数学建模报告(孟大志)

合集下载

数学建模实验报告

数学建模实验报告

数学建模实验报告一、实验目的和背景本次实验旨在运用数学建模方法,解决一个与实际生活相关的问题。

通过建立数学模型,分析问题,提出解决方案,并通过实验数据验证模型的可行性和准确性。

二、实验内容本次实验的题目是“公司送货员最优路径规划”。

公司有多名送货员需要在城市中进行货物的配送工作。

公司希望通过合理的路径规划,使得送货员能够在最短的时间内完成所有的配送任务。

在实验中,需要考虑的主要因素包括送货员之间的配送范围、道路交通状况、道路长度等。

三、实验步骤1.收集相关数据:收集城市道路网络的地理数据,包括道路长度、道路交通状况等信息。

2.确定目标函数和约束条件:由于目标是使得送货员在最短的时间内完成配送任务,因此可以将送货员的路径总长度作为目标函数,并设置配送时间限制作为约束条件。

3.建立数学模型:根据收集到的数据和确定的目标函数、约束条件,建立数学模型,将问题转化为一个最优化问题。

4.进行求解:使用数学建模常见的求解方法,如遗传算法、模拟退火算法等,对数学模型进行求解,得到最优的路径规划方案。

5.实验验证:将求解得到的路径规划方案应用于实际情境中,通过实践进行验证,观察实际效果与模型预测结果的一致性。

四、实验结果与分析通过对数学模型进行求解,得到了送货员的最优路径规划方案。

将该方案应用于实际情境中,观察实际效果与模型预测结果的一致性。

通过与其他非最优路径规划方案进行对比,可以发现,最优路径规划方案能够使得送货员在最短的时间内完成配送任务,提高工作效率。

五、结论和展望本次实验成功地运用了数学建模方法,解决了公司送货员最优路径规划问题。

通过建立数学模型,可以快速地得到最优的路径规划方案,提高了送货员的工作效率。

未来可以进一步改进模型,考虑更多实际情况,如车辆限行、路况实时变化等因素,提供更加精确和实用的路径规划方案。

总结:本次实验通过对公司送货员最优路径规划问题的建模和求解,展示了数学建模的应用价值和解决问题的能力。

数学建模报告(一)

数学建模报告(一)

数学建模报告(一)数学建模报告1. 引言数学建模是一种应用数学方法解决实际问题的过程。

它通过建立数学模型,对问题进行分析、计算和预测,并给出相应的解决方案。

本报告将介绍数学建模的基本概念和步骤,并以一个实际问题为例进行详细说明。

2. 数学建模的基本概念2.1 数学模型数学模型是对实际问题进行抽象和简化的数学描述。

它由数学符号和关系构成,可以用来表示问题的各种因素和规律。

常见的数学模型包括代数模型、几何模型、概率模型等。

2.2 建模过程建模过程包括问题分析、模型构建、模型求解和模型验证等步骤。

在问题分析阶段,需要明确问题的背景、目标和限制条件。

在模型构建阶段,需要选择合适的数学工具和方法,建立符合实际问题的数学模型。

在模型求解阶段,需要使用数学计算工具,对模型进行求解和优化。

在模型验证阶段,需要对模型的结果进行合理性检验,确保模型的可靠性和适用性。

3. 实例:汽车加油站优化问题3.1 问题描述假设有一家汽车加油站,每天需要安排加油员的工作时间,以满足不同时段的加油需求。

加油站的营业时间为早上8点至晚上8点,需要确定每个时段的加油员数量,以最大化服务效率和满意度。

3.2 模型构建3.2.1 变量定义设加油站在第t 个时段的加油员数量为x t ,加油站的总时段数为T 。

3.2.2 目标函数加油站的服务效率可以用加油员总数来衡量,即最小化∑x t T t=1。

加油站的满意度可以用加油员数量的均值和方差来衡量,即最小化1T ∑x t T t=1和√1T ∑(x t −1T ∑x t T t=1)2T t=1。

3.2.3 约束条件由于加油站的营业时间为早上8点至晚上8点,每个时段的加油员数量x t 必须满足0≤x t ≤M ,其中M 为加油员的最大数量。

3.3 模型求解通过使用整数规划方法,可以求解出最优的加油员数量分配方案。

具体求解过程可以使用线性规划工具和相应的算法完成。

3.4 模型验证对模型的结果进行合理性检验是十分重要的。

数学建模优秀实验报告

数学建模优秀实验报告

一、实验背景与目的随着科学技术的不断发展,数学建模作为一种解决复杂问题的有力工具,在各个领域都得到了广泛应用。

本实验旨在通过数学建模的方法,解决实际问题,提高学生的数学思维能力和解决实际问题的能力。

二、实验内容与步骤1. 实验内容本实验选取了一道具有代表性的实际问题——某城市交通拥堵问题。

通过对该问题的分析,建立数学模型,并利用MATLAB软件进行求解,为政府部门提供决策依据。

2. 实验步骤(1)问题分析首先,对某城市交通拥堵问题进行分析,了解问题的背景、目标及影响因素。

通过查阅相关资料,得知该城市交通拥堵的主要原因是道路容量不足、交通信号灯配时不当、公共交通发展滞后等因素。

(2)模型假设为简化问题,对实际交通系统进行以下假设:1)道路容量恒定,不考虑道路拓宽、扩建等因素;2)交通信号灯配时固定,不考虑实时调整;3)公共交通系统运行正常,不考虑公交车运行时间波动;4)车辆行驶速度恒定,不考虑车辆速度波动。

(3)模型构建根据以上假设,构建以下数学模型:1)道路容量模型:C = f(t),其中C为道路容量,t为时间;2)交通流量模型:Q = f(t),其中Q为交通流量;3)拥堵指数模型:I = f(Q, C),其中I为拥堵指数。

(4)模型求解利用MATLAB软件,对所构建的数学模型进行求解。

通过编程实现以下功能:1)计算道路容量C与时间t的关系;2)计算交通流量Q与时间t的关系;3)计算拥堵指数I与交通流量Q、道路容量C的关系。

(5)结果分析与解释根据求解结果,分析拥堵指数与时间、交通流量、道路容量之间的关系。

针对不同时间段、不同交通流量和不同道路容量,提出相应的解决方案,为政府部门提供决策依据。

三、实验结果与分析1. 结果展示通过MATLAB软件求解,得到以下结果:(1)道路容量C与时间t的关系曲线;(2)交通流量Q与时间t的关系曲线;(3)拥堵指数I与交通流量Q、道路容量C的关系曲线。

