11-12-2线代试卷B答案

合集下载

线性代数试题及详细答案

线性代数试题及详细答案

线性代数试题及详细答案线性代数试题及详细答案————————————————————————————————作者:————————————————————————————————日期:线性代数(试卷一)一、填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。

2. 若122211211=a a a a ,则=16030322211211a a a a 3. 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则CAB =-1。

4. 若A 为n m ?矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是_________5. 设A 为86?的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为__2___________。

6. 设A 为三阶可逆阵,=-1230120011A,则=*A 7.若A 为n m ?矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是8.已知五阶行列式1234532011111112140354321=D ,则=++++4544434241A A A A A 9. 向量α=(2,1,0,2)T-的模(范数)______________。

10.若()Tk 11=α与()T121-=β正交,则=k二、选择题(本题总计10分,每小题2分)1. 向量组r ααα,,,21Λ线性相关且秩为s ,则(D) A.s r = B.s r ≤C.r s ≤ D.r s <2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A(A)A.8 B.8-C.34 D.34-3.设向量组A 能由向量组B 线性表示,则( d )A.)()(A R B R ≤ B.)()(A R B R <C.)()(A R B R =D.)()(A R B R ≥4. 设n 阶矩阵A 的行列式等于D ,则()*kA 等于_____。

线性代数习题及解答完整版

线性代数习题及解答完整版

线性代数习题及解答完整版线性代数习题及解答HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】线性代数习题一说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,||α||表示向量α的长度,αT表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式. 一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设行列式111213212223313233a a a a a a a a a =2,则111213313233213122322333333a a a a a a a a a a a a ------=() A .-6 B .-3 C .3D .62.设矩阵A ,X 为同阶方阵,且A 可逆,若A (X -E )=E ,则矩阵X =() A .E +A -1B .E -AC .E +AD .E -A -13.设矩阵A ,B 均为可逆方阵,则以下结论正确的是()A .??A B 可逆,且其逆为-1-1A B B .??A B 不可逆 C .??A B 可逆,且其逆为-1-1?? ???B AD .??A B 可逆,且其逆为-1-1??A B 4.设α1,α2,…,αk 是n 维列向量,则α1,α2,…,αk 线性无关的充分必要条件是()A .向量组α1,α2,…,αk 中任意两个向量线性无关B .存在一组不全为0的数l 1,l 2,…,l k ,使得l 1α1+l 2α2+…+l k αk ≠0C .向量组α1,α2,…,αk 中存在一个向量不能由其余向量线性表示D .向量组α1,α2,…,αk 中任意一个向量都不能由其余向量线性表示5.已知向量2(1,2,2,1),32(1,4,3,0),T T+=---+=--αβαβ则+αβ=() A .(0,-2,-1,1)TB .(-2,0,-1,1)TC .(1,-1,-2,0)TD .(2,-6,-5,-1)T6.实数向量空间V ={(x , y , z )|3x +2y +5z =0}的维数是()A .1B .2C .3D .47.设α是非齐次线性方程组Ax =b 的解,β是其导出组Ax =0的解,则以下结论正确的是()A .α+β是Ax =0的解B .α+β是Ax =b 的解C .β-α是Ax =b 的解D .α-β是Ax =0的解8.设三阶方阵A 的特征值分别为11,,324,则A -1的特征值为() A .12,4,3 B .111,,243C .11,,324D .2,4,39.设矩阵A =121-,则与矩阵A 相似的矩阵是()A .11123--B .01102C .211- D .121-10.以下关于正定矩阵叙述正确的是() A .正定矩阵的乘积一定是正定矩阵 B .正定矩阵的行列式一定小于零 C .正定矩阵的行列式一定大于零D .正定矩阵的差一定是正定矩阵二、填空题(本大题共10小题,每空2分,共20分)请在每小题的空格中填上正确答案,错填、不填均无分。

淮海工学院11-12-2线性代数B答案

淮海工学院11-12-2线性代数B答案

淮 海 工 学 院11 - 12 学年 第2 学期 线性代数 期末试卷(B 卷)答案一、选择题(本大题共8小题,每题3分,共24分)1. 设A 是m n ⨯矩阵,B 是s n ⨯矩阵,C 是m s ⨯矩阵,则下列运算有意义的是( C ) (A ) AB (B ) BC (C ) T ABD. T AC2.设A,B 为n 阶矩阵,下列命题正确的是--------------------------------------------( C )(A )2222)(B AB A B A ++=+ (B )22))((B A B A B A -=-+ (C )2()()A E A E A E -=+- (D )222)(B A AB =3. 设矩阵111213212223313233a b a b a b A a b a b a b a b a b a b ⎛⎫⎪= ⎪ ⎪⎝⎭,其中0(1,2,3)i i a b i ≠=则()R A =--( B ) (A ) 0 (B )1 (C )2 (D )34. 在下列矩阵中,可逆的是-----------------------------------------------------------( D )(A )000010001⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B )110220001⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C )110011121⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D )100111101⎛⎫⎪ ⎪ ⎪⎝⎭5. 如果行列式1112132122233132330a a a a a a d a a a =≠,则112133132321223222333a a a a a a a a a =--------------( B )(A )2d (B )6d (C )3d (D )6d -6. 设A 为n 阶方阵且0A =,则------------------------------------------------------( C )(A )A 中必有两行(列)的元素对应成比例;(B )A 中任意一行(列)向量是其余各行(列)向量的线性组合; (C )A 中必有一行(列)向量是其余各行(列)向量的线性组合;(D )A 中至少有一行(列)的元素全为07.设A 是n 阶矩阵,则以下选项中错误的结论是--------------------------------( C ) (A )当AX b =无解时,A O = (B )当AX b =有无穷多解时,A O = (C ) 当A O =时, AX b =无解 (D )当AX b =有唯一解时,A O ≠8.矩阵112A ⎫⎛⎪ =⎪⎪⎝⎭与下列哪个矩阵相似----------------------------------------( C ) (A )203034001⎫⎛⎪ ⎪ ⎪⎝⎭ (B )100020002⎫⎛⎪⎪⎪⎝⎭(C )100011002⎫⎛⎪ ⎪ ⎪⎝⎭ (D )101030001⎫⎛⎪ ⎪ ⎪⎝⎭二、填空题(本大题共4小题,每题4分,共16分)1.1211A ⎫⎛=⎪ -⎝⎭,32a b B ⎫⎛=⎪ ⎝⎭,若AB BA =,则a = 8 ,b = 62.若A 为三阶方阵,21A =,则1A -= 8 ,*A =1643.设矩阵103101230000A -⎫⎛⎪=⎪⎪⎝⎭,则矩阵A 的秩为 2 ,线性方程组AX O =的基础解系中向量个数为 2 。

