12月15号数学题
2018-2019学年上学期高二数学12月月考试题含解析(371)
永胜县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 设()f x 是偶函数,且在(0,)+∞上是增函数,又(5)0f =,则使()0f x >的的取值范围是( )A .50x -<<或5x >B .5x <-或5x >C .55x -<<D .5x <-或05x <<2. 抛物线y=﹣x 2上的点到直线4x+3y ﹣8=0距离的最小值是( )A .B .C .D .33. 已知函数f (2x+1)=3x+2,且f (a )=2,则a 的值等于( ) A .8B .1C .5D .﹣14. 若命题“p 或q ”为真,“非p ”为真,则( )A .p 真q 真B .p 假q 真C .p 真q 假D .p 假q 假5. 若函数f (x )=3﹣|x ﹣1|+m 的图象与x 轴没有交点,则实数m 的取值范围是( ) A .m ≥0或m <﹣1B .m >0或m <﹣1C .m >1或m ≤0D .m >1或m <06. 在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也非必要条件7. 已知正方体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若+,则x 、y 的值分别为( )A .x=1,y=1B .x=1,y=C .x=,y=D .x=,y=18. 线段AB 在平面α内,则直线AB 与平面α的位置关系是( )A .AB ⊂αB .AB ⊄αC .由线段AB 的长短而定D .以上都不对9. 已知命题p :∃x ∈R ,cosx ≥a ,下列a 的取值能使“¬p ”是真命题的是( )A .﹣1B .0C .1D .210.已知函数,函数,其中b ∈R ,若函数y=f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )A .B .C .D .11.设复数z 满足z (1+i )=2(i 为虚数单位),则z=( ) A .1﹣i B .1+i C .﹣1﹣iD .﹣1+i12.已知α,β为锐角△ABC 的两个内角,x ∈R ,f (x )=()|x ﹣2|+()|x ﹣2|,则关于x 的不等式f (2x ﹣1)﹣f (x+1)>0的解集为( )A .(﹣∞,)∪(2,+∞)B .(,2)C .(﹣∞,﹣)∪(2,+∞)D .(﹣,2)二、填空题13.下列关于圆锥曲线的命题:其中真命题的序号 .(写出所有真命题的序号).①设A ,B 为两个定点,若|PA|﹣|PB|=2,则动点P 的轨迹为双曲线;②设A ,B 为两个定点,若动点P 满足|PA|=10﹣|PB|,且|AB|=6,则|PA|的最大值为8; ③方程2x 2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率; ④双曲线﹣=1与椭圆有相同的焦点.14.对于集合M ,定义函数对于两个集合A ,B ,定义集合A △B={x|f A (x )fB (x )=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A △B 的结果为 .15.在极坐标系中,直线l 的方程为ρcos θ=5,则点(4,)到直线l 的距离为 .16.若直线:012=--ay x 与直线2l :02=+y x 垂直,则=a .17.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()ln 4f x x x =+-的零点在区间()1k k +,内,则正整数k 的值为________. 18.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B为 .三、解答题19.电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷合计男女总计(2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2名,求至少有1名女性观众的概率.附:K2=P(K2≥k0)0.50 0.40 0.25 0.15 0.10 0.05 0.0250.010 0.005 0.001k00.455 0.708 1.323 2.072 2.706 3.84 5.024 6.63520.已知A(﹣3,0),B(3,0),C(x0,y0)是圆M上的三个不同的点.(1)若x0=﹣4,y0=1,求圆M的方程;(2)若点C是以AB为直径的圆M上的任意一点,直线x=3交直线AC于点R,线段BR的中点为D.判断直线CD与圆M的位置关系,并证明你的结论.21.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()()3231312f x x k x kx =-+++,其中.k R ∈ (1)当3k =时,求函数()f x 在[]0,5上的值域; (2)若函数()f x 在[]1,2上的最小值为3,求实数k 的取值范围.22.如图,M 、N 是焦点为F 的抛物线y 2=2px (p >0)上两个不同的点,且线段MN 中点A 的横坐标为,(1)求|MF|+|NF|的值;(2)若p=2,直线MN 与x 轴交于点B 点,求点B 横坐标的取值范围.23.(本小题满分12分)已知平面向量(1,)a x =,(23,)b x x =+-,()x R ∈. (1)若//a b ,求||a b -;(2)若与夹角为锐角,求的取值范围.24.设椭圆C :+=1(a >b >0)过点(0,4),离心率为.(1)求椭圆C 的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标.永胜县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B考点:函数的奇偶性与单调性.【思路点晴】本题主要考查函数的单调性、函数的奇偶性,数形结合的数学思想方法.由于函数是偶函数,所以定义域关于原点对称,图象关于y 轴对称,单调性在y 轴两侧相反,即在0x >时单调递增,当0x <时,函数单调递减.结合(5)0f =和对称性,可知(5)0f ±=,再结合函数的单调性,结合图象就可以求得最后的解集.12. 【答案】A【解析】解:由,得3x 2﹣4x+8=0.△=(﹣4)2﹣4×3×8=﹣80<0.所以直线4x+3y ﹣8=0与抛物线y=﹣x 2无交点.设与直线4x+3y ﹣8=0平行的直线为4x+3y+m=0联立,得3x 2﹣4x ﹣m=0.由△=(﹣4)2﹣4×3(﹣m )=16+12m=0,得m=﹣.所以与直线4x+3y ﹣8=0平行且与抛物线y=﹣x 2相切的直线方程为4x+3y ﹣=0.所以抛物线y=﹣x 2上的一点到直线4x+3y ﹣8=0的距离的最小值是=.故选:A .【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是中档题.3. 【答案】B【解析】解:∵函数f (2x+1)=3x+2,且f (a )=2,令3x+2=2,解得x=0,∴a=2×0+1=1.故选:B.4.【答案】B【解析】解:若命题“p或q”为真,则p真或q真,若“非p”为真,则p为假,∴p假q真,故选:B.【点评】本题考查了复合命题的真假的判断,是一道基础题.5.【答案】A【解析】解:∵函数f(x)=3﹣|x﹣1|+m的图象与x轴没有交点,∴﹣m=3﹣|x﹣1|无解,∵﹣|x﹣1|≤0,∴0<3﹣|x﹣1|≤1,∴﹣m≤0或﹣m>1,解得m≥0或m>﹣1故选:A.6.【答案】A【解析】解:∵sinB+sin(A﹣B)=sinC=sin(A+B),∴sinB+sinAcosB﹣cosAsinB=sinAcosB+cosAsinB,∴sinB=2cosAsinB,∵sinB≠0,∴cosA=,∴A=,∴sinA=,当sinA=,∴A=或A=,故在△ABC中,sinB+sin(A﹣B)=sinC是sinA=的充分非必要条件,故选:A7.【答案】C【解析】解:如图,++().故选C.8.【答案】A【解析】解:∵线段AB在平面α内,∴直线AB上所有的点都在平面α内,∴直线AB与平面α的位置关系:直线在平面α内,用符号表示为:AB⊂α故选A.【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力.公理一:如果一条线上的两个点在平面上则该线在平面上.9.【答案】D【解析】解:命题p:∃x∈R,cosx≥a,则a≤1.下列a的取值能使“¬p”是真命题的是a=2.故选;D.10.【答案】D【解析】解:∵g(x)=﹣f(2﹣x),∴y=f(x)﹣g(x)=f(x)﹣+f(2﹣x),由f(x)﹣+f(2﹣x)=0,得f(x)+f(2﹣x)=,设h(x)=f(x)+f(2﹣x),若x≤0,则﹣x≥0,2﹣x≥2,则h(x)=f(x)+f(2﹣x)=2+x+x2,若0≤x≤2,则﹣2≤﹣x≤0,0≤2﹣x≤2,则h(x)=f(x)+f(2﹣x)=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2,若x>2,﹣x<﹣2,2﹣x<0,则h(x)=f(x)+f(2﹣x)=(x﹣2)2+2﹣|2﹣x|=x2﹣5x+8.作出函数h (x )的图象如图:当x ≤0时,h (x )=2+x+x 2=(x+)2+≥,当x >2时,h (x )=x 2﹣5x+8=(x ﹣)2+≥,故当=时,h (x )=,有两个交点,当=2时,h (x )=,有无数个交点,由图象知要使函数y=f (x )﹣g (x )恰有4个零点,即h (x )=恰有4个根,则满足<<2,解得:b ∈(,4),故选:D .【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键.11.【答案】A【解析】解:∵z (1+i )=2,∴z===1﹣i .故选:A .【点评】本题考查了复数的运算法则、共轭复数的定义,属于基础题.12.【答案】B【解析】解:∵α,β为锐角△ABC 的两个内角,可得α+β>90°,cos β=sin (90°﹣β)<sin α,同理cos α<sin β,∴f (x )=()|x ﹣2|+()|x ﹣2|,在(2,+∞)上单调递减,在(﹣∞,2)单调递增,由关于x的不等式f(2x﹣1)﹣f(x+1)>0得到关于x的不等式f(2x﹣1)>f(x+1),∴|2x﹣1﹣2|<|x+1﹣2|即|2x﹣3|<|x﹣1|,化简为3x2﹣1x+8<0,解得x∈(,2);故选:B.二、填空题13.【答案】②③.【解析】解:①根据双曲线的定义可知,满足|PA|﹣|PB|=2的动点P不一定是双曲线,这与AB的距离有关系,所以①错误.②由|PA|=10﹣|PB|,得|PA|+|PB|=10>|AB|,所以动点P的轨迹为以A,B为焦点的图象,且2a=10,2c=6,所以a=5,c=3,根据椭圆的性质可知,|PA|的最大值为a+c=5+3=8,所以②正确.③方程2x2﹣5x+2=0的两个根为x=2或x=,所以方程2x2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率,所以③正确.④由双曲线的方程可知,双曲线的焦点在x轴上,而椭圆的焦点在y轴上,所以它们的焦点不可能相同,所以④错误.故正确的命题为②③.故答案为:②③.【点评】本题主要考查圆锥曲线的定义和性质,要求熟练掌握圆锥曲线的定义,方程和性质.14.【答案】{1,6,10,12}.【解析】解:要使f A(x)f B(x)=﹣1,必有x∈{x|x∈A且x∉B}∪{x|x∈B且x∉A}={6,10}∪{1,12}={1,6,10,12,},所以A△B={1,6,10,12}.故答案为{1,6,10,12}.【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题.15.【答案】3.【解析】解:直线l的方程为ρcosθ=5,化为x=5.点(4,)化为. ∴点到直线l 的距离d=5﹣2=3.故答案为:3.【点评】本题考查了极坐标化为直角坐标、点到直线的距离,属于基础题.16.【答案】1 【解析】试题分析:两直线垂直满足()02-12=⨯+⨯a ,解得1=a ,故填:1. 考点:直线垂直【方法点睛】本题考查了根据直线方程研究垂直关系,属于基础题型,当直线是一般式直线方程时,0:1111=++c y b x a l ,0:2222=++c y b x a l ,当两直线垂直时,需满足02121=+b b a a ,当两直线平行时,需满足01221=-b a b a 且1221c b c b ≠,或是212121c c b b a a ≠=,当直线是斜截式直线方程时,两直线垂直121-=k k ,两直线平行时,21k k =,21b b ≠.117.【答案】2 【解析】18.【答案】4π 【解析】考点:正弦定理.【方法点晴】本题考查正余弦定理,根据正弦定理,将所给的含有边和角的等式化为只含有角的等式,再利用三角形的三角和是︒180,消去多余的变量,从而解出B 角.三角函数题目在高考中的难度逐渐增加,以考查三角函数的图象和性质,以及三角形中的正余弦定理为主,在2016年全国卷( )中以选择题的压轴题出现.三、解答题19.【答案】【解析】解:(1)由频率分布直方图中可知:抽取的100名观众中,“体育迷”共有(0.020+0.005)×10×100=25名.可得2×2列联表:非体育迷体育迷合计男30 15 45女45 10 55总计75 25 100将2×2列联表中的数据代入公式计算可得K2的观测值为:k==≈3.030.∵3.030<3.841,∴我们没有理由认为“体育迷”与性别有关.(2)由频率分布直方图中可知:“超级体育迷”有5名,从而一切可能结果所组成的基本事件空间Ω={(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)},其中a i(i=1,2,3)表示男性,b j (j=1,2)表示女性.设A表示事件“从“超级体育迷”中任意选取2名,至少有1名女性观众”,则事件A包括7个基本事件:(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2).∴P(A)=.【点评】本题考查了“独立性检验基本原理”、古典概率计算公式、频率分布直方图及其性质,考查了推理能力与计算能力,属于中档题.20.【答案】【解析】解:(1)设圆的方程为x2+y2+Dx+Ey+F=0圆的方程为x2+y2﹣8y﹣9=0…(2)直线CD与圆M相切O、D分别是AB、BR的中点则OD∥AR,∴∠CAB=∠DOB,∠ACO=∠COD,又∠CAO=∠ACO,∴∠DOB=∠COD又OC=OB,所以△BOD≌△COD∴∠OCD=∠OBD=90°即OC⊥CD,则直线CD与圆M相切.…(其他方法亦可)21.【答案】(1)[]1,21;(2)2k ≥.【解析】试题分析:(1)求导,再利用导数工具即可求得正解;(2)求导得()'f x =()()31x x k --,再分1k ≤和1k >两种情况进行讨论;试题解析:(1)解:3k = 时,()32691f x x x x =-++则()()()23129313f x x x x x =-+=--' 令0f x '=得121,3x x ==列表由上表知函数()f x 的值域为[]1,21(2)方法一:()()()()2331331f x x k x k x x k =-++=--'①当1k ≤时,[]()1,2,'0x f x ∀∈≥,函数()f x 在区间[]1,2单调递增 所以()()()min 31113132f x f k k ==-+++= 即53k =(舍) ②当2k ≥时,[]()1,2,'0x f x ∀∈≤,函数()f x 在区间[]1,2单调递减所以()()()min 28613213f x f k k ==-++⋅+= 符合题意③当12k <<时,当[)1,x k ∈时,()'0f x <()f x 区间在[)1,k 单调递减 当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增所以()()()322min 313132f x f k k k k k ==-+++= 化简得:32340k k -+= 即()()2120k k +-=所以1k =-或2k =(舍)注:也可令()3234g k k k =-+则()()23632g k k k k k =='-- 对()()1,2,0k g k ∀∈'≤()3234g k k k =-+在()1,2k ∈单调递减所以()02g k <<不符合题意综上所述:实数k 取值范围为2k ≥方法二:()()()()2331331f x x k x k x x k =-++=--'①当2k ≥时,[]()1,2,'0x f x ∀∈≤,函数()f x 在区间[]1,2单调递减 所以()()()min 28613213f x f k k ==-++⋅+= 符合题意 …………8分 ②当1k ≤时,[]()1,2,'0x f x ∀∈≥,函数()f x 在区间[]1,2单调递增所以()()min 23f x f <=不符合题意③当12k <<时,当[)1,x k ∈时,()'0f x <()f x 区间在[)1,k 单调递减 当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增 所以()()()min 23f x f k f =<=不符合题意综上所述:实数k 取值范围为2k ≥ 22.【答案】【解析】解:(1)设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=8﹣p ,|MF|=x 1+,|NF|=x 2+, ∴|MF|+|NF|=x 1+x 2+p=8;(2)p=2时,y 2=4x ,若直线MN 斜率不存在,则B (3,0);若直线MN 斜率存在,设A (3,t )(t ≠0),M (x 1,y 1),N (x 2,y 2),则代入利用点差法,可得y 12﹣y 22=4(x 1﹣x 2)∴k MN =,∴直线MN 的方程为y ﹣t=(x ﹣3),∴B 的横坐标为x=3﹣,直线MN 代入y 2=4x ,可得y 2﹣2ty+2t 2﹣12=0△>0可得0<t 2<12,∴x=3﹣∈(﹣3,3),∴点B 横坐标的取值范围是(﹣3,3). 【点评】本题考查抛物线的定义,考查点差法,考查学生分析解决问题的能力,属于中档题.23.【答案】(1)2或2)(1,0)(0,3)-.【解析】试题分析:(1)本题可由两向量平行求得参数,由坐标运算可得两向量的模,由于有两解,因此模有两个值;(2)两向量,a b 的夹角为锐角的充要条件是0a b ⋅>且,a b 不共线,由此可得范围.试题解析:(1)由//a b ,得0x =或2x =-, 当0x =时,(2,0)a b -=-,||2a b -=, 当2x =-时,(2,4)a b -=-,||25a b -=.(2)与夹角为锐角,0a b ∙>,2230x x -++>,13x -<<,又因为0x =时,//a b , 所以的取值范围是(1,0)(0,3)-.考点:向量平行的坐标运算,向量的模与数量积.【名师点睛】由向量的数量积cos a b a b θ⋅=可得向量的夹角公式,当为锐角时,cos 0θ>,但当cos 0θ>时,可能为锐角,也可能为0(此时两向量同向),因此两向量夹角为锐角的充要条件是0a b a b⋅>且,a b 不同向,同样两向量夹角为钝角的充要条件是0a b a b⋅<且,a b 不反向.24.【答案】【解析】解:(1)将点(0,4)代入椭圆C 的方程得=1,∴b=4,…由e==,得1﹣=,∴a=5,…∴椭圆C的方程为+=1.…(2)过点(3,0)且斜率为的直线为y=(x﹣3),…设直线与椭圆C的交点为A(x1,y1),B(x2,y2),将直线方程y=(x﹣3)代入椭圆C方程,整理得x2﹣3x﹣8=0,…由韦达定理得x1+x2=3,y1+y2=(x1﹣3)+(x2﹣3)=(x1+x2)﹣=﹣.…由中点坐标公式AB中点横坐标为,纵坐标为﹣,∴所截线段的中点坐标为(,﹣).…【点评】本题考查椭圆的方程与几何性质,考查直线与椭圆的位置关系,考查韦达定理的运用,确定椭圆的方程是关键.。
2022-2023学年山东省菏泽市成武高一年级上册学期12月月考数学试题【含答案】
2022-2023学年山东省菏泽市成武高一上学期12月月考数学试题一、单选题1.将分针拨快10分钟,则分针转过的弧度是( )A .B .C .D .π3π3-π6π6-【答案】B【分析】利用分针转一周为分钟,转过的角度为,得到分针是一周的六分之一,进而可得602π10答案.【详解】∵分针转一周为分钟,转过的角度为,将分针拨快是顺时针旋转,602π∴分针拨快10分钟,则分针所转过的弧度数为.10π2π603-⨯=-故选:B2.设,则的大小关系为( )0.30.20.212,,log 0.32a b c -⎛⎫=== ⎪⎝⎭,,a b c A .B .a b c <<b a c <<C .D .b<c<a c<a<b【答案】D【分析】可以根据指数函数和对数函数的单调性得出的范围,然后即可得出的大小关系.,,a b c ,,a b c 【详解】解:,,0.30.30.201()22212-=>>= 0.20.2log 0.3log 0.21<=∴.c<a<b 故选:D3.已知幂函数的图象过点,且,则的取值范围是( )()(1)nf x a x =-(2,8)(2)(12)f b f b -<-b A .B .C .D .(0,1)(1,2)(,1)-∞(1,)+∞【答案】C【解析】先根据题意得幂函数解析式为,再根据函数的单调性解不等式即可得答案.3()f x x =【详解】解:因为幂函数的图像过点,()(1)nf x a x =-(2,8)所以,所以,所以,1128n a -=⎧⎨=⎩23a n =⎧⎨=⎩3()f x x =所以,解得:.(2)(12)212f b f b b b -<-⇔-<-1b <故的取值范围是.b (,1)-∞故选:C.【点睛】本题考查幂函数的定义,根据幂函数的单调性解不等式,考查运算求解能力,是中档题.本题解题的关键在于根据幂函数的系数为待定系数求得解析式,进而根据单调性解不等式.14.sin 345︒=ABC .D.【答案】A【分析】直接利用诱导公式以及两角差的正弦公式即可求出.【详解】()()sin 345sin 36015sin15sin 4530︒=︒-︒=-︒=-︒-︒,故选A.12⎫=-=⎪⎪⎭【点睛】本题主要考查诱导公式和两角差的正弦公式应用.5.设函数在区间内有零点,则实数a 的取值范围是( )()32log x f x a x +=-()1,2A .B .C .D .()31,log 2--()30,log 2()3log 2,1()31,log 4【答案】C 【分析】令得,由复合函数单调性即可求解.()0f x =32log x a x +=【详解】令得,令,由复合函数单调性可知,当()0f x =32log x a x +=()3322log log 1x h x x x +⎛⎫==+ ⎪⎝⎭时,单减,,,故,要使在()1,2x ∈()h x ()32log 2h =()31log 31h ==()()3log 2,1h x ∈()32log x f x a x +=-区间内有零点,即.()1,2()3log2,1a ∈故选:C 6.已知函数,则其图象可能是( )()2cos 4x xf x x =-A .B .C.D.【答案】C【分析】从奇偶性,特殊点处的函数值的正负即可判断.【详解】函数的定义域为,其定义域关于原点对称,{}|2x x ≠±由函数的解析式可得:,()()f x f x -=-则函数图象关于坐标原点对称,选项B,D 错误;而,选项A 错误,C正确;06f π⎛⎫=< ⎪⎝⎭故选:C.7.已知函数,下列说法正确的有( )()tan 24f x x π⎛⎫=- ⎪⎝⎭①函数最小正周期为;()f x 2π②定义域为|R,,Z 28k x x x k ππ⎧⎫∈≠+∈⎨⎬⎩⎭③图象的所有对称中心为;()f x ,0,Z 48k k ππ⎛⎫+∈ ⎪⎝⎭④函数的单调递增区间为.()f x 3,,Z 2828k k k ππππ⎛⎫-+∈ ⎪⎝⎭A .1个B .2个C .3个D .4个【答案】C【分析】根据正切函数的图象与性质,代入周期、定义域、对称中心和单调递增期间的公式即可求解.【详解】对①,函数,可得的最小正周期为,所以①正确;()tan 24f x x π⎛⎫=- ⎪⎝⎭()f x 2T π=对②,令,解得,2,Z42x k k πππ-≠+∈3,Z 82k x k ππ≠+∈即函数的定义域为,所以②错误;()f x 3{|,Z}82k x x k ππ≠+∈对③,令,解得,所以函数的图象关于点2,Z 42k x k ππ-=∈,Z 84k x k ππ=+∈()f x 对称,所以③正确;,0,Z 48k k ππ⎛⎫+∈⎪⎝⎭对④,令,解得,故函数的单调递2,Z242k x k k πππππ-<-<+∈3,Z 2828k k x k ππππ-<<+∈()f x 增区间为,所以④正确;3,,Z 2828k k k ππππ⎛⎫-+∈ ⎪⎝⎭故①③④正确;故选:C8.若函数y =f (x )(x ∈R )满足f (x +2)=f (x ),且x ∈[﹣1,1]时,f (x )=1﹣x 2,已知函数g (x ),则函数h (x )=f (x )﹣g (x )在区间[﹣6,6]内的零点的个数为( )lg 0xx x e x ⎧=⎨⎩,>,<A .11B .12C .13D .14【答案】B【分析】由题意可判断函数y =f (x )在R 上是周期为2的函数,从而作出函数f (x )与g (x )的图象,得到交点的个数即可.【详解】∵f (x+2)=f (x ),故函数y =f (x )在R 上是周期为2的函数,作出函数f (x )与g (x )的图象如下,由于当时,,因此在轴左侧有6个交点;0x <01xe <<y [6,0)-当时,,,因此在轴右侧有6个交点;0x >max ()1f x =lg 61<y (0,6]综上可知函数h (x )=f (x )﹣g (x )在区间[﹣6,6]内的零点的个数为12个.二、多选题9.下列计算正确的有( )A .B .120318202072-⎛⎫++= ⎪⎝⎭522545log lg lg +-=C .D .()20.50.51log log=2=【答案】AB【分析】利用指数的运算性质可判断A ;利用对数的运算性质可判断B 、C ;由根式的性质可判断D.【详解】,正确;120318202024172-⎛⎫++=++= ⎪⎝⎭A ,B 正确;52254525421002220log lg lg lg lg lg +-=+-=-=-=,C 不正确;()20.520.510log log log ==,D 不正确.21122a a a =-+-=-故选:AB.10.下列函数中,最小正周期为的是( )π2A .B .cos y x=sin 46y x π⎛⎫=+ ⎪⎝⎭C .D .cos 24y x π=+⎛⎫ ⎪⎝⎭tan2y x=【答案】BD【分析】首先根据函数的性质判断出A 错误,然后再根据三角函数的周期计算公式可判断cos y x =选项C 错误,选项B 和D 正确.【详解】对于A ,由函数的性质可知:函数的最小正周期为,故选项A 错误;cos y x =cos y x=π对于B ,由正弦函数的周期公式可得:,最小正周期为,故选项B 正确;2ππ42T ==π2对于C ,由余弦函数的周期公式可得:,最小正周期为,故选项C 错误;2ππ2T ==π对于D ,由正切函数的周期公式可得:,最小正周期为,故选项D 正确;ππ22T ==π211.设函数,则下列结论正确的是( )()cos 3f x x π⎛⎫=+ ⎪⎝⎭A .的一个周期为B .的图象关于直线对称()f x 2π-()y f x =83x π=C .的一个零点为D .在上单调递减()f x π+6x π=()f x ,2ππ⎛⎫ ⎪⎝⎭【答案】ABC【分析】根据周期、对称轴、零点、单调性,结合整体思想即可求解.【详解】对于A 项,函数的周期为,,当时,周期,故A 项正确;2k π,0k k ∈≠Z 1k =-2T π=-对于B 项,当时,为最小值,此时的83x π=89cos cos cos cos3cos 13333x ππππ⎛⎫⎛⎫+=+=-π=π=- ⎪ ⎪⎝⎭⎝⎭()y f x =图象关于直线对称,故B 项正确;83x π=对于C 项,,,所以的一个零点为,故4()cos 3f x x ππ⎛⎫+=+⎪⎝⎭43cos cos 0632πππ⎛⎫+== ⎪⎝⎭()f x π+6x π=C 项正确;对于D 项,当时,,此时函数有增有减,不是单调函数,故D 项错2x ππ<<54633x πππ<+<()f x 误.故选:ABC.12.已知函数,则下列结论正确的是( )()25()log 23f x x x =--A .函数的单调递增区间是()f x [1,)+∞B .函数的值域是R()f x C .函数的图象关于对称()f x 1x =D .不等式的解集是()1f x <(2,1)(3,4)-- 【答案】BCD【解析】根据对数函数相关的复合函数的单调性,值域,对称性,及解对数不等式,依次判断即可得出结果.【详解】对于A:因为为增函数,所以求的单调递增区间即求()5log f x x=()25()log 23f x x x =--的单调递增区间,即.又对数函数的定义域有,解得.故函223t x x =--[)1,+∞2230x x -->()3,x +∈∞数的单调递增区间是.A 错误;()f x ()3,+∞对于B :,由对数函数的定义域解得:,则,由于,223t x x =--()(),13,x ∈-∞-+∞ 2log y t =0t >所以,即函数的值域是,B 正确;R y ∈()f x R 对于C:,关于对称,所以函数的图象关于对称,故C 正确;()222312t x x x =--=--1x =()f x 1x =对于D: ,即,解得:,故D 正确;()25log 231x x --<22230235x x x x ⎧-->⎨--<⎩(2,1)(3,4)x ∈-- 故选:BCD.三、填空题13.已知扇形的圆心角为,扇形的面积为,则该扇形的弧长为____________.23π3π【答案】2π【解析】利用扇形的面积求出扇形的半径,再带入弧长计算公式即可得出结果.r 【详解】解:由于扇形的圆心角为,扇形的面积为,23απ=3π则扇形的面积,解得:,221123223S r r παπ==⨯⨯=3r =此扇形所含的弧长.2323l r παπ==⨯=故答案为:.2π14.已知函数的图象恒过点,且点在角的终边上,则的值()()log 130,1a y x a a =-+>≠A A αsin α为______.