专题讲义(数学)
高中数学专题讲义-加法原理
1.基本计数原理 ⑴加法原理分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++L 种不同的方法.又称加法原理.⑵乘法原理分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =⨯⨯⨯L 种不同的方法.又称乘法原理.⑶加法原理与乘法原理的综合运用如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理.分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. 排列与组合 ⑴排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素)排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示.排列数公式:A (1)(2)(1)m n n n n n m =---+L ,m n +∈N ,,并且m n ≤.全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=. ⑵组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合.组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示.组合数公式:(1)(2)(1)!C !!()!m n n n n n m n m m n m ---+==-L ,,m n +∈N ,并且m n ≤. 组合数的两个性质:性质1:C C m n m n n -=;性质2:11C C C m m m n n n -+=+.(规定0C 1n =)知识内容加法原理⑶排列组合综合问题解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法: 1.特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素; 位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏.3.排除法,从总体中排除不符合条件的方法数,这是一种间接解题的方法.4.捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列.5.插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空. 6.插板法:n 个相同元素,分成()m m n ≤组,每组至少一个的分组问题——把n 个元素排成一排,从1n -个空中选1m -个空,各插一个隔板,有11m n C --.7.分组、分配法:分组问题(分成几堆,无序).有等分、不等分、部分等分之别.一般地平均分成n 堆(组),必须除以n !,如果有m 堆(组)元素个数相等,必须除以m ! 8.错位法:编号为1至n 的n 个小球放入编号为1到n 的n 个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不同,这种排列称为错位排列,特别当2n =,3,4,5时的错位数各为1,2,9,44.关于5、6、7个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题.1.排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径:①元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素; ②位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;③间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理;然后分析题目条件,避免“选取”时重复和遗漏;最后列出式子计算作答.2.具体的解题策略有:①对特殊元素进行优先安排;②理解题意后进行合理和准确分类,分类后要验证是否不重不漏; ③对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复; ④对于元素相邻的条件,采取捆绑法;对于元素间隔排列的问题,采取插空法或隔板法; ⑤顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理; ⑥对于正面考虑太复杂的问题,可以考虑反面.⑦对于一些排列数与组合数的问题,需要构造模型.典例分析加法原理【例1】高二年级一班有女生18人,男生38人,从中选取一名学生作代表,参加学校组织的调查团,问选取代表的方法有几种.【例2】若a、b是正整数,且6,则以()a b≤a b为坐标的点共有多少个?,【例3】用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324B.328C.360D.648【例4】用数字12345,,,,组成的无重复数字的四位偶数的个数为()A.8B.24C.48D.120【例5】用012345,,,,,这6个数字,可以组成____个大于3000,小于5421的数字不重复的四位数.。
六年级数学专题讲义追及问题
追及问题追及问题主要是研究同向运动的物体之间的速度、时间和路程三者之间的数量关系,其基本数量关系是:路程差=追及时间×速度差速度差=路程差÷追及时间追及时间=路程差÷速度差〖经典例题〗例1、兔子与狗要由A地跑到B地.狗每分钟跑100米,兔子每分钟跑80米,兔子比狗先跑了6分钟,他们同时到达B地.那么A地到B地的距离是多少米?【分析】狗开始跑时,兔子和狗此时的路程差是80×6=480米,狗追上兔子的时间即为狗跑完全程的时间:480÷(100-80)=24分钟,AB的距离是:100×24=2400米.例2、甲乙两辆汽车同时从A地出发去B地,甲车每小时行50千米,乙车每小时行40千米。
途中甲车出故障停车修理了3小时,结果甲车比乙车迟到1小时到达B地,A、B两地间的路程是多少?【分析】甲修理了3小时,而又比乙迟到了1小时,说明行驶同样的路程,甲比乙少用3-1=2小时。
相当于乙先出发2小时,甲正好在B地追上乙。
路程差是40×2=80千米,速度差是50-40=10千米/时,追及时间为80÷10=8小时,因此甲行驶8小时到达B地,A、B地距离是50×8=400千米。
例3、甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒钟可追上乙;若甲让乙先跑2秒钟,则甲跑4秒钟就能追上乙.问:甲、乙二人的速度各是多少?【分析】若甲让乙先跑10米,则10米就是甲、乙二人的路程差,5秒就是追及时间,据此可求出他们的速度差为10÷5=2(米/秒);若甲让乙先跑2秒,则甲跑4秒可追上乙,在这个过程中,追及时间为4秒,因此路程差就等于2×4=8(米),也即乙在2秒内跑了8米,所以可求出乙的速度8÷2=4米,可求出甲的速度4+2=6米.〖方法总结〗这几个题目是典型的追及问题,我们主要找出路程差、速度差、追及时间,知二求一。
四年级数学专题讲义第十七讲 行程问题
第十七讲行程问题我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题.在对小学数学的学习中,我们已经接触过一些简单的行程应用题,行程问题主要涉及时间(t)、速度(v)和路程(s)这三个基本量,它们之间的关系如下:(1)速度×时间=路程可简记为:s = vt(2)路程÷速度=时间可简记为:t = s÷v(3)路程÷时间=速度可简记为:v = s÷t显然,知道其中的两个量就可以求出第三个量.涉及到两个或两个以上物体运动的问题,其中最常见的是相遇问题和追及问题.相遇问题:速度和×相遇时间=路程和S V t=⨯和和追及问题:速度差×追及时间=路程差S V t=差差对于上面的公式大家已经不陌生了,在下面的学习中我们将和小朋友们一起复习回顾以前的相关知识,而后拓展提高!〖经典例题〗例1、甲、乙两人从A、B两地同时出发,相对而行.如果两人按原来的速度前进,那么4小时后相遇;如果两人各自都比原定速度提高1千米/小时,那么他们经过3小时就相遇,则A、B两地的距离是多少千米?分析:加速后3小时多走了2×3=6(千米),这正好是加速前第四小时走的路程,所以按原速度两人1小时共走6千米,A、B两地相距6×4=24(千米).例2、A、B两村相距2800米,小明从A村出发步行5分钟后,小军骑车从B村出发,又经过10分钟两人相遇,已知小军骑车比小明步行每分钟多行130米,小明每分钟行多少米?分析:相遇时,小明行驶了5+10=15分钟,小军行驶了10分钟.小军骑车比小明步行每分钟多行130米,那么10分钟小军就比小明多行驶了130×10=1300米,也就是如果小军和小明的速度一样的话,小明和小军可以行驶2800-1300=1500米,相当于小明行驶了15+10=25分钟,从而可以求出小明的速度:1500÷25=60米/分。
四年级数学专题讲义第十讲 格点与面积
第十一讲格点与面积同学们,一看这个题目,你一定会有许多疑问:什么是格点?格点与面积之间又有什么关系等等.这一节我们就来探讨这些问题。
在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点.在方格网中,以格点为顶点画出的多边形叫做格点多边形,例如,右图中的乡村小屋图形就是一个格点多边形.那么,格点多边形的面积如何计算?它与格点数目有没有关系?如果有,这两者之间的关系能否用计算公式来表达?下面就让我们一起来探讨这些问题吧!一、正方形格点问题:正方形格点问题就是它的格点都是由两组互相垂直相交的平行线的交点构成的.每一个小方格都是一个小正方形.例1、判断下列图形哪些是格点多边形?分析:根据格点多边形的定义可知,图形的边必须是直线,顶点要在格点上!所以只有(1)是格点多边形。
例2、如右图,计算各个格点多边形的面积.分析:本题所给的图形都是规则图形,它们的面积运用公式直接可求,只要判断出相应的有关数据就行了.法一:第(1)图是正方形,边长是4,所以面积是4×4=16(面积单位);第(2)图是矩形,长是5,宽是3,所以面积是5×3=15(面积单位);第(3)图是三角形,底是5,高是4,所以面积是5×4÷2=10(面积单位);第(4)图是平行四边形,底是5,高是3,所以面积是5×3=15(面积单位);第(5)图是直角梯形,上底是3,下底是5,高是3,所以面积是(3+5)×3÷2=12(面积单位);第(6)图是梯形,上底是3,下底是6,高是4,所以面积是(3+6)×4÷2=18(面积单位).注:如果两格点之间的距离是2,你能利用刚计算的结果说出相应面积么?分析:面积数值均扩大4倍。
法二:以上部分图形除了利用各自的面积公式直接求出外,我们还可以从推导它们的面积公式过程中得到启发,即用“割补法”或“扩展法”分别转化成平置的长方形来求。
艺术生高考数学专题讲义:考点14 导数与函数的极值、最值
考点十四导数与函数的极值、最值知识梳理1.函数的极值的定义一般地,设函数f(x)在点x0及附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0 ),就说f(x0)是函数的极大值,x0叫做函数的极大值点.如果对x0附近的所有的点,都有f(x)>f(x0 ),就说f(x0)是函数的极小值,x0叫做函数的极小值点.极大值与极小值统称为函数的极值.极大值点与极小值点统称为极值点.注意:可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f′(x0)=0是可导函数f(x)在x=x0处取得极值的必要不充分条件.例如函数y=x3在x=0处有y′=0,但x=0不是极值点.2.判断f(x0 )是极大、极小值的方法当函数f(x)在点x0处连续时,若x0满足f′(x0 )=0,且在x0的两侧f(x)的导数值异号,则x0是f(x)的极值点,f(x0 )是极值.如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.3.求可导函数f(x)的极值的步骤(1)确定函数的定义域,求导数f′(x) ;(2)求方程f′(x) =0的根;(3)检查f′(x)在x0两侧的符号①若f′(x)在x0两侧的符号“左正右负”,则x0为极大值点;②若f′(x)在x0两侧的符号“左负右正”,则x0为极小值点;③若f′(x)在x0两侧的符号相同,则x0不是极值点.4.函数的最值在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(1)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(2)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)进行比较,其中最大的一个是最大值,最小的一个是最小值.5.函数的极值与最值的区别与联系极值是个“局部”概念,而函数最值是个“整体”概念.函数的极值表示函数在某一点附近的情况,是在局部对函数值的比较;函数的最值表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.函数的极值不一定是最值,最值也不一定是极值.典例剖析题型一 利用导数求函数的极值例1 已知函数f (x )=x 3-2x 2e x.求f (x )的极大值和极小值.解析 函数f (x )的定义域为R ,f ′(x )=-x (x 2-5x +4)e x =-x (x -1)(x -4)e x ,当x 变化时,f (x )、f ′(x )的符号变化情况如下:∴f (x )的极大值为f (0)=0和f (4)=32e 4,f (x )的极小值为f (1)=-1e.变式训练 设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围. 解析 对f (x )求导得f ′(x )=e x·1+ax 2-2ax(1+ax 2)2.①(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0,解得x 1=32,x 2=12.结合①,可知所以x 1=32是极小值点,x 2=12是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0,知ax 2-2ax +1≥0在R 上恒成立,即Δ=4a 2-4a =4a (a -1)≤0,由此并结合a >0,知0<a ≤1.所以a 的取值范围为{a |0<a ≤1}.题型二 利用极值求参数例2 设f (x )=ln(1+x )-x -ax 2,若f (x )在x =1处取得极值,则a 的值为________. 答案 -14解析 由题意知,f (x )的定义域为(-1,+∞), 且f ′(x )=11+x -2ax -1=-2ax 2-(2a +1)x 1+x,由题意得:f ′(1)=0,则-2a -2a -1=0,得a =-14,又当a =-14时,f ′(x )=12x 2-12x 1+x =12x (x -1)1+x ,当0<x <1时,f ′(x )<0;当x >1时,f ′(x )>0, 所以f (1)是函数f (x )的极小值,所以a =-14.变式训练 已知x =3是函数f (x )=a ln x +x 2-10x 的一个极值点,则实数a =________. 答案 12解析 f ′(x )=a x +2x -10,由f ′(3)=a3+6-10=0,得a =12,经检验满足条件.题型三 利用导数求函数的最值例3 设函数f (x )=x +ax 2+b ln x ,曲线y =f (x )过P (1,0),且在P 点处的切线斜率为2. (1)求a ,b 的值;(2)令g (x )=f (x )-2x +2,求g (x )在定义域上的最值. 答案 (1)a =-1,b =3 (2)最大值为0,无最小值 解析 (1)f ′(x )=1+2ax +bx(x >0),又f (x )过点P (1,0),且在点P 处的切线斜率为2,∴⎩⎪⎨⎪⎧ f (1)=0,f ′(1)=2,即⎩⎪⎨⎪⎧1+a =0,1+2a +b =2.解得a =-1,b =3. (2)由(1)知,f (x )=x -x 2+3ln x ,其定义域为(0,+∞), ∴g (x )=2-x -x 2+3ln x ,x >0.则g ′(x )=-1-2x +3x =-(x -1)(2x +3)x .当0<x <1时,g ′(x )>0;当x >1时,g ′(x )<0.所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减. ∴g (x )的最大值为g (1)=0,g (x )没有最小值. 变式训练 已知函数f (x )=ln x -ax (a ∈R ). (1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值. 解析 (1)f ′(x )=1x-a (x >0),①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )的单调增区间为(0,+∞).②当a >0时,令f ′(x )=1x -a =0,可得x =1a ,当0<x <1a 时,f ′(x )=1-ax x >0;当x >1a 时,f ′(x )=1-ax x<0,故函数f (x )的单调递增区间为⎝⎛⎦⎤0,1a ,单调递减区间为⎣⎡⎭⎫1a ,+∞. (2)①当1a ≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,所以f (x )的最小值是f (2)=ln 2-2a .②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )的最小值是f (1)=-a .③当1<1a <2,即12<a <1时,函数f (x )在⎣⎡⎦⎤1,1a 上是增函数,在⎣⎡⎦⎤1a ,2上是减函数.又f (2)-f (1)=ln 2-a ,所以当12<a <ln 2时,最小值是f (1)=-a ;当ln 2≤a <1时,最小值为f (2)=ln 2-2a . 综上可知,当0<a <ln 2时,函数f (x )的最小值是-a ; 当a ≥ln 2时,函数f (x )的最小值是ln 2-2a .解题要点 求函数f (x )在[a ,b ]上的最大值和最小值的步骤: (1)求函数在(a ,b )内的极值;(2)求函数在区间端点处的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.