2. 结果分析根据求解结果,可以得出以下结论:(1)在高峰时段,道路容量C与时间t的关系曲线呈现下降趋势,说明道路容量在高峰时段不足;(2)在高峰时段,交通流量Q与时间t的关系曲线呈现上升趋势,说明交通流量在高峰时段较大;(3)在高峰时段,拥堵指数I与交通流量Q、道路容量C的关系曲线呈现上升趋势,说明拥堵指数在高峰时段较大。

大学数学建模实习报告完整版(内含题、代码、彩图)

大学数学建模实习报告完整版(内含题、代码、彩图)

实验过程:练习题目:(后附有涉及每一类选题详细代码及答案)MATLAB实验训练题1.建立一个命令M文件:求数60、70、80,权数分别为1.1、1.3、1.2的加权平均数.2.编写函数M文件SQRT.M:函数xxf=)(在889.567=x与处的近似值(保留有效数四位).0368.03.用MA TALB计算baba−22的值,其中89.42.3=ba,=.4.用MA TALB计算函数21cossin)(xxxxf−=在3π=x处的值.5.用MA TALB计算函数)1ln(arctan)(++=xxxf在23.1=x处的值.6.用MA TALB计算函数xxf x ln32)(⋅.=在1.2−=x处的值.7.用蓝色、点连线、叉号绘制函数xy2=在上步长为0.1的图象.][0,28.用紫色、叉号、实连线绘制函数10ln+=xy在]15,20[−−上步长为0.2的图象.9.用红色、加号连线、虚线绘制函数⎟.⎞⎜.⎛−22sinπxy在][,1010−上步长为0.2的图象.10.用紫红色、圆圈、点连线绘制函数⎟.⎞⎜.⎛+=32sinπxy在][π0,4上步长为0.2的图象.11.在同一坐标系中,用分别青色、叉号、实连线与红色、星号、虚连线绘制xy3cos=与xy cos3=的图象.12.在同一坐标系中绘制函数,,这三条曲线的图形,并要求用两种方法加各种标注.2xy=3xy=4xy=13.作曲面的3维图象.⎪.⎪⎨.===tztytx sin214.作环面在⎪.⎪⎨.=+=+=uzvuyvux sinsin)cos1(cos)cos1()2,0()2,0(ππ×上的3维图象.15.求极限xx x cos12sinlim0−+→16.求极限xx21031lim⎟.⎞⎜.⎛+→17.求极限31coslim xxx x++∞→18.求极限xx xx211lim⎟.⎞⎜.⎛−+∞→19.求极限xxx x sin2cos1lim0−→20.求极限xxx x−.+→11lim021.求极限212lim22+−+∞→xxxx x+22.求函数的导数xxy arctan)12(5+−23.求函数21tan xxxy+=的导数24.求函数的导数xey x tan3−=25.求函数2sinln22xxyπ+=在1=x的导数26.求函数xxy+−=11的二阶导数27.求函数5423)1()23()1(xxxy++−的导数28.在区间(–1,5)内求函数35)1()(xxxf−的最值.29.在区间(–∞,+∞)内求函数的最值.143)(34+−xxxf30.求不定积分∫−dxxx)sin23(ln31.求不定积分∫xdxe x2sin32.求不定积分∫+dxxxx1arctan33.求不定积分∫−−dxexx x2)cos2(34.计算定积分dxxe x∫+−10)23(35.计算定积分xdxx arccos)1(102∫+36.计算定积分dxxx∫+10)1ln(cos37.计算广义积分dxxx∫∞+∞−++221238.计算广义积分dxex x∫∞+−02答案:一:3、>> s y m s a b>> a = 2 . 3 ; b = 4 . 8 9 ;>> s q r t ( a ^ 2 + b ^ 2 ) / a b s ( a - b ) a n s =2 . 0 8 6 45、>> s y m s x y>> x = 1 . 2 3 ;>> y = a t a n ( x ) + s q r t ( l o g ( x + 1 ) )y =1 . 7 8 3 78、>> x = - 2 0 : 0 . 2 : - 1 5 ; y = l o g ( a b s ( x + 1 0 ) ) ; p l o t ( x , y , ' m x - ' )11>>x = 0 : 0 . 1 : 2 * p i ; y 1 = c o s ( 3 * s q r t ( x ) ) ; >> y 2 = 3 * c o s ( s q r t ( x ) ) ;>> p l o t ( x , y 1 , ' c x - ' , x , y 2 , ' r * - - ' )14、>> s>> u>>x>> z16、>> s y m s x>>l i m i t ( ( 1 / 3 ) ^ ( 1 / ( 2 * x ) ) , x , 0 , ' r i g h t ' ) a n s =23.>> s y m s x y>> y = x * t a n ( x ) / ( 1 + x ^ 2 ) ;>> d i f f ( y )a n s =t a n ( x ) / ( 1 + x ^ 2 ) + x * ( 1 + t a n ( x ) ^ 2 ) / ( 1 + x ^ 2 ) - 2 * x ^ 2 * t a n ( x ) / ( 1 + x ^ 2 ) ^ 228、>> f = ' ( x - 1 ) ^ 3 . * s q r t ( x ^ 5 ) ' ;>> [ x , y ] = f m i n b n d ( f , - 1 , 5 )x =0 . 4 5 4 5y =- 0 . 0 2 2 6>> f = ' - ( x - 1 ) ^ 3 . * s q r t ( x ^ 5 ) ' ; >> [ x , y ] = f m i n b n d ( f , - 1 , 5 )x =5y =- 3 . 5 7 7 7 e + 0 0 331、>> s y m s x y>> y = e x p ( x ) * ( s i n ( x ) ) ^ 2 ;>> i n t ( y )a n s =1 / 5 * ( s i n ( x ) -2 * c o s ( x ) ) * e x p ( x ) * s i n ( x ) + 2 / 5 * e x p ( x )二:1、问题分析商品价格是由成本决定的,成本可分为生产成本、包装成本和其他成本。

数学建模实验报告1、层次分析法

数学建模实验报告1、层次分析法

数学建模实验报告1、层次分析法第一篇:数学建模实验报告1、层次分析法数学建模实验报告一、实验要求柴静的纪录片《穹顶之下》从独立媒体人的角度调查了席卷全国多个省份的雾霾的成因,提出解决的方法有:关停重污染的钢铁厂、提高汽柴油品质、淘汰排放不达标汽车、提高洗煤率等,请仔细观看该纪录片,根据雾霾的成因,选择你认为治理雾霾确实可行的几个方案,并用AHP方法给出这几个主要方案的重要性排序。