线代12答案 线性代数试题库

线代12答案  线性代数试题库

苏州大学《线性代数》课程(第十二卷)答案 共3页 院系 专业一、填空题:(30%)1、21=x ,32=x ,44=x2、=X ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--610115243 3、=-*1)(A A 31 4、=t 15 5、=--1)2(E A )3(21E A + 6、8=t 7、=-1)(AB 61-8、2)(=A r 9、=Λ⎥⎦⎤⎢⎣⎡00025或⎥⎦⎤⎢⎣⎡25000 10、1=+E A二、判断题:(10%)(1)√ (2) √ (3) × (4) × (5)× 三、(8%)解: A A 21])21[(11=--, (2%) ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎦⎤⎢⎣⎡-02121102321121001100211101310,)21(1 E A (4%) =A 2=--11)]21[(A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-011031100 (2%) 四、(8%)解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎪⎪⎪⎭⎫ ⎝⎛=000630321987654321321αααA 2)(=A r , 21,αα为极大无关组 (3%) 321211 , ,αααααα+++由321,,ααα线性表示≤+++) , ,(321211ααααααr ),,(321αααr又因21,αα为极大无关组,故211 ,ααα+也线性无关,所以2) , ,(321211=+++ααααααr ,且211 ,ααα+是极大无关组(5%)五、(10%)解:,)(T T T T B C BC AXB == 又,0≠B T B B ,都可逆,T T C A X C AX 1-=⇒= (4%)=-1A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--100210121, =X ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----111211110 (6%) 六、(10%)解:[]⎪⎪⎪⎭⎫ ⎝⎛--→→=000011001112a aa b A A (2%) (1) 当,1≠a 且1-≠a ,方程组有无穷多组解,一般解为,1121x a x -+= ( 1123x ax +=为自由未知量) (4%) (2) 当,1=a 方程组有无穷组解,一般解为:, ( 132321x x x x x --=是自由未知量) (4%)七、(14%)解:(1) 3)-(1)( 2λλλ+=-A E ,,12,1-=λ33=λ (2%)对,12,1-=λ得特征向量()T 0,1,11-=ξ, ()T1,0,02=ξ 所有特征向量为 212211,( k k k k ξξ+为不全为零的任意常数)(2%) 对33=λ,得特征向量()T 0,1,13=ξ,所有特征向量为 333( k k ξ是任意非零常数) (2%)(2) λ是A 的特征值,X 是对应的特征向量,则122++λλ是E A A ++22的特征值,且X 仍是对应的特征向量。

大学《线性代数》第2版(清华大学出版社、居余马)课后习题详细答案-较完整

大学《线性代数》第2版(清华大学出版社、居余马)课后习题详细答案-较完整

1 a2 a3 1 0
0
( )( ) ( )( ) 22、解法 1: 1 b2 b3 = 1 b2 − a2 b3 − a3 = b2 − a2 c3 − a3 − c2 − a2 b3 − a3
1 c2 c3 1 c2 − a2 c3 − a3
整理得 = (ab + bc + ca)(b − a)(c − a)(c −b)
1 1 11 1 1 1 1
−2 1 0
1 −1 2 1
1 −1 2 1 0 −2 1 0
13、
第1,4行交换 −
=−
= − −3 −2 −4 = −7
4 1 20
4 1 2 0 0 −3 −2 −4
−1 −5 −3
1 1 11
5 0 4 2 0 −1 −5 −3
14、先将第 1 行与第 5 行对换,第 3 行与第 4 行对换(反号两0 0 1 3 第3,5行对换 − 0 1 0 1 1 = − 6 7 8
= −10*2 = −20
43
00024
00024 010
01 01 1
00 01 3
17、根据课本 20 页公式(1.22)
0 0 1 −1 2
0030 0024 1 240
2
1 −1 2
0 = (−1)2×3 3
2 2 3 L 2 2 第3行 − 第1行 1 0 1 L 0 0
28、
L L L L L L LLLLLL L L L L L L
2 2 2 L n −1 2 第n行 − 第1行 1 0 0 L n − 3 0
−5 0 0 0 0
所以
* A = (−1)3*5 | A || B |= −3!5!

线性代数(B)答案

线性代数(B)答案

2017-2018学年第2学期《线性代数》B 卷参考答案与评分标准一、填空题(本题满分15分,每题3分)1.12-; 2. 3; 3. 1311102144243A ⎛⎫ ⎪= ⎪ ⎪⎝⎭;4. 112111k ⎛⎫⎛⎫⎪ ⎪-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5.22a <<二、选择题(本题满分15分,每题3分)1.C ; 2. D ; 3. D ;4. B ;5. C.三、解:1.12341111-1494-1231234182741491-116814-18271=⨯⨯()()()()()()242131113212131152=+++---= ------------9分2. 127100210000830052A A A ⎛⎫ ⎪⎛⎫⎪== ⎪ ⎪⎝⎭⎪⎝⎭-------------1分()10101010101012718352152A AA A ==== ---------------5分115517215511200000023058A A A ----⎛⎫ ⎪⎛⎫- ⎪==⎪ ⎪-⎝⎭ ⎪-⎝⎭---------------9分四、解:1. 由2AX X B =+知,()2A E X B -=,那么()12X A E B -=-.------------3分于是111-136********-2-51121011001-2110-3710331-102-3-5-32-12-3-5-9-13-4X -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪=== ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭------------------12分2. 2141123441213121311100303(,,,)0527052746002412r r r r A k k αααα+-⎛⎫⎛⎫ ⎪ ⎪--⎪ ⎪==−−−→ ⎪ ⎪-- ⎪ ⎪---⎝⎭⎝⎭ 232434235221213121301010101002200220041000014r r r r r r r A k k ÷--+⎛⎫⎛⎫⎪⎪⎪ ⎪−−−→−−−→= ⎪⎪-- ⎪⎪---⎝⎭⎝⎭所以当14k =时向量组1234,,,αααα线性相关. -------------6分 继续对A 施行初等行变换,131232(2)121310111002010101010101002200110011000000000000r r r r r A --÷-⎛⎫⎛⎫⎛⎫⎪⎪⎪⎪ ⎪ ⎪=−−−→−−−→ ⎪ ⎪ ⎪--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭ 一个极大无关组为123,,ααα,且41232αααα=+-. -------------12分3. 1) 123(,,)f x x x 的矩阵为222254245A -⎛⎫ ⎪=- ⎪ ⎪--⎝⎭.A 的特征多项式2222254(1)(10)245E A λλλλλλ---=--=---,所以A 的特征值为12=1λλ=,310λ=. ------------------3分当12=1λλ=时,齐次线性方程组0)(=-x A E 为1231222440244x x x --⎛⎫⎛⎫ ⎪⎪--= ⎪⎪ ⎪⎪-⎝⎭⎝⎭,一个基础解系为1210α-⎛⎫ ⎪= ⎪ ⎪⎝⎭,2201α⎛⎫⎪= ⎪ ⎪⎝⎭.正交化,211122111252(,)41,(,)501αββαβαβββ⎛⎫ ⎪-⎛⎫ ⎪⎪⎪===-= ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭,单位化,1β=11αα=121212,.5150ββηηββ⎛ ⎪ ⎪ ==== ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭当3λ=10时,齐次线性方程组0)10(=-x A E 为1238222540245x x x -⎛⎫⎛⎫⎪⎪-= ⎪⎪ ⎪⎪⎝⎭⎝⎭,一个基础解系为3122α⎛⎫ ⎪= ⎪ ⎪-⎝⎭,单位化得333132323αηα⎛⎫⎪⎪⎪== ⎪ ⎪ ⎪- ⎪⎝⎭. ------------------9分 令()123151532,,32033T ηηη⎛⎫-⎪ ⎪ ⎪==⎪ ⎪ ⎪- ⎪ ⎪⎝⎭,做正交变换X TY =,则 222123123(,,)10f x x x y y y =++. ------------------10分2) 222123123(,,)101f x x x y y y =++=是椭球面. ---------------12分五、证明:1.A 的特征多项式()311111111411111111A E λλλλλλλ---==---,A 的特征值为12340,4λλλλ====. 因A 是实对称矩阵,所以A 可对角化,且A 与0004⎛⎫ ⎪⎪Λ= ⎪ ⎪⎝⎭相似. ---------------4分B 的特征多项式()3400010041001B E λλλλλλλ---==---则,B 的特征值为12340,4λλλλ====.对于特征值0,齐次线性方程组0Ax =有()43R A -=个线性无关的解,即 属于特征值0有3个线性无关的特征向量. 又特征值4有1个线性无关的特征向量,因此B 可对角化,且B 与0004⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭相似. 故A 与B 相似. ---------------8分 2. 设0110r r k k k βαα+++=,两边同时与β做内积,有011,,,0r r k k k ββαβαβ+++=,由条件β与1,,r αα都正交得0,0k ββ=,又因β是非零向量,那么00k =.--------------5分再由1,,r αα线性无关可得10r k k ===,故1,,,r βαα线性无关.--------------8分。

