高三数学二轮专题训练:填空题(79)

合集下载

高考数学第二轮专题复习教案高三数学综合练习四

高考数学第二轮专题复习教案高三数学综合练习四

第13课时 高三数学综合练习四一、填空题1、若函数f(x)=ax+b 有一个零点是2,那么函数g(x)=bx 2-ax 的零点是__________________。

2、已知关于x 的方程2x-1+2x 2+a=0有两个实数根,则实数a 的取值范围是______________。

3、已知f(x)=1gxx +-11,若f(a)=b ,则f(-a)的值为___________________。

4、设函数f(x)=x a x x ))(1(++为奇函数,则a=_____________。

5、若函数f(x)=a|x-b|+2 [0,+∞)上为增函数,则实数a 、b 的取值范围是_______________。

6、奇函数f(x)在[3,7]上是增函数,在[3,6]上的最大值为8,最小值为-1,则2f(-6)+f(-3)=_________________。

-1,x 为无理数,7、已知函数f(x)= 有如下四个命题:1,x 为有理数。

①f(x)的定义域为R ;②f(x)是奇函数非偶函数;③f(x)是偶函数非奇函数;④f(x)是周期函数。

其中正确命题的序号是__________________。

8、已知函数f(x)是以2为周期的偶函数,且当x ∈(0,1)时,f(x)=2x -1则f(log 212)的值为___________________。

9、函数f(x)=a x +log a (x+1)在[0,1]上的最大值与最小值之和为a ,则a 的值为_____________。

2-x , x ∈(-∞,1]10、设函数f(x)= 则满足f(x)=41的x 值为______________。

log 81x ,x ∈(1,+∞)二、解答题。

11、设直线x=1是函数f(x)的图象的一条对称轴,对于任意x ∈R ,f(x+2)=-f(x),当-1≤x ≤1时,f(x)=x 3。

(1)证明:f(x)是奇函数;(2)当x ∈[3,7]时,求函数f(x)的解析式。

高三数学填空题专项练习(含答案解析)

高三数学填空题专项练习(含答案解析)

1.O是锐角△ABC所在平面内的一定点,动点P满足:,λ∈(0,+∞),则动点P的轨迹一定通过△ABC的心.2.对于使﹣x2+2x≤M成立的所有常数M中,我们把M的最小值l做﹣x2+2x的上确界,若a,b∈R+,且a+b=1,则﹣﹣的上确界为.3.如图,正方体ABCD﹣A1B1C1D1的棱长为1,点M在AB上,且AM=,点P在平面ABCD上,且动点P到直线A1D1的距离的平方与P到点M的距离的平方差为1,在平面直角坐标系xoy中,动点P的轨迹方程是.4.设函数f(x)=a1+a2x+a3x2+…+a n x n﹣1,f(0)=,数列{a n}满足f(1)=n2•a n,则数列{a n}的通项=.5.函数f(x)是奇函数,且在[﹣1,1]是单调增函数,又f(﹣1)=﹣1,则满足f(x)≤t2+2at+1对所有的x∈[﹣1,1]及a∈[﹣1,1]都成立的t的范围是.6.已知O为坐标原点,,,=(0,a),,记、、中的最大值为M,当a取遍一切实数时,M的取值范围是.7.已知三数x+log272,x+log92,x+log32成等比数列,则公比为.8.(5分)已知5×5数字方阵:中,,则=.9.(5分)已知函数f(x)=x2﹣cosx,x∈,则满足f(x0)>f()的x0的取值范围为.10.(5分)甲地与乙地相距250公里.某天小袁从上午7:50由甲地出发开车前往乙地办事.在上午9:00,10:00,11:00三个时刻,车上的导航仪都提示“如果按出发到现在的平均速度继续行驶,那么还有1小时到达乙地”.假设导航仪提示语都是正确的,那么在上午11:00时,小袁距乙地还有公里.11.(5分)定义在[1,+∞)上的函数f(x)满足:①f(2x)=cf(x)(c为正常数);②当2≤x≤4时,f(x)=1﹣|x ﹣3|.若函数的所有极大值点均落在同一条直线上,则c=.12.(5分)设F1,F2分别是双曲线=1(a>0,b>0)的左、右焦点,若双曲线左支上存在一点M,使=0,O为坐标原点,且|MF1|=|MF2|,则该双曲线的离心率为.13.(5分)在锐角△ABC中,角A、B、C的对边分别为a、b、c,若+=6cosC,则+的值是.14.(5分)设⊙O为不等边△ABC的外接圆,△ABC内角A,B,C所对边的长分别为a,b,c,P是△ABC所在平面内的一点,且满足=•+(P与A不重合).Q为△ABC所在平面外一点,QA=QB=QC.有下列命题:①若QA=QP,∠BAC=90°,则点Q在平面ABC上的射影恰在直线AP上;②若QA=QP,则;③若QA>QP,∠BAC=90°,则;④若QA>QP,则P在△ABC内部的概率为(S△ABC,S⊙O分别表示△ABC与⊙O的面积).其中不正确的命题有(写出所有不正确命题的序号).参考答案解:∵=∴=+)++﹣=a=时取等号.﹣的上确界是﹣]=x,x=,=××…××,=××…××,,.解:∵,,),M22,∴2∴∴,在公里,时,函数取极大值≤4,共线,∴=0|=a=e==+1解:∵+∴+=== =解:∵=•+∴﹣=•),∴|c•cos的中点,∴∴,故②。

高三数学二轮复习填空题专项训练题汇集

高三数学二轮复习填空题专项训练题汇集

2008年二轮复习填空题专项训练题汇集一.1在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于2n2若圆04222=--+y x y x 的圆心到直线0=+-a y x 的距离为22,则a 的值为 2或03已知集合}023|{2=+-=x ax x A 至多有一个元素,则a 的取值范围9|,08a a a ⎧⎫≥=⎨⎬⎩⎭或 ;4若函数()2f x a x b =-+在[)0,x ∈+∞上为增函数,则实数,a b 的取值范围是0a >且0b ≤ 5若函数()12l o g 22++=x ax y 的值域为R ,则a 的范围为___ []0,1_______5若函数()12log 22++=x ax y 的定义域为R ,则a 的范围为__ (1,)+∞________6如图,平面内有三个向量、OB 、OC ,其中与与OB 的夹角为120°,OA 与的夹角为30°,且|OA |=||=1,||=32,若=λOA +μ(λ,μ∈R ),则λ+μ的值为 6 .7若x ax x f +=3)(恰有三个单调区间,则a 的取值范围为__ a<0 ____________.8已知)(324)(32R x x ax x x f ∈-+=在区间[-1,1]上是增函数。

求实数a 的值组成的集合A=}{11/≤≤-a a9已知},......,,{321n x x x x 的平均数为a ,则23 ..., ,23 ,2321+++n x x x 的平均数是3a+2_____。

10如右图,在正方形内有一扇形(见阴影部分),扇形对应的圆心是正方形的一顶点,半径为正方形的边长。

在这个图形上随机撒一粒黄豆,它落在扇形外正方形内的概率为44π-。

(用分数表示)11已知向量||).,5(),2,2(k +=-=若不超过5,则k 的取值范围是[-6,2] 12在ABC ∆中,O 为中线AM 上一个动点,若AM=2,则)(+∙的最小值是_-2_________。

高三数学理科二轮复习 4-29坐标系与参数方程(选修4-4)

高三数学理科二轮复习  4-29坐标系与参数方程(选修4-4)

高考专题训练二十九 坐标系与参数方程(选修4-4)班级_______ 姓名_______ 时间:45分钟 分值:100分 总得分_______一、填空题(每小题6分,共30分)1.(2011·陕西)直角坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴建立坐标系,设点A ,B 分别在曲线C 1:⎩⎪⎨⎪⎧x =3+cos θy =4+sin θ(θ为参数)和曲线C 2:ρ=1上,则|AB |的最小值为________.解析:C 1:(x -3)2+(y -4)2=1 C 2:x 2+y 2=1.最小值为|C 1C 2|-2=5-2=3. 答案:32.(2011·湖北)如图,直角坐标系xOy 所在的平面为α,直角坐标系x ′Oy ′(其中y ′与y 轴重合)所在平面为β,∠xOx ′=45°.(1)已知平面β内有一点P ′(22,2),则点P ′在平面α内的射影P 的坐标为________;(2)已知平面β内的曲线C ′的方程是(x ′-2)2+2y ′2-2=0,则曲线C ′在平面α内的射影C 的方程是________.解析:(1)如图P ′(22,2)在α上坐标P (x ,y )x =22cos45°=22×22=2,y =2,∴P (2,2).(2)β内曲线C ′的方程(x ′-2)22+y ′2=1同上解法.中心(1,0)即投影后变成圆(x -1)2+y 2=1. 答案:(1)P (2,2) (2)(x -1)2+y 2=13.(2011·深圳卷)已知点P 是曲线C :⎩⎪⎨⎪⎧x =3cos θy =4sin θ(θ为参数,0≤θ≤π)上一点,O 为原点.若直线OP 的倾斜角为π4P 坐标为________.解析:由⎩⎪⎨⎪⎧x =3cos θy =4sin θ(0≤θ≤π)可得x 29+y 216=1(0≤y ≤4),由于直线OP 的方程为y =x ,那么由⎩⎨⎧x 29+y 216=1y =x (0≤y ≤4)⇒⎩⎪⎨⎪⎧x =125y =125.答案:⎝ ⎛⎭⎪⎫125,1254.(2011·佛山卷)在极坐标系中,和极轴垂直且相交的直线l 与圆ρ=4相交于A 、B 两点,若|AB |=4,则直线l 的极坐标方程为________.解析:设极点为O ,由该圆的极坐标方程为ρ=4,知该圆的半径为4,又直线l 被该圆截得的弦长|AB |为4,所以∠AOB =60°,∴极点到直线l 的距离为d =4×cos30°=23,所以该直线的极坐标方程为ρcos θ=2 3.答案:ρcos θ=2 35.在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sin θ与ρcos θ=-1的交点的极坐标为________.分析:本题考查极坐标方程与普通方程的互化.解析:由ρ=2sin θ,得ρ2=2ρsin θ,其普通方程为x 2+y 2=2y ,ρcos θ=-1的普通方程为x =-1,联立⎩⎪⎨⎪⎧ x 2+y 2=2y x =-1,解得⎩⎪⎨⎪⎧x =-1y =1,点(-1,1)的极坐标为⎝ ⎛⎭⎪⎫2,3π4. 答案:⎝ ⎛⎭⎪⎫2,3π4二、解答题(每小题7分,共70分)6.已知曲线C 1:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数),曲线C 2:⎩⎨⎧x =22t -2,y =22t(t 为参数).(1)指出C 1,C 2各是什么曲线,并说明C 1与C 2公共点的个数; (2)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线C 1′,C 2′.写出C 1′,C 2′的参数方程.C 1′与C 2′公共点的个数和C 1与C 2公共点的个数是否相同?说明你的理由.解:(1)C 1是圆,C 2是直线.C 1的普通方程为x 2+y 2=1,圆心为(0,0),半径r =1.C 2的普通方程为x -y +2=0.因为圆心(0,0)到直线x -y +2=0的距离为1,所以C 2与C 1只有一个公共点.(2)压缩后的参数方程分别为C 1′:⎩⎨⎧x =cos θ,y =12sin θ(θ为参数),C 2′:⎩⎨⎧x =22t -2,y =24t(t 为参数).化为普通方程分别为C 1′:x 2+4y 2=1,C 2′:y =12x +22,联立消元得2x 2+22x +1=0, 其判别式Δ=(22)2-4×2×1=0,所以压缩后的直线C 2′与椭圆C 1′仍然只有一个公共点,和C 1与C 2公共点的个数相同.7.已知直线l :⎩⎨⎧x =-1-22t y =2+22t与抛物线y =x 2交于A ,B 两点,求线段AB 的长.解:把⎩⎨⎧x =-1-22t ,y =2+22t ,代入y =x 2,得t 2+2t -2=0,∴t 1+t 2=-2,t 1t 2=-2.由参数的几何意义,得 |AB |=(t 1+t 2)2-4t 1t 2=10.8.(2011·福建)在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos α,y =sin α(α为参数).(1)已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为⎝ ⎛⎭⎪⎫4,π2,判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上一个动点,求它到直线l 的距离的最小值.解:(1)把极坐标系下的点P ⎝ ⎛⎭⎪⎫4,π2化为直角坐标系,得P (0,4).因为点P 的直角坐标(0,4)满足直线l 的方程x -y +4=0,所以点P 在直线l 上.(2)因为点Q 在曲线C 上,故可设点Q 的坐标为(3cos α,sin α)从而点Q 到直线l 的距离为:d =|3cos α-sin α+4|2=2cos ⎝ ⎛⎭⎪⎫α+π6+42=2cos ⎝ ⎛⎭⎪⎫α+π6+22, 由此得,当cos ⎝ ⎛⎭⎪⎫α+π6=-1时,d 取得最小值,且最小值为 2.9.已知曲线C 的极坐标方程为ρ2-42ρcos ⎝ ⎛⎭⎪⎫θ-π4+6=0,求:(1)曲线C 的普通方程;(2)设点P (x ,y )是曲线C 上任意一点,求xy 的最大值和最小值.解:(1)原方程可化为ρ2-42ρ⎣⎢⎡⎦⎥⎤cos θ·cos π4+sin θ·sin π4+6=0,即ρ2-4ρcos θ-4ρsin θ+6=0.∵⎩⎪⎨⎪⎧ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ,∴x 2+y 2-4x -4y +6=0,即(x -2)2+(y -2)2=2,此方程即为所求普通方程.(2)设x -22=cos θ,y -22=sin θ,则xy =(2+2cos θ)(2+2sin θ)=4+22(cos θ+sin θ)+2cos θsin θ.设t =cos θ+sin θ,则t =2sin ⎝ ⎛⎭⎪⎫θ+π4,∴t ∈[-2,2],t 2=1+2cos θsin θ,从而2cos θsin θ=t 2-1.∴xy =3+22t +t 2.当t =-2时,xy 取得最小值1;当t =2时,xy 取得最大值9.10.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=22.圆O 的参数方程为⎩⎨⎧x =-22+r cos θy =-22+r sin θ(θ为参数,r >0).(1)求圆心的极坐标;(2)当r 为何值时,圆O 上的点到直线l 的最大距离为3?解:(1)圆心坐标为⎝ ⎛⎭⎪⎫-22,-22, 设圆心的极坐标为(ρ,θ), 则ρ=⎝ ⎛⎭⎪⎫-222+⎝ ⎛⎭⎪⎫-222=1, 所以圆心的极坐标为⎝ ⎛⎭⎪⎫1,54. (2)直线l 的极坐标方程为ρ⎝ ⎛⎭⎪⎫22sin θ+22cos θ=22,∴直线l 的普通方程为x +y -1=0, ∴圆上的点到直线l 的距离d =⎪⎪⎪⎪⎪⎪-22+r cos θ-22+r sin θ-12,即d =⎪⎪⎪⎪⎪⎪-2+2r sin ⎝ ⎛⎭⎪⎫θ+π4-12.∴圆上的点到直线l 的最大距离为2+2r +12=3,∴r =4-22.11.(2011·哈师大附中、东北师大附中、辽宁省实验中学第一次联考)已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x 轴的正半轴重合,且两个坐标系的单位长度相同,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t cos αy =1+t sin α(t 为参数),曲线C 的极坐标方程为ρ=4cos θ.(1)若直线l 的斜率为-1,求直线l 与曲线C 交点的极坐标; (2)若直线l 与曲线C 的相交弦长为23,求直线l 的参数方程. 解:(1)直线l 的普通方程为y -1=-1(x +1),即y =-x , ① 曲线C 的直角坐标方程为x 2+y 2-4x =0. ② ①代入②得:2x 2-4x =0,解得x =0或x =2.∴A (0,0),B (2,-2),极坐标为A (0,0),B ⎝ ⎛⎭⎪⎫22,7π4. (2)由题意可得圆心C (2,0)到相交弦的距离为22-(3)2=1,设直线l 的斜率为k ,则l 的方程为y -1=k (x +1),则y =kx +k +1,∴|2k +k +1|k 2+1=1,∴k =0或k =-34. ∴l :⎩⎪⎨⎪⎧x =-1+t y =1(t 为参数)或⎩⎪⎨⎪⎧x =-1-45ty =1+35t(t 为参数).12.已知A 、B 是椭圆x 29+y 24=1与x 轴、y 轴的正半轴的两交点,在第一象限的椭圆弧上求一点P ,使四边形OAPB 的面积最大.解:设点P 的坐标为(3cos θ,2sin θ),其中0<θ<π2,∵S四边形AOBP =S △APB +S △AOB ,其中S △AOB 为定值,故只需S △APB最大即可.因为AB 为定长,故只需点P 到AB 的距离最大即可.AB 的方程为2x +3y -6=0,点P 到AB 的距离为d =|6cos θ+6sin θ-6|13=613·⎪⎪⎪⎪⎪⎪2sin ⎝ ⎛⎭⎪⎫θ+π4-1,∴θ=π4时,d 取最大值,从而S △APB 取最大值,这时点P 的坐标为⎝ ⎛⎭⎪⎫322,2.13.已知圆C 的参数方程为⎩⎪⎨⎪⎧x =1+2cos θy =2sin θ(θ为参数),P 是圆与y 轴的交点,若以圆心C 为极点,x 轴的正半轴为极轴建立极坐标系,求过点P 的圆的切线的极坐标方程.解:依题意,圆C :⎩⎪⎨⎪⎧x =1+2cos θy =2sin θ是以(1,0)为圆心,2为半径的圆,与y 轴交于(0,±3),如图所示.设R 是切线上一点,∵PR 为圆C 的切线,∴△CPR 为直角三角形,∴CR ·cos ∠RCP =CP ,又∠PCO =π3,∴极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-2π3=2;若取圆与y 轴负轴交点,则极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ+2π3=2.14.(2011·辽宁)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧ x =cos φy =sin φ(φ为参数),曲线C 2的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ,(a >b >0,φ为参数).在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线l :θ=α与C 1,C 2各有一个交点.当α=0时,这两个交点间的距离为2,当α=π2时,这两个交点重合.(1)分别说明C 1,C 1是什么曲线,并求出a 与b 的值;(2)设当α=π4时,l 与C 1,C 2的交点分别为A 1,B 1,当α=-π4时,l 与C 1,C 2的交点分别为A 2,B 2,求四边形A 1A 2B 2B 1的面积.解:(1)C 1是圆,C 2是椭圆.当α=0时,射线l 与C 1,C 2交点的直角坐标分别为(1,0),(a,0),因为这两点间的距离为2,所以a =3.当α=π2时,射线l 与C 1,C 2交点的直角坐标分别为(0,1),(0,b ),因为这两点重合,所以b =1.(2)C 1,C 2的普通方程分别为x 2+y 2=1和x29+y 2=1,当α=π4时,射线l 与C 1交点A 1的横坐标为x =22,与C 2交点B 1的横坐标为x ′=31010.当α=-π4时,射线l 与C 1,C 2的两个交点A 2,B 2分别与A 1,B 1关于x 轴对称,因此四边形A 1A 2B 2B 1为梯形.故四边形A 1A 2B 2B 1的面积为(2x ′+2x )(x ′-x )2=25.15.(2011·课标)在直线坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos αy =2+2sin α(α为参数)M 是C 1上的动点,P 点满足OP →=2OM →,P 点的轨迹为曲线C 2.(1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |. 解:(1)设P (x ,y ),则由条件知M ⎝ ⎛⎭⎪⎫x 2,y 2,由于M 点在C 1上,所以⎩⎪⎨⎪⎧ x 2=2cos α,y 2=2+2sin α.即⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α. 从而C 2的参数方程为⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α.(α为参数) (2)曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ=8sin θ.射线θ=π3与C 1的交点A 的极径为ρ1=4sin π3, 射线θ=π3与C 2的交点B 的极径为ρ2=8sin π3. 所以|AB |=|ρ2-ρ1|=2 3.。