二、前期准备1、理解层次分析法(AHP)的原理、作用,掌握其使用方法。

2、观看两遍柴静所拍摄的纪录片《穹顶之下》,选出我认为可较为有效地治理雾霾的几个方法,初步确定各方法的有效性(即权重)。

3、初步拟定三个方案,每个方案中各个治理方法的权重不同。

三、思路&分析1、根据纪录片《穹顶之下》和个人的经验判断给出各个记录雾霾的方法对于治理雾霾的判断矩阵,以及三个不同方案对于五大措施的判断矩阵。

2、了解了AHP的原理后,不难发现MATLAB在其中的作用主要是将判断矩阵转化为因素的权重矩阵。

当然矩阵要通过一致性检验,得到的权重才足够可靠。

3、分别得到准则层对目标层、方案层对准则层的权重之后,进行层次总排序及一致性检验。

得到组合权向量(方案层对目标层)即可确定适用方案。

四、实验过程1、确定层次结构2、构造判断矩阵(1)五大措施对于治理雾霾(准则层对目标层)的判断矩阵(2)三个方案对于五大措施(方案层对准则层)的判断矩阵3、层次单排序及一致性检验该部分在MATLAB中实现,每次进行一致性检验和权向量计算时,步骤相同,输入、输出参数一致。

(虽然输入的矩阵阶数可能不同,但可以不把矩阵阶数作为参数输入,而通过 [n,n]=size(A)来算得阶数。

)因此考虑将这个部分定义为一个函数judge,输入一个矩阵A,打印一致性检验结果和权向量计算结果,并返回权向量、一致性指标CI、平均随机一致性指标RI。

将此脚本存为judge.m,在另一脚本ahp.m 中调用。

建模实验报告

建模实验报告

建模实验报告摘要:本实验主要针对建模方法进行研究与探索,分别采用了数学模型、统计模型和物理模型进行建模实验。

实验结果表明,不同的建模方法对于问题的解决和分析具有不同的优势和适用性,选择合适的建模方法能够有效提高问题的解决效率和精确度。

1.引言建模是指将实际问题转化为数学模型、统计模型或物理模型等形式的一种方法。

通过建模,我们可以抽象出实际问题中的关键因素和变量,进一步分析和解决问题。

本实验将重点研究数学模型、统计模型和物理模型的建模方法,并通过实验验证其有效性和适用性。

2.数学模型的建模方法数学模型是以数学的形式描述实际问题的模型。

在本实验中,我们采用了几种常见的数学建模方法,包括代数方程模型、微分方程模型和最优化模型。

2.1 代数方程模型代数方程模型是一种通过代数方程来描述问题的模型。

我们可以采用一系列代数方程来表示问题中的变量和关系,进而通过求解方程组来得到问题的解。

在实验中,我们以一个简单的线性方程组作为例子,通过代数方程模型计算方程组的解。

2.2 微分方程模型微分方程模型是一种通过微分方程来描述问题的模型。

微分方程可以描述问题中的变量和其变化率之间的关系。

在实验中,我们以一个经典的弹簧振动模型为例,通过微分方程模型求解系统的振动频率和振幅。

2.3 最优化模型最优化模型是一种通过寻找最优解来描述问题的模型。

最优化模型可以用于解决各种优化问题,如线性规划、整数规划等。

在实验中,我们以一个简单的线性规划问题为例,通过最优化模型求解问题的最优解。

3.统计模型的建模方法统计模型是一种通过统计理论和方法来描述问题的模型。

在本实验中,我们主要研究了回归分析和时间序列分析两种常见的统计建模方法。

3.1 回归分析回归分析是一种通过建立变量之间的回归关系来描述问题的模型。

在实验中,我们以一个销售数据的回归分析为例,通过建立销售额和广告投入之间的回归关系,预测未来的销售额。

3.2 时间序列分析时间序列分析是一种通过统计和数学方法来描述时间序列的模型。

数学建模的实验报告

数学建模的实验报告

一、问题路灯照明问题。

在一条20m宽的道路两侧,分别安装了一只2kw和一只3kw的路灯,它们离地面的高度分别为5m和6m。

在漆黑的夜晚,当两只路灯开启时,两只路灯连线的路面上最暗的点和最亮的点在哪里?如果3kw的路灯的高度可以在3m到9m之间变化,如何路面上最暗点的亮度最大?如果两只路灯的高度均可以在3m到9m之间变化,结果又如何?二、数学模型已知P1为2kw的路灯,P2为3kw的路灯,以地面为X轴,路灯P1为Y轴,建立平面直角坐标系。

其中,P1、P2高度分别为h1、h2,水平距离为S=20m。

设有一点Q(x,0),P1、P2分别与其相距R1、R2。

如下图示。

经查阅资料得,光照强度公式为:,设光照强度k=1。

则,两个路灯在Q点的光照强度分别为:2 111 1sin RapI=2222 2sin RapI=其中:R12=h12+x2 R22=h22+(S-x)2则Q点的光照强度I x=I1+I2分别按照题目中的不同要求,带入不同数值,求导,令导数为零,求得极值,进一步分析对比,求得最值。

三、算法与编程1.当h1=5m,h2=6m时:symptoms x yx=0:0.1:20;y=10./sqrt((25.+x.^2)^3)+18./sqrt((36.+(20-x).^2).^3);plot(x,y)grid on;在图中的0-20米范围内可得到路灯在路面照明的最亮点和最暗点①对Ix求导:syms xf=10./sqrt((25.+x.^2)^3)+18./sqrt((36.+(20-x).^2).^3)②运用MATLAB求出极值点s=solve('(-30*x)/((25+x^2)^(5/2))+(54*(20-x))/((36+(20-x)^2)^(5/2))');s1=vpa(s,8)s1 =.28489970e-18.5383043+11.615790*i19.9766969.33829918.5383043-11.615790*i③根据实际要求,x应为正实数,选择19.9767、9.3383、0.02849三个数值,通过MATLAB计算出相应的I值:syms xI=10/(25+x^2)^(3/2)+18/(36+(20-x)^2)^(3/2);subs(I,x,19.9767)subs(I,x,9.3383)subs(I,x,0.02849)ans =0.0845ans =0.0182ans =0.820综上,在19.3米时有最亮点;在9.33米时有最暗点2.当h1=5m,3m<h2<9m时:①对h2求偏导,并令其为0:②运用MATLAB求出极值点solve('3/((h^2+(20-x)^2)^(3/2))-3*(3*h^2)/((h^2+(20-x)^2)^(5/2))=0')ans =20+2^(1/2)*h20-2^(1/2)*h③对x求偏导,并令其为0:④通过MATLAB,将步骤②中计算出的关于h2的表达式带入上式,并求出h2的值;solve('-30*(20-2^(1/2)*h)/((25+(20-2^(1/2)*h)^2)^(5/2))+9*h*(20-(20-2^(1/2)*h))/((h^2+(20-(20-2^(1/2)*h))^2)^(5/2))=0')ans =7.4223928896768612557104509932965⑤通过MATLAB,利用已求得的h2,计算得到x,并进一步计算得到Ih=7.42239;x=20-2^(1/2)*hI=10/((25+x^2)^(3/2))+(3*h)/((h^2+(20-x)^2)^(3/2)) x =9.5032I =0.01863.当h1,h2均在3m-9m之间时:①同上,通过MATLAB求解下面的方程组:solve('p1/(h1^2+x^2)^(3/2)-3*p1*h1^2/(h1^2+x^2)^(5/ 2)')solve('3/((h^2+(20-x)^2)^(3/2))-3*(3*h^2)/((h^2+(20 -x)^2)^(5/2))=0')ans =2^(1/2)*h1-2^(1/2)*h1ans =20+2^(1/2)*h20-2^(1/2)*h②根据实际,选择x=h1,x=20-h2,带入第三个式中,得:③利用MATLAB,求得x值:s=solve('1/((20-x)^3)=2/(3*(x^3))');s1=vpa(s,6)s1 =9.325307.33738+17.0093*i7.33738-17.0093*i④按照实际需求,选择x=9.32525⑤带入求解I,并比较得到亮度最大的最暗点h1=(1/sqrt(2))*9.32525h2=(1/sqrt(2))*(20-9.32525)h1 =6.5939h2 =7.5482四、计算结果1.当h1=5m,h2=6m时:x=9.33m时,为最暗点,I=0.01824393;x=19.97m时,为最亮点,I=0.08447655。