【分析】根据对数函数过定点的求法可求得点坐标,由三角函数定义可直接得到结果.A【详解】当时,,,.2x =log 133a y =+=()2,3A ∴sin α∴==15.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式<0的解集为________.()()f x f x x --【答案】(-1,0)∪(0,1)【分析】首先根据奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,得到f (-1)=0,且在(-∞,0)上也是增函数,从而将不等式转化为或,进而求得结果.0()0x f x >⎧⎨<⎩0()0x f x <⎧⎨>⎩【详解】因为f (x )为奇函数,且在(0,+∞)上是增函数,f (1)=0,所以f (-1)=-f (1)=0,且在(-∞,0)上也是增函数.因为=2·<0,()()f x f x x --()f x x 即或0()0x f x >⎧⎨<⎩0()0x f x <⎧⎨>⎩解得x ∈(-1,0)∪(0,1).故答案为:(-1,0)∪(0,1).【点睛】该题考查的是有关函数的问题,涉及到的知识点有函数奇偶性与单调性的应用,属于简单题目.16.已知,且是第二象限角.则的值为__________.3cos 5α=-α()()()sin 6cos sin tan 2απαπααπ+-⎛⎫+- ⎪⎝⎭【答案】##-0.635-【分析】由诱导公式化简求值.【详解】由,∴.3cos 5α=-()()()sin 6πcos sin cos sin cos 3cos πcos tan sin 5sin tan π2αααααααααααα+-====-⎛⎫+- ⎪⎝⎭故答案为:35-四、解答题17.计算下列各式的值:(1);)21132330.0021028---⎛⎫-+-⨯+ ⎪⎝⎭(2)7log 2log lg25lg47++0.53954-⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭()281lg500lg lg6450lg2lg5+-++【答案】(1)1679 -(2)15 4(3)2 e3 +(4)52【分析】(1)(3)利用指数的运算性质化简可得所求代数式的值;(2)(4)利用对数的运算性质化简可得所求代数式的值.【详解】(1)解:原式())212123232331271315001021 85008----⎛⎫⎛⎫⎛⎫=-⨯+=+-⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭4167201.99=+-+=-(2)解:原式143115log3lg100222.44-=++=-++=(3)解:原式.20.52211e e33⨯⎛⎫=-++=+⎪⎝⎭(4)解:原式.()2881lg500lg lg850lg10lg50050lg1005052558⎛⎫=+-+=⨯⨯+=+=⎪⎝⎭18.已知函数.()π2sin2,R4f x x x⎛⎫=-∈⎪⎝⎭(1)求函数的单调递增区间;()f x(2)求函数在区间上的值域.()f xππ,44⎡⎤-⎢⎣⎦【答案】(1)π3ππ,π,88k k k⎡⎤-++∈⎢⎥⎣⎦Z(2)⎡-⎣【分析】(1)根据复合函数的单调性可知,内层函数单调递增,找外层函数的单调递增区间整体代入化简求解.(2)根据的范围,求出内层函数的范围,根据内层函数的范围求函数的值域.xπ24x-【详解】(1)证明:令,πππ2π22π,242k x k k-+≤-≤+∈Z得π3πππ,.88k x k k -+≤≤+∈Z 所以函数的单调递增区间:.()f x π3ππ,π,88k k k ⎡⎤-++∈⎢⎥⎣⎦Z (2)因为,所以.ππ,44x ⎡⎤∈-⎢⎣⎦π3ππ2,444x ⎡⎤-∈-⎢⎥⎣⎦所以.πsin 24x ⎡⎛⎫-∈-⎢ ⎪⎝⎭⎣当,即时,;ππ242x -=-π8x =-min ()2f x =-当,即时,.ππ244x -=π4x =max ()f x =所以函数在区间上的值域为.()f x ππ,44⎡⎤-⎢⎥⎣⎦⎡-⎣19.如图,在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终边xOy αx 与单位圆交于点,11(,)P x y cos α=(1)求的值;1y (2)将射线绕坐标原点按逆时针方向旋转后与单位圆交于点,求的值;OP O π222(,)M x y 2x (3)若点与关于轴对称,求的值.N M x tan MON ∠【答案】(1)1y =(2)2x =(3)43-【分析】(1)由三角函数的定义得到,再根据且点在第一象限,即可求出;1x 22111x y +=P 1y (2)依题意可得,再由(1),即可得解;2πcos()sin 2x αα=+=-1sin y α=(3)首先求出的坐标,连接交轴于点,即可得到,再利用二倍角公式计N MN x Q tan 2MOQ ∠=算可得;【详解】(1)解:因为角的终边与单位圆交于点,且α11(,)P xy cos α=由三角函数定义,得.1x =因为,所以.22111x y +=221115y =-=因为点在第一象限,11(,)P x y 所以1y =(2)解:因为射线绕坐标原点按逆时针方向旋转后与单位圆交于点,OP O π222(,)M x y 所以.2πcos()sin 2x αα=+=-因为,1sin y α=所以.2x =(3)解:因为点与关于轴对称,N M x 所以点的坐标是.N (连接交轴于点,所以. MN x Q tan 2MOQ ∠=所以tan tan 2MON MOQ∠=∠.222tan 2241tan 123MOQ MOQ ∠⨯===--∠-所以的值是.tan MON ∠43-20.已知定义域为 的函数是奇函数.R 2()2xxb f x a -=+(1)求 的值;,a b (2)用定义证明 在上为减函数;()f x (,)-∞+∞(3)若对于任意 ,不等式 恒成立,求的范围.R t ∈()()22220f t t f t k -+-<k 【答案】(1),.1a =1b =(2)证明见解析.(3)1,3⎛⎫-∞- ⎪⎝⎭【分析】(1)根据函数为奇函数,利用奇函数性质即可求得答案.(2)根据函数单调性的定义即可证明结论.(3)利用函数的奇偶性和单调性将恒成立,转化为对任意的()()22220f t t f t k -+-<232k t t <-都成立,结合求解二次函数的最值,即可求得答案.R t ∈【详解】(1)为上的奇函数,,可得()f x R 002(0)02b f a -∴==+1b =又 , ,解之得,(1)(1)f f -=-11121222aa ----∴=-++1a =经检验当 且时, ,1a =1b =12()21xxf x -=+满足是奇函数,1221()()2112x x x xf x f x -----===-++故,.1a =1b =(2)由(1)得,122()12121x x xf x -==-+++任取实数 ,且,12,x x 12x x <则 ,()()()()()211212122222221212121x x x x x x f x f x --=-=++++,可得,且,故,12x x < 1222x x <()()1221210x x ++>()()()211222202121x x x x ->++,即,()()120f x f x ∴->()()12f x f x >所以函数在上为减函数;()f x (,)-∞+∞(3)根据 (1)(2)知,函数是奇函数且在上为减函数.()f x (,)-∞+∞不等式恒成立,∴()()22220f t t f t k -+-<即恒成立,()()()222222f t t f t k f t k-<--=-+也就是:对任意的都成立,2222t t t k ->-+R t ∈即对任意的都成立,232k t t <-R t ∈ ,当时取得最小值为,221132333t t t ⎛⎫-=-- ⎪⎝⎭ 13t =232t t -13-,即的范围是.13k ∴<-k 1,3⎛⎫-∞- ⎪⎝⎭21.已知函数的最小正周期.()2sin (0)6f x x πωω⎛⎫=+< ⎪⎝⎭π(1)求函数单调递增区间;()f x (2)若函数在上有零点,求实数的取值范围.()()g x f x m =-0,2π⎡⎤⎢⎥⎣⎦m 【答案】(1)5,,Z 36k k k ππππ⎡⎤++∈⎢⎥⎣⎦(2)[]2,1m ∈-【分析】(1)由最小正周期求得,函数式化简后由正弦函数的单调性求得结论;ω(2)转化为求在上的值域.()f x [0,]2π【详解】(1)因为函数的最小正周期,()2sin (0)6f x x πωω⎛⎫=+< ⎪⎝⎭π所以,由于,所以.2T ππω==0ω<2ω=-所以,()2sin 22sin 266f x x x ππ⎛⎫⎛⎫=-=-- ⎪ ⎪⎝⎭⎝⎭所以函数单调递增区间,只需求函数的单调递减区间,()f x 2sin 26y x π⎛⎫=- ⎪⎝⎭令,解得,3222,Z262k x k k πππππ+-+∈ 5,Z 36k x k k ππππ+≤≤+∈所以函数单调递增区间为.()f x 5,,Z 36k k k ππππ⎡⎤++∈⎢⎥⎣⎦(2)因为函数在上有零点,()()g x f x m =-0,2π⎡⎤⎢⎥⎣⎦所以函数的图像与直线在上有交点,()y f x =y m =0,2π⎡⎤⎢⎥⎣⎦因为,50,,2,2666x x ππππ⎡⎤⎡⎤∈-∈-⎢⎥⎢⎥⎣⎦⎣⎦故函数在区间上的值域为()f x 0,2π⎡⎤⎢⎥⎣⎦[]2,1-所以当时,函数的图像与直线在上有交点,[]2,1m ∈-()y f x =y m =0,2π⎡⎤⎢⎥⎣⎦所以当时,函数在上有零点.[]2,1m ∈-()()g x f x m =-0,2π⎡⎤⎢⎥⎣⎦22.已知函数.44()log (2)log (4)f x x x =++-(1)求的定义域;()f x (2)若函数,且对任意的,,恒成立,求实1()42x x g x a a +=⋅--1[5,6]x ∈2[1,2]x ∈()()12f x g x <数a 的取值范围.【答案】(1).(2)(2,+∞).(4,)+∞【解析】(1)使对数式有意义,即得定义域;(2)命题等价于,如其中一个不易求得,如不易求,则转化为max min ()()f x g x <min ()g x 恒成立,再由其它方法如分离参数法求解或由二次不等式恒成立问题求解.max ()()f x g x <【详解】(1)由题可知且,20x +>40x ->所以.>4x 所以的定义域为.()f x (4,)+∞(2)由题易知在其定义域上单调递增.()f x 所以在上的最大值为,()f x [5,6]x ∈4(6)log 162f ==对任意的恒成立等价于恒成立.1[5,6],x ∈2[1,2],x ∈()()12f x g x <max ()2()f x g x =<由题得.()2()222x x g x a a=⋅-⋅-令,则恒成立.2([2,4])x t t =∈2()22h t a t t a =⋅-->当时,,不满足题意.0a =1t <-当时,,a<022242482a a a a ⎧⋅-->⎨⋅-->⎩解得,因为,所以舍去.2a >a<0当时,对称轴为,0a >1t a =当,即时,,所以;12a <12a >2242a a ⋅-->2a >当,即时,,无解,舍去;124a ≤≤1142a ≤≤2122a a a a ⎛⎫⋅--> ⎪⎝⎭当,即时,,所以,舍去.14a >10a 4<<2482a a ⋅-->23a >综上所述,实数a 的取值范围为(2,+∞).【点睛】本题考查求对数型复合函数的定义域,不等式恒成立问题.解题时注意转化与化归思想的应用.。
2023-2024学年青海省西宁市城西区高二上册12月月考数学模拟试题(含解析)
2023-2024学年青海省西宁市城西区高二上册12月月考数学模拟试题一、单选题1.设z =-3+2i ,则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限【正确答案】C【分析】先求出共轭复数再判断结果.【详解】由32,z i =-+得32,z i =--则32,z i =--对应点(-3,-2)位于第三象限.故选C .本题考点为共轭复数,为基础题目.2.如图,在平行六面体ABCD -A 1B 1C 1D 1中,E 为A 1C 1的中点,若BE =1xAA +y AB +z AD,则().A .x =1,12y =,12z =-B .x =1,12y =-,12z =C .12x =,y =1,12z =-D .12x =-,y =1,12z =【正确答案】B【分析】利用空间向量的加减及数乘运算法则进行计算,解决空间向量基本定理问题.【详解】由题意得:()11111111112BE BB B A A E AA AB A B A D =++=-++1111112222AA AB AB AD AA AB AD =-++=-+ ,所以111,,22x y z ==-=故选:B3.设非零向量a ,b满足a b a b +=- ,则A .a ⊥bB .=a bC .a ∥bD .a b> 【正确答案】A【详解】由a b a b +=- 平方得222222a a b b a a b b +⋅+=-⋅+ ,即0a b ⋅= ,则a b ⊥ ,故选A.本题主要考查了向量垂直的数量积表示,属于基础题.4.我国古代有着辉煌的数学研究成果.《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、……《缉古算经》等10部专著,有着十分丰富多彩的内容,是了解我国古代数学的重要文献.这10部专著中有7部产生于魏晋南北朝时期.某中学拟从这10部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是魏晋南北朝时期专著的概率为.A .1415B .115C .29D.【正确答案】A【分析】设所选2部专著中至少有一部是魏晋南北朝时期专著为事件A ,可以求(P A ,运用公式()1()P A P A =-,求出()P A .【详解】设所选2部专著中至少有一部是魏晋南北朝时期专著为事件A ,所以232101(15C P A C =,因此114()1()=11515P A P A =--=,故本题选A.本题考查了求对立事件的概率问题,考查了运算能力.5.已知向量()0,1,0a = ,()3,0,2b = ,()2,1,3c =-,则有().A .23a c b=- B .a b c+= C .()b a c⊥- D .a b b c c a⋅=⋅=⋅ 【正确答案】C【分析】对于A ,利用向量的线性运算的坐标表示即可求解;对于B ,利用向量的摸的坐标表示即可求解;对于C ,利用向量的线性运算的坐标表示及向量垂直的坐标表示即可求解;对于D ,利用向量的数量积的坐标运算即可求解.【详解】对于A ,因为()0,1,0a = ,()3,0,2b = ,()2,1,3c =- ,所以242,0,33b ⎛⎫= ⎪⎝⎭ ,2140,1,33c b ⎛⎫-=- ⎪⎝⎭ ,所以23a c b ≠- ,故A 不正确;对于B ,因为()0,1,0a = ,()3,0,2b = ,()2,1,3c =-,所以1,a ==b == ,c == ,所以a b c +≠ ,故B 不正确;对于C ,因为()0,1,0a = ,()2,1,3c =- ,所以()2,0,3a c -=-,又()3,0,2b = ,所以()()3200320b a c ⋅-=⨯-+⨯+⨯= ,即()b ac ⊥-,故C 正确.对于D ,因为()0,1,0a = ,()3,0,2b = ,()2,1,3c =- ,所以0310020a b ⋅=⨯+⨯+⨯=,()3201230b c ⋅=⨯+⨯+⨯-= ,()2011301c a ⋅=⨯+⨯+-⨯= ,所以a b b c c a ⋅=⋅≠⋅,故D 不正确.故选:C.6.已知sin cos αα-=α∈(0,π),则tan α=A .-1B .2C .2D .1【正确答案】A 【详解】sin cos αα-=()0,απ∈,12sin cos 2αα∴-=,即sin 21α=-,故34πα=1tan α∴=-故选A 7.曲线2122y x =+在点51,2⎛⎫- ⎪⎝⎭处的切线的倾斜角为()A .34πB .4πC .23πD .3π【正确答案】A【分析】根据导数的几何意义得到点51,2⎛⎫- ⎪⎝⎭处切线的斜率,再根据斜率求倾斜角即可.【详解】=y x ',所以在点51,2⎛⎫- ⎪⎝⎭处的切线的斜率为-1,倾斜角为34π.故选:A.8.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++=【正确答案】A【详解】与直线480x y +-=垂直的直线l 为40x y m -+=,即4y x =在某一点的导数为4,而34y x '=,所以4y x =在(1,1)处导数为4,此点的切线为430x y --=,故选A9.四面体OABC 中,OA a = ,OB b = ,OC c =,点M 在线段OC 上,且2OM MC =,N 为BA 中点,则MN为()A .121232a b c-+ B .211322a b c-++C .112223a b c+-r r r D .221332a b c++ 【正确答案】C【分析】利用空间向量的线性运算及空间向量基本定理,结合图像即可得解.【详解】解:根据题意可得,()2111232223MN MO ON OC OA OB a b c =+=-++=+-.故选:C.10.椭圆()222210x y a b a b+=>>上一点A 关于原点的对称点为B ,F 为其左焦点,若AF BF ⊥,设ABF α∠=,且,124ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率的取值范围为()A.,12⎤⎢⎥⎣⎦B.⎣⎦C.⎫⎪⎪⎣⎭D.⎣⎦【正确答案】B【分析】确定四边形1AFBF为矩形,得到1π4e α=⎛⎫+ ⎪⎝⎭,根据三角函数的性质得到离心率范围.【详解】设椭圆右焦点为1F ,连接1AF ,1BF ,AF BF ⊥,则四边形1AFBF 为矩形,则12sin 2cos 2AF AF AF BF c c a αα+=+=+=,故11πsin cos 4e ααα=+⎛⎫+ ⎪⎝⎭,ππ124α⎡⎤∈⎢⎥⎣⎦,,则ππ32π,4α⎡⎤+∈⎢⎥⎣⎦,πsin ,142α⎤⎛⎫+∈⎥ ⎪⎝⎭⎣⎦,23e ∈⎣⎦.故选:B.11.已知a<0,若直线1:210l ax y +-=与直线()2:140l x a y +++=平行,则它们之间的距离为()A.4B.2CD4【正确答案】A【分析】根据平行关系确定参数,结合平行线之间的距离公式即可得出.【详解】解:直线1:210l ax y +-=与直线()2:140l x a y +++=平行,()120a a ∴+-=,解得2a =-或1a =,又a<0,所以2a =-,当2a =-时,直线1:2210l x y -+=与直线2:2280l x y -+=距离为4=.故选:A12.若圆221x y +=上总存在两个点到点(,1)a 的距离为2,则实数a 的取值范围是()A .(-⋃B .(-C .(1,0)(0,1)-D .(1,1)-【正确答案】A【分析】将问题转化为圆22()(1)4x a y -+-=与221x y +=相交,从而可得2121-<+,进而可求出实数a 的取值范围.【详解】到点(,1)a 的距离为2的点在圆22()(1)4x a y -+-=上,所以问题等价于圆22()(1)4x a y -+-=上总存在两个点也在圆221x y +=上,即两圆相交,故2121-<+,解得0a -<<或0a <<所以实数a 的取值范围为(-⋃,故选:A .二、填空题13.已知椭圆2214x y +=,过11,2P ⎛⎫ ⎪⎝⎭点作直线l 交椭圆C 于A ,B 两点,且点P 是AB 的中点,则直线l 的方程是__________.【正确答案】220x y +-=【分析】设1(A x ,1)y ,2(B x ,2)y ,利用“点差法”、线段中点坐标公式、斜率计算公式即可得出.【详解】解:设1(A x ,1)y ,2(B x ,2)y ,则221144x y +=,222244x y +=,12121212((4)0)))((x x x x y y y y ∴+-++-=.1(1,)2P 恰为线段AB 的中点,即有122x x +=,121y y +=,1212()2()0x x y y ∴-+-=,∴直线AB 的斜率为121212y y k x x -==--,∴直线AB 的方程为11(1)22y x -=--,即220x y +-=.由于P 在椭圆内,故成立.故220x y +-=.14.过点()1,2且与圆221x y +=相切的直线的方程是______.【正确答案】1x =或3450x y -+=【分析】当直线斜率不存在时,可得直线:1l x =,分析可得直线与圆相切,满足题意,当直线斜率存在时,设斜率为k ,可得直线l的方程,由题意可得圆心到直线的距离1d r ==,即可求得k 值,综合即可得答案.【详解】当直线l 的斜率不存在时,因为过点()1,2,所以直线:1l x =,此时圆心(0,0)到直线1x =的距离为1=r ,此时直线:1l x =与圆221x y +=相切,满足题意;当直线l 的斜率存在时,设斜率为k ,所以:l 2(1)y k x -=-,即20kx y k --+=,因为直线l 与圆相切,所以圆心到直线的距离1d r ==,解得34k =,所以直线l 的方程为3450x y -+=.综上:直线的方程为1x =或3450x y -+=故1x =或3450x y -+=15.已知椭圆2211612x y +=的左、右焦点分别为12,,F F AB 是椭圆过焦点1F 的弦,则2ABF △的周长是___.【正确答案】16根据椭圆的定义求解.【详解】由椭圆的定义知12122,2,BF BF a AF AF a ⎧+=⎪⎨+=⎪⎩所以22||416AB AF BF a ++==.故16.16.已知P 为圆22(1)1x y ++=上任意一点,A ,B 为直线3470x y +-=上的两个动点,且||2AB =,则PAB 面积的最大值是___________.【正确答案】3【分析】直接利用直线和圆的位置关系,利用点到直线的距离公式和三角形的面积公式的应用求出结果.【详解】解:根据圆的方程,圆心(1,0)-到直线3470x y +-=的距离2d =,所以圆上的点P 到直线的最大距离213max d =+=,此时最大面积13232PAB S =⨯⨯=△.故3.三、解答题17.已知直线12:310,:(2)0l ax y l x a y a ++=+-+=.(1)若12l l ⊥,求实数a 的值;(2)当12l l //时,求直线1l 与2l 之间的距离.【正确答案】(1)32a =;(2【分析】(1)由垂直可得两直线系数关系,即可得关于实数a 的方程.(2)由平行可得两直线系数关系,即可得关于实数a 的方程,进而可求出两直线的方程,结合直线的距离公式即可求出直线1l 与2l 之间的距离.【详解】(1)由12l l ⊥知3(2)0a a +-=,解得32a =.(2)当12l l //时,有(2)303(2)0a a a a --=⎧⎨--≠⎩,解得3a =.此时12:3310,:30l x y l x y ++=++=,即233:90x y l ++=,则直线1l 与2l 之间的距离d =本题考查了由两直线平行求参数,考查了由两直线垂直求参数的值,属于基础题.18.在△ABC 中,内角A,B ,C 的对边分别为a ,b ,c ,且.(1)求角B 的大小;(2)若b=3,sinC=2sinA ,求a ,c 的值【正确答案】(1)B =60°(2)a c ==【详解】(1)由正弦定理得【考点定位】本题主要考察三角形中的三角函数,由正余弦定理化简求值是真理19.如图,已知正方体1111ABCD A B C D -的棱长为2,E 、F 分别为1AD 、1CD 中点.(1)求证:EF BD ⊥;(2)求两异面直线BD 与1CD 所成角的大小.【正确答案】(1)见解析(2)3π【分析】(1)利用向量乘积为0证明即可;(2)利用向量法求异面直线所成的角.【详解】(1)如图,建立空间直角坐标系D xyz -则(0,0,0),(2,2,0),(1,0,1),(0,1,1)D BEF (1,1,0),(2,2,0)EF BD =-=--因为2200EF BD ⋅=-+=所以EF BD ⊥,即EF BD⊥(2)11(0,2,0),(0,0,2),(0,2,2)C D CD =-1111cos ,2||BD CD BD CD BD CD ⋅==设异面直线BD 与1CD 所成角为θ,则0,2πθ⎛⎤∈ ⎥⎝⎦所以3πθ=,即异面直线BD 与1CD 所成角的大小为3π20.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =2BC =2CC 1=2,点E 是DC的中点.(1)求点D 到平面AD 1E 的距离;(2)求证:平面AD 1E ⊥平面EBB 1.【正确答案】(2)证明过程见解析.【分析】(1)建立空间直角坐标系,求出平面1D AE 的法向量,利用点到平面距离公式求出答案;(2)利用空间向量的数量积为0证明出1,EA EB EA BB ⊥⊥,从而证明出线面垂直,进而证明出面面垂直.【详解】(1)以D 为坐标原点,分别以DA ,DC ,1DD 为x 轴,y 轴,z 轴,建立空间直角坐标系,则()()()()()()110,0,0,1,0,0,0,1,0,0,0,1,1,2,0,1,2,1D A E D B B ,设平面1D AE 的法向量为(),,m x y z = ,则()()()()1,,1,0,10,,1,1,00m D A x y z x z m EA x y z x y ⎧⋅=⋅-=-=⎪⎨⋅=⋅-=-=⎪⎩,令1x =得:1,1y z ==,所以()1,1,1m = ,则点D 到平面AD 1E 的距离为DA m d m⋅= ;(2)()()11,1,0,0,0,1EB BB == ,所以()()1,1,01,1,0110EA EB ⋅=-⋅=-= ,()()11,1,00,0,10EA BB ⋅=-⋅= ,所以1,EA EB EA BB ⊥⊥,因为1EB BB B =,1,EB BB ⊂平面1EBB ,所以EA ⊥平面1EBB ,因为EA ⊂平面1D AE ,所以平面1D AE ⊥平面1EBB .21.某企业为了了解职工对某部门的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示):(1)求频率分布直方图中a 的值;(2)估计该企业的职工对该部门评分的中位数与平均值;(3)从评分在[)40,60的受访职工中,随机抽取2人,求此2人评分都在[)40,50的概率.【正确答案】(1)0.006a =;(2)中位数为5357,均值为76.2;(3)110【分析】(1)根据频率和为1可求频率分布直方图中a 的值;(2)根据组中值可求平均值,根据前3组、前4组的频率和可求中位数.(3)利用古典概型的概率计算公式可求概率.【详解】(1)由直方图可得(0.0040.0180.02220.028)101a +++⨯+⨯=,故0.006a =.(2)由直方图可得平均数为(0.004450.006550.018950.022650.022850.02875)1076.2⨯+⨯+⨯+⨯+⨯+⨯⨯=.前3组的频率和为0.0040.0060.022)100.32++⨯=,前3组的频率和为0.0040.0060.0220.028)100.6+++⨯=,故中位数在[)70,80,设中位数为x ,则700.320.280.510x -+⨯=,故5357x =.故中位数为5357.(3)评分在[)40,60的受访职工的人数为()0.0040.00610505+⨯⨯=,其中评分在[)40,50的受访职工的人数为2,记为,a b在[)50,60的受访职工人数为3,记为,,A B C ,从5人任取2人,所有的基本事件如下:{}{}{}{}{}{}{}{}{}{},,,,,,,,,,,,,,,,,,,a b a A a B a C b A b B b C A B A C B C ,基本事件的总数为10,而2人评分都在[)40,50的基本事件为{},a b ,故2人评分都在[)40,50的概率为110.22.如图,已知椭圆2222:1(0)x y C a b a b +=>>的左、右顶点分别是,A B ,且经过点1,2⎛⎫- ⎪ ⎪⎝⎭,直线:1l x ty =-恒过定点F 且交椭圆于,D E 两点,F 为OA 的中点.(1)求椭圆C 的标准方程;(2)记BDE △的面积为S ,求S 的最大值.【正确答案】(1)2214x y +=(2)2【分析】(1)由直线过定点坐标求得a ,再由椭圆所过点的坐标求得b 得椭圆方程;(2)设()()1122,,,E x y D x y ,直线l 方程与椭圆方程联立消元后应用韦达定理得12122223,44t y y y y t t +==-++,计算弦长DE ,再求得B 到直线l 的距离,从而求得三角形面积,由函数的性质求得最大值.【详解】(1)由题意可得,直线:1l x ty =-恒过定点(1,0)F -,因为F 为OA 的中点,所以||2OA =,即2a =.因为椭圆C经过点1,⎛ ⎝⎭,所以2222112b ⎛ ⎝⎭+=,解得1b =,所以椭圆C 的方程为2214x y +=.(2)设()()1122,,,E x y D x y .由22441x y x ty ⎧+=⎨=-⎩得()224230,0t y ty +--=∆>恒成立,则12122223,44t y y y y t t +==-++,则||ED ===又因为点B 到直线l 的距离d =所以11||22S ED d =⨯⨯==令m =26611m m m m==++,因为1y m m=+,m 时,2110y m'=->,1y m m =+在)m ∈+∞上单调递增,所以当m时,min 13m m ⎛⎫+= ⎪⎝⎭时,故max 2S =.即S的最大值为方法点睛:本题求椭圆的标准方程,直线与椭圆相交中三角形面积问题,计算量较大,属于难题.解题方法一般是设出交点坐标,由(设出)直线方程与椭圆方程联立方程组消元后应用韦达定理,然后由弦长公式求得弦长,再求得三角形的另一顶点到此直线的距离,从而求得三角形的面积,最后利用函数的性质,基本不等式等求得最值.。
2022-2023学年江苏省盐城中学等四校高三上学期12月联考试题 数学(word版)
16.有一张面积为 的矩形纸片 ,其中 为 的中点, 为 的中点,将矩形 绕 旋转得到圆柱 ,如图所示,若点 为 的中点,直线 与底面圆 所成角的正切值为 , 为圆柱的一条母线(与 , 不重合),则当三棱锥 的体积取最大值时,三棱锥 外接球的表面积为___________.