当堂练习1.已知函数y =f (x ),其导函数y =f ′(x )的图象如图所示,则y =f (x ) ________.①在(-∞,0)上为减函数② 在x =0处取极小值 ③ 在(4,+∞)上为减函数 ④ 在x =2处取极大值答案 ③解析 由f ′(x )的图象可知,f (x )在(-∞,0)上单调递增,在(0,2)上单调递减,∴f (x )在x =0处取得极大值,同理f (x )在x =2处取得极小值,故①,②,④均不正确 ,由f ′(x )的图象可知f (x )在(4,+∞)上单调递减.2.函数f (x )=(x 2-1)2+2的极值点是________.①x =1 ②x =-1 ③x =1或-1或0 ④x =0 答案 ③解析 ∵f (x )=x 4-2x 2+3,由f ′(x )=4x 3-4x =4x (x +1)(x -1)=0,得x =0或x =1或x =-1.又当x <-1时,f ′(x )<0,当-1<x <0时,f ′(x )>0,当0<x <1时,f ′(x )<0,当x >1时,f ′(x )>0, ∴x =0,1,-1都是f (x )的极值点.3. 若函数y =ax 3+bx 2取得极大值和极小值时的x 的值分别为0和13,则a 与b 的关系是________. 答案 a +2b =0解析 y ′=3ax 2+2bx ,据题意,0,13是方程3ax 2+2bx =0的两根,∴-2b 3a =13,∴a +2b =0.4.函数f (x )=xe x ,x ∈[0,4]的最大值是________.答案 1e5.若函数f (x )=x 2+ax +1在x =1处取极值,则a =________.答案 3解析 f ′(x )=x 2+2x -a(x +1)2,由f (x )在x =1处取得极值知f ′(1)=0,∴a =3.课后作业一、 填空题1.函数f (x )=x 33+x 2-3x -4在[0,2]上的最小值是________.答案 -173解析 f ′(x )=x 2+2x -3,令f ′(x )=0,得x =1(x =-3舍去), 又f (0)=-4,f (1)=-173,f (2)=-103,故f (x )在[0,2]上的最小值是f (1)=-173.2.函数f (x )=x 3-32x 2-6x 的极值点的个数是________.答案 2解析 f ′(x )=3x 2-3x -6=3(x 2-x -2)=3(x -2)(x +1).令f ′(x )=0,得x =-1或x =2.易知x =-1为f (x )的极大值点,x =2为f (x )的极小值点.故f (x )的极值点有2个. 3.函数f (x )=12x -x 3在区间[-3,3]上的最小值是________. 答案 -16解析 由f ′(x )=12-3x 2=0,得x =-2或x =2. 又f (-3)=-9,f (-2)=-16,f (2)=16,f (3)=9, ∴函数f (x )在[-3,3]上的最小值为-16.4.f (x )=e x -x (e 为自然对数的底数)在区间[-1,1]上的最大值是________. 答案 e -1解析 f ′(x )=e x -1,令f ′(x )=0,得x =0.令f ′(x )>0,得x >0,令f ′(x )<0,得x <0,则函数f (x )在(-1,0)上单调递减,在(0,1)上单调递增,f (-1)=e -1+1,f (1)=e -1,f (-1)-f (1)=1e +2-e<12+2-e<0,所以f (1)>f (-1).5.若商品的年利润y (万元)与年产量x (百万件)的函数关系式为y =-x 3+27x +123(x >0),则获得最大利润时的年产量为________. 答案 3百万件解析 依题意得,y ′=-3x 2+27=-3(x -3)(x +3),当0<x <3时,y ′>0;当x >3时,y ′<0.因此,当x =3时,该商品的年利润最大.6.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则ab的值为________.答案 -23解析 由题意知,f ′(x )=3x 2+2ax +b ,f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =01+a +b -a 2-7a =10,解得⎩⎪⎨⎪⎧a =-2b =1或⎩⎪⎨⎪⎧a =-6b =9,经检验⎩⎪⎨⎪⎧a =-6b =9满足题意,故a b =-23.7.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是________.(填序号)①函数f (x )有极大值f (2)和极小值f (1) ②函数f (x )有极大值f (-2)和极小值f (1) ③函数f (x )有极大值f (2)和极小值f (-2) ④函数f (x )有极大值f (-2)和极小值f (2) 答案 ④解析 由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 8.已知f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是________. 答案 -37解析 f ′(x )=6x 2-12x =6x (x -2),∴f (x )在(-2,0)上单调递增,在(0,2)上单调递减. ∴x =0为极大值点,也为最大值点. ∴f (0)=m =3,∴m =3. ∴f (-2)=-37,f (2)=-5. ∴最小值是-37.9.函数f (x )=x 3+ x 2-x +2在[0,2]上的最小值是________. 答案4927解析 f ′(x )=3x 3+2x -1,f ′(x )=0,x ∈[0,2],得x =13.比较f (0)=2,f (13)=4927,f (2)=12.可知最小值为4927.10.某商场从生产厂家以每件20元购进一批商品,若该商品零售价为p 元,销量Q (单位:件)与零售价p (单位:元)有如下关系:Q =8 300-170p -p 2,则该商品零售价定为__________ 元时利润最大,利润的最大值为__________. 答案 30 23 000解析 设商场销售该商品所获利润为y 元,则y =(p -20)Q =(p -20)(8 300-170p -p 2)=-p 3-150p 2+11 700p -166 000(p ≥20), ∴y ′=-3p 2-300p +11 700. 令y ′=0得p 2+100p -3 900=0,∴p =30或p =-130(舍去),则p ,y ,y ′变化关系如下表:∴当p =30时,y 取极大值为23 000元.又y =-p 3+150p 2+11 700p -166 000在(20,+∞)上只有一个极值,故也是最值. ∴该商品零售价定为每件30元,所获利润最大为23 000元.11.若y =a ln x +bx 2+x 在x =1和x =2处有极值,则a =________,b =________. 答案 -23 -16解析 y ′=ax+2bx +1.由已知⎩⎪⎨⎪⎧a +2b +1=0,a 2+4b +1=0,解得⎩⎨⎧a =-23,b =-16.二、解答题12. (2015北京文节选)设函数f (x )=x 22-k ln x ,k >0.求f (x )的单调区间和极值解析 函数的定义域为(0,+∞).由f (x )=x 22-k ln x (k >0)得f ′(x )=x -k x =x 2-kx.由f ′(x )=0解得x =k (负值舍去).f (x )与f ′(x )在区间(0,+∞)上的变化情况如下表:所以,f (x )f (x )在x =k 处取得极小值f (k )=k (1-ln k )2. 13.设函数f (x )=2x 3+3ax 2+3bx +8c 在x =1及x =2时取得极值. (1)求a 、b 的值;(2)若对于任意的x ∈[0,3],都有f (x )<c 2成立,求c 的取值范围. 解析 (1)f ′(x )=6x 2+6ax +3b ,因为函数f (x )在x =1及x =2处取得极值,则有f ′(1)=0,f ′(2)=0,即⎩⎪⎨⎪⎧6+6a +3b =0,24+12a +3b =0.解得a =-3,b =4. (2)由(1)可知,f (x )=2x 3-9x 2+12x +8c ,f ′(x )=6x 2-18x +12=6(x -1)(x -2). 当x ∈(0,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,3)时,f ′(x )>0. 所以,当x =1时,f (x )取得极大值f (1)=5+8c ,又f (0)=8c ,f (3)=9+8c . 则当x ∈[0,3]时,f (x )的最大值为f (3)=9+8c . 因为对于任意的x ∈[0,3],有f (x )<c 2恒成立, 所以9+8c <c 2,解得c <-1或c >9, 因此c 的取值范围为(-∞,-1)∪(9,+∞).。
高中数学基础知识专题讲义46 三定问题(定点、定值、定直线)(教师版)
考点46 三定问题(定点、定值、定直线)一.求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 二.直线定点问题的求解的基本思路如下:①假设直线方程,与椭圆方程联立,整理为关于x 或y 的一元二次方程的形式; ②利用0∆>求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出已知中的等量关系,代入韦达定理可整理得到变量间的关系,从而化简直线方程; ④根据直线过定点的求解方法可求得结果. 三.解答圆锥曲线的定点、定值问题的策略:1、参数法:参数解决定点问题的思路:①引进动点的坐标或动直线中的参数表示变化量,即确定题目中核心变量(通常为变量k );②利用条件找到k 过定点的曲线0(),F x y =之间的关系,得到关于k 与,x y 的等式,再研究变化量与参数何时没有关系,得出定点的坐标;2、由特殊到一般发:由特殊到一般法求解定点问题时,常根据动点或动直线的特殊情况探索出定点,再证明该定点与变量无关.考向一 定值【例1】(2021·北京丰台区·高三一模)已知椭圆2222:1(0)x y C a b a b +=>>长轴的两个端点分别为(2,0),(2,0)A B -(1)求椭圆C 的方程;(2)P 为椭圆C 上异于,A B 的动点,直线,AP PB 分别交直线6x =-于,M N 两点,连接NA 并延长交椭知识理解考向分析圆C 于点Q .(ⅰ)求证:直线,AP AN 的斜率之积为定值; (ⅱ)判断,,M B Q 三点是否共线,并说明理由.【答案】(1)2214x y +=;(2)(ⅰ)证明见解析;(ⅱ)是,理由见解析. 【解析】(1)由题意得2,c a e a ===所以2221==-=c b a c ,所以椭圆C 的方程为2214x y +=.(2)(ⅰ)证明:设00(,)P x y ,因为P 在椭圆C 上,所以220014x y +=.因为直线AP 的斜率为002y x +,直线BP 的斜率为002y x -,所以直线BP 的方程为00(2)2y y x x =--. 所以N 点的坐标为008(6,)2y N x ---. 所以直线AN 的斜率为0000822622y x y x --=-+-. 所以直线,AP AN 的斜率之积为: 20200022000021422122442x y y y x x x x ⎛⎫- ⎪⎝⎭⋅===-+---. (ⅱ),,M B Q 三点共线.设直线AP 斜率为k ,易得(6,4)M k --.由(ⅰ)可知直线AN 斜率为12k -,所以直线AN 的方程为1(2)2y x k=-+. 联立22440,22,x y x ky ⎧+-=⎨=--⎩可得22(44)80k y ky ++=.解得Q 点的纵坐标为221kk -+, 所以Q 点的坐标为222222(,)11k kQ k k--++. 所以,直线BQ 的斜率为22220122221kk k k k--+=--+,直线BM 的斜率为40622k k --=--. 因为直线BQ 的斜率等于直线BM 的斜率, 所以,,M B Q 三点共线. 【举一反三】1.(2021·陕西宝鸡市·高三二模(文))已知椭圆C :22221x y a b+=(0a b >>)的左、右焦点分别为1F ,2F ,G 是椭圆上一点,12GF F △的周长为6+. (1)求椭圆C 的方程;(2)直线l :y kx m =+与椭圆C 交于A ,B 两点,且四边形OAGB 为平行四边形,求证:OAGB 的面积为定值.【答案】(1)221123x y +=;(2)证明见解析. 【解析】(1)因为12GF F △的周长为6+,所以226a c +=+,即3a c +=+又离心率2c e a ==,解得a =3c =, 2223b a c =-=.∴椭圆C 的方程为221123x y +=.(2)设()11,A x y ,()22,B x y ,()00,G x y ,将y kx m =+代入221123x y+=消去y 并整理得()2221484120kxkmx m +++-=,则122814km x x k +=-+,212241214m x x k-⋅=+, ()121222214my y k x x m k +=++=+,∵四边形OAGB 为平行四边形,∴()1212,OG OA OB x x y y =+=++,得2282,1414km m G k k ⎛⎫-⎪++⎝⎭, 将G 点坐标代入椭圆C 方程得()223144m k =+, 点O 到直线AB的距离为d =12AB x =-,∴平行四边形OAGB 的面积为12S d AB m x x =⋅=-=====.故平行四边形OAGB 的面积为定值为2.(2021·四川遂宁市·高三二模(文))如图,已知椭圆C :()22211x y a a+=>的左焦点为F ,直线()0y kx k =>与椭圆C 交于A ,B 两点,且0FA FB ⋅=时,3k =.(1)求a 的值;(2)设线段AF ,BF 的延长线分别交椭圆C 于D ,E 两点,当k 变化时,直线DE 与直线AB 的斜率之比是否为定值?若是定值,求出定值;若不是定值,请说明理由. 【答案】(1(2)为定值5.【解析】(1)设()00,A x y ,则()00,B x y --,由题意得焦点为()F所以,()()2220000001FA FB x y x y x y a ⋅=⋅--=--+-.当0FA FB ⋅=时,有222001x y a +=-.联立222,1,y kx x y a =⎧⎪⎨+=⎪⎩得220221a x k a =+,2220221k a y k a =+,从而22222222111a k a a k a k a +=-++.将3k =代入,得222413a a a =-+,所以()231a a =>,故a =(2)由(1)知,()F ,椭圆C :2213x y +=.设AD:00x x y y +=C :2233x y +=,得(2002200310x x y y y y ⎡⎤+⎢⎥+--=⎢⎥⎢⎥⎣⎦. 而220033x y +=,即()22000050y x y y y +--=,从而D y =.同理BE:00x x y y =E y =从而5E D E D y y y y +=-.于是0000000055E D DE E D E DE D y y y k kx x x y y -====⋅=-.所以DE ,BC 的斜率之比为定值5.考向二 定点【例2】(2021·河南月考(文))已知椭圆()2222:10x y C a b a b+=>>的两焦点为()11,0F -,()21,0F ,点P 在椭圆C 上,且12PF F △(Ⅰ)求椭圆C 的标准方程;(Ⅱ)点M 为椭圆C 的右顶点,若不平行于坐标轴的直线l 与椭圆C 相交于,A B 两点(,A B 均不是椭圆C 的右顶点),且满足AM BM ⊥,求证:直线l 过定点,并求出该定点的坐标.【答案】(Ⅰ)22143x y +=;(Ⅱ)证明见解析,定点坐标为2,07⎛⎫ ⎪⎝⎭. 【解析】(Ⅰ)由椭圆的对称性可知:当点P 落在椭圆的短轴的两个端点时12PF F △的面积最大,此时122b ⨯⨯=b = 由222a bc =+得:2314a =+=.∴椭圆C 的标准方程为22143x y +=. (Ⅱ)设()11,A x y ,()22,B x y ,直线l 的方程为y kx m =+,联立22143y kx mx y =+⎧⎪⎨+=⎪⎩得:()()222348430k x mkx m +++-=,则()()222264163430m k k m =-+->,即22340k m +->,122834mk x x k ∴+=-+,()21224334m x x k-=+.()()1212y y kx m kx m ∴=++()221212k x x mk x x m =+++()2223434m k k-=+.椭圆的右顶点为()2,0M ,AM BM ⊥,0MA MB ∴⋅=,()()1212220x x y y ∴--+=,即()121212240y y x x x x +-++=, ()()2222234433434m k m k k --∴+++2164034mkk ++=+.整理可得:2271640m km k ++=, 解得:12m k =-,227k m =-,(1m ,2m 均满足22340k m +->). 当2m k =-时,l 的方程为()2y k x =-,直线l 过右顶点()2,0,与已知矛盾; 当227k m =-时,l 的方程为27y k x ⎛⎫=- ⎪⎝⎭,过定点2,07⎛⎫⎪⎝⎭,∴直线l 过定点,定点坐标为2,07⎛⎫⎪⎝⎭【举一反三】1.(2021·黑龙江大庆市·高三一模(理))已知焦点在x 轴上的椭圆C :222210)x ya b a b+=>>(,短轴长为1.(1)求椭圆C 的标准方程;(2)如图,已知点2(,0)3P ,点A 是椭圆的右顶点,直线l 与椭圆C 交于不同的两点 ,E F ,,E F 两点都在x 轴上方,且APE OPF ∠=∠.证明直线l 过定点,并求出该定点坐标.【答案】(1)22143x y +=;(2)证明见解析,(6,0).【解析】(1)由22221b a c a c b ⎧=⎪-=⎨⎪-=⎩得21b a c ⎧=⎪=⎨⎪=⎩,所以椭圆C 的标准方程为22143x y +=.(2)当直线l 斜率不存在时,直线l 与椭圆C 交于不同的两点分布在x 轴两侧,不合题意. 所以直线l 斜率存在,设直线l 的方程为y kx m =+. 