高三数学第二轮复习专题 数列数列通项的求法(教案及测试;含详解答案)

高三数学第二轮复习专题 数列数列通项的求法(教案及测试;含详解答案)

城东蜊市阳光实验学校数列通项的求法考纲要求:1. 理解数列的概念和几种简单的表示方法〔列表、图像、通项公式〕;2. 可以根据数列的前几项归纳出其通项公式;3. 会应用递推公式求数列中的项或者者.通项;4. 掌握n n s a 求的一般方法和步骤.考点回忆:回忆近几年高考,对数列概念以及通项一般很少单独考察,往往与等差、等比数列或者者者与数列其它知识综合考察.一般作为考察其他知识的铺垫知识,因此,假设这一部分掌握不好,对解决其他问题也是非常不利的. 根底知识过关: 数列的概念1.按照一定排列的一列数称为数列,数列中的每一个数叫做这个数列的,数列中的每一项都和他的有关.排在第一位的数称为这个数列的第一项〔通常也叫做〕.往后的各项依次叫做这个数列的第2项,……第n 项……,数列的一般形式可以写成12,n a a a …………,其中是数列的第n 项,我们把上面数列简记为. 数列的分类:1.根据数列的项数,数列可分为数列、数列.2.根据数列的每一项随序号变化的情况,数列可分为数列、数列、数列、 数列.数列的通项公式:1.假设数列{}n a 的可以用一个公式来表示,那么这个公式叫做这个数列的通项公式,通项公式可以看成数列的函数. 递推公式; 1.假设数列{}n a 的首项〔或者者者前几项〕,且任意一项1n n a a -与〔或者者其前面的项〕之间的关系可以,那么这个公式就做数列的递推公式.它是数列的一种表示法. 数列与函数的关系:1.从函数的观点看,数列可以看成以为定义域的函数()na f n =,当自变量按照从小到大的顺序依次取值时,所对应的一列函数值,反过来,对于函数y=f(x),假设f(i)(i=1,2,3,……)有意义,那么我们可以得到一个数列f(1),f(2),f(3)……f(n)…… 答案: 数列的概念 1.顺序项序号首项n a {}n a数列的分类 1.有限无限 2.递增递减常摆动 数列的通项公式1.第n 项与它的序号n 之间的关系n a =f(n)解析式 递推公式1. 可以用一个公式来表示数列与函数的关系1. 正整数集N*〔或者者它的有限子集{}1,2,3,n ……〕高考题型归纳:题型1.观察法求通项观察法是求数列通项公式的最根本的方法,其本质就是通过观察数列的特征,找出各项一一共同的构成规律,横向看各项之间的关系构造,纵向看各项与项数之间的关系,从而确定出数列的通项.例1.数列12,14,58-,1316,2932-,6164,….写出数列的一个通项公式.分析:通过观察可以发现这个数列的各项由以下三部分组成的特征:符号、分子、分母,所以应逐个考察其规律.解析:先看符号,第一项有点违犯规律,需改写为12--,由此整体考虑得数列的符号规律是{(1)}n-;再看分母,都是偶数,且呈现的数列规律是{2}n;最后看分子,其规律是每个分子的数比分母都小3,即{23}n -. 所以数列的通项公式为23(1)2n nn n a -=-. 点评:观察法一般适用于给出了数列的前几项,根据这些项来写出数列的通项公式,一般的,所给的数列的前几项规律性特别强,并且规律也特别明显,要么能直接看出,要么只需略作变形即可. 题型2.定义法求通项直接利用等差数列或者者等比数列的定义求通项的方法叫定义法,这种方法适应于数列类型的题目.例2.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.分析:对于数列{}n a ,是等差数列,所以要求其通项公式,只需要求出首项与公差即可.解析:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒ ∵0≠d,∴d a =1………………………………①∵255aS =∴211)4(2455d a d a +=⋅⨯+…………②由①②得:531=a ,53=d∴n n a n 5353)1(53=⨯-+=点评:利用定义法求数列通项时要注意不要用错定义,设法求出首项与公差〔公比〕后再写出通项.题型3.应用nS 与na 的关系求通项有些数列给出{na }的前n 项和nS 与na 的关系式n S =()n f a ,利用该式写出11()n n S f a ++=,两式做差,再利用11n n na S S ++=-导出1n a +与na 的递推式,从而求出na 。

高三数学二轮复习阶段性综合检测(七)

高三数学二轮复习阶段性综合检测(七)

阶段性综合检测(七)(必做题部分:时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分,把答案填在题中横线上)1.(2010年青岛质检)复数i 1+2i(i 是虚数单位)的实部是________. 解析:因为i 1+2i =i(1-2i)5=25+i 5,所以复数i 1+2i(i 是虚数单位)的实部是25.答案:252.(2010年扬州调研)执行如图所示的程序框图,若p =4,则输出的s =________.解析:由程序框图知s =12+14+18+116=1516.答案:15163答案:(b 1b n )n 2 4.(2010年南京第一次调研)复数z =(1+i)21-i对应的点在第________象限.解析:z =(1+i)21-i =2i 1-i=-1+i ,其对应的点的坐标为(-1,1),所以点在第二象限.答案:二5.设0<θ<π2,已知a 1=2cos θ,a n +1=2+a n (n ∈N +),猜想a n=________.解析:因为0<θ<π2,所以a 2=2+2cos θ=2cos θ2,a 3=2+2cos θ2=2cos θ4,a 4=2+2cos θ4=2cos θ8,于是猜想a n =2cos θ2n -1(n ∈N +). 答案:2cos θ2n -1 6.(2010年南通第一次调研)根据下面一组等式:S 1=1,S 2=2+3=5,S 3=4+5+6=15,S 4=7+8+9+10=34,S 5=11+12+13+14+15=65,S 6=16+17+18+19+20+21=111.可得S 1+S 3+S 5+…+S 2n -1=________.解析:从已知数表得S 1=1,S 1+S 3=16=24,S 1+S 3+S 5=81=34,从而猜想S 1+S 3+…+S 2n -1=n 4.答案:n 47.复数53+4i的共轭复数是________.解析:因为53+4i =5(3-4i)(3+4i)(3-4i)=3-4i 5,所以其共轭复数为35+ 45i.答案:35+45i8.已知x ,y ∈R ,i 为虚数单位,且(x -2)i +y =1+i ,则(21+i)x +y 的值为________.答案:-49.(2010年南京第一次调研)把正整数按一定的规则排成了如图所示的三角形数表.设a ij (i ,j ∈N *)是位于这个三角形数表中从上往下数第i 行、从左往右数第j 列的数,如a 42=8.若a ij =2009,则i 与j 的和为________.解析:由三角形数表可以看出其奇数行为奇数列,偶数行为偶数列,2009=2×1005-1,所以2009为第1005个奇数,又前31个奇数行内数的个数的和为961,前32个奇数行内数的个数的和为1024,故2009在第32个奇数行内,所以i =63,因为第63行的第一个数为2×962-1=1923,2009=1923+2(m -1),所以m =44,即j =44,所以i +j =107.答案:10710.已知1+2×3+3×32+4×33+…+n ·3n -1=3n (na -b )+c 对一切n ∈N +都成立,那么a ,b ,c 的值分别为________.解析:∵已知等式对一切n ∈N +成立,∴当n =1,2,3时也成立,即⎩⎪⎨⎪⎧ 1=3(a -b )+c ,1+2×3=32(2a -b )+c ,1+2×3+3×32=33(3a -b )+c .解得⎩⎪⎨⎪⎧ a =12,b =14,c =14.答案:12 14 1411.某电信公司推出一种手机月费方案为:若全月的通讯时间不超过150分钟,则收固定的月费60元;若全月的通讯时间超过150分钟,则除固定的月费之外,对超过150分钟的部分按每分钟0.30元收费.下面是计算手机月费的算法的流程图,其中处理框中应填上的条件是________.解析:若全月的通讯时间超过150分钟,则在固定的月费60元之外,对超过150分钟的部分按每分钟0.30元收费,则在T >150时,月费为Y =60+0.30(T -150).结合算法流程图,可知处理框中应填Y ←60+0.30(T -150).答案:Y ←60+0.30(T -150)12.两点等分单位圆时,有相应正确关系为sin α+sin(π+α)=0;三点等分单位圆时,有相应正确关系为sin α+sin(α+2π3)+sin(α+4π3)=0.由此可以推知:四点等分单位圆时的相应正确关系为________.解析:类比推理可知,四等分单位圆时,α与α+π的终边互为反向延长线,α+π2与α+3π2的终边互为反向延长线,如图.答案:sin α+sin(α+π2)+sin(α+π)+sin(α+3π2)=013.有一算法流程图如图,则该算法解决的是________.答案:输出不大于660能被10整除的所有正整数14.(2010年皖南八校模拟)在计算“1×2+2×3+…+n (n +1)”时,某同学学到了如下一种方法:因为k (k +1)=13[k (k +1)(k +2)-(k -1)k (k +1)],所以得1×2=13(1×2×3-0×1×2),2×3=13(2×3×4-1×2×3),n (n +1)=13[n (n +1)(n +2)-(n -1)n (n +1)].各式相加,得1×2+2×3+…+n (n +1)=13n (n +1)(n +2).类比上述方法,请你计算“1×3+2×4…+n (n +2)”,其结果写成关于n 的一次因式的积的形式为________.解析:∵k (k +2)=16[k (k +2)(k +4)-(k -2)k (k +2)],∴1×3+2×4+3×5+4×6+5×7+6×8+…+n (n +2)=16[1×3×5-(-1)×1×3+2×4×6-0×2×4+3×5×7-1×3×5+4×6×8-2×4×6+5×7×9-3×5×7+6×8×10-4×6×8+…+n (n +2)(n +4)-(n -2)n (n +2)]=16[-(-1)×1×3-0×2×4+(n -1)(n +1)(n +3)+n (n +2)(n +4)]=16(2n 3+9n 2+7n )=16n (n +1)(2n +7).答案:16n (n +1)(2n +7)二、解答题(本大题共6小题,共90分,解答应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧(2x -1)+i =y -(3-y )i (2x +ay )-(4x -y +b )i =9-8i 有实数解,求a ,b 的值. 解:⎩⎪⎨⎪⎧(2x -1)+i =y -(3-y ),(2x +ay )-(4x -y +b )i =9-8i 由第一个等式得⎩⎪⎨⎪⎧ 2x -1=y 1=-(3-y ),解得⎩⎨⎧ x =52y =4.将上述结果代入第二个等式中得5+4a -(10-4+b )i =9-8i.由两复数相等得⎩⎪⎨⎪⎧ 5+4a =910-4+b =8,解得⎩⎪⎨⎪⎧a =1b =2. 16.(本小题满分14分)假设a ,b ,c ,d ∈R 且ad -bc =1.求证:a 2+b 2+c 2+d 2+ab +cd ≠1.证明:假设a 2+b 2+c 2+d 2+ab +cd =1.∵ad -bc =1,∴a 2+b 2+c 2+d 2+ab +cd =ad -bc .∴a 2+b 2+c 2+d 2+ab +cd +bc -ad =0.∴2a 2+2b 2+2c 2+2d 2+2ab +2cd +2bc -2ad =0.∴(a +b )2+(b +c )2+(c +d )2+(a -d )2=0.∴a +b =0,b +c =0,c +d =0,a -d =0.∴a =b =c =d =0,∴ad -bc =0,这与ad -bc =1矛盾,从而假设不成立,原命题成立,即a 2+b 2+c 2+d 2+ab +cd ≠1成立.17.(本小题满分14分)某“儿童之家”开展亲子活动,计划活动按以下步骤进行:首先,儿童与家长按事先约定的时间来到“儿童之家”,然后,一部分工作人员接待儿童,做活动前的准备;同时另一部分工作人员接待家长,交流儿童本周的表现;第三步,按照亲子活动方案进行活动;第四步,启导员填写亲子活动总结记录;同时家长填写反馈卡,最后启导员填写服务跟踪表.你能为“儿童之家”的这项活动设计一个活动流程图吗?解:活动流程图如图所示. 儿童与家长如约来到“儿童之家” ↓ ↓接待儿童做 接待家长交流活动前准备 儿童本周表现↓ ↓按亲子活动方案活动↓ ↓启导员填写亲子 家长填写亲子活动总结记录 活动反馈卡↓ ↓启导员填写服务跟踪表18.(本小题满分16分)已知z 是复数,z +2i ,z 2-i均为实数(i 为虚数单位),且复数(z +a i)2在复平面内对应的点在第一象限内,求实数a 的取值范围.解:设z =x +y i(x ,y ∈R ),则z +2i =x +(y +2)i ,z 2-i =x +y i 2-i =(x +y i)(2+i)(2-i)(2+i)=15(2x -y )+15(x +2y )i , 因为z +2i ,z 2-i均为实数, 所以⎩⎪⎨⎪⎧ y +2=0x +2y =0,解得⎩⎪⎨⎪⎧x =4y =-2, 所以z =4-2i ,所以(z +a i)2=(4-2i +a i)2=(12+4a -a 2)+8(a -2)i ,又复数(z +a i)2在复平面内对应的点在第一象限内,所以⎩⎪⎨⎪⎧12+4a -a 2>08(a -2)>0,解得2<a <6, 所以实数a 的取值范围是(2,6). 19.(本小题满分16分)已知:a >0,b >0,a +b =1.求证: a +12+ b +12≤2.证明:要证 a +12+ b +12≤2, 只要证:a +12+b +12+2 (a +12)(b +12)≤4, ∵由a +b =1,故只要证: (a +12)(b +12)≤1,只要证:(a +12)(b +12)≤1,只要证:ab ≤14,∵a >0,b >0,1=a +b ≥2ab ,∴ab ≤14,故原不等式成立. 20.(本小题满分16分)(1)已知x ,y ∈R ,求证:不等式:①12x 2+12y 2≥(12x +12y )2;②13x 2+23y 2≥(13x +23y )2;③14x 2+34y 2≥(14x +34y )2;(2)根据上述不等式,请你推出更一般的结论,并证明你的结论.解:(1)证明:①∵12x 2+12y 2-(12x +12y )2=12x 2+12y 2-14x 2-12xy -14y 2=14x 2-12xy +14y 2=14(x -y )2≥0,∴12x 2+12y 2≥(12x +12y )2.②∵13x 2+23y 2-(13x +23y )2=29x 2+29y 2-49xy=29(x 2+y 2-2xy )=29(x -y )2≥0,∴13x 2+23y 2≥(13x +23y )2.③∵14x 2+34y 2-(14x +34y )2=14x 2+34y 2-(116x 2+38xy +916y 2)=316x 2+316y 2-38xy=316(x 2+y 2-2xy )=316(x -y )2≥0,∴14x 2+34y 2≥(14x +34y )2.(2)一般的结论是:已知x ,y ∈R ,a ,b 都是正数,且a +b =1,则ax 2+by 2≥(ax +by )2.证明如下:∵a +b =1,∴a=1-b>0,b=1-a>0.∵(ax2+by2)-(ax+by)2=(a-a2)x2-2abxy+(b-b2)y2=a(1-a)x2-2a(1-a)xy+a(1-a)y2=a(1-a)(x2-2xy+y2)=a(1-a)(x-y)2,又∵a>0,1-a>0,(x-y)2≥0,∴(ax2+by2)-(ax+by)2≥0,即ax2+by2≥(ax+by)2(其中a+b=1且a>0,b>0)成立.。

南康二中高三数学选择填空题专项训练.doc

南康二中高三数学选择填空题专项训练.doc

(A) p :o + c >b+d, (B) p:a>l,b>l (C) p: x=l,p:a>l,a >b 且c>d,可举反例。

1 A 、一 3 1C 、一 6B、 D £4112南康二中高三数学选择填空题专项训练一.选择题: 1.下列选项中,P 是q 的必要不充分条件的是 q: a >b 且 c>d q : /(x) = b — b(a >0,且m 1)的图像不过第二象限 q:x 2 = x q : f (x) = log a x{a > 0,且Q 更 1)在(0, +oo)上为增函数[解析]:由 Q >b 且 c>d=> Q + C >b+d,而由a + c >b+d2.下列曲线中离心率为匝的是23. (2005 年北京春季卷)"初=& ”是“直线(m + 2)x + 3my + 1 = 0 与直线(m - 2)x + (m + 2)y-3 = 0 相互垂直”的() A,充分必要条件 B.充分而不必要条件 C,必要而不充分条件D,既不充分也不必要条件解:由 /] _L ,2 o W + 片务=。

0 (秫 + 2)(m - 2) + 3m(m + 2) = 0u> 秫=—2 或 m = 知由秫=?可推 出\±/2,但由\ ±/2推不出初=},故m = |是的充分不必要条件,故选(B ). 4.(黄家中学高08级十二月月考)若函数/(x) = log fl (2x 2+x) (a 〉0,a A 1)在区间恒有/(x)〉0 ,则 /(x)的单调递增区间是A. [-°°,一B. [-+C.(0, + oo)D.【解】:设u = 2x 2+ x ,则当工』。

,]]时,有u e (0,1);而此时/(%) > 0恒成立,「.Ovovl, 又•・・〃 = 2/+x =2" + S ,—的递减区间为[_8,_ j '但由U = 2X 2+X >0得x 〉°或%<-1, ・../(X )的单调递增区间为"叫-j 故选D ;5. 投掷两颗骰子,得到其向上的点数分别为m 和n,则复数(m+ni) (n-mi)为实数的概率为 【答案】C22(A)2 4(B) 22*匕=14 2(C) 土4(D) r_£ = 14 10[解析]由e =—得£ 2 a' 3、甘 3 b~—1-1 ---- =———2' a 22 ®【解析】因为(m + ni)(n - mi) = 2mn + (w 2 -m 2)z 为实数所以n 2= m 2故m = 〃则可以取1、2 • • • 6,共6种可能,所以尸=—~ =—CG 6 6. (理)设函数 /(x) = jx - In x(x > 0), IJliJ y= /(x)()A 在区间(L,1),(1,e)内均有零点。

高三数学二轮复习阶段性综合检测(六)

高三数学二轮复习阶段性综合检测(六)