数学建模实验报告范文

数学建模实验报告范文

数学建模实验报告范文实验目的本次实验旨在运用数学建模的方法和技巧,对给定的问题进行分析和求解,以提高我们的问题解决能力和创新思维。

实验背景在现实生活中,我们经常面临各种各样的问题,但是如何从复杂的问题中提取关键信息,并通过数学建模的方法进行求解,是一个非常有挑战性的任务。

通过本次实验的学习和训练,我们可以更好地应对复杂问题,提高解决问题的能力和效率。

实验过程和方法本次实验我们选择了一个关于货车配送问题的案例进行研究。

具体过程如下:1. 问题理解:我们首先详细了解了货车配送问题的背景和要求,明确问题的目标和限制条件。

根据问题的描述,我们可以得到基本的数学模型:- 假设有N个配送点,每个配送点有固定的货物数量和配送时长。

- 有M辆货车,每辆货车的最大载重量和最大配送时长是已知的。

- 目标是使得总配送时间最短的同时,不超过货车的最大载重量。

2. 数据处理:我们将问题中给出的具体数据转化为计算机可处理的数据结构,并进行必要的预处理工作。

包括计算各个点之间的距离、货物数量等信息。

3. 建模与求解:我们根据问题的特点和要求,选用相应的数学模型和求解方法。

在本次实验中,我们选择了基于图论的算法,如最短路径算法和旅行商问题算法,来优化货车的配送路径和时间。

4. 结果分析:我们根据得到的结果,对货车的配送路径和时间进行分析和评估。

通过对比不同算法和参数设置的结果,找出最优解,并对结果进行可视化展示。

实验结果经过模型求解和分析,我们得到了一组满足条件的最优解。

在我们的实验中,总配送时间最短的方案是:...通过对比和分析不同算法和参数设置的结果,我们可以发现...实验总结本次实验通过对货车配送问题的研究和实践,我们学习了数学建模的基本方法和技巧。

通过模型建立、求解和分析的全过程,我们深入理解了数学建模的重要性和应用价值。

在实验过程中,我们遇到了一些困难和挑战,如如何选择合适的数学模型和求解算法等。

通过克服这些困难,我们不断提高了自己的问题解决能力和创新思维。

数学建模报告(孟大志)

数学建模报告(孟大志)
社会模型:社会冲突与政策、预警、社会心理学、 政策评估、犯罪学、发展与可持续问题,资源与环 境,等等。
个人生活模型:婚姻评估与预测、家庭理财、个人 活动优化、人生规划评估、高考志愿填报、朋友圈 子设计与评估、保险与个人风险,等等。
管理问题模型:生产统筹、多因素评估(绩效评 估等)、流程优化(物流与配送)、资金优化与 效益评估、ERP模型等等。
1、概念:什么是模型
这是一个通过举例或指认回答的简单问题。
1)社会科学模型 经济与管理科学模型、军事模型(越战)、政治模 型、社会学模型等等。
例 项目管理科学中的甘特图模型 反映了在项目管理中各个过程的受控运行状态,
是项目各部分关联结构的动态表示。
例 选举模型 多数选举法、累计选举法等等,是特种社会
问题四在周六周日不手术条件下重新建立病床安排模与问题二的分析相同仍采用入院限制方案但简单沿用第二问方法仿真的结果不理想主要原因是对视网膜与青光眼病人而言周六周日周一连续三日不手术则按照入院限制方案周四周五将不安排病人入院于是造成病床使用效率降低需改进手术时间安排
一、数学建模为什么火起来? 数学建模确实火起来:
请用数学建模方法研究这些菜系的特点。
如何建模是方法的Байду номын сангаас究性问题: 数学建模本质上是一个创造性的过程, 如何“创造”是一个科学研究课题。
四、从定义引出的方法
从基本概念的理解出发: 模型?+ 数学?→ 数学模型? →如何建模? 问题:如何从数学模型的概念出发构造方法 ?
结构化数学建模方法: 基于创造的本质性的方法。
3、核心是结构
理解原型的结构,抽象并表示结构是核心问题。 什么是结构? 抽象的数学语言:集合的结构是集合的子集族。

数学建模实验报告范文

数学建模实验报告范文

一、实验目的通过本次数学建模实验,使学生掌握数学建模的基本步骤和方法,提高学生运用数学知识解决实际问题的能力,培养学生的创新意识和团队合作精神。

二、实验内容本次实验以某城市交通拥堵问题为背景,建立数学模型,并进行求解和分析。

三、问题分析近年来,随着城市化进程的加快,交通拥堵问题日益严重。

为了缓解交通拥堵,提高城市交通效率,需要建立数学模型对交通拥堵问题进行分析。

四、模型假设1. 交通流量的变化服从泊松分布;2. 交通信号灯周期固定,绿灯时间、红灯时间比例不变;3. 交通事故发生概率服从泊松分布;4. 交通拥堵程度用道路上的车辆数表示。

五、模型构建1. 建立交通流量模型:假设道路上车流量为λ,则道路上的车辆数N(t)满足泊松分布,即N(t)~Poisson(λt)。

2. 建立交通信号灯模型:假设绿灯时间为t_g,红灯时间为t_r,信号灯周期为T,则有t_g + t_r = T。

3. 建立交通事故模型:假设交通事故发生概率为p,则在时间t内发生交通事故的次数X(t)满足泊松分布,即X(t)~Poisson(pt)。

4. 建立交通拥堵模型:假设道路上的车辆数为N(t),则交通拥堵程度U(t)可以用N(t)表示。

六、模型求解1. 根据泊松分布的性质,求解N(t)的期望值和方差,即E(N(t))=λt,Var(N(t))=λt。

2. 根据信号灯模型,求解绿灯时间t_g和红灯时间t_r。

3. 根据交通事故模型,求解交通事故发生次数X(t)的期望值和方差,即E(X(t))=pt,Var(X(t))=pt。

4. 根据交通拥堵模型,求解交通拥堵程度U(t)的期望值和方差。

七、结果分析与解释1. 根据模型求解结果,分析不同时间段内的交通流量、交通事故和交通拥堵程度。

2. 结合实际情况,分析影响交通拥堵的关键因素,并提出相应的缓解措施。

3. 通过模型求解,为相关部门制定交通管理政策提供依据。

八、实验总结通过本次数学建模实验,学生掌握了数学建模的基本步骤和方法,提高了运用数学知识解决实际问题的能力。

关于数学建模的实践报告

关于数学建模的实践报告

我的暑假有建模陪伴又是一个酷热难耐的暑假,骄傲的太阳俯瞰着大地,几次零星的小雨丝毫撼不动炎热的主题。

蓊蓊郁郁的济大校园里有这样一些行色匆匆的学子,他们忙碌着,早出晚归;他们埋头苦干着,废寝忘食;他们做着自己的事情,紧张有序——他们默默等待着一场未知的洗礼。

他们,就是参加暑假数学建模辅导的同学。

我很荣幸地成为了这支队伍中的一员,本来平淡无奇的暑假,因为参加了数学建模而变得丰富多彩。

先说说数学建模吧。

数学建模是运用数学思想、方法和知识解决实际问题的过程,已经成为不同层次数学教育重要和基本的内容。

数学建模是数学学习的一种新的方式,它为学生提供了自主学习的空间,有助于学生体验数学在解决实际问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;有助于激发学生学习数学的兴趣,发展学生的创新意识和实践能力。

数学建模与数学实验开创了大学生把数学理论和专业知识有机结合的新途径,是培养学生分析问题、解决问题和使用计算机进行科学计算的有效方法,是培养学生创新能力和实践能力的有效手段。

中国科学院王梓坤院士在《今日数学及其应用》一文中指出“精确定量思维是对21世纪科技人员的素质要求。

所谓定量思维就是人们从实际问题中提炼数学问题,抽象化为数学模型,用数学计算此模型的解或近似解,然后回到现实中进行检验,必要时修改模型使之更切合实际,最后编制解决问题的软件包,以便得到更广泛的方便的应用”。

这一精辟的论述阐明了在解决工程实际问题中数学建模与数学实验是相互依赖、相辅相成、互不可分的。

数学建模与数学实验是以数学知识为基础,以各个领域的实际问题为载体,以计算机为手段,以数学软件为工具,培养学生深入理解数学建模的思想与方法,熟悉常用的科学计算软件,如Mathematica、MATLAB,并在此基础上,根据所要解决的数学问题进行程序设计,培养学生运用所学知识建立数学模型,使用计算机解决实际问题的能力,以及综合应用能力和创新能力。

数学建模全部实验报告

数学建模全部实验报告

一、实验目的1. 掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。

2. 提高数学建模能力,培养创新思维和团队合作精神。

3. 熟练运用数学软件进行数据分析、建模和求解。

二、实验内容本次实验选取了以下三个题目进行建模:1. 题目一:某公司想用全行业的销售额作为自变量来预测公司的销售量,表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。

2. 题目二:三个系学生共200名(甲系100,乙系60,丙系40),某公司计划招聘一批新员工,要求男女比例分别为1:1,甲系女生比例60%,乙系女生比例40%,丙系女生比例30%。

请为公司制定招聘计划。

3. 题目三:研究某市居民出行方式选择问题,收集了以下数据:居民年龄、收入、职业、出行距离、出行时间、出行频率等。

请建立模型分析居民出行方式选择的影响因素。

三、实验步骤1. 问题分析:对每个题目进行分析,明确问题背景、目标和所需求解的数学模型。

2. 模型假设:根据问题分析,对实际情况进行简化,提出合适的模型假设。

3. 模型构建:根据模型假设,选择合适的数学工具和方法,建立数学模型。

4. 模型求解:运用数学软件(如MATLAB、Python等)进行模型求解,得到结果。

5. 结果分析与解释:对求解结果进行分析,解释模型的有效性和局限性。

四、实验报告1. 题目一:线性回归模型(1)问题分析:利用线性回归模型预测公司销售量,分析行业销售额对销售量的影响。

(2)模型假设:假设公司销售量与行业销售额之间存在线性关系。

(3)模型构建:根据数据,建立线性回归模型y = β0 + β1x + ε,其中y为公司销售量,x为行业销售额,β0、β1为回归系数,ε为误差项。

(4)模型求解:运用MATLAB软件进行线性回归分析,得到回归系数β0、β1。

(5)结果分析与解释:根据模型结果,分析行业销售额对销售量的影响程度,并提出相应的建议。

2. 题目二:招聘计划模型(1)问题分析:根据男女比例要求,制定招聘计划,确保男女比例均衡。

数学建模实验报告

数学建模实验报告

在下面的题目中选做100分的题目,给出详略得当的答案。

一.通过举例简要说明数学建模的一般过程或步骤。

(15分)答:建立数学模型的方法大致有两种,一种是实验归纳的方法,即根据测试或计算数据,按照一定的数据,按照一定的数学方法,归纳出系统的数学模型;另一种是理论分析的方法,具体步骤有五步(以人口模型为例):1、明确问题,提出合理简化的假设:首先要了解问题的实际背景,明确题目的要求,收集各种必要的信息2、建立模型:据所做的假设以及事物之间的联系,构造各种量之间的关系。

(查资料得出数学式子或算法)。

3、模型求解:利用数学方法来求解上一步所得到的数学问题,此时往往还要做出进一步的简化或假设。

注意要尽量采用简单的数学公具。

例如:马尔萨斯模型,洛杰斯蒂克模型4、模型检验:根据预测与这些年来人口的调查得到的数目进行对比检验5、模型的修正和最后应用:所建立的模型必须在实际应用中才能产生效益,根据预测模型,制定方针政策,以实现资源的合理利用和环境的保护。

二.把一张四条腿等长的正方形桌子放在稍微有些起伏的地面上,通常只有三只脚着地,然而只需稍为转动一定角度,就可以使四只脚同时着地,即放稳了。

(1) 请用数学模型来描述和证明这个实际问题; (2)讨论当桌子是长方形时,又该如何描述和证明?(15分)答:模型假设:1.椅子四条腿一样长,椅脚与地面的接触部分相对椅子所占的地面面积可视为一个点。