设11(,)E x y 、22(,)F x y ,由22143x y y kx m ⎧+=⎪⎨⎪=+⎩得222(34)84120k x kmx m +++-=, 所以122834km x x k -+=+,212241234m x x k-=+. 因为APE OPF ∠=∠, 所以0PE PF k k +=,即121202233y y x x +=--,整理得1212242()()033m kx x m k x x +-+-= 化简得6m k =-,所以直线l 的方程为6(6)y kx k k x =-=-, 所以直线l 过定点(6,0).2.(2021·全国高三月考(文))已知斜率为的34的直线l 与椭圆()2222:10x y C a b a b+=>>交于点,A B ,线段AB 中点为()11D -,,直线l 在y 轴上的截距为椭圆C 的长轴长的716倍. (1)求椭圆C 的方程;(2)若点,,,P Q M N 都在椭圆上,且,PQ MN 都经过椭圆C 的右焦点F ,设直线,PQ MN 的斜率分别为12,k k ,121k k +=-,线段的中点分别为,G H ,判断直线GH 是否过定点,若过定点.求出该定点,若不过定点,说明理由.【答案】(1)22143x y +=;(2)过定点,31,4⎛⎫ ⎪⎝⎭.【解析】设()()1122,,,A x y B x y , 则12122,2x x y y +=-+=,且2222112222221,1x x x x a b a b+=+= 两式相减得2222121222x x y y a b --=-即2121221212y y y y b x x x x a+-⋅=-+-, 即222324b a -⋅=-,所以2234b a =又直线l 的方程为()3114y x -=+, 令0x =,得74y =所以772,2,164a ab ⨯===, 所以椭圆C 的方程为22143x y +=.(2)由题意得()1,0F ,直线,PQ MN 的方程分别为()12()1,1y k x y k x =-=-,设()()3344,,,P x y Q x y ,联立122(1)143y k x x y =-⎧⎪⎨+=⎪⎩,得()22121213484120k k k xx +-+-=,所以212341834x k k x +=+,则2211221143,3434k k G k k ⎛⎫- ⎪++⎝⎭同理2222222243,3434k k H k k ⎛⎫- ⎪++⎝⎭所以12221212221212221233334344443434GHk k k k k k k k k k k k k ----++==+-++ 由121k k +=- 得()11314GH k k k =++, 所以直线GH 的方程为221111221134334434k k y k k x k k ⎛⎫⎛⎫+=++- ⎪ ⎪++⎝⎭⎝⎭整理得()21133144y k k x ⎛⎫=++-+ ⎪⎝⎭, 所以直线GH 过定点31,4⎛⎫⎪⎝⎭.考向三 定直线【例3】(2021·深圳实验学校高中部)如图,已知抛物线21:2C y x =直线2y kx =+交抛物线C 于A ,B 两点,O 为坐标原点.(1)证明:OA OB ⊥;(2)设抛物线C 在点A 处的切线为1l ,在点B 处的切线为2l ,证明:1l 与2l 的交点M 在一定直线上. 【答案】(1)证明见解析;(2)证明见解析. 【解析】1)设211,12A x x ⎛⎫ ⎪⎝⎭,222,12B x x ⎛⎫ ⎪⎝⎭,把2y kx =+代入212y x =,得2240x kx --=. 由韦达定理得122x x k +=,124x x =-.()22211221212111,,0224OA OB x x x x x x x x ⎛⎫⎛⎫∴⋅=⋅=+= ⎪ ⎪⎝⎭⎝⎭.所以OA OB ⊥ (2)212y x =,y x '∴=, 故经过点211,12A x x ⎛⎫ ⎪⎝⎭的切线1l 的方程为:()211112y x x x x -=-, 即21112y x x x =-,①同理,经过点222,12B x x ⎛⎫ ⎪⎝⎭的切线2l 的方程为:22212y x x x =-,②21x x ⨯-⨯①②,得12122y x x ==-. 即点M 在直线:2l y =-上. 【举一反三】1.(2021·浙江温州市)已知抛物线()2:20C x py p =>的焦点到准线的距离为2,直线:2l y kx =+交抛物线于()11,A x y ,()22,B x y 两点. (1)求抛物线C 的标准方程;(2)过点A ,B 分别作抛物线C 的切线1l ,2l ,点P 为直线1l ,2l 的交点. (i )求证:点P 在一条定直线上; (ii )求PAB △面积的取值范围.【答案】(1)24x y =;(2)(i )证明见解析;(ii ))⎡+∞⎣.【解析】(1)抛物线()2:20C x py p =>的焦点到准线的距离为2,可得2p =,所以抛物线的标准方程为24x y =.(2)联立方程组24,2x yy kx ⎧=⎨=+⎩消去y 得,2480x kx --=,∴124x x k +=,128x x =- 由24x y =得,12y x '=,所以切线PA 方程为()111112:l y y x x x -=- 切线PB 方程为()22221:2l y y x x x -=- 联立直线PA 、PB 方程可解得1222x x x k +==,1224x xy ⋅==-. (i )所以点P 的坐标为()2,2k -. 所以点P 在定直线2y =-上 (ii )点P 到直线AB 的距离为2d =所以AB ==PAB △的面积为()322214422PABS d AB k =⋅==+△所以当0k =时,PABS有最小值PAB △面积的取值范围是)⎡+∞⎣.2.(2021·云南昆明市·昆明一中高三月考(理))已知点P 是抛物线2:2C x y =上的动点,且位于第一象限.圆222:()0O x y r r +=>,点P 处的切线l 与圆O 交于不同两点A ,B ,线段AB 的中点为D ,直线OD 与过点P 且垂直于x 轴的直线交于点M . (1)求证:点M 在定直线上;(2)设点F 为抛物线C 的焦点,切线l 与y 轴交于点N ,求PFN 与PDM △面积比的取值范围. 【答案】(1)证明见解析;(2)1,22⎛⎫⎪⎝⎭. 【解析】(1)设2,2m P m ⎛⎫⎪⎝⎭,其中0m >,显然切线l 的斜率存在且不为零,由22x y =,求导得:y x '=,所以切线l 的斜率为m ,因为D 是弦AB 的中点,所以OD l ⊥,所以直线OD 方程:1y x m=-,联立方程1y xm x m ⎧=-⎪⎨⎪=⎩,得1y =-,所以点M 在定直线1y =-上.(2)由(1)知切线l 的方程:2()2m y m x m -=-,化简得:22m y mx =-, 令0x =,得20,2m N ⎛⎫- ⎪⎝⎭,又10,2F ⎛⎫⎪⎝⎭,2,2m P m ⎛⎫ ⎪⎝⎭, 联立方程221m y mx y x m ⎧=-⎪⎪⎨⎪=-⎪⎩,得()()3222,2121m m D m m ⎛⎫- ⎪ ⎪++⎝⎭, 而()211||124PFNSFN m m m ==+,()()()2232221||22181PDMm m mS PM m m m +=-=++, 所以222122PFN PDM S m S m ⎛⎫+= ⎪+⎝⎭,令222t m =+>,得1102t <<, 则22111221,22PFN PDM S t S t t -⎛⎫⎛⎫⎛⎫==-∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以PFN 与PDM △面积比的取值范围为1,22⎛⎫ ⎪⎝⎭.1.(2021·江苏常州市·高三一模)已知O 为坐标系原点,椭圆2214x C y +=:的右焦点为点F ,右准线为直线n .(1)过点(4,0)的直线交椭圆C 于,D E 两个不同点,且以线段DE 为直径的圆经过原点O ,求该直线的方程;强化练习(2)已知直线l 上有且只有一个点到F 的距离与到直线n的距离之比为2.直线l 与直线n 交于点N ,过F 作x 轴的垂线,交直线l 于点M .求证:||||FM FN 为定值.【答案】(1)4)y x =-;(2)证明见解析. 【解析】(1)设过点(4,0)的直线为(4)y k x =-交于椭圆()()1122,,D x y E x y联立2214(4)x y y k x ⎧+=⎪⎨⎪=-⎩消去y 得()222241326440k x k x k +-+-=()221222121212221223212414164164441k x x k k y y k x x x x k k x x k ⎧+=⎪⎪+⎡⎤∴=-++=⎨⎣⎦+-⎪=⎪+⎩又因为以线段DE 为直径的圆经过原点,则212122764·0,4119k OD OE x x y y k k -=+==∴=±+则所求直线方程4)y x =- (2)已知椭圆2214x y +=n的方程为x =, 因为直线l 上只有一点到F 的距离与到直线n的距离之比为2, 所以直线l 与椭圆相切,设直线l 的方程为y kx m =+,联立2214x y y kx m ⎧+=⎪⎨⎪=+⎩消去y 得到:()222418440k x kmx m +++-=()()2222226444144041k m k m m k =-+-=∴=+①联立x x FM m y kx m y kx m⎧⎧==⎪⎪∴=+∴⎨⎨=+⎪⎪=+⎩⎩点N坐标为m ⎫+⎪⎭得到||FN =2222||||33FM FN k m =++由①22||3||||4||2FM FM FN FN ⇒=⇒= 2(2021·山西临汾市·高三一模(理))已知椭圆()22122:0x y C a b a b +=>>与双曲线222:14-=x C y 有两个相同的顶点,且2C 的焦点到其渐近线的距离恰好为1C 的短半轴的长度. (1)求椭圆1C 的标准方程;(2)过点()()()(),0,00,T t t a a ∈-⋃作不垂直于坐标轴的直线l 与1C 交于A ,B 两点,在x 轴上是否存在点M ,使得MT 平分AMB ∠?若存在,求点M 的坐标;若不存在,请说明理由.【答案】(1)2214x y +=;(2)存在点4,0M t ⎛⎫ ⎪⎝⎭,使得MT 平分AMB ∠. 【解析】(1)由题意可得2a =,双曲线2C的焦点为(),渐近线方程为:12y x =±,则焦点到渐近线的距离为d b ==,所以1b =,则椭圆1C 的标准方程为2214x y +=;(2)存在点M 使得MT 平分AMB ∠,由题知,直线l 的斜率存在且不为0,又直线过点(),0T t , 则设直线l 的方程为()y k x t =-,()11,A x y ,()22,B x y ,(),0M m , 联立方程()2214y k x t x y ⎧=-⎪⎨+=⎪⎩,消去y 整理可得:()22222148440k xk tx k t +--+=,所以2122814k t x x k +=+,221224414k t x x k-=+, 因为11AM y k x m =-,22BM y k x m=-,0AM BM k k +=,所以()()()()()()1221120k x t x m k x t x m x m x m --+--=--, 即()()()()12210k x t x m k x t x m --+--=,因为0k ≠,所以()()()()()12221x t x m x m x t x m ---+--()()2100x t x m =+--=,即()()1212220x x t m x x tm -+++=,则()222224482201414k t k tt m mt k k-⋅-+⨯+=++, 化简可得4mt =,因为0t ≠,所以4m t=, 综上,存在点4,0M t ⎛⎫⎪⎝⎭,使得MT 平分AMB ∠. 3.(2021·漠河市高级中学高三月考(理))已知椭圆()2222:10x y C a b a b+=>>的一个顶点恰好是抛物线2:4D x y =的焦点,其离心率与双曲线22162x y -=的离心率互为倒数.(1)求椭圆C 的标准方程;(2)若过椭圆的右焦点F 作与坐标轴不垂直的直线l 交椭圆C 于,A B 两点,设点A 关于x 轴的对称点为P ,当直线l 绕着点F 转动时,试探究:是否存在定点Q ,使得,,B P Q 三点共线?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)2214x y +=;(2)存在,定点为3Q ⎛⎫ ⎪ ⎪⎝⎭. 【解析】(1)由题意,抛物线2:4D x y =,可得焦点为()0,1,所以1b =,又由双曲线22162x y -=的离心率为3e =,可得椭圆C的离心率2c a =,可得10b c a a ⎧==⎪⎪=⎨⎪>⎪⎩,解得21a b =⎧⎨=⎩,即椭圆C 的标准方程为2214x y +=.(2)由直线l 不与坐标轴垂直,可设直线l的方程为x ty =+,其中0t ≠, 设点()11,A x y 、()22,B x y ,则点()11,P x y -,联立直线l 与椭圆C的方程2244x ty x y ⎧=⎪⎨+=⎪⎩,整理得()22410t y ++-=, 由0∆>恒成立,且12y y +=12214y y t =-+, 由椭圆的对称性知,若存在定点Q ,则点Q 必在x 轴上, 故假设存在定点(),0Qq ,使得P 、B 、Q 三点共线,则PB PQ k k =,即211211y y yx x q x +=--,可得12211212x y x y q y y +====+.故存在定点Q ⎫⎪⎪⎝⎭,使得P 、B 、Q 三点共线.4.(2021·山东烟台市·高三一模)已知12,F F 分别是椭圆()2222:10x y C a b a b+=>>的左、右焦点, A为椭圆的上顶点,12AF F △是面积为4的直角三角形. (1)求椭圆C 的方程; (2)设圆228:3O x y +=上任意一点P 处的切线l 交椭圆C 于点,M N ,问:PM PN ⋅是否为定值?若是,求出此定值;若不是,说明理由.【答案】(1)22184x y +=;(2)是定值,定值为83-. 【解析】(1)由12AF F △为直角三角形,故b c =, 又121242AF F Sc b =⨯⨯=, 可得4,bc = 解得2,b c == 所以28a =,所以椭圆C 的方程为22184x y +=;(2)当切线l的斜率不存在时,其方程为x =将x =±22184x y +=,得y =,不妨设M ⎝⎭,N ⎝⎭,又P ⎫⎪⎪⎝⎭所以83PM PN ⋅=-同理当x =时,也有83PM PN ⋅=-.当切线l 的斜率存在时,设方程为()()1122,,,,y kx m M x y N x y =+,因为l 与圆22:184x y O +=相切,3=即22388m k =+,将y kx m =+代入22184x y+=,得()222214280k x kmx m +++-=,所以2121222428,,2121km m x x x x k k --+==++ 又()()PM PN PO OM PO ON ⋅=+⋅+2PO OP ON OP OM ON OM =-⋅-⋅+⋅, 222PO PO PO ON OM =--+⋅ 2ON OM PO =⋅-又()()12121212OM ON x x y y x x kx m kx m ⋅=+=+++()()2212121k x x km x x m =++++()()222222212842121k m k m m k k +--=++++, 22238821m k k --=+ 将22388m k =+代入上式,得0OM ON ⋅=, 综上,83PM PN ⋅=-. 6.(2021·四川遂宁市·高三二模(理))如图,已知椭圆C :()22211x y a a+=>的左焦点为F ,直线()0y kx k =>与椭圆C 交于A ,B 两点,且0FA FB ⋅=时,3k =.(1)求a 的值;(2)设线段AF ,BF 的延长线分别交椭圆C 于D ,E 两点,当k 变化时,直线DE 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.【答案】(1(2)过定点,定点为⎛⎫⎪⎝⎭. 【解析】(1)设()00,A x y ,则()00,B x y --,由题意得焦点为()F所以,()()2220000001FA FB x y x y x y a ⋅=⋅--=--+-.当0FA FB ⋅=时,有222001x y a +=-.联立222,1,y kx x y a =⎧⎪⎨+=⎪⎩得220221a x k a =+,2220221k a y k a =+,从而22222222111a k a a k a k a +=-++.将k =222413a a a =-+,即42230a a --=,所以23a =或21a =-(舍),故a =(2)由(1)知,()F ,椭圆C :2213x y +=.设AD:00x x y y +=C :2233x y +=, 消去x并整理得(2002200310x x y y y y ⎡⎤⎢⎥+--=⎢⎥⎢⎥⎣⎦,所以2222000000(32)0y x y x y y y +++--=, 而220033x y +=,所以()22000050y x y y y +--=,由韦达定理得20D y y =,所以D y =同理BE:00x x y y -+=-,即00x x y =E y =所以002258E Dyy yx+==-,210258E Dyy yx-=-=-所以002002258105258E DE Dyxy yyy yx-+==--,于是00000055E DDEE DE Dy y yk k x x x -=====⋅= -.所以直线DE:()5D Dyy y x xx-=-.令0y=,得00000055D D D Dx x xx x y y yy y y=-=-45Dxyy+=将D y=x=所以DE经过定点⎛⎫⎪⎝⎭.7.(2021·广东汕头市·高三一模)在平面直角坐标系xOy中,P为坐标原点,)M,已知平行四边形OMNP两条对角线的长度之和等于4.(1)求动点P的轨迹方程;(2过)M作互相垂直的两条直线1l、2l,1l与动点P的轨迹交于A、B,2l与动点P的轨迹交于点C、D,AB、CD的中点分别为E、F;①证明:直线EF恒过定点,并求出定点坐标.②求四边形ACBD 面积的最小值.【答案】(1)()22104x y y +=≠;(2)①证明见解析,定点坐标为⎫⎪⎪⎝⎭;②3225. 