线性代数B期末考试题及答案

线性代数B期末考试题及答案

线性代数B期末考试题及答案一、选择题(每题5分,共20分)1. 以下哪个矩阵是可逆的?A. \(\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}\)B. \(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\)C. \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)D. \(\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}\)答案:C2. 设 \(A\) 是一个 \(3 \times 3\) 矩阵,若 \(A^2 = I\),则\(A\) 一定是:A. 正交矩阵B. 斜对称矩阵C. 单位矩阵D. 对角矩阵答案:A3. 线性方程组 \(\begin{cases} x + 2y - z = 1 \\ 3x - 4y + 2z = 2 \\ 5x + 6y + 3z = 3 \end{cases}\) 的解的情况是:A. 有唯一解B. 有无穷多解C. 无解D. 不能确定答案:B4. 设 \(A\) 是一个 \(3 \times 3\) 矩阵,若 \(\det(A) = 0\),则 \(A\) 的秩:A. 等于3B. 小于3C. 等于0D. 大于等于3答案:B二、填空题(每题5分,共20分)1. 设 \(A\) 是一个 \(3 \times 3\) 矩阵,且 \(A\) 的行列式\(\det(A) = 2\),则 \(A\) 的伴随矩阵 \(\text{adj}(A)\) 的行列式是 _______。

答案:82. 若 \(A\) 是一个 \(3 \times 3\) 矩阵,且 \(A\) 的特征值为1,2,3,则 \(A\) 的迹数 \(\text{tr}(A)\) 等于 _______。

大学《线性代数》第2版(清华大学出版社、居余马)课后习题详细答案-较完整精编版

大学《线性代数》第2版(清华大学出版社、居余马)课后习题详细答案-较完整精编版

= 10 ⋅ (−1)
1 1 1 −1 1 1 1 1 1 1
⋅1⋅ 2L 8 ⋅ 9 = 10!
11、
1 1 1 1 1 第2行 − 第1行 1 0 −2 0 0 第3行 − 第1行 = 1*(−2)3 = −8 −1 1 0 0 −2 0 第4行 − 第1行 1 −1 0 0 0 −2
12、该行列式中各行元素之和均为 10,所以吧第 2,3,4 列加到第 1 列,然后再把第 1 列 后三个元素化为零,再对第 1 列展开,即
1 0 0
18、 A = 1 2
0 = 1* 2*3 = 3!,
1 2 3
0 0 B =0
0 0 0
0 0
0 −1 −2 0 0 = (−1) 0 0 0 0
−3 0
5(5 −1) 2
(−1)(−2)(−3)(−4)(−5) = −5!
0 −4 0 −5 0 0
所以
* B
A = (−1)3*5 | A || B |= −3!5! 0
1 a2 可以看出, M 42 = (ab + bc + ca)M 44 ,即 1 b 2 1 c2
1 0 2 a a 0 2 1 a 2 0 b 0 第1,列 4 0 0 b 2 第2, 3行 5 23、 − 3 c 4 5 对换 5 c 4 3 对换 0 d 0 0 0 0 0 0 d 0
a3 1 a a2 b3 = (ab + bc + ca) 1 b b 2 ,得证. c3 1 c c2
所以n2n原式由公式得22n为阶范德蒙行列式nn原式n又1an所以原式31系数行列式njiij100110114220对换114220对换11145130110101112042204211111110114行1201111001111010113行112114行4120对换101110111121412053421001415d410110113210对换014321对换10145145110110011032102143110104行11101114行所以32系数行列式01111011101101011110112行对换011101110100110101001111101111101101014111001110410030010第5行第4行第4行第3行第3行第2行第2行第1行120110000101511121第1行第5行10074第1行第3行111010101000第1行第4行110第1行第2行01111112111410115110第5行第4行第4行第3行第3行第2行第2行第1行0111001101010100111按第1列展开17按第4列44展开14011510第5行第4行第4行第3行第3行第2行第2行第1行1010100001110111100按第1列展开1113按第1列展开01111101111214111150第5行第4行第4行第3行第3行第2行第2行第1行0101000011110101111按第1列0110展开101按第1列展开01111011111241105第5行第4行第4行第3行第3行第2行第2行第1行01010000110111111按第1列展开001101110115按第1列展开所以d4d4d4d4d433因为齐次线性方程组有非零解所以其系数行列式即2111aa1b第2行第1行第3行第1行第4行第1行110100所以34设直线方程由于直线过点所以2