2.地面凹突破面世连续变化的,沿任何方向都不会出现间断(没有向台阶那样的情况),即地面可看作数学上的连续曲面。

3.相对椅脚的间距和椅子腿的长度而言,地面是相对平坦的,即使椅子在任何位置至少有三条腿同时着地。

4.椅子四脚连线所构成的四边形是圆内接四边形,即椅子四脚共圆。

5.挪动仅只是旋转。

我们将椅子这两对腿的交点作为坐标原点,建立坐标系,开始时AC、BD这两对腿都在坐标轴上。

将AC和BD这两条腿逆时针旋转角度θ。

记AC到地面的距离之和为f(θ)。

全国大学生数学建模竞赛历年试题

全国大学生数学建模竞赛历年试题

(浙江大学:刘祥官,李吉 分析法、PETRIБайду номын сангаас法、图论方
此)
鸾)
法、排队论方法
最优捕鱼策略问题(北京师范 大学:刘来福)
微分方程、积分、优化(非线性 规划)
节水洗衣机问题(重庆大学: 付鹂)
非线性规划
零件参数设计问题(清华大 学:姜启源)
截断切割问题(复旦大学:谭 微积分、非线性规划、随机模拟 永基,华东理工大学:俞文
微分方程
数码相机定位
非线性方程模型
制动器试验台的控制方法分析
DVD在线租赁问题(清华大学: 谢金星等)
GM
0-1规划 多目标规划
艾滋病疗法的评价及疗效的预
测(天大:边馥萍)
乘公交,看奥运(吉大:方沛
辰,国防科大:吴孟达)
高等教育学费标准探讨
(开放性题目)
眼科病床的合理安排
1999 2000 2001
拟合、规划
足球排名次问题(清华大学: 矩阵论、图论、层次分、整数
蔡大用)
规划
逢山开路问题(西安电子科技 大学:何大可)
图论、插值、动态规划
锁具装箱问题(复旦大学:谭 永基,华东理工大学:俞文 图论、组合数学 此)
飞行管理问题(复旦大学:谭
天车与冶炼炉的作业调度问题 非线性规划、动态规划、层次
永基,华东理工大学:俞文 非线性规划、线性规划
酒后开车问题(清华大学:姜 启源)
微分方程
雨量预报方法的评价问题(复 旦大学:谭永基)
模糊评价 插值
易拉罐形状和尺寸的最优设计
(北理工:叶其孝)
手机“套餐”优惠几何(信息
工程大学:韩中庚)
地面搜索
一笔画问题、数学规划模型

数学建模的介绍

数学建模的介绍

一、数学建模的意义数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。

数学建模就是用数学语言描述实际现象的过程。

这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。

这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。

我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。

数学模型一般是实际事物的一种数学简化。

它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。

要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。

为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。

使用数学语言描述的事物就称为数学模型。

有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。

应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。

建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。

要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。

这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。

数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。

数学建模实训报告

数学建模实训报告

数学建模实训报告第一篇:数学建模实训报告目录实训项目一线性规划问题及lingo软件求解……………………………1 实训项目二lingo中集合的应用………………………………………….7 实训项目三lingo中派生集合的应用……………………………………9 实训项目四微分方程的数值解法一………………………………………13 实训项目五微分方程的数值解法二……………………………………..15 实训项目六数据点的插值与拟合………………………………………….17 综合实训作品…………………………………………………………….18 每次实训课必须带上此本子,以便教师检查预习情况和记录实验原始数据。

实验时必须遵守实验规则。

用正确的理论指导实践袁必须人人亲自动手实验,但反对盲目乱动,更不能无故损坏仪器设备。

这是一份重要的不可多得的自我学习资料袁它将记录着你在大学生涯中的学习和学习成果。

请你保留下来,若干年后再翻阅仍将感到十分新鲜,记忆犹新。

它将推动你在人生奋斗的道路上永往直前!项目一:线性规划问题及lingo软件求解一、实训课程名称数学建模实训二、实训项目名称线性规划问题及lingo软件求解三、实验目的和要求了解线性规划的基本知识,熟悉应用LINGO 解决线性规划问题的一般方法四:实验内容和原理内容一:某医院负责人每日至少需要下列数量的护士班次时间最少护士数1 6:00-10:00 60 2 10:00-14:00 70 3 14:00-18:00 60 4 18:00-22:00 50 5 22:00-02:00 20 6 02:00-06:00 30 每班的护士在值班的开始时向病房报道,连续工作8个小时,医院领导为满足每班所需要的护士数,最少需要多少护士。

内容二:内容三五:主要仪器及耗材计算机与Windows2000/XP系统;LINGO软件六:操作办法与实训步骤内容一:考虑班次的时间安排,是从6时开始第一班,而第一班最少需要护士数为60,故x1>=60,又每班护士连续工作八个小时,以此类推,可以看出每个班次的护士可以为下一个班次工作四小时,据此可以建立如下线性规划模型:程序编程过程:min=x1+x2+x3+x4+x5+x6;x1>=60;x1+x2>=70;x2+x3>=60; x3+x4>=50;x4+x5>=20;x5+x6>=30;编程结果:Global optimal solution found.Objective value:150.0000Infeasibilities:0.000000Total solver iterations:VariableValueReduced CostX160.000000.000000X210.000000.000000X350.000000.000000X40.0000001.000000X530.000000.000000X60.0000000.000000RowSlack or SurplusDual Price150.0000-1.0000000.000000-1.0000000.0000000.0000000.000000-1.0000000.0000000.00000010.000000.0000000.000000-1.000000 内容二:(1)max=6*x1+4*x2;2*x1+3*x2<100;4*x1+2*x2<120;x1,x2分别表示两种型号生产数量。

第一届大学生数学建模赛题研讨会在山东科技大学召开

第一届大学生数学建模赛题研讨会在山东科技大学召开

第5卷第3期2 0 1 6年9月数学建模及其应用Mathematical Modeling and Its ApplicationsVol.5No.3Sept.2016檺檺檺檺檺檺檺檺檺檺檺檺檺檺檺檺殣殣殣殣本刊特讯第一届大学生数学建模赛题研讨会在山东科技大学召开本刊通讯员图1 第一届大学生数学建模赛题研讨会开幕式 “第一届大学生数学建模赛题研讨会”由全国大学生数学建模竞赛组委会、《数学建模及其应用》杂志编辑部、全国大学生数学建模竞赛山东赛区组委会、山东大学数学学院和山东科技大学数学与系统科学学院联合主办,山东科技大学数学与系统科学学院承办,于2016年7月19-21日在位于青岛市黄岛区的山东科技大学顺利召开。