【解析】(1)设点(),P x y ,依题意4MP ON OP OM OP OM +=-++=,4=>,所以动点P 的轨迹为椭圆(左、右顶点除外),则24a =,c =1b ∴==,∴动点P 的轨迹方程是()22104x y y +=≠; (2)①若1l 与x 轴重合,则直线1l 与动点P 的轨迹没有交点,不合乎题意; 若2l 与x 轴重合,则直线2l 与动点P 的轨迹没有交点,不合乎题意; 设直线1l 的方程为30xmy m,则直线2l 的方程为1x y m=-直线1l 、2l 均过椭圆的焦点(椭圆内一点),1l 、2l 与椭圆必有交点.设()11,A x y 、()22,Bx y ,由()222241044x my m y x y ⎧=+⎪⇒++-=⎨+=⎪⎩, 由韦达定理可得12yy +=,则()1212x x m y y +=++=, 所以点E 的坐标为⎝⎭,同理可得点F⎝⎭,直线EF的斜率为()()25141EFm k m m ==≠±-, 直线EF的方程是()22254441m y x m m m ⎛⎫+=- ⎪ ⎪++-⎝⎭, 即())()()222222155415441m m m y x x m m m ⎡⎤-⎛⎢⎥=-= -+-⎢⎥⎝⎭⎣⎦,当1m =±时,直线EF的方程为5x =,直线EF 过定点⎫⎪⎪⎝⎭.综上,直线EF过定点5⎛⎫⎪⎪⎝⎭;②由①可得1224y y m +=-+,12214y y m =-+,()2122414m AB y y m +∴=-==+,同理可得()2222141411414m m CD m m⎛⎫+ ⎪+⎝⎭==++, 所以,四边形ACBD 的面积为()()()()22222222281813225441441221m m S AB CD m m m m ++≥=++⎛⎫+++ ⎪⋅⎭==⎝,当且仅当21m =取等号.因此,四边形ACBD 的面积的最小值为3225. 8.(2021·河南平顶山市·高三二模(理))已知椭圆()2222:10x y C a b a b +=>>的离心率2e =,过右焦点(),0F c 的直线y x c =-与椭圆交于A ,B 两点,A在第一象限,且AF =(1)求椭圆C 的方程;(2)在x 轴上是否存在点M ,满足对于过点F 的任一直线l 与椭圆C 的两个交点P ,Q ,都有MP MQ ⋅为定值?若存在,求出点M 的坐标;若不存在,说明理由.【答案】(1)221189x y +=;(2)存在点15,04M ⎛⎫ ⎪⎝⎭,满足MP MQ ⋅为定值..【解析】(1)由2e =,及222a b c =+,得a ==,设椭圆方程为222212x y b b +=,联立方程组22222x y b y x b ⎧+=⎨=-⎩得2340x bx -=.则43A bx =,所以3A F bAF x =-==3b =.所以椭圆C 的方程为221189x y +=.(2)当直线l 不与x 轴重合时,设:3l x ny =+,联立方程组222183x y x ny ⎧+=⎨=+⎩得()222690n y ny ++-=. 设()11,P x y ,()22,Q x y ,(),0M t ,则有12262n y y n +=-+,12292y y n ⋅=-+. 于是()()()()1212121233MP MQ x t x t y y ny t ny t y y ⋅=--+=+-+-+()()()()()()()()2222221212211339163322n y y n t y y t n n t t n n ⎡⎤=++-++-=-+--+-+⎣⎦+()()()22222222627323918212922t t n t t n t t n n ⎡⎤-+-+---+-+⎣⎦==++, 若MP MQ ⋅为定值,则有()222129218t t t -+=-,得1245t =,154t =. 此时218MP MQ t ⋅=-:当直线l 与x轴重合时,()P -,()Q , 也有()()()()21218MP MQ x t x t tt t ⋅=--=-=-.综上,存在点15,04M ⎛⎫ ⎪⎝⎭,满足MP MQ ⋅为定值. 9.(2021·北京平谷区·高三一模)已知椭圆2222:1(0,0)x y C a b a b+=>>的离心率为12,并且经过(0P 点.(1)求椭圆C 的方程;(2)设过点P 的直线与x 轴交于N 点,与椭圆的另一个交点为B ,点B 关于x 轴的对称点为B ',直线PB '交x 轴于点M ,求证:OM ON ⋅为定值.【答案】(1)22143x y+=;(2)证明见解析.【解析】(1)由已知23112bca⎧=⎪⎪⎨⎪=⎪⎩解得2ab=⎧⎪⎨=⎪⎩C:22143x y+=.(2)证明:由已知斜率存在以下给出证明:由题意,设直线PB的方程为0)y kx k=+≠,(P,()11,B x y,则()11,B x y'-,由223412,x yy kx⎧+=⎪⎨=⎪⎩得()223480k x++=,所以(280∆=>,12834+=-+xk,12834=-+xk,12834=-+yk,所以B⎛⎝,即B⎛⎝⎭,直线PB'的方程为34y xk⎛-=⎝⎭,令0y=得(()224334kxk--=+所以(()224334kMk⎛⎫--⎪⎪+⎝⎭,,令0y=由y kx=+xk=-所以0N⎛⎫⎪⎪⎝⎭,所以OM ON⋅=4.10.(2021·河南新乡市·高三二模(理))已知椭圆2222:1(0)x yC a ba b+=>>的左、右顶点分别为A,B,E 为C 上不同于A ,B 的动点,直线AE ,BE 的斜率AE k ,BE k 满足12AE BE k k ⋅=-,AE BE ⋅的最小值为-4.(1)求C 的方程;(2)O 为坐标原点,过O 的两条直线1l ,2l 满足1//l AE ,2//l BE ,且1l ,2l 分别交C 于M ,N 和P ,Q .试判断四边形MPNQ 的面积是否为定值?若是,求出该定值;若不是,说明理由.【答案】(1)22184x y +=;(2)是定值,【解析】(1)设()00,E x y ,则2200221x y a b+=,故(,0),(,0)A a B a -,∴2202220002222200001AE BEx b a y y y b k k x a x a x a x a a⎛⎫- ⎪⎝⎭⋅=⋅===-+---, 又()()()()22200000021x AE BE x a x a y x a x a b a ⎛⎫⋅=+-+=+-+- ⎪⎝⎭222202c x c c a=-≥-,由题意知:222124b ac ⎧-=-⎪⎨⎪-=-⎩,解得2284a b ⎧=⎨=⎩, ∴椭圆C 的方程为22184x y +=.(2)根据椭圆的对称性,可知OM ON =,OP OQ =, ∴四边形MPNQ 为平行四边形,所以4MPNQ OMP S S=.设1l ,2l 的斜率分别为1k ,2k ,()11,M x y ,()22,P x y ,则111y k x =①,222y k x =②. 又1//l AE ,2//l BE ,即1212AE BE k k k k ⋅=⋅=-. 当MP 的斜率不存在时,12y y =-,12x x =.由①⨯②,得2221121112y k k x x -==-,结合2211184x y +=,解得12x =,1y =∴1114422MPNQ OMPS Sy x ==⨯⨯⨯=当MP 的斜率存在时,设直线MP 的方程为y kx m =+,联立方程组得22184y kx m x y =+⎧⎪⎨+=⎪⎩,得()222214280k x kmx m +++-=,则()()()22222(4)421288840km k m k m ∆=-+-=+->,即122421km x x k +=-+,21222821m x x k -=+.∵()22121212121212121212k x x km x x m y y kx m kx m k k x x x x x x +++++⋅=⋅=⋅==-, ∴22222222841212128221m km k km m k k m k -⎛⎫+-+ ⎪++⎝⎭=--+,整理得:2242m k =+. 由直线MP 过(0,)m ,12144||2||2MPNQ OMPS Sm x x m ==⨯⨯-=2||m == 将2242m k =+代入,整理得MPNQ S =综上,四边形MPNQ 的面积为定值,且为。
高中数学专题讲义-离散型随机变量的期望与方差1
1. 离散型随机变量及其分布列⑴离散型随机变量 如果在试验中,试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个随机变量.随机变量常用大写字母,,X Y L 表示.如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量. ⑵离散型随机变量的分布列将离散型随机变量X 所有可能的取值i x 与该取值对应的概率i p (1,2,,)i n =L 列表表示:X 1x 2x … i x … n x P1p2p…i p…n pX 的分布列.2.几类典型的随机分布⑴两点分布如果随机变量X 的分布列为X 1 0 P p q其中01p <<,1q p =-X 服从参数为p 的二点分布.二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X X 的分布列满足二点分布.X 1P 0.8 0.2两点分布又称01-布又称为伯努利分布. ⑵超几何分布 一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件()n N ≤,这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为C C ()C m n mM N Mn NP X m --==(0m l ≤≤,l 为n 和M 中较小的一个).我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为N ,M ,n 的超几何分布.在超几何分布中,只要知道N ,M 和n ,就可以根据公式求出X 取不同值时的概率()P X m =,从而列出X 的分布列.知识内容数学期望⑶二项分布1.独立重复试验如果每次试验,只考虑有两个可能的结果A 及A ,并且事件A 发生的概率相同.在相同的条件下,重复地做n 次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验.n 次独立重复试验中,事件A 恰好发生k 次的概率为()C (1)kk n k n n P k p p -=-(0,1,2,,)k n =L . 2.二项分布若将事件A 发生的次数设为X ,事件A 不发生的概率为1q p =-,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率是()C k k n kn P X k p q -==,其中0,1,2,,k n =L .于是得到由式001110()C CC C n n n k k n k nn n n n n q p p q p qp q p q --+=++++L L 各对应项的值,所以称这样的散型随机变量X 服从参数为n ,p 的二项分布, 记作~(,)X B n p .二项分布的均值与方差:若离散型随机变量X 服从参数为n 和p 的二项分布,则()E X np =,()D x npq =(1)q p =-.⑷正态分布1. 概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,直方图上面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X ,则这条曲线称为X 的概率密度曲线.曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a b ,之间的概率就是对应的曲边梯形的面积. 2.正态分布⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从正态分布. 服从正态分布的随机变量叫做正态随机变量,简称正态变量. 正态变量概率密度曲线的函数表达式为22()2()x f x μσ--=,x ∈R ,其中μ,σ是参数,且0σ>,μ-∞<<+∞.式中的参数μ和σ分别为正态变量的数学期望和标准差.期望为μ、标准差为σ的正态分布通常记作2(,)N μσ. 正态变量的概率密度函数的图象叫做正态曲线.⑵标准正态分布:我们把数学期望为0,标准差为1的正态分布叫做标准正态分布. ⑶重要结论:①正态变量在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内,取值的概率分别是68.3%,95.4%,99.7%.②正态变量在()-∞+∞,内的取值的概率为1,在区间(33)μσμσ-+,之外的取值的概率是0.3%,故正态变量的取值几乎都在距x μ=三倍标准差之内,这就是正态分布的3σ原则.⑷若2~()N ξμσ,,()f x 为其概率密度函数,则称()()()xF x P x f t dt ξ-∞==⎰≤为概率分布函数,特别的,2~(01)N ξμσ-,,称22()t x x dt φ-=⎰为标准正态分布函数. ()()x P x μξφσ-<=.标准正态分布的值可以通过标准正态分布表查得.分布函数新课标不作要求,适当了解以加深对密度曲线的理解即可.3.离散型随机变量的期望与方差1.离散型随机变量的数学期望定义:一般地,设一个离散型随机变量X 所有可能的取的值是1x ,2x ,…,n x ,这些值对应的概率是1p ,2p ,…,n p ,则1122()n n E x x p x p x p =+++L ,叫做这个离散型随机变量X 的均值或数学期望(简称期望).离散型随机变量的数学期望刻画了这个离散型随机变量的平均取值水平. 2.离散型随机变量的方差一般地,设一个离散型随机变量X 所有可能取的值是1x ,2x ,…,n x ,这些值对应的概率是1p ,2p ,…,n p ,则2221122()(())(())(())n n D X x E x p x E x p x E x p =-+-++-L 叫做这个离散型随机变量X 的方差.离散型随机变量的方差反映了离散随机变量的取值相对于期望的平均波动的大小(离散程度).()D X 叫做离散型随机变量X 的标准差,它也是一个衡量离散型随机变量波动大小的量.3.X 为随机变量,a b ,为常数,则2()()()()E aX b aE X b D aX b a D X +=++=,; 4. 典型分布的期望与方差:⑴二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在n 次二点分布试验中,离散型随机变量X 的期望取值为np .⑵二项分布:若离散型随机变量X 服从参数为n 和p 的二项分布,则()E X np =,()D x npq =(1)q p =-.⑶超几何分布:若离散型随机变量X 服从参数为N M n ,,的超几何分布,则()nME X N=,2()()()(1)n N n N M M D X N N --=-.4.事件的独立性如果事件A 是否发生对事件B 发生的概率没有影响,即(|)()P B A P B =,这时,我们称两个事件A ,B 相互独立,并把这两个事件叫做相互独立事件.如果事件1A ,2A ,…,n A 相互独立,那么这n 个事件都发生的概率,等于每个事件发生的概率的积,即1212()()()()n n P A A A P A P A P A =⨯⨯⨯I I L I L ,并且上式中任意多个事件i A 换成其对立事件后等式仍成立.5.条件概率对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号“(|)P B A ”来表示.把由事件A 与B 的交(或积),记做D A B =I (或D AB =).【例1】 投掷1枚骰子的点数为ξ,则ξ的数学期望为( )A .3B .3.5C .4D .4.5【例2】 同时抛掷4枚均匀硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为ξ,则ξ的数学期望是( )A .20B .25C .30D .40【例3】 从123456,,,,,这6个数中任取两个,则两数之积的数学期望为 .【例4】 一射手对靶射击,直到第一次命中为止,每次命中率为0.6,现共有4颗子弹,命中后尚余子弹数目ξ的期望为( )A .2.44B .3.376C .2.376D .2.4【例5】 一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c (a 、b 、()01c ∈,),已知他投篮一次得分的数学期望为2(不计其它得分情况),则ab 的最大值为( )A .148B .124C .112D .16【例6】 一家保险公司在投保的50万元的人寿保险的保单中,估计每一千保单每年有15个理赔,若每一保单每年的营运成本及利润的期望值为200元,试求每一保单的保费.【例7】 甲乙两人独立解出某一道数学题的概率依次为1212()P P P P >,,已知该题被甲或乙解出的概率为0.8,甲乙两人同时解出该题的概率为0.3,求:⑴12P P ,; ⑵解出该题的人数X 的分布列及EX .典例分析【例8】甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设每人面试合格的概率都是12,且面试是否合格互不影响.求签约人数ξ的数学期望.【例9】某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:⑴⑵已知每吨该商品的销售利润为2千元,ξ表示该种商品两周销售利润的和(单位:千元).若以上述频率作为概率,且各周的销售量相互独立,求ξ的分布列和数学期望.【例10】某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A每次考试成绩合格的概率均为23,科目B每次考试成绩合格的概率均为12.假设各次考试成绩合格与否均互不影响.在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求ξ的数学期望Eξ.【例11】某同学如图所示的圆形靶投掷飞镖,飞镖落在靶外(环数记为0)的概率为0.1,飞镖落在靶内的各个点是椭机的.已知圆形靶中三个圆为同心圆,半径分别为30cm、20cm、10cm,飞镖落在不同区域的环数如图中标示.设这位同学投掷一次一次得到的环数这个随机变量X,求X的分布列及数学期望.8910【例12】某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.