线性代数 习题二答案

线性代数 习题二答案

1. 241110331032350382A B -⎛⎫⎛⎫⎛⎫+=+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,110020130350011361B C --⎛⎫⎛⎫⎛⎫-=-= ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭,2410204222323032011091A C ⎛⎫⎛⎫⎛⎫-=-= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭.2.由32A X B -=可得()341231010283211153312111125211222234221171157115222X A B ⎡⎤-⎢⎥⎛⎫-⎡⎤⎡⎤⎡⎤⎢⎥⎪⎢⎥⎢⎥⎢⎥⎢⎥=-=---=-=- ⎪⎢⎥⎢⎥⎢⎥⎢⎥ ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎝⎭⎢⎥⎢⎥⎣⎦.3. 由22422243a b a b c d c d +--⎛⎫⎛⎫=⎪ ⎪+--⎝⎭⎝⎭可得,24222423a b a b c d c d +=⎧⎪-=-⎪⎨+=⎪⎪-=-⎩ 解方程组可得0,2,1,2a b c d ====. 4.设()ijm nA a ⨯=,当kA O =时,由零矩阵定义,有0ij ka =,则0k =或0ij a =,即0k =或A O =.5.(1)()()()323122382031237243181141142184011437813203515112581051137402++-+⎡⎤⎡⎤⎡⎤-⎛⎫⎢⎥⎢⎥⎢⎥-=-+-+--+=- ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎢⎥⎢⎥⎢⎥++-+-⎣⎦⎣⎦⎣⎦ .(2)()()()1311113213804220142232701371021310-+---⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-=+-+=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+-+⎣⎦⎣⎦⎣⎦⎣⎦. (3)()()()()()13121110132101312111013210321023222120264203332313039630-⎡⎤-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--------⎢⎥⎢⎥⎢⎥-==⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦⎣⎦⎣⎦ .(4)()()()()1132211322151⎡⎤⎢⎥=++-=⎢⎥⎢⎥-⎣⎦. (5)()()()()210112113121121111120101321101-⎡⎤⎢⎥-=-+--+-+-⎢⎥⎢⎥-⎣⎦()325=--.(6)()()111211222211121122221212111a a b x x xy a a b y a x a y b a x a y b b x b y c y b b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=++++++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()()()()111211222212a x a y b x a x a y b y b x b y c =++++++++()2212111222222c b x b y a x a xy a y =+++++.6.21010101121A λλλ⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,3210101021131A A A λλλ⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,因此,我们猜测101nA n λ⎛⎫= ⎪⎝⎭,下面用归纳法证明:当1n =时成立;假设当1n -时成立,则()()110101010111111nn A A A n n n λλλλλ-⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭⎝⎭,因此101n A n λ⎛⎫=⎪⎝⎭.7.(1)设cos sin sin cos A θθθθ-⎛⎫=⎪⎝⎭, 则2cos 2sin 2sin 2cos 2A θθθθ-⎛⎫=⎪⎝⎭,3cos3sin3sin3cos3A θθθθ-⎛⎫= ⎪⎝⎭,因此,我们猜测cos sin sin cos nn n A n n θθθθ-⎛⎫=⎪⎝⎭,下面用归纳法证明:当1n =时成立;假设当1n -时成立,则()()()()1cos 1sin 1cos sin sin 1cos 1sin cos n n n n A A A n n θθθθθθθθ----⎛⎫-⎛⎫==⎪⎪--⎝⎭⎝⎭ ()()()()()()()()cos 1cos sin 1sin cos 1sin sin 1cos sin 1cos cos 1sin sin 1sin cos 1cos n n n n n n n n θθθθθθθθθθθθθθθ-------⎛⎫=⎪-+---+-⎝⎭cos sin sin cos n n n n θθθθ-⎛⎫=⎪⎝⎭,因此cos sin sin cos n n n A n n θθθθ-⎛⎫=⎪⎝⎭.(2)设142032043A ⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦,则2100010001A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,所以2100010001k A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,21142032043k A +⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦, 即()()()()()()122111012111022121n nn nnn n A ⎡⎤----⎢⎥⎢⎥=-+--+-⎢⎥----⎢⎥⎣⎦.(3)设1111111111111111A ---⎡⎤⎢⎥---⎢⎥=⎢⎥---⎢⎥---⎣⎦,则 241111111140001111111104004111111110040111111110004A E ------⎡⎤⎡⎤⎛⎫⎪⎢⎥⎢⎥------ ⎪⎢⎥⎢⎥=== ⎪⎢⎥⎢⎥------ ⎪⎢⎥⎢⎥------⎣⎦⎣⎦⎝⎭, 所以244k k A E ==,2111111111411111111k k A +---⎡⎤⎢⎥---⎢⎥=⎢⎥---⎢⎥---⎣⎦. (4)1112233111121311112233112233212223313233()()()()T T T T T T T T n Tnn n T n a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b αβαβαβαβαβαβαβαβαβαβ----===++⎡⎤⎢⎥=++=++⎢⎥⎢⎥⎣⎦8, (1)设矩阵11122122x x B x x ⎛⎫=⎪⎝⎭与矩阵A 可交换, 则112112222122x x x x AB x x ++⎛⎫=⎪⎝⎭,111112212122x x x BA x x x +⎛⎫= ⎪+⎝⎭,由AB BA =得210x =,1122x x =.(2)设矩阵111213212223313233x x x B x x x x x x ⎛⎫⎪= ⎪ ⎪⎝⎭与矩阵A 可交换, 则212223313233000x x x AB x x x ⎛⎫⎪= ⎪ ⎪⎝⎭,111221223132000x x BA x x x x ⎛⎫⎪= ⎪ ⎪⎝⎭, 由AB BA =得2131320x x x ===,112233x x x ==,1223x x =9. 设矩阵111213212223313233x x x B x x x x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与矩阵A 可交换,则111213212223313233ax ax ax AB bx bx bx cx cx cx ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,111213212223313233ax bx cx BA ax bx cx ax bx cx ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 由AB BA =得2131321213230x x x x x x ======,即与A 可交换的矩阵必为对角距阵. 10. 因为A T=A , 所以(P TAP)T=P T(P TA)T=P T A TP =P TAP ,从而P TAP 是对称矩阵. 11. 证明充分性: 因为A T=A , B T=B , 且AB =BA , 所以 (AB)T=(BA)T=A T B T=AB , 即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB)T=AB , 所以AB =(AB)T=B T A T=BA.12.(1)因为AB BA =,所以()222222A B A AB BA B A AB B +=+++=++,得证.(2)因为AB BA =,所以右边2222A AB BA B A B =-+-=-=左边,得证. (3)因为AB BA =, 所以()()()()()()()()()()()()()1p p pAB AB AB AB AB AB AB A BA BA BA BA BA BA B -==()()()()()()()()()()1222p p A AB AB AB AB AB AB B A BA BA BA BA B --==()()()()()()()()()23223311p p p p p pA AB AB AB AB B A AB AB AB AB B A AB B A B ----===== ;如果AB BA ≠,则上述等式不成立. 13, 1001A -⎛⎫=⎪-⎝⎭14, 充分性:因为2B E =, 所以()()()22111222442A B E B E B E B A =++=+=+=; 必要性:因为2A A =, 所以()()()22111222442A B E B E B B E =++=+=+, 整理得2B E =.15, 因为A 是反对称矩阵,B 是对称矩阵, 所以TA A =-,TB B =, (1)()()()22TT T AA A A A A ==--=,即2A 是对称矩阵.(2)()()()()()TTTT T T TAB BA AB BA B A A B B A A B AB BA -=-=-=---=-,即AB BA -是对称矩阵.(3)充分性:因为AB BA =,所以()()TT TAB B A B A BA AB ==-=-=-,即A 是反对称矩阵;必要性:因为A 是反对称矩阵,所以()()TT TAB B A B A BA AB ==-=-=-,即AB BA =. 16,设111211112222121121111121n n n n n n n n n n nnn nnn a a a a a a a a A a a a a a a a a --------⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭, 则2A 主对角线上的元素分别为22221112111n n a a a a -++++ ,22221222212n n a a a a -++++ ,…,2222121n n n n nn a a a a -++++ ,又因为2A O =,所以222211121110n n a a a a -++++= ,222212222120n n a a a a -++++= ,…,22221210n n n n nn a a a a -++++= ,解得11121222320n n nn a a a a a a a ========== , 即A O =.17.