -x 2),令V ′(x )=273(x -x 2)>0,解得0<x <1,令V ′(x )=273(x -x 2)<0得1<x <32,即函数V (x )在(0,1)上是增函数,在(1,32)上是减函数,所以V (x )在x =1时取得最大值,此时y =3.易知正六棱柱的外接球的球心是其上下底面中心连线的中点,如图所示,外接球的半径为R =OE = x 2+(y 2)2=132,所以外接球的表面积为S =4πR 2=13π.。

2017年高考数学一轮总复习达标训练第七章立体几何7.4Word版含答案

2017年高考数学一轮总复习达标训练第七章立体几何7.4Word版含答案

7.4 空间中的平行关系一、选择题1.设α,β是两个不同的平面,m ,n 是平面α内的两条不同的直线,l 1,l 2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( )A .m ∥β且l 1∥αB .l 1∥α且l 2∥αC .m ∥β且n ∥βD .m ∥l 1且n ∥l 22.对于平面α和共面的直线m ,n ,下列命题中为真命题的是( ) A .若m ,n 与平面α所成的角相等,则m ∥n B .若m ∥α,n ∥α,则m ∥n C .若m ⊥α,m ⊥n ,则n ∥α D .若m ⊂α,n ∥α,则m ∥n3.如图,若Ω是长方体ABCD -A 1B 1C 1D 1被平面EFGH 截去几何体EFGHB 1C 1后得到的几何体,其中E 为线段A 1B 1上异于B 1的点,F 为线段BB 1上异于B 1的点,且EH ∥A 1D 1,则下列结论中不正确的是( )A .EH ∥FGB .四边形EFGH 是矩形C .Ω是棱柱D .Ω是棱台 4.(2015·安徽阜阳模拟)过平行六面体ABCD -A 1B 1C 1D 1任意两条棱的中点作直线,其中与平面DBB 1D 1平行的直线共有( )A .4条B .6条C .8条D .12条5.(2015·北京海滨一模)如图,在棱长为1的正方体ABCDA 1B 1C 1D 1中,点E ,F 分别是棱BC ,CC 1的中点,P 是侧面BCC 1B 1内一点,若A 1P ∥平面AEF ,则线段A 1P 长度的取值范围是导学号74780070( )A.⎣⎡⎦⎤1,52B.⎣⎡⎦⎤324,52 C.⎣⎡⎦⎤52,2 D .[2,3] 答案:1.D 2.D 3.D 4.D 5.B二、填空题6.如图是一正方体的表面展开图,B 、N 、Q 都是所在棱的中点,则在原正方体中, ①AB 与CD 相交; ②MN ∥PQ ; ③AB ∥PE ;④MN 与CD 异面; ⑤MN ∥平面PQC .其中真命题的序号是________. 7.(2015·湖北模拟)如图,在正四棱柱A 1C 中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,D 1D ,DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足条件________时,有MN ∥平面B 1BDD 1(请填上你认为正确的一个条件).导学号747800718.(2015·湖南长沙模拟)如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为a ,点P 是棱AD上一点,且AP =a3,过B 1、D 1、P 的平面交底面ABCD 于PQ ,Q 在直线CD 上,则PQ =________.导学号74780072答案:6.①②④⑤ 7.M ∈线段HF 8.223a三、解答题 9.(2015·安徽调研)如图所示,三棱柱ABC -A 1B 1C 1的底面是边长为2的正三角形,侧棱A 1A ⊥底面ABC ,点E ,F 分别是棱CC 1,BB 1上的点,点M 是线段AC 上的动点,EC =2FB =2.(1)当点M 在何位置时,BM ∥平面AEF?(2)若BM ∥平面AEF ,判断BM 与EF 的位置关系,说明理由;并求BM 与EF 所成的角的余弦值.解析:(1) 如图①所示,取AE 的中点O ,连接OF ,过点O 作OM ⊥AC 于点M . 因为侧棱A 1A ⊥底面ABC ,所以侧面A 1ACC 1⊥底面ABC .又因为EC =2FB =2,所以OM ∥FB ∥EC 且OM =12EC =FB ,所以四边形OMBF 为矩形,BM ∥OF . 因为OF ⊂平面AEF ,BM ⊄平面AEF ,故BM ∥平面AEF ,此时点M 为AC 的中点.(2)由(1)知,BM 与EF 异面,∠OFE (或∠MBP )就是异面直线BM 与EF 所成的角或其补角.易求AF =EF =5,MB =OF =3,OF ⊥AE ,所以cos ∠OFE =OF EF =35=155,所以BM 与EF 所成的角的余弦值为155.10.如图,斜三棱柱ABC -A 1B 1C 1中,点D ,D 1分别为AC ,A 1C 1上的点.(1)当A 1D 1D 1C 1等于何值时,BC 1∥平面AB 1D 1?(2)若平面BC 1D ∥平面AB 1D 1,求ADDC的值.解析:(1)如图,取D 1为线段A 1C 1的中点,此时A 1D 1D 1C 1=1.连接A 1B 交AB 1于点O ,连接OD 1.由棱柱的性质,知四边形A 1ABB 1为平行四边形, ∴点O 为A 1B 的中点.在△A 1BC 1中,点O ,D 1分别为A 1B ,A 1C 1的中点, ∴OD 1∥BC 1.又∵OD 1⊂平面AB 1D 1,BC 1⊄平面AB 1D 1, ∴BC 1∥平面AB 1D 1.∴A 1D 1D 1C 1=1时,BC 1∥平面AB 1D 1. (2)由已知,平面BC 1D ∥平面AB 1D 1, 且平面A 1BC 1∩平面BDC 1=BC 1, 平面A 1BC 1∩平面AB 1D 1=D 1O . 因此BC 1∥D 1O ,同理AD 1∥DC 1. ∴A 1D 1D 1C 1=A 1O OB ,A 1D 1D 1C 1=DC AD . 又∵A 1O OB =1,∴DC AD =1,即AD DC =1.11.在正方体ABCD -A 1B 1C 1D 1中,如图. (1)求证:平面AB 1D 1∥平面C 1BD ;(2)试找出体对角线A 1C 与平面AB 1D 1和平面C 1BD 的交点E ,F ,并证明A 1E =EF =FC . 导学号74780073解析:(1)证明:因为在正方体ABCD -A 1B 1C 1D 1中,AD 綊B 1C 1, 所以四边形AB 1C 1D 是平行四边形,所以AB 1∥C 1D .又因为C1D⊂平面C1BD,AB1⊄平面C1BD,所以AB1∥平面C1BD.同理B1D1∥平面C1BD.又因为AB1∩B1D1=B1,AB1⊂平面AB1D1,B1D1⊂平面AB1D1,所以平面AB1D1∥平面C1BD.(2)如图,连接A1C1,交B1D1于点O1,连接AO1,与A1C交于点E.又因为AO1⊂平面AB1D1,所以点E也在平面AB1D1内,所以点E就是A1C与平面AB1D1的交点.连接AC,交BD于点O,连接C1O,与A1C交于点F,则点F就是A1C与平面C1BD的交点.下面证明A1E=EF=FC.因为平面A1C1C∩平面AB1D1=EO1,平面A1C1C∩平面C1BD=C1F,平面AB1D1∥平面C1BD,所以EO1∥C1F.在△A1C1F中,O1是A1C1的中点,所以E是A1F的中点,即A1E=EF.同理可证OF∥AE,所以F是CE的中点,即FC=EF,所以A1E=EF=FC.。

2017年高考数学(文)-立体几何(练)-专题练习-答案

2017年高考数学(文)-立体几何(练)-专题练习-答案
3.练原创
1.【答案】B
2.【答案】C
3.【答案】D
4.【答案】(1)参考解析,(2)参考解析,(3)
5.【答案】(1)证明略;(2)
2017年高考数学(文)-立体几何(练)-专题练习
解析
1.练高考
1.【答案】C
2.【答案】A
3.【答案】A
【解析】“直线和直线相交” “平面 和平面 相交”,但“平面 和平面 相交” “直线和直线相交”,所以“直线和直线相交”是“平面 和平面 相交”的充分不必要条件,故选A.
2017年高考数学(文)-立体几何(练)-专题练习
答案
1.练高考
1.【答案】C
2.【答案】A
3.【答案】A
4.【答案】B.
5.【答案】(1)详见解析(2)详见解析
6.【答案】( )见解析( )作图见解析,体积为
2.练模拟
1.【答案】C
2.【答案】C
3.【答案】B
4.【答案】D
5.【答案】
6.【答案】(Ⅰ)证明见解析;(Ⅱ)
4.【答案】B
【解析】要使球的体积 最大,必须球的半径 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值 ,此时球的体积为 ,故选B.
5.【答案】(1)详见解析(2)详见解析
所以
因为直线 ,所以
6.【答案】( )见解析( )作图见解析,体积为
2.练模拟
1.【答案】C
【解析】由三视图可知这是一个三棱柱截去一个三棱锥所得,故体积为
4.【答案】(1)参考解析,(2)参考解析,(3)
(2)取 的中点 ,连结
且 又 且
, 四边形 是平行四边形, 而 平面
平面 平面 …………………8分