22.已知函数 .( 是自然对数的底数)
(1)若 ,求 的单调区间;
(2)若 ,试讨论 在 上的零点个数.(参考数据: )
2023届高三年级第一学期四校联考
数学试卷参考答案
1.B2.C3.A4.A5.A6.C7.B8.C
解:设 ,则 (不恒为零),
C.圆 的圆心为 ,半径为
D.圆 的圆心为 ,半径为
3.已知向量 , , , ,则下列说法正确的是()
A.若 ,则 有最小值 B.若 ,则 有最小值
C.若 ,则 的值为 D.若 ,则 的值为1
4.2021年4月29日,中国空间站天和核心舱发射升空,这标志着中国空间站在轨组装建造全面展开,我国载人航天工程“三步走”战略成功迈出第三步.到今天,天和核心舱在轨已经九个多月.在这段时间里,空间站关键技术验证阶段完成了5次发射、4次航天员太空出舱、1次载人返回、1次太空授课等任务.一般来说,航天器绕地球运行的轨道近似看作为椭圆,其中地球的球心是这个椭圆的一个焦点,我们把椭圆轨道上距地心最近(远)的一点称作近(远)地点,近(远)地点与地球表面的距离称为近(远)地点高度.已知天和核心舱在一个椭圆轨道上飞行,它的近地点高度大约351km,远地点高度大约385km,地球半径约6400km,则该轨道的离心率为()
C.当 时,平面 截球O所得截面的周长为
D.当 时,将正四面体ABCD绕EF旋转 后与原四面体的公共部分体积为
高二12月月考(数学)试题含答案
高二12月月考(数学)(考试总分:150 分)一、单选题(本题共计8小题,总分40分)1.(5分)1.直线x﹣y+1=0的斜率为()A.B.﹣C.D.﹣2.(5分)2.已知向量=(2,3,1),=(1,2,0),则|+|等于()A.B.3C.D.93.(5分)3.如图,在三棱柱ABC﹣A1B1C1中,M为A1C1的中点,若=,=,=,则下列向量与相等的是()A.﹣﹣+B.+﹣C.﹣++D.++4.(5分)4.《周髀算经》是中国最古老的天文学和数学著作,书中提到冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列.若冬至、大寒、雨水的日影子长的和是40.5尺,芒种的日影子长为4.5尺,则冬至的日影子长为()A.6.5尺B.13.5尺C.14.5尺D.15.5尺5.(5分)5.在正方体ABCD﹣A1B1C1D1中,M、N分别为棱A1B1和BB1的中点,那么异面直线AM和CN所成角的余弦值是()A.B.C.D.﹣6.(5分)6.历时23天嫦娥五号成功携带月球样品返回地球,标志着中国航天向前迈出一大步.其中2020年11月28日晚,嫦娥五号成功进行首次近月制动,进入一个大椭圆轨道.该椭圆形轨道以月球球心为一个焦点F1,若其近月点A(离月球表面最近的点)与月球表面距离为r1公里,远月点B(离月球表面最远的点)与月球表面距离为r2公里,并且F1,A,B在同一直线上已知月球的半径为R公里,则该椭圆形轨道的离心率为()A.B.C.D.7.(5分)7.已知动点P在直线l1:3x﹣4y+1=0上运动,动点Q在直线l2:6x+my+4=0上运动,且l1∥l2,则|PQ|的最小值为()A.B.C.D.8.(5分)8.若等差数列{a n}的前n项和为S n,首项a1>0,a2020+a2021>0,a2020•a2021<0,则满足S n>0成立的最大正整数n是()A.4039B.4040C.4041D.4042二、多选题(本题共计4小题,总分20分)9.(5分)9.关于双曲线C1:=1与双曲线C2:=1,下列说法正确的是()A.它们的实轴长相等B.它们的渐近线相同C.它们的离心率相等D.它们的焦距相等10.(5分)10.已知圆C1:x2+y2=1和圆C2:x2+y2﹣4x=0的公共点为A,B,则()A.|C1C2|=2B.直线AB的方程是x=C.AC1⊥AC2D.|AB|=11.(5分)11.若数列{a n}满足a1=1,a2=1,a n=a n﹣1+a n﹣2(n≥3,n∈N+),则称数列{a n}为斐波那契数列,又称黄金分割数列.在现代物理、准晶体结构、化学等领域,斐波那契数列都有直接的应用则下列结论成立的是()A.a7=13B.a1+a3+a5+……+a2019=a2020C.S7=54D.a2+a4+a6+……+a2020=a202112.(5分)12.已知正方体ABCD﹣A1B1C1D1的棱长为2,点E,F在平面A1B1C1D1内,若|AE|=,AC⊥DF,则()A.点E的轨迹是一个圆B.点F的轨迹是一个圆C.|EF|的最小值为﹣1D.AE与平面A1BD所成角的正弦值的最大值为三、填空题(本题共计3小题,总分15分)13.(5分)13.若直线x﹣y+1=0与直线mx+3y﹣1=0互相垂直,则实数m的值为.14.(5分)14.若双曲线的渐近线为,则双曲线C的离心率为.15.(5分)16.在平面直角坐标系中,O为坐标原点,过点(,0)的直线l与圆C:x2+y2﹣4x+8=0交于A,B两点,则四边形OACB面积的最大值为.四、解答题(本题共计7小题,总分75分)16.(5分)15.已知四面体ABCD的顶点分别为A(2,3,1),B(1,0,2),C(4,3,﹣1),D(0,3,﹣3),则点D到平面ABC的距离.17.(10分)17.在:①圆C与y轴相切,且与x轴正半轴相交所得弦长为2;②圆C经过点A(4,1)和B(2,3);③圆C与直线x﹣2y﹣1=0相切,且与圆Q:x2+(y﹣2)2=1相外切。
山东省济南市历城区2023-2024学年八年级上学期12月月考数学试题
山东省济南市历城区2023-2024学年八年级上学期12月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A.10︒B.15︒5.某校对部分参加研学活动的中学生的年龄(单位:岁)进行统计,结果如表:年龄13141516人数1342则这些学生年龄的众数和中位数分别是(A.15,15B.15,6.已知(),k b为第四象限内的点,则一次函数..C.D.如图,ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥的长为()A.253B.3548.如图,在△ABC中,AB=AC,MN是ABBC=10cm,则AB的长是()A.17cm B.12cm9.如图,等腰Rt OAB的斜边OA在x轴的正半轴上,OB的长为半径画弧,交OA于点C,再分别以点径画弧,两弧交于点E,作射线OE交AB于点标为()A .22,2⎛⎫⎪ ⎪⎝⎭B 10.已知A ,B 两地间有汽车站地(客货车在A ,C 两地间沿同一条路行驶)货车的速度是客车速度的关系图象,小明由图象信息得出如下结论:①货车速度为60千米/时②B 、C 两地相距③货车由B 地到A 地用12小时④客车行驶你认为正确的结论有()A .0B .1二、填空题11.当=a 时,点(2,A a a -12.若一组数据1,2,x ,4的众数是13.若()10y ,,()22,y -为直线y x =--“>”“=”或“<”)14.如图,直线y =x +2与直线y =kx +615.某校规定:学生的平时测试、期中测试、三、解答题17.计算(1)132322-+(2)()()2323263+-+⨯18.解方程组:(1)2431y x x y =-⎧⎨+=⎩(2)217x y x y -=-⎧⎨+=⎩.19.已知()()()1,4,2,0,5,2A B C .(1)在如图所示的平面直角坐标系中描出点,,A B C ,并画出ABC ;(2)画出ABC 关于y 轴对称的A B C ''' ;(3)点P 在x 轴上,并且使得AP PC +的值最小,请写出点P 坐标(___,___)及AP PC +的最小值______.20.如图,点B ,C 分别在A ∠的两边上,点D 是A ∠内一点,DE AB ⊥,DF AC ⊥,垂足分别为E ,F ,且AB AC =,DE DF.=求证:BD CD =.21.2023年,国内文化和旅游行业复苏势头强劲.某社团对30个地区“五一”假期的出游人数进行了调查,获得了它们“五一”假期出游人数(出游人数用m 表示,单位:百万)的数据,并对数据进行统计整理.数据分成5组:A 组:112m ≤<;B 组:1223m ≤<;C 组:2334m ≤<;D 组:3445m ≤<;E 组:4556m ≤<.下面给出了部分信息:a .B 组的数据:12,13,15,16,17,17,18,20.b .不完整的“五一”假期出游人数的频数分布直方图和扇形统计图如下:(1)乙车从A 地到达B 地的速度是________(2)乙车到达B 地时甲车距A 地的路程是(3)求乙车返回途中,甲、乙两车相距24.如图1,已知ABC ,以,AB AC(1)如图2,已知ABC ,以,AB AC 为边分别向外作等腰直角三角形ABD 角形ACE ,连接BE CD 、,猜想BE 与CD 有什么数量关系?并说明理由.(2)如图2,连接DE ,若224,5,6,AB AC BC BC DE ===+的值为(3)运用图.(1),图(2)中所积累的经验和知识,完成下题:如图(3岸相对的两点B 、E 的距离,已经测得45,90,ABC CAE AB ∠=︒∠=︒=,AC AE BE =的长为(结果保留根号).25.如图,在平面直角坐标系中,直线AB :y kx b =+与x 轴交于点A 于点()06B ,,与直线CD 交于点E .已知点D 的坐标为()02,,点C 在A 的左侧且(1)分别求出直线AB 和直线CD 的表达式;(2)在直线CD 上,是否存在一点P ,使得8BEP S = ,若存在,请求出点存在,请说明理由;(3)在坐标轴上,是否存在一点Q ,使得BEQ 是以BE 为直角边的直角三角形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.。
2022-2023学年四川省达州市宣汉县宣汉中学高一年级上册学期12月月考数学试题【含答案】
2022-2023学年四川省达州市宣汉县宣汉中学高一上学期12月月考数学试题一、单选题1.若集合,,则下列结论正确的是( ){}21A x x =-<{}(1)(4)0B x x x =--≥A .B .C .D .A B ⋂=∅A B =R A B ⊆R B A⊆ 【答案】A【分析】解不等式求得集合A 、B ,然后逐一验证所给选项即可.【详解】,{}{}{}2112113A x x x x x x =-<=-<-<=<<,,{}{}(1)(4)014B x x x x x x =--≥=≤≥或{}R14B x x =<< ,选项A 正确;A B ⋂=∅,选项B 错误;{}34A B x x x ⋃=<≥或不是的子集,选项C 错误;A B ,选项D 错误.R A B ⊆ 故选:A .2.若,都为正实数,,则的最大值是( )a b 21a b +=ab A .B .C .D .29181412【答案】B【分析】由基本不等式,结合题中条件,直接求解,即可得出结果.【详解】因为,都为正实数,,a b 21a b +=所以,221212228ab a b ab +⎛⎫=≤=⎪⎝⎭当且仅当,即时,取最大值.2a b =11,42a b ==ab 18故选:D 3.已知,命题“”是真命题的一个充分不必要条件是( ){}|12A x x =≤≤2,0x A x a ∀∈-≤A . B . C .D .4a ≥4a ≤5a ≥5a ≤【答案】C【分析】首先求出命题为真时参数 的取值范围,再找出其一个充分不必要条件;a 【详解】解:因为,为真命题,所以,,因为函{}|12A x x =≤≤2,0x A x a ∀∈-≤()2maxa x ≥x A ∈数在上单调递增,所以,所以()2f x x =[]1,2()2max4x =4a ≥又因为[)[)5,4,+∞+∞ 所以命题“,”是真命题的一个充分不必要条件为2,0x A x a ∀∈-≤{}|12A x x =≤≤5a ≥故选:C【点睛】本题考查全称命题为真求参数的取值范围,以及充分条件、必要条件,属于基础题.4.若函数是定义在上的偶函数,则该函数的最大值为()21f x ax bx =++[]1,2a a --A .5B .4C .3D .2【答案】A【详解】试题分析:偶函数定义域关于原点对称,所以,函数开口向上.由于函120,1a a a --+==数为偶函数,故,所以,最大值为.0b =()21f x x =+()2415f =+=【解析】二次函数最值.5.函数则下列命题正确的是( )21,1()ln ,1x x f x x x ⎧-≤⎪=⎨>⎪⎩A .函数是偶函数B .函数最小值是0()f x ()f x C .函数的单调递增区间是D .函数的图象关于直线对称()f x [)1,+∞()f x 1x =【答案】B【解析】画出函数图像,由图判断.【详解】画出函数图象如图:()fx 可知函数是非奇非偶函数,A 错误;()f x 函数最小值是0,B 正确;()f x函数的单调递增区间是,,C 错误;()f x [)1,+∞()1,0-,,,所以函数不关于对称,D 错误.()01f =()2ln2f =()()02f f ≠1x =故选:B.【点睛】此题考查函数的性质,属于基础题.6.设,,,则a ,b ,c 的大小关系是0.40.5a =0.4log 0.3b =8log 0.4c =A .a <b <c B .c <b <aC .c <a <bD .b <c <a【答案】C【分析】利用指数函数、对数函数的单调性直接求解.【详解】∵0<a=0.50.4<0.50=1,b=log 0.40.3>log 0.40.4=1,c=log 80.4<log 81=0,∴a ,b ,c 的大小关系是c <a <b .故选C .【点睛】利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值的应用,有时候要借助0,1其“桥梁”作用,来比较大小.7.已知函数是幂函数,对任意,,且,满足()()2265m m m f x x -=--1x ()20,x ∈+∞12x x ≠,若,,且,则的值( )()()1212f x f x x x ->-a b ∈R 0a b +>()()f a f b +A .恒大于0B .恒小于0C .等于0D .无法判断【答案】A【解析】利用幂函数的定义求出m ,利用函数的单调性和奇偶性即可求解.【详解】∵函数是幂函数,()()2265mm m f x x -=--∴,解得:m = -2或m =3.25=1m m --∵对任意,,且,满足,1x ()20,x ∈+∞12x x ≠()()12120f x f x x x ->-∴函数为增函数,()f x∴,260m ->∴m =3(m = -2舍去)∴为增函数.()3=f x x 对任意,,且,a b ∈R 0a b +>则,∴- a b >()()()f a f b f b >-=-∴.()()0f a f b +>故选:A【点睛】(1)由幂函数的定义求参数的值要严格按照解析式,x 前的系数为1;(2)函数的单调性和奇偶性是函数常用性质,通常一起应用.二、多选题8.下列说法正确的是( )A .函数的增区间是()22log 23y x x =--()1,+∞B .函数是偶函数2xy =C .函数的减区间是22312x x y --⎛⎫= ⎪⎝⎭()1,+∞D .幂函数图象必过原点【答案】BC【分析】由复合函数单调性、函数的奇偶性和幂函数知识进行判断即可.【详解】对于A ,由解得或,2230x x -->1x <-3x >∴定义域为,()22log 23y x x =--()(),13,-∞-⋃+∞令,则当时,单调递增,2log y t =()0,t ∈+∞2log y t =令,其图象为开口向上,对称轴为直线的抛物线,当时,223t x x =--1x =(),1x ∈-∞单调递减,当时,单调递增,223t x x =--()1,x ∈+∞223t x x =--又∵定义域为,()22log 23y x x =--()(),13,-∞-⋃+∞∴由复合函数的单调性知,的增区间是,故选项A 错误;()22log 23y x x =--()3,+∞对于B ,令,定义域为,,都有,()2xy f x ==R x ∀∈R x -∈R 且,∴是偶函数,故选项B 正确;()()22xxf x f x --===()2xy f x ==对于C ,定义域为,22312x x y --⎛⎫= ⎪⎝⎭R 令,则当时,单调递减,12ty ⎛⎫= ⎪⎝⎭(),t ∈-∞+∞12ty ⎛⎫= ⎪⎝⎭令,由A 选项的判断过程,当时,单调递减,当时,223t x x =--(),1x ∈-∞223t x x =--()1,x ∈+∞单调递增,223t x x =--∴由复合函数的单调性知,的减区间是,故选项C 正确;22312x x y --⎛⎫= ⎪⎝⎭()1,+∞对于D ,幂函数的定义域为,其图象不过原点,故选项D 错误.1y x ={}0x x ≠故选:BC.9.给出下列结论,其中正确的结论是( )A .函数的最大值为2112x y -+⎛⎫= ⎪⎝⎭12B .已知函数(且)在(0,1)上是减函数,则实数a 的取值范围是()log 2a y ax =-0a >1a ≠(1,2]C .在同一平面直角坐标系中,函数与的图象关于直线对称2xy =2log y x =y x =D .若,则的值为13436a b==21a b +【答案】BCD【解析】直接利用复合函数的性质判定的结论,利用对数的运算判断、的结论,利用函数的A B D 对称性判断的结论.C 【详解】解:对于:函数的最小值为,故错误;A 211(2x y -+=12A 对于:已知函数且在上是减函数,B log (2)(0a y ax a =->1)a ≠(0,1)所以,解得,故正确.120a a >⎧⎨-⎩ 12a < B 对于:同一平面直角坐标系中,由于函数与互为反函数,所以他们的的图象关于C 2xy =2log y x =直线对称,故正确;y x =C对于:由于,则,则,同理,D 3436ab==361log 3a =362log 9a =361log 4b =所以,故正确.3621log 361a b +==D 故选:.BCD 【点睛】本题考查复合函数的单调性的应用,复合函数的单调性由“同增异减”的法则判断即可;10.下列说法正确的是( )A .已知方程的解在内,则8x e x =-()(),1k k k Z +∈1k =B .函数的零点是,()223f x x x =--()1,0-()3,0C .函数,的图像关于对称3xy =3log y x =y x =D .用二分法求方程在内的近似解的过程中得到,,3380x x +-=()1,2x ∈()10f <()1.50f >,则方程的根落在区间上()1.250f <()1.25,1.5【答案】ACD【解析】由函数零点的概念判断选项B ,由函数零点存在性定理判断选项AD ,由函数与函数3xy =互为反函数判断选项C.3log y x =【详解】对于选项A ,令,()=8x f x e x +-因为在上是增函数,且,()f x R ()()2170,260f e f e =-<=->所以方程的解在,所以,故A 正确;8x e x =-()1,21k =对于选项B ,令得或,故函数的零点为和,故B 错误;2230x x --==1x -3x =()f x 1-3对于选项C ,函数与函数互为反函数,所以它们的图像关于对称,故C 正确;3xy =3log y x =y x =对于选项D ,由于,所以由零点存在性定理可得方程的根落在区()()()()1.2550,1 1.250f f f f ⋅<⋅>间上,故D 正确.()1.25,1.5故选:ACD三、填空题11________.=【答案】0【分析】根据根式的定义求值.【详解】因为,4π<.440ππ=-+-=故答案为:.0【点睛】本题考查根式的运算,解题时要注意偶次根式表示的非负数.12.函数的单调递增区间是__________.2()ln(2)f x x x =-【答案】(2,+∞)【解析】根据复合函数“同增异减”的方法求函数的单调递增区间,注意函数的定义域.【详解】是复合函数,可以写成,,根据复合函数单调性“同增异()2ln 2y x x =-ln y t =22t x x =-减”的判断方法可知外层函数是增函数,所以只需求在定义域内的单调递增区间,ln y t =22t x x =-,解得:或,函数在单调递增,在单调递减,220x x ->2x >0x <()2,∞+(),0∞-所以函数的单调递增区间是.()2,∞+故答案为:()2,∞+13.函数(且)恒过定点,则______.()log 5a y kx b=-+0a >1a ≠()2,2k b +=【答案】5【分析】根据对数函数的图象与性质,列出方程组,即可求解.【详解】由题意,函数恒过定点,()log 5a y kx b=-+()2,2可得,解得,所以.2512k b -=⎧⎨=⎩3,2k b ==325k b +=+=故答案为:.514.已知 ,方程与的根分别为,若,则1a >e 0+-=x x a ln 0+-=x x a 12,x x 2212122=++m x x x x 的取值范围为___________.m 【答案】()1,+∞【分析】由题意知,与图象交点的横坐标分别为,数形结合知e xy =ln y x =y a x =-12,x x ,结合,即可求解.12x x a +=1a >【详解】方程的根,即与图象交点的横坐标,e 0+-=xx a e xy =y a x =-方程的根,即与图象交点的坐标, ln 0+-=x x a ln y x =y a x =-而与的图象关于直线轴对称,如图所示:e xy =ln y x =y x =与交点为,,y a x =-y x =,22a a ⎛⎫ ⎪⎝⎭12x x a ∴+=,()22121222122∴+=+=+x x x x x x a 又,,即1a >22121221∴++>x x x x 1m >故答案为:()1,+∞四、解答题15.(1)解方程:;24230x x +-+=(2)解不等式:.()3log 23x +<【答案】(1);(2).{}20,log 3{}225x x -<<【分析】(1)使用换元法进行求解;(2)将变为,利用对数函数的单调性进行求解.33log 273log y x =【详解】(1)解:令(),2xt =0t >则,,()()22224222x x x x t ====22222424x x x t +=⋅=⋅=∴原方程可化为(),2430t t -+=0t >解得或,1t =3t =∴或,21x=23x =解得或,0x =2log 3x =∴原方程的解集为.{}20,log 3(2)解:原不等式等价于,即,()333log 2log 3x +<()33log 2log 27x +<∵是定义在上的增函数,3log y x =()0,∞+∴由,有,()33log 2log 27x +<0227x <+<∴,225x -<<∴原不等式的解集为.{}225x x -<<16.菜农小李种植的某种蔬菜计划以每千克5元的价格对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.小李为了减少损失,对价格经过两次下调,以每千克3.2元的价格对外批发销售.(1)若两次下调的幅度相同,求每次下调的百分率;(2)小华准备到小李处购买5吨该蔬菜,因数量多,小李决定在给予两种优惠方案以供选择:方案一,打九折销售;方案二,不打折,每吨蔬菜优惠200元.试问小华选择那种方案更优惠?请说明理由.【答案】(1)20%(2)小华选择方案一更优惠;理由见解析【分析】(1)设每次下调的百分率为,由题意得,求解即可;x ()251 3.2x -=(2)分别计算方案一和方案二所需费用,比较即可得解.【详解】(1)设每次下调的百分率为,x 由题意得:,解得:,(舍去)()251 3.2x -=10.220%x ==2 1.8x =所以每次下调的百分率为20%(2)小华选择方案一更优惠. 理由如下:小华选择方案一所需费用:(元)3.20.9500014400⨯⨯=小华选择方案二所需费用:元3.25000200515000⨯-⨯=()因为 ,1440015000<小华选择方案一更优惠.17.已知定义在上的奇函数.在时,.()1,1-()f x ()1,0x ∈-()22x x f x -=+(1)试求的表达式;()f x (2)若对于上的每一个值,不等式恒成立,求实数的取值范围.()0,1x ∈()241x x t f x <⋅⋅-t【答案】(1)()()()221,000220,1x x x x x f x x x --⎧+∈-⎪==⎨⎪--∈⎩(2)0t ≥【分析】(1)依题意可得,再设,根据奇偶性及上的函数解析式,计算()00f =()0,1x ∈()1,0x ∈-可得;(2)依题意参变分离可得,令,,根据指数函数的性质求出函数4141x x t -+>+()4141x xg x -+=+()0,1x ∈的单调性,即可求出函数最小值,从而得解;【详解】(1)解:是定义在上的奇函数,,()f x ()1,1-()00f ∴=因为在时,,()1,0x ∈-()22x xf x -=+设,则,()0,1x ∈()1,0x -∈-则,()()()22x xf x f x -=--=-+故.()()()221,000220,1x x x x x f x x x --⎧+∈-⎪==⎨⎪--∈⎩(2)解:由题意,可化为()241x x t f x <⋅⋅-()22241x x x x t --<⋅⋅--化简可得, 4141x xt -+>+令,,()41214141x x xg x -+==-+++()0,1x ∈因为在定义域上单调递增,在上单调递减,41xy =+()0,12y x =()2,5所以在上单调递减,()g x ()0,1,()()0201041g x g ∴<=-+=+故.0t ≥。
2021-2022学年辽宁省实验中学高一上学期12月月考数学试题(解析版)
2021-2022学年辽宁省实验中学高一上学期12月月考数学试题一、单选题1.设集合{1,2,3,4,5}U =,{}1,3A =,{}2,3,4B =,则()()U UA B =( )A .{}1B .{}5C .{}2,4D .{}1,2,3,4【答案】B【分析】先求,A B 的补集,然后求两个集合的交集,即可得答案. 【详解】依题意,{}{}2,4,5,1,5UU A B ==,所以()(){}5U U A B ⋂=. 故选:B.2.设集合(){}A x I p x =∈,(){}B x I q x =∈,若A B ,则()p x 是()q x 的( ) A .充分必要条件 B .充分非必要条件C .必要非充分条件D .既非充分也非必要条件【答案】B【分析】根据集合的关系及充分条件,必要条件的概念即得. 【详解】因为A B ,(){}A x I p x =∈,(){}B x I q x =∈, 所以()p x 是()q x 的充分非必要条件. 故选:B.3.设命题p :x ∀∈R ,4221x x +>.则p ⌝为( ) A .x ∃∈R ,4221x x +≤. B .x ∀∈R ,4221x x +≤. C .x ∃∈R ,4221x x+<. D .x ∀∈R ,4221x x+<. 【答案】A【分析】根据全称命题的否定是特称命题可得答案. 【详解】根据全称命题的否定是特称命题可得p ⌝为x ∃∈R ,4221x x +≤. 故选:A.4.小明同学在课外阅读中看到一个趣味数学问题“在64个方格上放米粒:第1个方格放1粒米,第2个方格放2粒米,第3个方格放4粒米,第4个方格放8粒米,第5个方格放16粒米,……,第64个方格放632粒米.那么64个方格上一共有多少粒米?”小明想:第1个方格有1粒米,前2个方格共有3粒米,前3个方格共有7粒米,前4个方格共有15粒米,前5个方格共有31粒米,…….小明又发现,1121=-,2321=-,3721=-,41521=-,53121=-,…….小明又查到一个数据:710粒米的体积大约是1立方米,全球的耕地面积大约是131.510⨯平方米,lg 20.3010=,lg1.8360.2640=.依据以上信息,请你帮小明估算,64个方格上所有的米粒覆盖在全球的耕地上厚度约为( ) A .0.0012米 B .0.012米 C .0.12米 D .1.2米【答案】C【分析】由题意知格子上的米粒数是以1为首项,2为公比的等比数列,利用等比数列求和公式可得64个方格上一共有6421-粒米,设米粒覆盖在全球的耕地上厚度约为h ,可得71364210 1.51110=⨯⨯-h ,两边取对数计算可得答案.【详解】第1个方格放1粒米,第2个方格放2粒米,第3个方格放4粒米,第4个方格放8粒米,第5个方格放16粒米,……,可知格子上的米粒数是以1为首项,2为公比的等比数列, 那么64个方格上一共有6464112212-=--粒米, 设米粒覆盖在全球的耕地上厚度约为h ,因为710粒米的体积大约是1立方米,全球的耕地面积大约是131.510⨯平方米, 所以71364210 1.51110=⨯⨯-h , 可得()64641371372112lg lg lg lg 1.51010 1.51010h ⎛⎫-=⨯≈-⨯ ⎪⨯⎝⎭, 用lg1.8360.2640=近似替代lg1.5,所以()641372lg lg 1.51064lg 27lg1.51364lg 2lg1.52010-⨯=---=--0.30100.264020164⨯--=-≈,即lg 1=-h ,可得0.1h =,又0.10.12≈,故64个方格上所有的米粒覆盖在全球的耕地上厚度约为0.12(米). 故选:C.5.下列四组函数中,同组两个函数的值域相同的是( )A .()2xf x =与()2log g x x =B .()12f x x =与()32g x x -=C .()12f x x -=与()13log g x x =D .()2f x x -=与()13xg x ⎛⎫= ⎪⎝⎭【答案】D【分析】根据指数函数,对数函数及幂函数的性质逐项分析即得.【详解】因为函数()2xf x =的值域为()0,∞+,函数()2log g x x =的值域为R ,故A 不合题意; 因为函数()12f x x =的值域为[)0,∞+,函数()32g x x -=的值域为()0,∞+,故B 不合题意;因为函数()12f x x -=的值域为()0,∞+,函数()13log g x x =的值域为R ,故C 不合题意;因为函数()2f x x -=的值域为()0,∞+,函数()13xg x ⎛⎫= ⎪⎝⎭的值域为()0,∞+,故D 正确.故选:D.6.已知函数()f x 是定义域为R 的奇函数,且当0x ≥时,()2f x x x =-,则当0x <时,( )A .()2f x x x =- B .()2f x x x =+C .()2f x x x =-- D .()2f x x x =-+【答案】C【分析】根据函数的奇偶性求解0x <的解析式. 【详解】因为函数()f x 是定义域为R 的奇函数, 当0x <时,0x ->,所以()()()()22f x f x x x x x ⎡⎤=--=----=--⎣⎦, 故选:C7.函数()22221x x f x x -+=的图像简图可能是( )A .B .C .D .【答案】D【分析】由题可得()21111f x x ⎛⎫=+-> ⎪⎝⎭可排除AB ,然后根据0x <时函数值的范围可排除C.【详解】因为()()2222221221111x x x x f x x x x --+⎛⎫===+- ⎪⎝⎭+, 所以()21111f x x ⎛⎫=+-> ⎪⎝⎭,故排除AB ;当0x <时,()2111112f x x ⎛⎫=+->+= ⎪⎝⎭,故排除C.故选:D.8.已知函数()231x x k f x x +=--有4个零点,则k 的取值范围是( )A .1,13⎛⎫- ⎪⎝⎭B .11,3⎛⎫- ⎪⎝⎭C .1,12⎛⎫- ⎪⎝⎭D .11,2⎛⎫- ⎪⎝⎭【答案】B【分析】将函数零点问题转化为曲线23y x x =+与直线1y kx =+的交点问题,如图分析临界直线,可得k 的取值范围.【详解】2310x x kx +--=,即231x x kx +=+,函数1y kx =+表示恒过点()0,1的直线,如图画出函数23y x x =+,以及1y kx =+的图象,如图,有两个临界值,一个是直线过点()3,0-,此时直线的斜率()101033k -==--,另一个临界值是直线与23y x x =--相切时,联立方程得()2310x k x +++=,()2340k ∆=+-=,解得:1k =-,或5k =-,当1k =-时,切点是1,2如图,满足条件,当5k =-时,切点是()1,4-不成立,所以1k =-,如图,曲线23y x x =+与直线1y kx =+有4个交点时,k 的取值范围是11,3⎛⎫- ⎪⎝⎭.故选:B二、多选题9.函数()12xf x ⎛⎫= ⎪⎝⎭,()12log g x x =,()12h x x -=,在区间()0,+∞上( )A .()f x 递减速度越来越慢B .()g x 递减速度越来越慢C .()h x 递减速度越来越慢D .()g x 的递减速度慢于()h x 递减速度【答案】ABC【分析】根据指数函数,对数函数及幂函数的性质即得.【详解】根据指数函数,对数函数及幂函数的性质结合图象可知在区间()0,+∞上,()12xf x ⎛⎫= ⎪⎝⎭递减速度越来越慢,故A 正确;()12log g x x =递减速度越来越慢,故B 正确;()12h x x -=递减速度越来越慢,故C 正确;()h x 的递减速度慢于()g x 递减速度,故D 错误.故选:ABC.10.已知12a <<且53b -<<,则( ) A .a b +的取值范围是()4,5- B .a b -的取值范围是()2,7- C .ab 的取值范围是()10,6- D .b a 的取值范围是35,2⎛⎫- ⎪⎝⎭【答案】ABC【分析】根据不等式的性质逐项分析即得. 【详解】因为12a <<且53b -<<,35b -<-<, 所以45a b -<+<,27a b -<-<,故AB 正确;当50b -<<时,05b <-<,又12a <<,所以010ab <-<,故100ab -<<; 当03b <<时,又12a <<,所以06ab <<;当0b =时,0ab =; 综上,12a <<且53b -<<,可得106ab -<<,故C 正确;当50b -<<时,05b <-<,又1112a <<,所以05ba <-<,故50b a -<<;当03b <<时,又1112a<<,所以03ba <<;当0b =时,0b a =;综上,12a <<且53b -<<,可得53b a-<<,故D 错误. 故选:ABC.11.函数()()2ln e 1xf x x =+-,则( )A .()f x 的定义域为RB .()f x 的值域为RC .()f x 是偶函数D .()f x 在区间[)0,+∞上是增函数【答案】ACD【分析】由题可得函数的定义域判断A ,根据基本不等式及对数函数的性质可得函数的值域判断B ,根据奇偶性的定义可判断C ,根据指数函数,对勾函数及对数函数的性质可判断D.【详解】因为函数()()2ln e 1xf x x =+-,所以函数()f x 的定义域为R ,故A 正确;因为()()()()222e 1ln e 1ln e 1ln e ln ln e e ex xxxx x x f x x -+=+-=+-==+,又e e 2-+≥x x ,当且仅当e e x x -=,即0x =取等号,所以()ln 2f x ≥,故B 错误;因为()()()ln e e x xf x f x --=+=,所以()f x 是偶函数,故C 正确;因为函数e x t =在[)0,+∞上单调递增,且e 1x t =≥,根据对勾函数的性质可知1u t t=+在1t ≥上单调递增,又函数ln y u =为增函数,故函数()f x 在区间[)0,+∞上是增函数,故D 正确. 