《数学周报》杯

合集下载

对一道“《数学周报》杯”赛题的探讨

对一道“《数学周报》杯”赛题的探讨

=, ( . √ : 2 ) +
由中 国教 育 学 会 中 学数 学 教 学专 业 委员 会 所
此解 法不需 要作 任何 辅助 线 , 可直接利
提供的该试题 的参考答案 , 抄录如下 :
原解 如 图 2, 由勾股 定理知 A D=9 B :1 , ,D 6 因此 A B=A +B D D=2 . 由 勾股 定理 逆 定 理 知 5故 △A B为 直 角三 角 形 , LA B= 0 . C 且 C 9。 作 E C。 疋 为 羔 F F LB 垂 .设 E =x F ,由
LECF = 1 /ACB =45。 得


用三角形内角平分线的性质和 比例的等 比性质来
解 决 问题 , 避开 了用添 加辅 助线 来解决 问题 的思 维
定势 , 使学生走出添加辅助线这一困境.

C , F= 于是
=2 0一
因为 E /A 。 F/ C 所以
EF


AC —BC ’
20 年 “ 数学周 报》 全 国初 中数学竞 赛 09 《 杯”
试 题第 9题 : 题 目 如 图 1 在 AA C 中 , D 是 高 , E 为 , B C C LA B的平分 线. A C 若 C=1 B 5,C=2 , D=1 , 0c 2 则
C E的长等 于 .
2 试题 的 解法探 讨
通过命 题 组 所 提供 的参 考 答 案 可 以 看 出:
“AA B为 直角 三角形 ” 一 隐含 条 件是 解 决 问题 C 这 的关键 , 之 给 出 的 C 为 LA B 的平 分 线 , 其 加 E C 使 内涵 丰富 , 可用知识 点 多 , 法思路 广. 方 下面 给出参 考 答案 以外 的若 干别解. 别 解 l 如 图 l 由勾 股 定理 知 A , D=9 B = ,D 1, 6 因此 A A + D=2 . 由勾 股定 理 逆 定 理 B= D B 5故

数学周报_杯_2008年全国初中数学竞赛试题及解答

数学周报_杯_2008年全国初中数学竞赛试题及解答

购物原价超过300元;则第一次购物原价为94.5÷0.9=105(元).所以小丽应付(316+105-300)×0.8+300×0.9=362.8(元).20.(1)证明:如图,延长CB至点G,使得BG=DF,连结AG.因为ABCD是正方形,所以在Rt△ADF和Rt△ABG中,AD=AB,∠ADF=∠ABG=90°,DF=BG.∴Rt△ADF≌Rt△ABG(SAS),∴AF=AG,∠DAF=∠BAG.又∵AE是∠BAF的平分线,∴∠EAF=∠BAE,∴∠DAF+∠EAF=∠BAG+∠BAE.即∠EAD=∠GAE. ∵AD∥BC,∴∠GEA=∠EAD,∴∠GEA=∠GAE,∴AG=GE.即AG=BG+BE.∴AF=DF+BE,得证.(2)S=S△ADF+S△ABE=12DF·AD+12BE·AB.∵AD=AB=1,∴S=12(DF+BE).由(1)知,AF=DF+BE,所以S=12AF.在Rt△ADF中,AD=1,DF=x,∴AF=x2槡+1,∴S=12x2槡+1.由上式可知,当x2达到最大值时,S最大.而0≤x≤1,所以,当x=1时,S最大值为12x2槡+1=12槡2櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕毇毇毇毇.“《数学周报》杯”2008年全国初中数学竞赛试题及解答 一、选择题(共5小题,每小题6分,满分30分.以下每道小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里.不填、多填或错填都得0分)1.已知实数x,y满足4x4-2x2=3,y4+y2=3,则4x4+y4的值为( ).A.7 B.槡1+132 C.槡7+132 D.5【答】(A)解:因为x2>0,y2≥0,由已知条件得1x2=槡2+4+4×4×38=槡1+134,y2=槡-1+1+4×32=槡-1+32,所以4x4+y4=2x2+3+3-y2=2x2-y2+6=7.另解:由已知得(-2x2)2+(-2x2)-3=0,(y2)2+y2-3=0烅烄烆.显然-2x2≠y2,以-2x2,y2为根的一元二次方程为t2+t-3=0,所以(-2x2)+y2=-1,(-2x2)×y2=-3.故4x+y3=[(-2x2+y2)]2-2×(-2x2)×y2=(-1)2-2×(-3)=7.2.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m,n,则二次函数y=x2+mx+n的图象与x轴有两个不同交点的概率是( ).A.512 B.49 C.1736 D.12【答】(C)解:基本事件总数有6×6=36,即可以得到36个二次函数.由题意知Δ=m2-4n>0,即m2>4n.通过枚举知,满足条件的m,n有17对.故P=1736.3.有两个同心圆,大圆周上有4个不同的点,小圆周上有2个不同的点,则这6个点可以确定的不同直线最少有( ).A.6条 B.8条 C.10条 D.12条(第3题)【答】(B)解:如图,大圆周上有4个不同的点A,B,C,D,两两连线可以确定6条不同的直线;小圆周上的两个点E,F中,至少有一个不是四边形ABCD的对角线AC与BD34的交点,则它与A,B,C,D的连线中,至少有两条不同于A,B,C,D的两两连线.从而这6个点可以确定的直线不少于8条.当这6个点如图所示放置时,恰好可以确定8条直线.所以,满足条件的6个点可以确定的直线最少有8条.(第4题)4.已知AB是半径为1的圆O的一条弦,且AB=a<1.以AB为一边在圆O内作正△ABC,点D为圆O上不同于点A的一点,且DB=AB=a,DC的延长线交圆O于点E,则AE的长为( ).A.槡52a B.1 C.槡32 D.a【答】(B)解:如图,连接OE,OA,OB.设∠D=α,则∠ECA=120°-α=∠EAC.又因为∠ABO=12∠ABD=12(60°+180°-2α)=120°-α,所以△ACE≌△ABO,于是AE=OA=1.另解:如图,作直径EF,连结AF,以点B为圆心,AB为半径作⊙B.因为AB=BC=BD,则点A,C,D都在⊙B上,由∠F=∠EDA=12∠CBA=12×60°=30°,所以AE=EF×sin∠F=2×sin30°=1.5.将1,2,3,4,5这五个数字排成一排,最后一个数是奇数,且使得其中任意连续三个数之和都能被这三个数中的第一个数整除,那么满足要求的排法有( ).A.2种 B.3种 C.4种 D.5种【答】(D)解:设a1,a2,a3,a4,a5是1,2,3,4,5的一个满足要求的排列.首先,对于a1,a2,a3,a4,不能有连续的两个都是偶数,否则,这两个之后都是偶数,与已知条件矛盾.又如果ai(1≤i≤3)是偶数,ai+1是奇数,则ai+2是奇数,这说明一个偶数后面一定要接两个或两个以上的奇数,除非接的这个奇数是最后一个数.所以a1,a2,a3,a4,a5只能是:偶,奇,奇,偶,奇,有如下5种情形满足条件:2,1,3,4,5; 2,3,5,4,1; 2,5,1,4,3;4,3,1,2,5; 4,5,3,2,1.二、填空题(共5小题,每小题6分,满分30分)6.对于实数u,v,定义一种运算“*”为:u*v=uv+v.若关于x的方程x*(a*x)=-14有两个不同的实数根,则满足条件的实数a的取值范围是.【答】a>0,或a<-1.解:由x*(a*x)=-14,得(a+1)x2+(a+1)x+14=0.依题意有a+1≠0,Δ=(a+1)2-(a+1)>0{.解得 a>0,或a<-1.7.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是分钟.【答】4.解:设18路公交车的速度是x米/分,小王行走的速度是y米/分,同向行驶的相邻两车的间距为s米.每隔6分钟从背后开过一辆18路公交车,则6x-6y=s.①每隔3分钟从迎面驶来一辆18路公交车,则3x+3y=s.②由①,②可得s=4x,所以sx=4.即18路公交车总站发车间隔的时间是4分钟.(第8题)8.如图,在△ABC中,AB=7,AC=11,点M是BC的中点,AD是∠BAC的平分线,MF∥AD,则FC的长为.(第9题)【答】9.解:如图,设点N是AC的中点,连接MN,则MN∥AB.又MF∥AD,所以44∠FMN=∠BAD=∠DAC=∠MFN,所以FN=MN=12AB.因此FC=FN+NC=12AB+12AC=9.另解:如图,过点C作AD的平行线交BA的延长线为E,延长MF交AE于点N.则∠E=∠BAD=∠DAC=∠ACE.所以AE=AC=11.又FN∥CE,所以四边形CENF是等腰梯形,即CF=EN=12BE=12×(7+11)=9.9.△ABC中,AB=7,BC=8,CA=9,过△ABC的内切圆圆心I作DE∥BC,分别与AB,AC相交于点D,E,则DE的长为.【答】163.(第9题)解:如图,设△ABC的三边长为a,b,c,内切圆I的半径为r,BC边上的高为ha,则12aha=S△ABC=12(a+b+c)r,所以rha=aa+b+c.因为△ADE∽△ABC,所以它们对应线段成比例,因此ha-rha=DEBC,所以DE=ha-rha·a=(1-rha)a=(1-aa+b+c)a=a(b+c)a+b+c,故DE=8×(7+9)8+7+9=163.另解:∵S△ABC=rp=p(p-a)(p-b)(p-c槡)槡槡=12×4×3×5=12 5,(这里p=a+b+c2)所以r12 =槡512槡=5,ha=2S△ABCa2×12 58槡2 =槡5.由△ADE∽△ABC,得DEBC=ha-rha3 5-5槡3 =槡槡5=23,即DE=23BC=163.10.关于x,y的方程x2+y2=208(x-y)的所有正整数解为.【答】x=48,y=32{, x=160,y=32{.解:因为208是4的倍数,偶数的平方数除以4所得的余数为0,奇数的平方数除以4所得的余数为1,所以x,y都是偶数.设x=2a,y=2b,则a2+b2=104(a-b).同上可知,a,b都是偶数.设a=2c,b=2d,则c2+d2=52(c-d),所以,c,d都是偶数.设c=2s,d=2t,则s2+t2=26(s-t),于是(s-13)2+(t+13)2=2×132,其中s,t都是偶数.所以(s-13)2=2×132-(t+13)2≤2×132-152<112.所以|s-13|可能为1,3,5,7,9,进而(t+13)2为337,329,313,289,257,故只能是(t+13)2=289,从而|s-13|=7.于是s=6,t=4{;s=20,t=4{.因此x=48,y=32{,x=160,t=32{.另解:因为(x-104)2+(y+104)2=2×1042=21632,则有(y+104)2≤21632.又y正整数,所以1≤y≤43.令a=|x-104|,b=|y+104|,则a2+b2=21632.因为任何完全平方数的个位数为:1,4,5,6,9,由a2+b2=21632知a2,b2的个位数只能是1和1或6和6.当a2,b2的个位数是1和1时,则a,b的个位数字可以为1或9.但个位数为1和9的数的平方数的十位数字为偶数,与a2+b2的十位数字为3矛盾.当a2,b2的个位数是6和6时,则a,b的个位数字可以为4或6.由105≤b≤147,取b=106,114,116,124,126,134,136,144,146代入a2+b2=21632得,只有当b=54136时,a=56,即|x-104|=56,|y+104|=136{.解得x=48,y=32{; x=160,y=32{.三、解答题(共4题,每题15分,满分60分)11.在直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与x轴,y轴的正半轴分别交于A,B两点,且使得△OAB的面积值等于|OA|+|OB|+3.(1)用b表示k;(2)求△OAB面积的最小值.解:(1)令x=0,得y=b,b>0;令y=0,得x=-bk>0,k<0.所以A,B两点的坐标分别为A(-bk,0),B(0,b),于是,△OAB的面积为S=12b·(-bk).由题意,有12b·(-bk)=-bk+b+3.解得 k=2b-b22(b+3),b>2.(2)由(1)知S=12b·(-bk)=b(b+3)b-2=(b-2)2+7(b-2)+10b-2=b-2+10b-2+7=(b槡-2-10b槡-2)2槡+7+2 10≥槡7+2 10.当且仅当b-2=10b-2时,有S槡=7+2 10,即当b槡=2+10,k=-1时,不等式中的等号成立.所以,△ABC面积的最小值为槡7+2 10.12.是否存在质数p,q,使得关于x的一元二次方程px2-qx+p=0有有理数根?解:设方程有有理数根,则判别式为平方数.令Δ=q2-4p2=n2,其中n是一个非负整数.则(q-n)(q+n)=4p2.由于1≤q-n≤q+n,且q-n与q+n同奇偶,故同为偶数.因此,有如下几种可能情形:q-n=2,q+n=2p2{, q-n=4,q+n=p2{, q-n=p,q+n=4p{.q-n=2p,q+n=2p{, q-n=p2,q+n{=4消去n,解得q=q2+1,q=2+p22,q=5p2,q=2p,q=2+p22.对于第1,3种情形,p=2,从而q=5;对于第2,5种情形,p=2,从而q=4(不合题意,舍去);对于第4种情形,q是合数(不合题意,舍去).又当p=2,q=5时,方程为2x2-5x+2=0,它的根为x1=12,x2=2它们都是有理数.综上所述,存在满足题设的质数.★12.已知a,b为正整数,关于x的方程x2-2ax+b=0的两个实数根为x1,x2,关于y的方程y2+2ay+b=0的两个实数根为y1,y2,且满足x1·y1-x2·y2=2008.求b的最小值.解:由韦达定理,得x1+x2=2a,x1·x2=b;y1+y2=-2a,y1·y2=b,即y1+y2=-2a=-(x1+x2)=(-x1)+(-x2),y1·y2=b=(-x1)·(-x2){.解得 y1=-x1,y2=-x2{; 或y1=-x2,y2=-x1{.把y1,y2的值分别代入x1·y1-x2·y2=2008得x1·(-x1)-x2·(-x2)=200.或x1·(-x2)-x2·(-x1)=2008(不成立).即x22-x21=2008,(x2+x1)(x2-x1)=2008.因为x1+x2=2a>0,x1·x2=b>0,所以x1>0,x2>0.于是有2a·4a2-4槡b=2008.即a·a2 -槡b=502=1×502=2×251.因为a,b都是正整数,所以a=1,a2-b=502{2或a=505,a2-b{=1或a=2,a2-b=251{2或a=251,a2-b=4{.分别解得:a=1,b=1-502{2或a=502,b=5022{-1或a=2,b=2-251{2或a=251,b=2512-4{.经检验只有:a=502b=5022{-1,a=251b=2512{-4符合题意.所以b的最小值为:b最小值=2512-4=62997.6413.是否存在一个三边长恰是三个连续正整数,且其中一个内角等于另一个内角2倍的△ABC?证明你的结论.解:存在满足条件的三角形.当△ABC的三边长分别为a=6,b=4,c=5时,∠A=2∠B.(第13(A)题答案)如图,当∠A=2∠B时,延长BA至点D,使AD=AC=b.连接CD,则△ACD为等腰三角形.因为∠BAC为△ACD的一个外角,所以∠BAC=2∠D.由已知,∠BAC=2∠B,所以∠B=∠D.所以△CBD为等腰三角形.又∠D为△ACD与△CBD的一个公共角,有△ACD∽△CBD,于是ADCD=CDBD, 即ba=ab+c,所以 a2=b(b+c).而62=4×(4+5),所以此三角形满足题设条件,故存在满足条件的三角形.说明:满足条件的三角形是唯一的.若∠A=2∠B,可得a2=b(b+c).有如下三种情形:(ⅰ)当a>c>b时,设a=n+1,c=n,b=n-1(n为大于1的正整数),代入a2=b(b+c),得(n+1)2=(n-1)(2n-1).解得n=5,有a=6,b=4,c=5;(ⅱ)当c>a>b时,设c=n+1,a=n,b=n-1(n为大于1的正整数),代入a2=b(b+c),得n2=(n-1)·2n.解得n=2,有a=2,b=1,c=3,此时不能构成三角形;(ⅲ)当a>b>c时,设a=n+1,b=n,c=n-1(n为大于1的正整数),代入a2=b(b+c),得(n+1)2=n(2n-1),即n2-3n-1=0,此方程无整数解.所以,三边长恰为三个连续的正整数,且其中一个内角等于另一个内角的2倍的三角形存在,而且只有三边长分别为4,5,6构成的三角形满足条件.★13.如图,△ABC的三边长BC=a,AC=b,AB=c,a,b,c都是整数,且a,b的最大公约数是2.点G和点I分别为△ABC的重心和内心,且∠GIC=90°,求△ABC的周长.解:如图,连结GA,GB.过G,I作直线交BC,AC于点E,F,作△ABC的内切圆I,切BC边于点D.记△ABC的半周长为P,内切圆半径为r,BC,AC边上的高线长为ha,hb.∵S△ABC=rp=p(p-q)(p-b)(p-c槡),∴r=(p-a)(p-b)(p-c)槡p.易知:CD=p-c,在Rt△CIE中,DE=r2p-c,即DE=(p-a)(p-b)p.∴CE=CD+DE=(p-c)+(p-a)(p-b)p=abp.又∵CI⊥EF,CI平分∠ACB,所以CE=CF.由S△ABC=S△ABG+S△BEG+S△AFG+S△FEC,S△ABC=S△ABC3+12×(a-abp)×ha3+12×(b-abp)×hb3+2×12×abp×r,即 S△ABC=S△ABC3+(12×a×ha)×p-b3p+(12×b×hb)×p-a3p+abp2×rp.整理得2p2-cp=3ab,即3ab=2p2-cp=p(2p-c)=p(a+b).设△ABC的周长为m,则m=2p=6aba+b为整数.由已知(a,b)=2,设a=2s,b=2t,且(s,t)=1,s,t都是正整数,代入上式,得m=12sts+t.∵(s,s+t)=1,(t,s+1)-1,∴s+t是12的约数,即s+t=1,2,3,4,6,12.不妨设s≥1,则(s,t)=1,得s=1,t=1,m=6烅烄烆; s=2,t=1,m=8烅烄烆; s=3,t=1,m=9烅烄烆;s=5,t=1,m=10烅烄烆; s=11,t=1,m=11烅烄烆; s=7,t=5,m=35烅烄烆.经检验,只有 s=7,t=5,m=35烅烄烆. 符合题意,所以 a=14,b=10,c=10或a=10,b=14,c=11,即所求△ABC的周长为35.7414.从1,2,…,9中任取n个数,其中一定可以找到若干个数(至少一个,也可以是全部),它们的和能被10整除,求n的最小值.解:当n=4时,数1,3,5,8中没有若干个数的和能被10整除.当n=5时,设a1,a2,…,a5是1,2,…,9中的5个不同的数.若其中任意若干个数,它们的和都不能被10整除,则a1,a2,…,a5中不可能同时出现1和9;2和8;3和7;4和6.于是a1,a2,…,a5中必定有一个数是5.若a1,a2,…,a5中含1,则不含9.于是不含4(4+1+5=10),故含6;于是不含3(3+6+1=10),故含7;于是不含2(2+1+7=10),故含8.但是5+7+8=20是10的倍数,矛盾.若a1,a2,…,a5中含9,则不含1.于是不含6(6+9+5=20),故含4;于是不含7(7+4+9=20),故含3;于是不含8(8+9+3=10),故含2.但是5+3+2=10是10的倍数,矛盾.综上所述,n的最小值为5.★★14.已知有6个互不相同的正整数a1,a2,…,a6,且a1<a2<…<a6,从这6个数中任意取出3个数,分别设为ai,aj,ak,其中i<j<k.记f(i,j,k)=1ai+2aj+3ak.证明:一定存在3个不同的数组(i,j,k),其中1≤i<j<k≤6,使得对应着的3个f(i,j,k)两两之差的绝对值都小于0.5.(征求答案獉獉獉獉)。

