最新人教版七年级数学下册 6.2 立方根 (2)

合集下载

人教版七年级下册数学6.2-立方根教学课件

人教版七年级下册数学6.2-立方根教学课件

练一练 因为 3 8 =_–__2_, 3 8 =_–__2_, 所以 3 8 __=__ 3 8 ; 因为 3 27 =_–__3_, 3 27 =_–_3__, 所以 3 27 __=__ 3 27 ; 你能归纳出立方根的另一性质吗?
一般地, 3 a = 3 a
平方根与立方根的区别和联系
解: 3 V
4.求下列各式的值.
(1)3 0.027(2)3 8 27
= – 0.3
= 2
3
(3)3 1 37 (4)3 7 1
64
8
27 =3
64
1 = 3
8
3
=
4
= 1
2
5.比较下列各组数的大小.
(1) 3 9 与2.5;
(2) 3 3 与 3 .
2
解:因为 ( 3 9)3 = 9 因为 ( 3 3)3 = 3

2 3
).
知识要点
立方根的性质
一个正数有一个正的立方根; 一个负数有一个负的立方根, 零的立方根是零.
立方根是它本身的数有 1, -1, 0; 平方根是它本身的数 只有0.
二 开立方及相关运算
每个数a都有一个立方根,记作3 a ,读作“三次 根号a”. 如:x3=7时,x是7的立方根.
注意:这个根指数3绝 对不可省略.
2.53 = 15.625 所以 ( 3 9)3 < 15.625 所以 3 9 < 2.5
( 3)3 27 2 8 27 所以 3 < 8
所以 3 3 < 3
2
拓展提升
若 3 x =2, y2 =4,求 x 2 y 的值.
解:∵ 3 x =2, y2 =4. ∴x = 23,y2 = 16, ∴x = 8,y = ±4. ∴x + 2y = 8 + 2×4 = 16 或 x + 2y = 8 – 2×4 = 0. ∴ x 2 y = 16 = 4 或 x 2 y = 0 = 0.

人教版初一数学下册6.2立方根(2)

人教版初一数学下册6.2立方根(2)

6.2立方根(2)[前1・・8的立方根是 -- 2. (-3)的立方根是_ 3・V512"的立方根是4 •一个数的立方根是舟5- ^^125的倒数是_2的立方根是,则这个数是;相反数是显示:12.264 940 8L 练习:教材第51页练习第2题. 依次按键丁1 1 845 口.;依次按键2ndF 显示:12.264 940 81.1 815探究先填写下表,再回答问题:0.060.6660问题:从上面表格中你发现了什么规律?归纳:被开方数的小数点每向右(或左)移动三位,开方后立方根的小数点就向右(或左)移动一位.9例2估计3, 4, V50-的大小.解:•/V27 = 3, V64 =4,27< 50 < 64,・・3v疥v4解: ;解:练习比较下列各组数的大小. (1)旳与2・ 5(2)A/3^解: ;解:例3你能求出下列各式中的未知数兀吗?(1)0+27 二0;(2) 1250-64=0;(3)2(x+l)3-16=0.这节课你学到了哪些知识?1.用计算器求一个数的立方根.2.比较数的大小.3.求解一元三次方程.1 •估计68的立方根在(C)A. 2与3之间B. 3与4之间C. 4与5之间D. 5与6之间2. 一个正方体的水晶砖,体积为100 它的棱长大约在(A)A.4 cm〜5 cm之间B.5 cm〜6 cm之间C.6 cm〜7 cm之间D.7 cm〜8 cm之间3.已知WO.342 二 0.699 3, W2 = 1.507, V342= 3.246,求下列各式的值.(1)^0.000 342 = :0.069 93 *(2) ^/-34 200 000 = -324-6__; 居细心观察哦!(3) - V0.003 42 =・°J50_7•1 •必做题:教材习题6・2复习巩固第4、5、8题.•2•点拨:立方根练习.。

最新人教版七年级数学下册6.2立方根(教案)

最新人教版七年级数学下册6.2立方根(教案)
-在计算立方根时,引导学生运用分解因数法,如计算27的立方根,可以将其分解为3×3×3,得出立方根为3。
-在实际应用中,如计算一个立方体木块的体积,已知边长为2米,通过立方根计算得出体积为8立方米。
2.教学难点
-立方根的求法:对于一些复杂的数,学生可能难以直接得出其立方根。
-立方根的近似计算:在解决实际问题时,需要估算立方根的值,学生可能对近似计算方法掌握不足。
三、教学难点与重点
1.教学重点
-立方根的定义:理解立方根的概念,明确正数、负数和零的立方根的求法。
-立方根的计算方法:掌握计算立方根的基本方法,如分解因数法、近似计算法等。
-立方根的应用:学会将立方根应用于解决实际问题,如体积、密度等计算。
举例解释:
-通过立方根的定义,让学生明白一个数的立方根是什么,例如:2的立方根是8,-2的立方根是-8,0的立方根是0。
然而,我也注意到,在小组讨论过程中,部分学生过于依赖同学,缺乏独立思考。为了培养学生的独立思考能力,我打算在接下来的教学中,增加一些个人任务,让学生在学习过程中学会独立分析问题和解决问题。
同时,我也在思考如何更好地关注到每一个学生的学习情况。在今天的课堂上,我尽量让每个学生都有发言的机会,但仍然担心有些学生可能没有完全掌握知识点。我计划在课后对这部分学生进行个别辅导,以确保他们能够跟上教学进度。
最后,我认为在今后的教学中,要更加注重培养学生的逻辑推理能力和数学建模能力。这两项能力对于学生理解立方根以及解决相关问题具有重要意义。我会通过设计更多有针对性的问题和案例,引导学生运用所学知识进行推理和建模。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。

人教版七年级数学下“6.2立方根”说课稿(优秀篇)

人教版七年级数学下“6.2立方根”说课稿(优秀篇)
探究:填空,你能发现其中的规律吗?
因为 , ,所以 ;
因为 , ,所以
由两个例子可归纳出:一般地, ,探讨了一个数的立方根与它的相反数的立方根之间的关系,由此可以将求负数的立方根的问题转化为求正数得出立方根的出问题,引导学生体会这种转化的思想。
(四)典例讲解
例1:求下列各式的值:
(1) (2) (3)
分析:此题的本质还是求立方根.(请三明同学在黑板上板演,其他同学在练习本上完成,并充分利用错误资源,及时给于指导和帮助)
(六)回顾交流,课堂小结
1.本节课你学到了哪些知识,获得了哪些数学思想方法?
2.你认为本节课的易错知识点有哪些?
(1)立方根的根指数不能省略;(2)一个数的立方根只有一个,不能跟平方根相混淆;(3)表示一个负数的立方根时不能直接将负号提前。
(选做题)教材52页第6题
设计意图:检测学生对于课堂知识的理解与掌握程度,从而更好地调整课堂教学。
九、教学评价设计
1.你对于本节课的掌握情况是( )
A.非常好 B.比较好 C.一般
2.谈谈你本节课的收获和不足?
3.通过本节课的学习你对老师有哪些建议?
十、板书设计
主板
副板
1.立方根的概念:
2.立方根的表示方法:
3.开立方的概念:
4.探索立方根的特点:
例题讲解和板演
六、教学方法分析
本节课主要采用通过创设问题情境—启发学生独立思考-引导学生自主探究-发挥小组合作交流—鼓励学生归纳、总结的学习方式,启发学生深度思考,以实现学生对于知识的主动建构!整堂课注意留给学生足够探索和交流的空间,关注数学思想方法的引导和渗透!
七、教学准备:ppt
八、教学过程分析
(一)学前温故