故选:ACD.12.若定义在R 上的函数()f x 满足: (ⅰ)存在R a +∈,使得()0f a =; (ⅱ)存在R b ∈,使得()0f b ≠;(ⅲ)任意12,R x x ∈恒有()()()()1212122f x x f x x f x f x ++-=. 则下列关于函数()f x 的叙述中正确的是( ) A .任意x ∈R 恒有()()4f x a f x += B .函数()f x 是偶函数C .函数()f x 在区间[]0,a 上是减函数D .函数()f x 最大值是1,最小值是-1【答案】ABD【分析】A 选项,赋值法得到()()f x a f x a +=--,从而得到()()4f x a f x +=; B 选项,令20x =得到()01f =,再令120,x x x ==-得到()()=f x f x -,B 正确; C 选项,可举出反例; D 选项,令12x x t 得到()()20212f f t t +=≥⎡⎤⎣⎦,令2t x =,则()1f x ≥-,由()()f x a f x a +=--,得到()()2f x a f x +=-,故可得()()21f x a f x +=-≤,求出函数()f x 最大值是1,最小值是-1. 【详解】令12,x x x a ==得()()()()20f x a f x a f x f a ++-==,故()()f x a f x a +=--, 上式中,用2x a -代替x 得:()()22f x a a f x a a -+=---,即()()3f x a f x a -=--, 从而()()3f x a f x a +=-,故()()4f x a f x +=,A 正确;()()()()1212122f x x f x x f x f x ++-=,令20x =得:()()()()11120f x f x f x f +=,即()()()11022f x f x f =,∵1R x ∈,()1f x 不恒为0, ∴()01f =,令120,x x x ==-,得()()()()20x f f x x f f +=--,即()()=f x f x -, 又()f x 的定义域为R ,定义域关于原点对称, 所以()f x 为偶函数,B 正确;不妨令()cos f x x =,满足()()()()12121212cos cos f x x f x x x x x x ++-=++- 1212121212cos sin sin c 2cos s co os in sin co s co s s x x x x x x x x x x =-++=,故()()()()1212122f x x f x x f x f x ++-=,此时存在3π2a =,使得3π02f ⎛⎫= ⎪⎝⎭,且存在π3b =,使得()0f b ≠;但函数()f x 在区间0,3π2⎡⎤⎢⎥⎣⎦上不单调,C 错误;令12x x t 得:()()()2220f f f t t +=⎡⎤⎣⎦,即()()20212f f t t +=≥⎡⎤⎣⎦,所以()12f t ≥-,令2t x =,则()1f x ≥-,因为()()f x a f x a +=--,所以()()2f x a f x +=-, 因为()1f x ≥-,所以()()21f x a f x +=-≤, 故函数()f x 最大值是1,最小值是-1. 故选:ABD三、填空题13.51log 25+=______. 【答案】10【分析】根据对数运算求解即可. 【详解】解:551log 2log 215055521+==⨯=⨯ 故答案为:1014.设2log 3a =,3log 5b =,则5log 6=______. 【答案】1a ab+【分析】利用换底公式,结合对数的运算性质进行求解即可. 【详解】∵2lg3log 3lg 2a ==,3lg 5log 5lg 3b ==, ∴lg 3lg 2=a,lg5lg3=b , ∴5lg31lg31lg 6lg 2lg3l 1lg5lg3l o 3g g 6++++=====a a a b b b ab . 故答案为:1a ab+. 15.设方程1502xx ⎛⎫+-= ⎪⎝⎭的解为1x ,2x ,方程12log 50x x +-=的解为3x ,4x ,则1234x x x x +++=______.【答案】10【分析】在同一坐标系下做出函数()12xf x ⎛⎫= ⎪⎝⎭、()12log g x x =,y x =的图象,设1324x x x x <<<,根据函数()12xf x ⎛⎫= ⎪⎝⎭与()12log g x x =的图象关于y x =对称得点111,2⎛⎫⎪⎝⎭x x 与点1244,log ⎛⎫ ⎪⎝⎭x x 、点2122,log x x ⎛⎫ ⎪⎝⎭与点331,2⎛⎫ ⎪⎝⎭x x 都关于y x =对称,求出5、==-y x y x 的交点坐标再根据中点坐标公式计算可得答案.【详解】由方程1502x x ⎛⎫+-= ⎪⎝⎭得152⎛⎫=- ⎪⎝⎭xx ,由方程12log 50x x +-=得12log 5=-x x ,在同一坐标系下做出函数()12xf x ⎛⎫= ⎪⎝⎭、()12log g x x =,y x =的图象,不妨设1324x x x x <<<,如下图,因为函数()12xf x ⎛⎫= ⎪⎝⎭与()12log g x x =的图象关于y x =对称,即点111,2⎛⎫⎪⎝⎭x x 与点1244,log ⎛⎫ ⎪⎝⎭x x 、点2122,log x x ⎛⎫ ⎪⎝⎭与点331,2⎛⎫ ⎪⎝⎭x x 都关于y x =对称, 由5y x y x =⎧⎨=-⎩解得5252x y ⎧=⎪⎪⎨⎪=⎪⎩,即两直线的交点为55,22⎛⎫ ⎪⎝⎭,则231455,2222x x x x ++==,则123410x x x x +++=. 故答案为:10.16.如果函数()()2log 3log 1log a a a f x x a x-=+>在区间[]2,3上是减函数,那么实数a 的取值范围是______. 【答案】[)3,+∞【分析】根据2log 3a -的正负,考虑13a <≤3a >log 32log 3a a -.【详解】()()2log 3log 0,1log a a a f x x a a x-=+>≠,设log a t x =,当13a <≤2log 30a -≤,()2log 3a f t t t-=+单调递增,log a t x =单调递增,故函数()f x 单调递增,不成立;当3a >2log 30a ->,log a t x =单调递增, 故()2log 3a f t t t-=+在[]log 2,log 3a a t ∈上单调递减,故log 32log 3a a - 解得2log 31a -≤≤,故3a ≥.综上所述:3a ≥. 故答案为:[)3,+∞四、解答题17.设a ,b ∈R ,集合{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,求b a -.【答案】2b a -=【分析】根据题意,集合{1,,}{0,,}ba b a b a+=,注意到后面集合中有元素0,由集合相等的意义,结合集合中元素的特征,可得0a b +=,进而分析可得a 、b 的值,计算可得答案. 【详解】解:根据题意,集合{1,,}{0,,}ba b a b a+=,又0a ≠,0a b ∴+=,即a b =-,∴1ba=-, 1b =;故1a =-,1b =, 则2b a -=, 故答案为:2【点睛】本题考查集合元素的特征与集合相等的含义,注意从特殊元素下手,有利于找到解题切入点.18.(1)设()xf x a =(0a >且1a ≠),证明:()()121222f x f x x x f ++⎛⎫≥ ⎪⎝⎭;(2)设()212xx g x -+=,证明:()()121222g x g x x x g ++⎛⎫≥ ⎪⎝⎭.【答案】(1)证明见解析;(2)证明见解析 【分析】(1)结合均值不等式及幂运算即可证明;(2)结合(1)中121222x x x x a a a ++≥得()()()()1222211112222x x x x g x g x -++-++≥,结合均值不等式可得()()22221121221111222xx x x x xx x -++-+++⎛⎫≥-+ ⎪⎝⎭,即可证.【详解】(1)证明:()()121212122222x x x x f x f x x x a a a f ++++⎛⎫=≥== ⎪⎝⎭;(2)证明:由(1)得:()()()()222221111222111112222222x x x x x x x x g x g x -++-+-+-+++=≥,因为()()222211221212111222xx x x x x x x -++-+++=-+22212121212122114222x x x x x x x x x x +++++⎛⎫≥-+=-+ ⎪⎝⎭, 所以()()2222121212221111222x x x x x x x x ++⎛⎫-+ ⎪⎝⎭-++-+≥, 故()()121222g x g x x x g ++⎛⎫≥ ⎪⎝⎭. 19.用水清洗一堆蔬菜上残留的农药,已知用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上.设用x 个单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为()f x .(1)试确定()0f 的值,并解释其实际意义; (2)设()f x cc x=+,其中c 是正的常数.现有A (A >0)个单位量的水,计划把水分成2份后清洗两次,设第一次清洗用水m (0m A <<)个单位量,第二次清洗用水A m -个单位量,试问m 为何值时清洗后蔬菜上残留的农药量最少,说明理由. 【答案】(1)()01f =,答案见解析; (2)当2Am =时清洗后蔬菜上残留的农药量最少,理由见解析.【分析】(1)根据实际意义结合条件即得;(2)由题可得两次清洗后蔬菜上残留的农药量与清洗前残留的农药量之比,然后利用基本不等式即得.【详解】(1)由题意可规定()01f =,表示的是未用清水冲洗蔬菜时,蔬菜上残留的农药量没有变化: (2)两次清洗后蔬菜上残留的农药量与清洗前残留的农药量之比为:()()()()()2c c c y f m f A m c m c A m c m c A m =⋅-=⋅=++-++-⎡⎤⎣⎦,其中0m A <<,因为()()()()222=2c m c A m A c m c A m c +++-⎡⎤⎛⎫++-≤+⎡⎤⎢⎥ ⎪⎣⎦⎝⎭⎣⎦, 当且仅当()c m c A m +=+-时,即2Am =时等号成立,所以()()222c y f m f A m A c =⋅-≥⎛⎫+ ⎪⎝⎭,当且仅当2A m =时等号成立. 所以,当2Am =时清洗后蔬菜上残留的农药量最少. 20.某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物含量P (单位:mg/L )与时间t(单位:h )间的关系为:0e ktP P -=,其中0P ,k 是正的常数.(1)如果过滤5h 消除了废气中20%的污染物,求:过滤15h 后,废气中还剩百分之几的污染物; (2)如果过滤5h 消除了废气中%M 的污染物,那么需要过滤多少时间,废气中的污染物减少50%?(用M 表示)【答案】(1)还剩51.2%的污染物; (2)()5ln 0.5ln 1%t M =-.(或()5ln 2ln 1%t M =--)【分析】(1)由题可得5e 120%k -=-,然后可得15t =时污染物含量,即得; (2)根据条件表示出k ,然后利用函数关系式进而即得. 【详解】(1)因为过滤5h 消除了废气中20%的污染物,所以()500120%ek P P --=,即5e 120%k -=-, 所以当15t =时,()31500e 120%t P P P -==-00.512P =,即过滤15h 后,废气中还剩51.2%的污染物:(2)由题意得()()500001%e 150%e kkt M P P P P --⎧-=⎪⎨-=⎪⎩,即()()00ln 1%5150%e kt M k P P -⎧-=-⎪⎨⎪-=⎩, 所以,()()ln 1% 500150%eM t P P --=,从而,()ln 1%ln 0.55M t -=, 即,()5ln 0.5ln 1%t M =-.(或()5ln 2ln 1%t M =--) 21.已知函数()f x 是函数x y a =(0a >且0a ≠)的反函数,且()21f =. (1)求函数()f x 的解析式; (2)设()()1g x f x =-.(i )写出函数()g x 的单调区间,并指明单调性;(无需证明)(ⅱ)求()g x 在区间[],1t t +(其中R t ∈且0t >)上的的最小值()h t 和最大值()H t . 【答案】(1)()2log f x x =(2)(i )函数()g x 在区间(]0,2上是减函数,在区间[)2,+∞上是增函数;(ⅱ)()()221log 1,01,0,12log 1,2t t h t t t t ⎧-+<≤⎪=<≤⎨⎪->⎩,()()221log ,0log 11,t t H t t t ⎧-<≤⎪⎪=⎨⎪+->⎪⎩【分析】(1)首先设函数()log a f x x =,代入()21f =,即可求解;(2)(ⅰ)首先去绝对值,写成分段函数形式,再根据函数的解析式,直接判断函数的单调区间; (ⅱ)根据函数的单调性,讨论t 的取值,分别求函数的最值.【详解】(1)由题意得()log a f x x =,且log 21a =,所以2a =,从而()2log f x x =.(2)()2221log ,02log 1log 1,2x x g x x x x -<<⎧=-=⎨-≥⎩(i )函数()g x 在区间(]0,2上是减函数,在区间[)2,+∞上是增函数. (ⅱ)当012t t <<+≤时,即1t ≤时,()()()211log 1h t g t t =+=-+,()()21log H t g t t ==-.当2t >时,()()2log 1h t g t t ==-,()()()21log 11H t g t t =+=+-. 当21t t ≤<+时,即12t <≤时,()()20h x g ==,()()()()()22221log 111log log 1log 2g t g t t t t t +-=+---=++-⎡⎤⎣⎦当1t <≤()()21log H t g t t ==-;2t <≤时,()()()21log 11H t g t t =+=+-; 综上,()()221log 1,01,0,12log 1,2t t h t t t t ⎧-+<≤⎪=<≤⎨⎪->⎩,()()221log ,0log 11,t t H t t t ⎧-<≤⎪⎪=⎨⎪+->⎪⎩22.已知函数()232log 1x ax bf x x cx ++=++同时满足下列三个条件:(i )函数()f x 的定义域是R :(ⅱ)函数()f x 是奇函数; (ⅲ)函数()f x 的最大值是1. 求()f x 的解析式.【答案】()2321log 1x x f x x x -+=++或()2321log 1x x f x x x ++=-+.【分析】由题可知()30log 0f b ==,然后根据奇函数可得22a c =,结合条件可得22420x cx ++≥恒成立,且等号成立,进而即得.【详解】由题意可知函数()f x 是定义在R 上的奇函数, 所以()30log 0f b ==,即1b =, 又()()f x f x -=-,所以223322log log 11x ax b x ax b x cx x cx -+++=--+++,所以222211111x ax x ax x cx x cx -+++⋅=-+++, 即()()2222222211x a x x c x +-=+-恒成立;所以22a c =,可得a c =或a c =-, 当a c =时,()0f x =,不合题意, 所以a c =-,()2321log 1x cx f x x cx -+=++, 由题知当x ∈R 时,()232log 11x ax bf x x cx ++=≤++,即22131x cx x cx -+≤++恒成立,且等号成立, 即当x ∈R 时,22420x cx ++≥恒成立,且等号成立; 所以,()244220c ∆=-⨯⨯=, 解得:1c =或1c =-,从而,()2321log 1x x f x x x -+=++或()2321log 1x x f x x x ++=-+,经检验,符合题意;故()2321log 1x x f x x x -+=++或()2321log 1x x f x x x ++=-+.。
北京市2023-2024学年高二上学期12月月考试题 数学含答案
北京市2023—2024学年第一学期12月阶段练习高二数学(答案在最后)2023.12班级__________姓名__________学号__________本试卷共2页,共120分.考试时长90分钟.考生务必将答案写在答题纸上,在试卷上作答无效.一、选择题:本大题共10道小题,共40分.在每小题给出的四个选项中,只有一项符合题目的要求.把正确答案涂写在答题卡上相应的位置..................1.椭圆22154y x +=的焦点坐标是()A.()1,0,()1,0-B.()0,1,()0,1-C.()3,0,()3,0- D.()0,3,()0,3-)2.在空间直角坐标系中,()1,2,3A --,()1,1,1B ---,()0,0,5C -,则ABC 是()A.锐角三角形B.直角三角形C.钝角三角形D.形状不确定3.已知抛物线y 2=2px (p >0)的焦点F 到准线的距离为4,若抛物线上一点P 到y 轴的距离是1,则|PF |等于()A .2B.3C.4D.54.直线0y +-=截圆224x y +=得到的劣弧所对的圆心角的大小为()A.π12B.π6C.π4D.π35.双曲线的渐近线方程为34y x =±,则双曲线离心率为()A.或153B.54或53C.54D.26.如图,一位运动员投掷铅球的成绩是14m ,当铅球运行的水平距离是6m 时,达到最大高度4m.若铅球运行的路线是抛物线,则铅球出手时距地面的高度是()A.2.25mB.2.15mC.1.85mD.1.75m7.“1k =±”是“直线0kx y k -+=与抛物线24y x =有唯一公共点”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既非充分也非必要条件8.将正方形ABCD 沿对角线折成直二面角A BD C --,以下结论中错误..的是()A.AC BD⊥ B.ACD 是等边三角形C.AB 与平面BCD 所成的角为60°D.AB 与CD 所成的角为60°9.若曲线C :22224540x y ax ay a ++-+-=上所有的点均在第二象限内,则a 的取值范围为()A.(,2)-∞- B.(,1)-∞- C.(1,)+∞ D.(2,)+∞10.如图,在正方体1111ABCD A B C D -中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹是()A.直线B.圆C.双曲线D.抛物线二、填空题:本大题共5小题,共25分.把答案填在答题纸中相应的横线上................11.点()2,3关于直线3y x =+的对称点坐标为______________.12.已知1F ,2F 为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A ,B 两点,6AB =,则22AF BF +=______________.13.如图,在四棱锥P ABCD -中,平面PAB ⊥平面ABCD ,底面ABCD 为矩形,:1:2AD AB =,PAB为等边三角形,则直线PD 与平面ABCD 所成角的正弦值为______________.14.已知双曲线C :()22102x y m m-=>,则m =_________;若双曲线1C 与C 不同,且与C 有相同的渐近线,则1C 的方程可以为____________.(写出一个答案即可)15.曲线C 是平面内与定点()2,0F 和定直线2x =-的距离的积等于4的点的轨迹,给出下列四个命题:①曲线C 过坐标原点;②曲线C 关于x 轴对称;③曲线C 与y 轴有3个交点;④若点M 在曲线C 上,则MF 的最小值是2-;其中,所有正确结论的序号是_________.三、解答题:本大题共4小题,共55分.解答应写出文字说明、演算步骤或证明过程,并把答..案写在答题纸中相应位置上.............16.如图,在直三棱柱111ABC A B C -中,12AB AC AA ===,90BAC ∠=︒,E ,F 分别为1CC ,BC 的中点.(1)求异面直线1A B 与EF 所成角的余弦值;(2)求点1B 到平面AEF 的距离;(3)求二面角11B A B E --的余弦值.17.已知椭圆()222210x y a b a b+=>>的焦点是1F ,2F ,且122F F =,离心率为12.(1)求椭圆C 的方程;(2)若椭圆C 与直线y x m =+交于M ,N 两点,且7MN =,求实数m 的值.18.已知圆C :222430x y x y ++-+=.(1)求圆心C 的坐标及半径的大小;(2)已知直线l 与圆C 相切,且在x ,y 轴上的截距相等且不为0,求直线l 的方程;(3)从圆C 外一点(),P x y 向圆引一条切线,切点为M ,O 为坐标原点,且有MP OP =,求点P 的轨迹方程.19.已知椭圆C :()222210x y a b a b+=>>的右焦点为F (1,0),短轴长为2.直线l 过点F 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1)求椭圆C 的方程;(2)证明:直线OM 的斜率与l 的斜率的乘积为定值;(3)延长线段OM 与椭圆C 交于点P ,若四边形OAPB 为平行四边形,求此时直线l 的斜率.北京市2023—2024学年第一学期12月阶段练习高二数学2023.12班级__________姓名__________学号__________本试卷共2页,共120分.考试时长90分钟.考生务必将答案写在答题纸上,在试卷上作答无效.一、选择题:本大题共10道小题,共40分.在每小题给出的四个选项中,只有一项符合题目的要求.把正确答案涂写在答题卡上相应的位置..................1.椭圆22154y x +=的焦点坐标是()A.()1,0,()1,0-B.()0,1,()0,1-C.()3,0,()3,0- D.()0,3,()0,3-)【答案】B 【解析】【分析】先根据椭圆的标准方程判断焦点的位置;再根据a ,b ,c 关系求出c 即可写出焦点坐标.【详解】由椭圆22154y x +=可得:椭圆的焦点在y 轴上,25a =,24b =.则2221c a b =-=,即1c =.所以椭圆的焦点坐标为:()0,1,()0,1-.故选:B2.在空间直角坐标系中,()1,2,3A --,()1,1,1B ---,()0,0,5C -,则ABC 是()A.锐角三角形B.直角三角形C.钝角三角形D.形状不确定【答案】B 【解析】【分析】根据空间中两点距离公式即可求解长度,进而可判断.【详解】由()1,2,3A --,()1,1,1B ---,()0,0,5C -,可得3,3AB AC ====,CB ==,故222,AB AC BC AB AC =+=,因此ABC 是等腰直角三角形,故选:B3.已知抛物线y 2=2px (p >0)的焦点F 到准线的距离为4,若抛物线上一点P 到y 轴的距离是1,则|PF |等于()A.2B.3C.4D.5【答案】B 【解析】【分析】由题意可得4p =,再结合抛物线的定义可求出|PF |【详解】因为抛物线y 2=2px (p >0)的焦点F 到准线的距离为4,所以4p =,所以抛物线的焦点(2,0)F ,准线方程为2x =-,因为抛物线上一点P 到y 轴的距离是1,所以点P 到准线的距离为3,所以由抛物线的定义可得3PF =,故选:B4.直线0y +-=截圆224x y +=得到的劣弧所对的圆心角的大小为()A.π12B.π6C.π4D.π3【答案】D 【解析】【分析】由圆的标准方程找出圆心坐标和半径r ,利用点到直线的距离公式求出圆心C 到已知直线的距离d ,由垂径定理及勾股定理求出直线被圆截得的弦长,即可根据等边三角形求解.【详解】过O 作OC AB ⊥,垂足为点C ,由圆的方程224x y +=,得到圆心O 的坐标为(0,0),半径2r =,0y +-=,∴直线被圆截得的弦||2AB ==,2AB OA OB ∴===,π3AOB ∴∠=,故选:D .5.双曲线的渐近线方程为34y x =±,则双曲线离心率为()A.2或3B.54或53C.54D.2【答案】B 【解析】【分析】根据焦点位置,分两种情况即可根据渐近线方程以及离心率公式求解.【详解】设双曲线方程为22221x y a b -=,则渐近线方程为b y x a =±,故34b a =,离心率为54c a ==,设双曲线方程为22221y x a b -=,则渐近线方程为a y x b =±,故34a b =,离心率为53c a ==,故选:B6.如图,一位运动员投掷铅球的成绩是14m ,当铅球运行的水平距离是6m 时,达到最大高度4m.若铅球运行的路线是抛物线,则铅球出手时距地面的高度是()A.2.25mB.2.15mC.1.85mD.1.75m【答案】D 【解析】【分析】建立坐标系,根据题意可设抛物线方程为2(6)4y a x =-+,其中a<0,再根据点(14,0)B 在抛物线上,代入抛物线方程,得到该抛物线方程,令0x =,可得结论.【详解】以该运动员脚所在的水平线为x 轴,该运动员所处位置的铅垂线为y 轴,建立坐标系如图.铅球运行的水平距离是6m 时,达到最大高度4m ,∴该抛物线的顶点坐标是(6,4),开口向下,设抛物线方程为2(6)4y a x =-+,其中a<0,运动员投掷铅球的成绩是14m ,所以点(14,0)B 在抛物线上,20(146)4a ∴=-+,可得116a =-因此,抛物线方程为21(6)416y x =--+,令0x =,则1364 1.7516y =-⨯+=故选:D .7.“1k =±”是“直线0kx y k -+=与抛物线24y x =有唯一公共点”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既非充分也非必要条件【答案】A 【解析】【分析】联立0kx y k -+=与24y x =,分0k =与0k ≠两种情况,结合根的判别式得到0k =或1±,从而求出答案.【详解】联立0kx y k -+=与24y x =得,()2222240k x k x k +-+=,当0k =时,40x -=,只有一个根,满足要求,当0k ≠时,令()2242440k k ∆=--=,解得1k =±,故直线0kx y k -+=与抛物线24y x =有唯一公共点”时,0k =或1±,故1k =±是“直线0kx y k -+=与抛物线24y x =有唯一公共点”的充分不必要条件.故选:A8.将正方形ABCD 沿对角线折成直二面角A BD C --,以下结论中错误..的是()A.AC BD⊥ B.ACD 是等边三角形C.AB 与平面BCD 所成的角为60° D.AB 与CD 所成的角为60°【答案】C 【解析】【分析】根据直二面角可得面面垂直,即可根据线面垂直求解A,根据长度关系即可求解B ,根据线面垂直得线面角的几何角,即可求解C ,根据平行关系以及线线角的定义即可求解D.【详解】如图,其中二面角A BD C --的平面角为90︒,O 是BD 的中点,则AO BD ⊥,CO BD ⊥,∴直二面角A BD C --的平面角=90AOC ∠︒,对于A ,AO BD ⊥ ,CO BD ⊥,AO CO O = ,AO ⊂平面AOC ,CO ⊂平面AOC ,BD ∴⊥平面AOC ,AC ⊂ 平面AOC ,AC BD ∴⊥,故A 正确;对于B ,设正方形ABCD 的边长为2,在直角AOC 中,AO BO ==,2AC ∴==,ACD ∴是等边三角形,故B 正确;对于D ,可取AD 中点F ,AC 的中点H ,连接OF ,OH ,FH ,设正方形ABCD 的边长为2,由于//,//OF AB HF CD ,所以112OF HF AB ===,而112OH AC ==,故OFH 是等边三角形,OFH ∠即为AB 与CD 所成的角,由于OFH ∠=60︒,所以AB 与CD 所成角为60︒,故D 正确.对于C ,由于平面ABD ⊥平面BCD ,且交线为BD ,,AO BD AO ⊥⊂平面ABD ,所以AO ⊥平面BCD ,故AB 与平面BCD 所成的线面角的平面角是45ABO ∠=︒,故AB 与平面BCD 成60︒的角不正确,故C 错误.故选:C9.若曲线C :22224540x y ax ay a ++-+-=上所有的点均在第二象限内,则a 的取值范围为()A.(,2)-∞-B.(,1)-∞- C.(1,)+∞ D.(2,)+∞【答案】D 【解析】【分析】根据曲线方程可判断出曲线C 是圆心为(),2a a -,半径为2的圆,根据圆的位置可得关于a 的不等式组,解不等式组求得结果.【详解】由题意,曲线C 的标准方程为:22()(2)4x a y a ++-=因此曲线C 为圆心为(),2a a -,半径为2的圆曲线C 上所有的点均在第二象限内222a a -<-⎧∴⎨>⎩,解得:2a >a ∴的取值范围是()2,∞+故选:D10.如图,在正方体1111ABCD A B C D -中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹是()A.直线B.圆C.双曲线D.抛物线【答案】D【解析】【分析】由于P 在平面1BC 内,而11C D ⊥平面1BC ,因此有111PC C D ⊥,这样结合抛物线的定义可得结论.【详解】在正方体中,一定有111PC C D ⊥,∴P 点为平面1BC 内到直线BC 和到点1C 的距离相等的点,其轨迹为抛物线.故选D .【点睛】本题考查抛物线的定义,考查立体几何中的垂直关系.属于跨章节综合题,难度不大.二、填空题:本大题共5小题,共25分.把答案填在答题纸中相应的横线上................11.点()2,3关于直线3y x =+的对称点坐标为______________.【答案】()0,5【解析】【分析】根据中点关系以及垂直斜率关系即可求解.【详解】设点()2,3关于直线3y x =+的对称点坐标为(),a b ,则31232322b a b a -⎧=-⎪⎪-⎨++⎪=+⎪⎩,解得05a b =⎧⎨=⎩,所以对称点为()0,5,故答案为:()0,512.已知1F ,2F 为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A ,B 两点,6AB =,则22AF BF +=______________.【答案】14【解析】【分析】根据焦点三角形的周长即可求解.【详解】椭圆221259x y +=中,5a =,1F ,2F 为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A ,B 两点,∴由椭圆定义知:22||||||420AB AF BF a ++==,||6AB = ,22||||20614AF BF ∴+=-=.故答案为:1413.如图,在四棱锥P ABCD -中,平面PAB ⊥平面ABCD ,底面ABCD 为矩形,:1:2AD AB =,PAB为等边三角形,则直线PD 与平面ABCD 所成角的正弦值为______________.【答案】155【解析】【分析】根据面面垂直可得线面垂直,即可根据线面角的定义找到其平面角,结合三角形的边角关系即可求解.【详解】取AB 中点为O ,连接,PO DO ,由于PAB 是等边三角形,所以PO AB⊥因为平面PAB ⊥平面ABCD ,其交线为AB ,PO ⊂平面PAB ,所以PO ⊥平面ABCD ,PDO ∠是直线PD 与平面ABCD 所成角.不妨设1,2AD AB ==,在等边PAB 中,PO =,DO ==,所以DP ==,故315tan 55OP PDO DP ∠===故直线PD 与平面ABCD 所成角的正弦值为155.故答案为:15514.已知双曲线C :()22102x y m m-=>2,则m =_________;若双曲线1C 与C 不同,且与C 有相同的渐近线,则1C 的方程可以为____________.(写出一个答案即可)【答案】①.2②.221x y -=【解析】【分析】根据题意,由双曲线方程可得焦点坐标以及渐近线方程,再由点到直线的距离公式,代入计算,即可得到结果.【详解】因为双曲线C :()22102x y m m -=>,所以其焦点坐标为()2,0m +,渐近线方程为2m y x =2,222m mm ⨯+=+2m =;所以双曲线C :22122x y -=,渐近线方程为y x =±,若双曲线1C 与C 不同,且与C 有相同的渐近线,则该双曲线只需满足a b =即可,则1C 的方程可以为221x y -=.故答案为:2;221x y -=15.曲线C 是平面内与定点()2,0F 和定直线2x =-的距离的积等于4的点的轨迹,给出下列四个命题:①曲线C 过坐标原点;②曲线C 关于x 轴对称;③曲线C 与y 轴有3个交点;④若点M 在曲线C 上,则MF 的最小值是2-;其中,所有正确结论的序号是_________.【答案】①②④.【解析】【分析】将所求点用(,)x y 直接表示出来,然后根据条件列出方程即可求出轨迹方程,然后根据方程研究性质即可求解①②③,利用消元法,然后利用函数的单调性求最值即可判断④.【详解】设动点的坐标为(,)x y ,曲线C 是平面内与定点(2,0)F 和定直线2x =-的距离的积等于4的点的轨迹,∴|2|4x +=,当0x =时,0y =,∴曲线C 过坐标原点,故①正确;|2|4x +=中的y 用y -代入该等式不变,∴曲线C 关于x 轴对称,故②正确;令0x =时,0y =,故曲线C 与y 轴只有1个交点,故③不正确;|2|4x +=,()()22216202y x x ∴=--≥+,解得-≤≤x ,∴若点M 在曲线C 上,则41)2MF x ==≥=-+,故④正确.故答案为:①②④.三、解答题:本大题共4小题,共55分.解答应写出文字说明、演算步骤或证明过程,并把答..案写在答题纸中相应位置上.............16.如图,在直三棱柱111ABC A B C -中,12AB AC AA ===,90BAC ∠=︒,E ,F 分别为1CC ,BC 的中点.(1)求异面直线1A B 与EF 所成角的余弦值;(2)求点1B 到平面AEF 的距离;(3)求二面角11B A B E --的余弦值.【答案】(1)63;(2;(3)13;【解析】【分析】(1)构建空间直角坐标系,然后根据向量的数量积求解直线夹角;(2)求解面AEF 的法向量,然后根据距离公式求解;(3)根据面11B A B 与面1A BE 的法向量,求解二面角11B A B E --的余弦值;【小问1详解】故以A 为原点,建立如图所示的空间直角坐标系A xyz -,则()0,0,0A ,()10,0,2A =,()2,0,0B ,()12,0,2B =,()0,2,1E ,()1,1,0F ()12,0,2A B =- ,()1,1,1EF =-- ,111cos3A B EFA B EFA B EF⨯+-⨯-⋅==⋅,所以异面直线1A B与EF所成角的余弦值为3.