来自全国86所高校的130余名数学建模专家、代表出席了会议。

19日上午是会议开幕式,特邀全国大学生数学建模竞赛组委会专家组成员天津大学边馥萍教授、解放军信息工程大学韩中庚教授和北京工业大学薛毅教授,全国大学生数学建模竞赛组委会委员复旦大学蔡志杰教授参加。

山东科技大学副校长姚庆国、青岛市科协副主席徐冰、大学生数学建模竞赛山东赛区组委会主任张平慧、山东大学教授黄淑祥、中国海洋大学数学学院副院长曹圣山、山东科技大学教务处处长曹茂永、《数学建模及其应用》杂志执行副主编孟大志、山东科技大学数学与系统科学学院院长王向荣在主席台就座,姚庆国、徐冰、黄淑祥先后在会上致辞。

全国大学生数学建模竞赛组委会专家组成员、《数学建模及其应用》杂志编委、天津大学边馥萍教授和解放军信息工程大学韩中庚教授分别作了题为“美国大学生数学建模竞赛(ICM)的命题与评阅”和“数学建模面临的问题与挑战”的大会报告。

19日下午和20日全天,分别对2016年美国大学生数学建模竞赛(MCM/ICM)6个题目进行详解报告和讨论,报告分别有:青岛农业大学陈建毅老师的报告“恒温洗浴热水添加策略的研究”;山东科技大学杨洪礼老师的报告“‘清除太空垃圾’是否存在商机呢?”;山东科技大学王永丽老师的报告“基于数据的Goodgrant基金最优投资策略”;山东科技大学王新赠老师的报告“复杂网络属性及其在数学建模中的应用研究”;山东科技大学王倩老师的报告“水资源紧缺程度评估模型”和中国石油大学(华东)石仁刚老师的报告“欧洲难民危机网络流模型研究”。

全国大学生数学建模竞赛简介

全国大学生数学建模竞赛简介

目录一、简介二、竞赛章程三、竞赛组委会四、竞赛参考资料五、论文格式要求六、承诺书七、竞赛指南八、竞赛相关网站一、简介中文名称:全国大学生数学建模竞赛英文名称:China Undergraduate Mathematical Contest in Modeling简称:CUMCM全国大学生数学建模竞赛是全国高校规模最大的课外科技活动之一。

本竞赛每年9月(一般在中旬某个周末的星期五至下周星期一共3天,72小时)举行,竞赛面向全国大专院校的学生,不分专业(但竞赛分本科、专科两组,本科组竞赛所有大学生均可参加,专科组竞赛只有专科生(包括高职、高专生)可以参加)。

同学可以向本校教务部门咨询,如有必要也可直接与全国竞赛组委会或各省(市、自治区)赛区组委会联系。

2008 年全国有31个省/市/自治区(包括香港)1023所院校、12846个队(其中甲组10384队、乙组2462队)、3万8千多名来自各个专业的大学生参加竞赛,是历年来参赛人数最多的!高等教育出版社继续独家冠名赞助“2009高教社杯全国大学生数学建模竞赛”.主办机构:教育部高等教育司中国工业与应用数学学会(CSIAM)竞赛宗旨:创新意识团队精神重在参与公平竞争合作伙伴及冠名赞助(2002-2011):赞助商二、竞赛章程全国大学生数学建模竞赛章程(2008年)第一条总则全国大学生数学建模竞赛(以下简称竞赛)是教育部高等教育司和中国工业与应用数学学会共同主办的面向全国大学生的群众性科技活动,目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。

第二条竞赛内容竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过高等学校的数学课程。

题目有较大的灵活性供参赛者发挥其创造能力。

2000年A题---DNA序列

2000年A题---DNA序列

其他较新颖的解决方案
(大连理工大学)深入地分析了序列问题的生 物来源, 又观察人工序列的数学结构和数值 试验结果, 在一些DNA 序列几何表达文献的 启发下, 提出了简捷的几何分类法, 得到了 出色的分类结果. (中国科技大学)研究了我国著名学者, 中科 院院士张春霆教授的Z 曲线方法 , 并简化用 于A 题分类,也取得好的结果. ……
1)tgacctcttgtcctgtatagcaacctatttggtaatgattccagcactcacagaaaagcttgcac
acatacacacacaccccacccctccccactaacaaatgcaagttggtaaacaaattccaaaaaggc ataacaaaccttatatatatagacaaatatatattaaagttttttagtctgtactagaaagagcttca gacagaactgaccaccattccattgctcatcaatttcctgggacagcacctgagcgtgcgcttacg cgcgtacacacacatagacacgcactgcgatacaagtcctgatttgggagtccgtccttttaaaaa cagccacatgctttcacgctctgagacccacccgtttctgtgagcagggggagggcaaggaaag ccctggcctcagtccagccttttctctgcttccacctgctcaggctgtgtgctcttggttctgtcctgc acttgtgtgaattccaaaactgtttttttaaaaaatggcccgcaccccaaatgtctccctgccccata ctttgcaacaagagaaaactttaggatgcttctcttttgggtggcggaggttgttaacttcaagaat ttagaagaatcattgctccgacaaatccactgtctcctgagttttctttattcatgttaacaaggcaa gagtcagagaaaagggagacttggtctgcttcccacatgcagctgagcggaggggccgtcaca gcacagggtcacctgcagagctgaagccgctcctcaggctccccctccaagagggctggggcaa ggtccctgggctgaggcctcccaggggggcctgggcaaggcttccttgggttctggatcccccct gcaatgctgccccatcctgcccccacccccacgtcattaaacacgatggagggtttttcggtcggtt ggttggttggtgttctaaatcaaggaaaatggtccgactggaccccttgtctctctctctacagact gcttcacggactctttgctgttgacgatctcctggtagcatgaccttttggcctttgttaagacacac agcctttctgtatcaagccccctgtctaacctacgacccagagtgactgacggctgtgta (2~182略)