设111212122212n n m m mn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ ,则112111222212m m T nn mn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦, 222111212222122222212n Tn m m mn a a a a a a AA a a a ⎡⎤+++⎢⎥+++⎢⎥=⎢⎥⎢⎥+++⎢⎥⎣⎦因为TAA O =,则222111210n a a a +++= ,222212220n a a a +++= ,…,222120m m mn a a a +++= , 所以1112121222120n n m m mn a a a a a a a a a ======+==+++= ,即A O =. 18,(1)2111111141132222232323872341A A --------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-=-=⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.(2)321411141110325432548723872301A A A E ------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-=-+-⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭91128554024303221316141015046036-------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 19,因为()21fλλλ=-+,所以()21551222310014391331100100531371331200110612f A A A E ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=-+=--+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.20,11A d =,12A c =-,21A b =-,22A a =,所以d b A c a *-⎛⎫= ⎪-⎝⎭.若0ad bc -≠,则0A ad bc =-≠,所以矩阵A 可逆,11d b ad bc ad bc A A ca A ad bcad bc -*⎛⎫-⎪--==⎪ ⎪-⎪--⎝⎭. 21,11A d =,12A c =-,21A b =-,22A a =, 所以d b A c a *-⎛⎫=⎪-⎝⎭.若0ad bc -≠,则0A ad bc =-≠,所以矩阵A 可逆,11d b ad bc ad bc A A ca A ad bcad bc -*⎛⎫-⎪--==⎪ ⎪-⎪--⎝⎭. 22.(1)200A =-≠,所以矩阵A 可逆,又112A =-,123A =-,216A =-,221A =,所以113261110103131202020A A A -*⎛⎫ ⎪--⎛⎫=== ⎪ ⎪-- ⎪⎝⎭- ⎪⎝⎭. (2)10A =≠,所以矩阵A 可逆,又11cos A θ=,12sin A θ=-,21sin A θ=,22cos A θ=,所以1cos sin 1sin cos A A A θθθθ-*⎛⎫== ⎪-⎝⎭. (3)10A =≠,所以矩阵A 可逆,又111A =,120A =,130A =,212A =-,221A =,230A =,317A =,322A =-,331A =,所以11271012001A A A -*-⎛⎫⎪==- ⎪ ⎪⎝⎭. (4)()()()()2123134141000100010001000112000100020011002213000100130201011214000102141001r r r A E r r r r r r ⎛⎫⎛⎫+-→ ⎪ ⎪- ⎪⎪=+-→ ⎪⎪- ⎪⎪+-→-⎝⎭⎝⎭ ()()32323424100010001000100020130201001302010020011000060312020214100100543021r r r r r r r r ⎛⎫⎛⎫ ⎪ ⎪+-→-- ⎪ ⎪↔ ⎪ ⎪---+-→ ⎪ ⎪---⎝⎭⎝⎭()343100010000130201010014010100543021r r r ⎛⎫⎪- ⎪+-→ ⎪--- ⎪--⎝⎭()()232434100010001110001000010000223010122313111001401010010052630024352615110001824124r r r r r r ⎛⎫⎪⎛⎫ ⎪-⎪⎪+→--- ⎪ ⎪→ ⎪----- ⎪+-→ ⎪⎪--⎝⎭⎪-- ⎪⎝⎭所以,距阵A 可逆,且1100011002211102631511824124A -⎛⎫ ⎪ ⎪- ⎪ ⎪=-- ⎪ ⎪ ⎪-- ⎪⎝⎭. (5)因为0A =, 所以1A -不存在.(6)50A =≠,所以矩阵A 可逆,又113A =,122A =,131A =-,213A =-,223A =,231A =,311A =-,324A =-,332A =,所以13315551234555112555A A A-*⎛⎫-- ⎪⎪ ⎪==- ⎪ ⎪ ⎪- ⎪⎝⎭. (7)2312223341000100110000100010010100(,)001000100100100001001010001a a a a r ar a a a A E r ar a a r ar -⎡⎤⎡⎤-⎢⎥⎢⎥-⎢⎥⎢⎥=-⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦ 所以,距阵A 可逆,且11110110010001a a A a --⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥⎣⎦22,(1)1100500510121012271003403453753712333023023X -⎛⎫⎪⎛⎫⎪---⎛⎫⎛⎫⎛⎫ ⎪==-= ⎪ ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭⎪⎪-⎝⎭⎪⎝⎭;(2)1100001100001001100a a a a Xb b b bc c c c -⎛⎫ ⎪⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ⎪⎪⎝⎭; (3)111111211000111112100001110120000011000210000100012X -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦11000211000110012100001000120000011000210000100012-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦1110011100011000001100012--⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦(4)由XP PB =得:111001001002100002102110012111001010010021000021020021101411611X PBP --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦⎣⎦511111111111111151()()()()()()()()()X PBP PBP PBP PBP PBP PBP PBP PBP PBP PBP PB P P B P P B P P B P P BP PB P----------------====5B B =,故55100200611X XB X XBX ⎡⎤⎢⎥===⎢⎥⎢⎥--⎣⎦23,100110111A -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦故:11210010(2)(2)110120111112100100200110120120011112112A E A A E ---⎡⎤⎡⎤⎢⎥⎢⎥++-=--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=---=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦24,1311110,211A --⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 由1111*111,,3A A A A A A A ----====-,得*1113A A A A --==,*1**1211211()111,()1119154154A A ---⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦25,1*11210121001210121,0012001200010001A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥===⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦而*A 中的所有元素即为A 中所有元素的代数余子式,即A 所有元素的代数余子式为0. 26,由题意得:*1()*E A A kA AA kE A E kE -=-+=--=--,即 13k A =--=- 27,(1).因为2AX B X =+, 所以()2A E X B -=,又因为()111013112111110112211A E ----⎛⎫⎛⎫⎪ ⎪-=-=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭则()13112135242110012201211103311X A E B ---⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=-=-= ⎪⎪ ⎪ ⎪⎪ ⎪----⎝⎭⎝⎭⎝⎭(2)由题意得:11()()()()AXA BXB AXB BXA EA B X A B E X A B A B --+--=⇒--=⇒=-- 故:11111111125011011012001001001X ------⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦(3)由12*0,2n A A AA A ->==⇒=1*1002211002210022A A A A-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==-⇒=-⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦由111111133()31263()332231122ABA BA E ABA BA E A E BA E B A E A -------=+⇒-=⇒-=⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⇒=-=--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦--⎢⎥⎢⎥⎣⎦⎣⎦28,因为A ,B ,C 都是非奇异矩阵,所以1A -,1B -,1C -存在,又111111ABC C B A C B A ABC E ------==, 则由推论知ABC 可逆,且()1111ABC C B A ----=29,111111AB BA B ABBB BAB B A AB ------=⇔=⇔=,111111AB BA A ABA A BAA BA A B ------=⇔=⇔=, ()()111111AB BA AB BA B A A B ------=⇔=⇔=,综上可得11111111AB BA ABB A A B BA A B B A --------=⇔=⇔=⇔=.30,(1)不成立,A B =-时不成立.(2)成立,A ,B 可逆,0A ≠,0B ≠,0AB A B =≠,则AB 可逆. (3)成立,AB 可逆,0AB A B =≠,0A ≠,0B ≠,则A ,B 可逆. 31,()2200A A E A A E A E A E A -+=⇒-=⇒-=⇒≠, 即A 为非奇异矩阵. 32,因为B 可逆,所以0B ≠,20B B B =≠,又22A AB B O ++=,则22A AB B +=-,()()22210nA AB A A B A A B B B +=+=+=-=-≠,即0A ≠,0A B +≠, 由推论知A 和A B +都可逆. 33,证明:假设*A 可逆,则1*00n A AA -=≠⇒≠,即A 可逆,1A -存在,再由2211A A A A AA A E --=⇒=⇒=与题设A E ≠矛盾,故假设不成立即*A 不可逆,证毕。