2018全国初中数学竞赛试题及参考答案

2018全国初中数学竞赛试题及参考答案

中国教育学会中学数学教学专业委员会“《数学周报》杯”2018年全国初中数学竞赛试题答题时注意:1.用圆珠笔或钢笔作答; 2.解答书写时不要超过装订线; 3.草稿纸不上交.一、选择题<共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)qfRgF4dw271.设1a =,则代数式32312612a a a +--的值为( >.<A )24 <B )25 <C )10 <D )122.对于任意实数a b c d ,,,,定义有序实数对a b (,)与c d (,)之间的运算“△”为:<a b ,)△<c d ,)=<ac bd ad bc ++,).如果对于任意实数u v ,, 都有<u v ,)△<x y ,)=<u v ,),那么<x y ,)为( >.qfRgF4dw27<A )<0,1) <B )<1,0) <C )<﹣1,0) <D )<0,-1)3.若1x >,0y >,且满足3y y x xy x x y==,,则x y +的值为( >.<A )1 <B )2 <C )92<D )1124.点D E ,分别在△ABC 的边AB AC ,上,BE CD ,相交于点F ,设1234BDF BCF CEF EADF S S S S S S S S ∆∆∆====四边形,,,,则13S S 与24S S 的大小关系为( >.<A )1324S S S S < <B )1324S S S S = <C )1324S S S S > <D )不能确定5.设3333111112399S =++++,则4S 的整数部分等于( >. <A )4 <B )5 <C )6 <D )7 二、填空题<共5小题,每小题7分,共35分)6.若关于x 的方程2(2)(4)0x x x m --+=有三个根,且这三个根恰好可以作为一个三角形的三条边的长,则m 的取值范围是 .7.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数字之和为奇数的概率是 .NW2GT2oy018.如图,点A B ,为直线y x =上的两点,过A B ,两点分别作y 轴的平行线交双曲线1y x=<x >0)于C D ,两点. 若2BD AC =,则224OC OD - 的值为 .NW2GT2oy019.若112y x x =-+-的最大值为a ,最小值为b ,则22a b +的值为 .10.如图,在Rt △ABC 中,斜边AB 的长为35,正方形CDEF 内接于△ABC ,且其边长为12,则△ABC 的周长为 .NW2GT2oy01三、解答题<共4题,每题20分,共80分)11.已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值.12.如图,点H 为△ABC 的垂心,以AB 为直径的⊙1O 和△BCH 的外接圆⊙2O 相交于点D ,延长AD 交CH 于点P ,求证:点P 为CH 的中点.13.如图,点A 为y 轴正半轴上一点,A B ,两点关于x 轴对称,过点A 任作直线交抛物线<第8题)<第10题)<第12题)223y x =于P ,Q 两点. <1)求证:∠ABP =∠ABQ ;<2)若点A 的坐标为<0,1),且∠PBQ =60º,试求所有满足条件的直线PQ 的函数解读式.14.如图,△ABC 中,60BAC ∠=︒,2AB AC =.点P 在△ABC 内,且352PA PB PC ===,,,求△ABC 的面积.中国教育学会中学数学教学专业委员会“《数学周报》杯”2018年全国初中数学竞赛试题参考答案 一、选择题1.A解:因为71a =-, 17a +=, 262a a =-, 所以322312612362126261261260662126024.a a a a a a a a a a a +--=-+---=--+=---+=()()()2.B解:依定义的运算法则,有ux vy u vx uy v +=⎧⎨+=⎩,,即(1)0(1)0u x vy v x uy -+=⎧⎨-+=⎩,对任何实数u v ,都成立. 由于实数u v ,的任意性,得<x y ,)=<1,0).3.C<第13题)<第14题)解:由题设可知1y y x -=,于是341y y x yx x -==,所以 411y -=, 故12y =,从而4x =.于是92x y +=.4.C解:如图,连接DE ,设1DEF S S ∆'=,则1423S S EF S BF S '==,从而有1324S S S S '=.因为11S S '>,所以1324S S S S >.5.A解:当2 3 99k =,,,时,因为()()()32111112111k k k k k k k ⎡⎤<=-⎢⎥-+-⎣⎦, 所以 3331111115111239922991004S ⎛⎫<=++++<+-< ⎪⨯⎝⎭. 于是有445S <<,故4S 的整数部分等于4.二、填空题 6.3<m ≤4解:易知2x =是方程的一个根,设方程的另外两个根为12 x x ,,则124x x +=,12x x m =.显然1242x x +=>,所以122x x -<, 164m ∆=-≥0,即 ()2121242x x x x +-<,164m ∆=-≥0,所以1642m -<, 164m ∆=-≥0,<第4题)解之得 3<m ≤4.7.19解: 在36对可能出现的结果中,有4对:<1,4),<2,3),<2,3),<4,1)的和为5,所以朝上的面两数字之和为5的概率是41369=.NW2GT2oy01 8.6解:如图,设点C 的坐标为a b (,),点D 的坐标为c d (,),则点A 的坐标为a a (,),点B 的坐标为.c c (,) 因为点C D ,在双曲线1y x=上,所以11ab cd ==,.由于AC a b =-,BD c d =-, 又因为2BD AC =,于是 22222242c d a b c cd d a ab b -=--+=-+,(),所以 22224826a b c d ab cd +-+=-=()(),即224OC OD -=6.9.32解:由1x -≥0,且12x -≥0,得12≤x ≤1.22213113122()2222416y x x x =+-+-=+--+. 由于13124<<,所以当34x =时,2y 取到最大值1,故1a =. 当12x =或1时,2y 取到最小值12,故22b =. 所以,2232a b +=. 10.84解:如图,设BC =a ,AC =b ,则<第8题)22235a b +==1225. ①又Rt △AFE ∽Rt △ACB ,所以FE AF CB AC =,即1212b a b-=,故 12()a b ab +=. ② 由①②得2222122524a b a b ab a b +=++=++()(), 解得a +b =49<另一个解-25舍去),所以493584a b c ++=+=.三、解答题11.解:设方程20x ax b ++=的两个根为αβ,,其中αβ,为整数,且α≤β,则方程20x cx a ++=的两根为11αβ++,,由题意得()()11a a αβαβ+=-++=,,两式相加得 2210αβαβ+++=, 即 (2)(2)3αβ++=,所以 2123αβ+=⎧⎨+=⎩,; 或232 1.αβ+=-⎧⎨+=-⎩,解得 11αβ=-⎧⎨=⎩,; 或53.αβ=-⎧⎨=-⎩,又因为[11]a b c αβαβαβ=-+==-+++(),,()(),所以 012a b c ==-=-,,;或者8156a b c ===,,,故3a b c ++=-,或29.12.证明:如图,延长AP 交⊙2O 于点Q ,连接 AH BD QB QC QH ,,,,. <第10题)因为AB 为⊙1O 的直径, 所以∠ADB =∠BDQ =90°, 故BQ 为⊙2O 的直径. 于是CQ BC BH HQ ⊥⊥,.又因为点H 为△ABC 的垂心,所以.AH BC BH AC ⊥⊥,所以AH ∥CQ ,AC ∥HQ ,四边形ACQH 为平行四边形. 所以点P 为CH 的中点.13.解:<1)如图,分别过点P Q , 作y 轴的垂线,垂足分别为C D , .设点A 的坐标为<0,t ),则点B 的坐标为<0,-t ).设直线PQ 的函数解读式为y kx t =+,并设P Q,的坐标分别为 P P x y (,),Q Q x y (,).由223y kx t y x =+⎧⎪⎨=⎪⎩,, 得 2203x kx t --=,于是 32P Q x x t =-,即 23P Q t x x =-.于是 222323P P Q Qx t y t BC BD y t x t ++==++22222()333.222()333P P Q P P Q P QQ P Q Q Q P x x x x x x x x x x x x x x --===--- 又因为PQx PCQD x =-,所以BC PC BDQD=.因为∠BCP =∠90BDQ =︒,所以△BCP ∽△BDQ , 故∠ABP =∠ABQ .<第12题)<第13题)<2)解法一 设PC a =,DQ b =,不妨设a ≥b >0,由<1)可知∠ABP =∠30ABQ =︒,BC ,BD ,所以AC 2-,AD =2.因为PC ∥DQ ,所以△ACP ∽△ADQ .于是PCACDQAD =,即a b =,所以a b +=.由<1)中32P Q x x t =-,即32ab -=-,所以322ab a b =+=, 于是可求得2a b =将2b =代入223y x =,得到点Q 的坐标,12).再将点Q 的坐标代入1y kx =+,求得3k =-所以直线PQ 的函数解读式为1y x =+.根据对称性知,所求直线PQ 的函数解读式为1y x =+,或1y +. 解法二 设直线PQ 的函数解读式为y kx t =+,其中1t =. 由<1)可知,∠ABP =∠30ABQ =︒,所以2BQ DQ =.故 2Q x = 将223Q Q y x =代入上式,平方并整理得4241590Q Q x x -+=,即22(43)(3)0Q Q x x --=.所以 2Q x =又由 (1>得3322P Q x x t =-=-,32P Q x x k +=.若32Q x =,代入上式得 3P x =-, 从而 23()33P Q k x x =+=-.同理,若3Q x =, 可得32P x =-, 从而 23()33P Q k x x =+=.所以,直线PQ 的函数解读式为313y x =-+,或313y x =+. 14.解:如图,作△ABQ ,使得QAB PAC ABQ ACP ∠=∠∠=∠,,则△ABQ ∽△ACP . 由于2AB AC =,所以相似比为2. 于是22324AQ AP BQ CP ====,.60QAP QAB BAP PAC BAP BAC ∠=∠+∠=∠+∠=∠=︒.由:2:1AQ AP =知,90APQ ∠=︒,于是33PQ AP ==.所以 22225BP BQ PQ ==+,从而90BQP ∠=︒. 于是222()2883AB PQ AP BQ =++=+ .故 213673sin 60282ABC S AB AC AB ∆+=⋅︒==. 申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