数学建模活动研究报告

数学建模活动研究报告

数学建模活动研究报告
1. 研究背景,介绍数学建模活动的背景和意义,说明为什么进
行这项研究以及研究的目的和意义。

2. 文献综述,对相关领域的文献进行综述,包括数学建模的基
本理论、方法和应用等方面的研究成果,以及国内外在该领域的研
究现状和发展趋势。

3. 研究方法,介绍在数学建模活动中所采用的研究方法和技术,包括问题的建模过程、数学模型的构建、求解方法的选择等内容。

4. 研究过程,详细描述数学建模活动的具体过程,包括问题的
分析、模型的建立、数据的收集和处理、模型的求解以及结果的验
证等步骤。

5. 结果分析,对数学建模活动的研究结果进行分析和讨论,包
括结果的合理性、稳定性、敏感性分析以及对实际问题的意义和应
用价值等方面的讨论。

6. 结论和展望,总结研究的主要结论,指出研究中存在的不足
和问题,并展望未来的研究方向和发展趋势。

在撰写数学建模活动研究报告时,需要严谨、全面地展现研究
过程和研究结果,确保报告的可读性和可信度。

同时,还需要注意
报告的结构和逻辑性,使得整个报告具有清晰的层次和连贯的论证。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导致数学方法和数学模型化方法的不同。
二十世纪是物理学世纪:理论力学、电动力学 (场论)、统计力学、量子力学与相对论。形成 理论物理,同时推动了数学的发展。
流形上的函数及其场方程的模型:代数方程组和微 分方程组。
理论力学的 Lagrange和Hamilton方程组; 电动力学的 Maxwell方程组; 统计物理的 热力学基本方程和统计分布函数;
网络建模:Web与Inter网的稳定性、路由策略、 带宽分布、网络鲁棒性与安全、网络上节点的信 息集成与分析…等等。
科学研究中的模型化方法:物理学、化学、生物、 工程技术、经济管理、考古与历史、人文与社会学、 美学与艺术、心理学,数学本身的建模等等。
一个成熟的科学标志:公理化体系与数学形式化。
3 结构主义的催化 3.1 系统成为最基本的研究对象
数据爆炸 是最普遍的社会现象; 导致:数据处理方法成为社会的最大需求。
计算与数学建模 (二十一世纪的应用数学)
计算与数学建模已经形成新世纪的最广 泛的特征。海量数据源:Web与Internet数据、 社会管理数据、全球化经济数据、环境与资 源数据、个人信息数据、科学研究数据、多 媒体型数据,等等。
数学建模的结构主义方法
Tel:
一、数学建模为什么火起来? 数学建模确实火起来:
数学建模成为大学普遍开设的课程;
数学建模已经在社会生活与生产建设中普 遍应用;
数模竞赛参赛队每年增长20%,去年1.5 万个队,近30万学生参加各级竞赛!—— 吉尼斯纪录!
1、二十一世纪的特征
芯片和网络 是二十一实际最广泛的物质特征; 作用:数据信息的收集、存储、处理和传输。
量子力学的 ShrÖdinger、Dirac、Heisenberg方程; 相对论的 爱因斯坦的引力场方程。
二十一世纪形成以生物为核心的多中心:
经济
生物学
社会
能源
信息
二十一世纪的中心学科转变,生物学世纪: 数学模型是什么? 数学方法是什么? 计算方法是什么? 是方程与方程的计算吗?
这种全新的模型、计算和数学需求刺激了数学 家们重新关注:什么是数学模型?什么是生物 的计算?什么是新的数学?
计算——应用——建模——计算
例子:IC卡数据有什么用?
2、二十一世纪的社会需求
2.1科学中心转换——生物学方法的需求
生物学与所有其他学科,如物理学、化学、地 理学,有完全不同的特质:编码的信息,因此, 生物学以外的学科都只能通过类比的方式 (analog)进行分析。而生物学特质的核心是数 字化的,因此生物学是可以通过破译而解读的。
美国《科学》周刊登载了系统生物学专集。该专集 导论中的第一句话这样写道:“如果对当前流行的、 时髦的关键词进行一番分析,那么人们会发现, ‘系统’高居在排行榜上。”
系统的结构:系统中所有元素之间关联的总和
其数学模型是结构的数学表示——网络。
3.2结构主义与数学
利用皮亚杰的结构主义理论,可以对系统的 结构进行可程序化的分析。
陈省身:二十世纪的数学家要关注物理,二十一 世纪的数学家要关注生物学。
杨振宁:我们应该关注生物学,生物学还没有理 论,但是积累了大量的数据,期待理论的建立。
系统生物学将推动现代数学的发展!
2.2 社会与经济的需求
数据、信息、知识是解决问题的基础,解决问题的 方法是数学建模和计算:应用数学。
经济模型:金融政策、股票、市场、价格策略与 超市,等等。
海量数据是最大的资源:数据信息产业!
下一个核心产业是什么?
“奔驰和车上的人哪个值钱?”
IT to DI(data information)?
海量数据首先需求:数据处理——目的是 获取信息与知识。 数据≠信息≠知识: 数据+结构→信息, 信息+结构→知识。
数据处理:数据 信息 知识
数据处理法统称为:计算!
优化问题模型:有约束与无约束数学规划,遗传算 法和蚁群算法,分类与聚类,随机模拟等等。
从海量数据中发掘数据的应用价值和应用方法— —以数据为核心的计算,即没有或不清楚数据中 隐含的信息与知识,通过计算与建模发现数据的 应用——数据挖掘。
微软亚洲研究院“二十一世纪的计算”大型国际 学术研讨会在一年一次的例会上,明确提出了二 十一世纪的计算将从以应用为核心的计算理念转 变为以数据为核心的计算。
定义:结构是一个由种种转换规律组成的体系,包 括三个特性:
整体性、转换性和自身调整性。
结构应该是可以形式化(公式化)的。
布尔巴基的数学结构主义
最早被研究的结构是在数学中,这就是伽罗
华(Calois)的群结构,此后数学结构的研究就 逐步蔚然成风,产生了布尔巴基学派。 布尔巴基学派——法国年轻人的数学团体 《数学原本》——基础数学的经典论著 结构主义——布尔巴基数学思想 ❖ 三大结构:序结构、代数结构和拓扑结构
结构数学从本质上支持了数学建模的方法、能力 与普适性。
二、数学建模的三个方面
1、科学研究
建模应用研究:各个领域的问题建模和模型求解, 当前最热的建模领域是经济和生物。金融与保险模 型,股票模型,市场的博弈模型,经济趋势模型, 等等。
系统生物学是以建模为核心的生物学,成为生物学 世纪的标志性学科。
应用数学的基本方法:数学建模+计算。
社会模型:社会冲突与政策、预警、社会心理学、 政策评估、犯罪学、发展与可持续问题,资源与环 境,等等。
个人生活模型:婚姻评估与预测、家庭理财、个人 活动优化、人生规划评估、高考志愿填报、朋友圈 子设计与评估、保险与个人风险,等等。
管理问题模型:生产统筹、多因素评估(绩效评 估等)、流程优化(物流与配送)、资金优化与 效益评估、ERP模型等等。
建模理论研究:仿真、模拟和数学模型, 类比的数学建模方法,结构主义数学建模 的理论与实践。
仿真、模拟:既为二十一世纪最普遍的时代 特征!
计算的变迁
以应用问题为核心的计算——传统的计算,应用问 题求解:数学模型——计算。
多因素关系模型:线性方程组,线性拟合,线性逼 近;非线性和随机分布等等。
动态模型:微分方程组,离散动力系统,迭代格式 和随机过程等等。
多因素综合评估与分类模型:模糊数学,神经网络, 层次分析、机器学习等等。
相关文档
最新文档