⑴求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A;⑵求η的分布列及期望Eη.【例13】学校文娱队的每位队员唱歌、跳舞至少会一项,已知会唱歌的有2人,会跳舞的有5人,现从中选2人.设ξ为选出的人中既会唱歌又会跳舞的人数,且7Pξ>=.(0)10⑴求文娱队的人数;⑵写出ξ的概率分布列并计算期望.【例14】一接待中心有A、B、C、D四部热线电话.已知某一时刻电话A、B占线的概率为0.5,电话C、D占线的概率为0.4,各部电话是否占线相互之间没有影响.假设该时刻有X部电话占线,试求随机变量X的概率分布和它的期望.【例15】某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是0.40.50.6,,,且客人是否游览哪个景点互不影响,设X表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值.求X的分布及数学期望.【例16】某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三轮的问题的概率分别为45、35、25,且各轮问题能否正确回答互不影响.⑴求该选手被淘汰的概率;⑵该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望.(注:本小题结果可用分数表示)【例17】在某次测试中,甲、乙、丙三人能达标的概率分别为0.4,0.5,0.8,在测试过程中,甲、乙、丙能否达标彼此间不受影响.⑴求甲、乙、丙三人均达标的概率;⑵求甲、乙、丙三人中至少一人达标的概率;⑶设X表示测试结束后达标人数与没达标人数之差的绝对值,求X的概率分布及数学期望EX.【例18】在1,2,3,…,9这9个自然数中,任取3个数.⑴求这3个数中恰有1个是偶数的概率;⑵设ξ为这3个数中两数相邻的组数(例如:若取出的数为1,2,3,则有两组相邻的数1,2和2,3,此时ξ的值是2).求随机变量ξ的分布列及其数学期望Eξ.【例19】甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲面试合格的概率为12,乙、丙面试合格的概率都是13,且面试是否合格互不影响.求:⑴至少有1人面试合格的概率;⑵签约人数X的分布列和数学期望.【例20】某公司“咨询热线”电话共有8路外线,经长期统计发现,在8点到10点这段时间内,外线电话同时打入情况如下表所示:①求至少一种电话不能一次接通的概率;②在一周五个工作日中,如果至少有三个工作日的这段时间(8点至10点)内至少一路电话不能一次接通,那么公司的形象将受到损害,现用该事件的概率表示公司形象的“损害度”,求上述情况下公司形象的“损害度”.⑵求一周五个工作日的这段时间(8点至10点)内,电话同时打入数ξ的期望.【例21】某先生居住在城镇的A处,准备开车到单位B处上班,若该地各路段发生堵车事件都是独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率,如图.(例如:A C D→→算作两个路段:路段AC发生堵车事件的概率为110,路段CD发生堵车事件的概率为115).记路线A C F B→→→中遇到堵车次数为随机变量X,求X的数学期望()E X.11510【例22】口袋里装有大小相同的4个红球和8个白球,甲、乙两人依规则从袋中有放回摸球,每次摸出一个球,规则如下:若一方摸出一个红球,则此人继续下一次摸球;若一方摸出一个白球,则由对方接替下一次摸球,且每次摸球彼此相互独立,并由甲进行第一次摸球;求在前三次摸球中,甲摸得红球的次数ξ的分布列及数学期望.【例23】 某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球可获得奖金10元;摸出两个红球可获得奖金50元.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次,令X 表示甲、乙两人摸球后获得的奖金总额.求:⑴X 的概率分布;⑵X 的期望.【例24】 如图所示,甲、乙两只小蚂蚁分别位于一个单位正方体的A 点和1C 点处,每只小蚂蚁都可以从每一个顶点处等可能地沿各条棱向每个方向移动,但不能按原路线返回.如:甲在A 时可沿AB ,AD ,1AA 三个方向移动,概率都是13,到达B 点时,可沿BC ,1BB 两个方向移动,概率都是12.已知小蚂蚁每秒钟移动的距离为1个单位.⑴如果甲、乙两只小蚂蚁都移动1秒,则它们所走的路线是异面直线的概率是多少?⑵若乙蚂蚁不动,甲蚂蚁移动3秒后,甲、乙两只小蚂蚁间的距离的期望值是多少?D1C1(乙)B1A(甲)B CDA1【例25】从集合{}12345,,,,的所有非空子集....中,等可能地取出一个.⑴记性质:γ集合中的所有元素之和为10,求所取出的非空子集满足性质r的概率;⑵记所取出的非空子集的元素个数为ξ,求ξ的分布列和数学期望Eξ.【例26】某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到过疫区.B 肯定是受A感染的.对于C,因为难以断定他是受A还是受B感染的,于是假定他受A和受B感染的概率都是12.同样也假定D受A、B和C感染的概率都是13.在这种假定之下,B、C、D中直接..受A感染的人数X就是一个随机变量.写出X的分布列(不要求写出计算过程),并求X的均值(即数学期望).【例27】⑴用红、黄、蓝、白四种不同颜色的鲜花布置如图一所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域用不同颜色鲜花,问共有多少种不同的摆放方案?⑵用红、黄、蓝、白、橙五种不同颜色的鲜花布置如图二所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域使用不同颜色鲜花.求恰有两个区域用红色鲜花的概率.⑶条件同⑵,记花圃中红色鲜花区域的块数为X,求它的分布列及其数学期望EX.图二图一【例28】有甲、乙两个箱子,甲箱中有6张卡片,其中有2张写有数字0,2张写有数字1,2张写有数字2;乙箱中有6张卡片,其中3张写有数字0,2张写有数字1,1张写有数字2.⑴如果从甲箱中取出1张卡片,乙箱中取出2张卡片,那么取得的3张卡片都写有数字0的概率是多少?⑵从甲、乙两个箱子中各取一张卡片,设取出的2张卡片数字之积为X,求X的分布列和期望.【例29】 A B ,两个代表队进行乒乓球对抗赛,每队三名队员,A 队队员是123A A A ,,,B 队队员是123B B B ,,,按以往多次比赛的统计,对阵队员之间胜负概率如下:现按表中对阵方式出场,每场胜队得1分,负队得0分.设A 队、B 队最后总分分别为ξη,.求ξη,的期望.【例30】 连续抛掷同一颗均匀的骰子,令第i 次得到的点数为i a ,若存在正整数k ,使126k a a a ++=L ,则称k 为你的幸运数字.⑴求你的幸运数字为4的概率;⑵若1k =,则你的得分为6分;若2k =,则你的得分为4分;若3k =,则你的得分为2分;若抛掷三次还没找到你的幸运数字则记0分.求得分ξ的分布列和数学期望.【例31】 在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A 处每投进一球得3分,在B 处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A 处的命中率1q 为0.25,在B 处的命中率为2q ,该同学选择先在A 处投一球,以后都在B 处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为⑴ 2⑵ 求随机变量ξ的数学期望E ξ;⑶ 试比较该同学选择都在B 处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.【例32】 在奥运会射箭决赛中,参赛号码为1~4号的四名射箭运动员参加射箭比赛.⑴通过抽签将他们安排到1~4号靶位,试求恰有两名运动员所抽靶位号与其参赛号码相同的概率;⑵记1号、2号射箭运动员射箭的环数为ξ(ξ所有取值为01210L ,,,,)的概率分别为1P 、2P .根据教练员提供的资料,其概率分布如下表:②判断1号,2号射箭运动员谁射箭的水平高?并说明理由.【例33】某人有10万元,准备用于投资房地产或购买股票,如果根据盈利表进行决策,那么,合理的投资方案应该是哪种?【例34】甲、乙两名工人加工同一种零件,分别检测5个工件,结果分别如下:试比较他们的加工水平.【例35】一软件开发商开发一种新的软件,投资50万元,开发成功的概率为0.9,若开发不成功,则只能收回10万元的资金,若开发成功,投放市场前,召开一次新闻发布会,召开一次新闻发布会不论是否成功都需要花费10万元,召开新闻发布会成功的概率为0.8,若发布成功则可以销售100万元,否则将起到负面作用只能销售60万元,而不召开新闻发布会则可销售75万元.⑴求软件成功开发且成功在发布会上发布的概率.⑵如果开发成功就召开新闻发布会的话,求开发商的盈利期望.⑶如果不召开新闻发布会,求开发商盈利的期望值,并由此决定是否应该召开新闻发布会.【例36】某突发事件,在不采取任何预防措施的情况下发生的概率为0.3,一旦发生,将造成400万元的损失.现有甲、乙两种相互独立的预防措施可供采用.单独采用甲、乙预防措施所需的费用分别为45万元和30万元,采用相应预防措施后此突发事件不发生的概率为0.9和0.85.若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防方案使总费用最少.(总费用=采取预防措施的费用+发生突发事件损失的期望值.)【例37】 最近,李师傅一家三口就如何将手中的10万块钱投资理财,提出了三种方案:第一种方案:将10万块钱全部用来买股票.据分析预测:投资股市一年可能获利40%,也可能亏损20%(只有这两种可能),且获利的概率为12; 第二种方案:将10万块钱全部用来买基金.据分析预测:投资基金一年可能获利20%,也可能损失10%,也可能不赔不赚,且三种情况发生的概率分别为311555,,; 第三种方案:将10万块钱全部存入银行一年,现在存款利率为4%,存款利息税率为5%.针对以上三种投资方案,请你为李师傅家选择一种合理的理财方法,并说明理由.【例38】 某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为上一年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计当年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为上一年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案,第二年与第一年相互独立.令(12)i i ξ=,表示方案i实施两年后柑桔产量达到灾前产量的倍数.⑴写出12ξξ,的分布列;⑵实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?⑶不管哪种方案,如果实施两年后柑桔产量达不到灾前产量,预计可带来效益10万元;两年后柑桔产量恰好达到灾前产量,预计可带来效益15万元;柑桔产量超过灾前产量,预计可带来效益20万元;问实施哪种方案所带来的平均效益更大?【例39】某企业准备投产一批特殊型号的产品,已知该种产品的成本C与产量q的函数关系式为3232010(0)3qC q q q=-++>,该种产品的市场前景无法确定,有三种可能出现的情况,各种情形发生的概率及产品价格p与产量q的函数关系式如下表所示:123k q ,而市场前景无法确定的利润. ⑴分别求利润123L L L ,,与产量q 的函数关系式;⑵当产量q 确定时,求期望k E ξ;⑶试问产量q 取何值时,市场无法确定的利润取得最大值.【例40】 某电器商由多年的经验发现本店出售的电冰箱的台数ξ是一个随机变量,它的分布列1()(1212)12P k ξξ===L ,,,,设每售出一台电冰箱,该台冰箱可获利300元,若售不出则囤积在仓库,每台需支付保管费100元/月,问:该电器商月初购进多少台电冰箱才能使自己的月平均收入最大?【例41】 某鲜花店每天以每束2.5元购入新鲜玫瑰花并以每束5元的价格销售,店主根据以往的销售统计得到每天能以此价格售出的玫瑰花数ξ的分布列如表所示,若某天所购进的玫瑰花未售完,则当天未售出的玫瑰花将以每束1.5元的价格降价处理完毕.⑴若某天店主购入玫瑰花40束,试求该天其从玫瑰花销售中所获利润的期望; ⑵店主每天玫瑰花的进货量x (3050x ≤≤,单位:束)为多少时,其有望从玫瑰花销售中获取最大利润?。
初中数学专题讲义-相交线、平行线
初中数学专题讲义-相交线、平行线一、课标下复习指南1.直线、射线和线段(1)表示直线AB(BA)或直线l,如图9-1.图9-1射线OA或射线l,如图9-2.图9-2线段AB(BA)或线段a,如图9-3.图9-3(2)性质经过两点有一条直线,并且只有一条直线,简称两点确定一条直线.在所有连接两个点的线中,线段最短,简称两点之间,线段最短.(3)线段的中点把一条线段分成两条相等线段的点叫做线段的中点.2.角(1)角的概念有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.角也可以看做由一条射线绕着它的端点旋转而形成的图形.(2)角的度量以度、分、秒为单位的角的度量制,叫做角度制.把周角分成360等份,每一份叫1°的角.1°=60′,1′=60″.1周角=360°,1平角=180°,1直角=90°.(3)角的计算①度、分、秒的换算.②计算角度的和、差、积、商.(4)角的比较可以用量角器量出角的度数,然后比较它们的大小;也可以把它们叠合在一起比较大小.如图9-4(a)中∠AOB<∠A′O′B′,图9-4(b)中∠AOB=∠A′O′B′,图9-4(c)中,∠AOB>∠A′O′B′.图9-4(a) 图9-4(b) 图9-4(c)(5)角的分类:锐角:大于0°而小于90°的角.直角:等于90°的角.钝角:大于90°而小于180°的角.(6)角的平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.(7)有关的角及其性质余角:如果两个角的和等于90°,就说这两个角互为余角,即其中一个角是另一个角的余角.补角:如果两个角的和等于180°,就说这两个角互为补角,即其中一个角是另一个角的补角.同角或等角的余角相等.同角或等角的补角相等.邻补角:有一条公共边,并且另一边互为反向延长线的两个角互为邻补角.对顶角:若一个角的两边分别是另一个角两边的反向延长线,则这两个角互为对顶角.对顶角相等.3.垂线(1)垂直的定义若两条直线相交所成的四个角中,有一个角是直角时,则这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.垂直是相交的一种特殊情形.(2)垂线性质①过一点有且只有一条直线与已知直线垂直.②连接直线外一点与直线上各点的所有线段中,垂线段最短,简称垂线段最短.4.平行线在同一平面内,不相交的两条直线叫做平行线.经过直线外一点,有且只有一条直线与这条直线平行.(1)直线平行的条件如果两条直线都与第三条直线平行,那么这两条直线也互相平行.同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.(2)平行线的性质两直线平行,同位角相等.两直线平行,内错角相等.两直线平行,同旁内角互补.5.同一平面内两条直线的位置关系相交、平行.6.距离(1)两点的距离:连接两点的线段的长度,叫做这两点的距离.(2)点到直线的距离:从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离.(3)两条平行线的距离:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线的距离.7.基本作图(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)按指令语言画角及角的和、差;(4)作已知角的平分线;(5)作线段的垂直平分线;(6)用三角尺或量角器过一点画一条直线的垂线;(7)过直线外一点画这条直线的平行线.二、例题分析例1 解答下列问题:(1)过一个已知点可以画多少条直线?(2)同时过两个已知点可以画多少条直线?(3)过三个已知点可以画出直线吗?(4)经过平面上三点A,B,C中的每两个点可以画出多少条直线?(5)借鉴(4)的结论,猜想经过平面上四点A,B,C,D中的任意两点画直线会有什么样的结果?如果不能画,请简要说明理由;如果能画,画出图形.分析画图的依据是直线性质,(3)、(4)、(5)中没有明确平面上三点、四点是否在同一直线上,解答时要分各种可能情况解答,这种解答方法叫分类讨论.运用这种方法时,要考虑到可能出现的所有情形,不能丢掉一种.解(1)过一点可以画无数条直线.(2)过两点可以画唯一的一条直线.(3)过三个已知点不一定能画出直线,当三点不共线时,不能作出直线;当三点共线时,能画一条直线.(4)当A,B,C三点不共线时,过其中的每两个点可以画一条直线,所以共有3条直线;当A,B,C三点共线时,上面画的3条直线就重合了,因而只能画1条直线.即经过平面上三点A,B,C中的每两点可以画1条或3条直线.(5)经过平面内四个点中的任意两点画直线有三种情况:①当A,B,C,D四点在同一直线上时,只可以画出1条直线,如图9-5(a)所示.②当A、B、C、D四个点中有三个点在同一直线上时,可画出4条直线,如图9-5(b)所示.③当A,B,C,D四个点中任意三个点都不在同一直线上时,可画出6条直线,如图9-5(c)所示.图9-5说明这个例题用到分类思想,这种分类能力对于今后学习也是很有用的.分类要注意不重不漏.例2 把一段弯曲的公路改为直道,可以缩短路程,其理由是( ).A.两点之间,线段最短B.两点确定一直线C.线段有两个端点D .线段可以比较大小分析 此题是应用几何知识解释生活中现象的问题,由于这是两点之间距离的比较,符合“两点之间线段最短.”解 选A .例3 如图9-6,OC 是∠AOD 的平分线,OE 是∠BOD 的平分线.图9-6(1)如果∠AOB =130°,那么∠COE 是多少度?(2)若∠COE =65°,∠COD =20°,求∠BOE 的度数. 解 (1)∵OC 平分∠AOD ,OE 平分∠BOD ,,21AOD COD ∠=∠∴ .21BOD DOE ∠=∠ ∴∠COE =∠COD +DOE+∠=∠+∠=AOD BOD AOD (212121.21)AOB BOD ∠=∠∵∠AOB =130°,.6513021οο=⨯=∠∴COE(2)∵∠COE =65°,∠COD =20°,∴∠DOE =∠COE -∠COD =65°-20°=45°. ∵OE 平分∠BOD , ∴∠BOE =∠DOE . ∴∠BOE =45°.说明 角的平分线的性质是进行角度计算常用的重要依据,必须熟练掌握角平分线及其相关的各种几何表达式.例4 (1)已知:如图9-7(a),点C 在线段AB 上,线段AC =6,BC =4,点M ,N 分别是AC ,BC 的中点,求线段MN 的长度;图9-7(a)(2)根据(1)的计算过程和结果,设AC +BC =a ,其他条件不变,你能猜出MN 的长度吗?请用一句简洁的话表述你发现的规律.(3)当点C 在线段AB 的延长线上或点C 在线段AB 所在的直线外时,(2)中的结论是否仍然成立?画出图形并说明理由.解 (1)∵AC =6,BC =4, ∴AB =AC +BC =1 0.又∵M 是AC 的中点,N 是BC 的中点,.21,21BC CN AC MC ==∴ BC AC CN MC MN 2121+=+=∴ .521)(21==+=AB BC AC (2)根据(1)中已知AB =10,求出MN =5.由(1)的推算过程可知,AB MN 21=,故当AB =a 时,a MN 21=,从而可得到:线段上任一点把线段分成的两部分中点间的距离等于原线段长度的一半.(3)答:(2)中的结论仍然成立. 理由如下:①当点C 在AB 的延长线上时,如图9-7(b)所示,图9-7(b)⋅==-=-=221)(21a AB BC AC CN CM MN ②当点C 在AB 所在的直线外时,如图9-7(c)所示,M ,N 分别是AC ,BC 的中点,由三角形中位线定理可得.2121a AB MN ==图9-7(c)说明 本题向我们提示了从特殊事例中观察、猜测、发现一般规律的过程.总结出规律,以后遇到同类问题就容易解了.本题还启示我们,一般规律包含在特殊事例之中.这就要求同学们在解题时,不要停留在表面上,要运用运动变化的观点多思考,就会发现新问题,得到新收获.例5 填空:(1)已知∠1和∠2互余,∠2和∠3互补,若∠1=63°,则∠3=______度;若∠1=α,则∠3=______度.(2)已知∠1与∠2互为余角,∠1的补角等于∠2的余角的2倍,则∠1=______度,∠2=______度.分析 (1)由∠1和∠2互余,∠1已知,可求出∠2的度数,再由∠2和∠3互补,即求出∠3的度数.解 (1)∵∠1和∠2互余,∠1=63°, ∴∠2=90°-∠1=90°-63°=27°. ∵∠2和∠3互补,∴∠3=180°-∠2=180°-27°=153°.当∠1=α时,∠3=180°-∠2=180°-(90°-∠1)=90°+α.说明 正确理解余角和补角的概念是本章的重点之一,也是一个重要的考点,它们与角的大小有关而与两角的位置无关.分析 (2)题目所给条件可以理解为关于∠1,∠2两个未知量的两个等量关系,列方程(组)是解决这类问题的有效办法.解 (2)设∠1的度数为x ,∠2的度数为y ,则⎩⎨⎧-=-=+).90(2180,90y x y x 解得⎩⎨⎧==.30,60y x答:∠1的度数为60,∠2的度数为30.说明 有关余角和补角数量关系的这类问题,通常考虑用列方程和方程组的方法来解决.例6 如图9-8,小华参加运动会的跳远比赛,他从地面的A 处起跳,落到沙坑点B 处,怎样测量他的跳远成绩?图9-8分析 这是点到直线的距离的实际应用.解 作BC ⊥l 于点C ,则线段BC 的长即为小华的跳远成绩.例7 如图9-9所示,已知∠1=∠2,再添加什么条件可使AB ∥CD 成立?图9-9分析 解题前先回忆平行线的判定,再添条件时要用上原来题目已给条件,否则不合要求.解 可分别添加以下条件: (1)∠MBE =∠MDF ; (2)∠EBN =∠FDN ;(3)∠EBD +∠BDF =180°; (4)BE ∥DF ;(5)BE ⊥MN ,DF ⊥MN 等等. 三、课标下新题展示例8 (安徽)如图9-10,若直线l 1∥l 2,则∠α等于( ).图9-10A .150°B .140°C .130°D .120° 解 选D .例9 (长春)如图9-11,l ∥m ,矩形AB -CD 的顶点B 在直线m 上,则α=______°.图9-11解 25.四、课标考试达标题 (一)选择题1.如图9-12,O 是直线AB 上一点,OC ,OD ,OE 是3条射线,OC ⊥AB ,OD ⊥OE ,则图中互余的角有( ).图9-12A .2对B .3对C .4对D .5对 2.如图9-13所示,若OD 平分∠BOC ,则( ).图9-13A .∠COD =∠AOB -∠BOC B .)(21BOC AOB COD ∠-∠=∠ C .AOB BOC AOD ∠-∠=∠21D .)(21AOC AOB AOD ∠+∠=∠ 3.两条直线被第三条直线所截,下列条件中,不能判定这两条直线平行的是( ). A .同位角相等 B .内错角相等 C .同旁内角互补 D .同旁内角互余4.如图9-14,l 1∥l 2,若∠1=105°,∠2=140°,则∠α等于( ).图9-14A.55°B.60°C.65°D.70°(二)填空题5.用度、分、秒表示:56.625°=______.6.已知∠α=31°,若∠β的两边分别与∠α的两边平行,则∠β=______;若∠γ的两边分别与∠α的两边垂直,则∠γ=______.7.如图9-15,已知AB∥EF,BC⊥CD于C,若∠ABC=30°,∠DEF=45°,则∠CDE =______.图9-15(三)解答题8.一个角的补角的一半比这个角的余角的二倍小3°,求这个角.9.求证:两条平行线被第三条直线所截,一对同旁内角的角平分线互相垂直.10.点C,D在直线AB上,线段AC,CB,AD,DB的长满足AC∶CB=5∶4,AD∶DB=2∶1,且CD=2cm,求线段AB的长.参考答案相交线、平行线1.C . 2.D . 3.D . 4.C . 5.56°37′30″. 6.31°或149°,31°或149°. 7.105. 8.58°. 9.略.10.解:由AC ∶CB =5∶4,设AC =5k ,CB =4k ,可知点C 只能在线段AB 上或线段AB的延长线上.答图9-1(1)当点C 在线段AB 上时,D 点的位置只有两种可能性:①点D 1在线段AB 上,此时AD 1=6k ,D 1B =3k ,CD 1=k =2,则AB =9k =18; ②点D 2在线段AB 的延长线上,此时BD 2=AB =9k ,CD 2=13k =2,则132=k ,AB =9k 1318=; (2)当点C 在线段AB 的延长线上时,D 点的位置也只有两种可能性:答图9-2①点D 3在线段AB 上,此时33,32BD k AD =2313,33===k CD k ,则k AB k ==,136;136=②点D 4在线段AB 的延长线上,此时AD 4=2k ,BD 4=AB =k ,CD 4=CB -BD 4=3k =2,则⋅==32k AB。
初中数学微专题讲义专题2
【微课微课概述】数学转化思想方程(组)与不等式(组)中的应用是很多且很重要的,类似问题解决的第一步要都是要把未知数解出来或是未知数的解集解出来,再转化为不等式(组),方程(组)。
因此对于类似知识的学习是要在理解例题的基础上,建立相应的数学解题模型,再通过做相应知识的练习,从而巩固所学的知识。
每个学习者要明白如何应用转化的思想,通过分析问题,建立合理的不等式(组)或建立等式(组),这才是数学学习的核心问题。
【技巧分析】一、 从方程到不等式转化问题例题1 关于x 的方程36x a -=的解是非负数,求a 的取值范围。
解: 由36x a -=得:63a x +=因为关于x 的方程36x a -=的解是非负数,所以0x ≥,所以603a +≥。
所以6a ≥-。
【剖析】:求a 的范 围,可以从已知条件中把未知数 解出来,可以用a 的代数式表示 的解,又因为a 是非负数,所以建立关于a 的不等式,从而可以把方程 问题转化为不等式问题,体现了数学学习中 的转化思想。
【抛砖引玉】关于x 的方程36ax x -=的解是正数,求a 的取值范围。
二、从方程组到不等式(组)的转化问题例2: 例3 关于x y 、的方程组223x y a x y +=⎧⎨+=⎩的解满足21x y +>,求a 的取值范围。
解: 由223x y a x y +=⎧⎨+=⎩解得23363a x a y -⎧=⎪⎪⎨-⎪=⎪⎩,因为关于x y 、的方程组223x y a x y +=⎧⎨+=⎩的解满足21x y +>,所以2362133a a --⨯+>,所以1a >。
【剖析】 求a 的范 围,可以从已知条件中把未知数 x 解出来,可以用a 的代数式表示 x 的解,又因为a 是非负数,所以建立关于a 的不等式,从而可以把方程问题转化为不等式问题,体现了数学学习中的转化思想。
【抛砖引玉】关于x y 、的方程组223x y a x y +=⎧⎨+=⎩的解x y 、是非负数,求a 的取值范围。
五年级数学专题讲义数论余数问题
数论专题--余数问题【课标导航】【知识梳理】一些特殊数的余数规律:【经典例题】【例1】 (1) 42121421421421个除以4和125的余数分别是多少?(2) 80821808808808个除以9和11的余数分别是多少?【变式1-1】 1949601949...19491949个除以4、5、9、11的余数分别是多少?【例2】 一年有365天,轮船制造厂每天都可以生产零件1234个,年终将这些零件按19个 一包的规格打包,最后一包不够19个.请问:最后一包有多少个零件?【变式2-1】512×691×346的结果除以17的余数是多少?【例3】 自然数12222267-⨯⨯⨯⨯个的个位数字是多少?【变式3-1】自然数320093...33个⨯⨯⨯-3的个位数字是多少?【例4】12010+22010+32010+...+20092010计算结果的个位数字是多少?【例5】一个自然数除以49余23,除以48也余23.这个自然数被14除的余数是多少?【变式5-1】有一堆苹果,如果每35个装一盒,会余下22个;如果每36个装一盒,也会余下22个,那么每30个装一盒会余下多少个?【例6】一个自然数除以19余9,除以23余7.这个自然数最小是多少?【强化训练】&【课后作业】(注:本专题根据学生的程度及上课接受情况适当选择部分进行上课练习,部分做为课后作业。
)1.1256除以一个两位数,余数是36,求这个两位数。
2.(2010×2009×2008)÷11的余数是多少?3.算式20082009+20092008的结果的个位数字是多少?4. 1999×9991的计算结果除以19的余数是多少?5. 200920092009...20092009个除以9和11的余数分别是多少?6. 一个数除以23余7,除以12余1,这个数最小是多少?7. 242007+252008+262009计算结果的个位数字是多少?除以8的余数是多少?8. 100101102103…998999除以7和9的余数分别是多少?。
初中数学专题讲义:截长补短法
初中数学专题讲义:截长补短法截长补短法是几何证明题中十分重要的方法。
通常来证明几条线段的数量关系。
截长补短法有多种方法。
截长法:(1)过某一点作长边的垂线(2)在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。
……补短法(1)延长短边。
(2)通过旋转等方式使两短边拼合到一起。
……例1:在正方形ABCD中,DE=DF,DG⊥CE,交CA于G,GH⊥AF,交AD于P,交CE延长线于H,请问三条粗线DG,GH,CH的数量关系例2、正方形ABCD 中,点E 在CD 上,点F 在BC 上,∠EAF=45o。
求证:EF=DE+BF变形a正方形ABCD 中,点E 在CD 延长线上,点F 在BC 延长线上,∠EAF=45o。
请问现在EF 、DE 、BF 又有什么数量关系?变形b正方形ABCD FE变形c正三角形ABC中,E在AB上,F在AC上∠EDF=45o。
DB=DC,∠BDC=120o。
请问现在EF、BE、CF又有什么数量关系?D变形d正方形ABCD中,点E在CD上,点F在BC上,∠EAD=15o,∠FAB=30o。
AD=3,求∆AEF的面积加强版正方形ABCD作EF⊥MN于例4、、如图,在梯形ABCD中,AD∥BC,∠C=90°,E为CD的中点,EF∥AB交BC于点F(1)求证:BF=AD+CF;(2)当AD=1,BC=7,且BE平分∠ABC时,求EF的长.例5、已知梯形ABCD中,AB∥CD,BD⊥AC于E,AD=BC,AC=AB,DF⊥AB于F,AC、DF相交于DF的中点O.(1)若点G为线段AB上一点,且FG=4,CD=3,GC=7,过O点作OH⊥GC于H,试证:OH=OF;(2)求证:AB+CD=2BE.变形1.如图,梯形ABCD中,AD∥BC,∠DCB=450,CD=2,BD⊥CD。
过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连结EG、AF。
(1)求EG的长;(2)求证:CF=AB+AF。
三年级数学专题讲义第一讲 速算与巧算
第一讲速算与巧算〖内容概述〗计算是数学学习的根本,任何问题到最终都要归结为数的计算,从而得到最终结果。
而计算的方法的好坏直接决定我们的解题速度。
一个好的计算方法,往往使得原本计算量很大计算简化,从而节省我们的时间。
在本讲里我们主要向大家介绍一些常规的计算技巧,其中包括凑整构造法,拆分法构造法,分组构造法,推理计算及等差数列法等。
〖经典例题〗例1.计算768674232++=。
解析:本题数字比较大,如果我们按顺序计算的话,会发现非常的麻烦,但可以发现768和232的个位数字的和为10,我们考虑先将这两个数进行运算。
768674232(768232)6741674++=++=。
例2.计算39655+=。
解析:和上个例题不一样的是,本题就有两个数相加,而且这两个数的个位数字和并不是10,这时我们要发展进攻方略,将396拆成400-4,从而得到我们想要的东西。
39655400554451+=+-=.例3.计算9999+999+99+9= 。
解析:如果直接计算难度会较大,所以我们要寻找一种简单的解题方法来解决此题。
不难发现每个数如果加上1后就会凑成整十、整百、整千,因此我们用凑正法计算。
9999+999+99+9=10000-1+1000-1+100-1+10-1=11110-4=11106。
〖方法总结〗上面各题我们用到的是凑整法。
在这里要引入“补数”的概念:互为补数的两个数个位数之和是10,其他对应位上的数字之和是9。
这样,我们在计算加法时,尾数互补先相加,如例1;当没有尾数互补的数时,我们也可以拆将接近整十、整百的凑成整十、整百相加后再减去补数。
,如例2和例3。
〖巩固练习〗第 1 页共 11 页1.计算858683767882+++++2.计算188+8733.计算9898+2034.计算100000-85426〖经典例题〗例4.计算6324555--= 。
解析:观察本题,算式的两个减数的个位数字的和为10,因此我们想让这两个数先运算。
三年级上册数学期末复习专题讲义(知识归纳+典例讲解+同步测试)-长方形和正方形(含详解)
2021-2021学年苏教版小学三年级数学上册期末复习专题讲义长方形和正方形【知识点归纳】长方形的特征及性质长方形:是一种平面图形,长方形的四个角都是直角,同时长方形的对角线相等.长方形的性质:1.长方形的4个内角都是直角;2.长方形对边相等;3.长方形既是轴对称图形,也是中央对称图形〔对称轴是任何一组对边中点的连线〕,它至少有两条对称轴.对称中央是对角线的交点.4.长方形是特殊的平行四边形,长方形具有平行四边形的所有性质长方形的判定:①定义:有一个角是直角的平行四边形是长方形②定理1:有三个角是直角的四边形是长方形矩形的面积:5%户长乂宽=2>黄金长方形:宽与长的比是〔V5-1〕 /2 〔约为0.618〕的矩形叫做黄金长方形.黄金长方形给我们一协调、匀称的美感.世界各国许多著名的建筑,为取得最正确的视觉效果,都采用了黄金矩形的设计.如希腊的巴特农神庙等.【典例分析】例:如图中甲的周长与乙的周长相比〔〕分析:由于甲的周长=长方形的一组邻边的和+中间的曲线的长,乙的周长=长方形的另一组邻边的和 +中间的曲线的长,根据长方形的特征:对边相等:进行解答继而得出结论.解:甲的周长二长方形的一组邻边的和+中间的曲线的长,乙的周长=长方形的另一组邻边的和+中间的曲线的长,由于长方形对边相等,所以甲的周长等于乙的周长:应选:C.点评:解答此题应根据长方形的特征,并结合周长的计算方法进行解答.二.正方形的特征及性质1.概念:有一组邻边相等且一个角是直角的平行四边形叫做正方形.2.性质:〔1〕边:两组对边分别平行;四条边都相等:相邻边互相垂直〔2〕内角:四个角都是90° ;〔3〕对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角;〔4〕对称性:既是中央对称图形,又是轴对称图形〔有四条对称轴〕.〔5〕正方形具有平行四边形、菱形、矩形的一切性质.〔6〕特殊性质:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45° :正方形的两条对角线把正方形分成四个全等的等腰直角三角形.〔7〕正方形是特殊的长方形.【典例分析】例:四个角都是直角的四边形一定是正方形.X.〔判断对错〕分析:根据正方形的特征及性质可知:具有四条边都相等且四个角都是直角的四边形为正方形,据此判断即可. 解:由于四边相等,四个角都是直角的四边形是正方形,所以题干的说法不全面,四个角都是直角的四边形还可能是长方形,因此题干的说法是错误的;故答案为:X.点评:此题主要考查正方形的特征及性质.选择题〔共10小题〕同步测试1. 一个长方形的一条边长10厘米,它的对边长〔〕厘米.A. 5B. 10C. 202.正方形的两组邻边〔3.4 .5. 6. 7. 8.A.互相垂直C.互相垂直且相等正方形的四条边相等,A.邻边相等长方形的〔B.对边相等一个正方形有〔〕组互相垂直的线.A. 1B. 2如图的图形中,图形〔〕是长方形.A.n B.B.C.C.分别平行四条边相等 D.周长相等小华用4根小棒用成长方形,已经选了3根,长度分别是7厘米、6厘米、7厘米,还要再选1 根〔〕厘米长的小棒.A. 6B.C. 8图中图形甲和图形乙的〔〕B.周长长方形的四条边是〔〕 B.同样长.C.面枳和周长D. 不知道线段 C.射线A.直线〕个正方形.B. 23C. 20D.10.正方形的边长是〔〕A.线段 B.射线 C.直线 D.角二.填空题〔共8小题〕11. 4条边相等,4个角都是直角的四边形是形.12. 一张长方形纸板,沿一条直线剪去一个角后,剩下个角.13. 