(2020年编辑)历年(95-10)全国初中数学竞赛(联赛)分类题型详解-几何(4)

(2020年编辑)历年(95-10)全国初中数学竞赛(联赛)分类题型详解-几何(4)

历年(95-10)年全国初中数学竞赛(联赛)分类题型详解-几何(4)证明题 (9道题)1.材已知∠ACE=∠CDE=90°,点B在CE上,CA=CB=CD,经A、C、D三点的圆交AB于F(如图)求证F为△CDE的内心。

1995年全国初中数学联赛试题证法1:如图6,连DF,则由已知,有连BD、CF,由CD=CB,知∠FBD=∠CBD-45°=∠CDB-45°=∠FDB,得FB=FD,即F到B、D和距离相等,F在线段BD的垂直平分线上,从而也在等腰三角形CBD的顶角平分线上,CF是∠ECD的平分线.由于F是△CDE上两条角平分线的交点,因而就是△CDE的内心.证法2:同证法1,得出∠CDF=45°=90°-45°=∠FDE之后,由于∠ABC=∠FDE,故有B、E、D、F四点共圆.连EF,在证得∠FBD=∠FDB之后,立即有∠FED=∠FBD=∠FDB=∠FEB,即EF是∠CED的平分线.2. 设凸四边形ABCD的对角线AC、BD的交点为M,过点M作AD的平行线分别交AB、CD于点E、F,交BC的延长线于点O,P是以O为圆心OM为半径的圆上一点(位置如图所示),求证:∠OPF=∠OEP .1996年全国初中数学联赛试题证 作AD 、BO 的延长线相交于G ,∵OE3.如图所示,已知AB 是⊙O 的直径,BC 是⊙O 的切线,OC 平行于弦AD ,过点D 作DE ⊥AB 于点E ,连结AC ,与DE 交于点P . 问EP 与PD 是否相等?证明你的结论. P DOCAB E2003年“TRULY ®信利杯”全国初中数学竞赛试题解:DP =PE . 证明如下:因为AB 是⊙O 的直径,BC 是切线,所以AB ⊥BC .由Rt △AEP ∽Rt △ABC ,得ABAE BC EP = . ① 又AD ∥OC ,所以∠DAE=∠COB ,于是Rt △AED ∽Rt △OBC . 故AB AE AB AE OB AE BC ED 221=== ② 由①,②得 ED =2EP .所以 DP =PE .4.如图所示,在△ABC 中,∠ACB =90°.(1)当点D 在斜边AB 内部时,求证:ABBD AD BC BD CD -=-222. (2)当点D 与点A 重合时,第(1)小题中的等式是否存在?请说明理由.(3)当点D 在BA 的延长线上时,第(1)小题中的等式是否存在?请说明理由. B A CD2003年“TRULY ®信利杯”全国初中数学竞赛试题证:(1)作DE ⊥BC ,垂足为E . 由勾股定理得 .)()()(22222222BC BE CE BE CE DE BE DE CE BD CD -=-=+-+=-A B 所以BC BE BC CE BC BE CE BCBD CD -=-=-222. 因为DE ∥AC ,所以 AB BD BC BE AB AD BC CE ==,.故 AB BD AD AB BD AB AD BCBD CD -=-=-222. (2)当点D 与点A 重合时,第(1)小题中的等式仍然成立。

2020年全国初中数学竞赛试题汇编及参考答案-《数学周报》杯二

2020年全国初中数学竞赛试题汇编及参考答案-《数学周报》杯二

2020年全国初中数学竞赛试题汇编及参考答案《数学周报》杯二一、选择题(共5小题,每小题6分,满分30分.每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里. 不填、多填或错填都得0分)(1)已知实数x y ,满足 42424233y y x x ,,则444y x 的值为( A).(A )7 (B )1132 (C )7132 (D )5解:因为20x ,2y ≥0,由已知条件得212444311384x 2114311322y ,所以444y x 22233y x 2226y x 7.(2)把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为n m ,,则二次函数2y x mx n 的图象与x 轴有两个不同交点的概率是( C ).(A )512 (B )49 (C )1736 (D )12解:基本事件总数有6×6=36,即可以得到36个二次函数.由题意知 =24m n >0,即2m >4n .通过枚举知,满足条件的m n ,有17对. 故1736P .(3)有两个同心圆,大圆周上有4个不同的点,小圆周上有2个不同的点,则这6个点可以确定的不同直线最少有( B ).(A )6条 (B ) 8条 (C )10条 (D )12条解:如图,大圆周上有4个不同的点A ,B ,C ,D ,两两连线可以确定6条不同的直线;小圆周上的两个点E ,F 中,至少有一个不是四边形ABCD 的对角线AC 与BD的交点,则它与A ,B ,C ,D 的连线中,至少有两条不同于A ,B ,C ,D 的两两连线.从而这6个点可以确定的直线不少于8条.当这6个点如图所示放置时,恰好可以确定8条直线.所以,满足条件的6个点可以确定的直线最少有8条.(4)已知AB 是半径为1的圆O 的一条弦,且1AB a .以AB 为一边在圆O 内作正△ABC ,点D为圆O 上不同于点A 的一点,且DB AB a ,DC 的延长线交圆O 于点E ,则AE 的长为( B ).(A 52 (B )1(C 32(D )a解:如图,连接OE ,OA ,OB . 设D ,则120ECA EAC .又因为1160180222ABO ABD 120 ,所以ACE △≌ABO △,于是1AE OA .(5)将1,2,3,4,5这五个数字排成一排,最后一个数是奇数,且使得其中任意连续三个数之和都能被这三个数中的第一个数整除,那么满足要求的排法有( D ).(A )2种 (B )3种 (C )4种 (D )5种解:设12345a a a a a ,是1,2,3,4,5的一个满足要求的排列.首先,对于1234a a a a ,,不能有连续的两个都是偶数,否则,这两个之后都是偶数,与已知条件矛盾.又如果i a (1≤i ≤3)是偶数,1i a 是奇数,则2i a 是奇数,这说明一个偶数后面一定要接两个或两个以上的奇数,除非接的这个奇数是最后一个数.所以12345a a a a a ,只能是:偶,奇,奇,偶,奇,有如下5种情形满足条件:2,1,3,4,5; 2,3,5,4,1; 2,5,1,4,3;4,3,1,2,5; 4,5,3,2,1.二、填空题(共5小题,每小题6分,满分30分)(6)对于实数u ,v ,定义一种运算“*”为:u v uv v .若关于x 的方程1()4x a x有两个不同的实数根,则满足条件的实数a 的取值范围是.【答】0a ,或1a .解:由1()4x a x ,得21(1)(1)04a x a x ,依题意有 210(1)(1)0a a a ,,解得,0a ,或1a .(7)小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是 分钟.【答】4.解:设18路公交车的速度是x 米/分,小王行走的速度是y 米/分,同向行驶的相邻两车的间距为s 米.每隔6分钟从背后开过一辆18路公交车,则s y x 66. ① 每隔3分钟从迎面驶来一辆18路公交车,则s y x 33. ②由①,②可得 x s 4 ,所以 4 x s .即18路公交车总站发车间隔的时间是4分钟.。

2019年全国数学竞赛试题详细参考答案

2019年全国数学竞赛试题详细参考答案

中国教育学会中学数学教学专业委员会《数学周报》杯” 2013年全国初中数学竞赛试题参考答案题号-一一 _ 二 _ 三总分1〜56〜1011121314得分评卷人复查人答题时注意:1用圆珠笔或钢笔作答2•解答书写时不要超过装订线. 3.草稿纸不上交.一、选择题(共5小题,每小题6分,满分30分.以下每道小题均给出了代号为 A , B , C , D 的四个选项,其中有且只有一个选项是正确的 .请将正确选项的代号填入题后的括号 里.不填、多填或错填都得0分)1.已知实数x , y 满足 刍二=3, y 4 - y^3,则-44 y 4的值为().XXx(A ) 7 (B )(C ) 7 "3(D )52 2【答】(A ) 解:因为x 20,y 2 > 0,由已知条件得-1,13244 y 4 乡 3 3-y 2£ -y 2 6 =7.X XX程为t 2 +t-3=0,所以(一W )+ y 2 =-1, (―寸=-3X X2.把一枚六个面编号分别为1, 2, 3, 4, 5, 6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为 m , n ,则二次函数y = x 2 • mx • n 的图象与X 轴 有两个不同交点的概率是().(D)所以另解:由已知得: 2 2 2」(一P )2+(—P )—3=0 X X Q 2) + y 2-3 = 0显然 2 2 2 2 2 -y 2,以- 2 ,y 2为根的一元二次方 XX42故 4y 4 二[(- 2)y 2]2 -2XX2 2 22)y =(T) -2 (-3)=7 X12.4 4 4 3[答]( C )解:基本事件总数有60 = 36,即可以得到36个二次函数.由题意知;_ =_4n >0,即卩 m 2 >4n .通过枚举知,满足条件的 m, n 有 17 对.363.有两个同心圆,大圆周上有 4个不同的点,小圆周上有 可以确定的不同直线最少有().2个不同的点,则这6个点 (A ) 6条 (B ) 8 条(C ) 10 条(D ) 12 条【答](B )解:如图,大圆周上有4个不同的点A ,B ,C ,D ,两两连线 可以确定6条不同的直线;小圆周上的两个点 E ,F 中,至少有一 个不是四边形ABCD 的对角线AC 与BD 的交点,则它与A ,B ,C , D 的连线中,至少有两条不同于 A ,B ,C ,D 的两两连线.从而这 6个点可以确定的直线不少于 8条.当这6个点如图所示放置时,恰好可以确定 8条直线. 所以,满足条件的6个点可以确定的直线最少有8条.4 .已知AB 是半径为1的圆O 的一条弦,且 AB 二a :::1 .以AB 为一边在圆O 内作正△ ABC ,点D 为圆O 上不同于点A 的一点,且DB 二AB 二a , AE 的长为().(B) 1(C )乎【答](B )解:女口图,连接 OE ,OA ,OB .设.D =:,贝UECA=120- EAC .11又因为 ABO ABD 60180 -2:-120 -:22所以△ ACE 也△ ABO ,于是AE = OA = 1 .另解:如图,作直径EF ,连结AF ,以点B 为圆心,AB 为半径 作。

“周报杯”2019年全国初中数学竞赛试题及参考答案

“周报杯”2019年全国初中数学竞赛试题及参考答案

解:由
4 ,得
4,
a 1 0,
依题意有
(a
1)2
(a
1)
0,解得,
a
0
,或
a
1

(7)小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从
迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每
隔固定时间发一辆车,那么发车间隔的时间是
分钟.
【答】4.
5a (A) 2
(B)1
3
(C) 2
(D) a
解:如图,连接OE,OA,OB. 设 D ,
则 ECA 120 EAC .
ABO 1 ABD 1 60,
所以 △ ACE ≌ △ ABO ,于是 AE OA 1.
(5)将1,2,3,4,5这五个数字排成一排,最后一个数是奇数,且使得其中任意
所以 s 13 可能为1,3,5,7,9,进而 (t 13)2 为337,329,313,289,257,故
5
保证原创精品 已受版权保护
s 6,s 20 只能是 (t 13)2 =289,从而 s 13 =7.有 t 4;,t 4 故
x 48,x 160
y
32,
y
32.
三、解答题(共4题,每题15分,满分60分)
定8条直线.所以,满足条件的6个点可以确定的直线最
少有8条.
(4)已知 AB 是半径为1的圆 O 的一条弦,

AB a 1 .以 AB 为一边在圆 O 内作正△ ABC ,

D 为圆 O 上不同于点A的一点,且 DB AB a , DC 的 延长线交圆 O 于点 E ,则 AE 的长为( B ).

2011年《数学周报》杯全国初中数学竞赛

2011年《数学周报》杯全国初中数学竞赛
对 任何 实数 、 都成 立 . 由实数 、 的任 意性 得 ( y ,)=( ,) 10 .
2. D . B.
5. A. A.
当 k= , , ,9时 , 23 … 9 由
古 ( =【 <; 丢
则 l 1 ∑去 <= +
一 】 J 丽 ’
由 知 得f 已可
2 1 年 第 5期 01
21 《 0 1年 数学 周报 》 全 国初 中 数 学 竞 赛 杯
中图 分 类 号 :G 2. 9 4 4 7 文 献 标 识 码 :A 文 章 编 号 :10 6 1 ( 0 1 0 0 5— 4 6 2 1 )5—0 2 0 0 3— 6


选 择题 ( 每小 题 7分 , 3 共 5分 )
3. A.C.
题设 两式 相乘 得
= ): , .
同上 知 4 S的整 数部 分等 于 4 .
二 、 A. 6. 3<m ≤4.
进而 , 4 : .
因此 , Y ÷ . + =
3. B.C.

易知 , 2是方程 的一个根 . = 设 方 程 另 两 个 根 为 、 ( ≥ >0 . ) 贝 I = X 2 U + 2 4,l =m. 由题设 知
1 . . 图 5, 2B 如 已知正 方
形 A C 的边长为 1P、 BD , Q是其 内两 点 , 且
P Q= P Q= 5 . A C 4。
与 矩形 O B A C的边 C B B、A分别 交 于点 E、 F, 且 A =B 联 结 E . △ O F 的 面 积 为 F F, F则 E
≥ 5口 6+3a 5≥ 8 5+5口 n 4≥ …
1 B.C. .

“《数学周报》杯”2009年全国初中数学竞赛(辽宁赛区北师大版九年级)初赛试题及参考答案

“《数学周报》杯”2009年全国初中数学竞赛(辽宁赛区北师大版九年级)初赛试题及参考答案


选择题 ( 下列每 小题的选项 中 ,
( <2或 >4 A)

5 若 函数 y = +6与 y = 的 图 . 1 z
象 如 图 1 示 ,则 有 ( 所

只有 一 个 是 正确 的 ,请 将 正 确 选 项 的代 号 填 入 题 号 后 的 括 号 内.本 大题 共 8道 小
4 8
ll 2 28 0
23 2 13 9 15 6 4 2


图 2
( A) 10 2。 ( C)1 0 5。
( ) 1 5 B 3。 ( D)1 5 2o
[ 0 , 1 0 ) 1 0 50 3 [ o ,l 0 ) 1 o 0 5 7 [ 0 ,l 0 ) 1 0 0 7 9

D A
频率
的 ,还有 捐 5 和 10元 的.如 图 6所 结果如表 2所示 : 0元 0 示的统计 图反映 了不 同捐款 的人数 比例 , 那 么该班学生平均每人捐款
5元
表2
分组 频数
[0 ,9 0 50 0 )
[0 90,110) 0 [ 0 ,1 0 ) 1 o 0 1 3
点 G, F AC于点 F 上 ;过点 曰作 B L H_ AC
于 点 H.

的平 分线 ,设 B C=0 ,AC=b E=d ,A , B e E= '则有,=、 一 . E= ,c , / 如
证 明 :如 图 l ,延 长 C O E交 △A C B
的 外 接 圆 于点 D,连接 A . D
显 然 , 当 =9 。 , 此 公 式 即 f= 0时

则 者 ・ 有
又 =d e,

“《数学周报》杯”全国初中数学竞赛(天津赛区)试题参考答案及评分标准

“《数学周报》杯”全国初中数学竞赛(天津赛区)试题参考答案及评分标准

“《数学周报》杯”20XX 年全国初中数学竞赛 (天津赛区)试题参考答案及评分标准一、选择题(共5小题,每小题7分,满分35分) (1)设32x =,则代数式(1)(2)(3)x x x x +++的值为( ). (A )0 (B )1(C )﹣1(D )2【答】C . 解:由已知得2310x x ++=, 于是2222(1)(2)(3)(3)(32)(31)1 1.x x x x x x x x x x +++=+++=++-=-(2)已知x y z ,,为实数,且满足253x y z +-=,25x y z --=-,则222x y z ++的最小值为( ).(A )111(B )0(C )5(D )5411【答】D .解:由 25325x y z x y z +-=⎧⎨--=-⎩,, 可得 312.x z y z =-⎧⎨=+⎩,于是 22221125xy z z z ++=-+.因此,当111z =时,222x y z ++的最小值为5411. (3)若1x >,0y >,且满足3yy xxy x x y==,,则x y +的值为( ). (A )1 (B )2(C )92(D )112【答】C . 解:由题设可知1y y x -=,于是 341y y x yx x -==,所以411y -=.故12y=,从而4=x .于是92x y +=.(4)设333311111232011S =++++,则4S 的整数部分等于( ). (A )4 (B )5(C )6(D )7【答】A .解:当2 3 2011k =,,,,因为()()()32111112111k k k k k k k ⎡⎤<=-⎢⎥-+-⎣⎦, 所以333111111511123201122201120124S ⎛⎫<=++++<+-< ⎪⨯⎝⎭. 于是有445S <<,故4S 的整数部分等于4.(5)点D E ,分别在△ABC 的边AB AC ,上,BE CD ,相交于点F ,设1234BDF BCF CEF EADF S S S S S S S S ∆∆∆====四边形,,,,则13S S 与24S S的大小关系为( ).(A )1324S S S S < (B )1324S S S S =(C )1324S S S S > (D )不能确定 【答】C .解:如图,连接DE ,设1DEF S S ∆'=, 则1423S S EF S BF S '==,从而有1324S S S S '=.因为11S S '>,所以1324S S S S >.二、填空题(共5小题,每小题7分,共35分)(6)两条直角边长分别是整数a b ,(其中2011b <),斜边长是1b +的直角三角形的个数为 .【答】31.解:由勾股定理,得 12)1(222+=-+=b b b a .因为b 是整数,2011<b ,所以2a 是1到4023之间的奇数,而且是完全平方数,这样的数共有31个,即2223 5 63,,,.因此a 一定是3,5,…,63,故满足条件的直角三角形的个数为31.(7)一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数之和为7的概率是 .【答】16. 解: 在36对可能出现的结果中,有6对:(1,6), (2,5), (2,5), (3,4),(3,4),(4,3)的和为7,所以朝上的面两数字之和为7的概率是61366=.(8)若y =的最大值为a ,最小值为b ,则22a b +的值为 .【答】32. 解:由1x -≥0,且12x -≥0,得12≤x ≤1.21122y =+=+ 由于13124<<,所以当34x =时,2y 取到最大值1,故1a =. 当12x =或1时,2y 取到最小值12,故2b =.所以,2232a b +=.(9)如图,双曲线xy 2=(x >0)与矩形OABC 的边CB , BA 分别交于点E ,F ,且AF=BF ,连接EF ,则△OEF 的面积为 .【答】32. 解:如图,设点B 的坐标为a b (,),则点F 的坐标为2b a (,).因为点F 在双曲线2y x=上,所以 4.ab = 又点E 在双曲线上,且纵坐标为b ,所以点E 的坐标为2(,)b b.于是11212222221312.22OEF OEC FBEOFBC S S S S b b b a b a b b ab ∆∆∆=--=+-⨯⨯-⨯⨯-=+-=梯形()()()(10)如图,在Rt △ABC 中,斜边AB 的长为35,正方形CDEF 内接于△ABC ,且其边长为12,则△ABC 的周长为 .【答】84.解:如图,设BC =a ,AC =b , 则22235a b +==1225. ① 又Rt △AFE ∽Rt △ACB , 所以FE AF CB AC =,即1212b a b-=, 故12()a b ab +=. ②由①②得 2222122524a b a b ab a b +=++=++()(),解得a +b =49(另一个解-25舍去),所以 493584a b c ++=+=.三、解答题(共4题,每题20分,共80分)(11)已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值.解:设方程20x ax b ++=的两个根为αβ,,其中αβ,为整数,且α≤β,则方程20x cx a ++=的两根为11αβ++,,由题意得()()11a a αβαβ+=-++=,, ………………………………5分两式相加,得2210αβαβ+++=,即 (2)(2)3αβ++=,所以,2123αβ+=⎧⎨+=⎩,; 或232 1.αβ+=-⎧⎨+=-⎩,………………………………10分解得 11αβ=-⎧⎨=⎩,; 或53.αβ=-⎧⎨=-⎩,又因为[11]a b c αβαβαβ=-+==-+++(),,()(), 所以012a b c ==-=-,,;或者8156a b c ===,,,故3a b c ++=-,或29. ………………………………………………20分(12)如图,点H 为△ABC 的垂心,以AB 为直径的⊙1O 和△BCH 的外接圆⊙2O 相交于点D ,延长AD 交CH 于点P ,求证:点P 为CH 的中点.证明:如图,延长AP 交⊙2O 于点Q ,连接 AH BD QB QC QH ,,,,. 因为AB 为⊙1O 的直径,所以∠ADB =∠90=︒BDQ .…………5分 故BQ 为⊙2O 的直径.于是CQ BC BH HQ ⊥⊥,.又因为点H 为△ABC 的垂心,所以AH BC BH AC ⊥⊥, 所以AH ∥CQ ,AC ∥HQ ,四边形ACQH 为平行四边形. …………………………………………15分 所以点P 为CH 的中点. …………………………………………20分(13) 如图,点A 为y 轴正半轴上一点,A B ,两点关于x 轴对称,过点A 任作直线交抛物线223y x =于P ,Q 两点. (Ⅰ)求证:∠ABP =∠ABQ ; (Ⅱ)若点A 的坐标为(0,1), 且∠PBQ =60º,试求所有满足条件的 直线PQ 的函数解析式.解:(Ⅰ)如图,分别过点P Q , 作y 设点A 的坐标为(0,t ),则点B 的坐标为(0,-t ). 设直线PQ 的函数解析式为y kx t =+,并设P Q ,的坐标分别为 P P x y (,),Q Q x y (,).由223y kx t y x =+⎧⎪⎨=⎪⎩,, 得2203x kx t --=,于是 32P Q x x t =-,即 23P Q t x x =-.于是,222323P P Q Qx t y t BC BD y t x t ++==++22222()333.222()333P P Q P P Q P Q Q P Q Q Q P x x x x x x x x x x x x x x --===--- ……5分又因为P Q x PC QD x =-,所以BC PCBD QD=. 因为∠BCP =∠90BDQ =︒,所以△BCP ∽△BDQ .故∠ABP =∠ABQ . ……………………………………………………10分(Ⅱ)解法一 设PC a =,DQ b =,不妨设a ≥b >0, 由(Ⅰ)可知∠ABP =∠30ABQ =︒,BC ,BD , 所以 AC 2-,AD =2-. 因为PC ∥DQ ,所以△ACP ∽△ADQ .于是PC ACDQ AD=,即a b =.所以a b +=.由(Ⅰ)中32P Q x x t =-,即32ab -=-,所以32ab a b =+=,于是,可求得2==a b将2b =代入223y x =,得到点Q,12). ……………15分再将点Q 的坐标代入1y kx =+,求得=k 所以直线PQ的函数解析式为1y =+.根据对称性知,所求直线PQ的函数解析式为1y =+,或1y x =+. ……………20分解法二 设直线PQ 的函数解析式为y kx t =+,其中1t =. 由(Ⅰ)可知,∠ABP =∠30ABQ =︒,所以2BQ DQ =. 故2Q x =.将223Q Q y x =代入上式,平方并整理得 4241590Q Q x x -+=,即22(43)(3)0Q Q x x --=.所以2Q x =.又由(Ⅰ),得3322P Q x x t =-=-,32P Q x x k +=.若2Q x =代入上式得P x = 从而2()33P Q k x x =+=-.同理,若Q x =可得P x = 从而2()3P Q k x x =+=.所以,直线PQ 的函数解析式为13y x =+,或13y x =+. ……………………………………20分(14)已知0122011i a i >=,, , , ,且122011a a a <<<,证明:122011a a a ,,,中一定存在两个数i j a a i j <,(),使得(1)(1)2010i j j i a a a a ++-<.证明:令20101 2 20111i ix i a ==+,,,,, ………………………………5分 则20112010102010x x x <<<<<. ……………………………10分故一定存在1≤k ≤2010, 使得11k k x x +-<,从而120102010111k k a a +-<++. ……………………………15分即 11(1)(1)2010k k k k a a a a ++++-<. ……………………………………20分。

历年(95-10)全国初中数学竞赛(联赛)分类题型详解-几何(1)

历年(95-10)全国初中数学竞赛(联赛)分类题型详解-几何(1)

历年(95-10)年全国数学竞赛(联赛)分类题型详解 - 几何(1)选择题(30道题)1. 如果边长顺次为25、39、52与60的四边形内接于一圆,那么此圆的周长为[ ]A.62πB.63π C.64πD.65π1995年全国初中数学联赛试题答案: D详解:四个选择支表明,圆的周长存在且唯一,从而直径也存在且唯一.又由AB2+AD2 =252+602 =52×(52+122)=52×132=(32+42)×132 =392+522 =BC2+CD2故可取BD=65为直径,得周长为65π,选D.2. 设AB是⊙O的一条弦,CD是⊙O的直径,且与弦AB相交,记M=|S△CAB-S△DAB|,N=2S△OAB,则[ ]A.M>N B.M=N C.M<N D.M、N的大小关系不确定1995年全国初中数学联赛试题答案: B详解1: 不失一般性,设CE≥ED,在CE上取CF=ED,则有OF=OE,且S△ACE-S△ADE=S△AEF=2S△AOE.同理,S△BCE-S△BDE=2S△BOE.相加,得S△ABC-S△DAB=2S△OAB,即M=N.选B.详解2: 若过C、D、O分别作AB的垂线(图3),CE⊥AB、DF⊥AB、OL⊥AB,垂足分别为E、F、L.连CF、DE,可得梯形CEDF.又由垂径分弦定理,知L是EF的中点.根据课本上做过的一道作业:梯形对角线中点的连线平行底边,并且等于两底差的一半,有|CE-DF|=2OL.即M=N.选B.3.如图,A是半径为1的圆O外的一点,OA=2,AB是圆O的切线,B是切点,弦BC∥OA,连结AC,则阴影部分的面积等于[ ]1996年全国初中数学联赛试题答案: B4.如果一个三角形的面积和周长都被一直线所平分,那么该直线必通过这个三角形的[ ]A.内心B.外心C.重心D.垂心1996年全国初中数学联赛试题答案: A5.如果20个点将某圆周20等分,那么顶点只能在这20个点中选取的正多边形的个数有[ ]A.4个B.8个 C.12个 D.24个1996年全国初中数学联赛试题答案: C6. 在△ABC中,已知BD和CE分别是两边上的中线,并且BD⊥CE,BD=4,CE=6,那么△ABC的面积等于()(A)12(B)14(C)16(D)181998年全国数学联赛试卷答案: C详解: 连ED,则又因为DE是△ABC两边中点连线,所以故选C.7.一个凸n边形的内角和小于1999°,那么n的最大值是().A.11 B.12 C.13 D.141999年全国初中数学竞赛答案: C8.在三角形ABC 中,D 是边BC 上的一点,已知AC=5,AD=6,BD=10,CD=5,那么三角形ABC 的面积是( ).A .30B .36C .72D .1251999年全国初中数学竞赛答案: B9.在正五边形ABCDE 所在的平面内能找到点P ,使得△PCD 与△BCD 的面积相等,并且△ABP 为等腰三角形,这样的不同的点P 的个数为( ).A .2B .3C .4D .51999年全国初中数学竞赛答案: D10. 设a ,b ,c 分别是△ABC 的三边的长,且cb a b a b a +++=,则它的内角∠A 、∠B 的关系是( )。

全国初中数学竞赛(联赛)分类题型详解-几何

全国初中数学竞赛(联赛)分类题型详解-几何

历年(95-10)年全国数学竞赛(联赛)分类题型详解 - 几何(1)选择题(30道题)1. 如果边长顺次为25、39、52与60的四边形内接于一圆,那么此圆的周长为[ ]A.62πB.63π C.64πD.65π1995年全国初中数学联赛试题答案: D详解:四个选择支表明,圆的周长存在且唯一,从而直径也存在且唯一.又由AB2+AD2 =252+602 =52×(52+122)=52×132=(32+42)×132 =392+522 =BC2+CD2故可取BD=65为直径,得周长为65π,选D.2. 设AB是⊙O的一条弦,CD是⊙O的直径,且与弦AB相交,记M=|S△CAB-S△DAB|,N=2S△OAB,则[ ]A.M>N B.M=N C.M<N D.M、N的大小关系不确定1995年全国初中数学联赛试题答案: B详解1: 不失一般性,设CE≥ED,在CE上取CF=ED,则有OF=OE,且S△ACE-S△ADE=S△AEF=2S△AOE.同理,S△BCE-S△BDE=2S△BOE.相加,得S△ABC-S△DAB=2S△OAB,即M=N.选B.详解2: 若过C、D、O分别作AB的垂线(图3),CE⊥AB、DF⊥AB、OL⊥AB,垂足分别为E、F、L.连CF、DE,可得梯形CEDF.又由垂径分弦定理,知L是EF的中点.根据课本上做过的一道作业:梯形对角线中点的连线平行底边,并且等于两底差的一半,有|CE-DF|=2OL.即M=N.选B.3.如图,A是半径为1的圆O外的一点,OA=2,AB是圆O的切线,B是切点,弦BC∥OA,连结AC,则阴影部分的面积等于[ ]1996年全国初中数学联赛试题答案: B4.如果一个三角形的面积和周长都被一直线所平分,那么该直线必通过这个三角形的[ ]A.内心B.外心C.重心D.垂心1996年全国初中数学联赛试题答案: A5.如果20个点将某圆周20等分,那么顶点只能在这20个点中选取的正多边形的个数有[ ]A.4个B.8个 C.12个 D.24个1996年全国初中数学联赛试题答案: C6. 在△ABC中,已知BD和CE分别是两边上的中线,并且BD⊥CE,BD=4,CE=6,那么△ABC的面积等于()(A)12(B)14(C)16(D)181998年全国数学联赛试卷答案: C详解: 连ED,则又因为DE是△ABC两边中点连线,所以故选C.7.一个凸n边形的内角和小于1999°,那么n的最大值是().A.11 B.12 C.13 D.141999年全国初中数学竞赛答案: C8.在三角形ABC 中,D 是边BC 上的一点,已知AC=5,AD=6,BD=10,CD=5,那么三角形ABC 的面积是( ).A .30B .36C .72D .1251999年全国初中数学竞赛答案: B9.在正五边形ABCDE 所在的平面内能找到点P ,使得△PCD 与△BCD 的面积相等,并且△ABP 为等腰三角形,这样的不同的点P 的个数为( ).A .2B .3C .4D .51999年全国初中数学竞赛答案: D10. 设a ,b ,c 分别是△ABC 的三边的长,且cb a ba b a +++=,则它的内角∠A 、∠B 的关系是( )。

小学生数学报杯

小学生数学报杯

“《小学生数学报》杯”江苏省首届小学生探索与应用能力竞赛初赛试卷(六年级)(满分120分,90分钟完成)得分一、填空题(每题10分,共80分)1、某一天的外汇牌价所显示的汇率是:1美元兑换8.4元人民币。

这天李先生用80美元兑换了112万越南盾。

1万越南盾约合 元人民币。

2、《第五次全国人口普查主要数据公报》显示,祖国大陆31个省、自治区、直辖市和现役军人的总人口为126583万人,其中男性为65355万人,这些人口中,男性与女性人口的整数比为1000: 。

3、一个长方形的操场,长是宽的2.5倍,根据需要将它进行扩建,而且长必须是宽的2倍,设计人员发现,如果把原来长方形操场的长和宽各加长20米,刚好符合要求。

扩建后的这个操场的面积是 平方米。

4、两条线段将一个边长10厘米的正方形分割成两个 高相等的直角梯形和一个直角三角形。

已知两个梯形的面 积差是10平方厘米,那么图中的x= 厘米。

5、一个用旧了的量角器,大部分的刻度都已经磨损, 只有下列刻度还看得清楚:0度,4度,10度,16度,43度,89度和180度。

用这个量角器量角度时,有 个角度(不大于180度)能够一次性直接量出来。

6、寒暑表中通常有两个刻度:摄氏度(记为℃)和华氏度(记为O F ),它们之间的换算关系是:摄氏度× +32=华氏度。

在摄氏 度时,华氏度的值恰好比摄氏度的值大60。

7、在A 医院,甲种药有20人接受试验,结果6人有效;乙种药有10个接受试验,结果只有2人有效。

在B 医院,甲种药有80人接受试验,结果40人有效;乙种药有990人接受试验,结果478人有效。

综合A 、B 两家医院的试验结果, 种药总的疗效更好。

8、五(4)班64名学生中,有40人爱好绘画,有45人爱好体育,有48人爱好电脑,三项都爱好的有26人。

五(4)班最多有 人三项都不爱好。

二、银鹰国际商厦采用“满300送50”的办法来促销,办法是这样的:购物满300元,赠送50元“礼券”,不足300的部分略去不计。

数学竞赛试题

数学竞赛试题

“《数学周报》杯”2012年全国初中数学竞赛试题一、选择题(共5小题,每小题6分,共30分)1、(甲)如果实数a ,b ,c 在数轴上的位置如图所示,代数式()||||22c b a c b a a ++-++-可以化简为( )A 、a c -2B 、b a 22-C 、a -D 、a 1、(乙)如果22+-=a ,那么a+++31211的值为( )A 、2-B 、2C 、2D 、22 2(甲)、如果正比例函数()0≠=a ax y 与反比例函数()0≠=b xby 的图象有两个交点,其中一个交点的坐标为(3-,2-),那么另一个交点的坐标为( )A 、(2,3)B 、(3,2-)C 、(2-,3)D 、(3,2) 2(乙)、 在平面直角坐标系xOy 中,满足不等式y x y x 2222+≤+的整数点坐标(x ,y )的个数为( )A 、10B 、9C 、7D 、53(甲)、如果a ,b 为给定的实数,且b a 1,那么1,1+a ,b a +2,1++b a 这四个数据的平均数与中位数之差的绝对值是( )A 、1B 、412-a C 、21 D 、413(乙)、如图,四边形ABCD 中,AC ,BD 是对角线,ABC ∆是等边三角形,︒=∠30ADC ,3=AD ,5=BD ,则CD 的长为( )A 、23B 、4C 、52D 、4.54(甲)、小倩和小玲每人都有若干面值为整数元的人民币。

小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( )A 、1B 、2C 、3D 、44(乙)、如果关于x 的方程02=--q px x (p 、q 是正整数)的正根小于3, 那么这样的方程的个数是( )A 、 5B 、6C 、7D 、85(甲)、一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰ACB D第7题图甲CF MN EABD第7题图乙COEAB子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为0p ,1p ,2p ,3p ,则0p ,1p ,2p ,3p 中最大的是( )A 、0pB 、1pC 、2pD 、3p 5(乙)、黑板上写有1,21,31,…,1001共100个数字。

《数学周报》杯2011年全国初中数学竞赛试题及答案

《数学周报》杯2011年全国初中数学竞赛试题及答案

中国教育学会中学数学教学专业委员会“《数学周报》杯”2011年全国初中数学竞赛试题参考答案答题时注意:1.用圆珠笔或钢笔作答.2.解答书写时不要超过装订线. 3.草稿纸不上交.一、选择题(共5小题,每小题6分,满分30分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里. 不填、多填或错填都得0分)一、选择题(每小题7分,共35分,每小题只有一个正确选项) 1、设17-=a ,则代数式12612323--+a a a 的值为( )(A )24 (B )25 (C )1074+ (D )1274+ 2、对于任意实数a ,b ,c ,d ,定义有序实数对(a ,b )与(c ,d )之间的运算“△”为:(a ,b )△(c ,d )=(ac+bd ,ad+bc )。

如果对于任意实数u ,v ,都有(u ,v )△(x ,y )=(u ,v ),那么(x ,y )为( ) (A )(0,1) (B )(1,0) (C )(-1,0) (D )(0,-1)3、若x>1,y>0,且满足xy=x y ,yxyx 3=,则x+y 的值为( )(A )1 (B )2 (C )29(D )2114、点D ,E 分别在△ABC 的边AB ,AC 上,BE ,CD 相交于点F ,设S 四边形EADF =S 1,S △BDF =S 2,S △BCF =S 3,S △CEF =S 4,则S 1S 3与S 2S 4的大小关系为( )(A )S 1S 3< S 2S 4 (B )S 1S 3=S 2S 4 (C )S 1S 3>S 2S 4 (D )不能确定 5、设3333991312111+⋅⋅⋅+++=S ,则4S 的整数部分等于( )(A )4 (B )5 (C )6 (D )7二、填空题(每小题7分,共35分) 6、若关于x 的方程(x-2)(x 2-4x+m )=0有三个根,且这三个根恰好可以作为一个三角形的三条边的长,则m 的取值范围是___________。

教育学会中学数学教学专业委数学周报杯全国初中数学竞赛员会试题及参考答案

教育学会中学数学教学专业委数学周报杯全国初中数学竞赛员会试题及参考答案

教育学会中学数学教学专业委数学周报杯全国初中数学竞赛员会试题及参考答案Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】中国教育学会中学数学教学专业委员会 “《数学周报》杯”2007年全国初中数学竞赛试题及参考答案一、选择题(共5小题,每小题6分,满分30分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里. 不填、多填或错填得零分)1.方程组12,6x y x y ⎧+=⎪⎨+=⎪⎩的解的个数为( ).(A )1 (B ) 2 (C ) 3 (D )4 答:(A ).解:若x ≥0,则12,6,x y x y +=⎧⎪⎨+=⎪⎩于是6y y -=-,显然不可能.若0x <,则 12,6,x y x y -+=⎧⎪⎨+=⎪⎩于是18y y +=,解得9y =,进而求得3x =-.所以,原方程组的解为⎩⎨⎧=-=,9,3y x 只有1个解.故选(A ).2.口袋中有20个球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是( ).(A ) 14 (B ) 16 (C )18 (D )20 答:(B ). 解:用枚举法:红球个数 白球个数 黑球个数 种 数 5 2,3,4,5 3,2,1,0 4 4 3,4,5,6 3,2,1,0 43 4,5,6,7 3,2,1,04 2 5,6,7,8 3,2,1,0 4所以,共16种.故选(B ).3.已知△ABC 为锐角三角形,⊙O 经过点B ,C ,且与边AB ,AC 分别相交于点D ,E . 若⊙O 的半径与△ADE 的外接圆的半径相等,则⊙O 一定经过△ABC 的( ).(A )内心 (B )外心 (C )重心 (D )垂心 答:(B ).解: 如图,连接BE ,因为△ABC 为锐角三角形,所以BAC ∠,ABE ∠均为锐角.又因为⊙O 的半径与△ADE 的外接圆的半径相等,且DE 为两圆的公共弦,所以BAC ABE ∠=∠.于是,2BEC BAC ABE BAC ∠=∠+∠=∠.若△ABC 的外心为1O ,则12BO C BAC ∠=∠,所以,⊙O 一定过△ABC 的外心. 故选(B ).4.已知三个关于x 的一元二次方程02=++c bx ax ,02=++a cx bx ,02=++b ax cx恰有一个公共实数根,则222a b c bc ca ab++的值为( ).(A ) 0 (B )1 (C )2 (D )3 答:(D ).解:设0x 是它们的一个公共实数根,则0020=++c bx ax ,0020=++a cx bx ,0020=++b ax cx .把上面三个式子相加,并整理得200()(1)0a b c x x ++++=.(第3题答案因为22000131()024x x x ++=++>,所以0a b c ++=.于是222333333()a b c a b c a b a b bc ca ab abc abc+++-+++== 3()3ab a b abc-+==.故选(D ).5.方程323652x x x y y ++=-+的整数解(x ,y )的个数是( ). (A )0 (B )1 (C )3 (D )无穷多 答:(A ). 解:原方程可化为2(1)(2)3(1)(1)2x x x x x y y y ++++=-++(),因为三个连续整数的乘积是3的倍数,所以上式左边是3的倍数,而右边除以3余2,这是不可能的.所以,原方程无整数解.故选(A).二、填空题(共5小题,每小题6分,满分30分)6.如图,在直角三角形ABC 中,90ACB ∠=︒,CA =4.点P 是半圆弧AC 的中点,连接BP ,线段BP 把图形APCB 分成两部分,则这两部分面积之差的绝对值是 .答:4.解:如图,设AC 与BP 相交于点D ,点D 关于圆心O 的对称点记为点E ,线段BP 把图形APCB 分成两部分,这两部分面积之差的绝对值是△BEP 的面积,即△BOP 面积的两倍.而1122222BPO S PO CO ∆=⋅=⨯⨯=. 因此,这两部分面积之差的绝对值是4.(第6题答案7.如图, 点A ,C 都在函数33(0)y x =>的图象上,点B ,D 都在x 轴上,且使得△OAB ,△BCD 都是等边三角形,则点D 的坐标为 .答:(26,0).解:如图,分别过点A ,C 作x 轴的垂线,垂足分别为E ,F .设OE =a ,BF =b , 则AE =3a ,CF =3b ,所以,点A ,C 的坐标为(a ,3a ),(2a +b ,3b ),所以 2333,3(2)33,a b a b ⎧=⎪⎨+=⎪⎩解得3,63,a b ⎧=⎪⎨=-⎪⎩ 因此,点D 的坐标为(26,0).8.已知点A ,B 的坐标分别为(1,0),(2,0). 若二次函数()233y x a x =+-+的图象与线段AB 恰有一个交点,则a 的取值范围是 .答:1-≤12a <-,或者323a =-.解:分两种情况:(Ⅰ)因为二次函数()233y x a x =+-+的图象与线段AB 只有一个交点,且点A ,B 的坐标分别为(1,0),(2,0),所以[][]032)3(231)3(122<+⨯-+⨯+⨯-+a a ,得112a -<<-.由031)3(12=+⨯-+a ,得1a =-,此时11=x ,32=x ,符合题意;由032)3(22=+⨯-+a ,得12a =-,此时21=x ,232=x ,不符合题意.(Ⅱ)令()2330x a x +-+=,由判别式0∆=,得323a =±.当323a =+时,123x x ==-,不合题意;当323a =-时,123x x ==,符合题意.(第7题答案综上所述,a 的取值范围是1-≤12a <-,或者323a =-.9.如图,90A B C D E F G n ∠+∠+∠+∠+∠+∠+∠=⋅︒,则n = . 答:6.解:如图,设AF 与BG 相交于点Q ,则AQG A D G ∠=∠+∠+∠,于是A B C D E F G ∠+∠+∠+∠+∠+∠+∠B C E F AQG =∠+∠+∠+∠+∠ B C E F BQF =∠+∠+∠+∠+∠540690=︒=⨯︒. 所以,n =6.10.已知对于任意正整数n ,都有312n a a a n +++=,则23100111111a a a +++=--- .答:33100. 解:当n ≥2时,有3121n a a a a n n =++++- ,3121(1)n a a a n -+++=-,两式相减,得 2331n a n n =-+, 所以),111(31)1(3111n n n n a n --=-=- ,4,3,2=n 因此 23100111111a a a +++---11111111(1)()()32323399100=-+-++- (第9题答案1133(1)3100100=-=. 三、解答题(共4题,每小题15分,满分60分)11.已知点M ,N 的坐标分别为(0,1),(0,-1),点P 是抛物线214y x =上的一个动点. (1)判断以点P 为圆心,PM 为半径的圆与直线1y =-的位置关系; (2)设直线PM 与抛物线214y x =的另一个交点为点Q ,连接NP ,NQ ,求证:PNM QNM ∠=∠.解:(1)设点P 的坐标为2001(,)4x x ,则 PM =2222220000111(1)(1)1444x x x x +-=+=+; 又因为点P 到直线1y =-的距离为220011(1)144x x --=+,切.所以,以点P 为圆心,PM 为半径的圆与直线1y =-相…………5分足分(2)如图,分别过点P ,Q 作直线1y =-的垂线,垂别为H ,R .由(1)知,PH =PM ,同理可得,QM =QR .因为PH ,MN ,QR 都垂直于直线1y =-,所以,PH ∥MN ∥QR ,于是QM MP RN NH=, 所以QR PHRN HN=, 因此,Rt △PHN ∽Rt △QRN .于是HNP RNQ ∠=∠,从而PNM QNM ∠=∠.…………15分12.已知a ,b 都是正整数,试问关于x 的方程21()02x abx a b -++=是否有两个整数解如果有,请把它们求出来;如果没有,请给出证明.解:不妨设a ≤b ,且方程的两个整数根为12,x x (1x ≤2x ),则有1212,1(),2x x ab x x a b +=⎧⎪⎨=+⎪⎩(第11题答案图)所以 12121122x x x x a b ab --=+-,124(1)(1)(21)(21)5x x a b --+--=.…………5分因为a ,b 都是正整数,所以x 1,x 2均是正整数,于是,11x -≥0,21x -≥0,21a -≥1,21b -≥1,所以12(1)(1)0,(21)(21)5,x x a b --=⎧⎨--=⎩ 或 ⎩⎨⎧=--=--.1)12)(12(,1)1)(121b a x x ((1)当12(1)(1)0,(21)(21)5x x a b --=⎧⎨--=⎩时,由于a ,b 都是正整数,且a ≤b ,可得a =1,b =3,此时,一元二次方程为2320x x -+=,它的两个根为11x =,22x =.(2)当12(1)(1)1,(21)(21)1x x a b --=⎧⎨--=⎩时,可得a =1,b =1,此时,一元二次方程为210x x -+=,它无整数解.综上所述,当且仅当a =1,b =3时,题设方程有整数解,且它的两个整数解为11x =,22x =. ……………15分13.已知AB 为半圆O 的直径,点P 为直径AB 上的任意一点.以点A 为圆心,AP 为半径作⊙A ,⊙A 与半圆O 相交于点C ;以点B 为圆心,BP 为半径作⊙B ,⊙B 与半圆O 相交于点D ,且线段CD 的中点为M .求证:MP 分别与⊙A 和⊙B相切.证明:如图,连接AC ,AD ,BC ,BD ,并且分别过点C ,D 作AB 的垂线,垂足分别为,E F ,则CE ∥DF .因为AB 是⊙O 的直径,所以90ACB ADB ∠=∠=︒.在Rt △ABC 和Rt △ABD 中,由射影定理得22PA AC AE AB ==⋅,(第13题答案图)22PB BD BF AB ==⋅.……………5分两式相减可得()22PA PB AB AE BF -=-,又 ()22()()PA PB PA PB PA PB AB PA PB -=+-=-, 于是有 AE BF PA PB -=-, 即 PA AE PB BF -=-, 所以PE PF =,也就是说,点P 是线段EF 的中点.因此,MP 是直角梯形CDFE 的中位线,于是有MP AB ⊥,从而可得MP 分别与⊙A 和⊙B 相切.……………15分14.(1)是否存在正整数m ,n ,使得(2)(1)m m n n +=+ (2)设k (k ≥3)是给定的正整数,是否存在正整数m ,n ,使得()(1)m m k n n +=+解:(1)答案是否定的.若存在正整数m ,n ,使得(2)(1)m m n n +=+,则22(1)1m n n +=++,显然1n >,于是2221(1)n n n n <++<+,所以,21n n ++不是平方数,矛盾. ……………5分(2)当3k =时,若存在正整数m ,n ,满足(3)(1)m m n n +=+,则2241244m m n n +=+, 22(23)(21)8m n +=++,(2321)(2321)8m n m n +--+++=,(1)(2)2m n m n -+++=,而22m n ++>,故上式不可能成立.………………10分当k ≥4时,若2k t =(t 是不小于2的整数)为偶数,取22,1m t t n t =-=-,则 2242()()()m m k t t t t t t +=-+=-, 2242(1)(1)n n t t t t +=-=-, 因此这样的(m ,n )满足条件.若2k t =+1(t 是不小于2的整数)为奇数,取222,22t t t t m n -+-==,则 224321()(21)(22)224t t t t m m k t t t t t --+=++=+--, 2243221(1)(22)224t t t t n n t t t t +-++=⋅=+--, 因此这样的(m ,n )满足条件.综上所述,当3k =时,答案是否定的;当k ≥4时,答案是肯定的.……………15分注:当k ≥4时,构造的例子不是唯一的.。

“《数学周报》杯”2010年全国初中数学竞赛试题及参考答案

“《数学周报》杯”2010年全国初中数学竞赛试题及参考答案

只 有 一 个 选 项 是 正 确 的 .请将 正 确 选 项 的 中 ,等腰 梯形 A C B D的顶 点坐 标分 别 为
1 ) B 2 1, (2 1 , ( 1 ) 代 号 填入 题 后 的括 号 里 ,不 填 、 多填 或错 A(,1 , ( ,一 ) C - ,一 ) D 一 ,1.


图 1
1 钟 ,小 轿 车 追 上 了货 车 ; 又 过 了 5 ( 0分 Ⅱ>0 与 双 盹 线 y= 相 交 于 点 A、B ) .
( A)2 / 、6
( C)4+、 6 / 4 .在 一 列 数
( )4 / B 、6
( D)2+2 / x6 … 中 , 已
5. B
| V

解 : 由 已知 ,可 得 点 P 、P 的 坐 标 I 2
边和 5条对角线染色 ,且满足任意有公共 分别为( ,0 ,( ,一 ) 2 ) 2 2. 顶点的两条线段不同色,求颜色数 目的最 小值. 附 :答案及参考解答
填都 得 0分 )
Y轴上一点 P o ) ( ,2 绕点 旋转 10得 点 8。 P ,点 P 绕 点 B旋转 10得 点 P ,点 l 8。 2
1 手= , = , 绕 点 c旋转 10得点 ,点 绕点 D旋 . 2 争 1 则 等的 若 0 0 8。
值为 ( ) . ( )型 B ( D)
. 7 一 辆客 车 、一辆 货 车和一 辆小轿 最 小 值 为 . 三 、解 答 题 ( 4题 ,每 题 2 共 O分 , 车在 一 条 笔 直 的公 路 上 朝 同一 方 向匀 速行
0分 ) 驶 .在 某 一时 刻 ,客 车在 前 ,小 轿 车在 满 分 8 1 ( .如 图 5 抛 物 线 Y= 1 A) , 后 ,货 车 在 客 车 与 小 轿 车 的正 中 间 . 了 过

全国初三数学竞赛试题含答案

全国初三数学竞赛试题含答案

中国教育学会中学数学教学专业委员会“《数学周报》杯”20XX 年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题7分,共35分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.已知非零实数a ,b 满足24242a b a -+++=,则a b +等于( ).(A )-1 (B )0 (C )1 (D )22.如图,菱形ABCD 的边长为a ,点O 是对角线AC 上的一点,且OA =a ,OB =OC =OD =1,则a 等于( ).(A)12 (B(C )1 (D )2 3.将一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先 后投掷两次,记第一次掷出的点数为a ,第二次掷出的点数为b ,则使关于x ,y的方程组322ax by x y +=⎧⎨+=⎩, 只有正数解的概率为( ). (A )121 (B )92 (C )185 (D )36134.如图1所示,在直角梯形ABCD 中,AB ∥DC ,90B ∠=︒. 动点P 从点 B 出发,沿梯形的边由B →C →D →A 运动. 设点P 运动的路程为x ,△ABP 的面积为y . 把y 看作x 的函数,函数的图象如图2所示,则△ABC 的面积为( ).(A )10 (B )16 (C )18 (D )325.关于x ,y 的方程22229x xy y ++=的整数解(x ,y )的组数为( ).(A )2组 (B )3组 (C )4组 (D )无穷多组二、填空题(共5小题,每小题7分,共35分)6.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶 3000 km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶 km .7.已知线段AB 的中点为C ,以点A 为圆心,AB 的长为半径作圆,在线段AB 的延长线上取点D ,使得BD =AC ;再以点D 为圆心,DA 的长为半径作圆,与⊙A 分别相交于F ,G 两点,连接FG 交AB 于点H ,则AH AB 的值为 . 8.已知12345a a a a a ,,,,是满足条件123459a a a a a ++++=的五个不同的整数,若b 是关于x 的方程()()()()()123452009x a x a x a x a x a -----=的整数根,则b 的值为 .9.如图,在△ABC 中,CD 是高,CE 为ACB ∠的平分线.若AC =15,BC =20,CD =12,则CE 的长等于 .10.10个人围成一个圆圈做游戏.游戏的规则是:每个人心里都想好一个数,并把自己想好的数如实地告诉他两旁的两个人,然后每个人将他两旁的两个人告诉他的数的平均数报出来.若报出来的数如图所示,则报3的人心里想的数是 .三、解答题(共4题,每题20分,共80分) 11.函数22(21)y x k x k =+-+的图象与x 轴的两个交点是否都在直线1x =的右侧?若是,请说明理由;若不一定是,请求出两个交点都在直线1x =的右侧时k 的取值范围.12.在平面直角坐标系xOy 中,我们把横坐标为整数、纵坐标为完全平方数的点称为“好点”,求二次函数2(90)4907y x =--的图象上所有“好点”的坐标.13.如图,给定锐角三角形ABC ,BC CA <,AD ,BE 是它的两条高,过点C 作△ABC 的外接圆的切线l ,过点D ,E 分别作l 的垂线,垂足分别为F ,G .试比较线段DF 和EG 的大小,并证明你的结论.14.n个正整数12n a a a ,,,满足如下条件:1212009n a a a =<<<=;且12n a a a ,,,中任意n -1个不同的数的算术平均数都是正整数.求n 的最大值.答案1.【答】C .解:由题设知a ≥3,所以,题设的等式为20b +=,于是32a b ==-,,从而a b +=1.2.【答】A .解:因为△BOC ∽ △ABC ,所以BO BC AB AC =,即 11a a a =+, 所以, 210a a --=.由0a >,解得a =3.【答】D .解:当20a b -=时,方程组无解.当02≠-b a 时,方程组的解为62,223.2b x a b a y a b -⎧=⎪⎪-⎨-⎪=⎪-⎩由已知,得⎪⎪⎩⎪⎪⎨⎧>-->--,0232,0226b a a b a b 即⎪⎪⎩⎪⎪⎨⎧<>>-,3,23,02b a b a 或⎪⎪⎩⎪⎪⎨⎧><<-.3,23,02b a b a 由a ,b 的实际意义为1,2,3,4,5,6,可得2345612a b =⎧⎨=⎩,,,,,,,共有 5×2=10种情况;或1456a b =⎧⎨=⎩,,,,共3种情况. 又掷两次骰子出现的基本事件共6×6=36种情况,故所求的概率为3613. 4.【答】B .解:根据图像可得BC =4,CD =5,DA =5,进而求得AB =8,故 S △ABC =12×8×4=16. 5.【答】C .解:可将原方程视为关于x 的二次方程,将其变形为22(229)0x yx y ++-=.由于该方程有整数根,则判别式∆≥0,且是完全平方数.由 2224(229)7116y y y ∆=--=-+≥0, 解得 2y ≤11616.57≈.于是 显然,只有216y =时,4∆=是完全平方数,符合要求.当4y =时,原方程为2430x x ++=,此时121,3x x =-=-;当y =-4时,原方程为2430x x -+=,此时341,3x x ==.所以,原方程的整数解为111,4;x y =-⎧⎨=⎩ 223,4;x y =-⎧⎨=⎩ 331,4;x y =⎧⎨=-⎩ 443,4.x y =⎧⎨=-⎩ 6.【答】3750.解:设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1 km 磨损量为5000k ,安装在后轮的轮胎每行驶1km 的磨损量为3000k .又设一对新轮胎交换位置前走了x km ,交换位置后走了y km .分别以一个轮胎的总磨损量为等量关系列方程,有,50003000,50003000kx ky k ky kx k ⎧+=⎪⎪⎨⎪+=⎪⎩ 两式相加,得()()250003000k x y k x y k +++=, 则 237501150003000x y +==+. 7.解:如图,延长AD 与⊙D 交于点E ,连接AF ,EF . 由题设知13AC AD =,13AB AE =,在△FHA 和△EF A 中, 90EFA FHA ∠=∠=︒,FAH EAF ∠=∠所以 Rt △FHA ∽Rt △EF A , AH AF AF AE =.而AF AB =,所以AH AB 13=. 8.【答】 10. 解:因为()()()()()123452009b a b a b a b a b a -----=,且12345a a a a a ,,,,是五个不同的整数,所有12345b a b a b a b a b a -----,,,,也是五个不同的整数.又因为()()2009117741=⨯-⨯⨯-⨯,所以1234541b a b a b a b a b a -+-+-+-+-=.由123459a a a a a ++++=,可得10b =.9.. 解:如图,由勾股定理知AD =9,BD =16,所以AB =AD +BD =25 .故由勾股定理逆定理知△ACB 为直角三角形,且90ACB ∠=︒.作EF ⊥BC ,垂足为F .设EF =x ,由1452ECF ACB ∠=∠=︒,得CF =x ,于是BF =20-x .由于EF ∥AC ,所以E F B F A C B C=, 即 201520x x -=, 解得607x =.所以7CE ==. 10.【答】2-.解:设报3的人心里想的数是x ,则报5的人心里想的数应是8x -.于是报7的人心里想的数是 12(8)4x x --=+,报9的人心里想的数是 16(4)12x x -+=-,报1的人心里想的数是 20(12)8x x --=+,报3的人心里想的数是4(8)4x x -+=--.所以4x x =--,解得2x =-.11.解:不一定,例如,当k =0时,函数的图象与x 轴的交点为(0,0)和 (1,0),不都在直线1x =的右侧. ………………5分设函数与x 轴的两交点的横坐标为12,x x ,则21212(21),x x k xx k +=--=,当且仅当满足如下条件12120,(1)(1)0,(1)(1)0x x x x ∆⎧⎪-+->⎨⎪-->⎩≥ ………………10分时,抛物线与x 轴的两交点都在直线1x =的右侧.由 222(21)40,210,20,k k k k k ⎧--⎪-->⎨⎪+>⎩≥解之,得 1,41,220.k k k k ⎧⎪⎪⎪<-⎨⎪<->⎪⎪⎩≤或 ………………15分 所以当2k <-时,抛物线与x 轴的两交点在直线1x =的右侧.………………20分12.解:设2,y m =22(90)x k -=,m ,k 都是非负整数,则22770114907k m -=⨯=⨯,即 ()()7701149k m k m -+=⨯=⨯. ……………10分 则有 701,49077; 1.k m k m k m km +=+=⎧⎧⎨⎨-=-=⎩⎩ 解得 1212354,2454,347;2453.k k m m ==⎧⎧⎨⎨==⎩⎩ 所以 312412342544,444,264,2364,120409;120409;6017209;6017209.x x x x y y y y ===-=-⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩ 故“好点”共有4个,它们的坐标是:4441204092641204092544601720923646017209--(,),(,),(,),(,). ………………20分13.解法1:结论是DF EG =.下面给出证明. ………………5分因为FCD EAB ∠=∠,所以Rt △FCD ∽ Rt △EAB .于是可得CD DF BE AB=⋅. 同理可得 CE EG AD AB =⋅. ………………10分 又因为tan AD BE ACB CD CE ∠==,所以有BE CD AD CE ⋅=⋅DF EG =. ………………20分解法2:结论是DF EG =.下面给出证明.……………… 5分连接DE ,因为90ADB AEB ∠=∠=︒,所以A ,B ,D ,E四点共圆,故 CED ABC ∠=∠. ………………10分又l 是⊙O 的过点C 的切线,所以ACG ABC ∠=∠. ………………15分 所以,CED ACG ∠=∠,于是DE ∥FG ,故DF =EG .………………20分14.解:设12n a a a ,,,中去掉i a 后剩下的n -1个数的算术平均数为正整数i b ,12i n =,,,.即 12()1n i i a a a a b n +++-=-. 于是,对于任意的1≤i j <≤n ,都有1j ii j a a b b n --=-,从而 1()j i n a a --. ………………5分由于 11200811n n a a b b n n --==--是正整数,故 312251n -⨯. ………………10分 由于 ()()()112211n n n n n a a a a a a a ----=-+-++- ≥()()()2111(1)n n n n -+-++-=-,所以,2(1)n -≤2008,于是n ≤45.结合312251n -⨯,所以,n ≤9. ………………15分另一方面,令123801,811,821a a a =⨯+=⨯+=⨯+,…,8871a =⨯+,982511a =⨯+,则这9个数满足题设要求.综上所述,n 的最大值为9. ………………20分(第13题)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国教育学会中学数学教学专业委员会“《数学周报》杯”2010年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题7分,共35分.其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.若20 10a b b c ==,,则a bb c++的值为( ). (A )1121 (B )2111 (C )11021 (D )21011解:D 由题设得12012101111110a ab bc b c b +++===+++. 2.若实数a ,b 满足21202a ab b -++=,则a 的取值范围是 ( ).(A )a ≤2- (B )a ≥4 (C )a ≤2-或 a ≥4 (D )2-≤a ≤4 解.C因为b 是实数,所以关于b 的一元二次方程21202b ab a -++=的判别式 21()41(2)2a a ∆--⨯⨯+=≥0,解得a ≤2-或 a ≥4.3.如图,在四边形ABCD 中,∠B =135°,∠C =120°,AB=BC=4-CD=则AD 边的长为( ).(A)(B )64(C )64+ (D )622+ 解:D如图,过点A ,D 分别作AE ,DF 垂直于直线BC ,垂足分别为E ,F .由已知可得BE =AE,CF=DF =于是 EF =4+过点A 作AG ⊥DF ,垂足为G .在Rt △ADG 中,根据勾股定理得AD ==2+4.在一列数123x x x ,,,……中,已知11=x ,且当k ≥2时,1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭(取整符号[]a 表示不超过实数a 的最大整数,例如[]2.62=,[]0.20=),则2010x 等于( ).(A) 1 (B) 2 (C) 3 (D) 4 解:B由11=x 和1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭可得 11x =,22x =,33x =,44x =,51x =,62x =,73x =,84x =,……因为2010=4×502+2,所以2010x =2.5.如图,在平面直角坐标系xOy 中,等腰梯形ABCD 的顶点坐标分别为A (1,1),B (2,-1),C (-2,-1),D (-1,1).y 轴上一点P (0,2)绕点A 旋转180°得点P 1,点P 1绕点B 旋转180°得点P 2,点P 2绕点C 旋转180°得点P 3,点P 3绕点D 旋转180°得点P 4,……,重复操作依次得到点P 1,P 2,…, 则点P 2010的坐标是( ).(A )(2010,2) (B )(2010,2-) (C )(2012,2-) (D )(0,2)解:B 由已知可以得到,点1P ,2P 的坐标分别为(2,0),(2,2-).记222 )P a b (,,其中222,2a b ==-. 根据对称关系,依次可以求得:322(42)P a b --,--,422(2)P a b ++,4,522(2)P a b ---,,622(4)P a b +,. 令662(,)P a b ,同样可以求得,点10P 的坐标为(624,a b +),即10P (2242,a b ⨯+), 由于2010=4⨯502+2,所以点2010P 的坐标为(2010,2-). 二、填空题6.已知a =5-1,则2a 3+7a 2-2a -12 的值等于 .解:0由已知得 (a +1)2=5,所以a 2+2a =4,于是2a 3+7a 2-2a -12=2a 3+4a 2+3a 2-2a -12=3a 2+6a -12=0.7.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶.在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间.过了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上了客车;再过t 分钟,货车追上了客车,则t = .解:15设在某一时刻,货车与客车、小轿车的距离均为S 千米,小轿车、货车、客车的速度分别为a b c ,,(千米/分),并设货车经x 分钟追上客车,由题意得()10a b S -=, ①()152a c S -=, ② ()x b c S -=.③ 由①②,得30b c S -=(),所以,x =30. 故 3010515t =--=(分).8.如图,在平面直角坐标系xOy 中,多边形OABCDE 的顶点坐标分别是O (0,0),A (0,6),B (4,6),C (4,4),D (6,4),E (6,0).若直线l 经过点M (2,3),且将多边形OABCDE 分割成面积相等的两部分,则直线l 的函数表达式是 .由已知得点M (2,3)是OB ,AF 的中点,即点M 为矩形ABFO 的中心,所以直线l 把矩形ABFO 分成面积相等的两部分.又因为点N (5,2)是矩形CDEF 的中心,所以,过点N (5,2)的直线把矩形CDEF 分成面积相等的两部分.于是,直线MN 即为所求的直线l .(第8题设直线l的函数表达式为y kx b=+,则23 52 k bk b=⎧⎨+=⎩+,,9.如图,射线AM,BN都垂直于线段AB,点E为AM上一点,过点A作BE的垂线AC 分别交BE,BN于点F,C,过点C作AM的垂线CD,垂足为D.若CD=CF,则AEAD=.解:215-见题图,设,FC m AF n==.因为Rt△AFB∽Rt△ABC,所以2AB AF AC=⋅.又因为FC=DC=AB,所以2()m n n m=+,即2()10 n nm m+-=,解得12nm=,或12nm=(舍去).又Rt△AFE∽Rt△CFB,所以AE AE AF nAD BC FC m====即AEAD.10.对于i=2,3,…,k,正整数n除以i所得的余数为i-1.若n的最小值0n满足020003000n<<,则正整数k的最小值为.解:9因为1n+为2 3k,,,的倍数,所以n的最小值n满足[]12 3n k+=,,,,其中[]2 3k,,,表示2 3k,,,的最小公倍数.由于[][]2 3 88402 3 92520==,,,,,,,,[][]2 3 1025202 31127720==,,,,,,,,因此满足20003000n<<的正整数k的最小值为9.(第9题)三、解答题(共4题,每题20分,共80分)11.如图,△ABC 为等腰三角形,AP 是底边BC 上的高,点D 是线段PC 上的一点,BE 和CF 分别是△ABD 和△ACD 的外接圆直径,连接EF . 求证: tan EFPAD BC∠=.证明:如图,连接ED ,FD . 因为BE 和CF 都是直径,所以ED ⊥BC , FD ⊥BC ,因此D ,E ,F 三点共线. …………(5分) 连接AE ,AF ,则AEF ABC ACB AFD ∠=∠=∠=∠,所以,△ABC ∽△AEF . …………(10分)作AH ⊥EF ,垂足为H ,则AH =PD . 由△ABC ∽△AEF 可得EFAHBC AP =, 从而E FP DB CA P=, 所以 t a n P D E FPAD AP BC∠==. …………(20分)12.如图,抛物线2y ax bx =+(a >0)与双曲线ky x=相交于点A ,B . 已知点A 的坐标为(1,4),点B 在第三象限内,且△AOB 的面积为3(O 为坐标原点).(1)求实数a ,b ,k 的值;(2)过抛物线上点A 作直线AC ∥x 轴,交抛物线于另一点C ,求所有满足△EOC ∽△AOB 的点E 的坐标.解:(1)因为点A (1,4)在双曲线k y x =上,所以k=4. 故双曲线的函数表达式为xy 4=.设点B (t ,4t),0t <,AB 所在直线的函数表达式为y mx n =+,则有44m n mt n t=+⎧⎪⎨=+⎪⎩,, 解得4m t =-,4(1)t n t +=. 于是,直线AB 与y 轴的交点坐标为4(1)0,t t +⎛⎫⎪⎝⎭,故 ()141132AOB t S t t∆+=⨯-=(),整理得22320t t +-=,解得2t =-,或t =21(舍去).所以点B 的坐标为(2-,2-).因为点A ,B 都在抛物线2y ax bx =+(a >0)上,所以4422a b a b +=⎧⎨-=-⎩,, 解得13.a b =⎧⎨=⎩,…………(10分) (2)如图,因为AC ∥x 轴,所以C (4-,4),于是CO =42. 又BO =22,所以2=BOCO. 设抛物线2y ax bx =+(a >0)与x 轴负半轴相交于点D , 则点D 的坐标为(3-,0).因为∠COD =∠BOD =45︒,所以∠COB =90︒.(i )将△BOA 绕点O 顺时针旋转90︒,得到△1B OA '.这时,点B '(2-,2)是CO 的中点,点1A 的坐标为(4,1-). (第12题)延长1OA 到点1E ,使得1OE =12OA ,这时点1E (8,2-)是符合条件的点.(ii )作△BOA 关于x 轴的对称图形△2B OA ',得到点2A (1,4-);延长2OA 到点2E ,使得2OE =22OA ,这时点E 2(2,8-)是符合条件的点.所以,点E 的坐标是(8,2-),或(2,8-). …………(20分)13.求满足22282p p m m ++=-的所有素数p 和正整数m ..解:由题设得(21)(4)(2)p p m m +=-+,所以(4)(2)p m m -+,由于p 是素数,故(4)p m -,或(2)p m +. ……(5分) (1)若(4)p m -,令4m kp -=,k 是正整数,于是2m kp +>,2223(21)(4)(2)p p p m m k p >+=-+>,故23k <,从而1k =.所以4221m p m p -=⎧⎨+=+⎩,,解得59.p m =⎧⎨=⎩,…………(10分)(2)若(2)p m +,令2m kp +=,k 是正整数. 当5p >时,有46(1)m kp kp p p k -=->-=-,223(21)(4)(2)(1)p p p m m k k p >+=-+>-,故(1)3k k -<,从而1k =,或2.由于(21)(4)(2)p p m m +=-+是奇数,所以2k ≠,从而1k =.于是4212m p m p -=+⎧⎨+=⎩,,这不可能.当5p =时,2263m m -=,9m =;当3p =,2229m m -=,无正整数解;当2p =时,2218m m -=,无正整数解.综上所述,所求素数p =5,正整数m =9. …………(20分)14.从1,2,…,2010这2010个正整数中,最多可以取出多少个数,使得所取出的数中任意三个数之和都能被33整除?解:首先,如下61个数:11,1133+,11233+⨯,…,116033+⨯(即1991)满足题设条件. …………(5分)另一方面,设12n a a a <<< 是从1,2,…,2010中取出的满足题设条件的数,对于这n 个数中的任意4个数i j k m a a a a ,,,,因为33()i k m a a a ++, 33()j k m a a a ++,所以 33()j i a a -.因此,所取的数中任意两数之差都是33的倍数. …………(10分) 设133i i a a d =+,i =1,2,3,…,n .由12333()a a a ++,得12333(33333)a d d ++,所以1333a ,111a ,即1a ≥11. …………(15分)133n n a a d -=≤2010116133-<, 故n d ≤60. 所以,n ≤61.综上所述,n 的最大值为61. …………(20分)。

相关文档
最新文档