线性代数试题和答案(精选版)

线性代数试题和答案(精选版)

线性代数试题和答案(精选版)线性代数习题和答案第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分。

1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003,则A-1等于()A.130012001B.1002 00 1 3C. 1 3 00 010 00 1 21200130013.设矩阵A= 312101214---,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<n< p="">B.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A.2334B.3426C.023035--D.111120102第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。

淮海工学院11-12-2线性代数A卷答案

淮海工学院11-12-2线性代数A卷答案

1淮 海 工 学 院11 - 12 学年 第2学期 线性代数 期末试卷(A 卷)答案一、选择题(本大题共8小题,每题3分,共24分)1. 设A 是p s ⨯矩阵,C 是m n ⨯矩阵,如果TAB C 有意义,则B 是什么矩阵---( D ) (A )p n ⨯ (B )p m ⨯ (C )s m ⨯ (D )m s ⨯2.设A ,B 均为n 阶可逆矩阵,则下列各式中不正确的是--------------------( B ) (A )()TTTA B A B +=+(B ) 111()A B A B ---+=+(C ) 111()AB B A ---=(D ) ()TTTAB B A =3.设行列式4031111xy z=,则行列式2224013111x y z=-----------------------------( A ) (A )23(B )1 (C )2(D )834. 线性方程组02020axz x ay z ax y z +=⎧⎪++=⎨⎪-+=⎩只有零解,则a 的取值为------------------------( B )(A )2a =(B )2a ≠ (C )1a =(D )1a ≠5.设A 是n 阶方阵,0A =,则下列结论中错误的是---------------------------( B )(A )()R A n < (B )A 有两行元素成比例(C )A 的n 个列向量线性相关(D )A 有一个行向量是其余n 个行向量的线性组合 6.设A 为m n ⨯的矩阵,非齐次线性方程组AX b =对应的齐次线性方程组为0AX =.如果m n <,则有-------------------------------------------------------------( C ) (A )AX b =必有无穷多解 (B )AX b =必有唯一解(C )0AX =必有非零解 (D )0AX =只有零解7. 已知3阶矩阵A 相似于B ,A 的特征值为2、3、4、E 为3阶单位矩阵,则B E -=------------------------------------------------------------------------------------( A ) (A )6; (B )12; (C )24; (D )488.下列矩阵中,不能与对角阵相似的是------------------------------------------ ( A )(A )201010002⎫⎛⎪ ⎪ ⎪⎝⎭ (B )201021001⎫⎛⎪ ⎪ ⎪⎝⎭ (C )200020101⎫⎛⎪⎪⎪⎝⎭(D )210010002⎫⎛⎪⎪⎪⎝⎭二、填空题(本大题共4小题,每题4分,共16分)1. 2424,1236A B -⎫⎫⎛⎛==⎪⎪ ---⎝⎝⎭⎭,则AB =1632816--⎫⎛⎪ ⎝⎭,BA =0000⎫⎛⎪ ⎝⎭.2.若A ,B 为3阶方阵,且2,2A B ==,则2A -= -16 ,1TA B -= 13.设矩阵101000101000000A -⎫⎛⎪=-⎪⎪⎝⎭,则矩阵A 的秩为 2 ,线性方程组AX O =的基础解系中向量个数为 3。

11-12 线代期中考试卷及答案详解x

11-12 线代期中考试卷及答案详解x

2011《线性代数》期中考试试卷及答案详解一、单项选择题 (每小题4分,共20分)1. 在下列构成5阶行列式展开式的各项中,取“+”的为⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ( )(A) 5345342112a a a a a (B) 2554134231a a a a a (C) 2534511342a a a a a (D) 4223155134a a a a a解 答案为(C).根据行列式的定义,对于行列式的一般项,若行标排列是标准排列,则符号取决于列标排列的逆序数的奇偶性;若列标排列是标准排列,则符号取决于行标排列的逆序数的奇偶性;若行标、列标排列都不是标准排列,则符号取决于行标排列与列标排列的逆序数之和的奇偶性(或者,交换一般项中的元素,使行标成为标准排列,再根据列标排列的逆序数判断)选项(A)的行标排列是标准排列,列标排列的逆序数为t (21453)=3,故(A)取“-”。

选项(B)的列标排列是标准排列,行标排列的逆序数为t (34152)=5,故 (B)取“-”。

选项(C)行标和列标排列都不是标准排列,方法一:行标和列标排列的逆序数之和t (41532)+t (23145)=6+2=8,得符号为“+”;方法二,交换相乘的元素,使行标成为标准排列,得a 13a 25a 34a 42a 51,此时列标排列的逆序数为t (35421)=8,故取“+”。

同理可得,(D)应取“-”。

2.设n 阶行列式D =1,将D 上下翻转得D~,则D~的值为⋅⋅⋅⋅⋅⋅⋅ ( )(A) -1 (B) (-1)n(C) (-1)n /2(D) (-1)n (n -1)/2解 答案为(D).参见教材习题一第7题的解答。

3. 设A , B 均为n 阶方阵,下列结论正确的是⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ( )(A) 若A ≠B ,则∣A ∣≠∣B ∣ (B) 若AB =O ,则A =O 或B =O (C) A 2-B 2=( A +B )( A -B ) (D) ∣AB ∣=∣BA ∣ 解 答案为(D).选项(A)错误,反例:⎪⎪⎭⎫ ⎝⎛≠⎪⎪⎭⎫ ⎝⎛10011112, 但1011112=。

线代课后习题答案(全部)

线代课后习题答案(全部)