2017高考试题汇编 立体几何 Word版含解析

2017高考试题汇编  立体几何 Word版含解析

立体几何第一节 空间几何体及其表面积和体积1.如图所示,在圆柱12O O 内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱12O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是 .1.解析 设球O 的半径为r ,由题意212V r r =π⋅,3243V r =π,所以1232V V =.故填32.2.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .2.解析 设正方体的边长为a ,则226183a a =⇒=.外接球直径为正方体的体对角线,所以23==R ,344279πππ3382==⨯=V R . 3.如图所示,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,DBC △,ECA △,FAB △分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起DBC △,ECA △,FAB △,使得D ,E ,F 重合,得到三棱锥.当ABC △的边长变化时,所得三棱锥体积(单位:3cm )的最大值为_______.3.解析 由题意,联结OD ,交BC 于点G ,如图所示,则OD BC ⊥,OG =,即OG 的长度与BC 的长度成正比.设OG x =,则BC =,5DG x =-,三棱锥的高h =2132ABC S x =⋅⋅=△,则13ABC V S h =⋅=△令()452510f x x x =-,50,2x ⎛⎫∈ ⎪⎝⎭,()3410050f x x x '=-,令()0f x '>,即4320x x -<,2x <,当()0f x '<,得522x <<,所以()f x在()0,2上单调递增,在52,2⎛⎫ ⎪⎝⎭上单调递减.故()()280f x f =≤,则V =,所以体积的最大值为3.4.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ). A .πB .3π4C .π2D .π44.解析 如图所示,由题可知球心在圆柱体的中心处,圆柱体上、下底面圆的半径r ==23ππ4V r h ==.故选B.第二节 空间几何体的直观图与三视图5.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( ). A.π12+ B. π32+ C. 3π12+ D. 3π32+5.解析 由三视图可知,直观图是由半个圆锥与一个三棱锥构成,半圆锥体积为()2111=13232S π⨯π⨯⨯=,三棱锥体积为211=213=132S ⎛⎫⨯⨯⨯ ⎪⎝⎭,所以几何体体积1212S S S π=+=+.故选A .6.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( ).A.10B.12C.14D.166. 解析 由三视图可画出立体图,如图所示,该多面体只有两个相同的梯形的面, ()24226S =+⨯÷=梯,6212S =⨯=全梯.故选B.7.如图所示,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( ).A .90πB .63πC .42πD .36π7.解析 该几何体可视为一个完整的圆柱减去一个高为6的圆柱的一半,如图所示. 2211π310π3663π22=-=⋅⋅-⋅⋅⋅=V V V 总上.故选B.8.某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( ).A.B.C.D.28. 解析 几何体四棱锥如图所示,最长棱为正方体的体对角线,即l ==故选B.9.由一个长方体和两个14圆柱体构成的几何体的三视图如图所示,则该几何体的体积为 .9. 解析 该几何体的体积为21112211242V π=π⨯⨯⨯+⨯⨯=+.第三节 空间点、直线、平面之间的位置关系10.如图所示,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC 的长为cm ,容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm . 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm . 现有一根玻璃棒l ,其长度为40cm (容器厚度、玻璃棒粗细均忽略不计).(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分 的长度;(2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分 的长度.AC A 11容器ⅠE G 1H 1容器Ⅱ10.解析 (1)由正棱柱的定义,1CC ⊥平面ABCD ,所以平面11A ACC ⊥平面ABCD ,1CC AC ⊥. 记玻璃棒的另一端落在1CC 上点M 处,如图所示为截面11A ACC 的平面图形.因为AC =40AM =,所以30MC ==,从而3sin 4MAC ∠=.记AM 与水面的交点为1P , 过点1P 作11PQ AC ⊥,1Q 为垂足,则11PQ ⊥平面A B C D ,故1112PQ =,从而11116sin PQ AP MAC==∠.答:玻璃棒l 没入水中部分的长度为16cm .问(1)AC 1A 1CMP 1Q 1(2)如图所示为截面11E EGG 的平面图形,O ,1O 是正棱台两底面的中心.由正棱台的定义,1OO ⊥平面EFGH , 所以平面11E EGG ⊥平面EFGH ,1O O EG ⊥. 同理,平面11E EGG ⊥平面1111E F G H ,111O O E G ⊥. 记玻璃棒的另一端落在1GG 上点N 处.过G 作11GK E G ⊥,K 为垂足,则132GK OO ==.因为 14EG =,1162E G =,所以16214242KG -==,从而1GG =40==.设1EGG α∠=,ENG β∠=,则114sin sin cos 25KGG KGG απ⎛⎫=+==⎪⎝⎭∠∠. 因为2απ<<π,所以3cos 5α=-. 在ENG △中,由正弦定理可得4014sin sin αβ=,解得7sin 25β=. 因为02βπ<<,所以24cos 25β=, 于是()()sin sin sin =NEG αβαβ=π--=+∠sin cos cos sin αβαβ+4243735255255⎛⎫=⨯+-⨯= ⎪⎝⎭. 记EN 与水面的交点为2P ,过2P 作22P Q EG ⊥,2Q 为垂足,则22P Q ⊥平面EFGH , 故2212P Q =,从而22220sin PQ EP NEG==∠.答:玻璃棒l 没入水中部分的长度为20cm .问(2)G O E Q 2P 2NG 1KE 1O 1评注 此题本质上考查解三角形的知识,但在这样的大背景下构造的应用题让学生有畏惧之感,且该应用题的实际应用性也不强.也有学生第(1)问采用相似法解决,解法如下:AC =40AM =,所以30CM ==,1112PQ =,所以由11AP A Q CM △△∽,111PQ AP CM AM =,即1123040AP =,解得116AP =. 答:玻璃棒l 没入水中部分的长度为16cm .第四节 直线、平面平行的判定与性质11.如图所示,已知四棱锥P ABCD -,PAD △是以AD 为斜边的等腰直角三角形,//BC AD ,CD AD ⊥,22PC AD DC CB ===,E 为PD 的中点.(1)证明://CE 平面PAB .11.解析 (1)如图所示,设PA DE 的中点为F ,联结EF ,FB . 因为E ,F 分别为PD ,PA 的中点,所以//EF AD ,且1=2EF AD . 又因为//BC AD ,12BC AD =,所以//EF BC ,且=EF BC ,所以四边形BCEF 为平行四边形,所以//CE BF ,又BF ⊂平面PAB ,所以//CE 平面PAB .H QPN F DBCEA12.如图所示,在三棱锥A BCD -中,AB AD ⊥,BC BD ⊥, 平面ABD ⊥平面BCD , 点,E F (E 与,A D 不重合)分别在棱,AD BD 上,且EF AD ⊥. 求证:(1)EF ∥平面ABC ; (2)AD AC ⊥.A BCDPEABDCEF12.解析 (1)在平面ABD 内,因为AB AD ⊥,EF AD ⊥,且点E 与点A 不重合,所以//EF AB .又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以//EF 平面ABC . (2)因为平面ABD ⊥平面BCD ,平面ABD平面BCD BD =,BC ⊂平面BCD ,BC BD ⊥,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC AD ⊥. 又AB AD ⊥,BCAB B =,AB ⊂平面ABC ,BC ⊂平面ABC ,所以AD ⊥平面ABC .又因为AC ⊂平面ABC ,所以AD AC ⊥.13.如图所示,在四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,o 90BAD ABC ∠=∠=, E 是PD 的中点. (1)求证:直线//CE 平面PAB ;EM DCBAP13.解析 (1)令PA 的中点为F ,联结EF ,BF ,如图所示.因为点E ,F 为PD ,PA 的中点,所以EF 为PAD △的中位线,所以=1//2EF AD .又因为90BAD ABC ∠=∠=︒,所以BC AD ∥.又因为12AB BC AD ==,所以=1//2BC AD ,于是=//EF BC .从而四边形BCEF 为平行四边形,所以CE BF ∥.又因为BF PAB ⊂面,所以CE ∥平面PAB .M第五节 直线、平面垂直的判定与性质14.如图所示,在三棱锥A BCD -中,AB AD ⊥,BC BD ⊥, 平面ABD ⊥平面BCD , 点,E F (E 与,A D 不重合)分别在棱,AD BD 上,且EF AD ⊥. 求证:(1)EF ∥平面ABC ; (2)AD AC ⊥.ABDCEF14.解析 (1)在平面ABD 内,因为AB AD ⊥,EF AD ⊥,且点E 与点A 不重合,所以//EF AB . 又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以//EF 平面ABC . (2)因为平面ABD ⊥平面BCD ,平面ABD平面BCD BD =,BC ⊂平面BCD ,BC BD ⊥,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC AD ⊥. 又AB AD ⊥,BCAB B =,AB ⊂平面ABC ,BC ⊂平面ABC ,所以AD ⊥平面ABC .又因为AC ⊂平面ABC ,所以AD AC ⊥.15.如图所示,在四棱锥P ABCD -中,//AB CD ,且90BAP CDP ∠=∠=. (1)求证:平面PAB ⊥平面PAD ;DCBAP15. 解析 (1)证明:因为90BAP CDP ∠=∠=,所以PA AB ⊥,PD CD ⊥.又因为AB CD ∥,所以PD AB ⊥.又因为PD PA P =,PD ,PA ⊂平面PAD ,所以AB ⊥平面PAD . 又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .16.如图所示,四面体ABCD 中,ABC △是正三角形,ACD △是直角三角形,ABD CBD ∠=∠,AB BD =.(1)求证:平面ACD ⊥平面ABC ;16.解析 ⑴如图所示,取AC 的中点为O ,联结BO ,DO . 因为ABC △为等边三角形,所以BO AC ⊥,AB BC =.由AB BC BD BD ABD DBC =⎧⎪=⎨⎪∠=∠⎩,得ABD CBD ≅△△,所以AD CD =,即ACD △为等腰直角三角形, 从而ADC ∠为直角.又O 为底边AC 中点,所以DO AC ⊥. 令AB a =,则AB AC BC BD a ====,易得2a OD =,OB = 所以222OD OB BD +=,从而由勾股定理的逆定理可得2DOB π∠=,即OD OB ⊥. 由OD AC OD OB AC OB O AC ABC OB ABC⊥⎧⎪⊥⎪⎪=⎨⎪⊂⎪⊂⎪⎩平面平面,所以OD ⊥平面ABC . 又因为OD ⊂平面ADC ,由面面垂直的判定定理可得平面ADC ⊥平面ABC .BEC DAO第六节 空间向量与立体几何17.已知直三棱柱111ABC A B C -中,120ABC ∠=,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( ).ABCD17.解析 设M ,N ,P 分别为AB ,1BB ,11B C 的中点,则1AB 和1BC 的夹角为MN 和NP 夹角或其补角(异面线所成角为π02⎛⎤ ⎥⎝⎦,).可知112MN AB ==,112NP BC ==,取BC 的中点Q ,联结,,PQ MQ PM ,则可知PQM △为直角三角形.1=PQ ,12MQ AC =. 在ABC △中,2222cos AC AB BC AB BC ABC =+-⋅⋅∠14122172⎛⎫=+-⨯⨯⋅-= ⎪⎝⎭,即=AC,则MQ =MQP △中,MP =. 在PMN △中,222cos 2MN NP PM PNM MN NP +-∠=⋅⋅222+-==. 又异面直线所成角为π02⎛⎤ ⎥⎝⎦,.故选C.18.如图所示,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120得到的,G 是DF 的中点.(1)设P 是CE 上的一点,且AP BE ⊥,求CBP ∠的大小; (2)当3AB =,2AD =,求二面角E AG C --的大小.18.解析 (1)因为AP BE ⊥,AB BE ⊥,AB ,AP ⊂平面ABP ,ABAP A =,所以BE ⊥平面ABP .又BP ⊂平面ABP ,所以BE BP ⊥.又120EBC ∠=︒,所以30CBP ∠=︒. (2)以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.由题意得(0,0,3)A ,(2,0,0)E,G,(C -,则(2,0,3)AE =-,AG =,(2,0,3)CG =.设111(,,)x y z =m 是平面AEG 的一个法向量,由00AE AG ⎧⋅=⎪⎨⋅=⎪⎩m m,可得11112300x z x -=⎧⎪⎨+=⎪⎩,取12z =,可得平面AEG的一个法向量(3,2)m =. 设222(,,)x y z =n 是平面ACG 的一个法向量,由00AG CG ⎧⋅=⎪⎨⋅=⎪⎩n n,可得22220230x x z ⎧+=⎪⎨+=⎪⎩,取22z =-,可得平面ACG的一个法向量(3,2)=-n . 从而1cos ,2⋅==⋅m n m n m n ,易知二面角E AG C --为锐角.因此所求的角为60︒.19.如图所示,在平行六面体1111ABCD A B C D -中,1AA ⊥平面ABCD ,且2AB AD ==,1AA =120BAD ∠=︒.(1)求异面直线1A B 与1AC 所成角的余弦值; (2)求二面角1B A D A --的正弦值.A 1B 1C 1D 1ABCD19.解析 在平面ABCD 内,过点A 作AE AD ⊥,交BC 于点E . 因为1AA ⊥平面ABCD ,所以1AA AE ⊥,1AA AD ⊥.如图所示,以{}1,,AE AD AA 为正交基底,建立空间直角坐标系A xyz -.BB y因为2AB AD ==,1AA =120BAD ∠=︒. 则()0,0,0A,)1,0B -,()0,2,0D,)E,(1A,1C .(1)(13,1,A B =-,(13,1,AC =,则111111cos ,A BAC A B AC A B AC⋅=1,177-⋅==-.因此异面直线1A B 与1AC 所成角的余弦值为17. (2)平面1A DA 的一个法向量为()3,0,0AE =.设(),,x y z =m 为平面1BA D 的一个法向量,又(13,1,AB =-,()BD =,则100A B BD ⎧⋅=⎪⎨⋅=⎪⎩m m,即030y y -=+=⎪⎩. 不妨取3x =,则y =,2z =,所以()=m 为平面1BA D 的一个法向量. 从而cos ,AE AE AE ⋅=m mm34⋅==,设二面角1B A D A --的大小为θ,则3cos 4θ=. 因为[]0,θ∈π,所以sin θ==. 因此二面角1B A D A --的正弦值为4. 20.如图所示,在四棱锥P ABCD -中,//AB CD ,且90BAP CDP ∠=∠=. (1)求证:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=,求二面角A PB C --的余弦值.DCBAP20. 解析 (1)证明:因为90BAP CDP ∠=∠=,所以PA AB ⊥,PD CD ⊥.又因为AB CD ∥,所以PD AB ⊥.又因为PD PA P =,PD ,PA ⊂平面PAD ,所以AB ⊥ 平面PAD .又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .(2)取AD 的中点O ,BC 的中点E ,联结PO ,OE ,因为AB CD ∥,所以四边形ABCD为平行四边形,所以OE AB ∥.由(1)知,AB ⊥平面PAD ,所以OE ⊥平面PAD .又PO ,AD ⊂平面PAD ,所以OE PO ⊥,OE AD ⊥.又因为PA PD =,所以PO AD ⊥,从而PO ,OE ,AD 两两垂直.以O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,设2PA =,所以()00D ,,)20B ,,(00P ,()20C ,,所以(0PD =,,(22PB =,,,()00BC =-,.设()x y z =n ,,为平面PBC 的一个法向量,由00PB BC ⎧⋅=⎪⎨⋅=⎪⎩n n ,得20y +=-=⎪⎩.令1y =,则z =,0x =,可得平面PBC 的一个法向量(01=n ,. 因为90APD ∠=︒,所以PD PA ⊥,又知AB ⊥平面PAD ,PD ⊂平面PAD , 所以PD AB ⊥,又PA AB A =,所以PD ⊥平面PAB .即PD 是平面PAB 的一个法向量,(0PD =,,,从而cosPD PD PD ⋅===⋅n n n,由图知二面角A PB C --为钝角,所以它的余弦值为.21.如图所示,在四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,o 90BAD ABC ∠=∠=, E 是PD 的中点. (1)求证:直线//CE 平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成的锐角为45,求二面角M AB D --的余弦值.EM DCBAP21.解析 (1)令PA 的中点为F ,联结EF ,BF ,如图所示.因为点E ,F 为PD ,PA 的中点,所以EF 为PAD △的中位线,所以=1//2EF AD .又因为90BAD ABC ∠=∠=︒,所以BC AD ∥.又因为12AB BC AD ==,所以=1//2BC AD ,于是=//EF BC .从而四边形BCEF 为平行四边形,所以CE BF ∥.又因为BF PAB ⊂面,所以CE ∥平面PAB .(2)以AD 的中点O 为坐标原点,建立如图所示的空间直角坐标系.设1AB BC ==,则()000O ,,,()010A -,,,()110B -,,,()100C ,,,()010D ,,,(00P .点M 在底面ABCD 上的投影为M ',所以MM BM ''⊥,联结BM '.因为45MBM '∠=,所以MBM '△为等腰直角三角形.因为POC △为直角三角形,OC =,所以60PCO ∠=. 设MM a '=,CM '=,1OM '=-.所以100M ⎛⎫'- ⎪ ⎪⎝⎭,,.BM a a '==⇒=11OM '==.所以100M ⎛⎫' ⎪ ⎪⎝⎭,,10M ⎛ ⎝⎭,11AM ⎛= ⎝⎭,(100)AB =,,. 设平面ABM 的法向量11(0)y z =,,m,则110AM y ⋅=+=m,所以(02)=,m , 易知平面ABD 的一个法向量为(001)=,,n ,从而cos ,⋅==⋅m n m n m n 故二面角M AB D --.M22.如图所示,四面体ABCD 中,ABC △是正三角形,ACD △是直角三角形,ABD CBD ∠=∠,AB BD =.(1)求证:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角––D AE C 的余弦值.22.解析 ⑴如图所示,取AC 的中点为O ,联结BO ,DO . 因为ABC △为等边三角形,所以BO AC ⊥,AB BC =.由AB BC BD BD ABD DBC =⎧⎪=⎨⎪∠=∠⎩,得ABD CBD ≅△△,所以AD CD =,即ACD △为等腰直角三角形, 从而ADC ∠为直角.又O 为底边AC 中点,所以DO AC ⊥. 令AB a =,则AB AC BC BD a ====,易得2a OD =,OB = 所以222OD OB BD +=,从而由勾股定理的逆定理可得2DOB π∠=,即OD OB ⊥. 由OD AC OD OB AC OB O AC ABC OB ABC⊥⎧⎪⊥⎪⎪=⎨⎪⊂⎪⊂⎪⎩平面平面,所以OD ⊥平面ABC . 又因为OD ⊂平面ADC ,由面面垂直的判定定理可得平面ADC ⊥平面ABC .BEC DAO⑵由题意可知V V D ACE B ACE --=,即B ,D 到平面ACE 的距离相等,即点E 为BD 的中点.以O 为坐标原点,OA 为x 轴正方向,OB 为y 轴正方向,OD 为z 轴正方向,设AC a =,建立空间直角坐标系,则()0,0,0O ,,0,02a A ⎛⎫ ⎪⎝⎭,0,0,2a D ⎛⎫ ⎪⎝⎭,B ⎛⎫ ⎪ ⎪⎝⎭,,4a E ⎛⎫ ⎪ ⎪⎝⎭,易得24a a AE ⎛⎫=- ⎪ ⎪⎝⎭,,0,22a a AD ⎛⎫=- ⎪⎝⎭,,0,02a OA ⎛⎫= ⎪⎝⎭. 设平面AED 的法向量为()1111=,,x y z n ,平面AEC 的法向量为()2222=,,x y z n , 则1100AE AD ⎧⋅=⎪⎨⋅=⎪⎩n n,取1=n ;220AE OA ⎧⋅=⎪⎨⋅=⎪⎩n n,取(20,1,=n .设二面角D AE C --为θ,易知θ为锐角,则1212cos θ⋅==⋅n n n n.23.如图所示,在四棱锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,//PD 平面MAC,PA PD ==4AB =.(1)求证:M 为PB 的中点; (2)求二面角B PD A --的大小;(3)求直线MC 与平面BDP 所成角的正弦值.23.解析 (1)设,AC BD 的交点为E ,联结ME .因为PD ∥平面MAC ,平面MAC平面PBD ME =,所以PD ME ∥.因为ABCD 是正方形,所以E 为BD 的中点,所以M 为PB 的中点.MP EDCBA(2)取AD 的中点O ,联结OP ,OE . 因为PA PD =,所以OP AD ⊥.又因为平面PAD ⊥平面ABCD ,且OP ⊂平面PAD ,所以OP ⊥平面ABCD . 因为OE ⊂平面ABCD ,所以OP OE ⊥. 因为ABCD 是正方形,所以OE AD ⊥.如图所示,建立空间直角坐标系O xyz -,则P ,(2,0,0)D ,(2,4,0)B -,(4,4,0)BD =-,(2,0,PD =.设平面BDP 的法向量为(,,)x y z =n ,则00BD PD ⎧⋅=⎪⎨⋅=⎪⎩n n,即44020x y x -=⎧⎪⎨-=⎪⎩. 令1x =,则1y =,z ==n .平面PAD 的法向量为(0,1,0)=p ,所以1cos ,||||2⋅==<>n p n p n p .由题知二面角B PD A --为锐角,所以它的大小为3π.(3)由(1)知1,2,2M ⎛⎫- ⎪ ⎪⎝⎭,(2,4,0)C,(3,2,2MC =-.设直线MC 与平面BDP 所成角为α,则2sin cos ,9MC MC MCα⋅===<>n n n . 所以直线MC 与平面BDP 所成角的正弦值为9. 24.如图所示,在三棱锥P ABC -中,PA ⊥底面ABC ,90BAC ∠=.点D E N ,,分别为棱PA ,PC ,BC 的中点,M 是线段AD 的中点,4PA AC ==,2AB =.(1)求证://MN 平面BDE ; (2)求二面角C EM N --的正弦值;(3)已知点H 在棱PA 上,且直线NH 与直线BE ,求线段AH 的长. NM ED CBAP24.解析 如图所示,以A 为坐标原点,{},,AB AC AP 为基底,建立如图所示的空间直角坐标系,依题意可得(000)A ,,,(200)B ,,,(040)C ,,,(004)P ,,,(002)D ,,,(022)E ,,,(001)M ,,,(120)N ,,.(1)证明:()0,2,0DE =,()2,0,2DB =-.设(,,)x y z =n 为平面BDE 的一个法向量, 则00DE DB ⎧⋅=⎪⎨⋅=⎪⎩n n ,即20220y x z =⎧⎨-=⎩,不妨设1z =,可得(1,0,1)=n .又()1,2,1MN =-,可得0MN ⋅=n ,因为MN ⊄平面BDE ,所以//MN 平面BDE .(2)易知1(1,0,0)=n 为平面CEM 的一个法向量.设2(,,)x y z =n 为平面EMN 的一个法向量,则220EM MN ⎧⋅=⎪⎨⋅=⎪⎩n n ,因为(0,2,1)EM =--,(1,2,1)MN =-,所以2020y z x y z --=⎧⎨+-=⎩. 不妨设1y =,可得2(4,1,2)=--n .因此有121212cos ,|||⋅==n n n n |n n,于是12sin ,n n . 所以二面角C EM N --. (3)依题意,设()04AH h h =剟,则H (0,0,h ),进而可得(1,2,)NH h =--,(2,2,2)BE =-.由已知得||cos ,||||NH BE NH BE NH BE h ⋅===2102180h h -+=, 解得85h =或12h =.所以线段AH 的长为85或12. 25.如图所示,已知四棱锥P ABCD -,PAD △是以AD 为斜边的等腰直角三角形,//BC AD ,CD AD ⊥,22PC AD DC CB ===,E 为PD 的中点.(1)证明://CE 平面PAB ;(2)求直线CE 与平面PBC 所成角的正弦值.25.解析 (1)如图所示,设PA DE 的中点为F ,联结EF ,FB . 因为E ,F 分别为PD ,PA 的中点,所以//EF AD ,且1=2EF AD . 又因为//BC AD ,12BC AD =,所以//EF BC ,且=EF BC ,所以四边形BCEF 为平行四边形,所以//CE BF ,又BF ⊂平面PAB ,所以//CE 平面PAB .A BCDPEH QPN MF DBCEA(2)分别取BC ,AD 的中点为M ,N .联结PN 交EF 于点Q ,联结MQ .因为E ,F ,N 分别是PD ,PA ,AD 的中点,所以Q 为EF 的中点,在平行四边形BCEF 中,//MQ CE .由PAD △为等腰直角三角形,得PN AD ⊥. 由DC AD ⊥,N 是AD 的中点,所以12ND AD BC ==,且BC DN ∥,所以四边形BCDN 是平行四边形,所以CD BN ∥,所以BN AD ⊥.又BN PN N =,所以AD ⊥平面PBN ,由//BC AD ,得BC ⊥平面PBN ,又BC ⊂平面PBC ,所以平面PBC ⊥平面PBN . 过点Q 作PB 的垂线,垂足为H ,联结MH .MH 是MQ 在平面PBC 上的射影,所以QMH ∠是直线CE 与平面PBC 所成的角.设1CD =.在PCD △中,由2PC =,1CD =,PD =CE =,又BC ⊥平面PBN ,PB ⊂平面PBN ,所以BC PB ⊥.在PBN △中,由1PN BN ==,PB ==QH PB ⊥,Q 为PN 的中点,得14QH =. 在Rt MQH △中,14QH =,MQ =,所以sin 8QMH ∠=, 所以直线CE 与平面PBC26.如图所示,已知正四面体–D ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP PB =,2BQ CRQC RA ==,分别记二面角––D PR Q ,––D PQ R ,––D QR P 的平面角为α,β,γ,则( ). A .γαβ<<B .αγβ<<C .αβγ<<D .βγα<<26.解析 如图所示,设点D 在底面ABC 内的射影为O ,判断O 到PR ,PQ ,QR 的距离,O 到哪条线段的距离越小,对应的二面角就越大.显然有,αβ,γ均为锐角.1P 为三等分点,O 到1PQR △三边的距离相等.动态研究问题:1P P ®,所以O 到QR 的距离不变,O 到PQ 的距离减少,O 到PR 的距离变大.所以αγβ<<.127.a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在的直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60角时,AB 与b 成30角; ②当直线AB 与a 成60角时,AB 与b 成60角; ③直线AB 与a 所成角的最小值为45; ④直线AB 与a 所成角的最小值为60;其中正确的是________.(填写所有正确结论的编号).27.解析 由题意知,a ,b ,AC 三条直线两两相互垂直,作出图像如图所示.不妨设图中 所示的正方体的边长为1,故1AC =,AB =AB 以直线AC 为旋转轴旋转,则点A 保持不变,点B 的运动轨迹是以C 为圆心,1为半径的圆.以C 为坐标原点,以CD 为x 轴 正方向,CB 为y 轴正方向,CA 为z 轴正方向,建立空间直角坐标系.则(1,0,0)D ,(0,0,1)A ,直线a 的方向单位向量(0,1,0)=a ,1=a .B 点起始坐标为(0,1,0) ,直线b 的方向单位向量(1,0,0)=b ,1=b .设B 点在运动过程中的坐标()cos ,sin ,0B θθ',其中θ为B C '与CD 的夹角,[0,2π)θ∈.那么'AB 在运动过程中的向量(cos ,sin ,1)AB θθ'=-,2AB '= 设AB '与直线a 所成夹角为π0,2α⎡⎤∈⎢⎥⎣⎦,则(cos ,sin ,1)(0,1,0)cos 2AB θθαθ⎡-⋅==∈⎢'⎣⎦a , 所以ππ,42α⎡⎤∈⎢⎥⎣⎦,故③正确,④错误.设AB '与直线b 所成夹角为π[0,]2β∈,(cos ,sin ,1)(1,0,0)cos AB AB AB θθβθ'⋅-⋅===''b bb . 当AB '与直线a 夹角为60︒时,即π3α=, sin3πθα===. 因为22cos sin 1θθ+=,所以cos θ=.从而1cos 2βθ==. 因为π0,2β⎡⎤∈⎢⎥⎣⎦,所以π=3β,此时AB '与b 的夹角为60︒.所以②正确,①错误.故填② ③.28.如图所示,在三棱锥P ABC -中,PA ⊥底面ABC ,90BAC ∠=.点D E N ,,分别为棱PA ,PC ,BC 的中点,M 是线段AD 的中点,4PA AC ==,2AB =.(1)求证://MN 平面BDE ; (2)求二面角C EM N --的正弦值;(3)已知点H 在棱PA 上,且直线NH 与直线BE ,求线段AH 的长.NM ED CBAP28.解析 如图所示,以A 为坐标原点,{},,AB AC AP 为基底,建立如图所示的空间直角坐标系,依题意可得(000)A ,,,(200)B ,,,(040)C ,,,(004)P ,,,(002)D ,,,(022)E ,,,(001)M ,,,(120)N ,,.(1)证明:()0,2,0DE =,()2,0,2DB =-.设(,,)x y z =n 为平面BDE 的一个法向量, 则0DE DB ⎧⋅=⎪⎨⋅=⎪⎩n n ,即20220y x z =⎧⎨-=⎩,不妨设1z =,可得(1,0,1)=n .又()1,2,1MN =-,可得0MN ⋅=n ,因为MN ⊄平面BDE ,所以//MN 平面BDE . (2)易知1(1,0,0)=n 为平面CEM 的一个法向量.设2(,,)x y z =n 为平面EMN 的一个法向量, 则220EM MN ⎧⋅=⎪⎨⋅=⎪⎩n n ,因为(0,2,1)EM =--,(1,2,1)MN =-,所以2020y z x y z --=⎧⎨+-=⎩. 不妨设1y =,可得2(4,1,2)=--n .因此有121212cos ,|||⋅==n n n n |n n,于是12sin ,n n . 所以二面角C EM N --.(3)依题意,设()04AH h h =剟,则H (0,0,h ),进而可得(1,2,)NH h =--,(2,2,2)BE =-.由已知得||cos ,||||NH BE NH BE NH BE h ⋅===2102180h h -+=, 解得85h =或12h =.所以线段AH 的长为85或12.。

2017年高考数学立体几何解答题

2017年高考数学立体几何解答题

2017年立体几何解答题一.解答题(共30小题)1.将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,长为π,长为,其中B1与C在平面AA1O1O的同侧.(1)求三棱锥C﹣O1A1B1的体积;(2)求异面直线B1C与AA1所成的角的大小.2.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=.(Ⅰ)求证:PD⊥平面PAB;(Ⅱ)求直线PB与平面PCD所成角的正弦值;(Ⅲ)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求的值,若不存在,说明理由.3.如图,在四棱锥P﹣ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面PAC;(2)求证:平面PAB⊥平面PAC;(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.4.在如图所示的几何体中,D是AC的中点,EF∥DB.(Ⅰ)已知AB=BC,AE=EC,求证:AC⊥FB;(Ⅱ)已知G,H分别是EC和FB的中点,求证:GH∥平面ABC.5.如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.6.如图,在四棱锥P﹣ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AD.(I)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;(II)证明:平面PAB⊥平面PBD.7.如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.8.如图,圆锥的顶点为P,底面圆为O,底面的一条直径为AB,C 为半圆弧的中点,E 为劣弧的中点,已知PO=2,OA=1,求三棱锥P﹣AOC的体积,并求异面直线PA和OE 所成角的大小.9.如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.10.如题图,三棱锥P﹣ABC中,平面PAC⊥平面ABC,∠ABC=,点D、E在线段AC上,且AD=DE=EC=2,PD=PC=4,点F在线段AB上,且EF∥BC.(Ⅰ)证明:AB⊥平面PFE.(Ⅱ)若四棱锥P﹣DFBC的体积为7,求线段BC的长.11.如图,三棱柱ABC﹣A1B1C1中,AA1⊥BC,A1B⊥BB1,(1)求证:A1C⊥CC1;(2)若AB=2,AC=,BC=,问AA1为何值时,三棱柱ABC﹣A1B1C1体积最大,并求此最大值.12.如图,已知二面角α﹣MN﹣β的大小为60°,菱形ABCD 在面β内,A、B两点在棱MN上,∠BAD=60°,E是AB 的中点,DO⊥面α,垂足为O.(Ⅰ)证明:AB⊥平面ODE;(Ⅱ)求异面直线BC与OD所成角的余弦值.13.如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点(Ⅰ)证明:BC1∥平面A1CD(Ⅱ)AA1=AC=CB=2,AB=,求三棱锥C﹣A1DE的体积.14.如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是边长为2的等边三角形.(Ⅰ)证明:PB⊥CD;(Ⅱ)求点A到平面PCD的距离.15.如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.16.如图,三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.17.如图,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=AD=a,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到如图2中△A1BE的位置,得到四棱锥A1﹣BCDE.(Ⅰ)证明:CD⊥平面A1OC;(Ⅱ)当平面A1BE⊥平面BCDE时,四棱锥A1﹣BCDE的体积为36,求a的值.18.如图,三棱锥A﹣BCD中,AB⊥平面BCD,CD⊥BD.(Ⅰ)求证:CD⊥平面ABD;(Ⅱ)若AB=BD=CD=1,M为AD中点,求三棱锥A﹣MBC 的体积.19.如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC上的点.(Ⅰ)证明:BD⊥平面PAC;(Ⅱ)若G是PC的中点,求DG与PAC所成的角的正切值;(Ⅲ)若G满足PC⊥面BGD ,求的值.21.如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°(Ⅰ)证明:AB⊥A1C;(Ⅱ)若AB=CB=2,A1C=,求三棱柱ABC﹣A1B1C1的体积.22.如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.(Ⅰ)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.23.如图,在梯形ABCD中,AB∥CD,E,F是线段AB 上的两点,且DE⊥AB,CF⊥AB,AB=12,AD=5,BC=4,DE=4.现将△ADE,△CFB分别沿DE,CF折起,使A,B 两点重合与点G,得到多面体CDEFG.(1)求证:平面DEG⊥平面CFG;(2)求多面体CDEFG的体积.24.如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,E为侧棱PA的中点.(1)求证:PC∥平面BDE;(2)若PC⊥PA,PD=AD,求证:平面BDE⊥平面PAB.25.如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,底面ABC等边三角形,E,F分别是BC,CC1的中点.求证:(Ⅰ)EF∥平面A1BC1;(Ⅱ)平面AEF⊥平面BCC1B1.26.如图,在三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AB=AA1=2,AC=,BC=3,M,N分别为B1C1、AA1的中点.(1)求证:平面ABC1⊥平面AA1C1C;(2)求证:MN∥平面ABC1,并求M到平面ABC1的距离.27.如图,在四棱锥S﹣ABCD中,底面ABCD为菱形,E、P、Q分别是棱AD、SC、AB的中点,且SE⊥平面ABCD.(1)求证:PQ∥平面SAD;(2)求证:平面SAC⊥平面SEQ.28.如图,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=2,AA1=,BB1=2,点E和F分别为BC和A1C的中点.(Ⅰ)求证:EF∥平面A1B1BA;(Ⅱ)求证:平面AEA1⊥平面BCB1;(Ⅲ)求直线A1B1与平面BCB1所成角的大小.29.如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(Ⅰ)证明:平面AEC⊥平面BED;(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.30.如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE,BD∩AC=G.(1)求证:AE⊥平面BCE;(2)求证:AE∥平面BFD;(3)求三棱锥E﹣ADC的体积.。

高三数学 第57练 高考大题突破练—立体几何-人教版高三全册数学试题

高三数学 第57练 高考大题突破练—立体几何-人教版高三全册数学试题

第57练高考大题突破练——立体几何1.一个几何体的三视图如图所示,其中正视图与侧视图是腰长为6的等腰直角三角形,俯视图是正方形.(1)请画出该几何体的直观图,并求出它的体积;(2)用多少个这样的几何体可以拼成一个棱长为6的正方体ABCD—A1B1C1D1?如何组拼?试证明你的结论;(3)在(2)的情形下,设正方体ABCD—A1B1C1D1的棱CC1的中点为E, 求平面AB1E与平面ABC 所成二面角的余弦值.2.如图所示,四棱锥P -ABCD 中,AB ⊥AD ,AD ⊥DC ,PA ⊥底面ABCD ,PA =AD =DC =12AB =1,M 为PC 的中点,N 点在AB 上且AN =13NB .(1)证明:MN ∥平面PAD ;(2)求直线MN 与平面PCB 所成的角.3.在直三棱柱ABC -A 1B 1C 1中,AC =4,CB =2,AA 1=2,∠ACB =60°,E ,F 分别是A 1C 1,BC 的中点.(1)证明:平面AEB ⊥平面BB 1C 1C ; (2)证明:C 1F ∥平面ABE ;(3)设P 是BE 的中点,求三棱锥P -B 1C 1F 的体积.4.(2016·某某)如图,在三棱台ABCDEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE =EF =FC =1,BC =2,AC =3.(1)求证:BF ⊥平面ACFD ;(2)求二面角BADF 的平面角的余弦值. 答案精析1.解 (1)该几何体的直观图如图1所示,它是有一条侧棱垂直于底面的四棱锥. 其中底面ABCD 是边长为6的正方形,高PD =6,故所求体积是V =13×62×6=72.(2)依题意,正方体的体积是原四棱锥体积的3倍,故用3个这样的四棱锥可以拼成一个棱长为6的正方体,即由四棱锥D 1-ABCD ,D 1-BB 1C 1C ,D 1-BB 1A 1A 组成.其拼法如图2所示. (3)因为△AB 1E 的边长AB 1=62,B 1E =35,AE =9,所以S △AB 1E =27,而S △ABC =18,所以平面AB 1E 与平面ABC 所成二面角的余弦值为1827=23.2.证明 方法一 (1)过点M 作ME ∥CD 交PD 于E 点,连接AE , ∵AN =13NB ,∴AN =14AB =12DC =EM ,又EM ∥DC ∥AB ,∴EM ∥AN , ∴四边形AEMN 为平行四边形, ∴MN ∥AE ,又∵AE ⊂平面PAD ,MN ⊄平面PAD , ∴MN ∥平面PAD .(2)过N 点作NQ ∥AP 交BP 于点Q ,NF ⊥CB 于点F ,连接QF ,过N 点作NH ⊥QF 于点H ,连接MH ,易知QN ⊥平面ABCD ,∴QN ⊥BC ,又NF ⊥BC ,NF ∩QN =N ,NF ⊂平面QNF ,QN ⊂平面QNF , ∴BC ⊥平面QNF ,∴BC ⊥NH , ∵NH ⊥QF ,BC ∩QF =F ,BC ⊂平面PBC ,QF ⊂平面PBC ,∴NH ⊥平面PBC ,∴∠NMH 为直线MN 与平面PCB 所成角, 通过计算可得MN =AE =22,QN =34,NF =342, ∴NH =QN ·NF QF =QN ·NF QN 2+NF2=64, ∴sin ∠NMH =NHMN=32,∴∠NMH =60°, ∴直线MN 与平面PCB 所成角为60°.方法二 (1)以A 为原点,以AD ,AB ,AP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系Axyz ,如图所示,过点作ME ∥CD ,ME 交PD 于点E ,连接AE ,由已知可得A (0,0,0),B (0,2,0),D (1,0,0),C (1,1,0),P (0,0,1),M (12,12,12),E (12,0,12),N (0,12,0).∵NM →=(12,0,12),AE →=(12,0,12),∴MN ∥AE ,∵MN ⊄平面PAD ,AE ⊂平面PAD , ∴MN ∥平面PAD .(2)不妨设a =(1,y ,z ),且a ⊥平面PCB , 则a ⊥BC →,a ⊥BP →,而BC →=(1,-1,0),BP →=(0,-2,1),∴⎩⎪⎨⎪⎧1-y =0,-2y +z =0⇒⎩⎪⎨⎪⎧y =1,z =2,∴a =(1,1,2).∴cos 〈a ,NM →〉=a ·NM →|a ||NM →|=12+0+16·22=32.即向量a 与NM →的夹角为30°, ∴直线MN 与平面PCB 所成的角为60°. 3.(1)证明 在△ABC 中, ∵AC =2BC =4,∠ACB =60°, ∴AB =23,∴AB 2+BC 2=AC 2,∴AB ⊥BC ,由已知得AB ⊥BB 1,且BC ∩BB 1=B , 又∵BC ⊂平面BB 1C 1C ,BB 1⊂平面BB 1C 1C ,∴AB ⊥平面BB 1C 1C , 又AB ⊂平面ABE , ∴平面ABE ⊥平面BB 1C 1C .(2)证明 取AC 的中点M ,连接C 1M ,FM , 在△ABC 中,FM ∥AB , 而FM ⊄平面ABE ,AB ⊂平面ABE ,∴直线FM ∥平面ABE ,在矩形ACC 1A 1中,E ,M 分别是A 1C 1,AC 的中点,∴C 1M ∥AE , 而C 1M ⊄平面ABE ,AE ⊂平面ABE , ∴C 1M ∥平面ABE ,∵C 1M ∩FM =M ,C 1M ⊂平面FMC 1,FM ⊂平面FMC 1, ∴平面ABE ∥平面FMC 1, 又C 1F ⊂平面FMC 1, 故C 1F ∥平面ABE .(3)解 取B 1C 1的中点H ,连接EH , 则EH ∥AB ,且EH =12AB =3,又AB ⊥平面BB 1C 1C , ∴EH ⊥平面BB 1C 1C , ∵P 是BE 的中点, ∴111112P B C F E B C F V V --==12×1113B C F S ·EH =12×13×2×3=33. 4.(1)证明 延长AD ,BE ,CF 相交于一点K ,如图所示.因为平面BCFE ⊥平面ABC ,平面BCFE ∩平面ABC =BC ,且AC ⊥BC , 所以AC ⊥平面BCFE ,因此BF ⊥AC .又因为EF ∥BC ,BE =EF =FC =1,BC =2,所以△BCK 为等边三角形,且F 为CK 的中点,则BF ⊥CK ,且CK ∩AC =C ,CK ,AC 都在平面ACFD 内,所以BF ⊥平面ACFD .(2)解 方法一 过点F 作FQ ⊥AK 于Q ,连接BQ . 因为BF ⊥平面ACFD ,AK 在平面ACFD 内,所以BF ⊥AK , 则AK ⊥平面BQF ,BQ 在平面BQF 内,所以BQ ⊥AK . 所以∠BQF 是二面角BADF 的平面角. 在Rt △ACK 中,AC =3,CK =2,得FQ =31313.在Rt △BQF 中,FQ =31313,BF =3,得cos ∠BQF =34. 所以,二面角BADF 的平面角的余弦值为34. 方法二 因为△BCK 为等边三角形,取BC 的中点O ,连接KO ,则KO ⊥BC , 又平面BCFE ⊥平面ABC ,所以KO ⊥平面ABC .以点O 为原点,分别以射线OB ,OK 的方向为x 轴,z 轴的正方向,建立空间直角坐标系Oxyz .由题意得B (1,0,0),C (-1,0,0),K (0,0,3),A (-1,-3,0),E ⎝ ⎛⎭⎪⎫12,0,32,F ⎝ ⎛⎭⎪⎫-12,0,32. 因此,AC →=(0,3,0),AK →=(1,3,3),AB →=(2,3,0).设平面ACK 的法向量为m =(x 1,y 1,z 1),平面ABK 的法向量为n =(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧ AC →·m =0,AK →·m =0,得⎩⎨⎧ 3y 1=0,x 1+3y 1+3z 1=0,取m =(3,0,-1); 由⎩⎪⎨⎪⎧AB →·n =0,AK →·n =0,得⎩⎨⎧2x 2+3y 2=0,x 2+3y 2+3z 2=0,取n =(3,-2,3).于是,cos 〈m ,n 〉=m ·n |m |·|n |=34.所以,二面角BADF 的平面角的余弦值为34.。

2017高考数学全国卷立体几何汇编.doc

2017高考数学全国卷立体几何汇编.doc

2013-2017高考数学全国卷理科--立体几何汇编学校: 姓名: 班级: 考号:一、选择题I(理)]某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成, 正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为 ( )A. 10B. 12C. 14D. 162. [2017·全国新课标卷II(理)]如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 ( )A. 90πB. 63πC. 42πD. 36π3. [2017·全国新课标卷II(理)]已知直三棱柱ABC-A 1B 1C 1中,∠ABC=120°,AB=2,BC=CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为 ( )A. 32B. 155C. 105D. 334. [2017·全国新课标卷III(理)]已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 ( )A. πB. 3π4C. π2D. .π45. [2016·高考全国新课标卷Ⅰ,6]如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是()A. 17πB. 18πC. 20πD. 28π6. [2016·高考全国新课标卷Ⅰ,11]平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为()A. 32B. 22C. 33D. 137. [2016·高考全国新课标卷Ⅱ,6]如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A. 20πB. 24πC. 28πD. 32π8. [2016·高考全国新课标卷Ⅲ,9]如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A. 18+365B. 54+185C. 90D. 819. [2016·高考全国新课标卷Ⅲ,10]在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A. 4πB. 9π2C. 6πD. 32π310. [2015·高考全国新课标卷Ⅰ,6]《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆第2页共10页放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A. 14斛B. 22斛C. 36斛D. 66斛11. [2015·高考全国新课标卷Ⅰ,11]圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=()正视图俯视图A. 1B. 2C. 4D. 812. [2015·高考全国新课标卷Ⅱ,6]一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为()A. 18B. 17C. 16D. 1513. [2015·高考全国新课标卷Ⅱ,9]已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O的表面积为()A. 36πB. 64πC. 144πD. 256π第4页 共10页14. [2014·高考全国新课标卷Ⅰ,12]如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A. 62B. 6C. 42D. 415. [2014·全国新课标卷Ⅱ,6]如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A. 1727B. 59C. 1027D. 1316. [2014·全国新课标卷Ⅱ,11]直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( )A. 110B. 25C. 3010D. 2217. [2013·高考全国新课标卷Ⅰ,6]如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( )A. 500π3 cm 3B. 866π3 cm 3C. 1372π3 cm 3D. 2048π3 cm 318. [2013·高考全国新课标卷Ⅰ,8]某几何体的三视图如图所示,则该几何体的体积为( )A. 16+8πB. 8+8πC. 16+16πD. 8+16π19. [2013·高考全国新课标卷Ⅱ,4]已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则( ) A. α∥β且l ∥α B. α⊥β且l ⊥β C. α与β相交,且交线垂直于l D. α与β相交,且交线平行l20. [2013·高考全国新课标卷Ⅱ,7]一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )A. B. C. D.二、填空题I(理)]如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D,E,F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.22. [2017·全国新课标卷III(理)]a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最大值为60°.其中正确的是.(填写所有正确结论的编号)23. [2016·高考全国新课标卷Ⅱ,14]α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)三、解答题第6页 共10页24. [2017·全国新课标卷I(理)] (本小题满分12分)如图,在四棱锥P-ABCD 中,AB ∥CD ,且∠BAP=∠CDP=90°.(1)证明:平面PAB ⊥平面PAD ;(2)若PA=PD=AB=DC ,∠APD=90°,求二面角A-PB-C 的余弦值. 25. [2017·全国新课标卷II(理)] (本小题满分12分)如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB=BC=12AD ,∠BAD=∠ABC=90°,E 是PD 的中点.(1)证明:直线CE ∥平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M-AB-D 的余弦值. 26. [2017·全国新课标卷III(理)] (本小题满分12分)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD=∠CBD ,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D-AE-C的余弦值.27. [2016·高考全国新课标卷Ⅰ,18] (本小题满分12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D -AF-E与二面角C-BE-F都是60°.(1)证明:平面ABEF⊥平面EFDC;(2)求二面角E-BC-A的余弦值.28. [2016·高考全国新课标卷Ⅱ,19] (本小题满分12分)如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=54,EF交BD于点H.将△DEF沿EF折到△D'EF的位置,OD'=10.第8页 共10页(1)证明:D'H ⊥平面ABCD ; (2)求二面角B -D'A -C 的正弦值.29. [2016·高考全国新课标卷Ⅲ,19] (本小题满分12分)如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.30. [2015·高考全国新课标卷Ⅰ,18](本小题满分12分) 如图,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE=2DF ,AE ⊥EC.(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.31. [2015·高考全国新课标卷Ⅱ,19](本小题满分12分)如图,长方体ABCD-A 1B 1C 1D 1中,AB=16,BC=10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E=D 1F= 4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成角的正弦值.32. [2014·高考全国新课标卷Ⅰ,19] (本小题满分12分) 如图,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,AB ⊥B 1C .(1)证明:AC =AB 1;(2)若AC ⊥AB 1,∠CBB 1=60°,AB =BC ,求二面角A -A 1B 1-C 1的余弦值.33. [2014·全国新课标卷Ⅱ,18] (本小题满分12分) 如图,四棱锥P -ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设二面角D -AE -C 为60°,AP =1,AD =3,求三棱锥E -ACD 的体积.34. [2013·高考全国新课标卷Ⅰ,18](本小题满分12分) 如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.第10页 共10页35. [2013·高考全国新课标卷Ⅱ,18](本小题满分12分)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB . (1)证明:BC 1∥平面A 1CD ; (2)求二面角D -A 1C -E 的正弦值.。

07立体几何解答题-2017年高考数学(理)母题题源系列(北京专版)含解析

07立体几何解答题-2017年高考数学(理)母题题源系列(北京专版)含解析

【母题原题1】【2017北京,理16】如图,在四棱锥P —ABCD 中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,PD//平面MAC ,PA =PD =6,AB=4.(I )求证:M 为PB 的中点;(II )求二面角B —PD —A 的大小;(III )求直线MC 与平面BDP 所成角的正弦值.【答案】(Ⅰ)详见解析:(Ⅱ)3 ;(Ⅲ)269【解析】(III )由题意知2(1,2,)2M -,(2,4,0)D ,2(3,2,)2MC =-。

设直线MC 与平面BDP 所成角为α,则||26sin |cos ,|9||||MC MC MC α⋅===<>n n n 。

所以直线MC 与平面BDP 所成角的正弦值为269.【考点】1。

线线,线面的位置关系;2.向量法.【名师点睛】本题涉及到了立体几何中的线面平行与垂直的判定与性质,全面考查立体几何中的证明与求解,意在考查学生的空间想象能力和逻辑推理能力;利用空间向量解决立体几何问题是一种成熟的方法,要注意建立适当的空间直角坐标系以及运算的准确性。

【母题原题2】【2016北京,理17】如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,5AC CD ==。

(I)求证:PD ⊥平面PAB ;(II)求直线PB 与平面PCD 所成角的正弦值;(III )在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AM AP 的值;若不存在,说明理由. 【答案】(I )见解析;(II)33;(III )存在,41 AP AM 。

【解析】设平面PCD 的法向量为(,,)x y z =n ,则0,0,PD PC ⎧⋅=⎪⎨⋅=⎪⎩n n 即⎩⎨⎧=-=--,02,0z x z y 令2=z ,则2,1-==y x .所以(1,2,2)=-n . 又)1,1,1(-=PB ,所以3cos ,3PBPB PB ⋅==-n n n 所以直线PB 与平面PCD 所成角的正弦值为33。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【步步高】(浙江专用)2017年高考数学 专题七 立体几何 第57练立体几何的综合应用练习1.(2015·南京二模)如图,在四棱锥P -ABCD 中,AD =CD =12AB ,AB ∥CD ,AD ⊥CD ,PC ⊥平面ABCD .(1)求证:BC ⊥平面PAC ;(2)若M 为线段PA 的中点,且过C ,D ,M 三点的平面与PB 交于点N ,求PN :PB 的值.2.(2015·潍坊模拟)如图,边长为2的正方形ADEF 与梯形ABCD所在的平面互相垂直,AB ∥CD ,AB ⊥BC ,DC =BC =12AB =1.点M 在线段EC 上.(1)证明:平面BDM ⊥平面ADEF ;(2)判断点M 的位置,使得三棱锥B -CDM 的体积为218.3.(2015·青岛检测)如图,在四棱柱ABCD-A1B1C1D1中,侧棱AA1⊥底面ABCD,底面ABCD是直角梯形,AD∥BC,∠BAD=90°,AD=AA1=3,BC=1,E1为A1B1的中点.(1)证明:B1D∥平面AD1E1;(2)若AC⊥BD,求平面ACD1和平面CDD1C1所成角(锐角)的余弦值.ABCD是其轴截面,EF⊥CD于O1(如图所示),AB=2,BC4.在圆柱OO= 2.(1)设平面BEF与圆O所在平面的交线为l,平面ABE与圆O1所在平面的交线为m,证明:l⊥m;(2)求二面角A-BE-F的余弦值.5.如图,已知四边形ABCD是正方形,DE⊥平面ABCD,FA⊥平面ABCD,FA=AB=2DE.(1)判断B,C,E,F四点是否共面,并证明你的结论;(2)若CG⊥平面ABCD,且CG=FA,请问在平面ADEF上是否存在一点H,使得直线GH⊥平面BEF?若存在,求出H点的位置;若不存在,请说明理由.面ADE⊥平面DEBC,H,F分别是边AD和BE的中点,平面BCH与AE,AF分别交于I,G两点.(1)求证:IH∥BC;(2)求二面角A-GI-C的余弦值;(3)求AG的长.答案解析1.(1)证明 连接AC .不妨设AD =1,因为AD =CD =12AB ,所以CD =1,AB =2.因为∠ADC =90°,所以AC =2,∠CAB =45°.在△ABC 中,由余弦定理得BC =2,所以AC 2+BC 2=AB 2.所以BC ⊥AC .因为PC ⊥平面ABCD ,BC ⊂平面ABCD ,所以BC ⊥PC .又PC ⊂平面PAC ,AC ⊂平面PAC ,PC ∩AC =C ,所以BC ⊥平面PAC .(2)解 如图,因为AB ∥CD ,CD ⊂平面CDMN ,AB ⊄平面CDMN ,所以AB ∥平面CDMN .因为AB ⊂平面PAB ,平面PAB ∩平面CDMN =MN ,所以AB ∥MN .在△PAB 中,因为M 为PA 的中点,所以N 为PB 的中点,即PN ∶PB 的值为12.2.(1)证明 ∵DC =BC =1,DC ⊥BC ,∴BD =2,又AD =2,AB =2,∴AD 2+BD 2=AB 2,∴∠ADB =90°,∴AD ⊥BD .又平面ADEF ⊥平面ABCD ,ED ⊥AD ,平面ADEF ∩平面ABCD =AD ,ED ⊂平面ADEF ,∴ED ⊥平面ABCD ,∵BD ⊂平面ABCD ,∴BD ⊥ED ,又AD ∩DE =D ,∴BD ⊥平面ADEF ,又BD ⊂平面BDM ,∴平面BDM ⊥平面ADEF .(2)解 如图,点M 在平面DMC 内,过M 作MN ⊥DC ,垂足为N ,则MN ∥ED ,又ED ⊥平面ABCD ,∴MN ⊥平面ABCD .又V 三棱锥B -CDM =V 三棱锥M -BCD=13·MN ·S △BDC =218, ∴13×12×1×1×MN =218,∴MN =23, 又MN ED =CM CE =232=13, ∴CM =13CE . ∴点M 在线段CE 的三等分点且靠近C 处.3.(1)证明 如图,连接A 1D 交AD 1于点G ,连接E 1G ,因为ABCD -A 1B 1C 1D 1为四棱柱,所以四边形ADD 1A 1为平行四边形,所以G 为A 1D 的中点.又E 1为A 1B 1的中点,所以E 1G 为△A 1B 1D 的中位线,从而B 1D ∥E 1G ,又B 1D ⊄平面AD 1E 1,E 1G ⊂平面AD 1E 1,所以B 1D ∥平面AD 1E 1.(2)解 因为AA 1⊥底面ABCD ,AB ⊂平面ABCD ,AD ⊂平面ABCD ,所以AA 1⊥AB ,AA 1⊥AD ,又∠BAD =90°,所以AB ,AD ,AA 1两两垂直.如图,以A 为坐标原点,AB ,AD ,AA 1所在的直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系.设AB =t ,则A (0,0,0),B (t ,0,0),C (t,1,0),D (0,3,0),C 1(t,1,3),D 1(0,3,3), 从而AC →=(t,1,0),BD →=(-t,3,0).因为AC ⊥BD ,所以AC →·BD →=-t 2+3+0=0,解得t = 3.设n 1=(x 1,y 1,z 1)是平面ACD 1的一个法向量,又AD 1→=(0,3,3),AC →=(3,1,0),则⎩⎪⎨⎪⎧AC →·n 1=0,AD 1→·n 1=0,即⎩⎨⎧ 3x 1+y 1=0,3y 1+3z 1=0.令x 1=1,则y 1=-3,z 1=3,故n 1=(1,-3,3)是平面ACD 1的一个法向量.设n 2=(x 2,y 2,z 2)是平面CDD 1C 1的一个法向量,又CC 1→=(0,0,3),CD →=(-3,2,0),则⎩⎪⎨⎪⎧CC 1→·n 2=0,CD →·n 2=0,即⎩⎨⎧ z 2=0,-3x 2+2y 2=0.令x 2=1,则y 2=32,故n 2=(1,32,0)是平面CDD 1C 1的一个法向量.所以|cos 〈n 1,n 2〉|=|n 1·n 2||n 1|·|n 2|=|1×1+32×(-3)+0×3|1+3+3× 1+34+0=17.故平面ACD 1和平面CDD 1C 1所成角(锐角)的余弦值为17.4.(1)证明 由于圆柱的两底面互相平行,所以AB ∥圆O 1所在平面,EF ∥圆O 所在平面.所以l ∥EF ,m ∥AB .又EF ⊥CD ,即EF ⊥AB ,所以l ⊥m .(2)解 分别以EF 在圆O 所在平面内的射影、AB 、OO 1为坐标轴,建立空间直角坐标系(如图所示),则A (0,-1,0),B (0,1,0),E (-1,0,2),F (1,0,2).∴AB →=(0,2,0),AE →=(-1,1,2),BE →=(-1,-1,2),BF →=(1,-1,2), 设平面ABE 的一个法向量为n 1=(x ,y ,z ),则由n 1·AB →=0,n 1·AE →=0得⎩⎨⎧ 2y =0,-x +y +2z =0,取z =1,得n 1=(2,0,1).同理可得平面BEF 的一个法向量为n 2=(0,2,1).所以cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=13,所以二面角A -BE -F 的余弦值为13.5.解 (1)B ,C ,E ,F 四点不共面,下面用反证法证明:假设B ,C ,E ,F 四点共面.因为FA ⊥平面ABCD ,ED ⊥平面ABCD ,所以FA ∥ED ,且有A ,F ,E ,D 四点共面.因为BC ∥DA ,BC ⊄平面ADEF ,AD ⊂平面ADEF ,所以BC ∥平面ADEF .又BC ⊂平面BCEF ,平面BCEF ∩平面ADEF =EF ,所以BC ∥EF ,所以AD ∥EF .又因为FA ∥ED ,所以四边形ADEF 为平行四边形,所以AF =ED ,与已知矛盾,所以假设不成立,所以B,C,E,F四点不共面.(2)H点即为AD的中点.如图,延长DE至M点,使EM=DE,过B点作BN綊CG,连接HG,GM,NF,FM,HM,AN,NG.结合已知可得NA是GH在平面ABNF内的射影,因为四边形ABNF是正方形,所以BF⊥AN,又BF⊥AD,AD∩AN=A,所以BF⊥平面HANG,因为HG⊂平面HANG,所以BF⊥HG.由已知可得HM是GH在平面ADMF内的射影,因为四边形ADMF是正方形,且H,E分别是AD,DM的中点,所以EF⊥HM,又EF⊥GM,HM∩GM=M,所以EF⊥平面HGM,因为HG⊂平面HGM,所以EF⊥HG,又EF∩BF=F,EF⊂平面BEF,BF⊂平面BEF,所以GH⊥平面BEF.6.(1)证明因为D,E分别是边AC和AB的中点,所以ED∥BC.因为BC⊂平面BCH,ED⊄平面BCH,所以ED∥平面BCH,因为ED⊂平面ADE,平面BCH∩平面ADE=HI,所以ED∥HI.又因为ED∥BC,所以IH∥BC.(2)如图,建立空间直角坐标系,由题意得,D(0,0,0),E(2,0,0),A(0,0,2),F(3,1,0),C(0,2,0),H(0,0,1),B(4,2,0),EA →=(-2,0,2),EF →=(1,1,0),CH →=(0,-2,1),HI →=12DE →=(1,0,0).设平面AGI 的一个法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧EA →·n 1=0,EF →·n 1=0,⎩⎪⎨⎪⎧-x 1+z 1=0,x 1+y 1=0, 令z 1=1,解得x 1=1,y 1=-1,则n 1=(1,-1,1), 设平面CIG 的一个法向量为n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧CH →·n 2=0,HI →·n 2=0,⎩⎪⎨⎪⎧ -2y 2+z 2=0,x 2=0,令z 2=2,解得y 2=1,则n 2=(0,1,2), 所以cos 〈n 1,n 2〉=-1+23×5=1515,所以二面角A -GI -C 的余弦值为1515.(3)由(2)知,AF →=(3,1,-2),设AG →=λAF →=(3λ,λ,-2λ),0<λ<1,则GH →=AH →-AG →=(0,0,-1)-(3λ,λ,-2λ) =(-3λ,-λ,2λ-1),由GH →·n 2=0,解得λ=23, 故AG =23AF =2332+1+(-2)2=2143.。

相关文档
最新文档