阶段性综合检测(六)(必做题部分:时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分,把答案填在题中横线上)1.命题“∃x ∈R ,x 2+x ≤0”的否定是________. 解析:存在性命题的否定是全称命题. 答案:∀x ∈R ,x 2+x >02.抛物线y =-2x 2的焦点坐标为________.解析:y =-2x 2化为x 2=-12y ,∴焦点在y 轴负半轴上,∴F (0,-18).答案:(0,-18)3.已知函数y =ax 3+bx 2,当x =1时,有极大值3,则2a +b =________.解析:y ′=3ax 2+2bx ,当x =1时,y ′|x =1=3a +2b =0,y |x =1=a +b =3,即⎩⎪⎨⎪⎧3a +2b =0a +b =3,a =-6,b =9,∴2a +b =-3.答案:-34.下列命题中,是真命题的有________.①∃x ∈[0,π2],sin x +cos x ≥2; ②∀x ∈(3,+∞),x 2>2x +1; ③∃x ∈R ,x 2+x =-1;④∀x ∈(π2,π),tan x >sin x .解析:对于①,sin x +cos x =2sin(x +π4),由x ∈[0,π2],x +π4∈[π4,3π4],则0≤sin x +cos x ≤2,故①错;对于②,由x 2-2x -1>0解得x >1+2或x <1-2,故当x ∈(3,+∞)时,x 2>2x +1恒成立;对于③,x 2+x +1=(x +12)2+34≥34,故③错;对于④,当x ∈(π2,π)时,tan x <0,sin x >0,故④错.答案:②5.如图,过抛物线y 2=4x 的焦点F 作直线交抛物线于A (x 1,y 1)、B (x 2,y 2),若x 1+x 2=6,那么|AB |等于________.解析:由抛物线定义得|AB |=|AF |+|BF |=x 1+x 2+p =6+2=8.答案:86.函数f (x )=x cos x 的导函数f ′(x )在区间[-π,π]上的图象大致是________.解析:f ′(x )=cos x -x sin x .取特殊值检验,当x =0时,f ′(x )=cos x -x sin x =1,排除③④,当x =π2时,f ′(x )=cos x -x sin x =0-π2<0,即在[0,π]的中间处,f ′(x )<0,显然②不符合要求.答案:①7.(2010年无锡调研)“若a ∉M 或a ∉P ,则a ∉M ∩P ”的逆否命题是________.解析:命题“若p 则q ”的逆否命题是“若綈q ,则綈p ”,本题中“a ∉M 或a ∉P ”的否定是“a ∈M 且a ∈P ”.答案:若a ∈M ∩P ,则a ∈M 且a ∈P8.(2010济南市高三模拟)过椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点垂直于x 轴的弦长为12a ,则双曲线x 2a 2-y 2b 2=1的离心率e 的值是________.解析:据题意知椭圆通径长为12a ,故有2b 2a =12a ⇒a 2=4b 2⇒b 2a 2=14,故相应双曲线的离心率e = 1+(b a )2= 1+14=52.答案:529.函数f (x )=x -ln x 的单调递减区间是________.解析:f ′(x )=1-1x =x -1x ≤0,∴x ∈(0,1]. 答案:(0,1]10.若函数f (x ),g (x )的定义域和值域都是R ,则f (x )>g (x )(x ∈R )成立的充要条件是________.①∃x 0∈R ,f (x 0)>g (x 0)②有无穷多个x ∈R ,使得f (x )>g (x ) ③∀x ∈R ,f (x )>g (x )+1④R 中不存在x 使得f (x )≤g (x )解析:由于要恒成立,也就是对定义域内所有的x 都成立,所以对于①来说显然不成立;而对于②,无穷性是说明不了任意性的,所以也不成立;对于③,由③的条件∀x ∈R ,f (x )>g (x )+1可以推导原结论f (x )>g (x )恒成立是显然的,即充分性成立,但f (x )>g (x )成立时不一定有f (x )>g (x )+1,比如f (x )=x 2+0.5,g (x )=x 2,因此必要性不成立;对于④,必要性显然成立,由R 中不存在x 使f (x )≤g (x ),根据逆否命题与原命题的等价性,则有对于任意x ∈R 都有f (x )>g (x ),即充分性也成立.答案:④11.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点到一条渐近线的距离等于焦距的14,则该双曲线的离心率是________.解析:取焦点(c,0),渐近线bx +ay =0,则有bc a 2+b2=142c ,整理得4b 2=a 2+b 2,∴3c 2=4a 2,解得e =233.答案:23312.(2010年南京调研)如图所示,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)=______,f ′(5)=________.解析:∵切线方程与y =f (x )交于点P (5,y 0),∴y 0=-5+8=3.由切线的意义知f ′(5)=-1.答案:3 -113.已知命题p :实数x 满足log a (1-x )<log a x (0<a <1),命题q :实数x 满足1+x1-x>0,则p 是q 的________条件.解析:∵0<a <1,∴log a (1-x )<log ax ⇒1-x >x >0⇒0<x <12,而1+x1-x>0⇒-1<x <1.可知p ⇒q 但q ⇒/p . 答案:充分不必要14.经过点M (10,83),渐近线方程为y =±13x 的双曲线的方程为________.解析:由双曲线的渐近线方程知,双曲线可设为9y 2-x 2=λ,将M (10,83)代入,可得λ=-36,∴9y 2-x 2=-36,即x 236-y 24=1.答案:x 236-y 24=1二、解答题(本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分14分)设命题为“若m >0,则关于x 的方程x 2+x -m =0有实数根”,试写出它的否命题、逆命题和逆否命题,并分别判断其真假.解:否命题:若m ≤0,则关于x 的方程x 2+x -m =0无实数根; 逆命题:若关于x 的方程x 2+x -m =0有实数根,则m >0; 逆否命题:若关于x 的方程x 2+x -m =0没有实数根,则m ≤0.由方程的根的判别式Δ=1+4m ,得Δ≥0,即m ≥-14时,方程有实根.∴m >0使1+4m >0,方程x 2+x -m =0有实根. ∴原命题为真,从而逆否命题为真.但方程x 2+x -m =0有实根,必须m ≥-14,不能推出m >0,故逆命题为假.否命题与逆命题互为逆否命题,故为假.16.(本小题满分14分)已知椭圆E 的焦点在x 轴上,长轴长为4,离心率为32.(1)求椭圆E 的标准方程;(2)已知点A (0,1)和直线l :y =x +m ,线段AB 是椭圆E 的一条弦并且直线l 垂直平分弦AB ,求实数m 的值.解:(1)由e =c a =32,2a =4,得c =3,而a 2-b 2=c 2,则b =1,故椭圆E 的标准方程为x 24+y 2=1.(2)由条件可得直线AB 的方程为y =-x +1.于是,有 ⎩⎨⎧y =-x +1x 24+y 2=1,则5x 2-8x =0, 故x B =85,y B =-x B +1=-35.设弦AB 的中点为M ,则由中点坐标公式得x M =45,y M =15,由此及点M 在直线l 上得15=45+m ⇒m =-35.17.(本小题满分14分)已知函数f (x )=1x +2x 2+1x 3.(1)求y =f (x )在[-4,-12]上的最值;(2)若a ≥0,求g (x )=1x +2x 2+ax 3的极值点.解:(1)f ′(x )=-(x +1)(x +3)x 4. f ′(x )>0,-3<x <-1,(2)g ′(x )=-x 2+4x +3ax 4. 设u =x 2+4x +3a . Δ=16-12a ,当a ≥43时,Δ≤0,g ′(x )≤0,所以y =g (x )没有极值点.当0<a <43时,x 1=-2-4-3a ,x 2=-2+4-3a <0.减区间:(-∞,x 1),(x 2,0),(0,+∞),增区间:(x 1,x 2).∴有两个极值点x 1,x 2.当a =0时,g (x )=1x +2x 2,g ′(x )=-x +4x 3.减区间:(-∞,-4),(0,+∞),增区间:(-4,0). ∴有一个极值点x =-4.综上所述:a =0时,∴有一个极值点x =-4;0<a <43时有两个极值点x =-2±4-3a ;a ≥43时没有极值点.18.(本小题满分16分)(2010广东清远模拟)设P :关于x 的不等式a x >1的解集是{x |x <0},Q :函数y =lg(ax 2-x +a )的定义域为R ,如果P 和Q 有且仅有一个正确,求a 的取值范围.解:若P 真,则0<a <1;若P 假,则a ≥1或a ≤0.若Q 真, 由⎩⎪⎨⎪⎧a >0,Δ=1-4a 2<0, 得a >12;若Q 假,则a ≤12. 又P 和Q 有且仅有一个正确,当P 真Q 假时,0<a ≤12; 当P 假Q 真时,a ≥1.综上,得a ∈(0,12]∪[1,+∞). 19.(本小题满分16分)在平面直角坐标系xOy 中,直线l 与抛物线y 2=4x 相交于不同的A ,B 两点.(1)如果直线l 过抛物线的焦点,求OA →·OB→的值; (2)如果OA →·OB→=-4,证明直线l 必过一定点,并求出该定点. 解:(1)由题意知,抛物线的焦点为(1,0),设直线l :x =ty +1,代入抛物线y 2=4x ,消去x ,得 y 2-4ty -4=0,设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=4t ,y 1y 2=-4,O A →·O B →=x 1x 2+y 1y 2=(ty 1+1)(ty 2+1)+y 1y 2=t 2y 1y 2+t (y 1+y 2)+1+y 1y 2=-4t 2+4t 2+1-4=-3.(2)设直线l :x =ty +b ,代入抛物线y 2=4x ,消去x ,得 y 2-4ty -4b =0,设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=4t ,y 1y 2=-4b .∵OA →·OB →=x 1x 2+y 1y 2=(ty 1+b )(ty 2+b )+y 1y 2=t 2y 1y 2+bt (y 1+y 2)+b 2+y 1y 2=-4bt 2+4bt 2+b 2-4b =b 2-4b ,令b 2-4b =-4,∴b 2-4b +4=0,∴b =2. ∴直线l 过定点(2,0).20.(本小题满分16分)已知函数f (x )=x 3-ax 2-a 2x +1,g (x )=1-4x -ax 2,其中实数a ≠0.(1)求函数f (x )的单调区间;(2)若f (x )与g (x )在区间(-a ,-a +2)内均为增函数,求a 的取值范围.解:(1)f ′(x )=3x 2-2ax -a 2,又3x 2-2ax -a 2=3(x -a )(x +a 3),令f ′(x )=0,得x 1=a ,x 2=-a3.①若a >0,则当x <-a3或x >a 时,f ′(x )>0,当-a3<x <a 时,f ′(x )<0.∴f (x )在(-∞,-a 3)和(a ,+∞)内是增函数,在(-a3,a )内是减函数.②若a <0,则当x <a 或x >-a3时,f ′(x )>0,当a <x <-a3时,f ′(x )<0.∴f (x )在(-∞,a )和(-a3,+∞)内是增函数,在(a ,-a3)内是减函数.(2)当a >0时,f (x )在(-∞,-a3)和(a ,+∞)内是增函数,g (x )=-a (x +2a )2+1+4a ,故g (x )在(-∞,-2a )内是增函数,由题意得⎩⎪⎨⎪⎧a >0,-a +2≤-a 3,-a +2≤-2a .解得a ≥3.当a <0时,f (x )在(-∞,a )和(-a3,+∞)内是增函数,g (x )在(-2a ,+∞)内是增函数.由题意得⎩⎪⎨⎪⎧a <0,-a ≥-a 3,-a ≥-2a .解得a ≤- 2.综上知实数a 的取值范围为(-∞,-2]∪[3,+∞).。

名校高三数学二轮资料——导数选择填空题解答题提升精练试题

名校高三数学二轮资料——导数选择填空题解答题提升精练试题

高三数学导数选择填空题1.已知函数x x x f 3)(3-=,若过点()0,16A 且与曲线()y f x =相切的切线方程为16y ax =+,则实数a 的值是( )A .3-B .3C .6D .92.已知函数f (x )在R 上满足2()2(2)88f x f x x x =--+-,则曲线y =f (x )在点 (1,f (1))处切线的斜率是( )A .2B .1C .3D .2- 3.已知函数21()4ln 2f x x x =+,若存在满足013x ≤≤的实数0x ,使得曲线()y f x =在点00(,())x f x 处的切线与直线100x my +-=垂直,则实数m 的取值范围是( ) A .[5,)+∞ B .[4,5] C .13[4,]3D .(,4)-∞ 4.曲线2y x=与直线1y x =-及4x =所围成的封闭图形的面积为( ) A .2ln 2 B .2ln 2- C .4ln 2- D .42ln 2-5.若⎪⎩⎪⎨⎧≤+>-=⎰210,1),4()(x dt t e x x f x f x ,则f (2016)等于( ) A .0 B .ln 2 C .21e + D .1ln 2+6.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t(t 的单位:v s ,的单位:s m /行驶至停止.在此期间汽车继续行驶的距离(单位:m )是 ( ).(积分)A .1+25ln 5B .8+25ln113C .4+25ln 5D .4+50ln 2 7.已知函数1y x=与1,x y =轴和x e =所围成的图形的面积为N M ,=2tan 22.51tan 22.5︒-︒,则程序框图输出的S 为( )A .1B .2C .12D .08.等差数列{}n a 中的40051a a 、是函数321()4613f x x x x =-+-的极值点,则22013log a =( )A .2B .3C .4D .59.设直线x t =与函数2(),()ln f x x g x x ==的图像分别交于点,M N ,则当||MN 达到最小时t 的值为( )A .1B .12 CD10.设函数()f x 的导函数为'()f x ,对任意x R ∈都有'()()f x f x >成立,则( ) A .3(ln 2)2(ln3)f f > B .3(ln 2)2(ln3)f f =C .3(ln 2)2(ln3)f f <D .3(ln 2)f 与2(ln 3)f 的大小不确定 11.已知函数()y f x =对任意的(,)22x ππ∈-满足'()cos ()sin 0f x x f x x +>(其中'()f x 是函数()f x 的导函数),则下列不等式成立的是( ) A()()34f ππ-<- B()()34f ππ< C .(0)2()3f f π< D.(0)()4f π> 12.若)(x f 的定义域为R ,2)(>'x f 恒成立,2)1(=-f ,则42)(+>x x f 解集为( )A .(1,1)-B .(1)-+∞, C .(,1)-∞- D .(,)-∞+∞ 13.已知函数)(x f y =定义域为),(ππ-,且函数)1(+=x f y 的图象关于直线1-=x 对称,当),0(π∈x 时,x x f x f ln sin )2()(ππ-'-=,(其中)(x f '是)(x f 的导函数),若)91(log ),3(log ),3(33.0f c f b f a ===π,则c b a ,,的大小关系是( )A .c b a >>B .c a b >>C .a b c >>D .b a c >>14.已知函数()f x =22,0ln(1),0x x x x x ⎧-+≤⎨+>⎩,若|()f x |≥ax ,则a 的取值范围是( )A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-15.函数2342013()1...2342013x x x x f x x =+-+-++,2342013()1 (2342013)x x x x g x x =-+-+--,设函数()(3)(4)F x f x g x =+⋅-,且函数()F x 的零点均在区间),,](,[Z ∈<b a b a b a 内,则-b a 的最小值为( )A .11B .10C .9D .816.已知)(x f 、)(x g 都是定义在R 上的函数,()0g x ≠,()()()()f x g x f x g x ''<,)()(x g a x f x =,25)1()1()1()1(=--+g f g f ,则关于x的方程250((0,1))2abx b ++=∈有两个不同实根的概率为( )A .51B .52 C .53 D .54 17.若函数f (x )=x 3+ax 2+bx +c 有极值点x 1,x 2,且f (x 1)=x 1,则关于x 的方程3(f (x ))2+2af (x )+b =0的不同实数根的个数是 ( )A .3B .4C .5D .618.设定义在R 上的函数()f x 是最小正周期为2π的偶函数,()f x '是()f x 的导函数,当[0,]x π∈时;0()2f x <<;当(0,)x π∈且2x π≠时,()()02x f x π'->,则函数()|tan |y f x x =-在区间[2,2]ππ-上的零点个数为( )A .2B .4C .6D .8 19. ()y f x =为R 上的可导函数,当0x ≠时, ()'()0f x f x x +>,则函数1()()g x f x x=+的零点分数为( ) A .1 B .2 C .0 D .0或220.若实数,,,a b c d 满足0)2()ln 3(222=+-+-+d c a a b ,则22)()(d b c a -+-的最小值为( ) AB . 2 C. D .821.已知函数()323f x x tx x =-+,若对于任意的[]1,2a ∈,(]2,3b ∈,函数()f x 在区间(),a b 上单调递减,则实数t 的取值范围是( )A .(],3-∞B .(],5-∞C .[)3,+∞D .[)5,+∞ 22.已知函数21()4ln 2f x x x =+,若存在满足013x ≤≤的实数0x ,使得曲线()y f x =在点00(,())x f x 处的切线与直线100x my +-=垂直,则实数m 的取值范围是( ) A .[5,)+∞ B .[4,5] C .13[4,]3D .(,4)-∞ 23.已知函数32()f x ax bx cx d =+++在O ,A 点处取到极值,其中O 是坐标原点,A 在曲线22sin cos ,,33y x x x x x ππ⎡⎤=+∈⎢⎥⎣⎦上,则曲线()y f x =的切线的斜率的最大值是( )A .34π B .32 C34+ D3424.已知函数)(x f y =是定义在R 上的奇函数,且0)()(>x f x f -'(其中)(x f '是)(x f 的导函数)恒成立.若)1(,2)2(ln ,3)3(ln ef c f b f a -===,则c b a ,,的大小关( ) A .c b a >> B .b a c >> C .a b c >> D .b c a >>25.已知函数21()4ln 2f x x x =+,若存在满足013x ≤≤的实数0x ,使得曲线()y f x =在点00(,())x f x 处的切线与直线100x my +-=垂直,则实数m 的取值范围是( ) A .[5,)+∞ B .[4,5] C .13[4,]3D .(,4)-∞ 26.设函数()ln f x x x a x =-++221有两个极值点x x 12、,且x x 12<,则( ) A .ln ()f x +<21224 B .ln ()f x -<21224 C .ln ()f x ->21224 D .ln ()f x +>2122427.设直线x t =与函数2(),()ln f x x g x x ==的图像分别交于点,M N ,则当||MN 达到最小时t 的值为( )A .1B .12 CD.228.从如图所示的正方形OABC 区域内任取一个点(,)M x y ,则点M 取自阴影部分的概率为( )A .12 B .13 C .14 D .1629.函数f (x )=13ax 3+12ax 2-2ax +2a +1的图象经过四个象限,则实数a 的取值范围是( )A .-65<a <316B .-85<a <-316C .-85<a <-116D .-65<a <-31630.定义在R 上的函数()f x 满足:()()1,(0)4,f x f x f '+>=则不等式()3x x e f x e >+(其中e 为自然对数的底数)的解集为( )A .()0,+∞B .()(),03,-∞+∞C .()(),00,-∞+∞D .()3,+∞31.已知函数2()cos f x x x =- ,对于,22ππ⎡⎤-⎢⎥⎣⎦上的任意12,x x ,有如下条件:①12x x >;②2212x x >;③12||x x >.其中能使12()()f x f x >恒成立的条件序号是( ) A .①② B .②C .②③D .③32. 设函数(2)ln(3)()4x x f x x --=-,则()f x 的图象( )A .在第一象限内B .在第四象限内C .与x 轴正半轴有公共点D .一部分在第四象限内,其余部分在第一象限内33.已知 21()sin(),'()42f x x x f x π=++为 ()f x 的导函数,则 '()y f x =的图象大致是( )二、填空题1.已知点(1,1)A 和点(1,3)B --在曲线32:C y ax bx d =++(,,a b d 为常数)上,若曲线在点A 和点B 处的切线互相平行,则32a b d ++=_______ 2.设函数()f x =12,x x R ∈,恒有()()1212f x f x M x x -<-,其中M 是常数,则M 的最小值是 3.一物体在力5, 02,()34, 2x F x x x ≤≤⎧=⎨+>⎩(单位:N )的作用下沿与力F 相同的方向,从0x = 处运动到4x = (单位:m )处,则力()F x 做的功为 焦(积分)4.设函数()y f x =在(),-∞+∞内有意义.对于给定的正数k ,已知函数()()()(),,k f x f x k f x k f x k ≤⎧⎪=⎨>⎪⎩,取函数()3xf x x e -=--.若对任意的(),x ∈-∞+∞,恒有()()k f x f x =,则k的最小值为5.若()x f =21ln(2)2x b x -++∞在(-1,+)上是减函数,则b 的取值范围是__________ 6.函数32()f x x bx cx d =+++在区间[]1,2-上是减函数,则c b +的最大值为7.若函数1()()n f x x n N +*=∈的图像与直线1x =交于点P ,且在点P 处的切线与x 轴交点的横坐标为n x ,则20131201322013320132012log log log log x x x x ++++的值为8.已知函数f (x )=13x 3-2x 2+3m ,x ∈[0,+∞),若f (x )+5≥0恒成立,则实数m 的取值范围是________9.已知函数f (x )=x -1x +1,g (x )=x 2-2ax +4,若任意x 1∈[0,1],存在x 2∈[1,2],使f (x 1)≥g (x 2),则实数a 的取值范围是_____10.对于三次函数32()f x ax bx cx d =+++(0a ≠),给出定义:设()f x '是函数()y f x =的导数,()f x ''是函数()f x '的导数,若方程()0f x ''=有实数解0x ,则称点00(,())x f x 为函数()y f x =的“拐点”,某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心. 给定函数32115()33212f x x x x =-+-,请你根据上面探究结果,计算)20141(f +)20142(f …+)20142012(f +)20142013(f = _ 11.已知0sin ,a xdx π=⎰则二项式51a x ⎛⎫- ⎪⎝⎭的展开式中3x -的系数为12.若函数()y f x =在()0,+∞上的导函数为()f x ',且不等式()()xf x f x '>恒成立,又常数,a b 满足0a b >>,则下列不等式一定成立的是 .①()()bf a af b >;②()()af a bf b >;③()()bf a af b <;④()()af a bf b <. 13.0.50.521log log 1(1)(7)x mx x x +>---对任意[]4,2∈x 恒成立,则m 的取值范围为 . 14.函数21()2ln 2f x x x x a =+-+在区间(0,2)上恰有一个零点,则实数a 的取值范围是_____ 15.已知函数32()f x x ax bx c =+++(,,a b c R ∈),若函数()f x 在区间[1,0]-上是单调减函数,则22a b +的最小值是 .16.设⎪⎩⎪⎨⎧+=⎰a dt t x x x f 023lg )( 00≤>x x ,若1))1((=f f ,则a = 三、解答题1.已知函数2()1f x a bx x =++在3x =处的切线方程为58y x =-. (1)求函数()f x 的解析式;(2)若关于x 的方程()x f x k e =恰有两个不同的实根,求实数k 的值; (3)数列{}n a 满足12(2)a f =,1(),n n a f a n N *+=∈,求12320131111S a a a a =+++⋅⋅⋅⋅+的整数部分.2.已知函数22()ln(21)2()3x f x ax x ax a R =++--∈ (1)若2x =为()f x 的极值点,求实数a 的值;(2)若()y f x =在[)3,+∞上为增函数,求实数a 的取值范围;(3)当12a =-时,方程3(1)(1)3x bf x x--=+有实根,求实数b 的最大值. 3.已知函数1()ln xf x x ax-=+ (1)当1a =时,求()f x 在1[,2]2上的最小值;(2)若函数()f x 在1[,+)2∞上为增函数,求正实数a 的取值范围;(3)若关于x 的方程12ln 20x x x mx -+-=在区间1,e e ⎡⎤⎢⎥⎣⎦内恰有两个相异的实根,求实数m 的取值范围.4.已知函数()1ln(02)2xf x x x=+<<-. (1)是否存在点(,)M a b ,使得函数()y f x =的图像上任意一点P 关于点M 对称的点Q 也在函数()y f x =的图像上?若存在,求出点M 的坐标;若不存在,请说明理由;(2)定义2111221()()()()n n i i n S f f f f n n n n-=-==++⋅⋅⋅+∑,其中*n ∈N ,求2013S ; (3)在(2)的条件下,令12n n S a +=,若不等式2()1n amn a ⋅>对*n ∀∈N 且2n ≥恒成立,求实数m 的取值范围.5.已知函数()bx ax x x f ++=23.(1)若函数()x f y =在2=x 处有极值6-,求()x f y =的单调递增区间; (2)若()x f y =的导数()x f '对[]1,1-∈x 都有()2≤'x f ,求1-a b的取值范围. 6.已知函数21()ln ,()12f x xg x x bx ==-+(b 为常数). (1)函数)(x f 的图象在点()1(,1f )处的切线与函数)(x g 的图象相切,求实数b 的值;(2)若0,()()()b h x f x g x ==-,∃1x 、2x [1,2]∈使得12()()h x h x M -≥成立,求满足上述条件的最大整数M ;(3)当2b ≥时,若对于区间[1,2]内的任意两个不相等的实数1x ,2x ,都有 |)()(||)()(|2121x g x g x f x f ->-成立,求b 的取值范围.7.已知函数()()x a x x f -+=ln 有且只有一个零点,其中a >0. (1)求a 的值;(2)若对任意的()+∞∈,0x ,有()2kx x f ≥成立,求实数k 的最大值; (3)设()()x x f x h +=,对任意()()2121,1,x x x x ≠+∞-∈,证明:不等式()()121212121+++--x x x x x h x h x x >恒成立.8.设函数()e ()x f x ax a a =-+∈R ,其图象与x 轴交于1(0)A x ,,2(0)B x ,两点,且12x x <.(1)求a 的取值范围; (2)证明:0f '<(()f x '为函数()f x 的导函数);(3)设2()32g x ax ax a =-++,若()()x f x e g x -+≥对x R ∈恒成立,求a 取值范围 9. 设函数f (x )=x 2+ln (x +1).(1)求证:当x ∈(0,+∞)时f (x )>x 恒成立;(2)求证:2221220132015232014ln +++<; (3)求证:()11112ni i n sin n cos ln n i n =-⎛⎫+<-+ ⎪+⎝⎭∑. 10. 已知函数x x x f ln )(2= (1)求函数)(x f 的单调区间;(2)证明:对任意的0>t ,存在唯一的s ,使)(s f t =;(3)设(2)中所确定的s 关于t 的函数为)(t g s =,证明:当2e t >时,有21ln )(ln 52<<t t g 。