线性代数同济大学第五版全部课后题答案 第一章 行列式1. 利用对角线法则计算下列三阶行列式: (1)381141102---;解 381141102---=2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4. (2)b a c a c b cb a ;解 ba c a cb cb a=acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3.(3)222111c b a c b a ;解 222111c b a c b a=bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).(4)y x y x x y x y yx y x +++.解 yx y x x y x y yx y x +++=x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3).2. 按自然数从小到大为标准次序, 求下列各排列的逆序数:(1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2;解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1;解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3;解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ⋅ ⋅ ⋅ (2n -1) 2 4 ⋅ ⋅ ⋅ (2n );解 逆序数为2)1(-n n :3 2 (1个) 5 2, 5 4(2个)7 2, 7 4, 7 6(3个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个)(6)1 3 ⋅⋅⋅(2n-1) (2n) (2n-2) ⋅⋅⋅ 2.解逆序数为n(n-1) :3 2(1个)5 2, 5 4 (2个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个)4 2(1个)6 2, 6 4(2个)⋅⋅⋅⋅⋅⋅(2n)2, (2n)4, (2n)6,⋅⋅⋅, (2n)(2n-2) (n-1个)3.写出四阶行列式中含有因子a11a23的项.解含因子a11a23的项的一般形式为(-1)t a11a23a3r a4s,其中rs是2和4构成的排列,这种排列共有两个,即24和42.所以含因子a11a23的项分别是(-1)t a11a23a32a44=(-1)1a11a23a32a44=-a11a23a32a44,(-1)t a11a23a34a42=(-1)2a11a23a34a42=a11a23a34a42.4.计算下列各行列式:(1)71100251020214214; 解 71100251020214214010014231020211021473234-----======c c c c 34)1(143102211014+-⨯---= 143102211014--=01417172001099323211=-++======c c c c .(2)2605232112131412-; 解 2605232112131412-26053212213041224--=====c c 041203212213041224--=====r r 0000003212213041214=--=====r r . (3)efcf bf de cd bd aeac ab ---;解 efcf bf de cd bd aeac ab ---e c b e c b e c b adf ---=a b c d e f a d f b c e 4111111111=---=.(4)dc b a 100110011001---. 解d c b a 100110011001---dc b aab ar r 10011001101021---++===== d c a ab 101101)1)(1(12--+--=+01011123-+-++=====cd c ada ab dc ccdad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1. 5. 证明:(1)1112222b b a a b ab a +=(a -b )3;证明1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--==(a -b )3 . (2)y x z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=y x z x z y zy x b a )(33+=.(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ; 证明2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2, c 2-c 1得) 5232125232125232125232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2得)022122212221222122222=++++=d d c c b b a a . (4)444422221111d c b a d c b a d c b a =(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ); 证明 444422221111d c b a d c b a d c b a )()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b ad a c a b ---------=)()()(111))()((222a d d a c c a b b d c b a d a c a b +++---=))(())((00111))()((a b d b d d a b c b c c b d b c a d a c a b ++-++------=)()(11))()()()((a b d d a b c c b d b c a d a c a b ++++-----= =(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ). (5)12211 000 00 1000 01a x a a a a x x xn n n+⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--- =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n .证明 用数学归纳法证明.当n =2时, 2121221a x a x a x a x D ++=+-=, 命题成立. 假设对于(n -1)阶行列式命题成立, 即 D n -1=x n -1+a 1 x n -2+ ⋅ ⋅ ⋅ +a n -2x +a n -1, 则D n 按第一列展开, 有 11100 100 01)1(11-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--+=+-xx a xD D n n n n =xD n -1+a n =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n . 因此, 对于n 阶行列式命题成立.6. 设n 阶行列式D =det(a ij ), 把D 上下翻转、或逆时针旋转90︒、或依副对角线翻转, 依次得n nn n a a a a D 11111 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=, 11112 n nn n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= , 11113 a a a a D n nnn ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,证明D D D n n 2)1(21)1(--==, D 3=D .证明 因为D =det(a ij ), 所以 nnn n n n nnnn a a a a a a a a a a D 2211111111111 )1( ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=-- )1()1(331122111121nnn n nn n n a a a a a a a a D D n n n n 2)1()1()2( 21)1()1(--+-+⋅⋅⋅++-=-=.同理可证 nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=- )1(11112)1(2D D n n Tn n 2)1(2)1()1()1(---=-=. D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(.7. 计算下列各行列式(D k 为k 阶行列式):(1)aaD n 11⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0; 解aa a a a D n 0 0010 000 00 000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开) )1()1(10 00 00 000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a an n n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1)1()1(=a n -a n -2=a n -2(a 2-1).(2)xa aa x a a a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(-1)分别加到其余各行, 得 ax x a ax x a a x x a a a a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0, 再将各列都加到第一列上, 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 000 00 )1(=[x +(n -1)a ](x -a )n -1. (3)111 1 )( )1()( )1(1111⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅--⋅⋅⋅-=---+n a a a n a a a n a a a D n n n nn n n ; 解 根据第6题结果, 有 nnn n n n n n n n a a a n a a a n a a aD )( )1()( )1( 11 11)1(1112)1(1-⋅⋅⋅--⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=---++此行列式为范德蒙德行列式.∏≥>≥++++--+--=11)1(1)]1()1[()1(j i n n n n j a i a D∏≥>≥++---=112)1()]([)1(j i n n n j i∏≥>≥++⋅⋅⋅+-++-⋅-⋅-=1121)1(2)1()()1()1(j i n n n n n j i∏≥>≥+-=11)(j i n j i .(4)nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112; 解nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112(按第1行展开) nn n n n nd d c d c b a b a a 00011111111----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=0)1(1111111112c d c d c b a b a b nn n n n nn ----+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-+. 再按最后一行展开得递推公式D 2n =a n d n D 2n -2-b n c n D 2n -2, 即D 2n =(a n d n -b n c n )D 2n -2. 于是 ∏=-=ni i i i i n D c b d a D 222)(.而 111111112c b d a d c b a D -==, 所以 ∏=-=n i i i i i n c b d a D 12)(. (5) D =det(a ij ), 其中a ij =|i -j |; 解 a ij =|i -j |, 04321 4 01233 10122 21011 3210)det(⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅==n n n n n n n n a D ij n 043211 11111 11111 11111 1111 2132⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅--⋅⋅⋅-=====n n n n r r r r15242321 0 22210 02210 00210 0001 1213-⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅-+⋅⋅⋅+=====n n n n n c c c c =(-1)n -1(n -1)2n -2.(6)nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121, 其中a 1a 2 ⋅ ⋅ ⋅ a n≠0.解nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 111 1121 nn n n a a a a a a a a a c c c c +-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=====--100001 000 100 0100 0100 0011332212132 1111312112111000011 000 00 11000 01100 001 ------+-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅=nn n a a a a a a a a∑=------+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n i i n n a a a a a a a a 1111131******** 00010 000 00 10000 01000 001)11)((121∑=+=ni i n a a a a .8. 用克莱姆法则解下列方程组: (1)⎪⎩⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ;解 因为 14211213513241211111-=----=D , 142112105132412211151-=------=D , 284112035122412111512-=-----=D , 426110135232422115113-=----=D , 14202132132212151114=-----=D , 所以 111==DD x , 222==D D x , 333==D D x , 144-==D Dx .(2)⎪⎪⎩⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x x x x x x x x x .解 因为 665510006510006510065100065==D , 150751001651000651000650000611==D , 114551010651000650000601000152-==D , 703511650000601000051001653==D , 39551601000051000651010654-==D , 2121100005100065100651100655==D , 所以66515071=x , 66511452-=x , 6657033=x , 6653954-=x , 6652124=x .9. 问λ, μ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 系数行列式为μλμμμλ-==1211111D .令D =0, 得 μ=0或λ=1.于是, 当μ=0或λ=1时该齐次线性方程组有非零解.10. 问λ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解?解 系数行列式为λλλλλλλ--+--=----=101112431111132421D=(1-λ)3+(λ-3)-4(1-λ)-2(1-λ)(-3-λ) =(1-λ)3+2(1-λ)2+λ-3. 令D =0, 得λ=0, λ=2或λ=3.于是, 当λ=0, λ=2或λ=3时, 该齐次线性方程组有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ,⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T .4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫⎝⎛=49635.(2)⎪⎪⎭⎫⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗?解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B )(A -B )≠A 2-B 2.6. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0.(2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取 ⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫ ⎝⎛=λλλ001001A , 求A k . 解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ, ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121.9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以AB =(AB )T =B T A T =BA .11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ;解 ⎪⎭⎫ ⎝⎛-=θθθθc o s s i n s i n c o s A . |A |=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A , 所以 *||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫ ⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012. (4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组: (1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x . 14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E ,由定理2推论知(E -A )可逆, 且(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ).另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ),故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ),两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得A 2-A =2E , 即A (A -E )=2E ,或 E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E ,或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2,即 |A ||A -E |=2,故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-, 又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1,)3(41)2(1A E E A -=+-. 16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|. 解 因为*||11A A A =-, 所以 |||521||*5)2(|111----=-A A A A A |2521|11---=A A =|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*.证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有 |A *|=|A |n |A -1|=|A |n -1≠0,从而A *也可逆.因为A *=|A |A -1, 所以(A *)-1=|A |-1A . 又*)(||)*(||1111---==A A A A A , 所以 (A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*.18. 设n 阶矩阵A 的伴随矩阵为A *, 证明:(1)若|A |=0, 则|A *|=0;(2)|A *|=|A |n -1.证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0.(2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到 |A ||A *|=|A |n .若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立.因此|A *|=|A |n -1.19. 设⎪⎪⎭⎫ ⎝⎛-=321011330A , AB =A +2B , 求B . 解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330. 20. 设⎪⎪⎭⎫ ⎝⎛=101020101A , 且AB +E =A 2+B , 求B . 解 由AB +E =A 2+B 得(A -E )B =A 2-E ,即 (A -E )B =(A -E )(A +E ).因为010********||≠-==-E A , 所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1 =-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B . 解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11.解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A . 26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫⎝⎛+=222111B A O B B A A , 而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521,即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解 4100120021100101002000021010010110100101==--=--=D C B A , 而 01111|||||||| ==D C B A ,故 |||||||| D C B A D C B A ≠.28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A ,则 ⎪⎭⎫⎝⎛=21A O O A A ,故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A , 1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A .29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求 (1)1-⎪⎭⎫ ⎝⎛O B A O ; 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n EBC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C OC OC A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A . 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321.由此得 ⎪⎩⎪⎨⎧=+=+==s nEBD CD O BD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ,⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T .4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫⎝⎛=49635.(2)⎪⎪⎭⎫⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610,所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B )(A -B )≠A 2-B 2.6. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ; 解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取 ⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫ ⎝⎛=λλλ001001A , 求A k . 解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ, ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ,由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. 9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以AB =(AB )T =B T A T =BA .11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解 ⎪⎭⎫ ⎝⎛-=θθθθc o s s i n s i n c o s A . |A |=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A , 所以 *||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫ ⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012. (4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ;解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组: (1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x ,从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x . 14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E ,由定理2推论知(E -A )可逆, 且(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ).另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ),故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ),两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得A 2-A =2E , 即A (A -E )=2E ,或 E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E ,或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2,即 |A ||A -E |=2,故 |A |≠0,。