人教版数学七年级下册第20课时《6.2立方根(2)》教学设计

人教版数学七年级下册第20课时《6.2立方根(2)》教学设计

人教版数学七年级下册第20课时《6.2立方根(2)》教学设计一. 教材分析《6.2立方根(2)》是人教版数学七年级下册的教学内容,这部分内容是在学生已经掌握了立方根的定义和求法的基础上进行进一步的拓展。

本节课主要让学生进一步了解立方根的概念,掌握求立方根的方法,并能运用立方根解决实际问题。

教材中通过丰富的例题和练习题,帮助学生巩固所学知识,提高解决问题的能力。

二. 学情分析学生在进入七年级下学期之前,已经学习了一定的数学知识,对于基本的算术运算和几何概念有一定的了解。

但是,由于学生的学习背景和学习能力各不相同,对于立方根的理解和应用可能存在差异。

因此,在教学过程中,需要关注学生的个体差异,针对不同程度的学生进行有针对性的教学。

三. 教学目标1.知识与技能:让学生掌握立方根的概念,学会求立方根的方法,并能运用立方根解决实际问题。

2.过程与方法:通过学生的自主学习、合作交流,培养学生的数学思维能力和问题解决能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生积极思考、勇于探索的精神。

四. 教学重难点1.重点:立方根的概念和求法,以及运用立方根解决实际问题。

2.难点:立方根在实际问题中的应用,以及与其他数学概念的关联。

五. 教学方法1.情境教学法:通过生活实例引入立方根的概念,让学生在实际情境中理解立方根的意义。

2.自主学习法:鼓励学生自主探究立方根的求法,培养学生的独立思考能力。

3.合作交流法:学生进行小组讨论,分享学习心得,互相学习,共同进步。

4.案例教学法:通过分析实际问题,引导学生运用立方根解决问题,提高学生的应用能力。

六. 教学准备1.教学课件:制作精美的课件,辅助教学,提高学生的学习兴趣。

2.练习题:准备一定数量的练习题,用于巩固所学知识,提高学生的解题能力。

3.教学资源:收集与立方根相关的教学资源,如视频、文章等,丰富教学内容。

七. 教学过程1.导入(5分钟)利用生活中的实例,如冰雪融化、肥料稀释等,引导学生思考立方根的实际意义,激发学生的学习兴趣。

新人教版初中七年级数学下册《6.2 用计算器求立方根、用有理数估计一个数立方根的大小》优质课教学设计_4

新人教版初中七年级数学下册《6.2 用计算器求立方根、用有理数估计一个数立方根的大小》优质课教学设计_4

有两个立方根;(2)漏写根指数(3)符号问题。
2、“立方根”与“平方根”在内容安排上有很多类似的地方,所以在
教 学
教学设计中应突出利用类比的方法,让学生通过类比旧知识联系起来,又
反 有利于复习巩固平方根,利于立方根的理解和掌握。在探究立方根性质的

过程中,本节课采用独立思考,小组讨论,合作交流等形式,让学生在“自
了解学生的学习情况。 -0.064(5)0
示。
2、求下列各式的 4、互相评价指正。

值:(1)3 64
(2)3 0.001
六、当堂检测
(3) 3 64 ( 4 ) 4
125
55
1.出示与本节课相关的练习 练习:
1、学生独立完成检测
题实行课堂检测。
1.判断下列说法是
练习。
2.在学生完成练习的同时实 否准确,并说明理
教学设计
具体内容 材 分 析
学 情 分 析
教 学 目 标
教学重点
教学难点 教学方法 教具准备

立方根的概念和特征
课型
新授
本章内容能够看成是以后学习代数内容的起始章,是学习二次根式、
一元二次方程以及解三角形的基础,所以在中学数学教学中占有很重要的
地位。通过本章的学习,学生对数的理解就由有理数扩大到实数,而无理
3(.2想)一(想 )3 125,

立的方数3 1根有25是哪它些__?本__身_
平方根是它本身
的数呢?

算术平方根是它
本身的数呢?
七、梳理归纳及课堂小结
1.引导学生回顾本节课的主 1.立方根定义,性
要内容,并对相关内容实行 质,及表示方法. 1.在老师指导评价后及