届高三数学二轮复习专题训练-以数列为载体的情景问题

届高三数学二轮复习专题训练-以数列为载体的情景问题

以数列为载体的情景问题一、单项选择题1.小方计划从4月1日开始存储零钱,4月1日到4月4日每天都存储1元,从4月5日开始,每天存储的零钱比昨天多1元,则小方存钱203天(4月1日为第1天)的储蓄总额为()A .19903元B .19913元C .20103元D .20113元2.《张丘建算经》曾有类似记载:“今有女子善织布,逐日织布同数递增(即每天增加的数量相同).”若该女子第二天织布一尺五寸,前十五日共织布六十尺,按此速度,该女子第二十日织布()A .七尺五寸B .八尺C .八尺五寸D .九尺3.现有17匹善于奔驰的马,它们从同一个起点出发,测试它们一日可行的路程.已知第i (i =1,2,…,16)匹马的日行路程是第i +1匹马日行路程的1.05倍,且第16匹马的日行路程为315里,则这17匹马的日行路程之和约为(取1.0517=2.292)()A .7750里B .7752里C .7754里D .7756里4.[2022·全国乙卷]嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星.为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{b n }:b 1=1+1α1,b 2=1+1α1+1α2,b 3=1+1α1+1α2+1α3,…,依此类推,其中αk ∈N *(k =1,2,…).则()A .b 1<b 5B .b 3<b 8C .b 6<b 2D .b 4<b 75.[2022·新高考Ⅱ卷]图1是中国古代建筑中的举架结构,AA ′,BB ′,CC ′,DD ′是桁,相邻桁的水平距离称为步,垂直距离称为举.图2是某古代建筑屋顶截面的示意图,其中DD 1,CC 1,BB 1,AA 1是举,OD 1,DC 1,CB 1,BA 1是相等的步,相邻桁的举步之比分别为DD 1OD 1=0.5,CC 1DC 1=k 1,BB 1CB 1=k 2,AA1BA 1=k 3.已知k 1,k 2,k 3成公差为0.1的等差数列,且直线OA 的斜率为0.725,则k 3=()A .0.75B .0.8C .0.85D .0.96.[2023·河北秦皇岛模拟]中国古代许多著名数学家对推导高阶等差数列的求和公式很感兴趣,创造并发展了名为“垛积术”的算法,展现了聪明才智.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,所讨论的二阶等差数列与一般等差数列不同,前后两项之差并不相等,但是后项减前项之差组成的新数列是等差数列.现有一个“堆垛”,共50层,第一层2个小球,第二层5个小球,第三层10个小球,第四层17个小球,…,按此规律,则第50层小球的个数为()A .2400B .2401C .2500D .25017.[2023·安徽马鞍山模拟]风筝由中国古代劳动人民发明于东周春秋时期,距今已2000多年.龙被视为中华古老文明的象征,大型龙类风筝放飞场面壮观,气势磅礴,因而广受喜爱.某团队耗时4个多月做出一长达200米、重约25公斤,“龙身”共有180节“鱗片”的巨龙风筝.制作过程中,风筝骨架可采用竹子制作,但竹子易断,还有一种耐用的碳杆材质也可做骨架,但它比竹质的成本高.最终团队决定骨架材质按图中规律排列(即相邻两碳质骨架之间的竹质骨架个数成等差数列),则该“龙身”中竹质骨架个数为()A .161B .162C .163D .1648.[2023·湖北武汉模拟]为平衡城市旅游发展和生态环境保护,某市计划通过五年时间治理城市环境污染,预计第一年投入资金81万元,以后每年投入资金是上一年的43倍;第一年的旅游收入为20万元,以后每年旅游收入比上一年增加10万元,则这五年的投入资金总额与旅游总收入差额为()A .325万元B .581万元C .721万元D .980万元二、多项选择题9.[2023·山西大同模拟]《庄子·天下》中有:“一尺之棰,日取其半,万世不竭”,其大意为:一根一尺长的木棰每天截取一半,永远都取不完,设第一天这根木棰截取一半后剩下a 1尺,第二天截取剩下的一半后剩下a 2尺,…,第五天截取剩下的一半后剩下a 5尺,则下列说法正确的是()A.a 5a 2=14B .a 3=18C .a 3-a 4=116D .a 1+a 2+a 3+a 4+a 5=313210.某企业2021年年初有资金5千万元,由于引进了先进生产设备,资金年平均增长率可达到50%.每年年底扣除下一年的消费基金1.5千万元后,剩余资金投入再生产.设从2021年的年底起,每年年底企业扣除消费基金后的剩余资金依次为a 1,a 2,a 3,…,则下列说法正确的是(lg 2≈0.3010,lg 3≈0.4771)()A .a 1=6千万元B .{a n -3}是等比数列C .{a n -3}是等差数列D .至少到2026年的年底,企业的剩余资金会超过21千万元三、填空题11.《周髀算经》是中国十部古算经之一,其中记载有:阴阳之数,日月之法,十九岁为一章,四章为一蔀,二十蔀为一遂……若32个人的年龄(都为整数)依次成等差数列,他们的年龄之和恰好为“一遂”,其中年龄最小者不超过30岁,则年龄最大者为________岁.12.三潭印月被誉为“西湖第一胜境”,所谓三潭,实际上是3个石塔和其周围水域,石塔建于宋代元四年(公元1089年),每个高2米,分别矗立在水光潋滟的湖面上,形成一个等边三角形,记为△A 1B 1C 1,设△A 1B 1C 1的边长为a 1,取△A 1B 1C 1每边的中点构成△A 2B 2C 2,设其边长为a 2,依此类推,由这些三角形的边长构成一个数列{a n },若{a n }的前6项和为195316,则△A 1B 1C 1的边长a 1=________.13.[2023·山东烟台模拟]欧拉是瑞士数学家和物理学家,近代数学先驱之一,在许多数学的分支中经常可以见到以他的名字命名的重要函数、公式和定理.如著名的欧拉函数φ(n ):对于正整数n ,φ(n )表示小于或等于n 的正整数中与n 互质的数的个数,如φ(5)=4,φ(9)=6.那么,数列{nφ(5n )}的前n 项和为________.14.[2021·新高考Ⅰ卷]某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm×12dm 的长方形纸,对折1次共可以得到10dm×12dm ,20dm×6dm 两种规格的图形,它们的面积之和S 1=240dm 2,对折2次共可以得到5dm×12dm ,10dm×6dm ,20dm×3dm 三种规格的图形,它们的面积之和S 2=180dm 2.以此类推,则对折4次共可以得到不同规格图形的种数为________;如果对折n 次,那么.1.解析:设小方第n天存钱a n元,则数列{a n}从第4项起成等差数列,且该等差数列的首项为1,公差为1,所以小方存钱203天的储蓄总额为1+1+1+200×1+200×1992×1=203+19900=20103元.故选C.答案:C2.解析:由题意知:该女子每天织布的尺寸成等差数列,记为{a n},其前n项和为S n,则a2=1.5,S15=60,∵S15=15(a1+a15)2=15a8=60,∴a8=4,∴数列{a n}的公差d=a8-a26=4-1.56=512,∴a20=a8+12d=4+12×512=9,即该女子第二十日织布九尺.故选D.答案:D3.解析:3151.05=300,依题意可得,第17匹马、第16匹马……第1匹马的日行路程里数依次成等比数列,且首项为300,公比为1.05,故这17匹马的日行路程之和为300×(1-1.0517)1-1.05=6000×(1.0517-1)=6000×(2.292-1)=7752(里).故选B.答案:B4.解析:方法一因为αk∈N*(k=1,2,…),所以0<1αk ≤1,所以α1<α1+1α2+1α3+1α4+1α5,所以b1>b5,所以A错误.同理α3<α3+1α4+1α5+1α6+1α7+1α8.设1α4+1α5+1α6+1α7+1α8=t1,所以α2+1α3>α2+1α3+t1,则α1+1α2+1α3<α1+1α2+1α3+t1,所以b3>b8,所以B错误.同理α2<α2+1α3+1α4+1α5+1α6.设1α3+1α4+1α5+1α6=t2,所以α1+1α2>α1+1α2+t2,所以b2<b6,所以C错误.同理α4<α4+1α5+1α6+1α7.设1α5+1α6+1α7=t3,所以α3+1α4>α3+1α4+t 3,则α2+1α3+1α4<α2+1α3+1α4+t 3,所以α1+1α2+1α3+1α4>α1+1α2+1α3+1α4+t 3,所以b 4<b 7,所以D 正确.故选D.方法二此题可赋特殊值验证一般规律,不必以一般形式做太多证明,以节省时间.由αk ∈N *,可令αk =1,则b 1=2,b 2=32,b 3=53,b 4=85.分子、分母分别构成斐波纳契数列,可得b 5=138,b 6=2113,b 7=3421,b 8=5534.对比四个选项,可知选D.答案:D5.解析:设OD 1=DC 1=CB 1=BA 1=1,则CC 1=k 1,BB 1=k 2,AA 1=k 3,依题意,有k 3-0.2=k 1,k 3-0.1=k 2,且DD 1+CC 1+BB 1+AA 1OD 1+DC 1+CB 1+BA 1=0.725,所以0.5+3k 3-0.34=0.725,故k 3=0.9,故选D.答案:D6.解析:不妨设第n 层小球个数为a n ,由题意,a 2-a 1=3,a 3-a 2=5,…,即各层小球之差是以3为首项,2为公差的等差数列.所以a n -a n -1=3+2(n -2)=2n -1(n ≥2,n ∈N *).50-a 49=9949-a 48=972-a 1=3,累加可得:a 50-a 1=49×(3+99)÷2=2499,故a 50=2499+2=2501.故选D.答案:D7.解析:设有n 个碳质骨架,n ∈N *,由已知可得n +1+2+3+…+(n -1)+n ≥180,如果只有n -1个碳质骨架,则骨架总数少于180,所以(n -1)+1+2+3+…+(n -1)<180,所以n 2+3n ≥360,且n 2+n <362,又n ∈N *解得n =18,所以共有碳质骨架18个,故竹质骨架有162个.故选B.答案:B8.解析:根据题意可知,这五年投入的金额构成首项为81,公比为43的等比数列,所以这五年投入的资金总额是81×[1-(43)5]1-43=781(万元);由题意可知,这五年的旅游收入构成首项为20,公差为10的等差数列,所以这五年的旅游总收入是20×5+5×42×10=200(万元),所以这五年的投入资金总额与旅游总收入差额为781-200=581(万元).故选B.答案:B9.解析:根据题意可得{a n }是首项为12,公比为12的等差数列,则a n =(12)n (n ∈N *),a 5a 2=q 3=18,故A 错误;a 3=18,故B 正确;a 3=18,a 4=116,则a 3-a 4=116,故C 正确;a 1+a 2+a 3+a 4+a 5=12(1-125)1-12=3132,故D 正确.故选BCD.答案:BCD10.解析:对于A ,由题意可知,a 1=5×1.5-1.5=6(千万元),A 正确;对于B ,因为由题意可得a n +1=1.5a n -1.5,所以a n +1-3=1.5(a n -3),又因为a 1-3=3,则a n -3≠0,故a n +1-3a n -3=1.5,所以{a n -3}是首项为3,公比为1.5的等比数列,B 正确,则C 错误;对于D ,由C 的分析可得a n -3=3×1.5n -1,所以a n =3+3×1.5n -1,令3+3×1.5n -1>21,解得n -1>lg 6lg 1.5=lg 3+lg 2lg 3-lg 2≈4.42,所以n >5.42,所以至少到2026年的年底,企业的剩余资金会超过21千万元,D 正确.故选ABD.答案:ABD11.解析:根据题意可知这32个人年龄之和为19×4×20=1520,设年纪最小者年龄为n ,年纪最大者年龄为m ,则n +m2×32=1520⇒n +m =95,设等差数列的首项为n ,公差为d ,则n ,m ,d ∈N *,则32n +32×312d =1520⇒2n +31d =95⇒2n =95-31d ,因为1≤n ≤30⇒2≤2n ≤60,则2≤95-31d ≤60,解得3531≤d ≤3,d =2时,n =332不满足题意,所以d =3,2n =95-31×3=2⇒n =1,则m =95-1=94.答案:9412.解析:根据题意,取△A 1B 1C 1每边的中点构成△A 2B 2C 2,则△A 2B 2C 2的各边均为△A 1B 1C 1对应的中位线,长度减半,由此a 2=12a 1,依次类推可得a n =12a n -1,所以{a n }是首项为a 1,公比q =12的等比数列,故其前6项和S 6=a 1(1-q 6)1-q =2a 11-(12)6=195316,则a 1=62.答案:6213.解析:在[1,5n ]中,与5n 不互质的数有5×1,5×2,5×3,…,5×5n -1,共有5n -1个,所以φ(5n )=5n -5n -1=4·5n -1,所以nφ(5n )=(4n )·5n -1,设数列{nφ(5n )}的前n 项和为S n ,所以S n =4×50+8×51+12×52+…+4n ×5n -1,5S n =4×51+8×52+12×53+…+4n ×5n ,两式相减可得-4S n =4+4×(51+52+…+5n -1)-4n ·5n ,所以S n =-1-(51+52+…+5n -1)+n ·5n=-1-5(1-5n -1)1-5+n ·5n ,即S n =(n -14)·5n +14.答案:(n -14)·5n +1414.解析:(1)由对折2次共可以得到5dm×12dm ,10dm×6dm ,20dm×3dm 三种规格的图形,所以对折三次的结果有:52×12,5×6,10×3,20×32,共4种不同规格(单位dm 2);故对折4次可得到如下规格:54×12,52×6,5×3,10×32,20×34,共5种不同规格.(2)由于每次对折后的图形的面积都减小为原来的一半,故各次对折后的图形,不论规格如何,其面积成公比为12的等比数列,首项为120(dm 2),第n 次对折后的图形面积为n -1,对于第n 次对折后的图形的规格形状种数,根据(1)的过程和结论,猜想为n +1种(证明从略),故得猜想S n =120(n +1)2n -1,设S =错误!k =120×220+120×321+120×422+…+120(n +1)2n -1,则12S=120×221+120×322+…+120n2n-1+120(n+1)2n,两式作差得:1 2S=240+120(12+122+…+12n-1)-120(n+1)2n=2401-12-120(n+1)2n=360-1202n-1-120(n+1)2n=360-120(n+3)2n,因此,S=720-240(n+3)2n=720-15(n+3)2n-4.答案:5720-15(n+3) 2n-4。

高三数学填空题专项训练(含答案解析)

高三数学填空题专项训练(含答案解析)