线代专题二初等矩阵

线代专题二初等矩阵

性质1 设A是一个 m×n 矩阵, 口诀:左行右列 ✓对 A 施行一次初等行变换,等价于在 A 的左边乘以相应的 m 阶初等矩阵; ✓对 A 施行一次初等列变换,等价于在 A 的右边乘以相应的 n 阶初等矩阵.
性质2 方阵A可逆的充要条件是存在有限个初等矩阵P1, P2, …, Pl, 使 A = P1 P2 …, Pl .
A34
5
6
7
8
9 10 11 12
1 0 0
E3
(
2,
3)
0
0
1
0 1 0
E3 (2, 3) A34
1 0 01 2 3 4 1 2 3 4
0
0
0 1
1
5
0 9
6 10
7 11
8
12
9
5
10 6
11 7
12
B34
8
1 2 3 4
A34
=
5
6
7
8
9 10 11 12
k
0
0
记作
E5(3(k))
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0
1
0
0
0
E5
0
0
0 0
1 0
0 1
0
0
0 0 0 0 1
c3 k
1 0 0 0 0
0
1
0
0
0
0 0 k 0 0
0 0 0 1 0
0 0 0 0 1
(3)以 k 乘单位阵第 j 行加到第 i 行, 记作 Em(i,j(k)).
r2 r3
1 2 3 4

线性代数课后习题答案全习题详解

线性代数课后习题答案全习题详解

线性代数课后习题答案全习题详解(总92页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章 行列式1.利用对角线法则计算下列三阶行列式:(1)381141102---; (2)b a c a c b c b a ; (3)222111c b a c b a ; (4)y x y x x y x yyx y x +++. 解 (1)=---381141102811)1()1(03)4(2⨯⨯+-⨯-⨯+⨯-⨯)1()4(18)1(2310-⨯-⨯-⨯-⨯-⨯⨯- =416824-++-=4-(2)=ba c a cb cb a ccc aaa bbb cba bac acb ---++3333c b a abc ---=(3)=222111c b a c b a 222222cb ba ac ab ca bc ---++))()((a c c b b a ---=(4)yx y x x y x y yx y x +++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ;(6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0(2)逆序数为4:4 1,4 3,4 2,3 2(3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3(5)逆序数为2)1(-n n :3 2 1个 5 2,54 2个 7 2,7 4,7 6 3个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 (6)逆序数为)1(-n n3 2 1个 5 2,54 2个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个4 2 1个 6 2,6 4 2个 ……………… … )2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个3.写出四阶行列式中含有因子2311a a 的项.解 由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++∴44322311a a a a -和42342311a a a a 为所求.4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢71100251020214214; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-265232112131412; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae acab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a 100110011001 解(1)7110025*******21434327c c c c --0100142310202110214---=34)1(143102211014+-⨯---=143102211014-- 321132c c c c ++1417172001099-=0(2)265232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=e c b e c b e c b adf ---=111111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+ 23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -;(2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=yx z x z y zy x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 .证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--= 右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bz ay y x by ax x z bx az z y b +++zy x y x z xz y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a 949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+ddd c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a a d a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnnn nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-= 同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n Tn n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)aaD n 11 =,其中对角线上元素都是a ,未写出的元素都是0;(2)xaaax aa a x D n=; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n nn n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) nnn nn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 010000000000001000=按最后一行展开)1()1(1000000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n n a a a (再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得nn n n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) n nnnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D 即 ∏=-=ni i i i i n D c b d a D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=0432********0122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0432111111111111111111111 --------------n n n n,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n(6)nn a a D a +++=11111111121 ,,433221c c c c c c ---n n n n a a a a a a a a a a +-------10000100010000100010001000011433221展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------00000000000000000000000000022433221 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=1421420005410032101111-=---= 112105132412211151------=D 11210513290501115----=1121023313090509151------=2331309050112109151------=1202300461000112109151-----=14200038100112109151----=142-= 112035122412111512-----=D 811507312032701151-------=3139011230023101151-=2842840001910023101151-=----=426110135232422115113-=----=D ; 14202132132212151114=-----=D1,3,2,144332211-========∴DDx D D x D D x D D x (2) 510006510006510065100065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 5100165100065100650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507= 51165100065000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-=1145108065-=--= 51100650000601000051001653=D 展开按第三列5100650006100051650061000510065+6100510656510650061+= 703114619=⨯+= 51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-= 110051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ齐次线性方程组有非零解,则0=D 得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1 已知线性变换⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x求从变量x 1 x 2 x 3到变量y 1 y 2 y 3的线性变换 解 由已知⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y2 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y求从z 1 z 2 z 3到x 1 x 2 x 3的线性变换解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x3 设⎪⎪⎭⎫ ⎝⎛--=111111111A ⎪⎪⎭⎫⎝⎛--=150421321B 求3AB 2A 及A TB解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T4 计算下列乘积(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635(2)⎪⎪⎭⎫⎝⎛123)321(解 ⎪⎪⎭⎫⎝⎛123)321((132231)(10)(3))21(312-⎪⎪⎭⎫⎝⎛解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142(4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫⎝⎛---=6520876(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x(a 11x 1a 12x 2a 13x 3 a 12x 1a 22x 2a 23x 3 a 13x 1a 23x 2a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=5 设⎪⎭⎫ ⎝⎛=3121A ⎪⎭⎫⎝⎛=2101B 问(1)AB BA 吗 解 AB BA 因为⎪⎭⎫ ⎝⎛=6443AB ⎪⎭⎫⎝⎛=8321BA 所以AB BA(2)(A B)2A 22AB B 2吗 解 (A B)2A 22AB B 2 因为⎪⎭⎫ ⎝⎛=+5222B A⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148但⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫⎝⎛=27151610所以(A B)2A 22AB B 2 (3)(A B)(A B)A 2B 2吗 解 (A B)(A B)A 2B 2因为⎪⎭⎫ ⎝⎛=+5222B A⎪⎭⎫ ