勾股定理2
勾股定理(2)
13
13
1 BC• AD 1 AC• BH
2
2
H
B 10 D C
例1 如图,在Rt△ABC中,BC=24,AC=7,求AB的长.
解:在Rt△ABC中 ,根据勾股定理
B
AB2 AC 2 BC 2
72 242 625
Q AB 0 AB 25 25 24
如果将题目变为:
D
C
B
A
判断:
• 一个圆柱状的杯子,由内部测得其底面 直径为4cm,高为10cm,现有一支12cm 的吸管任意斜放于杯中,则吸管 ____ 露出杯口外. (填“能”或“不能”)
一个门框的尺寸如图所示,一块长3m,宽 2.2m的薄木板能否从门框内通过?为什么?
连结AC,在Rt△ABC中,根据勾股定理,
B
D
C
AD 36 9 27 3 3cm
1
( 2) S ABC
BC AD 2
1 6 3 3 9 3(cm2 ) 2
例3 如图,∠ACB=∠ABD=90°,CA=CB,
∠DAB=30°,AD=8,求AC的长。
D
解:∵∠ABD=90°,∠DAB=30°
C
又AD=8
学以致用
例1 飞机在空中水平飞行,某一时刻刚好飞
到一个男孩头顶上方4000米处,过了20秒,飞
机距离这个男孩头顶5000米。飞机每小时飞行
多少千米?
C
B
20秒后
4000米
5000米
A
试一试:
在我国古代数学著作 《九章算术》中记载了一道 有趣的问题,这个问题的意 思是:有一个水池,水面是 一个边长为10尺的正方形,在 水池的中央有一根新生的芦 苇,它高出水面1尺,如果把 这根芦苇垂直拉向岸边,它 的顶端恰好到达岸边的水面, 请问这个水池的深度和这根 芦苇的长度各是多少?
八年级上预科四讲-勾股定理的应用二
BD 2 CD 2 2 AD 2 。
16、如图,有一块塑料矩形模板 ABCD,长为 8cm,宽为 4cm,将你手中足够大的直角三角板 PHF 的直角顶点 P 落在 AD 边上(不与 A、D 重合),在 AD 上适当移动三角 板顶点 P:能否使你的三角板两直角边分别通过点 B 与
点 C?若能,(1) 求 BP+CP 的值(2) 请你求出这时 AP 的长。
17.在 Rt△ABC 中,∠C=90°,若 a:b=3:4,c=20,
则 a=
,b=
.
18.如图,在△ABC 中,AB=AC,AD 是△ABC 的角
平分线,若 BC=10,AD=12,则 AC=
.
19.如图,已知四边形 ABCD 中,AB=20cm,BC=15cm,CD=7cm,AD=24cm,
4
底面的直径。一蚂蚁从点 A 出发,沿着圆柱的侧面爬行到点 C,试
求出爬行的最短路程。
C
3)、如图,有一个圆柱体,底面周长为 20 ㎝,高 AB 为 10 ㎝,在
圆柱的下底面 A 点处有一只蚂蚁,它想绕圆柱体侧面一周爬行到
它的顶端 C 点处,那么它所行走的路程是多少?
4)、如图,假如这是一个圆柱体的玻璃杯, AD 是杯底直径,C 是 A 杯口一点,其他已知条件不变,蚂蚁从外部点 A 处爬到杯子的内 壁到达高 CD 的中点 E 处,最短该走多远呢?(杯子的厚度不计) 5)、为筹备迎新生晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,
(A)11
(B)10
(C)9
(D)8
5. 若三角形三边长为 a、b、c,且满足等式 (a b)2 c 2 2ab ,则此三角形是( ).
探索勾股定理(2)(课件)
A.1 C.12
B.2 D.13
课堂练习
3.用四个边长均为a,b,c的直角三角板,拼成如图所示的图形,则下列 结论中正确的是 ( A )
A.c2=a2+b2 B.c2=a2+2ab+b2 C.c2=a2-2ab+b2 D.c2=(a+b)2
课堂练习
4.在北京召开的国际数学家大会的会标如图所示,它是由四个相同的直 角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积 是13,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边 为b,则a4+b4的值为 ( D )
新知讲解
想一想:小明是怎样对大正方形进行割补的?
把大正方形分割成四个边长为a,b,c的直角三角形和一个小正方形.
新知讲解
请同学们将所有三角形和正方形的面积用a,b,c的关系式表示出来.
所有三角形的面积都是 1 ab
2
正方形的面积分别是b2,a2,(a+b)2
新知讲解
请同学们将所有三角形和正方形的面积用a,b,c的关系式表示出来.
所有三角形的面积都是 1 ab
2
正方形的面积分别是b2,a2,(a-b)2
新知讲解
下图中正方形ABCD的面积分别是多少? 图1中正方形ABCD的面积是(a+b)2 又可以表示为:c2+2ab
图2中正方形ABCD的面积是(a-b)2 又可以表示为:c2-2ab
新知讲解
你能利用下图验证勾股定理吗?
图中正方形ABCD的面积是(a+b)2 又可以表示为:c2+2ab ∴a2+b2=c2
A.35 B.43 C.89 D.97
拓展提高
5.北京召开的第24届国际数学家大会会标的图案如图所示.
17.1 勾股定理(2)勾股定理的应用 参考解析
17.1 勾股定理第2课时勾股定理的应用课前预习1.应用勾股定理的前提条件是在直角三角形中.如果三角形不是直角三角形,要先构建直角三角形,再利用勾股定理求未知边的长.2.利用勾股定理可以解决与直角三角形有关的计算和证明,其主要应用如下:(1)已知直角三角形的任意两边求第三边;(2)已知直角三角形的任意一边,确定另外两边的关系;(3)证明包含平方关系的几何问题;(4)构造方程(或方程组)计算有关线段的长.3.一般地,n为正整数),通常是利用勾股定理作图.课堂练习知识点1 勾股定理的实际应用1.如图,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=___2___.2.【核心素养·数学抽象】如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要___7___米.3.(教材改编)如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑___0.5___米.【解析】在Rt△ACB中,根据勾股定理,得AC=22-=2.在2.5 1.5AB CB-=22Rt△ECD中,根据勾股定理,得CE=22-=1.5.∴AE=AC -ED CD2.52-=22CE=2-1.5=0.5.即滑竿顶端A下滑0.5米.故答案为0.5.4.如图,小旭放风筝时,风筝线断了,风筝挂在了树上.他想知道风筝距地面的高度﹒于是他先拉住风筝线垂直到地面上,发现风筝线多出1米,然后把风筝线沿直线向后拉开5米,发现风筝线未端刚好接触地面.请你帮小旭求出风筝距离地面的高度AB.解:根据题意,得AC=AB+1,BC=5米.在Rt△ABC中,BC2+AB2=(1+AB)2.解得AB=12(米).答:风筝距离地面的高度AB 为12米.5.放学以后,小东和晓晓从学校分手,分别沿东南方向和西南方向回家,若小东和晓晓行走的速度都是40米/分钟,小东用15分钟到家,晓晓用20分钟到家,求小东和晓晓家的直线距离.解:根据题意作图,由图可知△ABO是直角三角形,OA=40×20=800(米),OB=40×15=600(米).在Rt△OAB中,根据勾股定理,得(米).答:小东和晓晓家的直线距离为1 000米.知识点2 在数轴上表示无理数6.(2020玉溪红塔区期末)如图,数轴上的点A表示的数是-2,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为(C).7.用直尺和圆规在如图所示的数轴上作出表示解:∵32+22=13,3和2的直角三角形的斜边长.∴课时作业练基础1.如图是由4个边长为1的正方形构成的“田字格”,只用没有刻度的直尺在这___8___条.30°,则以它的腰长为边2.有一个面积为的正方形的面积为___20___.3.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树顶飞到另一棵树的树顶,小鸟至少飞行(B)A.8米B.10米C.12米D.14米4.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1,图2,推开双门,双门间隙C,D的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10 寸),则AB的长是(C)A.50.5寸B.52寸C.101寸D.104寸5.(2020盘龙区期末)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为 1.5米,则小巷的宽为(C)A.2.5米B.2.6米C.2.7米D.2.8米【解析】在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=1.5米,BD2+A′D2=A′B2,∴BD2+1.52=6.25.∴BD2=4.∵BD>0,∴BD=2米.∴CD=BC+BD=0.7+2=2.7米.故选C.6.如图,在平面直角坐标系中,点P的坐标为(-2,3),以点O为圆心,OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标在(B)A.-3和-2之间B.-4和-3之间C.-5和-4之间D.-6和-5之间7.如图,在边长为1的正方形网格中,△ABC的三边a,b,c的大小关系是(B)A.c<b<aB.c<a<bC.a<c<bD.a<b<c8.(教材改编)小明拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放比门高出1尺,斜放就恰好等于门的对角线,已知门宽4尺,求竹竿的长和门的高. 解:根据题意作图,由图可知AD=4尺.设门高AB为x尺,则竹竿的长BD为(x+1)尺.在Rt△ABD中,由勾股定理得AB2+AD2=BD2,即x2+42=(x+1)2,解得x=7.5.则x+1=8.5.答:竹竿的长为8.5尺,门高为7.5尺.9.【核心素养·数学抽象】一根直立的旗杆AB长 8 m,一阵大风吹过,旗杆从C点处折断,顶部(B)着地,离杆脚(A)4 m,如图.工人在修复的过程中,发现在折断点C的下面1.25 m 的D处,有一明显伤痕,如果下次大风将旗杆从D 处刮断,则杆脚周围多大范围内有被砸伤的危险?解:在Rt △ABC 中,设AC 的长为x m ,则BC 的长为(8-x )m.根据勾股定理,得AC 2+AB 2=BC 2,即x 2+42=(8-x )2.解得x=3,即AC=3.当从点D 处折断时,AD=AC-CD=3-1.25=1.75,∴BD=8-1.75=6.25.∴AB=3675.125.62222=-=-AD BD =6 (m ).答:杆脚周围6 m 范围内有被砸伤的危险.10.如图,铁路上A ,B 两站(视为直线上的两点)相距25 km ,DA ⊥AB 于点A ,CB ⊥AB 于点B ,DA=15 km ,CB=10 km ,现要在铁路上建设一个土特产收购站E ,使得C ,D 两村到收购站E 的距离相等,则收购站E 应建在距离A 站多少km 处?解:∵C ,D 两村到E 点的距离相等,∴CE=DE.在Rt △DAE 和Rt △CBE 中,根据勾股定理,得DE 2=AD 2+AE 2,CE 2=BE 2+BC 2,∴AD 2+AE 2=BE 2+BC 2.设AE=x km ,则BE=(25-x )km.x 2+152=(25-x)2+102.解得x=10.答:收购站E 应建在距离A 站10 km 处.提能力11.如图,小正方形的边长为1,连接小正方形的三个顶点,可得△ABC ,则BC 边上的高是( A )A.223 B.1055 C.553 D.554【解析】由图形,根据勾股定理可得ABC 的面积为2×2-12×1×1-12×1×2-12×1×2=4-12-2=32,再根据△ABC 面积的不同计算方法得32=12BC 边上的高.故选A. 12.有一辆装满货物的卡车,高5 m ,宽3.2 m (货物的顶部是水平的),要通过如图所示的截面的上半部分是半圆,下半部分是长方形的隧道,已知半圆的直径为4 m ,长方形竖直的一条边长是4.6 m.这辆卡车能否通过此隧道?请说明理由.解:能通过. 理由如下:如图,设O 为半圆的圆心,AB 为半圆的直径,在OB 上截取OE=3.2÷2=1.6(m ),过点E 作EF ⊥AB 交半圆于点F ,连接OF.在Rt △OEF 中,OF 2=OE 2+EF 2,即22=1.62+EF 2,解得EF=1.2 m.因为1.2+4.6=5.8(m )>5 m ,所以这辆卡车能通过此隧道.。
2024八年级数学下册第十七章勾股定理17.1勾股定理第2课时应用勾股定理解实际问题课件新版新人教版
【解】(1)如图,过点A作AE⊥CD于点E,
则∠AEC=∠AED=90°.
∵∠ACD=60°,∴∠CAE=90°-60°=30°.
∴CE= AC=
DE=
km.∴AE=
km,
km.
∴AE=DE.∴△ADE是等腰直角三角形.∴AD=
+ = = AE= ×
度为x尺,则可列方程为( D )
A.x2-3=(10-x)2
B.x2-32=(10-x)2
C.x2+3=(10-x)2
D.x2+32=(10-x)2
【点拨】
如图,已知折断处离地面的高度为x尺,即AC=x尺,
则AB=(10-x)尺,BC=3尺.在Rt△ABC中,AC2+BC2=
AB2,即x2+32=(10-x)2.故选D.
2.[2023·岳阳 新考向·传承数学文化]我国古代数学名著《九章
算术》中有这样一道题:“今有圆材,径二尺五寸,欲为
方版,令厚七寸,问广几何?”结合如图,其大意是:今
有圆形材质,直径BD为25寸,要做成方形板材,使其厚
度CD达到7寸,则BC的长是( C )
A. 寸
B.25寸
C.24寸
D.7寸
选B.
4.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙
时,梯子底端到左墙脚的距离为0.7 m,顶端距离地面2.4
m.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶
端距离地面2 m,那么小巷的宽度为( C )
A.0.7 m
B.1.5 m
C.2.2 m
D.2.4 m
【点拨】
如图,BC=2.4 m,AC=0.7 m,DE=
第3章《勾股定理》 :3.1 勾股定理(2)(含答案)
23 .据我国古代《周髀算经》记载,公元前 1120 年商高对周公说,将一根直尺 折成一个直角,两端连接得一个直角三角形,如果勾是三、股是四,那么弦就等 于五.后人概括为“勾三,股四,弦五”. (1)观察:3,4,5;5,12,13;7,24,25;„,发现这些勾股数的勾都是奇 数, 且从 3 起就没有间断过. 计算 1 1 1 1 (9-1) 、 (9+1) 与 (25-1) 、 (25+1) , 2 2 2 2
17 . 如图所示, 折叠长方形的一边 AD, 使点 D 落在边 BC 的点 F 处, 已知 AB=8cm, BC=10cm,则 EC 的长为 cm.
18 . 如图,在 Rt△ABC 中,∠ACB=90°,AC<BC,D 为 AB 的中点,DE 交 AC 于 点 E,DF 交 BC 于点 F,且 DE⊥DF,过 A 作 AG∥BC 交 FD 的延长线于点 G. (1)求证:AG=BF; (2)若 AE=9,BF=18,求线段 EF 的长.
6 .小明将一幅三角板如图所示摆放在一起,发现只要知道其中一边的长就可以 求出其它各边的长,若已知 CD=2,求 AC 的长.
7.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB=∠ECD=90°,D 为 AB 边 上一点,求证: (1)△ACE≌△BCD; (2)AD2+DB2=DE2.
8 .如图,把矩形纸片 ABCD 沿 EF 折叠,使点 B 落在边 AD 上的点 B′处,点 A 落 在点 A′处; (1)求证:B′E=BF; (2)设 AE=a,AB=b,BF=c,试猜想 a,b,c 之间的一种关系,并给予证明.
S = l (3)说出(2)中结论成立的理由. (2)如果 a+b-c=m, 观察上表猜想:
八年级数学人教版下册勾股定理勾股定理2
数学来源于 生活,勾股定理 的应用在生活中 无处不在……
D
C
A
B
1m
2m
人教版八年级数学 下册
17.1 勾股定理
第2课时 勾股定理在实际生活中的应用
学习目标
1. 会运用勾股定理求线段长及解决简单的实际问 题。
2.能从实际问题中抽象出直角三角形这一几何模 型,利用勾股定理建立已知边与未知边长度之间的联 系,并进一步求出未知边长。
B3
解:由题意知有三种展开
方法,如图.由勾股定理得
B1
高三数学复习中的几个注意点
AB12 =102 +(6+8)2 =296,
4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
B AB = 8 +(10+6) =320, 29 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
D
C
B
A
课 结堂
总
同学们,本节课你收获了什么?
课后作业 1.整理本节知识点 2.选做题: 同步检测题
一只蚂蚁,想到B点去吃可口的食物。
由题意可知:AC=6千米,BC=8千米
距离及路径最短问题
检测目标
1.若等腰三角形中相等的两边长为 10cm,第三边长为16 cm,那么第三边上的
高为 ( D)
A. 12 cm B. 10 cm C. 8 cm D. 6 cm
检测目标
2.如图,在边长为1个单位长度的小正方形组成
由飞题机意 在可空知中:水平AC飞=6行千,米某,一B时C=刻8刚千好米飞到一个男孩头顶上方3千米处,过了20秒,C飞机距离这个男?孩头顶5千米.
八年级数学下册第十七章勾股定理17.1勾股定理第2课时勾股定理在实际生活中的应用7
第十七章勾股定理
在八年级上册中,我们曾经通过画图得到结论:斜边和一条直角边分别相等的两个直角
两点间的距离.
上任意两点
处放上了点儿火腿肠粒,你
的西8km北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多
求直线同侧的两点到直线上一点所连线段的和的最短路径的方法:先找到其中一点关于这条直线的对称点,连接对称点与另一点的线段就是最短路径长,以连接对称点与另一个点的线段为斜边,构造出直角三角形,再运用勾股定理求最短路径.
第1题图第2题图
如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是
的长度可能是()
A.9cm
B.12cm
C.15cm
D.18cm
10cm和6cm,A和B是。
勾股定理知识讲解2
全章要点勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方ABCabc弦股勾勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边2、勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。
)*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,13勾股定理的逆定理::如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。
(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。
(2)有两个角互余的三角形是直角三角形。
用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2)若c2=a2+b2,则△ABC是以∠C为直角的三角形;若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边);若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边)注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。
3、勾股定理的作用:(1)已知直角三角形的两边求第三边。
(2)已知直角三角形的一边,求另两边的关系。
(3)用于证明线段平方关系的问题。
(4)利用勾股定理,作出长为n的线段例题讲解例1.△ABC中,AB=AC=25cm,高AD=20cm,则BC= ,S△ABC= 。
解:30cm,300cm2例2.△ABC中,若∠A=2∠B=3∠C,AC=32cm,则∠A= 度,∠B= 度,∠C= 度,BC= ,S△ABC= 。
解:90,60,30,4,23例3.△ABC 中,∠C=90°,AB=4,BC=32,CD ⊥AB 于D ,则AC= ,CD= ,BD= ,AD= ,S △ABC = 。
2勾股定理2(经典题型)
(7)在Rt△ABC中,∠C=90°,AC=3,BC=8,则BC边上的中线AD的长为。
3、解答:
(1)如图是水上乐园的一滑梯,AD=AB,若高BC=4cm,CD=2cm ,求滑道AD的长。
(2)A、B、C、D四个住宅小区位置如图所示,已知:AB=0.5km,AD=1.2km,CD=0.9km,现要建一个公交总站,使它到四个小区路程和最短,
(2). 求证:
11、小明想测量学校旗杆的高度,他采用如下的方法:先降旗
杆上的绳子接长一些,让它垂到地面还多1米,然后将绳子
下端拉直,使它刚好接触地面,测得绳下端离旗杆底部5米,
你能帮它计算一下旗杆的高度.
12、有一只鸟在一棵高4米的小树梢上捉虫子,它的伙伴在离该树12米,高20米的一棵大树的树梢上发出友好的叫声,它立刻以4米/秒的速度飞向大树树梢.那么这只鸟至少几秒才能到达大树和伙伴在一起.
6、已知:如图2-7所示,△ABC中,D是AB的中点,若AC=12,BC=5,CD=6.5。
求证:△ABC是直角三角形.
7、如右图,壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A处,它发现在自己的正上方油罐上边缘的B处有一只害虫,便决定捕捉这只害虫,为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从背后对害虫进行突然袭击.结果,壁虎的偷袭得到成功,获得了一顿美餐.请问壁虎至少要爬行多少路程才能捕到害虫?
课堂训练
1、如图,已知:△ABC中,∠C=90°,点D是AC上的任意一点,
请判断AB2+CD2与AC2+BD2的大小关系。
2、如图,已知:AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,CB=CD,
勾股定理2
勾股定理二(基础应用)
常用的公式:
1、在Rt △ABC 中,∠C =90°,且∠A 、∠B 、∠C 的对边分别为a 、b 、c ,则斜边上的高h = 变式:(1)在Rt △ABC 中,∠C =90°,AB =10,AC =6,则斜边上的高为
(2)已知一个直角三角形的两边为3和4,则最长边上的高为
2、以直角三角形的三边作半圆、正方形和等边三角形,则可以得到两个较小的图形的面积之和等于 最大的图形的面积。
变式:(1)、在Rt △ABC 中,∠C =90°,以此直角三角形的三边向外部作正方形且AC =3,BC =4,
则S =
(2)、在Rt △ABC 中,∠C =90°,以此直角三角形的三边向外部作半圆且AC =3,BC =4,则S =
(3)、在Rt △ABC 中,∠C =90°,以此直角三角形的三边向外部作等腰三角形
且AB =4,则图中阴影部分面积为
(4)已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、432143S S 2S 2S S S +++,则、=_____________
(5)如图,四边形ABCD 为正方形,AE ⊥BE ,且AE =3,BE =4,则阴影部分面积为
(6)图中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是
A B C S 应用二A B C 应用三A B C S
应用一
A B C
D
E。
勾股定理(二)
(1)若k是一个奇数,且k≥3
(k, , )(k≥3的奇数)①
(2)设m是一个偶数,且m≥4,
(m, , )(m≥4的偶数)②
(3)若(a,b,c)是勾股数组,则( a, b, c)也是勾股数组,其中 为任意正整数。
并约定 (a,b,c)=( a, b, c)。
31.已知:如图,△ABC中,∠ACB=90°,AC=12,CB=5,AM=AC,BN=BC,求MN的长。
2.下列四条线段不能组成直角三角形的是()
A.a=8,b=15,c=17B.a=9,b=12,c=15
C.a= ,b= ,c= D.a:b:c=2:3:4
3.若△ABC的三边a、b、c,满足(a-b)(a2+b2-c2)=0,则△ABC是()
A.等腰三角形;B.直角三角形;
C.等腰三角形或直角三角形;D.等腰直角三角形。
4.若三角形的三边是⑴1、 、2;⑵ ;
⑶32,42,52⑷9,40,41;⑸(m+n)2-1,2(m+n),(m+n)2+1;则构成的是直角三角形的有()
A.2个B.3个C.4个D.5个
5.三角形的三个内角的比为1:2:3,则这个三角形三边之比为()A. 1:2:3B. C. D.
6.如图,正方形网格中的△ABC,若小
所以这次台风影响该城市的持续时间为.
t=小时
(3)当台风中心位于D处时,A城市所受这次台风的风力最大,其最大风力为12- =6.5级.
1.(2008年湖北省咸宁市)如图,在Rt△ABC中, ,D、E是斜边BC上两点,且∠DAE=45°,将△
绕点 顺时针旋转90 后,得到△ ,连接 ,下列结论:
①△ ≌△ ;②;
③ ;
其中正确的是
勾股定理逆定理(二)汇总
教学目标教学重点教学难点学情分析学法指导教学内容自学互帮导学法”课堂教学设计勾股定理逆定理(二)课时修改意见知识与能力:1 •掌握互逆命题的意义,会写一个命题的逆命题,并判断是否成立;理及逆定理解决实际问题。
过程与方法:进一步加深性质定理与判定定理之间关系的认识。
情感态度与价值观:通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神.勾股定理的逆定理及其应用.建立实际问题转化成用勾股定理的逆定理的数学模型,解决数■学问题。
2、灵活应用勾股定八年级学生认知结构、心理特征趋于逐渐成熟时期,是学生由试验几何,向推理几何过渡的重要阶段。
这个时期的学生对所学知识有一种急于尝试和运用的冲动,若不能正确引导,则必将对其学习数学的积极性造成伤害。
通过对勾股定理逆定理的再探究,有利于更好的培养学生的分析思维能力,发展推理能力。
引导、尝试、发现、探究、合作交流。
效果预测教师活动学生活动(可能出现补救措施修改意见的问题)启动课堂 (知 识再现)[活动1]知识回顾:一、勾股定理及其逆定理的文字和几何语言的叙述:1、勾股定理(“形”到“数”的结合):文字表达:直角三角形两直角边和平方和等于斜边的平方 几何语言表达:•••/C=902 . 2 2…a +b=c2、文字表达:如果三角形一边的平方等于其他两边的平方和,那 么这个三角形是直角三角形。
几何语言表述:a+b=C•••/ C=903、点评学生汇报。
独自写出 两个定理的两 种表达方式, 并作好汇报准 备。
学生汇报。
前因后果 可能混淆“数”与“形”的完美结 合,才产生勾股 定理及其逆定 理,怎样结合, 其结果可以让 学生讨论后加 深印象,并将定 理和逆定理区 别开来。
二、复习训练:1、如图,两个正方形的面积分别为64和49,则AC=2、由五根木棍,长度分别为3、4、5、12、13,若取其中三根木棍,组成三角形,有_______________________ 种取法;构成直角三角形的有. 种取法。
八年级数学上册第1章《探索勾股定理(2)》优质教案(北师大版)
第一章勾股定理1.探索勾股定理(2)一、学情与教材分析1.学情分析学生的知识技能基础:学生在七年级已经学习了整式的加、减、乘、除运算和等式的基本性质,并能进行简单的恒等变形;上节课又已经通过测量和数格子的方法,对具体的直角三角形探索并发现了勾股定理,但没有对一般的直角三角形进行验证.学生活动经验基础:学生在以前数学学习中已经经历了很多独立探究和合作学习的过程,具有了一定的自主探究经验和合作学习的经验,具备了一定的探究能力和合作与交流的能力;学生在七年级《七巧板》及《图案设计》的学习中已经具备了一定的拼图活动经验.2.教材分析本节课是八(上)勾股定理第1节第2课时,是在上节课已探索得到勾股定理之后的内容,具体学习任务:通过拼图验证勾股定理并体会其中数形结合的思想;应用勾股定理解决一些实际问题,体会勾股定理的应用价值并逐步培养学生应用数学解决实际问题意识和能力,为后面的学习打下基础.二、教学目标1.掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题.2.在上节课对具体的直角三角形探索发现了勾股定理的基础上,经历勾股定理的验证过程,体会数形结合的思想和从特殊到一般的思想.3.在勾股定理的验证活动中,培养探究能力和合作精神;通过对勾股定理历史的了解,感受数学文化,增强爱国情感,并通过应用勾股定理解决实际问题,培养应用数学的意识.三、教学重难点教学重点:用面积法验证勾股定理,应用勾股定理解决简单的实际问题.教学难点:验证勾股定理.四、教法建议1.教学方法:引导——探究——应用.2.课前准备:教具:教材,课件,电脑.学具:教材,铅笔,直尺,练习本.五、教学设计(一)课前设计1.预习任务结合课本上P5页1-5和1-6,应用等面积法证明勾股定理,(提示:图中的正方形的面积可以表示为边长的平方,也可以表示成小正方形加上四个直角三角形的面积)2.预习自测一、选择题1. 利用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦图.观察图形,可以验证()公式.A.(a+b)(a﹣b)=a2﹣b2 B.(a+b)2=a2﹣2ab+b2C.c2=a2+b2 D.(a﹣b)2=a2﹣2ab+b2答案:C解析:∵大正方形的面积表示为:c2又可以表示为:ab×4+(b﹣a)2,∴c2=ab×4+(b﹣a)2,c2=2ab+b2﹣2ab+a2,∴c2=a2+b2.故选C.点拨:利用两种方法表示出大正方形的面积,根据面积相等可以整理出c2=a2+b2.二、填空题2. 如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它解决的数学问题是_________.答案:勾股定理解析:我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它解决的数学问题是勾股定理.点拨:观察我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,发现它验证了勾股定理.3. 如图,由四个直角三角形拼成2个正方形,则4个直角三角形面积+小正方形面积=大正方形面积,即_________+_________=_________化简得:a2+b2=c2.答案:4×ab、(b﹣a)2、c2.解析:如图所示,4个直角三角形面积+小正方形面积=大正方形面积,即 4×ab+(b﹣a)2=c2,故答案是:4×ab、(b﹣a)2、c2.点拨:根据直角三角形的面积公式和正方形的面积公式进行填空.(二)课堂设计本节课设计了六个教学环节:第一环节:知识回顾;第二环节:探究发现;第三环节:数学小史;第四环节:知识运用;第五环节:随堂检测;第六环节:课堂小结.第一环节:知识回顾内容:教师提出问题:(1)勾股定理的内容是什么?(请一名学生回答)(2)上节课我们仅仅是通过测量和数格子,对具体的直角三角形探索发现了勾股定理,对一般的直角三角形,勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?事实上,现在已经有几百种勾股定理的验证方法,这节课我们也将去验证勾股定理.意图:(1)复习勾股定理内容;(2)回顾上节课探索过程,强调仍需对一般的直角三角形进行验证,培养学生严谨的科学态度;(3)介绍世界上有数百种验证方法,激发学生兴趣.效果:通过这一环节,学生明确了:仅仅探索得到勾股定理还不够,还需进行验证.当学生听到有数百种验证方法时,马上就有了去寻求属于自己的方法的渴望.第二环节:探究发现活动1: 教师导入,小组拼图.教师:今天我们将研究利用拼图的方法验证勾股定理,请你利用自己准备的四个全等的直角三角形,拼出一个以斜边为边长的正方形.(请每位同学用2分钟时间独立拼图,然后再4人小组讨论.)活动2:层层设问,完成验证一.学生通过自主探究,小组讨论得到两个图形:图2在此基础上教师提问:(1)如图1你能表示大正方形的面积吗?能用两种方法吗?(学生先独立思考,再4人小组交流);(2)你能由此得到勾股定理吗?为什么?(在学生回答的基础上板书(a+b)2=4×21ab+c 2.并得到222c b a =+)从而利用图1验证了勾股定理.活动3 : 自主探究,完成验证二.教师小结:我们利用拼图的方法,将形的问题与数的问题结合起来,联系图1整式运算的有关知识,从理论上验证了勾股定理,你还能利用图2验证勾股定理吗?(学生先独立探究,再小组交流,最后请一个小组同学上台讲解验证方法二)意图:设计活动1的目的是为了让学生在活动中体会图形的构成,既为勾股定理的验证作铺垫,同时也培养学生的动手、创新能力.在活动2中,学生在教师的层层设问引导下完成对勾股定理的验证,完成本节课的一个重点内容.设计活动3,让学生利用另一个拼图独立验证勾股定理的目的是让学生再次体会数形结合的思想并体会成功的快乐.效果:学生通过先拼图从形上感知,再分析面积验证,比较容易地掌握了本节课的重点内容之一,并突破了本节课的难点.第三环节:数学小史活动内容:由学生利用所搜集的与勾股定理相关的资料进行介绍.国内调查组报告:用图2验证勾股定理的方法,据载最早是三国时期数学家赵爽在为《周髀算经》作注时给出的,我国历史上将图2弦上的正方形称为弦图.2002年的数学家大会(ICM-2002)在北京召开,这届大会会标的中央图案正是经过艺术处理的弦图,这既标志着中国古代的数学成就,又像一只转动的风车,欢迎来自世界各地的数学家们!国际调查组报告:勾股定理与第一次数学危机.约公元前500年,毕达哥拉斯学派的弟子希帕索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线的长度是不可公度的.按照毕达哥拉斯定理(勾股定理),若正方形边长是1,则对角线的长不是一个有理数,它不能表示成两个整数之比,这一事实不但与毕氏学派的哲学信念大相径庭,而且建立在任何两个线段都可以公度基础上的几何学面临被推翻的威胁,第一次数学危机由此爆发.据说,毕达哥拉斯学派对希帕索斯的发现十分惶恐、恼怒,为了保守秘密,最后将希帕索斯投入大海.不能表示成两个整数之比的数,15世纪意大利著名画家达.芬奇称之为“无理的数”,无理数的英文“irrational”原义就是“不可比”.第一次数学危机一直持续到19世纪实数的基础建立以后才圆满解决.我们将在下一章学习有关实数的知识 .趣闻调查组报告:勾股定理的总统证法.在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景……他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨.由于好奇心驱使他循声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形……于是这位中年人不再散步,立即回家,潜心探讨小男孩给他留下的难题.他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法. 1876年4月1日,他在《新英格兰教育日志》上发表了他对勾股定理的这一证法.1881年,这位中年人—伽菲尔德就任美国第二十任总统.后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法.说明:这个环节完全由学生来组织开展,教师可在两天前布置任务,让部分同学收集勾股定理的资料,并在上课前拷贝到教师用的课件中便于展示,内容可灵活安排.意图:(1(2)学生加强了对数学史的了解,培养学习数学的兴趣;(3)通过让部分学生搜集材料,展示材料,既让学生得到充分的锻炼,同时也活跃了课堂气氛.效果:学生热情高涨,对勾股定理的历史充满了浓厚的兴趣,同时也为中国古代数学的成就感到自豪.也有同学提出:当代中国数学成就不够强,还应发奋努力.有同学能意识这一点,这让我喜出望外.第四环节:知识运用a b内容:例题:我方侦察员小王在距离东西向公路400m处侦察,发现一辆敌方汽车在公路上疾驰.他赶紧拿出红外测距仪,测得汽车与他相距400m,10s 后,汽车与他相距500m,你能帮小王计算出敌方汽车的速度吗?意图:(1)初步运用勾股定理解决实际问题,培养学生应用数学的意识和能力;(2)体会勾股定理的应用价值.效果:学生对这样的实际问题很感兴趣,基本能把实际问题转化为数学问题并顺利解决.一组生活中勾股定理的应用练习,共3道题.(1)教材P6练习题1.(2)一个25m长的梯子AB,斜靠在一竖直的墙AO上,这时的AO距离为24m,如果梯子的顶端A沿墙下滑4m,那么梯子底端B也外移4m吗?(3)受台风麦莎影响,一棵高18m的大树断裂,树的顶部落在离树根底部6米处,这棵树折断后有多高?说明:这一环节设计了3道题,设计时注意了题目的梯度,由浅入深,第一题为书上练习题,学生容易解决,第二道题虽然计算难度不大,但考查学生的实际应用能力,第三道题是应用勾股定理建立方程求解,有一定难度.意图:在例题的基础上进行拓展,训练学生将实际问题转化为数学问题,再运用勾股定理解决问题.效果:小部分学生在完成第二题时,由于欠缺生活常识时,不能准确地理解题意,约有一半同学对第3道题束手无策,主要是缺乏利用勾股定理建立方程求解的这种思路,经同学点拨,教师引导,绝大部分同学最后都能解决这个问题,通过3个小题的训练,总体感觉学生对勾股定理的应用更加熟练,并对勾股定理的应用价值体会更深.第五环节:随堂检测一、选择题1. 下列选项中,不能用来证明勾股定理的是()A.B.C.D.答案:D解析:A,B,C都可以利用图形面积得出a,b,c的关系,即可证明勾股定理;故A,B,C选项不符合题意;D、不能利用图形面积证明勾股定理,故此选项正确.故选D.点拨:根据图形的面积得出a,b,c的关系,即可证明勾股定理,分别分析得出即可.2.“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角边的长分别是3和6,则中间小正方形与大正方形的面积差是()A.﹣9 B.﹣36 C.﹣27 D.﹣34答案:B解析:根据题意得:小正方形的面积=(6﹣3)2=9,大正方形的面积=32+62=45,9﹣45=36.故选B.点拨:由正方形的性质和勾股定理求出小正方形和大正方形的面积,即可得出小正方形与大正方形的面积差.二、填空题3. 2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽弦图它是由四全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,下列说法:①a2+b2=13;②b2=1;③a2﹣b2=12;④ab=6.其中正确结论序号是_________.答案:①④解析:直角三角形的斜边长是c,则c2=a2+b2,大正方形的面积是13,即c2=a2+b2=13,①正确;∵小正方形的面积是1,∴b﹣a=1,则(b﹣a)2=1,即a2+b2﹣2ab=1,∴ab=6,故④正确;根据图形可以得到a2+b2=13,b﹣a=1,而b=1不一定成立,故②错误,进而得到③错误.故答案是:①④点拨:根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2ab即四个直角三角形的面积和,从而判断.4. 利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为_________,该定理的结论其数学表达式是_________.答案:勾股定理、a2+b2=c2.解析:用图(2)较简单,如图正方形的面积=(a+b)2,用三角形的面积与边长为c的正方形的面积表示为4×ab+c2,即(a+b)2=4×ab+c2化简得a2+b2=c2.这个定理称为勾股定理.故答案为:勾股定理、a2+b2=c2.点拨:通过图中三角形面积、正方形面积之间的关系,证明勾股定理.三、解答题5. 勾股定理是一条古老的数学定理,它有很多种证明方法.(1)请你根据图1填空;勾股定理成立的条件是_________三角形,结论是_________(三边关系)(2)以图1中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图2),请你利用图2,验证勾股定理;答案:(1)直角;a2+b2=c2;(2)见解析解析:(1)勾股定理指的是在直角三角形中,两直角边的平方的和等于斜边的平方.故答案是:直角;a2+b2=c2;(2)∵Rt△ABE≌Rt△ECD,∴∠AEB=∠EDC,又∵∠EDC+∠DEC=90°,∴∠AEB+∠DEC=90°,∴∠AED=90°.∵S梯形ABCD =SRt△ABE+SRt△DEC+SRt△AED,∴.整理,得a2+b2=c2.点拨:(1)根据图示直接填空;(2)利用S梯形ABCD =SRt△ABE+SRt△DEC+SRt△AED进行解答.第六环节:课堂小结教师提问:通过这节课的学习,你有什么样的收获?师生共同畅谈收获.目的:(1)归纳出本节课的知识要点,数形结合的思想方法;(2)教师了解学生对本节课的感受并进行总结;(3)培养学生的归纳概括能力.效果:由于这节课自始至终都注意了调动学生学习的积极性,所以学生谈的收获很多,包括利用拼图验证勾股定理中蕴含的数形结合思想,学生对勾股定理的历史的感悟及对勾股定理应用的认识等等.布置作业:1.习题1.2 T2,32.上网或查阅有关书籍,搜集至少1种勾股定理的其它证法,至少1个勾股定理的应用问题,一周后进行展评.意图:(1)巩固本节课的内容.(2)充分发挥勾股定理的育人价值.分层作业基础型:一、选择题1. 历史上对勾股定理的一种证法采用了下列图形:其中两个全等的直角三角形边AE、EB在一条直线上.证明中用到的面积相等关系是()A.S△EDA =S△CEBB.S△EDA+S△CEB=S△CDBC.S四边形CDAE =S四边形CDEBD.S△EDA+S△CDE+S△CEB=S四边形ABCD答案:D解析:∵由S△EDA +S△CDE+S△CEB=S四边形ABCD.可知ab+c2+ab=(a+b)2,∴c2+2ab=a2+2ab+b2,整理得a2+b2=c2,∴证明中用到的面积相等关系是:S△EDA +S△CDE+S△CEB=S四边形ABCD.故选D.点拨:用三角形的面积和、梯形的面积来表示这个图形的面积,从而证明勾股定理.2. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A.3 B.4 C.5 D.6答案:C解析:如图所示:∵(a+b)2=21,∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=5.故选:C.点拨:观察图形可知,小正方形的面积=大正方形的面积﹣4个直角三角形的面积,利用已知(a+b)2=21,大正方形的面积为13,可以得出直角三角形的面积,进而求出答案.二、填空题3. 如图,以Rt△ABC的三边向外作正方形,若最大正方形的边长为6cm,以AC 为边的正方形的面积为25,则正方形M的面积为________.答案:11=AB2,25=AC2,AC2+AB2=BC2=6×6,解析:根据题意知,SM=36﹣25=11(cm2).∴SM故答案是:11cm2.点拨:根据正方形的面积公式以及勾股定理解答即可.4. 如图,已知△ABC中,AB=17,AC=10,BC边上的高AD=8.则△ABC的周长为_________.答案:48解析:在直角三角形ABD中,AB=17,AD=8,根据勾股定理,得BD=15;在直角三角形ACD中,AC=10,AD=8,根据勾股定理,得CD=6;∴BC=15+6=21,∴△ABC的周长为17+10+21=48,故答案为:48.点拨:分别在两个直角三角形中求得线段BD和线段CD的长,然后求得BC的长,从而求得周长.三、解答题5. 我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a、b,试求:(a+b)2的值.答案:B解析:根据勾股定理可得a2+b2=13,四个直角三角形的面积是:ab×4=13﹣1=12,即:2ab=12则(a+b)2=a2+2ab+b2=13+12=25.点拨:根据勾股定理可以求得a2+b2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab的值,然后根据(a+b)2=a2+2ab+b2即可求解.能力型:一、选择题1. 如图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长是()A.52 B.42 C.76 D.72答案:C解析:依题意得,设“数学风车”中的四个直角三角形的斜边长为x,则x2=122+52=169,解得x=13.故“数学风车”的周长是:(13+6)×4=76.故选:C.点拨:由题意∠ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个.二、填空题2. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为3cm,则图中所有正方形的面积之和为_______cm2.答案:27解析:∵最大的正方形的边长为3cm,∴正方形G的面积为9cm2,由勾股定理得,正方形E的面积+正方形F的面积=9cm2,正方形A的面积+正方形B的面积+正方形C的面积+正方形D的面积=9cm2,∴图中所有正方形的面积之和为27cm2,故答案为:27.点拨:根据正方形的面积公式求出正方形G的面积,根据勾股定理计算即可.3. 魏晋时期,伟大数学家刘徽利用如图通过“以盈补虚,出入相补”的方法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类”证明了勾股定理,若图中BF=2,CF=4,则AE的长为_______.答案:6解析:∵BF=2,CF=4,∴BC=BF+CF=2+4=6,∵AB∥EC,∴=,即=,解得:CE=12,在Rt△ADE中,AD=6,DE=DC+CE=6+12=18,根据勾股定理得:AE==6,故答案为:6.点拨:由BF+CF求出BC的长,即为正方形ABCD的边长,由AB与CE平行,得比例求出CE的长,由DC+CE求出DE的长,在直角三角形ADE中,利用勾股定理求出AE的长即可.三、解答题4. (1)如图1是一个重要公式的几何解释.请你写出这个公式;(2)如图2,Rt△ABC≌Rt△CDE,∠B=∠D=90°,且B,C,D三点共线.试证明∠ACE=90°;(3)请利用(1)中的公式和图2证明勾股定理.答案:见解析解析:(1)这个公式为(a+b)2=a2+2ab+b2;证明:由图可知大正方形被分成了一个小正方形和两个长方形,大正方形的面积=(a+b)2,两个长方形的面积=(a+b)b+ab,小正方形的面积=a2,那么大正方形的面积=(a+b)b+ab+a2=(a+b)2=a2+2ab+b2.(2)∵Rt△ABC≌Rt△CDE,∴∠BAC=∠DCE,∴∠ACB+∠DCE=∠ACB+∠BAC=90°;由于B,C,D共线,所以∠ACE=180°﹣(∠ACB+∠DCE)=180°﹣90°=90°.(3)梯形ABDE的面积为(AB+ED)•BD=(a+b)(a+b)=(a+b)2;另一方面,梯形ABDE可分成三个直角三角形,其面积又可以表示成ab+ab+c2.所以,(a+b)2=ab+ab+c2.即a2+b2=c2.点拨:(1)用面积分割法证明:大正方形的面积等于小正方形和两个长方形的面积之和,从而推出平方和公式.(2)利用全等三角形对应角相等,直角三角形的两个锐角互余,推出直角;(3)用面积分割法法证明勾股定理:梯形ABDE的面积=三角形ABC的面积+三角形CDE的面积+三角形ACE的面积.探究型:一、解答题1. 教材第九章中探索乘法公式时,设置由图形面积的不同表示方法验证了乘法公式.我国著名的数学家赵爽,早在公元3世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个大的正方形(如图①),这个图形称为赵爽弦图,验证了一个非常重要的结论:在直角三角形中两直角边a、b与斜边c满足关系式a2+b2=c2,称为勾股定理.(1)爱动脑筋的小明把这四个全等的直角三角形拼成了另一个大的正方形(如图②),也能验证这个结论,请你帮助小明完成验证的过程.(2)小明又把这四个全等的直角三角形拼成了一个梯形(如图③),利用上面探究所得结论,求当a=3,b=4时梯形ABCD的周长.(3)如图④,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.请在图中画出△ABC的高BD,利用上面的结论,求高BD的长.答案:见解析解析:(1)证明:由图得,×ab×4+c2=(a+b)×(a+b),整理得,2ab+c2=a2+b2+2ab,即a2+b2=c2;(2)解:∵a=3,b=4,∴c==5,梯形ABCD的周长为:a+c+3a+c═4a+2c=4×3+2×5=22;(3)解:如图4,BD是△ABC的高.∵S=AC•△ABCBD=AB×3,AC==5,∴BD===.点拨:(1)根据四个全等的直角三角形的面积+阴影部分小正方形的面积=大正方形的面积,代入数值,即可证明;(2)由(1)中结论先求出c的值,再根据周长公式即可得出梯形ABCD的周长;(3)先根据高的定义画出BD,由(1)中结论求出AC的长,再根据△ABC的面积不变列式,即可求出高BD的长.2. 勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2.证明:连接DB,过点D作BC边上的高DF,则DF=EC=b﹣a.∵S四边形ADCB =S△ACD+S△ABC=b2+ab.又∵S四边形ADCB =S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+ a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.证明:连结_______,过点B作______________,则_________.∵S五边形ACBED =S△ACB+S△ABE+S△ADE=______________.又∵S五边形ACBED=______________=ab+c2+a(b﹣a),∴______________=ab+c2+a(b﹣a),∴a2+b2=c2.答案:BD,BF⊥DE于F,BF=b﹣a,ab+ b2+ab,S△ACB +S△ABE+S△ADE,ab+b2+ ab.解析:证明:连结BD,过点B作BF⊥DE于F,则BF=b﹣a,∵S五边形ACBED =S△ACB+S△ABE+S△ADE=ab+b2+ab,又∵S五边形ACBED =S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a),∴。
勾股定理(第2课时)(课件)-2022-2023学年八年级数学下册同步精品课堂(人教版)
勾股定理应用的常见类型
1.已知直角三角形的任意两边求第三边;
2.已知直角三角形的任意一边确定另两边的关系;
3.证明包含有平方(算术平方根)关系的几何问题;
4.求解几何体表面上的最短路径问题;
5.构造方程(或方程组)计算有关线段长度,解决生产、
生活中的实际问题.
课堂练习
1.一种盛饮料的圆柱形杯,测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯
三角形的面积公式可求BD,再利用
勾股定理便可求CD.
北东
A
C
D
Q
课堂练习
P
解:∵AC10,BC8,AB6,
B
∴AC2AB2BC2
北东
A
即△ABC是直角三角形,
C
D
Q
1
1
而S△ABC BC AB AC BD
2
2
24
解得:BD .
5
2
24
在Rt△BCD中,CD = BC 2 BD 2 82 6.4
路线最短?
B
A
B
A
方案①
B
A
方案②
方案③
针对练习
(2)如图,将圆柱侧面剪开展成一个长方形,点A到点B的最短路线是什么?
你画对了吗?
B
A
B
A
B
∵两点之间线段最短,
∴方案③的路线最短.
A
针对练习
(3)蚂蚁从点A出发,想吃到点B上的食物,它沿圆柱侧面爬行的最短路程是
多少?
解:在Rt△ABC中,
C
B
AC=12 cm,BC=18÷2=9(cm).
在Rt△A′DB中,由勾股定理得
勾股定理 (2)
毕达哥拉斯定理一、毕达哥拉斯定理的定义勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方。
这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”。
二、毕达哥拉斯定理的由来早在中国商代就由商高发现.据说毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”.勾股定理指出:直角三角形两直角边(即“勾”“股”短的为勾,长的为股)边长平方和等于斜边(即“弦”)边长的平方.也就是说,设直角三角形两直角边为a和b,斜边为c,那么a的平方+b的平方=c的平方,即;勾股定理现发现约有500种证明方法,是数学定理中证明方法最多的定理之一.勾股定理其实是余弦定理的一种特殊形式.我国古代著名数学家商高说:“若勾三,股四,则弦五.”它被记录在了《九章算术》中.商高是公元前十一世纪的中国人.当时中国的朝代是西周,处于奴隶社会时期.在中国古代大约是西汉的数学著作《周髀算经》中记录着商高同周公的一段对话.周公问商高:“天不可阶而升,地不可将尽寸而度.”天的高度和地面的一些测量的数字是怎么样得到的呢?商高说:“故折矩以为勾广三,股修四,经隅五.”即我们常说的勾三股四弦五.早见于商高的话中,所以人们就把这个定理叫做“商高定理”.欧洲人则称这个定理为毕达哥拉斯定理.毕达哥拉斯(PythAgorAs)是古希腊数学家,他是公元前五世纪的人.希腊另一位数学家欧几里德(Euclid,是公元前三百年左右的人)在编著《几何原本》时,认为这个定理是毕达哥达斯最早发现的,因而国外一般称之为“毕达哥拉斯定理”.并且据说毕达哥拉斯在完成这一定理证明后欣喜若狂,而杀牛百只以示庆贺.因此这一定理还又获得了一个带神秘色彩的称号:“百牛定理”.所以他就把这个定理称为"毕达哥拉斯定理",以后就流传开了.三、思维的勾股定理平方后等于负1的数称为虚数,用表示.的3倍记为、7倍记为,它们都是虚数.1与-1的平方都是1,平方为-1的数原本是没有的,虚数是在‘如果有的话’的前提下提出的概念.由实数和虚数组合成的数叫做复数,复变函数是专门研究复数的数学分支.假设在宇宙的最初(如同霍金所提倡的)时间是虚数,由于加速度为距离除以时间的平方,所以当时间为虚数时,力的符号变为负(反方向).难以逾越的高墙反过来变成了深深的堑壕,在力学上势能(位置能)的符号发生了变化,封闭着能量的口袋在一瞬间消失,从而揭开了宇宙大爆炸的序幕,在此瞬间里时间由虚变实,变成了通常的膨胀.关于大爆炸以前的虚时间难于讲解,示意图也画不出来的,普通的时间尚无法看见,更别提看见虚时间了.我们的意识在一定程度上能够推定时间的经过,如果这时间是虚时间的话将会怎样呢?谁也说不出来.霍金为了避开奇点用数学公式表示了时间的连续性,但是他却回避不了大爆炸前的虚时间的提出,消除了宇宙创生于奇点的困惑.接下来,笔者用比较易懂的狭义相对论的公式,再对虚时间进行一些讲解.狭义相对论认为,光速是不变的,长度及时间随测量方法的不同而不同,时间与长度具有同等的资格.因此狭义相对论的公式是四维公式.设x、y、z为三维空间坐标的互相垂直的三个轴,t为时间.为了使时间成为用长度表示的维,把时间与光速c的乘积ct作为代表第四维的轴.假定光从A点出发沿直线(按狭义相对论观点)到达B点,所需时间为t,则AB间的直线距离为ct.一般地说,时间轴与x、y、z轴中的任何一个轴都不是互相垂直的,长度ct中含有各个轴的成份,光走过的距离ct相当于以x、y、z为三边的立方体的对角线之长,满足三维勾股定理(如图),.也可以写成.如果将相对论的时间记述为三维空间里的一维时间的话,与之和总应该为零.请注意:在数学处理上必须不带任何区别地看待时间与空间.四维几何学很难用我们的常识去理解,在四维几何学里从一开始就把ct 作为一个独立的坐标,而不是光传播于x、y、z三维空间里…….四维空间中的距离并不一定为零,而是一个定数,四个维的平方之和表示四维超立方体对角线的平方(称为扩张的勾股定理),即在四维几何学中,时间与空间之间存在下述关系:,是个定值,与光从A到B的过程有关.这个公式是四维时空间里的物理学公式.在原来的勾股定理中,各边的平方均为正值,只有与时空间有关的时间项的平方为负值,也就是把看作是加上一个负的项.四、毕达哥拉斯定理的证明法.唐初规定它为国子监明算科的教材之一,故改名《周髀算经》.首十一.故折矩,以为句广三,股修四,径隅五.既方之,外半其一矩,环识从何而来.于是商高以勾股定理的证明为例,解释数学知识的由来.边相等的矩),矩出于九九八十一(长乘宽面积计算依自九九乘法表).“故折矩①,以为句广三,股修四,径隅五.”:开始做图——选择一个 勾三(圆周率三)、股四(四方) 的矩,矩的两条边终点的连线应为5(径隅五).“②既方之,外半其一矩,环而共盘,得成三四五.”:这就是关键的证明过程——以矩的两条边画正方形(勾方、股方),根据矩的弦外面再画一个矩(曲尺,实际上用作直角三角),将“外半其一矩”得到的三角形剪下环绕复制形成一个大正方形,可看到其中有 边长三勾方、边长四股方、边长五弦方 三个正方形.“两矩共长③二十有五,是谓积矩.”:此为验算——勾方、股方的面积之和,与弦方的面积二十五相等——从图形上来看,大正方形减去四个三角形面积后为弦方,再是 大正方形 减去 右上、左下两个长方形面积后为 勾方股方之和.因三角形为长方形面积的一半,可推出 四个三角形面积 等于 右上、左下两个长方形面积,所以 勾方+股方=弦方.(二)(欧几里德(Euclid)射影定理证法)如图1,Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,通过证明三角形相似则有射影定理如下:(1) (2) (3)由公式(2)(3)得:;即,这就是勾股定理的结论.图1(三) 爱因斯坦的证明方法至今未见到爱因斯坦12岁时对毕氏定理证明的详细内容,但是按照材料,不难正确地推论出他的方法如下所示.专注到三角形的相似性,从直角三角形的一个顶点向斜边作垂线,设交点为D(见图1).两直角三角形的相似,完全取决于它们的一个锐角,如果有一锐角相等,二者相似;否则,不相似.在图1中,△ABC、△DBC、△DCA彼此都是相似的,因为它们有一锐角是相等的.△ABC与△DBC因相似,二者的两对应边长之比相等,即(1)对△ABC与△ACD,同理有(2)(1) +(2),得到:(3)(四)、(达芬奇的证法)达芬奇的证法三张纸片其实是同一张纸,把它撕开重新拼凑之后,中间那个“洞”的面积前后仍然是一样的,但是面积的表达式却不再相同,让这两个形式不同的表达式相等,就能得出一个新的关系式——勾股定理,所有勾股定理的证明方法都有这么个共同点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
臧老师辅导课堂之
勾股定理专项练习
1、下列各组数中,能构成直角三角形的是( )
A :4,5,6
B :1,1
:6,8,11 D :5,12,23
2、在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( ) A :26 B :18 C :20 D :21
3、在Rt △ABC 中,∠C =90°,∠B =45°,c =10,则a 的长为( ) A :5 B :10 C :25 D :5
4、等边三角形的边长为2,则该三角形的面积为( )
A
、
、、3
5、若等腰三角形的腰长为10,底边长为12,则底边上的高为( )
A 、6
B 、7
C 、8
D 、9
6、已知,如图长方形ABCD 中,AB=3cm ,
AD=9cm ,将此长方形折叠,使点B 与点D 重合,
折痕为EF ,则△ABE 的面积为( )
A 、3cm 2
B 、4cm 2
C 、6cm 2
D 、12cm 2 7、若△ABC 中,13,15AB cm AC cm ==,高AD=12,则BC 的长为( )
A 、14
B 、4
C 、14或4
D 、以上都不对
8、若一个三角形的三边满足222
c a b -=,则这个三角形是 。
9、木工师傅要做一个长方形桌面,做好后量得长为80cm ,宽为60cm ,对角线为100cm ,则这个桌面 。
(填“合格”或“不合格” )
10、直角三角形两直角边长分别为3和4,则它斜边上的高为__________。
11、如右图所示的图形中,所有的四边形都是正方形,
所有的三角形都是直角三角形,其中最大的正
方形的边长为5,则正方形A ,B ,C ,D 的
面积的和为 。
A D
E
D C B A 12、如右图将矩形ABCD 沿直线A
E 折叠,顶点D 恰好落
在BC 边上F 处,已知CE=3,AB=8,则BF=___________。
13、一只蚂蚁从长为4cm 、宽为3 cm ,高是5 cm 的
长方体纸箱的A 点沿纸箱爬到B 点,那么
它所行的最短路线的长是____________cm 。
第6题
14、将一根长为15㎝的筷子置于底面直径为5㎝,高为12㎝的圆柱形水杯中, 设筷子露在杯子外面的长为h ㎝,则h 的取值范围是________________。
15、如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB , BC=6,AC=8,
求AB 、CD 的长
16、如图,四边形ABCD 中,AB =3cm ,BC =4cm ,CD =12cm ,DA =13cm ,且∠ABC =900,求四边形ABCD 的面积。
17.已知正方形ABCD 的边长为4,E 为AB 中点,F 为A 上的一
点,且AF=4
1AD ,试判断△EFC 的形状.
18.如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,•长BC•为10cm .当小红折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).想一想,此时EC 有多长?•
F。