1.(5分)已知函数y=f(x),x∈D,若存在常数C,对∀x 1∈D,∃唯一的x2∈D,使得,则称常数C是函数f(x)在D上的“翔宇一品数”.若已知函数,则f(x)在[1,3]上的“翔宇一品数”是.2.(5分)如右图,某地一天从6时到14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+B,(0≤φ<2π),则温度变化曲线的函数解析式为.3.(5分)已知球O的半径为4,圆M与圆N为该球的两个小圆,AB为圆M与圆N的公共弦,AB=4,若OM=ON=3,则两圆圆心的距离MN=.4.(5分)如图,A,B,C是直线l上三点,P是直线l外一点,已知AB=BC=a,∠APB=90°,∠BPC=45°,记∠PBA=θ,则=.(用a表示)5.(5分)已知函数f(x)=|x﹣1|+|2x﹣1|+|3x﹣1|+…+|100x﹣1|,则当x=时,f(x)取得最小值.6.设定义在R上的函数f(x)=若关于x的方程f2(x)+bf(x)+c=0有3个不同的实数解x1,x2,x3,则x1+x2+x3= .7.设△ABC的BC边上的高AD=BC,a,b,c分别表示角A,B,C对应的三边,则+的取值范围是.8.给出下列命题,其中正确的命题是(填序号).①若平面α上的直线m与平面β上的直线n为异面直线,直线l是α与β的交线,那么l至多与m,n中的一条相交;②若直线m与n异面,直线n与l异面,则直线m与l异面;③一定存在平面γ同时与异面直线m,n都平行.9.在△ABC中,AH为BC边上的高,=,则过点C,以A,H为焦点的双曲线的离心率为.10.若不等式a+≥在x∈(,2)上恒成立,则实数a的取值范围为.11.如图放置的等腰直角三角形ABC薄片(∠ACB=90°,AC=2)沿x轴滚动,设顶点A(x,y)的轨迹方程是y=f (x),则f(x)在其相邻两个零点间的图象与x轴所围区域的面积为.12.(5分)已知一个数列的各项是1或2,首项为1,且在第k个1和第k+1个1之间有2k﹣1个2,即1,2,1,2,2,1,2,2,2,2,1,2,2,2,2,2,2,2,2,1,…则该数列前2010项的和s2010=.13.(5分)已知f(x)=2x可以表示成一个奇函数g(x)与一个偶函数h(x)之和,若关于x的不等式ag(x)+h (2x)≥0对于x∈[1,2]恒成立,则实数a的最小值是.14.(5分)已知数列{a n}满足:a1=1,a2=x(x∈N*),a n+2=|a n+1﹣a n|,若前2010项中恰好含有666项为0,则x的值为.答案1.解答:解:由已知中翔宇一品数的定义可得C即为函数y=f(x),x∈D最大值与最小值的几何平均数又∵函数为减函数故其最大值M=,最小值m=故C==故答案为2.解答:解:图中从6时到14时的图象是函数y=Asin(ωx+∅)+B的半个周期的图象,∴•=14﹣6⇒ω=.又由图可得A==10,B==20.∴y=10sin(x+∅)+20.将x=6,y=10代入上式,得sin(π+∅)=﹣1.∴π+∅=π⇒∅=π.故所求曲线的解析式为y=10sin(x+π)+20,x∈[6,14].故答案为y=10sin(x+π)+20,3.解答:解法一:∵ON=3,球半径为4,∴小圆N的半径为,∵小圆N中弦长AB=4,作NE垂直于AB,∴NE=,同理可得,在直角三角形ONE中,∵NE=,ON=3,∴,∴,∴MN=3.故填:3.4.解答:解:=asinθ,=acosθ,=,且=a2+a2cos2θ+2a2cos2θ=a2+3a2cos2θ,∴2a2sin2θ=a2+3a2cos2θ,解得sin2θ=,则==,故答案为:.5.解答:解:f(x)=|x﹣1|+|2x﹣1|+|3x﹣1|+…+|100x﹣1|=|x﹣1|+2|x﹣|+3|x﹣|+…+100|x﹣|=|x﹣1|+|x﹣|+|x﹣|+|x﹣|+|x﹣|+|x﹣|+…+|x﹣|共有(1+100)×100×=5050项又|x﹣a|+|x﹣b|≥|a﹣b|(注:|x﹣a|为x到a的距离…|x﹣a|+|x﹣b|即为x到a的距离加上x到b的距离,当x在a,b之间时,|x﹣a|+|x﹣b|最小且值为a到b的距离)所以f(x)的5050项前后对应每两项相加,使用公式|x﹣a|+|x﹣b|≥|a﹣b|f(x)≥(1﹣)+(﹣)+…+…当x在每一对a,b之间时,等号成立由于70×(1+70)×=248571×(71+1)×=2556所以f(x)最中间的两项(第2525,2526项)是|x﹣|所以f(x)≥(1﹣)+(﹣)+…+(﹣)当x=时等号成立则当x=时f(x)取得最小值6.解答:解:易知f(x)的图象关于直线x=1对称对于方程f2(x)+bf(x)+c=0,是一个关于f(x)的一元二次方程,若此一元二次方程仅有一根,则必有f(x)=1,此时x1,x2,x3三个数中有一个是1,另两个关于x=1对称,此时有x1+x2+x3=3若关于f(x)的一元二次方程f2(x)+bf(x)+c=0有两个根,则必有f(x)=1与f(x)=m≠1此时f(x)=1的根为1,f(x)=m≠1有两根,且此两根关于x=1对称,此时有x1+x2+x3=3综上知x1+x2+x3=3故答案为3.7.解答:解:∵BC边上的高AD=BC=a,∴S△ABC==,∴sinA=,又cosA==,∴+=2cosA+sinA=(cosA+sinA)=sin(α+A)≤,(其中si nα=,cosα=)又+≥2,∴+∈[2,].故答案为:[2,]8.解答:解:①是错误的,因为l可以与m,n都相交;②是错误的,因为m与l可以异面、相交或平行;③是正确的,因为只要将两异面直线平移成相交直线,两相交直线确定一个平面,此平面就是所求的平面.故答案为:③9.解答:解:如图所示,由=,得tanC==.由题可知AH⊥BC,以A,H为焦点的双曲线的离心率e=.∵△AHC为直角三角形,且tanC==,∴可设AH=4a,CH=3a,则AC=5a,所以离心率e===2.故答案为 210解答:解:不等式即为a≥+,在x∈(,2)上恒成立.而函数f(x)=+=的图象如图所示,所以f(x)在(,2)上的最大值为1,所以a≥1.故答案为:a≥111.解答:解:作出点A的轨迹中相邻两个零点间的图象,如图所示.其轨迹为两段圆弧,一段是以C为圆心,CA为半径的四分之一圆弧;一段是以B为圆心,BA为半径,圆心角为的圆弧.其与x轴围成的图形的面积为×22×+×2×2+××=2+4π.故答案为:2+4π.12.解答:解:由题意可得,当k=11时,有11个1,有1+2+…+210=211﹣1=2047个2 该数列中前2010项中共有11个1,有共有1999个2S2010=11+1999×2=4009故答案为:400913.解答:解:f(x)=2x可以表示成一个奇函数g(x)与一个偶函数h(x)之和∴g(x)+h(x)=2x①,g(﹣x)+h(﹣x)=﹣g(x)+h(x)=2﹣x②①②联立可得,h(x)=,g(x)=ag(x)+h(2x)≥0对于x∈[1,2]恒成立a对于x∈[1,2]恒成立对于x∈[1,2]恒成立t=2x﹣2﹣x,x∈[1,2],t∈则t在t∈单调递增,t=时,则t=a故答案为:14.解答:解:当x=1时,数列数列{a n}的各项为1,1,0,1,1,0,1,1,0,1,1,0…所以在前2010项中恰好含有=670项为0;当x=2时,数列数列{a n}的各项为1,2,1,1,0,1,1,0,1,1,0…所以在前2010项中恰好含有=669项为0,即有669项为0;当x=3时,数列数列{a n}的各项为1,3,2,1,1,0,1,1,0,1,1,0…所以在前2010项中恰好含有=669项为0;当x=4时,数列数列{a n}的各项为1,4,3,1,2,1,1,0,1,1,0,…所以在前2010项中恰好含有=668项为0;即有668项为0;当x=5时,数列数列{a n}的各项为1,5,4,1,3,2,1,1,0,1,1,0…所以在前2010项中恰好含有=668项为0;…由上面可以得到当x=6或x=7时,在前2010项中恰好含有667项为0;当x=8或x=9时,在前2010项中恰好含有666项为0;故答案为8或9.。

高三数学填空题集锦(中高档难度,新颖题以及易错题目为主,较适合二轮练习时使用)

高三数学填空题集锦(中高档难度,新颖题以及易错题目为主,较适合二轮练习时使用)

记 f1 (n) f ( n) , fk 1( n) f [ f k ( n)]( k 1,2,3, ) , 则 f2007 (2006) 等于 ( ).
35.定义 f ( M ) (m, n, p) ,其中 M 是△ ABC 内一点, m 、 n 、 p 分别是△ MBC 、△
MCA 、 △ MAB 的 面 积 , 已 知 △ ABC 中 , AB AC 2 3 , BAC 30 ,
e
试将该命题类比到双曲线中,给出一个真命题:
23 、在平面直角坐标系 xOy ,已知平面区域 A {( x, y) | x y 1,且 x 0, y 0} ,则平面
区域 B {( x y, x y) | (x, y) A} 的面积为
24 、一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱,这个四棱锥的底面为正方形,且 底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱
4.有下列说法正确的是
.
2 ①函数 f ( x) ln x 的零点所在的大致区间是( 2, 3);
x
②对于集合 A ,B ,命题:“ x A ,则 x B ”的否定形式为“ x A, x B ”;
11
(1 2 x )2
③函数 y
2
2x
与y 1
x 2 x 都是奇函数;
④函数 y ( x 1)2与 y 2x 1 在区间 [0, ) 上都是增函数
▲.
13.已知数列 { an } 的通项公式为 an
n ( 2)n ,则数列 { an } 成等比数列是数列 bn
{ bn } 的通
项公式为 bn n 的

条件(对充分性和必要性都要作出判断)
14.有一种计算机病毒可以通过电子邮件进行传播,如果第一轮被感染的计算机数是

2020届北京市高三数学文二轮复习典型题专项训练汇编圆锥曲线

2020届北京市高三数学文二轮复习典型题专项训练汇编圆锥曲线

2020届北京市高三数学文二轮复习典型题专项训练汇编圆锥曲线一、选择、填空题1、(昌平区2019届高三上学期期末)已知抛物线24y x =上一点M 到其焦点的距离为5,则点M 到y 轴的距离为_______.2、(朝阳区2019届高三上学期期末)已知双曲线222:1(0)16x y C a a -=>的一条渐近线方程为430x y +=,1F ,2F 分别是双曲线C 的左、右焦点,点P 在双曲线上,且17PF =,则2PF =A. 1B. 13C. 17D. 1或13 3、(大兴区2019届高三上学期期末)抛物线2x y =的焦点到准线的距离等于 .4、(东城区2019届高三上学期期末)过双曲线22221(0,0)x y a b a b-=>>的右焦点F 作垂直于x 轴的直线,交双曲线于,A B 两点,O 为坐标原点,若OAB ∆为等腰直角三角形,则双曲线的离心率e =_________.5、(房山区2019届高三上学期期末)双曲线2221(0)x y a a-=>的一个焦点坐标为(3,0),则实数a = .6、(丰台区2019届高三上学期期末)已知抛物线28y x =的焦点与椭圆22221(0)x y a b a b+=>>的一个焦点重合,且椭圆截抛物线的准线所得线段长为6,那么该椭圆的离心率为(A )2 (B )23 (C )22 (D )127、(海淀2019届高三上学期期末)双曲线x y -=22122的左焦点的坐标为(A )(,)-20 (B )(,)-20 (C ) (,)-10 (D )(,)-408、(石景山区2019届高三上学期期末)已知抛物线24y x =的准线为l ,l 与双曲线2214x y -=的两条渐近线分别交于,A B 两点,则线段AB 的长度为_____________.9、(通州区2019届高三上学期期末)若点()2,0P 到双曲线()22210x y a a-=>的一条渐近线的距离为1,则a =______ .10、(朝阳区2019届高三第二次(5月)综合练习(二模))已知点(1,2)M 在抛物线2:2(0)C y px p =>上,则p = ;点M 到抛物线C 的焦点的距离是 .11、(东城区2019届高三5月综合练习(二模))双曲线2214x y -=的渐近线方程为 . 12、(海淀区2019届高三5月期末考试(二模))已知双曲线2221(0)3x y a a -=>的右顶点和抛物线28y x =的焦点重合,则a 的值为(A)1 (B)2(C)3 (D)413、(昌平区2019届高三5月综合练习(二模))已知双曲线221:13y C x -=,若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为1,则抛物线2C 的方程为_________________.14、(海淀区2019届高三一模)抛物线2:4W y x =的焦点为F ,点A 在抛物线形上,且点A 到直线3x =-的距离是线段AF 长度的2倍,则线段AF 的长度为 (A)1 (B)2 (C)3 (D)415、(门头沟区2019届高三一模)双曲线22:21C x y -=的渐近线方程是 .16、(顺义区2019届高三第二次统练(一模))已知抛物线22(0)y px p =>的焦点和双曲线2213y x -=的右焦点2F 重合,则抛物线的标准方程为 ;P 为抛物线和双曲线的一个公共点,P 到双曲线左焦点1F 的距离为 .17、(西城区2019届高三一模)设1F ,2F 为双曲线2222 1(0,0)x y C a b a b-=>>:的两个焦点,若双曲线C 的两个顶点恰好将线段12F F 三等分,则双曲线C 的离心率为____.18、(大兴区2019届高三一模)已知点(00)O ,,(11)A ,,点P 在双曲线221x y -=的右支上,则OA OP⋅u u u r u u u r的取值范围是 .参考答案:1、42、B3、12 4、152+ 5、26、D7、A8、19、3 10、2;211、2x y =?12、B 13、28x y = 14、B 15、2y x =± 16、28y x = ,7 17、2 18、(0,+)∞二、解答题1、(昌平区2019届高三上学期期末)已知椭圆2222:1(0)x y C a b a b +=>>过点 (0,3),且离心率为12.设,A B 为椭圆C 的左、右顶点,P 为椭圆上异于,A B 的一点,直线,AP BP 分别与直线:4l x =相交于,M N 两点,且直线MB 与椭圆C 交于另一点H . (Ⅰ)求椭圆C 的标准方程;(Ⅱ)求证:直线AP 与BP 的斜率之积为定值; (Ⅲ)判断三点,,A H N 是否共线,并证明你的结论.2、(朝阳区2019届高三上学期期末)过椭圆W :2212x y +=的左焦点1F 作直线1l 交椭圆于,A B 两点,其中A (0,1),另一条过1F 的直线2l 交椭圆于,C D 两点(不与,A B 重合),且D 点不与点()01-,重合. 过1F 作x 轴的垂线分别交直线AD ,BC 于E ,G . (Ⅰ)求B 点坐标和直线1l 的方程; (Ⅱ)求证:11EF FG =.3、(大兴区2019届高三上学期期末)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,左顶点为(2,0)A -,过椭圆C 的右焦点F 作互相垂直的两条直线1l 和2l ,分别交直线:4l x =于M ,N 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)求FMN ∆的面积的最小值;(Ⅲ)设直线AM 与椭圆C 的另一个交点为P ,椭圆C 的右顶点为B ,求证:P ,B ,N 三点共线.4、(东城区2019届高三上学期期末)已知椭圆:C 22221(0)x y a b a b+=>>的离心率为22,其左焦点为1(1,0)F -.直线:(2)(0)l y k x k =+?交椭圆C 于不同的两点,A B ,直线1BF 与椭圆C 的另一个交点为E .(I )求椭圆C 的方程; (II )当12k =时,求1F AB ∆的面积; (III )证明:直线AE 与x 轴垂直.5、(房山区2019届高三上学期期末)已知椭圆C :22221+=x y a b(0a b >>)过点(0,1),且一个焦点坐标为(22,0).(Ⅰ)求椭圆C 的方程及离心率;(Ⅱ)过点(1,0)N 且与x 轴不垂直的直线l 与椭圆C 交于,P Q 两点,若在线段ON 上存在 点(,0)M m ,使得以MP , MQ 为邻边的平行四边形是菱形,求m 的取值范围.6、(丰台区2019届高三上学期期末)已知椭圆C :22221(0)x y a b a b+=>>的右焦点为(1,0)F ,离心率为12,直线:(4)l y k x =-(0)k ≠与椭圆C 交于不同两点,M N . (Ⅰ)求椭圆C 的方程;(Ⅱ)求证:直线MF 的倾斜角与直线NF 的倾斜角互补.7、(海淀2019届高三上学期期末)已知点(0,2)B -和椭圆22:142x yM +=. 直线:1l y kx =+与椭圆M 交于不同的两点,P Q .(Ⅰ) 求椭圆M 的离心率;(Ⅱ) 当12k =时,求PBQ ∆的面积; (Ⅲ)设直线PB 与椭圆M 的另一个交点为C ,当C 为PB 中点时,求k 的值 .8、(石景山区2019届高三上学期期末) 已知椭圆()2222:10x y E a b a b+=>>的一个顶点为(0,3),离心率为12.(Ⅰ)求椭圆E 的方程;(Ⅱ)设过椭圆右焦点的直线1l 交椭圆于A 、B 两点,过原点的直线2l 交椭圆于C 、D 两点. 若12l l ∥,求证:2CD AB为定值.9、(通州区2019届高三上学期期末)已知椭圆C :)0(12222>>=+b a by a x 过点()0,1A ,且椭圆的离心率为63. (Ⅰ)求椭圆C 的方程;(Ⅱ)斜率为1的直线l 交椭圆C 于()11,M x y ,()22,N x y 两点,且12x x >.若在直线3x =上存在点P ,使得PMN ∆是以PMN ∠为顶角的等腰直角三角形,求直线l 的方程.10、(朝阳区2019届高三第二次(5月)综合练习(二模))已知椭圆:C 2221x y a+=(>1)a 的离心率为63. (Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 过点(1,0)M 且与椭圆C 相交于,A B 两点.过点A 作直线3x =的垂线,垂足为D .证明直线BD 过x 轴上的定点.11、(东城区2019届高三5月综合练习(二模))已知椭圆22221(0):x y C a b a b+=>>的一个焦点为(1,0)F ,离心率为12.A 为椭圆C 的左顶点,,P Q 为椭圆C 上异于A 的两个动点,直线,AP AQ 与直线:4l x =分别交于,M N 两点. (I )求椭圆C 的方程;(II )若ΔPAF 与ΔPMF 的面积之比为15,求M 的坐标; (III )设直线l 与x 轴交于点R ,若,,P F Q 三点共线,求证:MFR FNR ∠=∠.12、(丰台区2019届高三5月综合练习(二模))已知椭圆2222:1(0)x y E a b a b+=>>的左、右顶点分别为,A B ,长轴长为4,离心率为12.过右焦点F 的直线l 交椭圆E 于,C D 两点(均不与,A B 重合),记直线,AC BD 的斜率分别为12,k k . (Ⅰ)求椭圆E 的方程;(Ⅱ)是否存在常数λ,当直线l 变动时,总有12k k λ=成立?若存在,求出λ的值;若不存在,说明理由.13、(海淀区2019届高三5月期末考试(二模))已知椭圆222:14x y C b+=的左顶点 A 与上顶点B 的距离为6.(I)求椭圆C 的方程和焦点的坐标;(Ⅱ)点P 在椭圆C 上,线段AP 的垂直平分线分别与线段AP 、x 轴、y 轴相交于不同的三点,,M H Q .(ⅰ)求证:点,M Q 关于点H 对称;(ⅱ)若PAQ ∆为直角三角形,求点P 的横坐标.14、(昌平区2019届高三5月综合练习(二模))已知椭圆()2222+=1>>0x y G :a b a b的离心率为32,经过点(0,1)B .设椭圆G 的右顶点为A ,过原点O 的直线l 与椭圆G 交于,P Q 两点(点Q 在第一象限),且与线段AB 交于点M . (I )求椭圆G 的标准方程;(II )是否存在直线l ,使得BOP ∆的面积是ΔBMQ 的面积的3倍?若存在,求直线l 的方程;若不存在,请说明理由.15、(东城区2019届高三一模)已知3(2,0),(1,)2A P -为椭圆22221(0)x y M a b a b +=>>:上两点,过点P 且斜率为,(0)k k k ->的两条直线与椭圆M 的交点分别为,B C . (Ⅰ)求椭圆M 的方程及离心率;(Ⅱ)若四边形PABC 为平行四边形,求k 的值.16、(海淀区2019届高三一模) 已知椭圆2222:1(0)x y C a b a b+=>>的左顶点为(2,0)A -,两个焦点与短轴一个顶点构成等腰直角三角形,过点(1,0)P 且与x 轴不重合的直线l 与椭圆交于,M N 不同的两点.(I)求椭圆P 的方程;(Ⅱ)当AM 与MN 垂直时,求AM 的长;(Ⅲ)若过点P 且平行于AM 的直线交直线52x =于点Q ,求证:直线NQ 恒过定点.17、(石景山区2019届高三一模)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,右焦点为(,0)F c ,左顶点为A ,右顶点B 在直线l :2x =上. (Ⅰ)求椭圆C 的方程;(Ⅱ)设点P 是椭圆C 上异于A ,B 的点,直线AP 交直线l 于点D ,当点P 运动时,判断以BD 为直径的圆与直线PF 的位置关系,并加以证明.18、(西城区2019届高三一模)已知椭圆W : 2214x y m m+=的长轴长为4,左、右顶点分别为,A B ,经过点(1,0)P 的动直线与椭圆W 相交于不同的两点,C D (不与点,A B 重合). (Ⅰ)求椭圆W 的方程及离心率; (Ⅱ)求四边形ACBD 面积的最大值;(Ⅲ)若直线CB 与直线AD 相交于点M ,判断点M 是否位于一条定直线上?若是,写出该直线的方程. (结论不要求证明)参考答案:1、解:(Ⅰ)根据题意可知2223,1,2,b c a a b c ⎧=⎪⎪=⎨⎪⎪=+⎩解得2,3,1.a b c =⎧⎪=⎨⎪=⎩所以椭圆C 的方程22143x y +=. ……4分 (Ⅱ)根据题意,直线,AP BP 的斜率都存在且不为零.(2,0),(2,0),A B -设()00,P x y ,则2200143x y +=0(22)x -<<.则20002000224AP BPy y y k k x x x ⋅=⋅=+--. 因为2200143x y +=,所以()222000331444x y x ⎛⎫=-=- ⎪⎝⎭. 所以220022003(4)344(4)4AP BPy x k k x x -⋅===---. 所以直线AP 与BP 的斜率之积为定值34-. ……8分 (III) 三点,,A H N 共线.证明如下:设直线AP 的方程为()()20y k x k =+≠,则直线BP 的方程为3(2)4y x k=--. 所以()4,6M k ,34,2N k ⎛⎫-⎪⎝⎭,6342BMk k k ==-. 设直线():32HM y k x =-,联立方程组221,433(2),x y y k x ⎧+=⎪⎨⎪=-⎩消去y 整理得,()2222112484840k x k x k +-+-=. 设11(,)H x y ,则2124842,121k x k -=+所以212242121k x k -=+,112123(2)121ky k x k -=-=+ . 所以22224212,112112k k H k k ⎛⎫-- ⎪++⎝⎭. 因为()2,0A -,34,2N k ⎛⎫-⎪⎝⎭, 31264AN k k k-==-,22212111224242112AHk k k k k k -+==--++.所以AN AH k k =,所以三点,,A H N 共线. ……14分2、解:(Ⅰ)由题意可得直线1l 的方程为1y x =+.与椭圆方程联立,由22112y x x y =+⎧⎪⎨+=⎪⎩可求41(,)33B --. ……………4分(Ⅱ)当2l 与x 轴垂直时,,C D 两点与E ,G 两点重合,由椭圆的对称性,11EF FG =. 当2l 不与x 轴垂直时,设()11,C x y ,()22,D x y ,2l 的方程为(1)y k x =+(1k ≠).由22(1)12y k x x y =+⎧⎪⎨+=⎪⎩消去y ,整理得()2222214220k x k x k +++-=.则21224+21k x x k -=+,21222221k x x k -=+.由已知,20x ≠,则直线AD 的方程为2211y y x x --=,令1x =-,得点E 的纵坐标2221E x y y x -+=.把()221y k x =+代入得()221(1)E x k y x +-=.由已知,143x ≠-,则直线BC 的方程为111143()4333y y x x ++=++,令1x =-,得点G 的纵坐标111143()3G y x y x --=+.把()111y k x =+代入得()111(1)34G x k y x +-=+.()()21211(1)1(1)34E Gx k x k y y x x +-+-+=++ ()()212121(1)1(34)1(34)k x x x x x x -++-+⎡⎤⎣⎦=⋅+ []121221(1)23()4(34)k x x x x x x -+++=⋅+把21224+21k x x k -=+,21222221k x x k -=+代入到121223()4x x x x +++中,121223()4x x x x +++=222222423()402121k k k k --⨯+⨯+=++.即0E G y y +=,即11EF FG =. .…………14分3、解:(Ⅰ)由题意2a =, ……1分 离心率12c e a ==,所以1c =. ……2分 所以2223b a c =-=. ……3分所以椭圆C 的方程为22143x y +=.……4分(Ⅱ)(1,0)F ,由题意,设1:(1)l y k x =-,21:(1)l y x k=--, ……1分令4x =得:(4,3)M k ,3(4,)N k -, ……2分所以31|3()|3||MN k k k k =--=+.设d 为点F 到直线l 的距离,则FMN ∆的面积为191||||22S MN d k k=⨯⨯=+……3分9191()2922k k k k=+⨯⨯=≥. ……4分当且仅当1k k=, 即1k =±时,FMN ∆的面积的最小值为9. ……5分(Ⅲ)直线AM 的方程为(2)2ky x =+,……1分由22(2)23412k y x x y ⎧=+⎪⎨⎪+=⎩消元,得 2223(2)12x k x ++= , ……2分即2222(3)44120k x k x k +++-=,设(,)P P P x y ,则2241223p k x k --=+,所以22623p k x k -=+.所以222626(,)33k kP k k -++. ……3分 又(2,0)B ,3(4,)N k-,所以22226306330.62424223BP BNk k k k k k k k kk --+-=-=+=----+……4分所以BP BN k k =,所以,,P B N 三点共线. ……5分4、解:(I ) 由已知有2222,21,.c a c a b c ⎧=⎪⎪⎪=⎨⎪-=⎪⎪⎩解得2,1,1.a b c ⎧=⎪=⎨⎪=⎩所以椭圆C 的方程为2212x y +=. ……………………………………5分 (II )由22(2),12y k x x y =+⎧⎪⎨+=⎪⎩消去y ,整理得2222(12)8(82)0k x k x k +++-=. 由已知,2222(8)4(12)(82)0k k k Δ=-+->,解得2222k -<<. 设1122(,),(,)A x y B x y ,则2122212284,123820.12k x x k k x x k ⎧-+==-⎪⎪+⎨-⎪==⎪+⎩ 2221212122511()4.3AB k x x k x x x x =+-=+⋅+-= 直线l 的方程为220x y -+=,1(1,0)F -到直线l 的距离15d =. 所以1F AB ∆的面积为11251122335AB d ⋅=⨯⨯=. …………………………………10分 (III )当21x =-时,222y =±. 此时直线l 的斜率为22±,由(II )知不符合题意,所以21x ≠-. 设直线1BF 的斜率为222(1)1y t x x =≠-+. 则直线1BF 的方程为(1)y t x =+.由22(1),12y t x x y =+⎧⎪⎨+=⎪⎩消去y ,整理得2222(12)4(22)0t x t x t +++-=. 设33(,)E x y ,则有22222232222222224()14412(1)212()1y x y t x x y t x y x -+--+===+++++. 由222212x y +=得222212x y =-,代入上式整理得223222423x x x x -+=+, 解得2323423x x x --=+. 因为21212311223423()42323x x x x x x x x x x ----+--=-=++, 将2122812k x x k -+=+,21228212k x x k -=+代入,整理得310x x -=, 所以31x x =. 所以直线AE 与x 轴垂直. ……………………………………14分5、6、解:(Ⅰ)由题意得222112.c c aa b c =⎧⎪⎪=⎨⎪=+⎪⎩,,解得23.a b =⎧⎪⎨=⎪⎩,所以椭圆C 的方程为22143x y += …………………5分 (Ⅱ)设()()1122,,,M x y N x y .由()224,1.43y k x x y =-⎧⎪⎨+=⎪⎩ 得()2222433264120k x k x k +-+-= 依题意()()()2222=3244364120k k k ∆--⋅+⋅->,即2104k <<. 则2122212232,436412.43k x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩…………………8分 当11x =或21x =时,得214k =,不符合题意. 因为121211MF NF y y k k x x +=+-- ()()12124411k x k x x x --=+-- ()()()12121225811k x x x x x x -++⎡⎤⎣⎦=--()()222212641232258434311k k k k k x x ⎡⎤⎛⎫⎛⎫-⋅-⋅+⎢⎥ ⎪ ⎪++⎝⎭⎝⎭⎣⎦=-- 0=.所以直线MF 的倾斜角与直线NF 的倾斜角互补. …………………14分7、解:(Ⅰ)因为,a b ==2242,所以,,a b c ===222 所以离心率c e a ==22(Ⅱ)设1122(,),(,)P x y Q x y 若k =12,则直线l 的方程为112y x =+由x y y x ⎧+=⎪⎪⎨⎪=+⎪⎩22142112,得x x +-=23440解得 ,x x =-=12223设(0,1)A ,则 12112||(||||)3(2)4223PBQ S AB x x ∆=+=⨯⨯+= (Ⅲ)法一:设点33(,)C x y ,因为11(,)P x y ,(0,2)B -,所以1313222x x y y ⎧=⎪⎪⎨-+⎪=⎪⎩又点11(,)P x y ,33(,)C x y 都在椭圆上, 所以221122111422()()22142x y x y ⎧+=⎪⎪⎨-+⎪+=⎪⎩ 解得1114212x y ⎧=⎪⎪⎨⎪=-⎪⎩或1114212x y ⎧=-⎪⎪⎨⎪=-⎪⎩所以 31414k =-或31414k = 法二:设33(,)C x y显然直线PB 有斜率,设直线PB 的方程为y k x =-12 由x y y k x ⎧+=⎪⎨⎪=-⎩2211422, 得 ()k x k x +-+=221121840所以()k k x x k x x k ⎧⎪∆=->⎪⎪⎪+=⎨+⎪⎪=⎪+⎪⎩2111321132116210821421 又x x =3112解得1114231414x k ⎧=-⎪⎪⎨⎪=-⎪⎩ 或 1114231414x k ⎧=⎪⎪⎨⎪=⎪⎩所以 1114212x y ⎧=-⎪⎪⎨⎪=-⎪⎩ 或 1114212x y ⎧=⎪⎪⎨⎪=-⎪⎩所以 31414k =或31414k =- 8、解:(Ⅰ)依题意,3b =. 由2212a b a -=,得22443a b ==. ∴椭圆E 的方程为22143x y +=. (Ⅱ)证明:(1)当直线AB 的斜率不存在时,易求3AB =,23CD =, 则24CDAB =.(2)当直线AB 的斜率存在时,设直线AB 的斜率为k ,依题意0k ≠,则直线AB 的方程为()1y k x =-,直线CD 的方程为y kx =.设()11,A x y ,()22,B x y ,()33,C x y ,()44,D x y ,由()221431x y y k x ⎧+=⎪⎨⎪=-⎩得()22223484120k x k x k +-+-=, 则2122834k x x k +=+,212241234k x x k -=+, 2121AB k x x =+-2222228412143434k k k k k ⎛⎫⎛⎫-=+⋅- ⎪ ⎪++⎝⎭⎝⎭()2212134k k +=+. 由22143x y y kx ⎧+=⎪⎨⎪=⎩整理得221234x k =+,则3424334x x k -=+. ()22342311434k CD k x x k +=+-=+. ∴()()2222248134434121k CDk AB k k ++=⋅=++. 综合(1)(2),24CDAB =为定值.9、解:(Ⅰ)由题意得2221,6,3.b c aa b c =⎧⎪⎪=⎨⎪=+⎪⎩…………………………………………3分解得23a =.所以椭圆C 的方程为2213x y +=. …………………………………………4分 (Ⅱ)设直线l 的方程为y x m =+,(3,)P P y . ………………………………5分由2213x y y x m ⎧+=⎪⎨⎪=+⎩,得2246330x mx m ++-=. ………………………………7分令223648480m m ∆=-+>,得22m -<<. ………………………………8分1232x x m +=-,2123(1)4x x m =-. …………………………………………9分 因为PMN ∆是以PMN ∠为顶角的等腰直角三角形,所以NP 平行于x 轴. …………………………………………10分 过M 做MQ ⊥NP 于Q ,则Q 为线段NP 的中点.设点Q 的坐标为(),Q Q x y ,则2132Q M x x x x +===. ………………………12分 由方程组1221221323(1)432x x m x x m x x ⎧+=-⎪⎪⎪=-⎨⎪+⎪=⎪⎩,,,得2210m m ++=,即1m =-. ……………13分 而()122m =-∈-,, 所以直线l 的方程为1y x =-. ………………………………………………14分10、(Ⅰ)由题意可得2221,6,3.b c aa b c =⎧⎪⎪=⎨⎪⎪=+⎩解得1,3.b a =⎧⎪⎨=⎪⎩ 所以椭圆C 的方程为2213x y +=. ………….4分 (Ⅱ)直线BD 恒过x 轴上的定点(2,0)N .证明如下(1) 当直线l 斜率不存在时,直线l 的方程为1x =, 不妨设6(1,)3A ,6(1,)3B -,6(3,)3D . 此时,直线BD 的方程为:6(2)3y x =-,所以直线BD 过点(2,0). (2)当直线l 的斜率存在时,设:(1)l y k x =-,1122(,),(,)A x y B x y ,1(3,)D y . 由22(1),33y k x x y =-⎧⎨+=⎩得2222(31)6330k x k x k +-+-=. 所以22121222633,3131k k x x x x k k -+==++. 直线2112:(3)3y y BD y y x x --=--,令0y =,得1221(3)3y x x y y ---=-,所以2112121333y y y x y x y y --+=- 212213y y x y y -=-2122143x x x x x --=-2222112431k x k x x -+=-. 由于2122631k x x k =-+,所以2222221243126231k x k x k x k -+==-+. 故直线BD 过点(2,0).综上所述,直线BD 恒过x 轴上的定点(2,0). ………….14分11、解:(I )由题意得1,1,2c c a =⎧⎪⎨=⎪⎩解得2,1.a c =⎧⎨=⎩ 因为222a b c -=,所以23b =. 所以椭圆C 的方程为22143x y +=. ………………………………4分 (II )因为ΔPAF 与ΔPMF 的面积之比为15, 所以1||||5AP PM =. 所以16AP AM =u u u r u u u u r . 设00(4,)(0),(,)M m m P x y ≠,则001(2,)(6,)6x y m +=, 解得001,6m x y =-=. 将其代入22143x y +=,解得9m =±. 所以M 的坐标为(4,9)或(4,9)-. ……………………………… 8分(III )设00(4,),(4,),(,)M m N n P x y ,若0m =,则P 为椭圆C 的右顶点,由,,P F Q 三点共线知,Q 为椭圆C 的左顶点, 不符合题意.所以0m ≠.同理0n ≠.直线AM 的方程为(2)6m y x =+. 由22(2),6143m y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩消去y ,整理得2222(27)4(4108)0m x m x m +++-=. 2222(4)4(27)(4108)0m m m Δ=-+->成立. 由2024108227m x m --=+,解得20254227m x m -=+. 所以00218(2)627m m y x m=+=+. 所以22254218(,)2727m m P m m-++. 当3m =时,3n =,2254227m m -+=1,即直线PQ x ⊥轴. 由椭圆的对称性可得||||||3MR FR NR ===.又因为90MRF NRF ∠=∠=︒,所以45MFR FNR ∠=∠=︒. 当3m ≠时,3n ≠,直线FP 的斜率22221806275429127FP m m m k m m m -+==---+. 同理269FQ n k n=-. 因为,,P F Q 三点共线,所以226699m nm n=--. 所以9mn =-.在Rt MRF Δ和Rt NRF Δ中,||||tan ||3MR m MFR FR ∠==,||3||tan ||||3FR m FNR NR n ∠===, 所以tan tan MFR FNR ∠=∠. 因为,MFR FNR ∠∠均为锐角, 所以MFR FNR ∠=∠.综上,若,,P F Q 三点共线,则MFR FNR ∠=∠. ………………………………14分12、解:(Ⅰ)由题知22224,1,2.a c a abc =⎧⎪⎪=⎨⎪⎪=+⎩解得2,3.a b =⎧⎪⎨=⎪⎩ …………………3分所以求椭圆E 的方程为22143x y +=.…………………5分 (Ⅱ)由(Ⅰ)知()2,0A -,()2,0B当直线l 的斜率不存在时,直线l 的方程为1x =.由221 1.43x x y=⎧⎪⎨+=⎪⎩,解得1,3.2x y =⎧⎪⎨=⎪⎩或1,3.2x y =⎧⎪⎨=-⎪⎩ 得1213,22k k ==或1213,22k k =-=-;均有1213k k =. 猜测存在13λ=.…………………6分当直线l 的斜率存在时,设直线l 的方程为()1y k x =-,()11,C x y ,()22,D x y .由()2211.43y k x x y =-⎧⎪⎨+=⎪⎩,得()22224384120k x k x k +-+-=.则212221228,43412.43k x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩…………………8分故1212121323(2)y y k k x x -=-+- …………………9分 2112123(2)(2)3(2)(2)x y x y x x --+=+-()1212122583(2)(2)k x x x x x x -++⎡⎤⎣⎦=+- 2222128(3)40843433(2)(2)k k k k k x x ⎡⎤--+⎢⎥++⎣⎦=+- 0.= …………………13分所以存在常数13λ=使得1213k k =恒成立 …………………14分13、解:(Ⅰ) 依题意,有246b +=所以2b =椭圆方程为 22142x y +=焦点坐标分别为12(2,0),(2,0),F F -(Ⅱ)(i)方法1:设00(,)P x y ,则2200142x y +=依题意002,0x y ≠±≠,(2,0),A - 所以002(,)22x y M - 所以直线PA 的斜率002Ap y k x =+ 因为PA MQ ⊥,所以1PA MQ k k ⋅=- 所以直线MQ 的斜率002MQ x k y +=-所以直线MQ 的方程为000022()22y x x y x y +--=-- 令0x =,得到0000(2)(2)22Q y x x y y +-=+因为2200142x y +=所以02Q y y =- , 所以0(0,)2yQ -所以H 是,M Q 的中点,所以点,M Q 关于点H 对称 方法2:设00(,)P x y ,直线AP 的方程为(2)y k x =+联立方程22142(2)x y y k x ⎧+=⎪⎨⎪=+⎩消元得2222(12)8840k x k x k +++-= 所以160∆=>所以2028(2)12k x k -+-=+所以2024212k x k -+=+所以22412M k x k -=+,22242(2)1212M k ky k k k -=+=++ 所以22242(,)1212k kM k k -++因为AP MQ ⊥,所以1MQ K k =-所以直线MQ 的方程为222214()1212k k y x k k k --=--++ 令0x =,得到22222142121212Q k k ky k k k k -=-⋅=+++ 所以 22(0,)12kQ k -+所以H 是,M Q 的中点,所以点,M Q 关于点H 对称 方法3:设00(,)P x y ,直线AP 的方程为2x ty =-联立方程 221422x y x ty ⎧+=⎪⎨⎪=-⎩消元得,22(2)40t y ty +-=因为02402t y t +=+,所以0242ty t =+ 所以222M t y t =+242M x t -=+, 所以2242(,)22tM t t -++因为AP MQ ⊥,所以1MQ K k =-所以直线MQ 的方程为2224()22t y t x t t --=--++令0x =,得到222Q t y t -=+ ,所以22(0,)2tQ t -+所以H 是,M Q 的中点,所以点,M Q 关于点H 对称 (ii )方法1:因为APQ △为直角三角形, 且||||PQ AQ =,所以APQ △为等腰直角三角形 所以||2||AP AQ = 因为00(,)P x y ,0(0,)2y Q -即2222000(2)224y x y ++=+化简,得到200316120x x +-=,解得002,63x x ==-(舍) 即点P 的横坐标为23方法2:因为APQ △为直角三角形, 且||||PQ AQ =,所以90AQP ∠=︒,所以0AQ PQ ⋅=u u u r u u u r因为00(,)P x y ,0(0,)2y Q -, 所以0(2,)2y AQ =-u u u r ,003(,)2yPQ x =--u u u r所以0003(2,)(,)022y yx -⋅--= 即20032+=04y x -因为2200142x y +=化简,得到200316120x x +-=,解得002,63x x ==-(舍) 即点P 的横坐标为23方法3:因为APQ △为直角三角形,且||||PQ AQ =,所以90AQP ∠=︒ 所以||2||AP MQ = 因为00(,)P x y ,0(0,)2y Q -,002(,)22x y M - 所以()22220000222()2x x y y -++=+ 化简得到200830x y -= 因为2200142x y +=化简,得到200316120x x +-=,解得002,63x x ==-(舍) 即点P 的横坐标为23方法4:因为APQ △为直角三角形,所以90AQP ∠=︒ 所以点,,A P Q 都在以AP 为直径的圆上, 因为00(,)P x y ,0(0,)2y Q -,()2,0A - 所以有22222000021()()((2))222x y x y x y -+-+-=++ 所以 2003204y x -+=因为2200142x y +=化简,得到200316120x x +-=,解得002,63x x ==-(舍) 即点P 的横坐标为2314、解:(I )由题意可知:2221,3,2b c a a b c =⎧⎪⎪=⎨⎪⎪=+⎩,解得2,1,3a b c ⎧=⎪=⎨⎪=⎩.所以椭圆G 的标准方程为2214x y +=. ….5分(Ⅱ)设()00,Q x y ,则()00,P x y --,易知002x <<,001y <<. 若使BOP ∆的面积是BMQ ∆的面积的3倍,只需使得3OQ MQ =,即00222(,)333OM OQ x y ==u u u u r u u u r ,即0022(,)33M x y .由()2,0A ,()0,1B ,所以直线AB 的方程为220x y +-=. 点M 在线段AB 上,所以00242033x y +-=,整理得0032x y =-,① 因为点Q 在椭圆G 上,所以220014x y +=,②把①式代入②式可得20081250y y -+=,因为判别式小于零,该方程无解.所以,不存在直线l ,使得BOP ∆的面积是BMQ ∆的面积的3倍. ….13分15、解:(I )由题意得222,191.4a a b =⎧⎪⎨+=⎪⎩解得2,3.a b =⎧⎪⎨=⎪⎩ 所以椭圆M 的方程为22143x y +=. 又221c a b =-=,所以离心率12c e a ==. ………………………..5分 (II )设直线PB 的方程为(0)y kx m k =+>,由22,143y kx m x y =+⎧⎪⎨+=⎪⎩消去y ,整理得222(34)8(412)0k x kmx m +++-=.当0∆>时,设1122(,),(,)B x y C x y ,则212412134m x k -⋅=+,即21241234m x k-=+.将3(1,)2P 代入y kx m =+,整理得32m k =-,所以212412334k k x k --=+.所以2112121292(34)k k y kx m k --+=+=+.所以2222412312129(,)342(34)k k k k B k k ----+++. 同理2222412312129(,)342(34)k k k k C k k +--++++. 所以直线BC 的斜率212112BC y y k x x -==-.又直线PA 的斜率30121(2)2PABC k k -===--,所以//PA BC . 因为四边形PABC 为平行四边形,所以PA BC=.所以2222412341231(2)3434k k k k k k+----=--++,解得32k =或12. 12k =时,(2,0)B -与A 重合,不符合题意,舍去.所以四边形PABC 为平行四边形时,32k =. ………………………………13分 16、解:(Ⅰ)因为(2,0)A -,所以2a =因为两个焦点与短轴一个顶点构成等腰直角三角形,所以b c =又222b c a +=所以2b c == , 所以椭圆方程为22142x y +=(Ⅱ)方法一: 设(,)m m M x y 1m MP m y k x =-,=2m AM m y k x + 1AM MP k k ⋅=-22112142m m m mm m y y x x x y ⎧⋅=-⎪-+⎪⎨⎪+=⎪⎩2m m x y =⎧⎪⎨=±⎪⎩,20m mx y =-⎧⎨=⎩(舍) 所以=6AM 方法二: 设(,)m m M x y , 因为AM 与MN 垂直,所以点M 在以AP 为直径的圆上, 又以AP 为直径的圆的圆心为1(,0)2-,半径为32,方程为2219()24x y ++=222219()24142m m m m x y x y ⎧++=⎪⎪⎨⎪+=⎪⎩, 02m m x y =⎧⎪⎨=±⎪⎩,20m mx y =-⎧⎨=⎩(舍) 所以=6AM 方法三:设直线AM 的斜率为k ,:(2)AM l y k x =+ ,其中 0k ≠22(2)142y k x x y =+⎧⎪⎨+=⎪⎩ 化简得2222(12)8840k x k x k +++-=当0∆>时,228412A M k x x k-⋅=+ 得222412M k x k -=+ ,2421Mk y k =+显然直线,AM MN 存在斜率且斜率不为0.因为AM 与MN 垂直,所以222421=24112MPk k k k k+=--+1k=- 得212k =,22k =±, 0M x =所以2=126M AM k x ++= (Ⅲ)直线NQ 恒过定点(2,0) 设11(,)M x y ,22(,)N x y ,由题意,设直线MN 的方程为1x my =+,由 221,240x my x y =+⎧⎨+-=⎩得22(2)230m y my ++-=,显然,0∆>,则12222m y y m -+=+,12232y y m -=+,因为直线PQ 与AM 平行,所以112PQ AM y k k x ==+, 则PQ 的直线方程为11(1)2y y x x =-+, 令52x =,则111133222(3)y y y x my ==++,即1135(,)22(3)y Q my + 121122112232(3)2635(3)(23)2NQ y y my my y y y k my my x -++-==+--, 直线NQ 的方程为12212221221263()2639my y y y y y x x m y y my my +--=-+-- 12211221222212211221263(263)(1)26392639my y y y my y y y my y x y m y y my my m y y my my +-+-+=-++--+--122112212212211221263215326392639my y y y my y y y x m y y my my m y y my my +-+-=-+--+--令0y =,得122112212153263my y y y x my y y y +-=+-因为121223()my y y y =+,故221829y x y ==, 所以直线NQ 恒过定点(2,0).17、解:(Ⅰ)依题可知(0)B a ,,2a = 因为12c e a == , 所以1c = 3b =故椭圆C 的方程为22143x y +=.(Ⅱ)以BD 为直径的圆与直线PF 相切.证明如下:由题意可设直线AP 的方程为(2)(0)y k x k =+≠. 则点D 坐标为24)k (,,BD 中点E 的坐标为22)k (,, 由22(2),143y k x x y =+⎧⎪⎨+=⎪⎩得2222(34)1616120k x k x k +++-=.设点P 的坐标为00(,)x y ,则2021612234k x k --=+.所以2026834k x k -=+,00212(2)34ky k x k =+=+. 因为点F 坐标为(1, 0), ①当12k =±时,点P 的坐标为3(1, )2±,直线PF 的方程为1x =, 点D 的坐标 为(2, 2)±.此时以BD 为直径的圆22(2)(1)1x y -+=m 与直线PF 相切. ② 当12k ≠±时,直线PF 的斜率024114PF y k k x k ==--. 所以直线PF 的方程为24(1)14k y x k=--,即214104k x y k ---=. 故点E 到直线PF 的距离2222221414|221|42|2|14141()()44k k k k d k k k k k-+-⨯-===-++ (或直线PF 的方程为224401414k k x y k k --=--, 故点E 到直线PF 的距离222228421414161(14)k k k k k d k k ----=+-322228142||14|14|k k k k k k +-==+-) 又因为k R BD 42== ,故以BD 为直径的圆与直线PF 相切.综上得,当点P 运动时,以BD 为直径的圆与直线PF 相切.解法二:(Ⅱ)以BD 为直径的圆与直线PF 相切.证明如下: 设点00(,)P x y ,则220001(0)43x y y +=≠ ① 当01x =时,点P 的坐标为3(1, )2±,直线PF 的方程为1x =,点D 的坐标为(2, 2)±,此时以BD 为直径的圆22(2)(1)1x y -+=m 与直线PF 相切,② 当1x ≠o 时直线AP 的方程为00(2)2y y x x =++, 点D 的坐标为004(2,)2y x +,BD 中点E 的坐标为002(2,)2y x +,故002||||2y BE x =+ 直线PF 的斜率为001PF y k x =-, 故直线PF 的方程为00(1)1y y x x =--,即00110x x y y ---=, 所以点E 到直线PF 的距离00000020012|21|22||||211()x y y x y d BE x x y --⨯-+===+-+ 故以BD 为直径的圆与直线PF 相切.综上得,当点P 运动时,以BD 为直径的圆与直线PF 相切.18、解:(Ⅰ)由题意,得244a m == , 解得1m =. ……………… 1分所以椭圆W 方程为2214x y +=. ……………… 2分 故2a =,1b =,223c a b =-=.所以椭圆W 的离心率32c e a ==. ……………… 4分 (Ⅱ)当直线CD 的斜率k 不存在时,由题意,得CD 的方程为1x =,代入椭圆W 的方程,得3(1,)2C ,3(1,)2D -, 又因为||24AB a ==,AB CD ⊥,所以四边形ACBD 的面积1||||232S AB CD =⨯=. ……………… 6分 当直线CD 的斜率k 存在时,设CD 的方程为(1)(0)y k x k =-≠,11(,)C x y ,22(,)D x y ,联立方程22 (1), 1,4y k x x y =-⎧⎪⎨+=⎪⎩ 消去y ,得2222(41)8440k x k x k +-+-=. …… 7分 由题意,可知0∆>恒成立,则2122841k x x k +=+,21224441k x x k -=+. ………… 8分 四边形ACBD 的面积ABC ABD S S S ∆∆=+1211||||||||22AB y AB y =⨯+⨯ ……… 9分 121||||2AB y y =⨯-122|()|k x x =- 2222121222(31)2[()4]8(41)k k k x x x x k +=+-=+, 设241k t +=,则四边形ACBD 的面积21223S t t =--+,1(0,1)t∈, 所以212(1)423S t=-++<. 综上,四边形ACBD 面积的最大值为23. ……………… 11分 (Ⅲ)结论:点M 在一条定直线上,且该直线的方程为4x =. ……………… 14分。

(完整)高考数学填空题100题.

(完整)高考数学填空题100题.

江苏省高考数学填空题训练100题1.设集合}4|||}{<=x x A ,}034|{2>+-=x x x B ,则集合A x x ∈|{且=∉}B A x I __________; 2.设12)(2++=x ax x p ,若对任意实数x ,0)(>x p 恒成立,则实数a 的取值范围是________________; 3.已知m ba ==32,且211=+ba ,则实数m 的值为______________; 4.若0>a ,9432=a,则=a 32log ____________; 5.已知二次函数3)(2-+=bx ax x f (0≠a ),满足)4()2(f f =,则=)6(f ________; 6.已知)(x f y =是定义在R 上的奇函数,当),0(+∞∈x 时,22)(-=xx f , 则方程0)(=x f 的解集是____________________;7.已知)78lg()(2-+-=x x x f 在)1,(+m m 上是增函数,则m 的取值范围是________________;8.已知函数x x x f 5sin )(+=,)1,1(-∈x ,如果0)1()1(2<-+-a f a f ,则a 的取值范围是____________; 9.关于x 的方程aa x-+=535有负数解,则实数a 的取值范围是______________; 10.已知函数)(x f 满足:对任意实数1x ,2x ,当2`1x x <时,有)()(21x f x f <,且)()()(2121x f x f x x f ⋅=+.写出满足上述条件的一个函数:=)(x f _____________;11.定义在区间)1,1(-内的函数)(x f 满足)1lg()()(2+=--x x f x f ,则=)(x f ______________;12.函数122)(2+++=x x x x f (1->x )的图像的最低点的坐标是______________;13.已知正数a ,b 满足1=+b a ,则abab 2+的最小值是___________; 14.设实数a ,b ,x ,y 满足122=+b a ,322=+y x ,则by ax +的取值范围为______________;15.不等式032)2(2≥---x x x 的解集是_________________; 16.不等式06||2<--x x (R x ∈)的解集是___________________; 17.已知⎩⎨⎧<-≥=0,10,1)(x x x f ,则不等式2)(≤+x x xf 的解集是_________________;18.若不等式2229xx a x x +≤≤+在]2,0(∈x 上恒成立,则a 的取值范围是___________; 19.若1>a ,10<<b ,且1)12(log >-x b a ,则实数x 的取值范围是______________;20.实系数一元二次方程022=+-b ax x 的两根分别在区间)1,0(和)2,1(上,则b a 32+的取值范围是_____________;21.若函数()m x x f ++=ϕωcos 2)(图像的一条对称轴为直线8π=x ,且18-=⎪⎭⎫⎝⎛πf ,则实数m 的值等于____; 22.函数⎪⎭⎫⎝⎛-=x y 24sin π的单调递增区间是_______________________; 23.已知52)tan(=+βα,414tan =⎪⎭⎫ ⎝⎛-πβ,则=⎪⎭⎫ ⎝⎛+4tan πα__________;24.已知()542sin =-απ,⎪⎭⎫⎝⎛∈ππα2,23,则=-+ααααcos sin cos sin ___________;25.函数()()010cos 520sin 3-++=x x y 的最大值是____________;26.若224sin 2cos -=⎪⎭⎫⎝⎛-παα,则ααsin cos +的值为___________; 27.若()51cos =+βα,()53cos =-βα,则=⋅βαtan tan ___________; 28.如果4||π≤x ,那么函数x x x f sin cos )(2+=的最小值是___________;29.函数34cos 222sin )(+⎪⎭⎫⎝⎛++=x x x f π的最小值是___________; 30.已知向量)sin ,1(θ=a ρ,)cos ,1(θ=b ρ,则||b a ρρ+的最大值为_________; 31.若非零向量a ρ与b ρ满足||||b a b a ρρρρ-=+,则a ρ与b ρ的夹角大小为_________; 32.已知向量)1,(n a =ρ,)1,(-=n b ρ,若b a ρρ-2与b ρ垂直,则=||a ρ_________;33.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若1=a ,4π=B ,△ABC 的面积2=S ,那么△ABC 的外接圆直径为__________;34.复数i z +=31,i z -=12,则=⋅211z z __________; 35.若复数iia 213++(R a ∈,i 为虚数单位)是纯虚数,则实数a 的值为_________; 36.若C z ∈,且1|22|=-+i z ,则|22|i z --的最小值是__________; 37.等差数列{}n a 的前n 项之和为n S ,若31710a a -=,则19S 的值为_________;38.已知数列{}n a 中,601-=a ,31+=+n n a a ,那么||||||3021a a a +++Λ的值为_________;39.首项为24-的等差数列,从第10项起为正数,则公差d 的取值范围是_________;40.已知一个等差数列的前五项之和是120,后五项之和是180,又各项之和是360,则此数列共有______项;40.已知数列{}n a 的通项公式为5+=n a n ,从{}n a 中依次取出第3,9,27,…,n3,…项,按原来的顺序排成一个新的数列,则此数列的前n 项和为______________;41.在正项等比数列{}n a 中,1a ,99a 是方程016102=+-x x 的两个根,则605040a a a ⋅⋅的值为_______;42.数列{}n a 中,21=a ,12=a ,11112-++=n n n a a a (2≥n ),则其通项公式为=n a __________; 43.如果直线l 与直线01=-+y x 关于y 轴对称,那么直线l 的方程是________________;44.若平面上两点)1,4(-A ,)1,3(-B ,直线2+=kx y 与线段AB 恒有公共点,则k 的取值范围是________; 45.已知△ABC 的顶点)4,1(A ,若点B 在y 轴上,点C 在直线x y =上,则△ABC 的周长的最小值是______;46.设过点)22,2(的直线的斜率为k ,若422=+y x 上恰有三个点到直线l 的距离等于1,则k 的值是__________;47.直线01=+-y x 与0122=--y x 的两条切线,则该圆的面积等于_________; 48.已知),(y x P 为圆1)2(22=+-y x 上的动点,则|343|-+y x 的最大值为______;49.已知圆4)3(22=+-y x 和过原点的直线kx y =的交点为P 、Q ,则||||OQ OP ⋅的值为________;50.已知1F 、2F 为椭圆13610022=+y x 的两个焦点,),(00y x P 为椭圆上一点, 当021>⋅PF PF 时,0x 的取值范围为________________;51.当m 满足___________时,曲线161022=-+-m y m x 与曲线19522=-+-my m x 的焦距相等; 52.若椭圆122=+n y m x (0>>n m )和双曲线122=-by a x (0>a ,0>b )有相同的焦点1F ,2F , 点P 是两条曲线的一个交点,则||||21PF PF ⋅的值为__________; 53.若双曲线经过点)3,6(,且渐近线方程是x y 31±=,则该双曲线方程是__________________;54.一个动圆的圆心在抛物线x y 82=上,且动圆恒与直线02=+x 相切,则此动圆必经过点__________; 55.过抛物线焦点F 的直线与抛物线交于A 、B 两点,若A 、B 在抛物线准线上的射影分别为1A 、1B ,则=∠11FB A ___________;D CB A 56.长度为a 的线段AB 的两个端点A 、B 都在抛物线px y 22=(0>p ,p a 2>)上滑动,则线段AB 的中点M 到y 轴的最短距离为___________; 57.已知直线m 、n 与平面α、β,给出下列三个命题:①若m ∥α,n ∥β,则m ∥n ;②若m ∥α,n ⊥α,则m ⊥n ;③若m ⊥a ,m ∥β,则α⊥β. 以上命题中正确的是_____________;(写出所有正确命题序号)58.已知一个平面与正方体的12条棱所成的角均为θ,则=θsin _________;59.已知正四棱锥的体积为12,底面对角线的长为62,则侧面与底面所成二面角等于__________; 60.正三棱柱111C B A ABC -的各棱长都为2,E 、F 分别是AB 、11C A 的中点,则EF 的长为________; 61.从0,1,2,3,4中每次取出不同的三个数字组成三位数,这些三位数的个位数之和为_________; 62.某小组有4个男同学和3个女同学,从这小组中选取4人去完成三项不同的工作,其中女同学至少2人,每项工作至少1人,则不同的选派方法的种数为__________;63.有n 个球队参加单循环足球比赛,其中2个队各比赛了三场就退出了比赛,这两队之间未进行比赛,这样到比赛结束共赛了34场,那么=n ________;64.一排共8个座位,安排甲,乙,丙三人按如下方式就座,每人左、右两边都有空位,且甲必须在乙、丙之间,则不同的坐法共有__________种;65.现有6个参加兴趣小组的名额,分给4个班级,每班至少1个,则不同的分配方案共___________种; 66.有3种不同的树苗需要种植在一条直道的一侧,相邻的两棵树不能是同一种树苗,若第一棵种下的是甲种树苗,那么第5棵树又恰好是甲种树苗的种法共有__________种; 67.从集合}20,,3,2,1{Λ中选3个不同的数,使这3个数成递增的等差数列,则这样的数列共有_______组; 68.用5种不同的颜色给图中A 、B 、C 、D 四个区域涂色,规定每个区域只能涂一种颜色,相邻区域颜色不同,则有_________种不同的涂色方法;69.圆周上有8个等分圆周的点,以这些点为顶点的钝角三角形或锐角三角形共有________个; 70.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则上楼的方法有___________种;71.46)1()1(x x -+展开式中3x 的系数是____________;72.若nx x ⎪⎪⎭⎫ ⎝⎛-13的展开式中各项系数之和为64,则展开式的常数项为____________;73.55443322105)12(x a x a x a x a x a a x +++++=-,则=++++||||||||||54321a a a a a ________;74.若1001002210100)1()1()1()12(-++-+-+=+x a x a x a a x Λ,则=++++99531a a a a Λ__________;75.盒中有4个白球,5个红球,从中任取3个球,则抽出1个白球和2个红球的概率是_________; 76.从1,2,…,9这九个数中,随机取2个不同的数,则这两个数的和为偶数的概率是________; 77.设集合}3,2,1{=I ,I A ⊆,若把满足I A M =Y 的集合M 叫做集合A 的配集,则}2,1{=A 的配集有_______个;78.设M 是一个非空集合,f 是一种运算,如果对于集合M 中的任意两个元素p ,q ,实施运算f 的结果仍是集合M 中的元素,那么说集合M 对于运算f 是“封闭”的,已知集合},,2|{Q b a b a x x M ∈+==, 若定义运算f 分别为加法、减法、乘法和除法(除数不为零)四种运算,则集合M 对于运算f 是“封闭”的有_______________________;(写出所有符合条件的运算名称)79.的定义符号运算⎪⎩⎪⎨⎧<-=>=0,10,00,1sgn x x x x ,则不等式xx x sgn )12(2->+的解集是__________________;80.我们将一系列值域相同的函数称为“同值函数”,已知22)(2+-=x x x f ,]2,1[-∈x ,试写出)(x f 的一个“同值函数”___________________;(除一次、二次函数外)81.有些计算机对表达式的运算处理过程实行“后缀表达式”,运算符号紧跟在运算对象的后面,按照从左到右的顺序运算,如表达式7)2(*3+-x ,其运算为3,x ,2,—,*,7,+,若计算机进行运算)3(x -,x ,2,—,*,lg ,那么使此表达式有意义的x 的范围为____________; 82.设][x 表示不超过x 的最大整数(例如:5]5.5[=,6]5.5[-=-,则不等式06][5][2≤+-x x 的解集为_______________________;83.对任意a ,R b ∈,记⎩⎨⎧<≥=b a b b a a b a ,,},max{ .则函数}1,1max{)(++-=x x x f (R x ∈)的最小值是__________;84.对于数列}{n a ,定义数列}{1n n a a -+为数列{}n a 的“差数列”.若21=a ,}{n a 的“差数列”的通项为n2,则数列{}n a 的前n 项和=n S _____________;85.对于正整数n ,定义一种满足下列性质的运算“*”:(1)21*1=;(2)121*1*)1(++=+n n n ,则用含n 的代数式表示=1*n _____________;86.若)(n f 为12+n (*N n ∈)的各位数字之和,如1971142=+,17791=++,则17)14(=f .)()(1n f n f =,))(()(12n f f n f =,…,))(()(1n f f n f k k =+,*N k ∈,则=)8(2008f __________;87.如果圆222k y x =+至少覆盖函数kxx f πsin3)(=的图像的一个最大值与一个最小值,则k 的取值范围是________________;88.设),(y x P 是曲线192522=+y x 上的点,)0,4(1-F ,)0,4(2F ,则||||21PF PF +最大值是________;89.已知)2,1(A ,)4,3(B ,直线0:1=x l ,0:2=y l 和013:3=-+y x l . 设i P 是i l (3,2,1=i )上与A ,B 两点距离平方和最小的点, 则△321P P P 的面积是_________;90.如右图将网格中的三条线段沿网格线上下或左右平移, 组成一个首尾相连的三角形,则三条线段一共至少需要移动__________格; 91.已知集合}0|{=-=a x x M ,}01|{=-=ax x N , 若N N M =I ,则实数a 的值是_____________;92.对于任意的函数)(x f y =,在同一坐标系里,)1(-=x f y 与)1(x f y -=的图像关于__________对称; 93.若不等式04)2(2)2(2<--+-x a x a 对R x ∈恒成立,则a 的取值范围是_____________; 94.数列1,a ,2a ,3a ,…,1-n a,…的前n 项和为___________________;95.在△ABC 中,5=a ,8=b ,060=C ,则CA BC ⋅的值等于_________;96.设平面向量)1,2(-=a ρ,)1,(-=λb ρ,若a ρ与b ρ的夹角为钝角,则λ的取值范围是_______________;97.与圆3)5(:22=++y x C 相切且在坐标轴上截距相等的直线有________条;98.某企业在今年年初贷款a ,年利率为r ,从今年末开始,每年末偿还一定金额,预计5年还清,则每年应偿还的金额为________________; 99.过抛物线px y 22=(p 为常数且0≠p )的焦点F 作抛物线的弦AB ,则⋅等于_________; 100.(有关数列极限的题目)(1)计算:=+∞→1lim 33n C n n __________; (2)计算:=+-++∞→112323lim n n nn n ___________; (3)计算:=++++∞→n n n Λ212lim 2___________;(4)若1)(1lim=-+∞→n a n n n ,则常数=a _________; (5)=++-∞→222)1(2lim n C C n n n n _________; (6)数列⎭⎬⎫⎩⎨⎧-1412n 的前n 项和为n S ,则=∞→n n S lim _________; (7)若常数b 满足1||>b ,则=++++-∞→n n n bb b b 121lim Λ___________; (8)设函数xx f +=11)(,点0A 表示坐标原点,点))(,(n f n A n (n 为正整数). 若向量n n n A A A A A A a 12110-+++=Λ,n θ是n a 与i ρ的夹角(其中)0,1(=i ρ),设n n S θθθtan tan tan 21+++=Λ,则=∞→n n S lim _________;江苏省高考数学填空题训练100题参考答案1.]3,1[; 2.),1(+∞; 3.6; 4.3; 5.3-; 6.}1,0,1{-; 7.]3,1[; 8.)2,1(; 9.)1,3(-; 10.x 2(不唯一,一般的xa ,1>a 均可); 11.)1lg(31)1lg(32x x -++; 12.)2,0(; 13.433; 14.]3,3[-; 15.3|{≥x x 或1-=x }; 16.)3,3(-; 17.]1,(-∞; 18.⎥⎦⎤⎢⎣⎡1,132; 19.⎪⎭⎫⎝⎛1,21; 20.)9,2(; 21.3-或1; 22.⎥⎦⎤⎢⎣⎡++87,83ππππk k (Z k ∈); 23.223; 24.71; 25.7; 26.21; 27.21; 28.221-; 29.222-; 30.6;31.90°; 32.2; 33.25; 34.i +2; 35.6-; 36.3; 37.95; 38.765;39.⎥⎦⎤ ⎝⎛3,38; 40.()13235-+nn ; 41.64; 42.n 2; 43.01=+-y x ; 44.⎪⎭⎫⎢⎣⎡+∞--∞,41]1,(Y ;45.34; 46.1或7; 47.329π; 48.8; 49.5; 50.⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--10,275275,10Y ; 51.5<m 或96<<m ; 52.a m -; 53.1922=-y x ; 54.)0,2(F ; 55.90°; 56.2pa -; 57.②③; 58.33; 59.3π; 60.5; 61.m<5或5<m<6或6<m<9; 62.792; 63.10; 64.8; 65.10; 66.6; 67.90; 68.260; 69.32; 70.28; 71.8-; 72.540-; 73.242;74.215100-; 75.2110; 76.94;77.4; 78.加法、减法、乘法、除法; 79.⎭⎬⎫⎩⎨⎧<<--34333x x ;80.x y 2log =,]32,2[∈x ; 81.)3,2(; 82.)4,2[; 83.1; 84.n 2; 85.122n +-;86.11; 87.),2()2,(+∞--∞Y ; 88.10; 89.23;90.8; 91.0或1或-1;92.1=x ;93.(-2,2]; 94.⎪⎪⎪⎩⎪⎪⎪⎨⎧≠≠--==.10 ,11,1 ,1,0 ,1a a a a a a n且;95.-20;96.) , 2()2 , 21(∞+⋃-;97.4; 98.1)1()1(55-++r r ar ;99.243p -100.(1)61;(2)3;(3)2;(4)2;(5)23;(6)21;(7)11--b ;(8)1。

高考数学(通用)二轮填空题和解答题第1讲及解析-

高考数学(通用)二轮填空题和解答题第1讲及解析-

2019年高考数学(通用)二轮填空题和解答题第1讲及解析 一、填空题1、“f (x )=sin(x +φ)为偶函数”是“φ=π2”的__必要不充分__条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)[解析]f (x )=sin(x +φ)为偶函数⇔φ=k π+π2(k ∈Z )∴φ=π2⇐f (x )=sin(x +φ)=cos x 为偶函数,但φ=-π2时,f (x )=sin(x +φ)=-cos x 为偶函数,∴“f (x )=sin(x +φ)为偶函数”是“φ=π2”的必要不充分条件.2.已知α:x ≥a ,β:|x -1|<1.若α是β的必要不充分条件,则实数a 的取值范围为__(-∞,0]__.导学号 58533738[解析]α:x ≥a ,可看作集合A ={x |x ≥a },∵β:|x -1|<1,∴0<x <2,∴β可看作集合B ={x |0<x <2}.又∵α是β的必要不充分条件,∴B A ,∴a ≤0.3、.命题p 的否定是“对∀x ∈(0,+∞),x >x +1”,则命题p 是__∃x 0∈(0,+导学号 58533754[解析]因p 是¬p 的否定,所以只需将全称量词变为特称量词,再对结论进行否定即可. 4.设数列{a n }的前n 项和为S n ,若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=__1__,S 5=__121__.导学号 58534456[解析]解法一:由⎩⎪⎨⎪⎧a 1+a 2=4,a 2=2a 1+1,解得a 1=1.由a n +1=S n +1-S n =2S n +1,得S n +1=3S n+1,所以S n +1+12=3(S n +12),所以{S n +12}是以32为首项,3为公比的等比数列,所以S n +12=32×3n -1,即S n =3n -12,所以S 5=121. 解法二:由⎩⎪⎨⎪⎧ a 1+a 2=4a 2=2a 1+1解得⎩⎪⎨⎪⎧a 1=1a 2=3,又a n +1=2S n +1,a n +2=2S n +1+1,两式相减得a n +2-a n +1=2a n +1,即a n +2a n +1=3,又a 2a 1=3,∴{a n }是首项为1,公比为3的等比数列,∴a n +1=3n,∴S n =3n -12,∴S 5=121.5.数列{a n }满足a n +1=11-a n,a 8=2,则a 1=12.导学号 58534461[解析]由a n +1=11-a n 及a 8=2,得2=11-a 7,解得a 7=12;由a 7=12,得12=11-a 6,解得a 6=-1;同理可得a 5=2.由此可得,a 4=12,a 3=-1,a 2=2,a 1=12.6.设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列{1a n}前10项的和为2011.导学号 58534462 [解析]由题意可知,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+2+3+…+n =n (n +1)2,则1a n =2n (n +1)=2(1n -1n +1),数列{1a n }的前10项的和为1a 1+1a 2+…+1a 10=2(1-12+12-13+…+110-111)=2011. 7、(文)函数y =lg(sin x -cos x )的定义域为__{x |π4+2k π<x <5π4+2k π,k ∈Z }__.导学号 58534134[解析]利用三角函数线.如图,MN 为正弦线,OM 为余弦线,要使sin x >cos x ,只需π4<x <5π4(在[0,2π]上).所以定义域为{x |π4+2k π<x <5π4+2k π,k ∈Z }.8、(理)函数y =lg(2sin x -1)+1-2cos x 的定义域为__[2k π+π3,2k π+5π6)(k ∈Z )__.导学号 58534135[解析]要使原函数有意义,必须有:⎩⎪⎨⎪⎧2sin x -1>0,1-2cos x ≥0,即⎩⎨⎧sin x >12,cos x ≤12,如图,在单位圆中作出相应三角函数线,由图可知,原函数的定义域为[2k π+π3,2k π+5π6)(k ∈Z ).9.已知α是第二象限角,cos(π2-α)=45,则tan α=__-43__.导学号 58534152[解析]∵cos(π2-α)=45,∴sin α=45,又α为第二象限角,∴cos α=-1-sin 2α=-35,∴tan α=sin αcos α=-43.二、解答题1.若x <m -1或x >m +1是x 2-2x -3>0的必要不充分条件,求实数m 的取值范围.导学号 58533739[解析]由已知易得{x |x 2-2x -3>0} {x |x <m -1或x >m +1},又{x |x 2-2x -3>0}={x |x <-1或x >3},∴⎩⎪⎨⎪⎧-1≤m -1,m +1≤3,(等号不能同时成立)∴0≤m ≤2.2、在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知-b +2ccos B=acos A.导学号 58534314 (1)求角A 的大小;(2)若a =2,求△ABC 的面积S 的最大值. [解析](1)∵-b +2c cos B =acos A∴-sin B +2sin C cos B =sin Acos A∴2sin C cos A =sin A cos B +cos A sin B ∴2sin C cos A =sin(A +B ) 即2sin C cos A =sin C 又0<C <π,∴sin C >0 ∴cos A =22,又0<A <π,∴A =π4. (2)解法一:∵a =2,A =π4∴4=b 2+c 2-2bc cos π4=b 2+c 2-2bc ≥(2-2)bc (当且仅当b =c 时取等号) ∴bc ≤42-2=2(2+2)∴S △ABC =12bc sin A =24bc ≤2+1即△ABC 面积的最大值为2+1. 解法二:由正弦定理b sin B =c sin C =2sin π4, ∴b =22sin B ,c =22sin C =22sin(3π4-B )∴S △ABC =12bc sin A =22sin B sin(π4+B )=2sin 2B +2sin B cos B =sin2B -cos2B +1 =2sin(2B -π4)+1∵0<B <3π4,∴-π4<2B -π4<5π4∴-22<sin(2B -π4)≤1(当B =3π8时取等号) ∴S △ABC 的最大值为2+1.3、数列{a n }的前n 项和记为S n ,已知a 1=2,a n+1=n +2nS n (n =1,2,3,…).导学号 58534567(1)证明:数列{S nn }是等比数列;(2)求数列{S n }的前n 项和T n .[解析](1)证明:因为a n +1=S n +1-S n =n +2n S n ,∴S n +1n +1=2S nn ,又a 1=2,∴S 11=2≠0,∴S n +1n +1S nn=2, ∴数列{S nn }是首项为2,公比为2的等比数列.(2)由(1)可知S nn=2n ,∴S n =n ·2nT n=2+2·22+3·23+…(n-1)·2n-1+n·2n,2T n=22+2·23+3·24+…+(n-1)2n+n·2n+1,所以T n-2T n=-T n=2+22+23+24+…+2n-n·2n+1=2(1-2n)1-2-n·2n+1=(1-n)2n+1-2,所以T n=(n-1)2n+1+2.。

高三数学二轮专题训练:填空题(50)

高三数学二轮专题训练:填空题(50)

高三数学二轮专题训练:填空题(50)
本大题共14小题,请把答案直接填写在答题位置上
1、已知集合A= {1, 2, 3}, B= {0, 2, 3},则A H B= ▲
2、若(x i)2是实数(i是虚数单位),则实数x的值为▲
3、一个社会调查机构就某地居民的月收入情况

查了1000人,并根据所得
分布直方图(如图所示),则月收
[2000,3500 )范围内的人数为___ ▲
频率
1000 1500200025003000 35004000 月收入(元)
i — 1
4、根据如图所示的伪代码,可知输出S的值为▲
5 、已知a,b {123,4,5,6} , 直线h:x-2y-1 =0,l2:ax,by-1 =0,则直线I, _ 12的概率为▲While i <8
i ------ i+2
S — 2i+3 End While Print S
x 一1
I
&若变量x,y满足约束条件y _x 则w = log3(2x • y)的
3x 2y -15
最大值为▲
7、已知抛物线y2=2px的准线与双曲线x2-y2=2的左准线重合,则p的值为

1
8、在等比数列{a n}中,已知a +a?=-忌*4 =1,则a?塩相9塩的值为▲
2
9、在ABC中,已知BC=1 B=,贝U ABC的面积为3,则AC和长为________ ▲
3。

高三数学二轮专题训练:填空题(67)

高三数学二轮专题训练:填空题(67)

高三数学二轮专题训练:填空题(67)本大题共14小题,请把答案直接填写在答题位置上。

1.已知集合2{|9},{|33}M x x N x z x ===∈-≤<,则M N = . 2.设i 为虚数单位,复数z 满足i 1i z =-,则z = .3.已知命题p :21,04x R x x ∀∈-+≥,则命题p 的否定p ⌝是 . 4.等差数列{a n }中,S 10=120 ,那么a 2+a 9的值是 .5.实数x 满足,sin 1log 3θ+=x 则91-+-x x 的值 .6.已知向量()2,1,10,||52a a b a b =⋅=+=,则||b = .7.设变量x 、y 满足约束条件01030y x y x y ≥⎧⎪-+≥⎨⎪+-≤⎩,则z x y =+2的最大值为 .8.已知平面上三点,,A B C ,若||5,||12,||13.AB BC CA === 则||AB BC BC CA CA AB BA BC ⋅+⋅+⋅=- . 9.函数()(||1)()f x x x a =-+为奇函数,则()f x 增区间为 .10.如图,设点A 是单位圆上的一定点,动点P 从点A 出发在圆上按逆时针方向旋转一周,点P 所旋转过的弧AP 的长为l ,弦AP 的长为d ,则函数()d f l =的图象大致是 .9.11.函数(cos sin )cos y a x b x x =+有最大值2,最小值1-,则实数2)ab (的值为 .12.设曲线1*()n y x n N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,令lg n n a x =,则1299a a a +++的值为 .13.设1,1,>>∈b a R y x 、,若2==y x b a ,4=+b a ,则yx 12+的最大值为 . 14.设m ∈N ,若函数f (x )= 21010x m x m ---+存在整数零点,则m 的取值集合为 .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学二轮专题训练:填空题(79)
本大题共14小题,请把答案直接填写在答题位置上。

1.若bi i
i a =++1,其中i R b a ,,∈是虚数单位,则____=ab . 2.等比数列{}n a 中,8,273==a a ,则_____5=a .
3.已知,,是单位向量,且b a c +=,则_______=⋅.
4.已知等差数列{}n a 的前20项的和为100,那么147a a ⋅的最大值为 .
5.已知实数y x ,满足)0(>≤+a a y x ,若y x +2最大值为32-a ,则____=a .
6.设向量a ,b 的夹角为θ,(2,1),3(5,4)a a b =+=,则sin θ=_____.
7.不等式42+>x ax 在]3,1[∈x 上恒成立,则a 的取值范围为______________.
8.设b a ,是两条不同的直线,βα,是两个不同的平面,是下列命题中正确的序号是______.
①若α//,//a b a ,则α//b ②若αβα//,a ⊥,则β⊥a ③若ββα⊥⊥a ,,则α//a ④若βα⊥⊥⊥b a b a ,,,则βα⊥
9.设y x ,均为正实数,且14545=+++y x ,则xy 10.在ABC ∆中,设AB a =,AC b =,AP 的中点为Q ,为R ,CR 的中点为P ,若AP ma nb =+,则m n += 11.设点M 是三角形ABC 的重心,c b a ,,分别是角C B A ,,3
1=++c b a ,则角A 的大小是________.
12.设{}n a 是正项数列,其前n 项和n S 满足:4(1)(3n n n S a a =-+,则n a = .
13.在ABC ∆中,内角C B A ,,的对边分别为c b a ,,,已知c b a ,,成等比数列,且3=+c a ,3
7tan =B ,则ABC ∆的面积为 . 14.设函数0,2)(A x x x f x +⋅=为坐标原点,n A 为函数)(x f y =图像上横坐标为)(*
∈N n n 的点,向量)0,1(,11==∑=-A A a n
k k k n ,设n θ为 n a 与i 的夹角,则∑=n k k 1t a n
θ=_________.
1.-1
2.4
3.21
4.25
5.3
6.1010
7.),5()5,(+∞--∞
8.④ 9.36 10.76 11.6π 12.12+n 13.4
7 14.221-++n n。

相关文档
最新文档