【小问2详解】设面AEF的法向量为(),,n a b c=,()0,2,1AE=,()1,1,0AF=则n AEn AF⎧⋅=⎪⎨⋅=⎪⎩,解得:20b ca b+=⎧⎨+=⎩令1a=,可得()1,1,2n=-,因为()12,0,2AB=u u uu r,所以n AEdn⋅===所以点1B到平面AEF.【小问3详解】AC⊥面11B A B,所以面11B A B-的法向量为()0,0,1AC,设面1A BE的法向量为(),,m x y z=,又()12,0,2A B=-,()10,2,1A E=-,则11m A Bm A E⎧⋅=⎪⎨⋅=⎪⎩,解得:20x zy z-=⎧⎨-=⎩,令1y=,可得()2,1,2m=,11cos133AC mAC mAC m⋅===⨯⋅,,所以二面角11B A B E--的余弦值为13.17.已知椭圆()222210x y a ba b+=>>的焦点是1F,2F,且122F F=,离心率为12.(1)求椭圆C的方程;(2)若椭圆C与直线y xm=+交于M,N两点,且7MN=,求实数m的值.【答案】(1)22143x y +=(2)2±【解析】【分析】(1)由题意求出1,2c a ==,进而得到2b ,求出椭圆方程;(2)联立直线与椭圆方程,根据根的判别式得到m <<式表达出弦长,得到方程,检验后求出答案【小问1详解】由题意得:1222F F c ==,12c a =,解得1,2c a ==,故222413b a c =-=-=,故椭圆C 的方程为22143x y +=;【小问2详解】联立y x m =+与22143x y +=得,22784120x mx m ++-=,()2264284120m m ∆=-->,解得m <<设()()1122,,,M x y N x y ,则212128412,77m m x x x x -+=-=,故M N ====又1227MN =,1227=,解得2m =±,满足m <<故实数m 的值为2±18.已知圆C :222430x y x y ++-+=.(1)求圆心C 的坐标及半径的大小;(2)已知直线l 与圆C 相切,且在x ,y 轴上的截距相等且不为0,求直线l 的方程;(3)从圆C 外一点(),P x y 向圆引一条切线,切点为M ,O 为坐标原点,且有MP OP =,求点P 的轨迹方程.【答案】(1)圆心坐标(1,2)C -,半径r =(2)10x y ++=或30x y +-=;(3)2430x y -+=【解析】【分析】(1)化圆的一般方程为标准方程,从而得到圆心坐标和半径;(2)设出直线的截距式方程,由圆心到切线的距离等于半径列式求得a 的值,则切线方程可求;(3)由切线垂直于过切点的半径及||||MP OP =列式求点P 的轨迹方程.【小问1详解】由圆22:2430C x y x y ++-+=,得:22(1)(2)2x y ++-=,∴圆心坐标(1,2)C -,半径r =【小问2详解】 切线在两坐标轴上的截距相等且不为零,设直线方程(0)x y a a +=≠,圆22:(1)(2)2C x y ++-=,∴圆心(1,2)C -,=1a ∴=-或3a =,所求切线方程为:10x y ++=或30x y +-=;【小问3详解】切线PM 与半径CM 垂直,设(,)P x y 222||||||PM PC CM ∴=-,由MP OP =可得2222(1)(2)2x y x y ++--=+所以点P 的轨迹方程为2430x y -+=.19.已知椭圆C :()222210x y a b a b+=>>的右焦点为F (1,0),短轴长为2.直线l 过点F 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1)求椭圆C 的方程;(2)证明:直线OM 的斜率与l 的斜率的乘积为定值;(3)延长线段OM 与椭圆C 交于点P ,若四边形OAPB 为平行四边形,求此时直线l 的斜率.【答案】(1)2212x y +=(2)证明见解析(3)22k =±【解析】【分析】(1)由题可知,1c =,22b =,再结合222a b c =+,解出a 值即可得解;(2)设直线l 的方程为(1)(0)y k x k =-≠,联立直线l 的方程和椭圆的方程,得韦达定理;利用中点坐标公式以及斜率公式得直线OM 的斜率,进而得解;(3)若四边形OAPB 为平行四边形,则OA OB OP += ,利用平面向量的线性坐标运算可以用k 表示点P 的坐标,再将其代入椭圆方程即可得到关于k 的方程,解之即可得解.【小问1详解】由题意可知,1c =,22b =,222a b c =+ ,∴a =∴椭圆的方程为2212x y +=.【小问2详解】设直线l 的方程为(1)(0)y k x k =-≠,1(A x ,1)y ,2(B x ,2)y ,联立22(1)12y k x x y =-⎧⎪⎨+=⎪⎩,消去y 得,2222(21)4220k x k x k +-+-=,则2122421k x x k +=+,M 为线段AB 的中点,∴21222221M x x k x k +==+,2(1)21M M k y k x k -=-=+,∴12M OM M y k x k==-,∴1122OM l k k k k ⋅=-⨯=-为定值.【小问3详解】若四边形OAPB 为平行四边形,则OA OB OP += ,∴2122421P k x x x k =+=+,121222()221P k y y y k x x k k -=+=+-=+, 点P 在椭圆上,∴2222242()2()22121k k k k -+⨯=++,解得212k =,即2k =±,∴当四边形OAPB 为平行四边形时,直线l的斜率为2k =±.。
2022-2023学年山东省菏泽高二年级上册学期12月月考数学试题【含答案】
2022-2023学年山东省菏泽第一中学高二上学期12月月考数学试题一、单选题1.抛物线的焦点坐标是( )22y x =A .B .C .D .1,02⎛⎫ ⎪⎝⎭1,08⎛⎫ ⎪⎝⎭10,2⎛⎫ ⎪⎝⎭10,8⎛⎫ ⎪⎝⎭【答案】D【分析】先把抛物线化为标准方程,直接写出焦点坐标.【详解】抛物线的方程为,所以焦点在轴22y x =212x y=y 由,122p =所以焦点坐标为.10,8⎛⎫⎪⎝⎭故选:D .2.设为等差数列的前项和,已知,,则( )n S {}n a n 311a =1060S =5a=A .7B .8C .9D .10【答案】A【详解】设等差数列的公差为d ,由题意建立方程,即可求出,d ,再根据等差数列的通项{}n a 1a 公式,即可求出结果.【分析】设等差数列的公差为d ,由题意可知,解得,,{}n a 11211 104560a d a d +=⎧⎨+=⎩115a =2d =-所以.5141587a a d =+=-=故选:A3.设点是关于坐标平面的对称点,则( )B (2,3,5)A xOy ||=AB A .BC .D1038【答案】A【分析】根据空间直角坐标系的坐标特点得点坐标,根据空间中两点间的距离公式计算即可得B .||AB【详解】解:因为点是关于坐标平面的对称点,所以B (2,3,5)A xOy (2,3,5)B -所以.10AB AB ===故选:A.4.已知向量,且与互相平行,则( )()()1,1,0,1,0,=-=a b m ka b + 2a b -k =A .B .C .D .114-153512-【答案】D【分析】由空间向量平行的条件求解.【详解】由已知,,(1,,)ka b k k m +=-2(3,1,2)a b m -=-- 因为与平行,ka b + 2a b -若,则,,0m =131k k-=-12k =-若,则,无解.0m ≠1312k k mm -==--k 综上,,12k =-故选:D .5.设向量,,不共面,空间一点P 满足,则A ,B ,C ,P 四点OA OB OCOP xOA yOB zOC =++ 共面的一组数对是( )(,,)x y z A .B .111(,,)432131(,,)442-C .D .(1,2,3)-121(,,)332-【答案】B【分析】由题设条件可知,A ,B ,C ,P 四点共面等价于,由此对选项逐一检验即可.1x y z ++=【详解】因为向量,,不共面,,OA OB OCOP xOA yOB zOC =++ 所以当且仅当时,A ,B ,C ,P 四点共面,1x y z ++=对于A ,,故A 错误;1111432++≠对于B ,,故B 正确;1311442-++=对于C ,,故C 错误;1231-+≠对于D ,,故D 错误.1211332-++≠故选:B.6.已知数列中,且,则为( ){}n a 11a =()133nn n a a n a *+=∈+N 16a A .B .C .D .16141312【答案】A【分析】采用倒数法可证得数列为等差数列,根据等差数列通项公式可推导得到,代入1n a⎧⎫⎨⎬⎩⎭n a 即可.16n =【详解】由得:,又,133n n n a a a +=+1311133n n n n a a a a ++==+111a =数列是以为首项,为公差的等差数列,,∴1n a ⎧⎫⎨⎬⎩⎭113()1121133nn n a +∴=+-=,.32n a n ∴=+1616a ∴=故选:A.7.已知三个数,,成等比数列,则圆锥曲线的离心率为( )1a92212xy a +=A BC D【答案】D【详解】椭圆、双曲线的方程简单性质,等比数列的性质,分类讨论,由已知求得值,然后分类a 讨论求得圆锥曲线的离心率解决即可.2212x y a +=【解答】因为三个数,,成等比数列,1a 9所以,则.29a=3a =±当时,曲线方程为,表示椭圆,3a =22132x y +=,1当时,曲线方程为,表示双曲线,3a=-22123y x -=.=故选:D 8.若数列是等差数列,首项,公差,则使数列的前项{}n a 10a >()2020201920200,0d a a a <+<{}n a n 和成立的最大自然数是( )n S >n A .4039B .4038C .4037D .4036【答案】B【分析】根据等差数列的单调性,结合等差数列前项和公式进行求解即可.n 【详解】因为,所以等差数列是递减数列,0d <{}n a 因为,()2020201920200a a a +<所以,且,,201920200,0a a ><20192020a a >201920200a a +>()1403920192020403920204038201920204039()40390,403820190,22a a a a S a S a a ++===⨯=+所以使数列的前项和成立的最大自然数是4038.{}n a n 0n S >n 故选:B二、多选题9.下列结论错误的是( )A .过点,的直线的倾斜角为()1,3A ()3,1B -30︒B .若直线与直线平行,则2360x y -+=20ax y ++=23a =-C .直线与直线240x y +-=2410x y ++=D .已知,,点在轴上,则的最小值是5()2,3A ()1,1B -P x PA PB+【答案】AC【分析】对于A ,即可解决;对于B ,由题意得即可解决;对于C ,平行线间距tan AB k α=231a -=离公式解决即可;对于D ,数形结合即可.【详解】对于A ,,即,故A 错误;131tan 312AB k α-===--30α≠︒对于B ,直线与直线平行,所以,解得,故B 正确;2360x y -+=20ax y ++=123a =-23a =-对于C ,直线与直线(即)之间的距离为240x y +-=2410x y ++=1202x y ++=,故C错误;d 对于D ,已知,,点在轴上,如图()2,3A ()1,1B -Px 取关于轴的对称点,连接交轴于点,此时()1,1B -x ()1,1B '--AB 'x P,5=所以的最小值是5,故D 正确;PA PB+故选:AC.10.已知数列的前项和为,,则下列说法不正确的是( ){}n a n n S 25n S n n =-A .为等差数列B .{}n a 0n a >C .最小值为D .为单调递增数列n S 254-{}n a 【答案】BC【分析】根据求出,并确定为等差数列,进而可结合等差数列的性质以及前项和分析求n S n a {}n a n 解.【详解】对于A ,当时,,2n ≥()()221515126n n n a S S n n n n n -⎡⎤==-----=-⎣⎦-时满足上式,所以,1n =114a S ==-26,N n a n n *=-∈所以,()()1216262n n a a n n +-=+---=所以为等差数列,故A 正确;{}n a 对于B ,由上述过程可知,26,N n a n n *=-∈,故B 错误;12340,20,0a a a =-<=-<=对于C ,因为,对称轴为,25n S n n =-52.52=又因为,所以当或3时,最小值为,故C 错误;N n *∈2n =n S 6-对于D ,由上述过程可知的公差等于2,{}n a 所以为单调递增数列,故D 正确.{}n a 故选:BC.11.在正方体中,E ,F ,G 分别为BC ,的中点,则下列结论中正确的1111ABCD A B C D -11CC BB ,是( )A .1D D AF⊥B .点G 到平面的距离是点C 到平面的距离的2倍AEF AEF C .平面1//A G AEFD .异面直线与1A G EF 【答案】BC【分析】对于选项:由以及与不垂直,可知错误;对于选项:利用等体积A 11//DD CC 1CC AF A B 法,可求得结果,进而判断选项正确;对于选项:取的中点,A GEF G AEF A CEF C AEF V V V V ----==B C 11B C ,根据面面平行的性质即可得出平面,可知选项正确; 对于选项:根据线面垂M 1//A G AEF C D 直的判定定理和性质,结合二面角的定义可知错误;D 【详解】对于选项:因为,所以不是等腰三角形,所以与不垂直,因为A 1AC AC ≠1ACC △1CC AF ,所以与不垂直,故选项错误;11//DD CC 1DD AF A 对于选项:设正方体的棱长为2,设点到平面的距离与点到平面的距离分别为B G AEFC AEF ,则,12,h h 11133A GEF GEF G AEF AEF V AB S V h S --=⋅==⋅ ,21133A CEF CEF C AEF AEFV AB S V h S --=⋅==⋅所以,故选项正确;12121221112GEFCEFS h h S ⨯⨯===⨯⨯△△B 对于选项:取的中点,连接,C 11B C M 11,,GM A MBC 由题意可知:,因为,所以,1//GM BC 1//BC EF //GM EF 平面, 平面,所以平面,GM ⊄AEF EF ⊂AEF //GM AEF 因为,平面, 平面,所以平面,1A M AE ∥1A M ËAEF AE ⊂AEF 1//A M AEF 因为平面,所以平面平面,11,,A M GM M A M GM =⊂ 1A GM AEF //1A GM 因为平面,所以平面,故选项正确;1A G ⊂1A GM 1//A G AEF C 对于选项:因为,所以异面直线与所成的角为(或其补角),D 111//,//AD EF A G D F 1A G EF 1AD F ∠设正方体的棱长为2,则,113AD D F AF ===在中,由余弦定理可得:1AD F △错误,22211111cos 2AD D F AF AD F AD D F +-∠===⋅D 故选:.BC 12.下列命题中,正确的命题有( )A .是,共线的充要条件a b a b +=- a b B .若,则存在唯一的实数,使得//a b λa bλ=C .对空间中任意一点和不共线的三点 ,,,若,则,,,O A B C 243OP OA OB OC =-+P A B 四点共面C D .若为空间的一个基底,则构成空间的另一个基底{},,a b c{},2,3a b b c c a+++ 【答案】CD【分析】对A ,向量、同向时不成立;a b a b a b+=- 对B , 为零向量时不成立;b对C ,根据空间向量共面的条件判定;对D ,根据能成为基底的条件判定.【详解】对A ,向量、同向时,,只满足充分性,不满足必要性,A 错误; a b a b a b+≠- ∴∴对B ,应该为非零向量,故B 错误;b对C ,由于得,,243OP OA OB OC =-+ 1324PB PA PC =+若共线,则三向量共线,故,,三点共线,与已知矛盾,,PA PC,,PA PC PB A B C 故不共线,由向量共面的充要条件知共面,而过同一点 ,所以,,PA PC,PB PA PC ,,PB PA PC ,P P ,,四点共面,故C 正确;A B C 对D ,若为空间的一个基底,则,,不共面,{},,a b cab c 假设,,共面,设,a b + 2b c + 3c a + ()()23a b x b c y c a +=+++所以 ,无解,故,,不共面,13102yxx y =⎧⎪=⎨⎪=+⎩a b +2b c + 3c a + 则构成空间的另一个基底,故D 正确.{},2,3a b b c c a+++ 故选: CD .三、填空题13.等比数列中,,,则______.{}n a 39a =-114a =-7a =【答案】6-【分析】由等比数列的性质计算.【详解】因为是等比数列,所以,又的所有奇数项同号,所以.{}n a 2731136a a a =={}n a 76a =-故答案为:.6-14.直线被圆截得的弦长____________230x y +-=()()22214x y -++=【分析】首先求出圆心坐标与半径,再利用点到直线的距离公式求出圆心到直线的距离,最后利用勾股定理与垂径定理计算可得;【详解】圆的圆心为,半径,()()22214x y -++=()2,1-2r =圆心到直线的距离()2,1-d所以直线被圆截得弦长为==.15.已知数列.的前项和为,且.若,则{}n a n n S ()*2120N n n n a a a n +++-=∈11151912a a a ++=______.29S =【答案】116【分析】先判断出数列是等差数列,然后运用等差数列的性质可得答案.【详解】为等差数列,(){}*211220N ,2,n n n n n n n a a a n a a a a +++++-=∈∴=+∴ 111912915111519152,12,4,a a a a a a a a a ∴+=+=++=∴= .129291529292941162a a S a +∴=⨯==⨯=故答案为:116.四、双空题16.如图,在棱长为1的正方体中,M 为BC 的中点,则 与所成角的余ABCD A B C D-''''AM D B''弦值为___________;C 到平面的距离为___________.DA C ''【答案】【分析】第一空根据向量法即可求得异面直线之间的夹角.第二空利用等体积法即可求得.【详解】由已知连接,如图所示建立空间直角坐标系,BD 则,,,()0,0,1A 1,1,12M ⎛⎫ ⎪⎝⎭()0,1,0B '()1,0,0D ' 1,1,02AM ⎛⎫= ⎪⎝⎭ ()1,1,0D B ''=-cos ,AM D B '' 与AM D B ''如图所示设C 到平面的距离为DA C ''d 因为C A DC A DCC V V'''--=1111sin 601113232d d ⨯⋅=⨯⨯⨯⨯⇒=五、解答题17.已知等差数列的前项和为,等比数列的前项和为,.{}n a n n S {}n b n n T 11221,1,2a b a b =-=+=(1)若,求的通项公式;335a b +={}n b (2)若,求.321T =3S 【答案】(1);(2)当时,.当时,.12n n b -=5q =-321S =4q =36S =-【分析】设的公差为d ,的公比为q ,{}n a {}n b (1)由条件可得和,解方程得,进而可得通项公式;3d q +=226d q +=12d q =⎧⎨=⎩(2)由条件得,解得,分类讨论即可得解.2200q q +-=5,4q q =-=【详解】设的公差为d ,的公比为q ,则,.{}n a {}n b 1(1)n a n d =-+-1n n b q -=由得.①222a b +=3d q +=(1)由得②335a b +=226d q +=联立①和②解得(舍去),30d q =⎧⎨=⎩12d q =⎧⎨=⎩因此的通项公式为.{}n b 12n n b -=(2)由得.131,21b T ==2200q q +-=解得.5,4q q =-=当时,由①得,则.5q =-8d =321S =当时,由①得,则.4q =1d =-36S =-【点睛】本题主要考查了等差数列和等比数列的基本量运算,属于基础题.18.如图,平行六面体的底面是菱形,且,1111ABCD A B C D -1160C CB C CD BCD ∠=∠=∠=︒.12CD CC ==(1)求的长;1AC (2)求异面直线与所成的角.1CA 1DC【答案】(1)1AC =(2)90°.【分析】(1)因为三组不共线,则可以作为一组基底,用基底表示向量,平方即求1,,CD CB CC 1AC 得模长.(2) 求出两条直线与的方向向量,用向量夹角余弦公式即可.1CA 1DC 【详解】(1)设,,,构成空间的一个基底.CD a = CB b = 1CC c = {},,a b c 因为,()11()AC CC CD CB c a b =-+=-+ 所以()22211AC AC c a b ⎡⎤==-+⎣⎦ 222222c a b a c b c a b=++-⋅-⋅+⋅ ,12222cos 608=-⨯⨯⨯︒=所以1AC =(2)又,,1CA a b c =++ 1DC c a =- 所以()()11CA DC a b c c a ⋅=++⋅- 220c a b c a b =-+⋅-⋅= ∴11CA DC ⊥ ∴异面直线与所成的角为90°.1CA 1DC 19.已知等差数列的前n 项和为.{}n a 258,224,100n S a a S +==(1)求{an }的通项公式;(2)若,求数列{}的前n 项和Tn .+11n n n b a a =n b 【答案】(1)31n a n =-(2)2(32)n nT n =+【分析】(1)由等差数列的通项公式以及等差数列的前n 项和公式展开可求得结果;(2)由裂项相消求和可得结果.【详解】(1)设等差数列的公差为d ,由题意知,{}n a 解得:1112()4248(81)81002a d a d a d +++=⎧⎪⎨⨯-+=⎪⎩123a d =⎧⎨=⎩∴.1(1)23(1)31n a a n d n n =+-=+-=-故的通项公式为.{}n a 31n a n =-(2)∵1111((31)(32)33132n b n n n n ==--+-+111111111111()()()(325358381133132111111111 ()325588113132111 =(3232=2(32)n T n n n n n n n =⨯-+⨯-+⨯-++--+=⨯-+-+-++--+⨯-++ 即:的前n 项和.{}n b 2(32)n nT n =+20.如图,在直三棱柱中,,,,交于点111ABC A B C -2AB AC ==14AA =AB AC ⊥1BE AB ⊥1AA E ,D 为的中点.1CC(1)求证:平面;BE ⊥1AB C (2)求直线与平面所成角的正弦值.1B D 1AB C 【答案】(1)证明见解析;【分析】(1)先证明,从而可得平面,进而可得,再由线面垂直1AA AC ⊥AC ⊥11AA B B AC BE ⊥的判定定理即得;(2)建立空间直角坐标系,利用线面角的向量求法即得.【详解】(1)因为三棱柱为直三棱柱,111ABC A B C -所以平面,又平面,1AA ⊥ABC AC ⊂ABC 所以,1AA AC ⊥又,,平面,平面,AC AB ⊥1AB AA A ⋂=AB ⊂11AA B B 1AA ⊂11AA B B 所以平面,AC ⊥11AA B B 因为平面,BE ⊂11AA B B 所以,AC BE ⊥又因为,,平面,平面,1BE AB ⊥1AC AB A ⋂=AC ⊂1AB C 1AB ⊂1AB C 所以平面;BE ⊥1AB C (2)由(1)知,,两两垂直,如图建立空间直角坐标系,AB AC 1AA A xyz -则,,,,,()0,0,0A ()12,0,4B ()0,2,0C ()2,0,0B ()0,2,2D 设,,,,()0,0,E a ()12,0,4AB = ()2,0,BE a =- ()0,2,0AC = 因为,1AB BE⊥ 所以,即,则,440a -=1a =()2,0,1BE =- 由(1)平面的一个法向量为,1AB C ()2,0,1BE =- 又,()12,2,2B D =-- 设直线与平面所成角的大小为,则1B D 1AB C π20θθ⎛⎫≤≤ ⎪⎝⎭,111sin cos ,BE B D BE B D BE B D θ⋅====⋅ 因此,直线与平面1B D 1AB C 21.已知数列{}1221,2,5,43.++===-n n n n a a a a a a (1)令,求证:数列是等比数列;1n n n b a a +=-{}n b (2)若,求数列的前项和.n n c nb ={}n c n n S 【答案】(1)见解析(2)11133244n n S n +⎛⎫=-+ ⎪⎝⎭【分析】(1)根据递推公式证明为定值即可;2113n n n n a a a a +++--(2)利用错位相减法求解即可.【详解】(1)证明:因为,所以,即,2143n n n a a a ++=-()2113n n n n a a a a +++-=-13n n b b +=又,1213b a a -==所以数列是以3为首项,3为公比的等比数列;{}n b (2)解:由(1)得,11333n n n n a a +--=⋅=,3n n n c nb n =⋅=则,23323333n n S n =+⨯+⨯++⋅ ,23413323333n n S n +=+⨯+⨯++⋅ 两式相减得,()2311131313233333331322n n n n n n S n n n +++-⎛⎫-=++++-⋅=-⋅=-- ⎪-⎝⎭ 所以.11133244n n S n +⎛⎫=-+ ⎪⎝⎭22.如图,在多面体ABCDEF 中,梯形ADEF 与平行四边形ABCD 所在平面互相垂直,.1//12AF DE DE AD AD BE AF AD DE AB ⊥⊥====,,,,(1)求证:BF ∥平面CDE ;(2)求二面角的余弦值;B EF D --(3)判断线段BE 上是否存在点Q ,使得平面CDQ ⊥平面BEF ?若存在,求出的值,若不存在,BQBE 说明理由.【答案】(1)详见解析(3)存在点;Q 17BQ BE =【分析】(1)根据线面平行的判断定理,作辅助线,转化为证明线线平行;(2)证得,,两两垂直,从而建立以D 点为原点的空间直角坐标系,求得平面DA DB DE 和平面的一个法向量,根据法向量的夹角求得二面角的余弦值;DEF BEF (3)设,求得平面的法向量为,若平面平面,()[]()0,,20,1BQ BE λλλλ==-∈ CDQ u CDQ ⊥BEF 则,从而解得的值,找到Q 点的位置.0m u =⋅ λ【详解】(1)取的中点,连结,,DE M MF MC 因为,所以,且,12AF DE =AF DM =AF DM =所以四边形是平行四边形,所以,且,ADMF //MF AD MF AD =又因为,且,所以,,//AD BD AD BC =//MF BC MF BC =所以四边形是平行四边形,所以,BCMF //BF CM 因为平面,平面,BF ⊄CDE CM ⊂CDE 所以平面;//BF CDE(2)因为平面平面,平面平面,,ADEF ⊥ABCD ADEF ABCD AD =DE AD ⊥所以平面,平面,则,故,,两两垂直,所以以DE ⊥ABCD DB ⊂ABCD DE DB ⊥DA DB DE ,,所在的直线分别为轴、轴和轴,如图建立空间直角坐标系,DA DB DE x y z 则,,,,,,()0,0,0D ()1,0,0A ()0,1,0B ()1,1,0C -()0,0,2E ()1,0,1F 所以,,为平面的一个法向量.()0,1,2BE =- ()1,0,1EF =- ()0,1,0n = DEF 设平面的一个法向量为,BEF (),,m x y z =由,,得,0m BE ⋅= 0m EF ⋅= 200y z x z -+=⎧⎨-=⎩令,得.1z =()1,2,1m →=所以.cos ,m n m n m n →→→→→→⋅===如图可得二面角为锐角,B EF D --所以二面角.BEF D --(3)结论:线段上存在点,使得平面平面.BE Q CDQ ⊥BEF 证明如下:设,()[]()0,,20,1BQ BE λλλλ==-∈ 所以.(0,1,2)DQ DB BQ λλ=+=- 设平面的法向量为,又因为,CDQ (),,u a b c =()1,1,0DC =- 所以,,即,0u DQ ⋅= 0u DC ⋅= (1)200b c a b λλ-+=⎧⎨-+=⎩若平面平面,则,即,CDQ ⊥BEF 0m u =⋅ 20a b c ++=解得.所以线段上存在点,使得平面平面,[]10,17λ=∈BE Q CDQ ⊥BEF 且此时.17BQ BE =。
山东省青岛市李沧区青岛爱迪学校2023-2024学年九年级上学期12月月考数学试题
山东省青岛市李沧区青岛爱迪学校2023-2024学年九年级上学期12月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A.x2<-C.x6<A.4B.5C.610.抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b 一平面直角坐标系内的图象大致为()A.B.C.D.14.如图,点A 是反比例函数点D 为线段AB 的中点.若点k =.15.某果园有100棵枇杷树.每棵平均产量为量,但是如果多种树,那么树与树之间的距离和每一棵树接受的阳光就会减少,根据实践经验,每多种一棵树,投产后果园中所有的枇杷树平均每棵就会减少产量若设增种x 棵枇杷树,投产后果园枇杷的总产量为为.16.二次函数224y x x =--下平移2个单位得到的,则17.如图,二次函数2y ax =+下列结论:①0abc >,②a -18.如图,11POA ,在反比例函数4y x=的图象上,斜边标是.21.心理学家研究发现,一般情况下,一节课变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散指标数y随时间x(分钟)的变化规律如图所示(其中曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达满2人,且当天房间支出不少于500元,问这天宾馆入住的游客有多少人?(3)设宾馆每天的利润为w 元,当每间房价定价为多少元时,宾馆每天所获利润最大,最大利润是多少?25.【方法学习】如图1在边长为1的正方形网格中,连接格点D ,N 和E ,C ,DN 和EC 交于点P ,求tan CPN ∠的值.思考:求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现:CPN ∠不在直角三角形中,并且顶点不在格点处,我们可以利用网格画平行线等方法解决此类问题,比如连接格点M ,N ,可得MN EC ∥,则DNM CPN ∠=∠,连接DM ,那么CPN ∠就变换到格点处,并且恰好在Rt DMN △中,可以方便求出tan CPN ∠的值为______;【问题解决】(1)如图2,在边长为1的正方形网格中,AN 与CM 相交于点P ,则cos CPN ∠的值为______;(2)如图3,在边长为1的正方形网格中,AN 与CM 相交于点P ,则sin CPA ∠的值为______;【思维拓展】(3)如图4,若干个形状、大小完全相同的菱形组成网格,网格顶点称为格点,已知菱形的较小内角为60度,点A ,B ,C ,D 都在格点处,线段AB 与CD 相交于点P 求cos CPA ∠的值.。
北京市海淀区2023-2024学年高一上学期12月月考数学试题含解析