一张长方形的纸条有个面,有条边.14.如图这个长方形少了一块,将图形补上去就能使这个长方形完15.长方形和正方形都有个角,并且都是角.16.在长方形中的边互相平行,相邻的边互相垂直.17.正方形有条边,个角,正方形的边都相等,每个角都是角.18.长方形的两条对边互相,相邻的两条边互相.三.判断题〔共5小题〕19.对边相等的四边形,一定是长方形..〔判断对错〕20.长方形是特殊的正方形..〔判断对错〕21. 一个图形的四条边相等,这个图形一定是正方形..〔判断对错〕22.正方形,中Nl=45° .〔判断对错〕23.正方形内4个角的和等于360.. .〔判断对错〕四.解做题〔共5小题〕24.用一张长10厘米,宽6厘米的长方形纸折成一个最大的正方形,正方形的边长是多少厘米?25.添上两条线段,把如图的图形变成一个长方形.26. 4个小动物分别站在正方形场地的4个顶点处,它们同时出发并以相同的速度沿场地边缘逆时针方向跑动.当它们同时停止时,顺次连接4个动物所在地点围成的图形是什么形状?为什么?27.在图中平行线之间,画一个尽可能大的正方形.28.根据三角形的内角和是180.,你能求长方形的内角和吗?参考答案与试题解析一.选择题〔共10小题〕1.【分析】根据长方形的特征,长方形的对边平行且相等,4个角多少直角,据此解答即可.【解答】解:一个长方形的一条边长10厘米,它的对边长10厘米:应选:B.【点评】此题考查的目的是理解掌握长方形的特征及应用.2.【分析】根据正方形的特征:正方形的两组对边互相平行,两组邻边互相垂直,且四条边都相等: 据此解答.【解答】解:由正方形的特征可知:正方形的两组邻边互相垂直且相等;应选:C.【点评】此题考查学生对正方形特征的理解和运用.3.【分析】此题利用长方形和正方形的特征直接填空即可.【解答】解:正方形的四条边相等,长方形的对边相等;应选:B.【点评】此题主要考查正方形的性质:四个角都是直角,四条边都相等;长方形的性质:四个角都是直角,对边相等:利用性质解决问题.4.【分析】依据正方形的特征及性质可知:正方形有四组互相垂直的线段,据此解答即可.【解答】解:正方形有四组互相垂直的线段;应选:D.【点评】此题主要考查正方形的特征及性质.5.【分析】根据长方形的特征:对边平行且相等,4个角都是直角.【解答】解:图形是长方形;应选:C.【点评】此题根据长方形的特征进行解答.6.【分析】根据长方形的特征:对边平行且相等,4个角都是直角,由此选择即可.【解答】解:小华用4根小棒围成长方形,已经选了3根,长度分别是7厘米、6厘米、7厘米, 还要再选1根6厘米长的小棒:应选:A.【点评】此题根据长方形的特征进行解答.7.【分析】由图可知:甲的周长=长方形的一组邻边的和+曲线的长,乙的周长=长方形的一组邻边的和+曲线的长,进而得出结论.【解答】解:甲的周长=长方形的一组邻边的和+曲线的长,乙的周长=长方形的一组邻边的和十曲线的长,即甲的周长=乙的周长;应选:B.【点评】解答此题的关犍:结合图形,根据周长的含义进行解答.8.【分析】此题利用长方形的特征:由四条首尾相连的线段围成,长方形的对边平行,长度上相等, 它的四个角都相等,都是直角,直接填空.【解答】解:长方形的四条边是线段.应选:B.【点评】此题是考查了图形的根本特征,记住所学的图形特征.9.【分析】右图中有7个小正方形,左上角的4个小正方形组成1个大正方形,右下角的4个小正方形也组成1个大正方形,进一步算出正方形的个数即可.【解答】解:有7个小正方形和2个大正方形,一共有9个正方形.应选:D.【点评】此题考查对正方形的熟悉,4个角是直角,4条边都相等.10.【分析】根据线段和射线的含义:线段有2个端点,有限长,可以度量;射线有一个端点,无限长;由此可知:正方形的边长是线段:据此解答即可.【解答】解:正方形的边长是线段.应选:A.【点评】明确线段的含义,是解答此题的关键.二.填空题〔共8小题〕11.【分析】根据正方形的特征可知:具有四条边都相等且四个角都是直角的四边形为正方形.【解答】解:由分析得出:4条边相等,4个角都是直角的四边形是正方形.故答案为:正方.【点评】此题根据正方形的特征进行解答.12.【分析】沿对角线剩3个,沿一个角剪剩4个,沿一个角上方一点剪剩5个:进而得出结论.【解答】解:一张长方形纸板,沿一条直线剪去一个角后,剩下3或4或5个角:故答案为:3或4或5.13.【分析】根据长方形的特点,长方形有1个面,4条边直接填空即可.【解答】解:一张长方形的纸条有1个而,有4条边.故答案为:1, 4.【点评】此题考查了长方形的特点,属于根底知识,要熟记.14,【分析】通过观察图形可知:这个长方形缺少一个梯形,而后面4个图形中,只有图形④梯形, 也就是把图形④补上去就能使这个长方形完整.据此解答即可.这个长方形缺少一个梯形,也就是把图形④补上去就能使这个长方形完整.故答案为:④.【点评】此题考查的目的是理解掌握长方形的特征及应用.15.【分析】根据长方形和正方形的特征可知:长方形、正方形都是由4条线段围成的,都有4个角,并且都是直角:据此解答即可.【解答】解:长方形和正方形都有4个角,并且都是直角:故答案为:4,直.【点评】明确长方形和正方形的特征是解答此题的关犍.16.【分析】根据长方形的特征,对边平行且相等,4个角都是直角,可知,长方形相邻的两条边互相垂直,相对的两边互相平行.【解答】解:由根据长方形的特征可知:长方形相邻的两条边互相垂直,相对的两条边互相平行: 故答案为:相对.【点评】此题主要考查长方形的特征.17,【分析】根据正方形的性质:四个角都是直角,四条边都相等;据此填空.【解答】解:根据正方形的性质可知:正方形的四条边相等,四个角都是直角.故答案为:4, 4, 4条,直.【点评】此题考查了正方形的性质,应注意根底知识的灵活运用.18.【分析】根据长方形的特征,对边平行且相等,4个角都是直角,可知,长方形相邻的两条边互相垂直,相对的两边互相平行.【解答】解:长方形的两条对边互相平行,相邻的两条边互相垂直:故答案为:平行,垂直.【点评】此题主要考查长方形的特征.三.判断题〔共5小题〕19.【分析】根据平行四边形的性质:两组对边平行且相等:可以得出:两组对边相等的四边形一定是平行四边形,但不一定是长方形,由于长方形的四个角都是直角:进而判断即可.【解答】解:两组对边相等的四边形一定是长方形,说法错误,由于两组对边相等的四边形一定是平行四边形,但不一定是长方形,由于长方形的四个角都是直角:故答案为:错误.【点评】此题考查了长方形的辨析,应注意根底知识的积累.20.【分析】正方形的两组对边也相等,四个角也是直角,符合长方形的特征,所以也是长方形.但正方形的四条边都相等,这一点和长方形不同,所以说正方形是特殊的长方形:进而判断即可.【解答】解:根据正方形和长方形的特征可知:正方形是特殊的长方形,而长方形是不是特殊的正方形;故答案为:错误.【点评】此题主要考查了长方形和正方形的特征.21,【分析】正方形的特征是:四条边相等,四个角都是直角,据此进行判断即可.【解答】解:正方形是四条边相等,四个角都是直角的四边形,所以一个图形的四条边相等,这个图形不一定就是正方形,有可能是平行四边形.故答案为:X.【点评】此题考查正方形的特征及性质:四条边相等,四个角都是直角.22.【分析】由于正方形的四条边相等,所以正方形的对角线可以把直角平均分成两份,每个角都是45° ;由此判断即可.【解答】解:正方形中Nl=900 4-2=45° ;故答案为:J【点评】此题主要考查了正方形的特征,注意根底知识的积累.23.【分析】根据四边形的特征:4个内角的和是360度,由于正方形也是四边形,由此进行判断即可.【解答】解:由于正方形也是四边形,四边形的内角和是360度,所以正方形内4个角的和等于360° ,说法正确:故答案为:J.【点评】明确四边形的特征,是解答此题的关键.四 .解做题〔共5小题〕24.【分析】长方形中最大的正方形的边长应等于长方形的宽,长方形的宽,由此得解.【解答】解:由于长方形中最大的正方形的边长应等于长方形的宽,所以正方形的边长为6厘米:答:正方形的边长是6厘米.【点评】解答此题的关键是明白:长方形中最大的正方形的边长应等于长方形的宽.25.【分析】根据长方形定义:两组对边分别平行且相等,四个角都是直角的四边形叫做长方形, 过下底的右顶点向对边作垂线,即得到一个长方形,据此解答即可.【解答】解:作图如下:【点评】此题主要考查了长方形的特点.26.【分析】如图:由于速度和时间都相同,所以它们走的路程相等,可以推测:当它们同时停止时,顺次连接4个动物所在地点围成的图形是正方形,根据正方形的特征:四条边都相等,四个角都是直角,只要证实出EEGH是正方形即可. 【解答】解:如图:由于速度和时间都相同,所以它们走的路程相等AE=BF=CG=DH由于四边形A3CZ)是正方形所以AB=8C=CO=OANA=N8=NC=NO由于AE=BF=CG=DH所以EB=FC=GD=HA所以AAEHg△BFEg △ CGF 0 DHG所以EH=EF=FG=GH所以四边形是菱形又由于AAEH乡ABFE所以NAEH=BFE由于NBEF+/BFE=90.所以NAEH+NBFE=9(T所以NHEF=90°所以菱形EFG〃是正方形.【点评】此题考查了正方形的特征及性质,先证实出四边形EFGH是菱形,然后根据一个角是90度的菱形是正方形即可判定.27.【分析】先在两条平行线中画出一条垂线段,量出长度,然后以这条垂线段的两个端点为正方形的两个顶点,在两条平行线上分别截取和垂线段相等的两条线段,连接截取的另两个端点即可得出平行线里最大的正方形.【解答】解:由分析可得:【点评】解答此题应明确:所作出的正方形的边长等于这两条平行线之间的垂线段的长度. 28.【分析】由于三角形的内角和是180度,长方形可以分成两个三角形,所以长方形的内角和是180° X2=360° .据此解答即可.【解答】解:如图:三角形的内角和是180度,长方形可以分成两个三角形,所以长方形的内角和是180° X2=360°【点评】明确长方形可以分成两个三角形,是解答此题的关键.。
三年级数学专题讲义第十五讲 巧求周长
第十五讲巧求周长这一讲主要涉及到长方形、正方形的周长的计算,长方形的计算公式是:(长+宽)×2;正方形周长的计算公式是:边长×4.但是在实际中,往往有很多不是规则的长方形或正方形的图形,这时要求它的周长就要采取一些简单快捷的方法。
〖经典例题〗例1、下图所示是一个游乐场的平面图,已知条件如图所示,求出这个游乐场的周长是多少?分析:这是一个不规则的图形,因为条件有限我们不能直接计算出周长.这时我们要想办法把不规则的图形变成规则图形来进行计算.将平面图转化如下:此图形周长为:500×4=2000(米).即这个游乐场的周长是2000米.例2、下图是由6个边长都是2厘米的正方形拼成的,你能算出这个图形的周长是多少厘米吗?分析:这个不规则的图形可以通过平移的方法变成规则的图形,具体操作如下:这样我们就发现,这个不规则图形就可以变成一个长方形.此长方形的长是:4厘米,宽是2厘米.周长是:(4+2)×2=12(厘米)例3、求下图的周长.(单位:厘米)分析:将水平线和竖直线平移后,看还缺少哪些线段没有算上.我们发现,将此图转化成长方形后,只有画粗线的两条线段没有计算上,最后再加上就可以了.长方形周长:(50+35)×2=85×2=170(厘米).这个图形周长:170+l0×2=170+20=190(厘米).所以,这个图形周长是190厘米.〖巩固练习〗1、计算下面各图的周长.(单位:厘米)〖经典例题〗例4、下图正方形A的周长是24厘米,正方形B的周长是12厘米,由A 和B拼成的图形的周长是多少?分析:正方形A的边长是:24÷4=6(厘米);正方形B的边长是:12÷4=3(厘米),现在图形的周长有两种计算的方法:方法一:6×3+3×4=30(厘米)方法二:用两个正方形的周长和,减去重合的两段周长,就是新的图形的周长.24+12-3×2=30(厘米)方法三:(6+3+6)×2=30(厘米)例5、下图的周长是多少厘米?分析:转化后的长方形的长5+6=11(厘米) 宽1+3=4(厘米) 周长(11+4)×2=30(厘米)例6、一个模型,如图,外形是两个重叠的正方形,正方形的边长是2分米,两个正方形重叠的相交点是正方形边的中点.求这个模型的周长是多少分米?分析:解法1:平移法.将图转化为边长为3分米的正方形,3×4=12(分米).解法2:重叠法.2个正方形周长之和16分米,减去重叠部分的正方形周长4分米,就等于这个模型的周长12分米.解法3:可以每条线段相累加:2×4+1×4=12分米.例7、两个大小相同的正方形,拼成一个长方形后,周长比原来两个正方形周长的和减少了4厘米,原来一个正方形的周长是多少厘米?分析:动手拼一拼便知.当2个正方形拼成一个长方形时,组成2个正方形的8条边减少了2条边,而这2条边的和是4厘米,那么一条边长是4÷2=2(厘米) 原来一个正方形的周长是2×4=8(厘米).例8、下图是一个正方形操场,它的边长是100米,一只蚂蚁沿着甲块地走了一圈,另一只蚂蚁沿着乙块地走了一圈,谁走的路长?为什么?它们各走了多少米?分析:我们可将甲、乙两块地的图分别画出,逐个求它们的周长.我们先将甲图转化成较规则的图形,将原图转化为:则甲图周长为:(100+50+30)×2=180×2=360(米).我们再将乙图转化成较规则的图形,将原图转化为:虽然我们把此图凹进去的那条横线移到了下面,但内部的两个30米却是原图形的周长,没有移,所以此乙图周长为:(100+50)×2+30×2=300+60=360(米).由计算可看出,甲、乙两块地的周长都是360米,是一样长的,它们都走了360米.另外,此题还可换个角度去想,我们把甲块地、乙块地用红、绿两色笔描出,发现都是200米,再看中间黑线部分是两只蚂蚁共走的部分,所以由此可推出两只蚂蚁走的路程是相等的,中间是100+30×2=100+60=160(米),所以两只蚂蚁各走了360米.〖巩固练习〗1.求下图周长.单位:厘米2.下图是一个公园的平面图,A是公园的大门.问:小明从A门进公园,不重复地沿道路走公园一圈,他走了多少米?3.下图是某建设物的设计图,如图所示(单位:米)现根据需要在它周围绕电线一圈,试求需电线多少米?〖课后作业〗1.求下面图形的周长.2.一个长方形的周长是50厘米,宽是10厘米,长是多少厘米?3.用一根长44厘米的绳子围成一个正方形,这个正方形的边长是多少?4. 求下面图形的周长.(单位:厘米)5. 一个长12分米,宽5分米的长方形,如图在它的两个角上各减去一个小长方形,现在这个新的图形的周长是多少?6. 下图的小正方形边长为1厘米.这个图形的外沿的周长是多少厘米?7. 下图长方形A 的周长30是厘米,正方形B 的周长是16厘米,由A 和B 拼成的图形的周长是多少?8、下图是一块小麦地,已知条件如图中所示.这块地的周长是( )米.9.下图“十”字的横与竖都长6厘米.问“十”间的周长是( )厘米.10.求下图上“凹”形的周长.单位:厘米11.下图是由若干个相等的正方形组成的“土山”两个字,已知每个正方形的边长是3厘米,这两个字的周长分别是( )、( )厘米.12.下图是由三个相同的长方形纸片组成的一个“5”字,已知长方形长4厘米,宽2厘米,“5”字周长是( )厘米.13.下图是一块地,四周都用篱笆围起来,转弯处都是直角.已知西边篱笆长17米,南边篱笆长23米.四周篱笆长( )米.50米 50米1 3 514.用15个边长2厘米的小正方形摆成如下图的形状,求图形周长是多少厘米?二、解答题15.一个正方形被分成了5个相等的长方形.每个长方形的周长都是40厘米,求正方形的周长是多少厘米?如图所示.16.如图正方形ABCD 的边长为4cm,每边被四等分.求图中所有正方形周长的和.17.把边长分别是5厘米、4厘米、3厘米和2厘米的4个正方形按从大到小的顺序排成一行(如图),排成的图形周长是多少厘米?18.将一张边长为12厘米的正方形纸对折,再将对折后的纸沿它的竖直中线(右图虚纸)剪开,得到三个矩形纸片,其中两个较小的矩形的周长之和是多少厘米?BC。
小升初数学培优专题讲义全46讲(第1-12讲)
目录第01讲简便计算(一) (01)第02讲简便计算(二) (09)第03讲简便计算(三) (17)第04讲定义新运算 (25)第05讲数的整除 (31)第06讲比较数的大小 (38)第07讲数论专题(一) (44)第08讲数论专题(二) (49)第09讲分数应用题(一) (59)第10讲分数应用题(二) (65)第11讲比的应用(一) (71)第12讲比的应用(二) (78)第1讲 简便计算(一)1、考察范围:运算法则、定律、性质和公式。
2、考察重点:四则混合运算、交换律、结合律、分配律。
3、命题趋势:根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。
1、基本公式.乘法交换律:a b b a ⨯=⨯ 加法交换律:a b b a +=+乘法结合律:)(c b a c b a ⨯⨯=⨯⨯ 加法结合律:)(c b a c b a ++=++ 乘法分配律:c a b a c b a ⨯+⨯=+⨯)( 2、去括号法则:括号前面是加号时,去掉括号,括号内的符号不变:c b a c b a ++=++)( 括号前面是减号时,去掉括号,括号内的符号改变:c b a c b a --=+-)( 括号前面是乘号时,去掉括号,括号内的符号不变:c b a c b a ÷⨯=÷⨯)( 括号前面是除号时,去掉括号,括号内的符号改变:c b a c b a ÷÷=⨯÷)(【例1】 ⎪⎭⎫ ⎝⎛--÷-⎪⎭⎫ ⎝⎛÷+-⨯⨯09.05321323.11857.66.35333.431【变式练习】 1、⎥⎦⎤⎢⎣⎡-÷⎪⎭⎫ ⎝⎛+⨯81584.0916.1527考点解读知识梳理典例剖析2、⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛-⨯⨯+÷15.03.031125.63115.3【例2】 475759759975999759999⨯++++【变式练习】 1、659999965999965999659965965+++++2、2008200620001998199719961995++++++【例3】 31151157÷【变式练习】 1、2019201812020÷2、655161544151433141⨯+⨯+⨯【例4】2021202020202020÷【变式练习】 1、2013201220122012÷【例5】⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++++-⎪⎭⎫ ⎝⎛+++⨯⎪⎭⎫ ⎝⎛+++201812017120161201912018120171201611201912018120171201612018120171201611【变式练习】 1、⎪⎭⎫ ⎝⎛+++⨯⎪⎭⎫ ⎝⎛+++++-⎪⎭⎫ ⎝⎛++++⨯⎪⎭⎫ ⎝⎛++++91715131111917151311111917151319171513112、⎪⎭⎫ ⎝⎛+++⨯⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛+++⨯⎪⎭⎫ ⎝⎛++++5141312151413111514131514131211【例6】100910102019201810102019+⨯⨯+【变式练习】 1、202020182019120202019⨯+-⨯2、143138058419921991584204--⨯⨯+A 、温故知新1、()[]25.036.263.12.0242.3825.016.35÷--⨯÷+⨯2、⎪⎭⎫ ⎝⎛-+-÷20725.22034431187125 3、544156766171833185⨯+⨯+⨯4、()⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-⨯÷+837356999111 5、439999439994399439+++课后精练6、2005200420042004200620032003÷+ 7、⎪⎭⎫ ⎝⎛++++⨯⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+++⨯⎪⎭⎫ ⎝⎛++51413121141315141312114131 8、⎪⎭⎫ ⎝⎛+++⨯⎪⎭⎫ ⎝⎛+++++-⎪⎭⎫ ⎝⎛++++⨯⎪⎭⎫ ⎝⎛++++514131216151413121161514131215141312119、201720152016120172016⨯+-⨯B 、拓展提升1、(长郡系)4141312111++++2、(附中系)()()564561126129187125.025.05.0125.025.05.0⨯-+⨯⨯⨯⨯÷++3、(附中系)⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+7115113118116114112114、(雅礼系)433141544151655161766171877181⨯+⨯+⨯+⨯+⨯第2讲 简便计算(二)1、考察范围:分数乘、除法计算法则。
(完整版)小升初数学讲义专题讲义15讲(基础+提高)
第一讲:四大重点全方位训练之一—计算与简算(1)‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥1 第二讲:四大重点全方位训练之一—计算与简算(2)‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥4 第三讲:解较复杂的方程‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥7 第四讲:列方程解应用题‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥10 第五讲:和差、和倍及差倍应用题‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥12 第六讲:算术法解分数应用题——玩转对应关系(1)‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥14 第七讲:算术法解分数应用题——玩转对应关系(2)‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥17 第八讲:算术法解分数应用题——玩转单位“1”‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥20 第九讲:经典分数应用题类型‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥23 第十讲:工程问题(一)‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥27 第十一讲:工程问题(二)‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥30 第十二讲:工程问题(三)‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥33 第十三讲:牛吃草问题‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥36 第十四讲:行程中的相遇问题‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥38 第十五讲:行程中的追击问题‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥412010+⨯98100+⨯9702++2010+122011+++++505050⎛⎫+++⎪⎝⎭123-9+⎪⎭⎝ 9900+122010+++++。
六年级数学专题讲义整数的分拆
整数的分拆1、整数的分拆:把一个整数n 表示为若干个自然数之和的形式,这通常叫整数n 的分拆。
即12m n n n n =+++ (121m n n n ≥≥≥≥)。
对被加项和项数m 加以一些限制条件,就得到某种特殊类型的分拆。
自然数的分拆是古老而又十分有趣的问题,著名的歌德巴赫猜想实际上是一个分拆问题。
其相关结论如下:(1)一般的,把一个整数表示成两个数相加,当两个数相近或相等的时候,乘积最大,也就是把整数分拆成两个相等或者相差为1的两个整数。
(2)一般的,把自然数m 分成n 个自然数的和,使其乘积最大,则先把m 进行对n 的带余除法,表示成m=np+r ,则分成r 个(p+1),(n-r )个p 。
(3)把自然数S (S>1)分拆成若干个自然数的和(没有给定是几个),则分成的数当中最多有两个2,其他的都是3,这样他们的乘积最大。
(4)把自然数分成若干个互不相等的整数,则先把它表示成2+3+4+5+…+r (r ≤n )的形式,再把r 一轮一轮的从后往前每个加1即可。
(5)若自然数N 有k 个大于1的奇约数,则N 共有k 种表示为两个或两个以上连续自然数之和的方法。
〖经典例题〗例1、将2006分拆成8个自然数的和的形式,使其乘积最大?【分析】要使8个自然数的乘积最大,必须使这8个数中的任意两个数相等或相差1.因为2006÷8=250……6,所以2006=250×8+6,6不能单独存在,所以将6分成6个1,并从后往前加在6个自然数中,2006=250+250+251+251+251+251+251+251。
例2、把60分拆成10个质数之和,要求其中最大的质数尽可能小,那么这个最大的质数是几?【分析】因为60÷10=6,可以初步判定尽可能小的最大的质数应从能否为7考虑。
60=7×8+2+2.所以最大的数最小是7.〖方法总结〗本题用到了结论(2),将2006写成8×p+r 的形式,然后余下6,因此有6个251和2个250.当有些特殊要求时,如例2,我们先估算出大致范围,然后再利用结论求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用求解数学题的几类数学思想-------管理类联考数学专题一、特殊化思想利通数学工具在解决实际问题,通常先抽象出一数学模型,然后再通过模型计算分析结局实际问题。
但在抽象模型时,常常要设定一定的条件,从而把问题特殊化、简单化,这样利用特殊的抽象模型来代替实际问题中的一般模型(忽略的条件对此问题不起重要作用时,而且肯定存在误差),进而求出比较满意的结果。
例如,自由落体运动,往往忽略空气阻力,可以得到自由落体方程:212s gt =。
在这一过程中,就把次要因数(空气阻力)忽略,把问题特殊化,理想化,很容易得到自由落体方程。
在数学的很多题目中,尤其是选择题,往往可以采用这种思想来处理问题。
比如,数列:数列可以看成是特殊的函数(自变量是不连续的自然数),因此可以利用函数的某些性质来研究数列。
从函数的观点看,数列可以看做是一个定义域为正整数集N +(或它的有限mba 子集{}1,2,,n )的函数,当自变量从小到大依次取值时对应的一列函数值。
因此,等差、等比数列的通项n a 及前n 项和n S 都可以看作关于n 的函数,当然其图像都是一系列离散的点。
几何:在几何图形中,通常是一般的不规则的图形,但是我们研究问题,总是把不规则的图形分解为一些规则图形,这样利用规则图形的性质、计算就可以把整个不规则图形给找到特殊的三角形:等边三角形,等腰直角三角形,特殊的四边形:正方形(可看成特殊的平行四边形、矩形、菱形)例 1 设F ,G 分别是平行四边形ABCD 的BC ,CD 的中点,O 是AG 和DF 的交点.(见图 1 )则:AO OG 为(A)2 (B)3 (C)2.5 (D)4 (E)3.5图1例 2 数列{}n a 前n 项和n S 满足()2log 1n S n -=,则{}n a 是(A )等差数列 (B )等比数列 (C )既是等差数列又是等比数列 (D )既非等差数列亦非等比数列 (E )以上结论均不正确等差数列前n 项和n S 的特点:2122n d d S n a n ⎛⎫=+- ⎪⎝⎭,是一常数项为0的二次函数,若常数项不为0,那么此数列一定不是等差数列。
一般的,表示成2n S an bn =+等比数列n 项和n S 的特点:1111n n a aS q q q=-+--,其表达式只有两项,显然含未知项的系数与常数项的系数互为相反数。
例 3 如图2所示,已知M 是四边形ABCD 的AB 边的中点,CM 交BD 于点E ,则图中阴影部分面积与四边形ABCD 面积之比为 (A )13 (B )14 (C )25 (D )512(E )以上结论均不正确图 2二、转化的思想转化思想,顾名思义,就是把复杂问题转化为简单问题,把没有碰到过的数学问题转化为见到过的数学问题,这样可以可以把问题分解降低难度,从而求出结果。
例4 正方体''''ABCDA B C D 的边长为2,E ,F 分别是棱AD ,''C D 的中点(见下图3).位于E 点处的一个小虫要在这个正方体的表面上爬到F 处,它爬行的最短距离为图 3(A)25(B)4 (C)8 (D)110 例 5 在一个平面直角坐标系中,直线l 的方程为5x =,点A 和B 的坐标分别为(3,2)和(1,3)-,动点C 在l 上,则AD CB +的最小值为(A)8 (B)65 (C)67 (D)66例 6 当n 为自然数时,有6612nn xx+= (1)11x x +=- (2)11x x+=关于对称问题(轴对称利用“中垂线”,中心对称利用“中点”)1、中心对称:(1 两点关于某点的对称点(,)x y 关于点(,)a b 的对称点的坐标为(2,2)a x b y --。
点关于点的对称,其对称中心恰恰是以这两点为端点的线段的中点,因此中心对称的问题是线段中点坐标公式的应用。
(2)两直线关于点的中心对称直线关于点对称的求法,一种是两点确定一条直线的原理来求解,即在直线上任取两点A 、B 然后求此两点关于点00(,)x y 的对称点'A 、'B ,那么''A B 连成的直线就是0ax by c ++=关于点00(,)x y 的对称直线;另一种思路是,利用两直线关于某点中心对称,那么这两条直线必是平行直线,对称中心夹在平行直线内,且对称中心到两直线的距离一样。
2、轴对称:(1)两点关于某直线的对称对称轴为两对称点连线的“垂直平分线“,利用”垂直“和”平分“这两个条件建立方程组,就可求出对称点的坐标。
方法:设点00(,)x y 关于直线0ax by c ++=的对称点00(',')x y ,则00000000''022'1'x x y y a b c y y a x x b ++⎧∙+∙+=⎪⎪⎨-⎛⎫⎪∙-=- ⎪-⎝⎭⎪⎩ 求解此方程组即可。
(2)两直线关于某直线的对称 ① 两直线平行两直线平行,那么对称轴也平行与这两条直线,在求解另一条对称直线时,可以从已知直线上任取两点,然后分别找到这两点关于对称轴的对称点,再把两对称点连起来就是对称直线。
② 两直线相交两直线相交,那么必有原直线、对称直线、对称轴相交于一点。
在求解对称直线时,可利用此点,然后再在原直线上任取一点,找到其对称点,利用对称点、交点就可以找到对称直线。
3、求解直线关于点、轴对称的一般方法:(1)从直线上任取两不同的点。
一般选取特殊点,如与x 轴、y 轴、对称轴的交点等。
(2)找到这两点关于点、轴的对称点。
(3)以两对称点求出新的方程即为直线关于点、轴对称的对称直线。
4、常用的对称关系点(,)a b 关于x 轴的对称点(,)a b -;关于y 轴的对称点为(,)a b -;关于原点的对称点(,)a b --;关于直线y x =的对称点为(,)b a ;关于直线y x =-的对称点(,)b a --;关于直线y x m =+的对称点为(,)b m a m -+;关于直线y x m =-+的对称点(,)m b m a --。
例 7 求点(1,2)A -关于直线30x y ++=的对称点'A 为(A )(2,5)-- (B )(5,2)-- (C )(2,5)- (D )(2,5)- (E )(2,5) 例 8 直线l 与直线21x y -=关于直线0x y +=对称,则直线l 的方程是 (A )21x y -= (B )21x y += (C )21x y -= (D )21x y += E )21x y -=-例 9 求直线1l :20x y --=关于直线2l :330x y -+=对称直线3l 的方程 (A )7220x y -+= (B )7220x y ++= (C )7220x y --= (D )7220x y ++= (E )7220x y +-=例 10 如图4,MN 是O Θ的直径,2MN =,点A 在O Θ上,30AMN =∠,B 为弧AN 的中点,P 是直径MN 上一动点,则PA PB +的最小值为A.B.2(E )1图 4例 11 直线240x y --=上有一点P ,它与两定点(4,1)A -、(3,4)B 的距离之和最小,则P 点的坐标是(A )(0,1) (B )(5,6) (C )(6,5) (D )(1,0) (E )(5,1)-三、极端化思想极端化思想,简言之就是对于某一变量,其取值具有某一趋势(或在某一范围之内),并且不同取值使得最后的结果有所不同,这是就可以考虑下极端情况——最大、最小。
这样就可以把函数的取值范围确定,从而可以找到正确的结果。
例如:三角形的极端情况,两边和大于第三边,两边差小于第三边,那么要求第三边的范围时,就可以把这个三角形看成极端情况——三顶点共线例 12 三角形的周长为10,有一条边长为4,则它的面积的最大值为(A) 5 (E) 例 13 三角形的面积为60平方厘米,有一条边长为10厘米,则它的周长的最小值为 (A) 32厘米 (B) 33厘米 (C) 34厘米 (D) 35厘米 (E) 36厘米例 14 ABC ∆中,5AB =,3AC =,A x ∠=,该三角形BC 边上的中线长是x 的函数()y f x =,则当x 在(0,)π中变化时,函数()f x 取值的范围是(A )(0,5) (B )(1,4) (C )(3,4) (D )(2,5) (E )以上结论均不正确例 15(09样题) 一个底面直径为20厘米的装有一部分水的圆柱形容器,水中放着一个底面直径为12厘米,高为10厘米的圆锥形的铅锤,当铅锤从水中取出来,容器中的水面高度下降了 A.2.4厘米 B. 2厘米 C. 1.6厘米 D. 1.2厘米 E. 1.0厘米四、整体思想整体思想是将需解决的问题看作一个整体,由整体入手,通过研究问题的整体形式,洞察命题中的整体与局部的关系,实现等价化归使问题得到解决。
一般情况下,用整体思想解题的途径为:(1)从整体特性上看问题;(2)从整体到局部看问题。
例如,有关韦达定理的计算,数列,等例 16 三个2002位数的运算999888666⨯÷的结果中有(A )相邻的2001个3 (B )相邻的2002个3 (C )相邻的2001个2 (D )相邻的2002个2 (E )以上结论均不正确例 17 若2310x x -+=,那么441x x += (A )30 (B )40 (C )45 (D )47 (E )以上结论均不正确 例 18 若x ,y ,z 为实数,设222A x y π=-+,223B y z π=-+,226C z x π=-+,则在A 、B 、C 中(A )至少有一个大于零 (B )至少有一个小于零 (C )都大于零 (D )都小于零 (E )以上结论均不正确例 19 在等比数列{}n a 中,已知36n S =,254n S =,则3n S = (A )63 (B )68 (C )76 (D )89 (E )92例 20 数列,已知n S 是等差数列{}n a 前n 项和,n T 是等差数列{}n b 前n 项和,且723n n S n T n -=+,那么1313a b = 五、归纳的数学思想例 21 P 是以a 为边长的正方形,1P 是以P 的四边中点为顶点的正方形,2P 是以1P 的四边中点为顶点的正方形,i P 是以1i P -的四边中点为顶点的正方形,则6P 的面积是(A )216a (B )232a (C )240a (D )248a (E )264a例 22 若平面内有10条直线,其中任何两条不平行,且任何三条不共点(即不相交于一点),则这10条直线将平面分成了(A )21部分 (B )32部分 (C )43部分 (D )56部分 (E )77部分五、举例方法举例来否定条件充分性判断题的实数:0,1±,2(最小的质数,唯一一个偶数的质数)几何:特殊的图形(等边三角形,等腰直角三角形,正方形等)例 23 用ab 表示十位是a ,个位是b 的一个两位数,有()():1:1ab ba a b =++(P15页) (1)ab 是3的倍数 (2)ab 是9的倍数例 24 a 、b 、x 、y 是10(包括10)以内的无重复的正整数,那么a bx y-+的最大值是 (A) 215 (B) 415(C) 2 (D) 123 (E) 325.甲乙丙是三个实数,甲比丙小(1)甲和乙的比是2:3,乙和丙的比是8:7 (2)丙是甲、乙差的120%六、数形结合方法例 26 若方程22350x x m ++=的一个根大于1,另一根小于1,则m 的取值范围是 (A )1m <- (B )1m < (C )01m << (D )1m ≤- (E )以上结论均不正确七、其它方法与思想:1、方程思想:通过各量之间的关系,建立等式,从而求解出位置的量,例如,用方程求解应用题;2、函数思想:就是用函数的观点、方法研究问题,将非函数问题转化为函数问题,建立函数关系,通过对函数进行研究,使问题得以解决。