人教版 七年级下册 试题及解析——6.2立方根

人教版 七年级下册 试题及解析——6.2立方根

6.2立方根一.选择题(共29小题)(= )A.2B.-C.83-D.2-8-的立方根之和是( ) A.0B.4-C.4D.0或4-3.下列等式正确的是( )A.2=2=-2=-0.14.下列说法错误的是( ) A.5是25的算术平方根 B.1的立方根是1± C.1-没有平方根D.0的平方根与算术平方根都是0 5.下列说法正确的是( ) A.3是9的立方根 B.3是2(3)-的算术平方根 C.2(2)-的平方根是2 D.8的平方根是4±6.下列说法正确的是( )A.立方根是它本身的数只能是0和1B.如果一个数有立方根,那么这个数也一定有平方根C.16的平方根是4D.2-是4的一个平方根7.给出下列说法:①2-是4的平方根;的算术平方根是9;③3=-;④2的平其中正确的说法有( ) A.0个B.1个C.2个D.3个8.如果b -是a 的立方根,则下列结论正确的是( )A.3b a -=B.3b a -=C.3b a =D.3b a =9.下列说法正确的是( ) A.9的立方根是3B.算术平方根等于它本身的数一定是1C.2-是4的平方根2 10.下列语句正确的是( ) A.负数没有立方根B.8的立方根是2±C.立方根等于本身的数只有1± 11.下列说法正确的是( ) A.16 的平方根是4 B.只有正数才有平方根 C.不是正数的数都没有平方根D.算术平方根等于立方根的数有两个 12.下列说法不正确的是( ) A.1的平方根是1± B.1-的立方根是1- C.4是2的平方根 D.3-是9的平方根13.8-的立方根是( ) A.2B.12C.2-D.12-14.下列说法错误的个数是( ) (1)16的算术平方根是2(2)立方根等于本身的数有1-、0和1 (3)3-是2(3)-的算术平方根 (4)8的立方根是2± A.0个B.1个C.2个D.3个15.125-( ) A.2-B.4C.8-D.2-或8-16.已知一个正数的两个平方根分别为31a -和5a --,则这个正数的立方根是( )A.2-B.2C.3D.417.将一块体积为31000cm 的正方体锯成8块同样大小的小正方体木块,则每个小正方体木块的棱长为( ) A.5cmB.6cmC.7cmD.8cm18.下列说法正确的是( ) A.3±是27的立方根B.负数没有平方根,但有立方根C.25的平方根是53± 19.64的立方根为( ) A.8B.8-C.4D.4-20.如果236m =,364n =-5=,则m n x +-的值有( )个. A.2个B.3个C.5个D.4个21.下列各式中,正确的是( )4=±B.2C.3=3-22.下列各式中,正确的是( )5=±6=-3-D.3=23.27-的立方根与4的平方根的和是( ) A.1-B.5-C.1-或5-D.5±或1±24.下列说法正确的是( ) A.36的平方根是6± B.3-是2(3)-的算术平方根C.8的立方根是2±D.3是9-的算术平方根25.给出下列说法: ①4-是16的平方根;4;③2=;④a其中,正确的说法有( ) A.1个B.2个C.3个D.4个26.已知a 的平方根是8±,则a 的立方根是( ) A.2B.4C.2±D.4±27.2(的平方根是x ,64的立方根是y ,则x y +的值为( ) A.3B.7C.3或7D.1或728.下列等式中:18,2=,4=±,0.001,34=-,⑦2(25=.其中正确的有( )个. A.2B.3C.4D.529.立方根等于2的数是( )A.8±B.8C.8-二.填空题(共4小题)30.已知a 是27的立方根,则a = .31.若16的算术平方根是m ,27-的立方根是n ,则m n +的值是 .32.3的平方根是 ;的算术平方根是 ;127-的立方根是 . 33.已知一个正数的两个平方根分别为26m -和3m +,则9m -的立方根是 . 三.解答题(共17小题) 34.解方程(1)23(51)480x +-= (2)31252(1)4x -=-35.求下列各式中的x 的值: (1)225(1)121x -= (2)33(2)810x --= 36.求下列各式中的x . (1)25(2)10x += (2)3(4)64x +=-37.求下列各式中的x . (1)2(12)169x -=; (2)3(32)64x -=. 38.解下列方程 (1)2144x = (2)3(1)27x +=39.已如3m n A n m -=-+是3n m -+的算术平方根,232m n B m n -+=+是2m n +的立方根,求B A +的平方根.40.已知2的平方等于a ,21b -是27的立方根,2c ±-表示3的平方根. (1)求a ,b ,c 的值;(2)化简关于x 的多项式:||2()x a x b c --+-,其中4x <.41.已知某正数的两个平方根分别是3a +和215a -,b 的立方根是2-,求a b +值. 42.已知:2x -的平方根是2±,27x y ++的立方根是3,求 (1)x 和y 的值; (2)22x y +的算术平方根.43.正数x 的两个平方根分别为3a -和27a +. (1)求a 的值;(2)求44x -这个数的立方根. 44.若312x -与332y -互为相反数,求12xy+的值. 45.已知3既是1x -的平方根,也是21x y -+的立方根,求22x y -的平方根. 46.请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的表面积.47.已知21b +的平方根为3±,321a b +-的算术平方根为4,求3b a -的立方根.48.已知a A =是3b +的算术平方根,26a b B -=2a -的立方根,求52A B -的值.49.已知3x +的立方根为2,31x y +-的平方根为4±,求35x y +的算术平方根.50.(1)已知23b +的平方根是3±,321a b ++的算术平方根为4,求36a b +的立方根;(2)已知5a =,29b =.参考答案与试题解析一.选择题(共29小题)(= )A.2B.-C.83-D.2-2-, 故选:D .8-的立方根之和是( ) A.0B.4-C.4D.0或4-4=,4∴的平方根是2±,8-Q 的立方根是2-,2(2)0+-=或2(2)4-+-=,故选:D .3.下列等式正确的是( )A.2=2=-2=-0.1【解析】A 、2=±,错误;B 2,错误;C 2=-,正确;D 0.1=,错误;故选:C .4.下列说法错误的是( ) A.5是25的算术平方根 B.1的立方根是1± C.1-没有平方根D.0的平方根与算术平方根都是0【解析】A .5是25的算术平方根,此选项说法正确;B .1的立方根是1,此选项说法错误;C .1-没有平方根,此选项说法正确;D .0的平方根与算术平方根都是0,此选项说法正确;故选:B .5.下列说法正确的是( ) A.3是9的立方根 B.3是2(3)-的算术平方根 C.2(2)-的平方根是2D.8的平方根是4±【解析】A 、3是9的平方根,不符合题意;B 、3是2(3)-的算术平方根,符合题意;C 、2(2)-的平方根是2±,不符合题意;D 、16的平方根是4±,不符合题意,故选:B .6.下列说法正确的是( )A.立方根是它本身的数只能是0和1B.如果一个数有立方根,那么这个数也一定有平方根C.16的平方根是4D.2-是4的一个平方根【解析】A 、立方根是它本身的数有1-、0和1,故错误,不符合题意;B 、负数有立方根但没有平方根,故错误,不符合题意;C 、16的平方根是4±,故错误,不符合题意;D 、2-是4的一个平方根,正确,符合题意,故选:D .7.给出下列说法:①2-是4的平方根;的算术平方根是9;③3=-;④2的平其中正确的说法有( ) A.0个B.1个C.2个D.3个【解析】①2-是4的平方根,说法正确;③3=,原题说法错误;④2的平方根是 正确的说法有1个, 故选:B .8.如果b -是a 的立方根,则下列结论正确的是( ) A.3b a -=B.3b a -=C.3b a =D.3b a =【解析】b -Q 是a 的立方根,3()b a ∴-=,即3a b =-, 故选:A .9.下列说法正确的是( ) A.9的立方根是3B.算术平方根等于它本身的数一定是1C.2-是4的平方根2【解析】A .27的立方根是3,此选项错误;B .算术平方根等于它本身的数是1和0,此选项错误;C .2-是4的平方根,此选项正确;D .2故选:C .10.下列语句正确的是( ) A.负数没有立方根B.8的立方根是2±C.立方根等于本身的数只有1±【解析】A .负数有一个负的立方根,此选项错误;B .8的立方根是2,此选项错误;C .立方根等于本身的数有1±和0,此选项错误;D .2==-,此选项正确;故选:D .11.下列说法正确的是( ) A.16 的平方根是4 B.只有正数才有平方根 C.不是正数的数都没有平方根D.算术平方根等于立方根的数有两个 【解析】A .16的平方根是4±,此选项错误;B .正数和零都有平方根,此选项错误;C .0不是正数,也有平方根,是0,此选项错误;D .算术平方根等于立方根的数有两个,是0和1,此选项正确;故选:D .12.下列说法不正确的是( ) A.1的平方根是1± B.1-的立方根是1- C.4是2的平方根D.3-是9的平方根【解析】A 、1的平方根是1±,正确,不合题意;B 、1-的立方根是1-,正确,不合题意;C 、4是16的一个平方根,故此选项错误,符合题意;D 、3-是9的平方根,正确,不合题意;故选:C .13.8-的立方根是( ) A.2B.12C.2-D.12-【解析】3(2)8-=-Q , 8∴-的立方根是2-,故选:C .14.下列说法错误的个数是( ) (1)16的算术平方根是2(2)立方根等于本身的数有1-、0和1 (3)3-是2(3)-的算术平方根 (4)8的立方根是2±A.0个B.1个C.2个D.3个【解析】(1)16的算术平方根是4,此结论错误; (2)立方根等于本身的数有1-、0和1,此结论正确; (3)3是2(3)-的算术平方根,此结论错误; (4)8的立方根是2,此结论错误; 故选:B .15.125-( ) A.2-B.4C.8-D.2-或8-【解析】125-的立方根为5-,Q9,∴3或3-,则125-2-或8-, 故选:D .16.已知一个正数的两个平方根分别为31a -和5a --,则这个正数的立方根是( ) A.2-B.2C.3D.4【解析】Q 一个正数的两个平方根分别为31a -和5a --, 3150a a ∴---=,解得:3a =, 318a ∴-=,这个数是2864=, 64的立方根为4, 故选:D .17.将一块体积为31000cm 的正方体锯成8块同样大小的小正方体木块,则每个小正方体木块的棱长为( ) A.5cmB.6cmC.7cmD.8cm105()2cm ==, 故选:A .18.下列说法正确的是( ) A.3±是27的立方根B.负数没有平方根,但有立方根C.25的平方根是53±【解析】A 、3是27的立方根,故本选项错误;B 、负数没有平方根,但有立方根,故本选项正确;C 、25的平方根是5±,故本选项错误;D ,故本选项错误;故选:B .19.64的立方根为( ) A.8B.8-C.4D.4-【解析】64的立方根是4. 故选:C .20.如果236m =,364n =-5=,则m n x +-的值有( )个. A.2个B.3个C.5个D.4个【解析】236m =Q ,364n =-5=, 6m ∴=或6-、4n =-、5x =或5-,当6m =、4n =-、5x =时,6453m n x +-=--=-; 当6m =、4n =-、5x =-时,6457m n x +-=-+=; 当6m =-、4n =-、5x =时,64515m n x +-=---=-; 当6m =-、4n =-、5x =-时,6455m n x +-=--+=-; 故选:D .21.下列各式中,正确的是( )4=±B.2C.3=3-4=,故A 错误;2=,故B 错误;3=±,故C 错误;3=,故D 正确.故选:D .22.下列各式中,正确的是( )5=±6=-3-D.3=【解析】A 5=,故此选项错误;B 6,故此选项错误;C 3=-,正确;D 、3=-,故此选项错误;故选:C .23.27-的立方根与4的平方根的和是( ) A.1-B.5-C.1-或5-D.5±或1±【解析】27-的立方根是3-,4的平方根是2±, 故27-的立方根与4的平方根的和是:1-或5-. 故选:C .24.下列说法正确的是( ) A.36的平方根是6± B.3-是2(3)-的算术平方根C.8的立方根是2±D.3是9-的算术平方根【解析】A 、36的平方根是6±,故A 正确; B 、3是2(3)-的算术平方根,故B 错误; C 、8的立方根是2,故C 错误; D 、9-没有算术平方根,故D 错误. 故选:A . 25.给出下列说法: ①4-是16的平方根;4;③2=;④a 其中,正确的说法有( ) A.1个B.2个C.3个D.4个【解析】①4是16的平方根,正确;4=,4的算术平方根是2,故错误;③2=,正确;④a 0)a …,故错误. 其中,正确的说法有2个, 故选:B .26.已知a 的平方根是8±,则a 的立方根是( ) A.2B.4C.2±D.4±【解析】解;已知a 的平方根是8±, 64a =,4=,故选:B .27.2(的平方根是x ,64的立方根是y ,则x y +的值为( ) A.3B.7C.3或7D.1或7【解析】2(9=Q ,2(∴的平方根是3±,即3x =±,64Q 的立方根是y ,4y ∴=,当3x =时,7x y +=, 当3x =-时,1x y +=. 故选:D .28.下列等式中:18,2=,4=±,0.001,34=-,⑦2(25=.其中正确的有( )个. A.2 B.3C.4D.5【解析】14=,故本项错误;2-,故本项错误;4=,故本项错误;0.001=,故本项正确;34=-,故本项正确;=⑦2(5=,故本项错误; 综上可得④⑤⑥正确,共三个. 故选:B .29.立方根等于2的数是( )A.8±B.8C.8-【解析】2Q 的立方等于8, 8∴的立方根等于2.故选:B .二.填空题(共4小题)30.已知a 是27的立方根,则a = 3 . 【解析】a Q 是27的立方根, 3a ∴=.故答案为:3.31.若16的算术平方根是m ,27-的立方根是n ,则m n +的值是 1 . 【解析】16Q 的算术平方根是m ,27-的立方根是n , 4m ∴=,3n =-,4(3)1m n ∴+=+-=,故答案为:1.32.3的平方根是 的算术平方根是 ;127-的立方根是 .【解析】3的平方根是;127-的立方根是13-,故答案为:,13-.33.已知一个正数的两个平方根分别为26m -和3m +,则9m -的立方根是 2- . 【解析】由题意可知:2630m m -++=, 1m ∴=, 98m -=-,8∴-的立方根是2-,故答案为:2-三.解答题(共17小题) 34.解方程(1)23(51)480x +-= (2)31252(1)4x -=-【解析】(1)23(51)480x +-=,23(51)48x +=, 2(51)16x +=, 514x +=±, 55x =-或53x =,解得1x =-或0.6x =;(2)31252(1)4x -=-, 3125(1)8x -=-, 1 2.5x -=-, 1.5x =-.35.求下列各式中的x 的值:(2)33(2)810x --= 【解析】(1)225(1)121x -=, 2121(1)25x -=, 1 2.2x -=±, 1.2x =-或 3.2x =;(2)33(2)810x --=,33(1)81x -=, 3(1)27x -=, 13x -=, 4x =.36.求下列各式中的x . (1)25(2)10x += (2)3(4)64x +=-【解析】(1)25(2)10x +=Q ,2(2)2x ∴+=,则2x +=12x ∴=-+22x =--;(2)3(4)64x +=-Q , 44x ∴+=-,则8x =-.37.求下列各式中的x . (1)2(12)169x -=;【解析】(1)开平方,得1213x -=或1213x -=-, 6x ∴=-或7x =;(2)开立方,得324x -=, 2x ∴=.38.解下列方程 (1)2144x = (2)3(1)27x +=【解析】(1)直接开平方,得12x ==±; (2)直接开立方,得13x +=, 2x ∴=.39.已如m A =3n m -+的算术平方根,2m n B -=2m n +的立方根,求B A +的平方根.【解析】由题意可得2233m n m n -=⎧⎨-+=⎩,∴42m n =⎧⎨=⎩,1m A ∴==,22m B -=,B A ∴+的平方根为±40.已知2的平方等于a ,21b -是27的立方根,表示3的平方根. (1)求a ,b ,c 的值;(2)化简关于x 的多项式:||2()x a x b c --+-,其中4x <. 【解析】(1)由题意知224a ==, 213b -=,2b =; 23c -=,5c =;(2)4x <Q , ||2()x a x b c ∴--+- |4|2(2)5x x =--+- 4245x x =---- 35x =--.41.已知某正数的两个平方根分别是3a +和215a -,b 的立方根是2-,求a b +值. 【解析】根据题意知32150a a ++-=,且3(2)b =-, 4a ∴=,8b =-,则4(8)4a b +=+-=-.42.已知:2x -的平方根是2±,27x y ++的立方根是3,求 (1)x 和y 的值; (2)22x y +的算术平方根.【解析】(1)根据题意知24x -=,2727x y ++=, 解得:6x =,8y =;(2)223664100x y +=+=Q ,22x y ∴+的算术平方根是10.43.正数x 的两个平方根分别为3a -和27a +. (1)求a 的值;(2)求44x -这个数的立方根.【解析】(1)Q 正数x 的两个平方根是3a -和27a +, 3(27)0a a ∴-++=,解得:10a =-(2)10a =-Q , 313a ∴-=,2713a +=-.∴这个正数的两个平方根是13±, ∴这个正数是169.4444169125x -=-=-, 125-的立方根是5-.44.若312x -与332y -互为相反数,求12xy+的值. 【解析】Q 312x -与332y -互为相反数,∴3312320x y -+-=,12320x y ∴-+-=, 123x y +=,∴1233x yy y+==. 45.已知3既是1x -的平方根,也是21x y -+的立方根,求22x y -的平方根. 【解析】根据题意得192127x x y -=⎧⎨-+=⎩①②,由①得:10x =,把10x =代入②得:8y =-, ∴108x y =⎧⎨=-⎩,222210(8)36x y ∴-=--=, 36Q 的平方根是6±,22x y ∴-的平方根是6±.46.请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长; (2)求该长方体纸盒的表面积.【解析】(1)设魔方的棱长为xcm ,可得:3216x =, 解得:6x =答:该魔方的棱长6cm ;(2)设该长方体纸盒的长为ycm ,则26600y =,故2100y =,解得:10y =±因为y 是正数,所以10=101041062520⨯⨯+⨯⨯=(平方厘米)答:该长方体纸盒的表面积为520平方厘米.47.已知21b +的平方根为3±,321a b +-的算术平方根为4,求3b a -的立方根.【解析】由题意可知:221(3)9b +=±=,4b ∴=,2321416a b +-==,38116a ∴+-=,3a =,31239b a ∴-=-=,9∴.48.已知a A =是3b +的算术平方根,26a b B -=2a -的立方根,求52A B -的值.【解析】a A =Q 3b +的算术平方根,26a b B -=2a -的立方根, ∴22633a b a b -=⎧⎨-+=⎩, 解得:31a b =⎧⎨=⎩, 2A ∴=,1B =,则原式1028=-=.49.已知3x +的立方根为2,31x y +-的平方根为4±,求35x y +的算术平方根.【解析】由3x +的立方根为2,31x y +-的平方根为4±,得:383116x x y +=⎧⎨+-=⎩,解得:52x y =⎧⎨=⎩, 35151025x y ∴+=+=,25Q 的算术平方根为5,35x y ∴+的算术平方根为550.(1)已知23b +的平方根是3±,321a b ++的算术平方根为4,求36a b +的立方根;(2)已知5a =,29b =.【解析】(1)23b +Q 的平方根为3±, 239b ∴+=,即3b =,321a b +-Q 的算术平方根为4, 32116a b ∴+-=,解得:3a =,3627a b ∴+=,36a b ∴+的立方根是3;(2)29b =Q ,3b ∴=或3b =-,当3b =;当3b =-3.或3.。

人教版七年级数学下册_6.2立方根

人教版七年级数学下册_6.2立方根

感悟新知
知1-讲
特别警示:3 a 中的根指数 3 不能省略 . 若省略了3, a表示非负数a 的算术平方根而非a 的立方根. 2. 开立方:求一个数的立方根的运算,叫做开立方. 特别解读:立方根与开立方的关系:立方根是一个数, 是开立方的结果;而开立方是求一个数的立方根的运算.
感悟新知
知1-讲
特别提醒 立方根与平方根的区别 1. 被开方数:前者可为任何数,后者为非负数; 2. 根指数:前者不能省略,后者可省略不写; 3. 个数:立方根只有一个,平方根有两个(特殊情况:0
知1-练
感悟新知
知1-练
例2 已知x-2 的平方根是±2,2x+y+7 的立方根是3,求 x2+y2 的算术平方根. 解题秘方:根据立方根的定义用立方法求解.
感悟新知
知1-练
解:∵ x-2 的平方根是±2,∴ x-2=4. ∴ x=6. ∵ 2x+y+7 的立方根是3,∴ 2x+y+7=27. 把x=6 代入解得y=8,∴ x2+y2=62+82=100. ∴ x2+y2 的算术平方根为10.
知3-练
例 5 用计算器求下列各数的立方根: (1)64;(2)100 (精确到0.01); (3)-13.27 (精确到0.001). 解题秘方:根据用计算器求立方根的步骤进行按键 操作.
感悟新知
解:(1)依次按键 所以 3 64 =4.
64 ,显示:4.
(2)依次按键
100 ,
显示:4.641 588 834.所以 3 100 ≈ 4.64.
第6章 实数
6.2 立方根
学习目标
1 课时讲解 2 课时流程
立方根 立方根的性质 用计算器求一个数的立方根

6.2 立方根 人教版年级数学下册课件

6.2 立方根 人教版年级数学下册课件

确定立方根的整数部分和小数部分的方法
先找与被开方数最接近的两个能开得尽立方
的整数,然后确定立方根的取值范围,再利
用取值范围确定其整数部分和小数部分.
2.已知 x- 2 的平方根是 ±2,2x+y+7 的立方根是 3,求
x2+y2 的平方根.
解:∵ x-2 的平方根是 ±2,2x+y+7 的立方根是 3,
因为
3
3
-3
−27=,− 27=,
-3
所以 3 −27− 3 =27 .
请你再试几个不同的数 a,观察 3 −a与− 3 a是
否仍相等.
一般地,互为相反数的两个数,它们的立方根也互为
相反数,即 3 −a=− 3 a.
利用“ 3 −a=− 3 a”,可以把求一
个负数的立方根转化为求一个正
数的立方根的相反数.
用计算器求下列各数的立方根(精确到0.01).
(1)13.27;
(2) -117.
解: (1)依次按键 2nd F 3 1 1 3 . 2 7 = ,
显示:2.367501744,
3
∴ 13.27≈2.37.
3
1 - 1 1 7 = ,
2nd
F
(2)依次按键
显示:-4.890973246,
3
∴ −117≈-4.89.
是多少?
解:设截去的每个小正方体的棱长是 x cm.
依题意,得 1000-8x3=488,
∴ 8x3=512,
∴ x3=64,
∴ x=4.
答:截去的每个小正方体的棱长是 4 cm.
应用平方根、立方根解决实际问题的两种模型
1.面积类:利用平方根的概念,求出正方形面积

人教版数学七年级下册6.2《立方根》教案

人教版数学七年级下册6.2《立方根》教案

人教版数学七年级下册6.2《立方根》教案一. 教材分析《立方根》是人教版数学七年级下册第六章第二节的内容,本节课主要让学生掌握立方根的概念,理解立方根的性质,学会求一个数的立方根。

通过本节课的学习,培养学生观察、思考、归纳的能力,为后续学习四次根式打下基础。

二. 学情分析学生在六年级时已经学习了平方根的概念和性质,对求一个数的平方根已经有一定掌握。

但是,立方根与平方根虽然在概念和性质上有相似之处,也有很大区别。

因此,在教学过程中,要引导学生正确理解立方根的概念,把握立方根与平方根的联系与区别。

三. 教学目标1.知识与技能:理解立方根的概念,掌握立方根的性质,学会求一个数的立方根。

2.过程与方法:通过观察、思考、归纳,培养学生探索数学问题的能力。

3.情感态度与价值观:培养学生对数学的兴趣,激发学生学习数学的积极性。

四. 教学重难点1.重点:立方根的概念和性质,求一个数的立方根。

2.难点:立方根与平方根的联系与区别。

五. 教学方法1.情境教学法:通过生活实例引入立方根的概念,激发学生的学习兴趣。

2.启发式教学法:引导学生观察、思考、归纳立方根的性质,培养学生探索数学问题的能力。

3.小组合作学习:分组讨论,培养学生的团队协作能力。

六. 教学准备1.课件:制作与教学内容相关的课件,以便于展示和讲解。

2.黑板:准备黑板,用于板书重要知识点和示例。

3.练习题:准备一定数量的练习题,用于巩固所学知识。

七. 教学过程1. 导入(5分钟)通过生活实例引入立方根的概念。

例如,一个正方体的体积是27立方厘米,求这个正方体的棱长。

引导学生思考正方体的棱长与体积的关系,从而引出立方根的概念。

2. 呈现(10分钟)讲解立方根的性质,与平方根进行对比,让学生理解立方根与平方根的联系与区别。

通过PPT展示立方根的性质,让学生观察、思考、归纳。

3. 操练(10分钟)让学生独立完成一些求立方根的练习题,巩固所学知识。

教师在旁边巡回指导,解答学生的疑问。

人教版七年级数学下册6.2《立方根》教学设计

人教版七年级数学下册6.2《立方根》教学设计

人教版七年级数学下册6.2《立方根》教学设计一. 教材分析人教版七年级数学下册6.2《立方根》是学生在掌握了有理数的乘方、平方根的基础上,进一步研究立方根的概念和性质。

本节内容主要让学生了解立方根的定义,掌握求一个数的立方根的方法,以及会运用立方根解决实际问题。

教材通过引入立方根的概念,引导学生探究立方根的性质,培养学生的逻辑思维能力和空间想象能力。

二. 学情分析学生在学习本节内容前,已经掌握了有理数的乘方、平方根的概念和性质,具备了一定的数学基础。

但部分学生对平方根的概念还不是很清晰,可能在理解立方根时会受到干扰。

因此,在教学过程中,教师需要关注学生的学习情况,及时解答学生的疑问,帮助学生建立清晰的概念。

三. 教学目标1.知识与技能:让学生掌握立方根的概念和性质,学会求一个数的立方根,会用立方根解决实际问题。

2.过程与方法:通过观察、探究、总结,培养学生的逻辑思维能力和空间想象能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生勇于探索、积极思考的精神。

四. 教学重难点1.重点:立方根的概念和性质,求一个数的立方根的方法。

2.难点:立方根在实际问题中的应用。

五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助学生建立概念。

2.互动法:教师与学生相互交流,共同探讨问题,提高学生的参与度。

3.实例法:教师运用实际例子,让学生更好地理解立方根的应用。

六. 教学准备1.课件:制作与立方根相关的课件,包括图片、动画、实例等。

2.练习题:准备一些有关立方根的练习题,用于巩固所学知识。

3.教学工具:黑板、粉笔、直尺等。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引出立方根的概念,如“一个正方体的体积是27立方厘米,求这个正方体的棱长。

”让学生思考并讨论,激发学生的学习兴趣。

2.呈现(10分钟)教师给出立方根的定义,解释立方根的概念,并通过动画、图片等形式展示立方根的性质。

同时,引导学生回顾平方根的知识,对比二者之间的异同。

人教版七年级数学下册课件:6.2 立方根课件

人教版七年级数学下册课件:6.2 立方根课件

2
3
37
3
27 64
= 4;(4)
3
3
7 -1 8
=
3
- 8=-2.
1
1
8 ≈-0.684; 25
3
(4)± 2 402≈±13.392. (3)x=5.
3 5.解:(1)x=0.2;(2)x=2;
6.解:一个正方体的体积扩大为原来的 8 倍,则它的棱长变为原 来的 2 倍;扩大为原来的 27 倍,则它的棱长变为原来的 3 倍;扩大为 3 原来的 n 倍,则它的棱长变为原来的 n倍. 点拨:正方体的体积等于其棱长的立方. 7.解:设这种容器的底面直径为 x 分米,则高为 2x 分米,根据题意, 得 50=π
3
-
57 6
=-
3
57 ≈-2.118. 6
知识点一
知识点二
知识点三
拓展点一
拓展点二
拓展点三
拓展点四
拓展点一 立方根的实际应用 例1 (2017· 吉林松原长岭期中)已知一个正方体的体积是1 000 cm3,现在要在它的8个角上分别截去8个大小相同的小正方体,使截 去后余下的体积是488 cm3,问截得的每个小正方体的棱长是多少? 分析:设截得的每个小正方体的棱长为x cm,8个大小相同的小正 方体的体积是8x3,余下的体积是1 000-8x3,则1 000-8x3=488. 解:设截得的每个小正方体的棱长为x cm, 依题意,得1 000-8x3=488, ∴8x3=512, ∴x=4. 答:截得的每个小正方体的棱长是4 cm.
6.2
立方根
知识点一
知识点二
知识点三
知识点一 立方根 1.定义:一般地,如果一个数的立方等于a,那么这个数叫做a的立 方根或三次方根.这就是说,如果x3=a,那么x叫做a的立方根.例 如,53=125,那么5是125的立方根. 2.表示方法: 一个数a的立方根,用符号“ 3 a ”表示,读作“三次根号a”,其中a是 被开方数,3是根指数. 3.性质: (1)正数的立方根是正数; (2)负数的立方根是负数; (3)0的立方根是0.

人教版七年级下册数学课件:6.2立方根(2)

人教版七年级下册数学课件:6.2立方根(2)

小结归纳 1
1、只有要求取近似值时,一般才使 用计算器进行开立方运算。
2、立方根运算规律中被开方数只能 是按1000倍进行变化。
随堂练习
组卷网
100 1、比较-4、-5、-的大3 小
2、已知:
3 3 1.442 3 30 3.107 3 300 6.694
(1)计算 3 0.3 (2)若,3求xx的值31.07
小结归纳 2
1.利用计算器求立方根. 2.立方根运算中的规律. 3.立方根的大小比较.
中考链接 1
观察下列各式是否成立,你能从中找到什么结论,并 证明你的结论.
22 3 2 23
77
3 33
33
3,
26 26
3 4 4 43 4 63 63
5
5
3 5 53
124 124
当堂测试
1.填空:
若 3 m 3 5,则m
2.解方程:
(1)3(x-1) 5
(2)23x 12 8
3.683 49.836032
所以
3.68 3 50 3.69
如此循环下去,可以得到更精确 的的近似值,它是一个无限不循 环小数,
50 3
=3.68403149…….
事实上, 很多有理 数的立方 根都是无 限不循环 小数。
理性提升
利用计算器来求一个数的Байду номын сангаас方根:
例:求-5的立方根(保留三个有效数字)
初中数学课件
灿若寒星*****整理制作
6.2立方根②
创设情境
组卷网
问题1:
50 3
表示什么意思?
问题2:
50 3

人教版七年级数学下册课件: 6.2 立方根(2)

人教版七年级数学下册课件: 6.2 立方根(2)

1.任何有理数都有立方根,它不是正数就
是负数 x
2.非负数的立方根还是非负数 √
3.一个数的3平方根与其立方根相同,则这
个数是1 x
4. 3 a不可能是负数 x
5.一个数的立方根有两个,它们互为相反

x
x 2
6. 27的立方根的平方根是 +3 √
7.若 x3 (2)3 ,则

探究一、例1、用计算器求1845的立方根。
(1)3 0.000 342 = 0—.—0—6—9—9—3;
(2)3 34 200 000 = -—3—24—.—6——; 要细心观察哦!
(3) 3 0.003 42
=
-0.150 7 ——————.
4.已知3 32.8 3.201,3 3.28 1.486, 3 0.328 0.689 6, 3 x 14.86, 3 y 68.96,
探究六、 比较下列各组数的大小.
(1) 3 9与2.5
(2) 3 3与 3 2
解: ( 3 9 )3 =9,
解: ( 3 3)3 =3,
(2.5)3 ( 5 )3 2
125 >9, 8
3 9 2.5.
( 3 )3 27 3,
2
8
3 3 3. 2
这节课你学到了哪些知识?
义务教育教科书(RJ)七年级数学下册
第六章 实数
一、1、什么是立方根? 若一个数的立方等于a,那么这个 数叫做 a 的立方根或三次方根。 2、正数的立方根是一个_正__数___,负 数的立方根是一个__负__数___,0 的立 方根是__0__;立方根是它本身的数 是1_、__-_1、__0.平方根是它本身的数是_0_ 算术平方根是它本身的数是_0_、___1_.

人教版数学七年级下册6.2立方根优秀教学案例

人教版数学七年级下册6.2立方根优秀教学案例
(五)作业小结
在作业小结环节,我会布置一些与立方根相关的练习题,让学生在课后进行巩固和提高。同时,我会提醒学生及时总结和反思自己的学习情况,找出自己的不足之处,为今后的学习做好准备。在下一节课开始时,我会及时批改作业,并对学生的学习情况进行反馈,帮助他们纠正错误,提高解题能力。
五、案例亮点
1.启发式教学:本案例中,我运用启发式教学法,通过提问和引导,激发学生的思维,培养他们的抽象思维和逻辑推理能力。例如,在讲解立方根的概念时,我提出问题:“什么是立方根?”“如何快速找出一个数的立方根?”等问题,引导学生进行思考和探索。
在学生小学生进行思考和讨论。例如,我会让学生探讨如何快速找出一个数的立方根,以及立方根在实际生活中的应用。学生可以结合自己的经验和知识,与小组成员进行交流和讨论。通过小组讨论,学生可以互相学习,共同提高。
(四)总结归纳
在总结归纳环节,我会让学生回顾本节课所学的立方根的知识,让他们自己总结和归纳立方根的性质和计算方法。我会引导学生通过整理和概括,形成系统化的知识结构。同时,我会强调立方根在数学和其他学科中的应用,让学生认识到学习立方根的重要性。
为了达到这个目标,我会在课堂上运用生动的例子和动画演示,帮助学生直观地理解立方根的概念。通过大量的练习题,让学生在实践中掌握立方根的计算方法。此外,我还会在课堂上引导学生思考立方根在实际生活中的应用,激发他们的学习兴趣。
(二)过程与方法
在本节课中,我将采用启发式教学法和小组合作学习法,引导学生主动探索、发现和总结立方根的性质和计算方法。
2.小组合作学习:我组织学生进行小组合作学习,让他们在小组活动中共同探索立方根的性质和计算方法。通过小组合作,学生可以互相学习、互相启发,从而提高他们的合作能力和解决问题的能力。

人教版七年级数学下册 6.2 立方根课件(2)

人教版七年级数学下册 6.2 立方根课件(2)

平方根是它本身= -2 , 3 8 = -2 所以 3 8 = 3 8
因为 3 27 = -3 , 3 27 = -3
所以 3 27 = 3 27
互为相反数的数的 立方根也互为相反
猜一猜:

你能从上述问题中总结出互为相反数的两个数a与
立方
互逆
开立方
到现在我们学了几种运算?
+,-,x,÷,乘方,开方(开平方,开立方)
2.立方根的性质
探究1. 根据立方根的意义填空.
因为23 =8,所以8的立方根是( 2 )
因为(12)3 =0.125,所以0.125的立方是( 12)
因为(0)3=0,所以0的立方根是( 0)
因为 (-2)3=-8,所以-8的立方根是(-2 )
道的?
设正方体的棱长为X㎝,则
x3 27
这就是要求一个数,使它的立方等于27.
因为
33 27
所以 X=3. 正方体的棱长为3㎝
思考:(1)什么数的立方等于-8? -2
(2)如果问题中正方体的体积为5cm3,正方 体的边长又该是多少?
1.立方根的定义
一般地,一个数的立方等于a,这个数就
叫做a的立方根,也叫做a的三次方根.记


a
.
1.如何表示一个数的立方根?
一个数a的立方根可以表示为:
根指数
3
a
被开方数
读作:三次根号 a
其中a是被开方数,3是根指数,不能省略。
思考:如果正方体的体积为5cm3,正方体的边
长又该是多少?
设正方体的边长为X,则 x3 5
所以正方体的边长是 3 5 ㎝.
2.求一个数的立方根的运算,叫做开立方

人教版数学七年级下册第六章《实数》《用计算器求立方根、用有理数估计一个数立方根的大小》说课稿

人教版数学七年级下册第六章《实数》《用计算器求立方根、用有理数估计一个数立方根的大小》说课稿

立方根(2)----用计算器求立方根、用有理数估计一个数立方根的大小说课稿各位评委:大家上午好!今天我说课的题目是《§6.2立方根(2)》。

我将从“教材分析、学情分析、教法分析、学法指导、教学过程的设计与实施”五方面进行本节课的说课。

一、教材分析:1、说教材的地位和作用这一节课是人教版(2012年版)义务教育教科书数学七年级下册第六章《实数》§6.2立方根,本节共两课时,这节课的内容为第二课时。

本章内容是在前面学习有理数的基础上,把有理数的范围进行扩大,也可以看成是其后的代数内容的起始章,是学习二次根式、一元二次方程以及解三角形的基础,因此本章内容起着承上启下的作用,在中学数学中占有重要的地位。

通过本章的学习,学生对数的范围的认识就由有理数扩大到实数,而无理数的概念正是由数的平方根和立方根引入的。

在此之前,学生已学习了数的平方根内容和研究方法,这为过渡到本节的学习起着铺垫作用。

通过本节课的学习,学生可以更深入的了解无理数,为后面学习实数奠定基础。

2、说教学目标知识与技能:(1)会正确使用计算器求一个数的立方根。

(2)能用有理数估计一个立方根的大致范围,使学生形成估算的意识,培养估算能力。

过程与方法:经历运用计算器探求数学规律的过程,发展合情推理能力。

情感态度与价值观:培养学生严谨的数学学习态度,科学的探索精神。

4、说教学重点和难点(1)重点:计算器的使用方法和用有理数估计一个立方根的大致范围。

(2)难点:探索立方根的变化规律及应用。

二、学情分析七年级具有学生年龄低、好奇心强、发言积极、爱好表现,有话就说,小组合作初步形成,兼有一定的形象思维和初步的逻辑思维能力,知识经验不够丰富的特点,因此探索的结论还需要同学公认和老师把关。

三、教法分析针对以上学生基础知识薄弱,主动参与学习的积极性高,学习探究能力较差的这种情况及本节课的特点,我采用“类比探究----验证结论-----归纳概括----巩固应用”为主线的教学程序。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

所以
3
3
<
拓展提升 若
3
x
=2,
3
y
2
=4,求
x 2y
的值.
解:∵ x =2, y 2 =4. ∴x = 23,y2 = 16, ∴x = 8,y = ±4. ∴x + 2y = 8 + 2×4 = 16 或 x + 2y = 8 – 2×4 = 0. ∴ x 2 y = 1 6 = 4 或 x 2 y = 0 = 0.
的体积必须是原来体积的8倍,那么它的半径应是原
来储气罐半径的多少倍?
讲授新课
一 立方根的概念及性质
问题:要做一个体积为27cm3的正方体模型(如图),
它的棱长要取多少?你是怎么知道的?
解:设正方体的棱长为x㎝,则 因为 所以
3 27,
3
x 27,
3
这就是要求一个数,使它的立方等于27. x=3. 正方体的棱长为3㎝.
填一填: 根据立方根的意义填空:
因为2 3 =8,所以8的立方根是( 2 );
因为(
1 2
)3 =0.125,所以0.125的立方是(
1 2
);
因为( 0)3 =0,所以0的立方根是(0 );
因为 (-2 )3 =-8,所以-8的立方根是(-2 );
因为( 3 )3 =
2
8 27
,所以
8 27
第六章


6.2 立方根
导入新课 讲授新课 当堂练习 课堂小结
学习目标
1.了解立方根的概念,会用立方运算求一个数的立 方根; 2.了解立方根的性质,并学会用计算器计算一个数 的立方根或立方根的近似值.(重点、难点)
导入新课
情境引入
某化工厂使用半径为1米的一种球形储气罐储藏
气体,现在要造一个新的球形储气罐,如果要求它
.
解:原式=3+2-(-1) =5+1=6.
三 用计算器求立方根
由于一个数的立方根可能是无限不循环小数,所以 我们可以利用计算器求一个数的立方根或它的近似值.
例4 用计算器求下列各数的立方根:343,-1.331.
解:依次按键: 2ndF 显示:7 所以, 3 4 3 = 7 .
3
3
4
3
=
依次按键: 2ndF 显示:-1.1 所以, 1 .3 3 1 = 1 .1 .
3
0 .0 0 0 2 1 6
3
216
= 0.06 = 6
3
0 .2 1 6
3
= 0.6 2 1 6 0 0 0 = 60
小结:被开方数的小数点向左或向右移动3n位时立方根 的小数点就相应的向左或向右移动n位(n为正整数).
当堂练习
1 .算 一 算 : (1) 3
2 7 = _ __3 ____ ,
(4)0.216;
(5)-5.
(5) -5的立方根是
练一练 因为 3 8 所以 3 8 因为 3 2 7 所以 3 2 7 – 2 , 3 8 =____ –2 , =____ ____ = 38 ; 3 =____ 2 7 =____ –3 , –3 , ____ = 3 27 ;
注意:这个根指数3绝 对不可省略.
3
a
3叫做根指数
a叫做被开方数
类似开平方运算,求一个数的立方根的运算叫作 “开立方”.
注:“开立方”与“立方”互为逆运算
典例精析
例1 求下列各数的立方根:
8 3 (4)0.216; (1) (2) ; (5) -5. -27; 3 ; ( 3 ) 125 8
3 (3) 3 ; 8
你能归纳出立方根的另一性质吗? 一般地,
3
a
=

3
a
平方根与立方根的区别和联系 平方根 立方根 一个,为正数
0
正数 两个,互为相反数 性 质
0 负数
0
没有平方根
a
一个,为负数
3
表示方法
被开方数 的范围
a
非负数
可以为任何数
典例精析 例2
3
64
的算术平方根是 2 .
3
例3 计算: 27的立方根是(

2 3
).
知识要点
立方根的性质 一个正数有一个正的立方根; 一个负数有一个负的立方根, 零的立方根是零.
立方根是它本身的数有 1, -1, 0; 平方根是它本身的数 只有0.
二 开立方及相关运算
每个数a都有一个立方根,记作
3
a
,读作“三次
根号a”. 如:x3=7时,x是7的立方根.
=

2 3
3
3

5.比较下列各组数的大小. ( 1)
3
9
与2.5;
( 2)
因为
( 3 2 )
3
3
3
3

3
3 2
.
解:因为 ( 3 9 ) 3 = 9 2.53 = 15.625 所以 ( 3 9 ) 3 < 15.625 所以 3 9 < 2.5
( 3) 27
=3
27 8 3 2
8
所以 3 <
想一想 (1)什么数的立方等于-8? -2 (2)如果问题中正方体的体积为5cm3,正方体的边长又 该是多少?
3
5cm
立方根的概念 一般地,一个数的立方等于a,这个数就叫做a 的立方根,也叫做a的三次方根.记作 立方根的表示 一个数a的立方根可以表示为: 根指数
3
3
a
.
a
被开方数
读作:三次根号 a, 其中a是被开方数,3是根指数,3不能省略.
3
1
.
3
3
1
=
不同的计算器的按键方式 可能有所差别!
例5 用计算器求
3
2
的近似值(精确到0.001).
2 =
解 依次按键:2ndF
显示:1.259 921 05
所以, 2
3
1 .2 6 0 .
探究
用计算器计算…, 3 0 . 0 0 0 2 1 6 , 3 0 . 2 1 6 , 3 3 2 1 6 , 2 1 6 0 0 0 ,…,你能发现什么规律?用 计算器计算 3 1 0 0 (精确到0.001),并利用你发 3 3 现的规律求 3 0 . 1 , 0 . 0 0 0 1 , 1 0 0 0 0 0 的近似值.
3

64 125
____5 ____,

4
( 2 ) 0 .1 2 5 的 立 方 根 是 _ _ _ _ 0.5 _______,
( 3) -
3
1
_ _ _ _1 _____ ,
3
10
3
10 ___ _____ .
2.比较3,4,
3
50
的大小.
解:33 = 27,43 = 64
因为27 < 50 < 64 所以3 <
3
50
<4
3.立方根概念的起源与几何中的正方体有关, 如果一个正方体的体积为V,那么这个正方体 的棱长为多少?
解: 3 V
4.求下列各式的值.
( 1)
3
0 . 0 2 7 ( 2)
3
8 27
( 3) = =
3
1 27 64
3 4
37 64
( 4)
= =
3
7 8
1 2
1 1 8
= – 0.3
相关文档
最新文档