北京2023-2024学年第一学期12月练习高一数学2023.12(答案在最后)说明:本试卷共4页,共120分.考试时长90分钟.一、选择题(本大题共10小题,每小题4分,共40分.)1.已知命题:0p x ∀>,25410x x -+≥,则命题p 的否定为()A.0x ∀>,25410x x -+< B.0x ∀<,25410x x -+<C.0x ∃>,25410x x -+< D.0x ∃<,25410x x -+<【答案】C【解析】【分析】根据全称量词命题的否定为存在量词命题易求.【详解】根据全称量词命题的否定为存在量词命题知:命题:0p x ∀>,25410x x -+≥的否定为:0x ∃>,25410x x -+<.故选:C2.设集合{}33x A x =>,{}230B x x x =-<,则A B = ()A.()1,3 B.[)1,3C.()0,3 D.[)0,3【答案】A【解析】【分析】先化简集合A ,B ,再根据集合的运算得解.【详解】由33x >,即133x >,因为3x y =是R 上的单调递增函数,所以1x >,{}1A x x ∴=>;又230x x -<,解得03x <<,{}03B x x ∴=<<;()1,3A B ∴⋂=.故选:A.3.以下函数既是偶函数又在(0,)+∞上单调递减的是()A.4()f x x =B.()f x =C.1()2x f x ⎛⎫= ⎪⎝⎭D.12()log f x x =【答案】D【解析】【分析】利用奇偶性的定义和指数函数、对数函数、幂函数的性质,对选项逐一判断即可.【详解】选项A 中,4()f x x =,满足()44()()f x x x f x -=-==,()f x 是偶函数,但由幂函数性质知4()f x x =在(0,)+∞上单调递增,故不符合题意;选项B 中,由幂函数性质知,()f x =在定义域[)0,∞+内单调递增,0x <无意义,故不具有奇偶性,不符合题意;选项C 中,由指数函数性质可知,1()2x f x ⎛⎫= ⎪⎝⎭在R 上单调递减,但1()()22x x f x f x -⎛⎫-= ⎪⎝⎭=≠,故不是偶函数,不符合题意;选项D 中,12()log f x x =定义域()(),00,-∞⋃+∞,满足1122()log log ()f x x x f x -=-==,故()f x 是偶函数,当0x >时,12()log f x x =,由对数函数性质可知,12()log f x x =在(0,)+∞上单调递减,故12()log f x x =符合题意.故选:D.4.已知x y <,则下列不等式一定成立的是()A.33x y < B.11x y >C.22x y--< D.()()22lg 1lg 1x y +<+【答案】A【解析】【分析】根据不等式的性质,幂函数,指数函数和对数函数的性质判断.【详解】对A ,根据幂函数3y x =在R 上单调递增得x y <时,33x y <,故A 正确;对B ,当0x y <<时,11x y<,B 错;对C ,x y <,则x y ->-,根据指数函数2x y =在R 上单调递增得22x y -->,故C 错误;对D ,x y <时,例如,2,1x y =-=,则2211x y +>+,根据对数函数lg y x =在()0,∞+上单调递增,则()()22lg 1>lg 1x y ++,因此D 错;故选:A .5.函数()lg 1y x =-的图象是()A. B. C.D.【答案】C【解析】【分析】将函数lg y x =的图象进行变换可得出函数()lg 1y x =-的图象,由此可得出合适的选项.【详解】将函数lg y x =的图象先向右平移1个单位长度,可得到函数()lg 1y x =-的图象,再将所得函数图象位于x 轴下方的图象关于x 轴翻折,位于x 轴上方图象不变,可得到函数()lg 1y x =-的图象.故合乎条件的图象为选项C 中的图象.故选:C.【点睛】结论点睛:两种常见的图象翻折变换:()()x x x f x f x −−−−−−−−−−−−→保留轴上方,将轴下方的图象沿轴对称,()()y y y f x f x −−−−−−−−−−−−−→保留轴右方图像,将轴右方图象沿着轴对称.6.已知()f x 是定义域为R 的奇函数,当0x >时,()f x 单调递增,且()40f =,则满足不等式()10x f x ⋅-<的x 的取值范围是()A.()3,1-B.()1,5C.()()3,01,5-D.()(),31,5-∞- 【答案】C【解析】【分析】由奇函数的定义和单调性的性质,即可求解不等式.【详解】因为()f x 是定义在R 上的奇函数,0x >时,()f x 单调递增,且()40f =,所以当()(),40,4x ∈-∞-⋃时,()0f x <,当()()4,04,x ∈-⋃+∞时,()0f x >,不等式()10x f x ⋅-<,则当0x <时,有()10f x ->,即410x -<-<或14x ->,解得31x -<<或5x >,又0x <,30x ∴-<<;当0x >时,有()10f x -<,即14x -<-或014x <-<,又0x >,解得15x <<;综上,不等式()10x f x ⋅-<的解集为()()3,01,5- .故选:C.7.已知函数2,1(),1x a x f x x a x ⎧-≤=⎨-+>⎩,则“函数()f x 有两个零点”成立的充分不必要条件是a ∈A.(0,2]B.(1,2]C.(1,2)D.(0,1]【答案】C【解析】【分析】根据()f x 单调性,结合已知条件,求得()f x 有两个零点的充要条件,再结合选项进行选择即可.【详解】2,1(),1x a x f x x a x ⎧-≤=⎨-+>⎩ ()f x ∴在,1∞(-)上单调递增,在1+∞(,)上单调递减.故“函数()f x 有两个零点”(1)20,0,(1)10f a a f a ⇔=-≥-<>-+>,解得12a <≤,“函数()f x 有两个零点”成立的充分不必要条件必须为(1,2]的子集,只有C 符合,故选:C .【点睛】本题考查充分不必要条件的判断,涉及由函数零点个数求参数范围问题,属综合基础题.8.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m ,再由乙猜这个小球上的数字,记为n .如果m ,n 满足1m n -≤,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A.14 B.38 C.12 D.58【答案】D【解析】【分析】根据古典概型的计算公式,结合绝对值不等式进行求解即可.【详解】根据题意,m ,n 的情况如下:()()()()()()()()6,6,6,7,6,8,6,9,7,6,7,7,7,8,7,9,()()()()()()()()8,6,8,7,8,8,8,9,9,6,9,7,9,8,9,9,共16种情况,其中m ,n 满足1m n -≤的情况如下:()()()()()()()()()()6,6,6,7,7,6,7,7,7,8,8,7,8,8,8,9,9,8,9,9,共10种情况,所以两人“心领神会”的概率是105168=,故选:D9.函数()213log 3y x ax =-+在[1,2]上恒为正数,则实数a 的取值范围是()A.a <<B.72a <<C.732a <<D.3a <<【答案】D【解析】【分析】根据底数是13,213()log (3)y f x x ax ==-+在[1,2]上恒为正数,故2031x ax <-+<在[1,2]上恒成立,进而解不等式就可以了.【详解】解:由于底数是13,从而213()log (3)y f x x ax ==-+在[1,2]上恒为正数,故2031x ax <-+<在[1,2]上恒成立,即23x a x x x+<<+由于[1,2]x ∈,3x x +≥=当且仅当3x x =即x =由对勾函数的性质可知,函数()2g x x x =+在⎡⎣上单调递减,在2⎤⎦上单调递增,且()()123g g ==所以3a <<故选:D .【点睛】本题主要考查对数型函数,一元二次函数值域问题,属于中档题.10.形如221n +(n 是非负整数)的数称为费马数,记为.n F 数学家费马根据0123,,,,F F F F 4F 都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出5F 不是质数,那5F 的位数是()(参考数据:lg 2≈0.3010)A.9B.10C.11D.12【答案】B【解析】【分析】32521F =+,设322m =,两边取常用对数估算m 的位数即可.【详解】32521F =+ ,设322m =,则两边取常用对数得32lg lg 232lg 2320.30109.632m ===´=.9.63291010m =»,故5F 的位数是10,故选:B .【点睛】解决对数运算问题的常用方法:(1)将真数化为底数的指数幂的形式进行化简.(2)将同底对数的和、差、倍合并.(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用.(4)利用常用对数中的lg 2lg 51+=简化计算.二、填空题(本大题共5小题,每小题4分,共20分,把答案填在题中横线上)11.函数()2lg 54y x x =-+的定义域为__________.【答案】()()4,,1+∞⋃-∞【解析】【分析】利用对数函数真数大于零,解不等式即可求得结果.【详解】由对数函数定义可得2540x x -+>,解得>4x 或1x <,所以函数定义域为()()4,,1+∞⋃-∞.故答案为:()()4,,1+∞⋃-∞12.某高中学校进行问卷调查,用比例分配的分层随机抽样方法从该校三个年级中抽取36人进行问卷调查,其中高一年级抽取了15人,高二年级抽取了12人,且高三年级共有学生900人,则该高中的学生总数为__________人.【答案】3600【解析】【分析】根据分层抽样的抽样比即可求解.【详解】由题意可知:高三年级抽取了3615129--=人,由于高三共有900人,所以抽样比为1100,所以高中学生总数为361003600⨯=,故答案为:360013.令0.76a =,60.7b =,0.7log 6c =,则三个数a ,b ,c 的大小顺序是______.(用“<”连接)【答案】c b a<<【解析】【分析】根据指数函数和对数函数单调性,结合临界值0,1即可确定大小关系.【详解】0.7000.60.70.76610.70.70log 1log 6>==>>=> ,c b a ∴<<.故答案为:c b a <<.14.为了解本书居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为1s ,2s ,3s ,则它们的大小关系为______.(用“<”连接)【答案】231s s s <<【解析】【分析】根据平均数公式及方差公式分别计算21s 、22s 、23s ,即可判断;【详解】由图甲:平均值为()150012500.000617500.000422500.000227500.000232500.0006x =⨯+⨯+⨯+⨯+⨯2200=,22221(12502200)(175021200)(22502200)0.30.20.s =-+⨯+⨯⨯--22)0.10.3(27502200)(32502200+-⨯⨯-+672500=,212500.117500.222500.427500.232500.1x =⨯+⨯+⨯+⨯+⨯2250=,22222(12502250)(175024250)(22502250)0.10.20.s =-+⨯+⨯⨯--22)0.20.1(27502250)(32502250+-⨯⨯-+300000=,312500.217500.222500.327500.232500.1x =⨯+⨯+⨯+⨯+⨯2150=,22223(12502150)(175023150)(22502150)0.20.20.s =-+⨯+⨯⨯--22)0.20.1(27502150)(32502150+-⨯⨯-+390000=,则标准差231s s s <<,故答案为:231s s s <<.15.如图,在等边三角形ABC 中,AB =6.动点P 从点A 出发,沿着此三角形三边逆时针运动回到A 点,记P 运动的路程为x ,点P 到此三角形中心O 距离的平方为f (x ),给出下列三个结论:①函数f (x )的最大值为12;②函数f (x )的图象的对称轴方程为x =9;③关于x 的方程()3f x kx =+最多有5个实数根.其中,所有正确结论的序号是____.【答案】①②【解析】【分析】写出P 分别在,,AB BC CA 上运动时的函数解析式2()f x OP =,利用分段函数图象可解.【详解】P 分别在AB 上运动时的函数解析式22()3(3),(06)f x OP x x ==+-≤≤,P 分别在BC 上运动时的函数解析式22()3(9),(612)f x OP x x ==+-≤≤,P 分别在CA 上运动时的函数解析式22()3(15),(1218)f x OP x x ==+-≤≤,22223(3),(06)()||3(9),(612)3(15),(1218)x x f x OP x x x x ⎧+-≤≤⎪==+-≤≤⎨⎪+-≤≤⎩,由图象可得,方程()3f x kx =+最多有6个实数根故正确的是①②.故答案为:①②【点睛】利用函数图象可以解决很多与函数有关的问题,如利用函数的图象解决函数性质问题,函数的零点、方程根的问题,有关不等式的问题等.解决上述问题的关键是根据题意画出相应函数的图象,利用数形结合思想求解.三、解答题(本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤)16.已知集合213A x x ⎧⎫=>⎨⎬-⎩⎭,{}221,B x m x m m =-≤≤+∈R .(1)当6m =时,求集合A B ⋃;(2)若A B B = ,求实数m 的取值范围.【答案】(1){313}A B xx =<≤ ∣(2)(),3-∞-【解析】【分析】(1)直接代入计算,再根据并集含义计算即可;(2)分集合B 是否为空集讨论即可.【小问1详解】由()()222311005303333x x x x x x x ->⇒->⇒->⇒--<----解得{35}A xx =<<∣.当6m =时,{}413B x x =≤≤∣,则{313}A B xx =<≤ ∣【小问2详解】由A B B = ,得B A ⊆.当B =∅时,有221m m ->+,解得3m <-.当B ≠∅时,有323215m m m ≥-⎧⎪->⎨⎪+<⎩,无解.综上,(),3m ∈-∞-.17.已知函数()22f x x =+.(1)求函数()f x 的定义域和值域;(2)求函数()f x 在区间[](),1t t t +∈R 上的最小值.【答案】17.定义域为R ,值域为[)2,+∞18.答案见解析【解析】【分析】(1)根据二次函数的性质可得答案;(2)讨论对称轴与区间的关系,结合二次函数性质可得答案.【小问1详解】由题意定义域为R ,因为20x ≥,所以222x ≥+,即值域为[)2,+∞.【小问2详解】()f x 图象的对称轴为0x=,当10t +≤时,即1t ≤-时,()f x 在区间[],1t t +上单调递减,则()f x 在区间[],1t t +上的最小值为()2(1)12f t t +=++;当01t t <<+时,即10t -<<时,()f x 在[),0t 上单调递减,在(]0,1t +上单调递增,则()f x 在区间[],1t t +上的最小值为(0)2f =;当0t ≥时,()f x 在区间[],1t t +上单调递增,()f x 在区间[],1t t +上的最小值为2()2f t t =+;综上可得1t ≤-时,最小值为()212t ++;10t -<<时,最小值为2;0t ≥时,最小值为22t +.18.在新高考背景下,北京高中学生需从思想政治、历史、地理、物理、化学、生物这6个科目中选择3个科目学习并参加相应的等级性考试.为提前了解学生的选科意愿,某校在期中考试之后,组织该校高一学生进行了模拟选科.为了解物理和其他科目组合的人数分布情况,某教师整理了该校高一(1)班和高一(2)班的相关数据,如下表:物理+化学物理+生物物理+思想政治物理+历史物理+地理高一(1)班106217高一(2)班.159316其中高一(1)班共有40名学生,高一(2)班共有38名学生.假设所有学生的选择互不影响.(1)从该校高一(1)班和高一(2)班所有学生中随机选取1人,求此人在模拟选科中选择了“物理+化学”的概率;(2)从表中选择“物理+思想政治”的学生中随机选取2人参加座谈会,求这2人均来自高一(2)班的概率;(3)该校在本学期期末考试之后组织高一学生进行了第二次选科,现从高一(1)班和高一(2)班各随机选取1人进行访谈,发现他们在第二次选科中都选择了“物理+历史”.根据这一结果,能否认为在第二次选科中选择“物理+历史”的人数发生了变化?说明理由.【答案】(1)2578(2)310(3)答案见解析【解析】【分析】(1)(2)根据古典概型的概率公式即可求解,(3)根据小概率事件即可求解.【小问1详解】依题意得高一(1)班和高一(2)班学生共有403878+=人,即该随机试验的样本空间有78个样本点.设事件A =“此人在模拟选科中选择了“物理+化学”,则事件A 包含101525+=个样本点,所以()2578P A =.【小问2详解】依题意得高一(1)班选择“物理+思想政治”的学生有2人,分别记为12,A A ;高一(2)班选择“物理+思想政治”的学生有3人,分别记为123,,B B B .该随机试验的样本空间可以表示为:Ω={12111213212223121323,,,,,,,,,A A A B A B A B A B A B A B B B B B B B }即()Ω10n =.设事件B =“这2人均来自高一(2)班”,则{}121323,,B B B B B B B =,所以()3n B =,故()()()3Ω10n B P B n ==.【小问3详解】设事件C =“从高一(1)随机选取1人,此人在第二次选科中选择了“物理+历史”,事件D =“从高一(2)班随机选取1人,此人在第二次选科中选择了“物理+历史”,事件E =“这两人在第二次选科中都选择了“物理+历史”.假设第二次选科中选择“物理+历史”的人数没有发生变化,则由模拟选科数据可知,()()11,4038P C P D ==.所以()()()()11140381520P E P CD P C P D ===⨯=.答案示例1:可以认为第二次选科中选择“物理+历史”的人数发生变化.理由如下:()P E 比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为第二次选科中选择“物理+历史”的人数发生了变化.答案示例2:无法确定第二次选科中选择“物理+历史”的人数是否发生变化.理由如下:事件E 是随机事件,()P E 虽然比较小,一般不容易发生,但还是有可能发生,所以无法确定第二次选科中选择“物理+历史”的人数是否有变化.19.已知函数()2log 2ax f x x -=+(0a >且1a ≠).(1)求()f x 的定义域;(2)若当2a =时,函数()()g x f x b =-在()2,+∞有且只有一个零点,求实数b 的范围;(3)是否存在实数a ,使得当()f x 的定义域为[],m n 时,值域为[]1log ,1log a a n m ++,若存在,求出实数a 的范围;若不存在,请说明理由.【答案】(1)()(),22,∞∞--⋃+(2)(),0∞-(3)存在;3220,2a ⎛⎫-∈ ⎪⎝⎭【解析】【分析】(1)由202x x ->+可得()f x 的定义域;(2)注意到()24122x t x x x -==-++在()2,∞+上单调递增,则()f x 在()2,∞+,即b 的范围是就是()f x 在()2,∞+上的值域;(3)由题可得01a <<,则问题转化为22x ax x -=+在()2,∞+上有两个互异实根,即可得答案.【小问1详解】由202x x ->+,得<2x -或2x >.∴()f x 的定义域为()(),22,∞∞--⋃+;【小问2详解】令()24122x t x x x -==-++,因函数42=+y x 在()2,∞+上单调递减,则()t x 在()2,∞+上为增函数,故()t x 的值域为()0,1.又2a =,∴()f x 在()2,∞+上为增函数;函数()()g x f x b =-在()2,∞+有且只有一个零点,即()f x b =在()2,∞+有且只有一个解,∵函数()f x 在()2,∞+的值域为(),0∞-,∴b 的范围是(),0∞-.【小问3详解】假设存在这样的实数a ,使得当()f x 的定义域为[],m n 时,值域为[]1log ,1log a a n m ++,由m n <且1log a n +1log a m <+,可得01a <<.又由(2)()412t x x =-+在()2,∞+上为增函数,log a y x =在()2,∞+上为减函数.则()f x 在()2,∞+上为减函数,得()()()()2log 1log log 22log 1log log 2a a a aa a m f m m am m n f n n an n -⎧==+=⎪⎪+⎨-⎪==+=⎪+⎩.即22x ax x -=+在()2,∞+上有两个互异实根,因()2221202x ax ax a x x -=⇒+-+=+即()()2212g x ax a x =+-+,有两个大于2的相异零点.设()g x 零点为12,x x ,则()()()()212122180Δ02144220221240a a a x x a x x a aa ⎧⎪-->⎧>⎪-⎪⎪+>⇒->⎨⎨⎪⎪-->⎩⎪-++>⎪⎩.解得302a -<<.又∵01a <<,故存在这样的实数30,2a ⎛⎫-∈ ⎪ ⎪⎝⎭符合题意.20.对于函数()f x ,若在定义域内存在实数0x ,且00x ≠,满足()()00f x f x -=,则称()f x 为“弱偶函数”.若在定义域内存在实数0x ,满足()()00f x f x -=-,则称()f x 为“弱奇函数”.(1)判断函数()31,0,0x f x x x x ⎧>⎪=⎨⎪<⎩是否为“弱奇函数”或“弱偶函数”;(直接写出结论)(2)已知函数()()21g x x x =-+,试判断()g x 为其定义域上的“弱奇函数”,若是,求出所有满足()()00g x g x -=-的0x 的值,若不是,请说明理由;(3)若()43,4x h x x x ≥=+<⎪⎩为其定义域上的“弱奇函数”.求实数m 取值范围.【答案】(1)弱奇函数(2)()g x 不是其定义域上的“弱奇函数”.(3)15,44⎡⎤⎢⎥⎣⎦【解析】【分析】(1)根据所给定义判断即可;(2)对x 分类讨论即可;(3)首先由20x mx -≥在[)4,+∞上恒成立,求出m 的取值范围,依题意存在实数0x 使得()()00h x h x -=-,分04x ≥、044x -<<、04x ≤-三种情况讨论,分别结合方程有解求出m 的取值范围,即可得解.【小问1详解】当0x <时,则0x ->,若31x x=-,无实数解,舍去;若31x x=--,解得=1x -(正舍),当0x >时,则0x -<,若31x x-=,无实数解,舍去;若31x x-=-,解得1x =(负舍),则存在实数01x =±,满足()()00f x f x -=-,则()f x 是“弱奇函数”,【小问2详解】假设()()21g x x x =-+为其定义域上的“弱奇函数”,则()()2121x x x x -+=+-,若1x >,则()()()()2121x x x x -+=+-,则0x =,舍去;若11x -≤≤,则()()()()2121x x x x -+=+-,则x =若1x ≤-,则()()()()2121x x x x -+=+-,则0x =,舍去;从而()()00g x g x -=-无解,所以()g x 不是其定义域上的“弱奇函数”.【小问3详解】由20x mx -≥在[)4,+∞上恒成立,转化为m x ≤在[)4,+∞上恒成立,即4m ≤.因为()43,4x h x x x ≥=+<⎪⎩为其定义域上的“弱奇函数”,所以存在实数0x 使得()()00h x h x -=-,当04x ≥时,则04x -≤-,所以03x -+=,即03x -=,所以()220003x x mx -=-,0069x mx -+=-,即096m x =-在[)4,+∞有解可保证()f x 是“弱奇函数",所以15,64m ⎡⎫∈⎪⎢⎣⎭,又因为4m ≤,所以15,44m ⎡⎤∈⎢⎥⎣⎦;当044x -<<时,044x -<-<,此时()00330x x -+--=,不成立;当04x ≤-时,则04x -≥()03x =-+,则22000069x mx x x +=++,即()069m x -=,即096m x =+在(],4-∞-有解可保证()f x 是“弱奇函数”,所以15,64m ⎡⎫∈⎪⎢⎣⎭,由4m ≤可知15,44m ⎡⎤∈⎢⎥⎣⎦;综上所述,实数m 的取值范围为15,44m ⎡⎤∈⎢⎥⎣⎦.【点睛】关键点睛:本题属于新定义问题,对于新定义问题,关键是理解所给定义,将问题转化为方程有解,分段函数注意分类讨论.。
上海市曹杨第二中学2022-2023学年高二上学期12月月考数学试题(含答案解析)
上海市曹杨第二中学2022-2023学年高二上学期12月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、填空题1.两条相交直线的夹角的取值范围是________2.直线2310x y +-=的一个法向量为__________.3.向量()1,0,1a =r ,(),1,2b x = ,且3a b ⋅= ,则向量b 在a 上的投影向量的坐标为______.4.已知直线过点()1,5P ,且在两坐标轴上的截距相等,则此直线的方程为_____________.5.设αβ、是两个不同的平面,直线m α⊂,则“m β ”是“αβ∥”的__________条件.6.若空间中三点()1,5,2A 、()2,4,1B 、(),3,C m n 共线,则m n +=__________.7.若直线1:(1)10l a x y -+-=和直线2:620l x ay ++=平行,则=a ___________.8.已知一个圆锥的母线长为2,底面圆的周长为,则过圆锥顶点的截面面积的最大值为_____.9.正三棱柱1111,2,ABC A B C AB AA D -==为ABC 内(包括边界)的动点,则11A DB △的面积的取值范围是__________.10.下列四个正方体图形中,,A B 为正方体的两个顶点,,,M N P 分别为其所在棱的中点,能得出//AB 平面MNP 的图形的序号是________.11.如图,半径为R 的球O 的直径AB 垂直于平面α,垂足为B ,BCD △是平面α内边长为R 的正三角形,线段AC ,AD 分别与球面交于点M 、N ,则三棱锥A BMN -的体积是__________.12.已知函数()()131f x a x b =+++,若关于x 的方程()0f x =在[]6,12上有解,则22a b +的取值范围是__________.二、单选题13.在空间直角坐标系中,点()6,6,6A -关于xOz 平面对称点的坐标是()A .()6,6,6-B .()6,6,6C .()6,6,6-D .()6,6,6--14.已知定点.()1,0P .和直线l :()()133620x y λλλ++--+=,则点P 到直线l 的距离d 的最大值为()ABC D .15.在棱长为1的正方体1111ABCD A B C D -中,八个顶点按红蓝间隔染色,使得每条棱上的两个顶点各不同色,则由红色顶点连成的四面体与蓝色顶点连成的四面体的公共部分的体积为()A .12B .14C .16D .1816.若点N 为点M 在平面α上的正投影,则记()N f M α=.如图,在棱长为1的正方体1111ABCD A B C D -中,记平面11AB C D 为β,平面ABCD 为γ,点P 是棱1CC 上一动点(与C 、1C 不重合)()1Q f f P γβ⎡⎤=⎣⎦,()2Q f f P βγ⎡⎤=⎣⎦.给出下列三个结论:①线段2PQ 长度的取值范围是122⎡⎫⎪⎢⎪⎣⎭;②存在点P 使得1//PQ 平面β;③存在点P 使得12PQ PQ ^.其中,所有正确结论的序号是A .①②③B .②③C .①③D .①②三、解答题17.若直线l 经过()()21,4,2,3A x B x +两点,斜率为k ,倾斜角为α.(1)用x 分别表示直线l 的斜率k 和倾斜角α;(2)求α的取值范围.18.如图,直三棱柱111ABC A B C -中,120ABC ∠=︒,12AB BC CC ===.(1)求异面直线AC 和1BC 所成角的大小;(2)求点1B 到平面11A BC 的距离.19.已知ABC 的顶点()4,2A ,AB 边上的中线CM 所在直线方程为30x y --=,AC 边上的高BH 所在直线方程为220x y +-=.求(1)顶点C 的坐标;(2)求点B 到直线AC 的距离.20.如图,在三棱锥A BCD -中,平面ABD ⊥平面,BCD O 是BD 的中点,AB AD =.OCD 是边长为1的等边三角形,E 在射线DA 上.(1)证明:OA CD ⊥;(2)若2DE EA =,且二面角E BC D --的大小为45︒,求二面角A BC D --的大小;(3)若1AO =,求直线CE 与平面BCD 所成角的正弦的最大值.21.过点()2,1P 的直线l 分别交()0y x x =≥与()0y x x =-≥于A B 、两点.(1)若直线l 的倾斜角为π4,求直线l 的一般式方程.(2)当PA PB ⋅最小时,求直线l 的方程;(3)已知O 为坐标原点,设AOB 的面积为S ,讨论这样的直线l 的条数.参考答案:1.π0,2⎛⎤ ⎥⎝⎦【分析】根据两条相交直线的夹角的概念即得.【详解】两条相交直线的夹角的取值范围是π0,2⎛⎤ ⎥⎝⎦.故答案为:π0,2⎛⎤ ⎥⎝⎦.2.()2,3(答案不唯一)【分析】根据直线的法向量的求法写出一个即可.【详解】解:由题知直线2310x y +-=的一个方向向量为()3,2-,故该直线的一个法向量可为:()2,3.故答案为:()2,3(答案不唯一)3.33,0,22⎛⎫ ⎪⎝⎭【分析】向量b 在a 上的投影向量为||||a b a a a ⋅ ,利用公式求解.【详解】因为向量()1,0,1a =r ,(),1,2b x = ,且3a b ⋅= ,所以()()1,0,1,1,220x x ⋅=+=,解得2x =-,所以()2,1,2b =- ,所以333(1,0,1)()222||||a b a a a ⋅== ,则向量b 在a 上的投影向量的坐标为33,0,22⎛⎫ ⎪⎝⎭.故答案为:33,0,22⎛⎫ ⎪⎝⎭.4.60x y +-=或50x y -=【分析】分两种情况考虑,第一:当所求直线与两坐标轴的截距不为0时,设出该直线的方程为x y a +=,把已知点坐标代入即可求出a 的值,得到直线的方程;第二:当所求直线与两坐标轴的截距为0时,设该直线的方程为y kx =,把已知点的坐标代入即可求出k 的值,得到直线的方程,综上,得到所有满足题意的直线的方程.【详解】解:①当所求的直线与两坐标轴的截距不为0时,设该直线的方程为x y a +=,把(1,5)代入所设的方程得:6a =,则所求直线的方程为6x y +=即60x y +-=;②当所求的直线与两坐标轴的截距为0时,设该直线的方程为y kx =,把(1,5)代入所求的方程得:5k =,则所求直线的方程为5y x =即50x y -=.综上,所求直线的方程为:60x y +-=或50x y -=.故答案为:60x y +-=或50x y -=【点睛】此题考查学生会根据条件设出直线的截距式方程和点斜式方程,考查了分类讨论的数学思想,属于基础题.5.必要非充分【分析】当m α⊂,m β 时,得到αβ∥或,αβ相交;当m α⊂,αβ∥时,得到m β ,得到答案.【详解】当m α⊂,m β 时,得到αβ∥或,αβ相交;当m α⊂,αβ∥时,得到m β .故“m β ”是“αβ∥”的必要非充分条件.故答案为:必要非充分6.3【分析】A 、B 、C 三点共线,则AB AC ∥ ,求出AB 与AC 的坐标,用空间向量共线的坐标表示进行运算即可.【详解】∵()1,5,2A 、()2,4,1B 、(),3,C m n 三点共线,∴AB AC ∥ ,即AC AB λ= ,()1,1,1AB =-- ,()1,2,2AC m n =--- ∴()()()1,2,21,1,1,,m n λλλλ---=--=--∴122m n λλλ-=⎧⎪-=-⎨⎪-=-⎩,解得230m n λ=⎧⎪=⎨⎪=⎩,∴3m n +=.故答案为:3.7.3【分析】根据两条直线平行的充要条件即可求解.【详解】解:因为直线1:(1)10l a x y -+-=和直线2:620l x ay ++=平行,所以()()()1611261a a a ⎧-⨯=⨯⎪⎨-⨯≠⨯-⎪⎩,解得3a =,故答案为:3.8.2【分析】先求底面圆的半径,判断出母线夹角的范围,利用截面三角形面积公式求最值即可.【详解】底面圆的周长为23π,圆锥的母线长为2,过圆锥顶点的截面面积1S 222sin α=⨯⨯⨯,所以,当截面中的两圆锥母线夹角为2π时,截面面积最大为2【点睛】本题是易错题,先求出面积的函数表达式进而判断最大值,学生容易误认为垂直截面为面积的最大值.9.⎡⎣.【分析】D 在平面111A B C 的投影为1D ,连接1DD ,过1D 作111D H A B ⊥于H ,连接HD ,证明11A B HD ⊥,11A DB S =△,计算得到范围.【详解】如图所示:D 在平面111A B C 的投影为1D ,连接1DD ,过1D 作111D H A B ⊥于H ,连接HD ,1DD ⊥平面111A B C ,11A B ⊂平面111A B C ,故111DD A B ⊥,111D H A B ⊥,111D H DD D = ,11,D H DD ⊂平面1DD H ,故11A B ⊥平面1DD H ,HD ⊂平面1DD H ,故11A B HD ⊥,111112A DB S A B HD =⨯=△当D 在AB 上时,10HD =,11A DB △的面积最小,为2;当D 和C 重合时,1HD =11A DB △;所以11A DB △的面积的取值范围为⎡⎣.故答案为:⎡⎣10.①④【分析】证明AB 所在的平面与平面MNP 平行可判断①;若下底面中心为O ,连接NO ,可得//NO AB 可判断②;由AB ⋂面PMN B =可判断③;证明//AB NP 可判断④,进而可得正确答案.【详解】在①中:如图:因为,,M N P 分别为其所在棱的中点,所以//MN AC ,//NP BC ,因为MN ⊄面ABC ,AC ⊂面ABC ,所以//MN 面ABC ,同理可得//PN 面ABC ,因为MN NP N ⋂=,所以面//ABC 面MNP ,因为AB ⊂面ABC ,所以//AB 平面MNP ,故①成立;在②中,若下底面中心为O ,连接NO ,可得//NO AB ,NO ⋂面MNP N =,所以AB 与平面MNP 不平行,故②不成立;在③中:如图:平面PMN 即为平面PNBC ,因为AB ⋂面PNBC B =,所以AB 与面MNP 不平行,故③不成立;在④中:如图://AC BD 且AC BD =,所以四边形ACDB 是平行四边形,可得//AB CD ,因为//NP CD ,所以//AB NP ,因为AB ⊄面MNP ,NP ⊂面MNP ,所以所以//AB 平面MNP ,故④成立.故答案为:①④.113【分析】2AB R =,BC R =,AC =,BCD ∆是平面α内边长为R 的正三角形,ABC AMB ∆∽,45AM AC =,类似有45AN AD =,24(5A BMN AMN A BCD ABCV S V S -∆-∆==,由此能求出三棱锥A BMN -的体积.【详解】2AB R = ,BC R =,AC =,半径为R 的球O 的直径AB 垂直于平面α,垂足为B ,BCD ∆是平面α内边长为R 的正三角形,线段AC ,AD 分别与球面交于点M 、N ,BAM BAC ∴∠=∠,90AMB ABC ∠=∠=︒,ABC AMB ∴∆∆∽,∴AB AC AM AB =,AM R ∴,∴45AM AC =,类似有45AN AD =,∴2416()525A BMN AMN A BCD ABC V S V S -∆-∆===,∴三棱锥A BMN -的体积:231612253A BMN V R R -=⨯⨯⨯=.3R.【点睛】本题考查三棱锥的体积的求法,考查球、三棱锥的结构特征等基础知识,考查运算求解能力,是中档题.12.49,45⎡⎫+∞⎪⎢⎣⎭【分析】根据()0f x =得到310xa b x +++=,故222a b +≥,根据函数的单调性计算最值得到答案.【详解】()()131310f x a x b xa b x =+++=+++=,转化为关于,a b 的直线方程,其中[]6,12x ∈,22a b +表示直线上一点到原点距离的平方,所以()2222222421199x x x a b x x -+++≥==+++,设4x t -=,[]6,12x ∈,则[]2,8t ∈,()()222422111259498x t y x t t t -=+=+++++++,函数()25g t t t=+在[]2,5t ∈上单调递减,在(]5,8上单调递增,故()()(){}max 298929max 2,8max ,282g t g g ⎧⎫===⎨⎬⎩⎭,249125458y t t=+≥++,所以22a b +的取值范围为49,45⎡⎫+∞⎪⎢⎣⎭.故答案为:49,45⎡⎫+∞⎪⎢⎣⎭13.B【分析】根据点的对称直接求解.【详解】在空间直角坐标系中,点()6,6,6A -关于xOz 平面对称点的坐标是()6,6,6.故选:B 14.C【分析】确定直线过定点()0,2A ,故点()1,0P 到直线l 的距离的最大值为d PA =,计算得到答案.【详解】直线()():133620l x y λλλ++--+=,整理得()()32360x y x y λ-+++-=,由320360x y x y -+=⎧⎨+-=⎩,解得02x y =⎧⎨=⎩,故直线过定点()0,2A故点()1,0P 到直线l 的距离的最大值为d PA ==故选:C 15.C【分析】画出几何体,找到多面体,根据棱锥体积计算公式,即可求得结果.【详解】根据题意,作图如下:多面体EFGHMN 即为四面体11D ACB -与四面体11A DBC -的公共部分,其中,,,,,E F G H M N 均为各个面的中心,且平面FGHM //面ABCD ,EN ⊥面FGHM ,故2EFGHMN E FGHM V V -=,又四边形FGHM 的面积与其投影在底面ABCD 所得四边形1111F G H M 的面积相等,如下所示:故四边形FGHM 的面积111122S =⨯⨯=,又点E 到平面FGHM 的距离为12,故1111223226EFGHMN E FGHM V V -==⨯⨯⨯=.故选:C.16.D【解析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系D xyz -,设点P 的坐标为()()0,1,01a a <<,求出点1Q 、2Q 的坐标,然后利用向量法来判断出命题①②③的正误.【详解】取1C D 的中点2Q ,过点P 在平面11AB C D 内作1PE C D ⊥,再过点E 在平面11CC D D 内作1EQ CD ⊥,垂足为点1Q .在正方体1111ABCD A B C D -中,AD ⊥平面11CC D D ,PE ⊂平面11CC D D ,PE AD ⊥∴,又1PE C D ⊥ ,1AD C D D = ,PE ∴⊥平面11AB C D ,即PE β⊥,()f P E β∴=,同理可证1EQ γ⊥,CQ β⊥,则()()1f f P f E Q γβγ⎡⎤==⎣⎦,()()2f f P f C Q βγβ⎡⎤==⎣⎦.以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系D xyz -,设()01CP a a =<<,则()0,1,P a ,()0,1,0C ,110,,22a a E ++⎛⎫ ⎪⎝⎭,110,,02a Q +⎛⎫⎪⎝⎭,2110,,22Q ⎛⎫ ⎪⎝⎭.对于命题①,2PQ =,01a << ,则111222a -<-<,则211024a ⎛⎫≤-< ⎪⎝⎭,所以,212PQ ⎡=⎢⎣⎭,命题①正确;对于命题②,2CQ β⊥ ,则平面β的一个法向量为2110,,22CQ ⎛⎫=-⎝⎭ ,110,,2a PQ a -⎛⎫=- ⎪⎝⎭,令211130424a a a CQ PQ --⋅=-== ,解得()10,13a =∈,所以,存在点P 使得1//PQ 平面β,命题②正确;对于命题③,21120,,22a PQ -⎛⎫=- ⎝⎭ ,令()12211042a a a PQ PQ --⋅=+= ,整理得24310a a -+=,该方程无解,所以,不存在点P 使得12PQ PQ ^,命题③错误.故选:D.【点睛】本题考查立体几何中线面关系、线线关系的判断,同时也涉及了立体几何中的新定义,利用空间向量法来处理是解题的关键,考查推理能力,属于中等题.17.(1)243k x x =-+,()2arctan 43x x α=-+或()2πarctan 43x x α=--+-(2)π3π0,π24α⎡⎫⎡⎫∈⋃⎪⎪⎢⎢⎣⎭⎣⎭【分析】(1)计算243k x x =-+,根据0k ≥和0k <两种情况得到倾斜角.(2)2243(2)11k x x x =-+=--≥-,得到倾斜角范围.【详解】(1)22344321x x k x x +-==-+-,当1x ≤或3x ≥时,0k ≥,()2arctan 43x x α=-+;当13x <<时,0k <,()2πarctan 43x x α=--+-;(2)2243(2)11k x x x =-+=--≥-,所以π3π0,π24α⎡⎫⎡⎫∈⋃⎪⎪⎢⎢⎣⎭⎣⎭.18.(1)arccos 4【分析】(1)作辅助线找到异面直线AC 和1BC 所成角,利用余弦定理进行求解;(2)结合第一问的求解结果,利用等体积法求解点1B 到平面11A BC 的距离.【详解】(1)连接1BC ,1BA ,因为AC ∥11A C ,所以异面直线AC 和1BC 所成角即为11A C 与1BC 所成角,即11BC A ∠,因为120ABC ∠=︒,12AB BC CC ===,所以由余弦定理可得:222cos 1202AC AB BC AB BC =+-⋅∠︒=,所以11AC =,由勾股定理得:11BC A B ==所以11cosBC A ∠设异面直线AC 和1BC 所成角为θ,则θ=.(2)由(1)可知:111122sin1202A B C S =⨯⨯⨯︒= 故11111111122333B A BC A B C V S BB -=⋅=⨯= ,又11cos BC A ∠=11sin BC A ∠=111111111sin 22BC A S BC A C BC A =⨯⨯⨯∠=⨯ ,设点1B 到平面11A BC 的距离为h ,则11111111133BC A B BC A B A B C S h V V --⋅=== ,解得:5h =,点1B 到平面11A BC 的距离为.19.(1)()3,0C【分析】(1)首先设出C 点坐标,代入CM 的直线方程,再利用AC 边上的高BH ,建立斜率之积为-1的关系式,再解方程组,即可求得坐标.(2)先设B 点坐标,代入BH 所在直线方程,再利用AB 中点满足CM 所在直线方程,得到方程组,解出B 点坐标,再利用点线距离公式,即可求解.【详解】(1)解:设(),C m n ,AB 边上的中线CM 所在直线方程为30x y --=,AC 边上的高BH 所在直线方程为220x y +-=.∴3021142m n n m --=⎧⎪-⎨⎛⎫⨯-=- ⎪⎪-⎝⎭⎩,解得30m n =⎧⎨=⎩∴()3,0C (2)设(),B a b ,则220423022a b a b +-=⎧⎪⎨++--=⎪⎩,解得10323a b ⎧=⎪⎪⎨⎪=-⎪⎩,∴102,33B ⎛⎫- ⎪⎝⎭2AC k =, ()4,2A ∴直线AC 的方程为260x y --=∴点B 到直线AC的距离15d ==20.(1)证明见解析(2)arctan 2【分析】(1)证明AO ⊥平面BCD 得到答案.(2)确定EGF ∠为二面角E BC D --的平面角,根据角度计算1AO =,再确定AMO ∠为二面角A BC D --的平面角,计算得到答案.(3)过点E 作EF BD ⊥于F ,连接FC ,确定ECF ∠为直线CE 与平面BCD 所成角,sin ECF ∠=.【详解】(1)AB AD =,O 为BD 的中点,所以AO BD ⊥,又平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD BD =,AO ⊂平面ABD ,故AO ⊥平面BCD ,又CD ⊂平面BCD ,所以AO CD⊥(2)过E 作EF BD ⊥,交BD 于点F ,过F 作FG BC ⊥于点G ,连结EG,由题意得//EF AO ,又AO ⊥平面BCD ,故EF ⊥平面BCD ,又BC ⊂平面BCD ,所以EF BC ⊥,又,BC FG FG EF F ⊥⋂=,,FG EF Ì平面EFG ,故BC ⊥平面EFG ,又EG ⊂平面EFG ,所以BC EG ⊥,则EGF ∠为二面角E BC D --的平面角,即45EGF ∠=︒,又1====CD DO OB OC ,所以120BOC ∠=︒,则30OCB OBC ∠=∠=︒,故90BCD ∠=︒,所以//FG CD ,因为23===DE DF EF AD OD AO ,则312,,233AO EF OF DF ===,所以23BF GF BD CD ==,则23GF =,23==EF GF ,321==AO EF ,过点O 作OM BC ⊥与M ,连接AM ,AO ⊥平面BCD ,BC ⊂平面BCD ,故AO BC ⊥,又OM BC ⊥,OM AO O = ,,OM AO ⊂平面OMA ,故BC ⊥平面OMA ,AM ⊂平面OMA ,故BC AM ⊥,故AMO ∠为二面角A BC D --的平面角,1122MO CD ==,tan 2AOAMO OM∠==,故arctan 2AMO ∠=,即二面角A BC D --的大小为arctan 2(3)如图所示:过点E 作EF BD ⊥于F ,连接FC ,则//EF AO ,又AO ⊥平面BCD ,故EF ⊥平面BCD ,ECF ∠为直线CE 与平面BCD 所成角,设()0EF a a =≥,1AO OD ==,AOD △为等腰直角三角形,故DF a =,在CFD △中,22222cos 1FC DF DC DF DC FDC a a =+-⋅⋅∠=-+,所以222221EC FC EF a a =+=-+,则sin EFECF EC∠====当2a =时,sin ECF ∠最大为721.(1)10x y --=(2)2x =(3)答案见解析【分析】(1)直接根据点斜式得到答案.(2)考虑斜率存在和不存在两种情况,计算交点坐标得到2631PA PB k =+-,得到最值和直线方程.(3)考虑直线斜率存在和不存在两种情况,计算()22211k S k -=-,得到()24410S k k S --++=,()43S S ∆=-,讨论得到答案.【详解】(1)若直线l 的倾斜角为π4,则直线l 的方程为()112y x -=-,即10x y --=;(2)法一:当直线l 的斜率不存在时,3PA PB =;当直线l 的斜率存在时,设直线():12l y k x -=-,()(),11,k ∈-∞-+∞ ,()12y x y k x =⎧⎨-=-⎩得2121,11k k A k k --⎛⎫ ⎪--⎝⎭,()12y x y k x =-⎧⎨-=-⎩得2112,11k k B k k --⎛⎫⎪++⎝⎭,PA =PB =所以()222231163331111k k PA PB k k k k ++===+>+⋅---,综上所述:·PA PB 的最小值为3,此时直线l 的斜率不存在,直线方程为2x =.法二:前面部分同法一,注意到133,,,1111k k PA PB k k k k --⎛⎫⎛⎫== ⎪ ⎪--++⎝⎭⎝⎭ ,且,PA PB 反向,所以2223363311k PA PB PA PB k k +=⋅==+>-- ,综上所述:·PA PB 的最小值为3,此时直线l 的斜率不存在,直线方程为2x =.(3)当直线斜率不存在时,()2,2A ,()2,2B -,142S OA OB =⋅=;当直线斜率存在时,()(),11,k ∈-∞-+∞ ,2121,11k k A k k --⎛⎫ ⎪--⎝⎭,2112,11k k B k k --⎛⎫⎪++⎝⎭,()2221121S k OA OB k -=⋅==-,即()24410S k k S --++=,当4S =时,方程有1解,此时54k =;当4S ≠时,()()()1644143S S S S ∆=--+=-,当3S <时,Δ0<,方程无解;当3S =时,Δ0=,2k =,方程有1解;当43S >>时,0∆>,()()2441f k S k k S =--++,对称轴224S>-,且()110f =>,方程有两个大于1的解.当4S >时,0∆>,()()2441f k S k k S =--++开口向下,()110f =>,()190f -=>,方程有1个大于1的解,一个小于1-的解.综上所述:当3S <时,0条;当3S =时,1条;当3S >时,2条.。
南京市江宁区竹山中学2022-2023学年八年级上学期12月月考数学试题(含解析)
南京市江宁区竹山中学2022-2023学年八年级上学期12月月考数学试题一.选择题(共9小题,满分27分)1. 用数学的眼光观察下面的网络图案,其中可以抽象成中心对称图形的是( )A. B. C. D. 2. 下列说法正确的是( )A. 1的平方根是1B. ﹣1平方根是﹣1C. 0的平方根是0D. 0.01是0.1的一个平方根3. 若点Р在一次函数4y x =+的图像上,则点Р一定不在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4. 已知ABC 的三边分别为a ,b ,c ,下列条件不能判断ABC 是直角三角形的是( )A. 222a b c =-B. 6a =,8b =,10c =C. A B C =+∠∠∠D. ::3:4:5A B C ∠∠∠=5. 如图,在ABC 中,20,AB AC cm DE ==垂直平分AB ,垂足为E ,交AC 于D ,若15BC cm =,则DBC △的周长为( )A. 25cmB. 35cmC. 30cmD. 27.5cm 6. 如图,已知∠CAE =∠BAD ,AC =AD ,增加下列条件:①AB =AE ;②BC =ED ;③∠C =∠D ;④∠B =∠E .其中能使△ABC ≌△AED 的条件有( )A. 1个B. 2个C. 3个D. 4个7. 将两个含有30°角的直角三角形和一个等腰直角三角形按如图所示的方式放置.若37α∠=︒,则∠β的度数为( )A. 37°B. 45°C. 53°D. 60°8. 如图,已知直线y =ax +2与直线y =mx +b 的交点的横坐标是﹣2.根据图象有下列四个结论:①a >0;②b <0;③方程ax +2=mx +b 的解是x =﹣2;④不等式ax ﹣b >mx ﹣2的解集是x >﹣2.其中正确的结论个数是( )A. 1B. 2C. 3D. 49. 如图,在平面直角坐标系中,设一质点M 自P 0(1,0)处向上运动1个单位P 1(1,1),然后向左运动2个单位至P 2处,再向下运动3个单位至P 3处,再向右运动4个单位至P 4处,再向上运动5个单位至P 5处,…,如此继续运动下去,则P 2022的坐标为( )A. ()1011,1011B. ()505,504-C. ()504,505-D. ()1011,1011-二.填空题(共9小题,满分27分)10. 在平面直角坐标系中,若点()3,3P m m +-在y 轴上,则m 的值是____________.11. 11+=_________.12. 在平面直角坐标系中,点A 坐标为()4,3,点B 在x 轴上,若AOB 是直角三角形,则OB 的长为______.13. 电影票上“10排3号”,记作()10,3,“8排23号”,记作()8,23,则“5排16号”记作______. 14. 如图,△ABC 中,AC =BC ,点D ,E ,F 分别在边AC ,AB ,BC 上,且满足AD =BE ,AE =BF ,∠DEF =40°,则∠C 的度数是 ___.15. 在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0,k ,b 均为常数)与正比例函数y =﹣13x 的图象如图所示,则关于x 的不等式kx +b >﹣13x 的解集为______.16. ABC 中,13AB AC ==,10BC =,点P 为AB 上一个动点,则CP 的最小值为 _____. 17. 某复印店复印收费y (元)与复印面数x 面的函数图象如图所示,从图象中可以看出,复印超过100面的部分,每面收费 _____元.18. 在正方形ABCD 中,4AB =,点P 为对角线BD 上一点,且PD =当点E 在边BC 上,AP PE =时,CE 的长为_____. 三.解答题(共9小题,满分66分)19. 计算:(1)|2|--(2))1011|2|5-⎛⎫-++ ⎪⎝⎭20. 求下列各式中x 的值:(1) 2490x -=;(2)()381270x -+=.21. 已知某正数的两个平方根分别是314a -和2a +,15b -的立方根为3-.(1)求a b +的值.(2)求5313a b -+的立方根.22. 如图,AB =AC ,AD =AE ,∠BAC =∠DAE .(1)求证:△ABD ≌△ACE ;(2)若∠1=25°,∠2=30°,求∠3的度数.23. 如图,一架云梯AB 长25m ,斜靠在一面墙上,梯子靠墙的一端A 距地面24m .(1)这个梯子底端B 离墙有多少米?(2)如果梯子的顶端下滑的距离AD =4m ,求梯子的底部B 在水平方向滑动的距离BE 的长.24. 已知y +6与x +1成正比例,当x =3时,y =2.(1)求出y 与x 的函数关系式;(2)设点(m ,−2)在这个函数的图象上,求m 的值.(3)试判断点(1,−3)是否在此函数图像上,说明理由.25. 如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,ABC 的三个顶点的坐标分别为()()()2,51,14,3A B C ,,.(1)画出ABC 关于y 对称的111A B C △;(2)求111A B C △的面积;(3)在x 轴上画出点P ,使得PB PC +最小,并求出此时P 点坐标.26. 某药店出售普通口罩和N95口罩.如表为两次销售记录:(1)求普通口罩和N95口罩的销售单价分别是多少?(2)该药店计划再次购进1000个口罩,根据市场实际需求,普通口罩的数量不低于N95口罩数量的4倍.已知普通口罩的进价为1元/个,N95口罩的进价为6元/个.设购买普通口罩x个,获得的利润为W 元;①求W关于x的函数关系式,并求出自变量x的取值范围;②该药店应如何进货才能使销售总利润最大?并求出最大利润.27. 如图,在平面直角坐标系中,直线AB:y=kx+1(k≠0)交y轴于点A,交x轴于点B(3,0),点P 是直线AB上方第一象限内的动点.(1)求直线AB的表达式和点A的坐标;(2)点P是直线x=2上一动点,当△ABP的面积与△ABO的面积相等时,求点P的坐标;(3)当△ABP为等腰直角三角形时,请直接写出点P的坐标.答案与解析一.选择题(共9小题,满分27分)1. 用数学的眼光观察下面的网络图案,其中可以抽象成中心对称图形的是( )A. B. C. D.【答案】A【解析】【分析】根据中心对称图形的概念对各选项分析判断即可得解.在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心【详解】解:A 、是中心对称图形,故本选项符合题意;B 、不是中心对称图形,故本选项不合题意;C 、不是中心对称图形,故本选项不合题意;D 、不是中心对称图形,故本选项不合题意.故选:A .【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合. 2. 下列说法正确的是( )A. 1的平方根是1B. ﹣1平方根是﹣1C. 0的平方根是0D. 0.01是0.1的一个平方根【答案】C【解析】【分析】一个数的平方等于a,那么这个数叫做a 的平方根.即如果x 2=a ,那么 x 叫做a 的平方根.根据平方根的定义依次进行判断即可.【详解】解:A. 1的平方根是±1,故该选项错误,B. 负数没有平方根,故该选项错误,C. 0的平方根是0,故该选项正确,D. 0.1是0.01的一个平方根,故该选项错误,故选C.【点睛】本题考查了平方根的定义,熟练掌握相关定义是解题关键.3. 若点Р在一次函数4y x =+的图像上,则点Р一定不在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】由k=1>0,b=4>0,利用一次函数图象与系数的关系可得出一次函数y=x+4的图象经过第一、二、三象限,结合点P 在一次函数y=x+4的图象上,即可得出结论.【详解】解:∵k=1>0,b=4>0,∴一次函数y=x+4的图象经过第一、二、三象限.又∵点P 在一次函数y=x+4的图象上,∴点P 一定不在第四象限.故选:D .【点睛】本题考查了一次函数图象与系数的关系,牢记“k >0,b >0⇔y=kx+b 的图象在一、二、三象限”是解题的关键.4. 已知ABC 的三边分别为a ,b ,c ,下列条件不能判断ABC 是直角三角形的是( )A. 222a b c =-B. 6a =,8b =,10c =C. A B C =+∠∠∠D. ::3:4:5A B C ∠∠∠=【答案】D【解析】【分析】根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.【详解】解:A 、∵a 2=b 2−c 2,∴a 2+c 2=b 2,∴此三角形是直角三角形,故本选项不符合题意;B 、∵62+82=102,∴此三角形是直角三角形,故本选项不符合题意;C 、∵∠A +∠B +∠C =180°,∠A =∠B +∠C ,∴∠A =90°,∴此三角形是直角三角形,故本选项不符合题意;D 、设∠A =3x ,则∠B =4x ,∠C =5x ,∵∠A +∠B +∠C =180°,∴3x +4x +5x =180°,解得x =15°,∴∠C =5×15°=75°,∴此三角形不是直角三角形,故本选项符合题意;故选:D .【点睛】本题考查的是勾股定理的逆定理及三角形内角和定理,熟知以上知识是解答此题的关键. 5. 如图,在ABC 中,20,AB AC cm DE ==垂直平分AB ,垂足为E ,交AC 于D ,若15BC cm =,则DBC △的周长为( )A. 25cmB. 35cmC. 30cmD. 27.5cm【答案】B【解析】【分析】因为DE垂直平分线段AB,根据线段垂直平分线的性质得到AD=BD,由此得到△BCD的周长=BD+CD+BC=AD+CD+BC=AC+BC,又因为AB=AC=20cm,BC=15cm,由此即可求出△DBC的周长.【详解】解:DE垂直平分AB,∴AD=BD,∴△BCD的周长=BD+CD+BC=AD+CD+BC=AC+BC又AB=AC=20cm,BC=15cm,△BCD的周长=20+15=35(cm).故△BCD的周长为35cm.故选B.【点睛】此题主要考查了等腰三角形的性质和线段的垂直平分线的性质等几何知识,线段的垂直平分线上的点到线段的两个端点的距离相等.6. 如图,已知∠CAE=∠BAD,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B =∠E.其中能使△ABC≌△AED的条件有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】先由∠CAE=∠BAD得到∠CAB=∠DAE,然后分别利用“SAS”、“ASA”和“AAS”对各添加的条件进行判断.【详解】解:①由∠CAE=∠BAD,得∠CAB=∠DAE,增加AB=AE,那么AB=AE,∠CAB=∠DAE,AC=AD,根据“SAS”推出△ABC≌△AED,故①符合题意;②由∠CAE =∠BAD ,得∠CAB =∠DAE ,添加BC =ED ,△ABC 与△AED 不一定全等,故②不符合题意;③由∠CAE =∠BAD ,得∠CAB =∠DAE ,增加∠C =∠D ,那么∠C =∠D ,∠CAB =∠DAE ,AC =AD ,根据“ASA ”推出△ABC ≌△AED ,故③符合题意;④由∠CAE =∠BAD ,得∠CAB =∠DAE ,增加∠B =∠E ,那么∠B =∠E ,∠CAB =∠DAE ,AC =AD ,根据“AAS ”推出△ABC ≌△AED ,故④符合题意;综上分析可知:符合题意的有①③④,共3个,故C 正确.故选:C .【点睛】本题考查了全等三角形的判定:三条边分别对应相等的两个三角形全等;两边及其夹角分别对应相等的两个三角形全等;两角及其夹边分别对应相等的两个三角形全等;两角及其中一个角的对边对应相等的两个三角形全等.7. 将两个含有30°角的直角三角形和一个等腰直角三角形按如图所示的方式放置.若37α∠=︒,则∠β的度数为( )A. 37°B. 45°C. 53°D. 60°【答案】C【解析】 【详解】如图,作//EF AB∴1β∠=∠30ABD BDC ∠=∠=︒//AB CD ∴//EF CD ∴2α∴∠=∠1290∠+∠=︒1290αβ∴∠+∠=∠+∠=︒37α∠=︒53β∴∠=︒故选C【点睛】本题考查了平行线的性质与判定,三角尺中角度问题,掌握平行线的性质与判定是解题的关键. 8. 如图,已知直线y =ax +2与直线y =mx +b 的交点的横坐标是﹣2.根据图象有下列四个结论:①a >0;②b <0;③方程ax +2=mx +b 的解是x =﹣2;④不等式ax ﹣b >mx ﹣2的解集是x >﹣2.其中正确的结论个数是( )A. 1B. 2C. 3D. 4【答案】D【解析】 【分析】根据图象得:直线y =ax +2的图像自左向右逐渐上升,直线y =mx +b 交y 轴于负半轴,从而得到a >0,b <0,故①②正确;再由直线y =ax +2与直线y =mx +b 的交点的横坐标是﹣2.可得方程ax +2=mx +b 的解是x =﹣2,故③正确;然后观察图象可得当x >﹣2时,直线y =ax +2的图象位于直线y =mx +b 的图象得上方,可得不等式ax +2>mx +b 的解集为x >﹣2,故④正确,即可求解.【详解】解:根据图象得:直线y =ax +2的图像自左向右逐渐上升,直线y =mx +b 交y 轴于负半轴, ∴a >0,b <0,故①②正确;∵直线y =ax +2与直线y =mx +b 的交点的横坐标是﹣2.∴当x =﹣2时,ax +2=mx +b ,∴方程ax +2=mx +b 的解是x =﹣2,故③正确;∵ax ﹣b >mx ﹣2,∴ax +2>mx +b ,∵当x >﹣2时,直线y =ax +2的图象位于直线y =mx +b 的图象得上方,∴不等式ax +2>mx +b 的解集为x >﹣2,即不等式ax ﹣b >mx ﹣2的解集是x >﹣2.故④正确∴正确的结论为①②③④,共有4个.故选:D【点睛】本题主要考查了一次函数的交点问题,熟练掌握一次函数的图象和性质是解题的关键. 9. 如图,在平面直角坐标系中,设一质点M 自P 0(1,0)处向上运动1个单位P 1(1,1),然后向左运动2个单位至P 2处,再向下运动3个单位至P 3处,再向右运动4个单位至P 4处,再向上运动5个单位至P 5处,…,如此继续运动下去,则P 2022的坐标为( )A. ()1011,1011B. ()505,504-C. ()504,505-D. ()1011,1011-【答案】D【解析】 【分析】根据第一象限中点的特征,探究规律,利用规律解决问题.【详解】解:由题意,第一象限的点P 1(1,1),P 5(3,3),P 9(5,5),…,P 2021(1011,1011), P 2022的纵坐标与P 2021的纵坐标相同,∴P 2022(-1011,1011),故选:D .【点睛】本题考查坐标与图形变化-平移,规律型问题,解题的关键是学会探究规律的方法.二.填空题(共9小题,满分27分)10. 在平面直角坐标系中,若点()3,3P m m +-在y 轴上,则m 的值是____________.【答案】-3【解析】【分析】根据y 轴上的点的特点为,横坐标=0求解即可.【详解】解:∵点()3,3P m m +-在y 轴上,∴30m +=3m ∴=-故答案为:3-【点睛】本题考查了y 轴上的点的特点,掌握y 轴上的点的特点是解题的关键.11. 11+-=_________.【解析】 【分析】根据数的符号去掉绝对值,然后计算即可.【详解】解:∵1<,∴10<,∴111111+=+=故答案为【点睛】此题主要考查了二次根式的计算,正确判断数的符号,去绝对值是解题的关键.12. 在平面直角坐标系中,点A 坐标为()4,3,点B 在x 轴上,若AOB 是直角三角形,则OB 的长为______.【答案】4或254 【解析】【分析】点B 在x 轴上,所以90AOB ∠≠︒ ,分别讨论,90∠=︒ABO 和90OAB ∠=︒两种情况,设(),0B x ,根据勾股定理求出x 的值,即可得到OB 的长.【详解】解:∵B 在x 轴上,∴设(),0B x ,∵()4,3A ,∴5OA == ,①当90∠=︒ABO 时,B 点横坐标与A 点横坐标相同,∴4x = ,∴()14,0B ,∴4OB = ,②当90OAB ∠=︒时,222OA AB OB += ,∵点A 坐标为()4,3,(),0B x ,∴()222243825AB x x x =-+=-+ ,∴2225825x x x +-+= , 解得:254x = , ∴225,04B ⎛⎫ ⎪⎝⎭, ∴254OB = , 故答案为:4或254. 【点睛】本题考查平面直角坐标系中两点间距离以及勾股定理,分情况讨论是解题关键.13. 电影票上“10排3号”,记作()10,3,“8排23号”,记作()8,23,则“5排16号”记作______.【答案】()5,16【解析】【分析】根据题中规定的意义写出一对有序实数对.【详解】解:∵电影票上“10排3号”,记作()10,3,“8排23号”,记作()8,23,∴“5排16号”记作(5,16).故答案为(5,16).【点睛】本题考查了坐标确定位置:平面直角坐标系中,有序实数对与点一一对应;记住平面直角坐标系中特殊位置的点的坐标特征.14. 如图,△ABC 中,AC =BC ,点D ,E ,F 分别在边AC ,AB ,BC 上,且满足AD =BE ,AE =BF ,∠DEF =40°,则∠C 的度数是 ___.【答案】100°【解析】【分析】先证明ADE BEF ≌,可得∠AED =∠BFE ,从而得∠BFE +∠BEF =140°,进而即可求解.【详解】解:∵△ABC 中,AC =BC ,∴∠A =∠B ,∵AD =BE ,AE =BF ,∴ADE BEF ≌,∴∠AED =∠BFE ,∵∠DEF =40°,∴∠AED +∠BEF =180°-40°=140°,∴∠BFE +∠BEF =140°,∴∠B =∠A =40°,∴∠C =180°-40°-40°=100°.故答案是:100°.【点睛】本题主要考查全等三角形的判定和性质以及三角形内角和定理以及等腰三角形的性质,证明ADE BEF ≌是解题的关键.15. 在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0,k ,b 均为常数)与正比例函数y =﹣13x 的图象如图所示,则关于x 的不等式kx +b >﹣13x 的解集为______.【答案】x <3【解析】【分析】把y =﹣1代入y =﹣13x ,得出x =3,进而利用图象可以知道,当x =3时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式kx +b >﹣13x 的解集. 【详解】解:把y =﹣1代入y =﹣13x , 解得:x =3, 由图象可以知道,当x =3时,两个函数的函数值是相等的,所以不等式kx +b >﹣13x 的解集为:x <3, 故答案为:x <3.【点睛】此题主要考查了一次函数与一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变. 16. ABC 中,13AB AC ==,10BC =,点P 为AB 上一个动点,则CP 的最小值为 _____. 【答案】12013##3913 【解析】【分析】作AF BC ⊥于F ,根据等腰三角形三线合一的性质得出152BF CF BC ===,然后根据勾股定理求得12AF =,再根据垂线段最短和三角形面积公式即可求解.【详解】解:根据垂线段最短,当CP AB ⊥时,CP 取得最小值,作AF BC ⊥于F ,∵AB AC =, ∴152BF CF BC ===,∴12AF ==. ∴1113101222CP ⨯⨯=⨯⨯, 解得12013CP =. 故答案为:12013. 【点睛】本题主要考查了等腰三角形的性质,三角形的面积,关键是理解“等腰三角形三线合一的性质”.17. 某复印店复印收费y (元)与复印面数x 面的函数图象如图所示,从图象中可以看出,复印超过100面的部分,每面收费 _____元.【答案】0.4##25【解析】 【分析】利用超过100面的部分的费用除以超出的页数,即可求解.【详解】解:根据题意得:复印超过100面的部分,每面收费为70500.4150100-=-元.故答案为:0.4【点睛】本题主要考查了函数的图象,解题的关键是仔细观察图象,并从图象中整理出进一步解题的有关信息.18. 在正方形ABCD 中,4AB =,点P 为对角线BD 上一点,且PD =当点E 在边BC 上,AP PE =时,CE 的长为_____.【答案】0或2【解析】【分析】作PM BC ⊥于M ,证明BMP 是等腰直角三角形,求得1CM BC BM =-=,证明()SAS ABP CBP ≌,推出AP CP =,据此即可求解.【详解】解:作PM BC ⊥于M ,如图所示:∵四边形ABCD 是正方形,∴4BC DC AB ===,90BCD ABC ∠=∠=︒,45ABD CBD ∠=∠=︒,∴BD ==∵PD =∴BP BD PD =-=∵PM BC ⊥,∴BMP 是等腰直角三角形,∴32BM PM BP ===, ∴1CM BC BM =-=,在△ABP 和△CBP 中,AB CB ABP CBP BP BP =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABP CBP ≌,∴AP CP =,∵AP PE =,∴PE CP =,∵PM BC ⊥,∴1EM CM ==,∴22CE CM ==;当点E 与C 重合时,0CE =;综上所述,CE 的长为0或2;故答案为:0或2.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的性质等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.三.解答题(共9小题,满分66分)19. 计算:(1)|2|--(2))1011|2|5-⎛⎫-++ ⎪⎝⎭【答案】(1)2+(2)2+【解析】【分析】(1)直接利用绝对值的性质、二次根式的性质分别化简,进而得出答案;(2)直接利用零指数幂的性质以及绝对值的性质、负整数指数幂的性质、立方根的性质分别化简,进而计算得出答案.【小问1详解】解:|2|-2=+2=【小问2详解】解:)1011|2|5-⎛⎫-++ ⎪⎝⎭1252=-+-2=【点睛】此题主要考查了实数的运算,正确化简各数是解题关键.20. 求下列各式中x 的值:(1) 2490x -=;(2)()381270x -+=.【答案】(1)32x =±(2)12x =-【解析】 【分析】(1)利用求平方根解方程;(2)利用求立方根解方程.【小问1详解】解:2490x -=,249x =,294x =, 32x =±; 【小问2详解】解:()381270x +﹣= ()3﹣127x =-,()32718x =-﹣ 312x -=-, 12x =-. 【点睛】本题考查平方根与立方根,熟练掌握利用求平方根与立方根解方程是解题的关键.21. 已知某正数的两个平方根分别是314a -和2a +,15b -的立方根为3-.(1)求a b +的值.(2)求5313a b -+的立方根.【答案】(1)9-(2)4【解析】【分析】(1)根据平方根和立方根的定义求出a ,b 的值即可得出答案;(2)求出代数式的值,再求它的立方根即可.【小问1详解】解:∵某正数的两个平方根分别是314a -和2a +,∴31420a a -++=,∴3a =,∵15b -的立方根为3-,∴()315327b -=-=-,∴12b =-,∴3129a b +=-=-;【小问2详解】当312a b ==-,时, 5313a b -+5331213=⨯+⨯+153613=++64=,∴5313a b -+的立方根为4.【点睛】本题考查了平方根和立方根,掌握一个正数的平方根有2个,它们互为相反数是解题的关键. 22. 如图,AB =AC ,AD =AE ,∠BAC =∠DAE .(1)求证:△ABD ≌△ACE ;(2)若∠1=25°,∠2=30°,求∠3的度数.【答案】(1)见解析;(2)∠3=55°.【解析】【分析】(1)先由∠BAC=∠DAE ,就可以得出∠1=∠EAC ,就可以得出△ABD ≌△ACE ;(2)由(1)得出∠ABD=∠2,就可以由三角形的外角与内角的关系求出结论.【详解】(1)证明:∵∠BAC =∠DAE ,∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC ,∴∠1=∠EAC ,在△ABD 和△ACE 中,1=AB AC EAC AD AE =⎧⎪∠∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS );(2)解:∵△ABD ≌△ACE ,∴∠ABD =∠2=30°,∵∠1=25°,∴∠3=∠1+∠ABD =25°+30°=55°.【点睛】此题考查全等三角形的判定与性质,三角形的外角和与内角和,解题关键在于掌握判定定理. 23. 如图,一架云梯AB 长25m ,斜靠在一面墙上,梯子靠墙的一端A 距地面24m .(1)这个梯子底端B 离墙有多少米?(2)如果梯子的顶端下滑的距离AD =4m ,求梯子的底部B 在水平方向滑动的距离BE 的长.【答案】(1)7米;(2)8m【解析】【分析】(1)由题意得25AB DE ==米,24AC =米,根据勾股定理AC 2+BC 2=AB 2,可求出梯子底端离墙有多远.(2)由题意得此时CD =20米,DE =25米,由勾股定理可得出此时的CE ,继而可求BE .【详解】(1)由题意知25AB DE ==米,24AC =米,4=AD 米,在直角△ABC 中,∠C =90°∴222BC AC AB +=∴7BC =米,∴这个梯子底端离墙有7米(2)∵4=AD 米,∴24420CD AC AD =-=-=(米),在直角△CDE 中,∠C =90°∴222BD CE DE +=∴15CE =(米),15BE =米7-米8=米.答:梯子的底部在水平方向滑动了8m .【点睛】本题考查勾股定理的应用,有一定难度,注意两问线段的变化.24. 已知y +6与x +1成正比例,当x =3时,y =2.(1)求出y 与x 的函数关系式;(2)设点(m ,−2)在这个函数的图象上,求m 的值.(3)试判断点(1,−3)是否在此函数图像上,说明理由.【答案】(1)y =2x -4;(2)m =1;(3)不在,理由见解析【解析】【分析】(1)可设y +6=k (x +1),将x 、y 值代入求出k 值即可求解;(2)将点(m ,﹣2)代入(1)中函数关系式中求解即可;(3)根据一次函数图象上定的坐标特征进行判断即可.【详解】解:(1)根据题意,可设y +6=k (x +1),∵当x =3时,y =2,∴()2631k +=+解得:k =2,∴y +6=2(x +1),即y =2x -4;,∴y 与x 的函数关系式为y =2x -4;(2)将点(m ,﹣2)代入y =2x -4得:224m -=-,解得:1m =;(3)当x =1时,2423y =-=-≠-,则点(1,−3)不在此函数的图象上.【点睛】本题考查了待定系数法求一次函数解析式、一次函数图象上的点的坐标特征、解一元一次方程,熟练掌握相关知识的运用是解答的关键.25. 如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,ABC 的三个顶点的坐标分别为()()()2,51,14,3A B C ,,.(1)画出ABC 关于y 对称的111A B C △;(2)求111A B C △的面积;(3)在x 轴上画出点P ,使得PB PC +最小,并求出此时P 点坐标.【答案】(1)见解析 (2)5(3)点P 见解析,7,04P ⎛⎫⎪⎝⎭【解析】 【分析】(1)根据()()()2,51,14,3A B C ,,找到其关于y 轴对称的对称点的坐标()()()1112,51,14,3A B C ---,,,一次连接即可;(2)采用割补法即可求解;(3)作B 点关于x 轴的对称点2B ,连接2B C 交x 轴于点P ,再求出直线2B C 的解析式为4733=-y x ,即可作答.【小问1详解】如图,111A B C △即为所求.【小问2详解】111A B C △的面积为:111111342214235222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯=;【小问3详解】作B 点关于x 轴的对称点2B ,连接2B C 交x 轴于点P ,如图,点P 即为所求.证明:根对称性可知:2B P BP =,即:2BP CP B P CP +=+,即当2B 、P 、C 三点共线时22B P CP B C +=,即点P 即为所求.∵()1,1B ,∴()21,1B -,∵()21,1B -,()4,3C ,设直线2B C 的解析式为:y kx b =+,即有:143k b k b +=-⎧⎨+=⎩, 解得:4373k b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线2B C 的解析式为4733=-y x , 令0y =,得到47033x =-,解得:74x =, ∴7,04P ⎛⎫ ⎪⎝⎭.【点睛】此题考查了轴对称图形的性质和作图,三角形面积的求法,解题的关键是熟练掌握轴对称图形的性质和作图,三角形面积的求法.26. 某药店出售普通口罩和N95口罩.如表为两次销售记录:(2)该药店计划再次购进1000个口罩,根据市场实际需求,普通口罩的数量不低于N95口罩数量的4倍.已知普通口罩的进价为1元/个,N95口罩的进价为6元/个.设购买普通口罩x个,获得的利润为W元;①求W关于x的函数关系式,并求出自变量x的取值范围;②该药店应如何进货才能使销售总利润最大?并求出最大利润.【答案】(1)普通口罩和N95口罩的售价分别是2元/个,10元/个;(2)①W=-3x+4000,(x≥800);②购进普通口罩800个,N95口罩200个,最大利润是1600元.【解析】【分析】(1)根据题意和表格中的数据,可以列出二元一次方程组,从而可以求得普通口罩和N95口罩的销售单价;(2)①根据题意,可以得到利润与购进普通口罩数量的函数关系式,再根据普通口罩的数量不低于N95口罩数量的4倍,可以求得普通口罩数量的取值范围;②根据一次函数的性质,即可求出最大利润.【详解】解:(1)设普通口罩的销售单价为a元/个,N95口罩的销售单价为b元/个,则5004005000 6003004200a ba b+=⎧⎨+=⎩,解得,210 ab=⎧⎨=⎩,即普通口罩和N95口罩的销售单价分别是2元/个,10元/个;(2)①由题意可知,W=(2-1)x+(10-6)×(1000-x)=-3x+4000,∴W=-3x+4000,∵普通口罩的数量不低于N95口罩数量的4倍,∴x≥4×(1000-x),解得,x≥800,∴W=-3x+4000,(x≥800);②在W=-3x+4000,(x≥800)中,∵-3<0,∴W随x的增大而减小,∴当x=800时,W 取得最大值,此时W=-3×800+4000=1600,1000-x=200,因此为使该药店售完这1000个口罩后的总利润最大,该药店购进普通口罩800个,N95口罩200个,最大利润是1600元.【点睛】本题考查一次函数的应用、二元一次方程组的应用,解答本题的关键是明确题意,列出相应的二元一次方程组,利用一次函数的性质和不等式的性质解答.27. 如图,在平面直角坐标系中,直线AB :y =kx +1(k ≠0)交y 轴于点A ,交x 轴于点B (3,0),点P 是直线AB 上方第一象限内的动点.(1)求直线AB 的表达式和点A 的坐标;(2)点P 是直线x =2上一动点,当△ABP 的面积与△ABO 的面积相等时,求点P 的坐标;(3)当△ABP 为等腰直角三角形时,请直接写出点P 的坐标.【答案】(1)y =13-x +1,点A (0,1) (2)点P 的坐标是(2,43) (3)点P 的坐标是(4,3)或(1,4)或(2,2)【解析】【分析】(1)把B 的坐标代入直线AB 的解析式,即可求得k 的值,然后在解析式中,令0x =,求得y 的值,即可求得A 的坐标;(2)过点A 作AM PD ⊥,垂足为M ,求得AM 的长,即可求得BPD ∆和PAD ∆的面积,二者的和即可表示PAB S ∆,在根据ABP ∆的面积与ABO ∆的面积相等列方程即可得答案;(3)分三种情况:当P 为直角顶点时,过P 作PN y ⊥轴于N ,过B 作BM PN ⊥于M ,由()APN PBM AAS ∆≅∆,可得1AN PN +=①,3PN AN +=②,即得(2,2)P ;当A 为直角顶点时,过P 作PK y ⊥轴于K ,由APK BAO ∆≅∆,可得(1,4)P ,当B 为直角顶点时,过P 作PR x ⊥轴于R ,同理可得(4,3)P .【小问1详解】 解:直线:1(0)AB y kx k =+≠交y 轴于点A ,交x 轴于点(3,0)B ,13k ∴=-, ∴直线AB 的解析式是113y x =-+. 当0x =时,1y =,∴点(0,1)A ;【小问2详解】解:如图1,过点A 作AM PD ⊥,垂足为M ,则有2AM =,设(2,)P n ,2x =时,11133y x =-+=,1(2,)3D ∴, P 在点D 的上方,13PD n ∴=-, 11112()2233APD S AM PD n n ∆∴=⋅=⨯⨯-=-, 由点(3,0)B ,可知点B 到直线2x =的距离为1,即BDP ∆的边PD 上的高长为1,11111()()2323BPD S n n ∆∴=⨯⨯-=-, 3122PAB APD BPD S S S n ∆∆∆∴=+=-; ABP ∆的面积与ABO ∆的面积相等, ∴31113222n -=⨯⨯, 解得43n =,4(2,)3P ∴; 【小问3详解】解:当P 为直角顶点时,过P 作PN y ⊥轴于N ,过B 作BM PN ⊥于M ,如图2:ABP ∆为等腰直角三角形,AP BP ∴=,90NPA BPM PBM ∠=︒-∠=∠,90ANP BMP ∠=∠=︒,()APN PBM AAS ∴∆≅∆,BM PN ∴=,PM AN =,90NOB ONM OBM ∠=∠=∠=︒,∴四边形OBMN 是矩形,3MN OB ∴==,1BM ON AN PN ==+=①,3PN PM PN AN ∴+=+=②,由①②解得2PN =,1AN =,2ON OA AN ∴===,(2,2)P ∴;当A 为直角顶点时,过P 作PK y ⊥轴于K ,如图3:ABP ∆为等腰直角三角形,AP AB ∴=,90KAP OAB ABO ∠=︒-∠=∠,而90PKA AOB ∠=∠=︒,()APK BAO AAS ∴∆≅∆,3AK OB ∴==,1PK OA ==,4OK OA AK ∴=+=,(1,4)P ∴,当B 为直角顶点时,过P 作PR x ⊥轴于R ,如图4:同理可证()AOB BRP AAS ∆≅∆,1BR OA ∴==,3PR OB ==,(4,3)P ∴,综上所述,P 坐标为:(2,2)或(1,4)或(4,3).【点睛】本题考查一次函数综合应用,解题的关键是作辅助线,构造全等三角形,利用全等三角形对应边相等解决问题.。
2023-2024学年上海市高二上册12月月考数学试题(含解析)
2023-2024学年上海市高二上册12月月考数学试题一、填空题1.已知等比数列}{n a 中,12452,16a a a a +=+=,则}{n a 的公比为__.【正确答案】2【分析】设公比为q ,再根据题意作商即可得解.【详解】设公比为q ,则345128a a q a a +==+,所以2q =.故答案为.22.已知直棱柱的底面周长为12,高为4,则这个棱柱的侧面积等于___________.【正确答案】48【分析】根据直棱柱的侧面积公式直接求解即可【详解】因为直棱柱的底面周长为12,高为4,所以这个棱柱的侧面积为12448⨯=,故483.直线0mx y -=与直线220x my --=平行,则m 的值是__________.【正确答案】【分析】利用直线的平行条件即得.【详解】∵直线0mx y -=与直线220x my --=平行,∴122m m -=≠--,∴m =.故答案为.m =4.经过两直线2x +y -1=0与x -y -2=0的交点,且在两坐标轴上的截距互为相反数的直线方程是___________.【正确答案】x +y =0或x -y -2=0【分析】先求解两直线的交点坐标,再运用截距式求解直线的方程可得出结果.【详解】解:联立两直线方程可得:21020x y x y +-=⎧⎨--=⎩,解得11x y =⎧⎨=-⎩,可得两条直线交点P (1,-1).①直线经过原点时,可得直线方程为y =-x ;②直线不经过原点时,设直线方程为1x y a a+=-,把交点P (1,-1)代入可得111a a-+=-,解得a =2.所以直线的方程为x -y-2=0.综上直线方程为:x +y =0或x -y -2=0.故x +y =0或x -y -2=0.5.我国南北朝时期的数学家祖暅提出了一个原理“幂势既同,则积不容异”,即夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.现有某几何体和一个圆锥满足祖暅原理的条件,若该圆锥的侧面展开图是一个半径为2的半圆,则该几何体的体积为________.【分析】根据圆锥的侧面展开图是一个半径为2的半圆,由22r l πππ==,求得底面半径,进而得到高,再利用锥体的体积公式求解.【详解】设圆锥的母线长为l ,高为h ,底面半径为r ,因为圆锥的侧面展开图是一个半径为2的半圆,所以22r l πππ==,解得1r =,所以h =所以圆锥的体积为:1133V Sh π==⨯⨯故该几何体的体积为3,故36.如果二面角l αβ--的平面角是锐角,空间一点Р到平面α、β和棱l 的距离分别为4和l αβ--的大小为_______________.【正确答案】75 或15【分析】分点P 在二面角l αβ--的内部和外部,利用二面角的定义求解.【详解】当点P 在二面角l αβ--的内部,如图所示:,,PA PB PC l αβ⊥⊥⊥,A ,C ,B ,P 四点共面,ACB ∠是二面角的平面角,因为Р到平面α、β和棱l 的距离分别为22、4和42所以212sin ,sin 224242ACP BCP ∠=∠==所以30,45ACP BCP ∠=∠= ,则453075ACB BCP ACP ∠=∠+∠=+= ;当点P 在二面角l αβ--的外部,如图所示:,,PA PB PC l αβ⊥⊥⊥,A ,C ,B ,P 四点共面,ACB ∠是二面角的平面角,因为Р到平面α、β和棱l 的距离分别为22、4和42所以所以2212sin ,sin 224242ACP BCP ∠=∠==所以30,45ACP BCP ∠=∠= ,30,45ACP BCP ∠=∠= ,则453015ACB BCP ACP ∠=∠-∠=-= .故75 或157.已知圆台的上、下底面半径分别为2和5,圆台的高为3,则此圆台的体积为__.【正确答案】39π【分析】由圆台的体积公式代入求解即可.【详解】由题意知,122,5,3r r h ===,则()()22121211ππ42510339π33V r r r r h =++⨯=++⨯=.故答案为.39π8.如图,是一个正方体的平面展开图,在这个正方体中,①BM 与ED 是异面直线;②CN 与BE 平行;③CN 与BM 成60 角④DM 与BN 垂直,请写出正确结论的个数为__个.【正确答案】4【分析】画出该平面展开图合起来后的正方体后,逐项判断.【详解】解:该平面展开图合起来后的正方体,如图所示:由图形得BM 与ED 是异面直线,故①正确;CN 与BE 平行,故②正确;连接EM ,则BEM △为等边三角形,所以BE 与BM 所成角为60︒,因为//CN BE ,所以CN 与BM 成60︒角,故③正确;对于④,连接CN ,BC ⊥平面CDNM ,DM ⊂平面CDNM ,所以BC DM ⊥,又DM CN ⊥,,,CN BC C CN BC ⋂=⊂面BCN ,所以DM ⊥平面BCN ,BN ⊂平面BCN ,所以DM BN ⊥,故④正确.所以正确结论的个数是4个.故49.若圆222:()0O x y r r +=>上恰有相异两点到直线40x y --=,则r 的取值范围是__.【正确答案】【分析】计算圆心到直线的距离为||d r -.【详解】圆心(0,0)到直线40x y --=的距离d =,因为圆上恰有相异两点到直线40x y --=,所以||d r -即||r r <<故10.过点1,12⎛⎫- ⎪⎝⎭的直线l 满足原点到它的距离最大,则直线l 的一般式方程为___________.【正确答案】2450x y --=【分析】过O 作OB l ⊥于B ,连接OA ,可得直角三角形AOB 中OB OA <,从而得到当OA l ⊥时,原点O 到直线l 的距离最大,利用垂直,求出l 的斜率,从而得到l 的方程.【详解】设点1,12A ⎛⎫- ⎪⎝⎭,过坐标系原点O 作OB l ⊥于B ,连接OA ,则OB 为原点O 到直线l 的距离,在直角三角形AOB 中,OA 为斜边,所以有OB OA <,所以当OA l ⊥时,原点O 到直线l 的距离最大,而1212OA k -==-,所以12l k =,所以l 的直线方程为11122y x ⎛⎫+=- ⎪⎝⎭,整理得:2450x y --=本题考查根据点到直线的距离求斜率,点斜式写直线方程,属于简单题.11.已知P 是直线34130x y ++=上的动点,PA ,PB 是圆()()22111x y -+-=的切线,A ,B 是切点,C 是圆心,那么四边形PACB 面积的最小值是________.15【分析】将四边形面积的最小时,等价于圆心C 到直线34130x y ++=的距离最小,求出最小距离,进而利用三角形面积公式求出最小面积.【详解】解:由题意知,A ,B 是切点,是圆心()1,1C ,且圆的半径为1所以221PB PA PC ==-四边形PACB 面积为:221212S PB r PC =⨯⋅=-所以当PC 取最小值时,S 取最小值由点P 在直线上运动可知,当PC 与直线34130x y ++=垂直时PC 取最小值此时PC 为圆心C 到直线34130x y ++=的距离即22314113434PC ⨯+⨯+==+故四边形PACB 最小面积为:224115S =-=故答案为关键点睛:本题的关键是将面积的最值转化为点到直线上点的距离的最值,进而转化为点到直线的距离.12.我们将函数图象绕原点逆时针旋转()02θθπ≤≤后仍为函数图象的函数称为JP 函数,θ为其旋转角,若函数0y x =≤≤⎭为JP 函数,则其旋转角θ所有可取值的集合为___________【正确答案】2350,,,22323πππππ⎡⎤⎡⎤⎡⎤⎢⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦【分析】由解析式可知原函数图象为圆弧AB ,根据函数的定义可知若旋转后不再是函数,则必存在垂直于x 轴的切线,且切点异于弧AB 端点,A B ,通过图形进行分析可得结果.【详解】02y x =≤≤⎭为如图所示的一段圆弧AB ,其所对圆心角6AOB π∠=,若该函数图象绕原点逆时针旋转θ后不再是函数,则其旋转后的图象必存在垂直于x 轴的切线,且切点异于弧AB 端点,A B ,由图象可知:若6COD π∠=,则当A 点自C 向D 运动(不包含,C D )时,图象存在垂直于x 轴的切线,此时2,23ππθ⎛⎫∈ ⎪⎝⎭;若6EOF π∠=,则当A 点自E 向F 运动(不包含,E F )时,图象存在垂直于x 轴的切线,此时35,23ππθ⎛⎫∈ ⎪⎝⎭;∴若函数02y x ⎫=≤≤⎪⎪⎭为JP 函数,其旋转角()02θθπ≤≤所有可能值的集合为.2350,,,22323πππππ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦故答案为.2350,,22323πππππ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦13.设10x y -+=,求d =__.【正确答案】【分析】根据d 的表达式可知,其几何意义表示直线10x y -+=上一点(),P x y 到点()3,5A -和点()2,15B -的距离之和,根据“将军饮马”模型求解即可.【详解】根据题意可得d =,表示直线10x y -+=上一点(),P x y 到点()3,5A -和点()2,15B -的距离之和,点A 关于直线10x y -+=的对称点为(),C a b ,则满足513351022b a a b -⎧=-⎪⎪+⎨-+⎪-+=⎪⎩解得4,2a b ==-;所以点A 关于直线10x y -+=的对称点为()4,2C -,如下图所示:则PA PB PB PC BC+=+≥所以()min PA PB BC +==.故14.若,x y R ∈___________.【分析】根据题意并结合两点间的距离公式,将原不等式转化为PA QB PQ =++,其中(),0P x 是x 轴上的动点,()0,Q y 是y 轴上的动点,()1,1A ,()1,2B 是定点,根据距离的几何意义和对称关系,可知当A '、P 、Q 、B '四点共线时,PA QB PQ ++取得最小值,则()min PA QB PQ A B ''++=,最后利用两点间的距离公式即可求得结果.根据两点间的距离公式可知,表示点(),0P x 到点()1,1A 的距离,表示点()0,Q y 到点()1,2B 的距离,表示点(),0P x 到点()0,Q y 的距离,其中(),0P x 是x 轴上的动点,()0,Q y 是y 轴上的动点,()1,1A ,()1,2B 是定点,PA QB PQ =++,如图,作A 关于x 轴的对称点()1,1A '-,B 关于y 轴的对称点()1,2B '-,的最小值,则需求PA QB PQ ++的最小值,可知当A '、P 、Q 、B '四点共线时,PA QB PQ ++取得最小值,即()min PA QB PQ A B ''++==,故答案为二、单选题15.设29n a n =-,则当数列{an }的前n 项和取得最小值时,n 的值为()A .4B .5C .4或5D .5或6【正确答案】A 【分析】结合等差数列的性质得到100n n a a +≤⎧⎨≥⎩,解不等式组即可求出结果.【详解】由100n n a a +≤⎧⎨≥⎩,即()2902190n n -≤⎧⎨+-≥⎩,解得7922n ≤≤,因为n N *∈,故4n =.故选:A.16.已知三条不同的直线a ,b ,c ,两个不同的平面α,β,则下列说法错误的是()A .若a α⊥,//αβ,a b ⊥r r ,则b β//或b β⊂B .若a α⊥,b β⊥,//αβ,则a b⊥r r C .若a α⊥,b β⊥,αβ⊥,则a b⊥r r D .若a α⊥,⋂=c αβ,//b c ,则a b⊥r r 【正确答案】B【分析】根据线面位置关系逐项判断即可得出答案.【详解】选项A 中,//a ααβ⊥,,可得a β⊥,又//a b b β⊥∴或b β⊂,选项A 正确;选项B 中,//a a ααββ⊥∴⊥,,又b β⊥,则//a b ,选项B 错误;选项C 中,//a a ααββ⊥⊥∴,或a β⊂,又b β⊥//a β∴时,a b ⊥;a β⊂时,a b ⊥,选项C 正确;选项D 中,a c a c ααβ⊥⋂=∴⊥,,又//b c a b ∴⊥,选项D 正确故选:B.17.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,阿波罗尼斯圆就是他的研究成果之一,指的是:已知动点M 与两个定点A ,B 的距离之比为λ(0λ>,且1λ≠),那么点M 的轨迹就是阿波罗尼斯圆.若平面内两定点A ,B 间的距离为2,动点P满足PA PB=22PA PB +的最大值为()A.16+B.8+C.7+D.3【正确答案】A【分析】设()()1,0,1,0A B -,(),P x y,由PA PB=P 的轨迹为以()2,0为圆心,半()222221PA PB x y +=++,其中22x y +可看作圆()2223x y -+=上的点(),x y 到原点()0,0的距离的平方,从而根据圆的性质即可求解.【详解】解:由题意,设()()1,0,1,0A B -,(),P x y ,因为PA PB==,即()2223xy -+=,所以点P 的轨迹为以()2,0因为()()()222222221121x y x y x y PA PB =++++-+=++,其中22x y +可看作圆()2223x y -+=上的点(),x y 到原点()0,0的距离的平方,所以()(222max27x y+==+,所以()22max21168x y ⎡⎤++=+⎣⎦22PA PB +的最大值为16+故选:A.18.已知长方体1111ABCD A B C D -的外接球O 的体积为323π,其中12BB =,则三棱锥O ABC -的体积的最大值为()A .1B .3C .2D .4【正确答案】A【分析】设,AB a AD b ==,根据长方体1111ABCD A B C D -的外接球O 的体积和12BB =,可求得外接球的半径2R =,根据基本不等式求得ABCS 的最大值,再代入三棱锥的体积公式,即可得到答案;【详解】设,AB a AD b ==,∵长方体1111ABCD A B C D -的外接球O 的体积为323π,12BB =,∴外接球O 的半径2R =,∴22416a b ++=,∴2212a b +=,∴2262a b ab +≤=,∵O 到平面ABC 的距离1112d BB ==,132ABCSab =≤,∴三棱锥O ABC -的体积1131133ABCV S d =⨯⨯≤⨯⨯=.∴三棱锥O ABC -的体积的最大值为1.故选:A .19.如图,矩形ABCD 中,M 为BC 的中点,1AB BM ==,将ABM 沿直线AM 翻折成AB M '(B '不在平面AMCD 内),连结B D ',N 为B D '的中点,则在翻折过程中,下列说法中正确的个数是()①//CN 平面AB M ';②存在某个位置,使得CN AD ⊥;③线段CN 长度为定值;④当三棱锥B AMD '-的体积最大时,三棱锥B AMD '-的外接球的表面积是4π.A .1B .2C .3D .4【正确答案】C【分析】取AB '中点,利用线线平行推出线面平行可判断①;假设垂直,得到AB AD '<不成立,可判断②;由①知//CN MN ',且CN MN '=,可判断③;当平面B AM '⊥平面AMD 时,三棱锥B AMD '-体积最大,此时AD 中点为外接球球心,可判断④.【详解】对于①,取AB '的中点N ',连接NN ',则1////,2NN AD CM NN AD CM ''==,所以四边形N MCN '为平行四边形,所以//CN MN ',又MN '⊂平面AB M ',CN ⊄平面AB M ',即//CN 平面AB M ',故①正确;对于②,假设存在某个位置,使得CN AD ⊥,又,AD CD CN CD C ⊥= ,,CN CD ⊂平面CDN ,所以AD ⊥平面CDN ,又DN ⊂平面CDN ,所以AD ⊥DN ,即222AB AD DB ''=+,因为1,2,AB AD AB AD ''==<,所以不可能,故②错误;对于③,由①得CN MN '=,因为AB B M ''⊥,1AB B M ''==,所以2MN '==为定值,所以CN 长度为定值,故③正确;对于④,取AD 的中点H ,当三棱锥B AMD '-的体积最大时,此时平面B AM '⊥平面AMD ,因为MD AM ⊥,MD ⊂平面AMD ,平面B AM ' 平面AMD AM =,所以MD ⊥平面B AM ',又AB '⊂平面B AM ',所以AB MD '⊥,又,B AB M M MD M B '''⊥= ,,D B M M '⊂平面B MD ',所以AB '⊥平面B MD ',B D '⊂平面B MD ',所以A B D B ''⊥,所以H 即为三棱锥B AMD '-的外接球球心,又1HA =,所以外接球的表面积是24π14π⨯=,故④正确.故选:C三、解答题20.已知等差数列{}n a 中,1479,0a a a =+=.(1)求数列{}n a 的通项公式;(2)当n 为何值时,数列{}n a 的前n 项和取得最大值?【正确答案】(1)()112n a n n N *=-∈(2)5n =【分析】(1)结合等差数列的通项公式,求出公差,进而可以求出结果;(2)求出数列{}n a 的前n 项和,结合二次函数的性质即可求出结果.【详解】(1)由1479,0a a a =+=,得11360a d a d +++=,解得2d =-,()()11921112n a a n d n n =+-=--=-,所以数列{}n a 的通项公式()112n a n n N *=-∈.(2)19,2a d ==-,()()()22192105252n n n S n n n n -=+⨯-=-+=--+,∴当5n =时,n S 取得最大值.21.在四棱锥P –ABCD 中,底面ABCD 是边长为6的正方形,PD ⊥平面ABCD ,PD =8.(1)求异面直线PB 与DC 所成角的正切值;(2)求PA 与平面PBD 所成角的正弦值.【正确答案】(1)53(2)10【分析】(1)由//AB CD 可知PBA ∠就是异面直线PB 与DC 所成的角,利用线面垂直的判定定理可得AB ⊥平面PDA ,根据线面垂直的性质可得AB PA ⊥,进而求出tan PBA ∠即可;(2)连接AC ,与BD 交于点O ,连接PO ,利用线面垂直的判定定理可得AC ⊥平面PBD ,进而可知APO ∠为PA 与平面PBD 所成的角,求出AO 即可得出结果.【详解】(1)由题意知,//AB CD ,所以PBA ∠就是异面直线PB 与DC 所成的角,因为PD ⊥平面ABCD ,AB ⊂平面ABCD ,所以AB PD ⊥,又AB AD ⊥,=PD AD D ⋂,所以AB ⊥平面PDA ,而PA ⊂平面PDA ,所以AB PA ⊥.在Rt PAB 中,106PA AB ===,,所以5tan 3PA PBA AB ∠==,即异面直线PB 与DC 所成的角的正切值为53;(2)连接AC ,与BD 交于点O ,连接PO ,由PD ⊥平面ABCD ,得PD AC ⊥,PD AD ⊥,因为底面ABCD 为边长为6的正方形,所以BD AC ⊥,AC =,又BD PD D PDBD =⊂ ,、平面PBD ,所以AC ⊥平面PBD ,所以PA 在平面PAD 内的射影为PO ,APO ∠为PA 与平面PBD 所成的角,又PD =8,AD =6,所以PA =10,12AO AC ==所以在Rt APO 中,sin 10AO APO PA ∠==,即PA 与平面PBD 所成的角的正弦值为10.22.已知直线l 的方程为()()()14232140m x m y m +--+-=.(1)证明:无论m 为何值,直线l 恒过定点,并求出定点的坐标;(2)若直线l 与x 、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,是否存在直线l 使得ABO 的面积为9.若存在,求出直线l 的方程;若不存,请说明理由.【正确答案】(1)证明见解析;()2,2(2)存在,2211660x y +-=或922660x y +-=【分析】(1)在直线的方程中,先分离参数,再令参数的系数等于零,求得x 、y 的值,可得直线经过定点的坐标.(2)求出A 、B 的坐标,根据ABO 的面积为9,求出m 的值,可得结论.【详解】(1)直线l 的方程为()()()14232140m x m y m +--+-=,即()()4314220m x y x y +-+-+=,令43140x y +-=,可得220x y -+=,求得2x =,2y =,可得该直线一定经过43140x y +-=和220x y -+=的交点()2,2.(2)若直线l 与x 、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,则142,014m A m -⎛⎫ ⎪+⎝⎭、1420,32m B m -⎛⎫-⎝⎭,且142014m m ->+,142032m m ->-,∴14m <-,或23m >.则ABO 的面积为1142142921432m m m m --⨯⨯=+-,即()()()227194132m m m ⨯-+-=,即21017200m m --=,∴52m =,或45m =-.故存在直线l 满足条件,且满足条件的出直线l 的方程为2211660x y +-=,或922660x y +-=.23.如图,几何体Ω为一个圆柱和圆锥的组合体,圆锥的底面和圆柱的一个底面重合,圆锥的顶点为P ,圆柱的上、下底面的圆心分别为1O 、2O ,且该几何体有半径为1的外接球(即圆锥的项点与底面圆周在球面上,且圆柱的底面圆周也在球面上),外接球球心为O .(1)32Ω的体积;(2)若112:1:3PO O O =,求几何体Ω的表面积.【正确答案】(1)78π(2)648525+【分析】(1)分别计算圆锥的体积与圆柱的体积,体积和即为所求;(2)根据比例关系,可分别求出圆锥与圆柱的高及底面半径,再利用表面积公式即可求解.【详解】(1)如图可知,过P 、1O 、2O 的截面为五边形ABCPD ,其中四边形ABCD 为矩形,三角形CPD 为等腰三角形,PC PD=在直角1OO D 中,1OD =,132O D =,则22131212OO ⎛⎫ ⎪ ⎪⎝⎭-=32111122O P =-=,其体积为2131328ππ⨯⨯=⎝⎭32122112O O =⨯=,其体积为23314ππ⨯=⎝⎭所以几何体Ω的体积为37488πππ+=(2)若112:1:3PO O O =,设122O O h =,则123h PO =,故213h h +=,35h ∴=在直角1OO D 中,1OD =,135OO =,则22155134O D ⎛⎫⎪⎝⎭=-=故圆锥的底面半径为45,高为125O P =22425555⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,圆锥的侧面积为45525ππ⨯⨯=圆柱的底面半径为45,高为1265O O =,其侧面积为464825525ππ⨯⨯=所以几何体Ω2484255π⎛⎫++⨯= ⎪⎝⎭24.已知圆C 的圆心C 为(0,1),且圆C 与直线260x y -+=相切.(1)求圆C 的方程;(2)圆C 与x 轴交于A ,B 两点,若一条动直线l :x =x 0交圆于M ,N 两点,记圆心到直线AM 的距离为d .(ⅰ)当x 0=1时,求dBN的值.(ⅱ)当﹣2<x 0<2时,试问dBN是否为定值,并说明理由.【正确答案】(1)()2215x y +-=(2)(ⅰ)12;(ⅱ)d BN为定值12,理由见解析【分析】(1)求出圆心到直线的距离,则圆C 的方程可求;(2)(ⅰ)当x 0=1时,可得直线l :x =1,与圆的方程联立求得M 、N 的坐标,写出AM 的方程,求出圆心到直线AM 的距离d ,再求出|BN |,则答案可求;(ⅱ)联立直线与圆的方程,求得M 、N 的坐标,写出AM 的方程,求出圆心到直线AM 的距离d ,再求出|BN |,整理即可求得d BN为定值12.【详解】(1)圆C 的半径r ==则圆C 的方程为()2215x y +-=;(2)(ⅰ)由()2215x y +-=,取y =0,可得2x =±.∴A (﹣2,0),B (2,0),圆C 与动直线l :0x x =交于M ,N 两点,则2200(1)51x y x x x ⎧+-=⎪=⎨⎪=⎩,解得13x y =⎧⎨=⎩或11x y =⎧⎨=-⎩,∴M (1,3),N (1,﹣1),则直线AM 的方程y ﹣0()()3212x =+--,即20x y -+=.圆心到直线AM 的距离d 2==,|BN|==∴12d BN ==;(ⅱ)由圆C 与动直线l :0x x =交于M ,N 两点,设M (x 0,y 1),N (x 0,y 2),联立220(1)5x y x x ⎧+-=⎨=⎩,解得M(01x ,,N(01x ,,∴直线AM:)02y x =+.圆心(0,1)到直线AM 的距离d =.|BN|=则12 dBN=.∴dBN为定值12.。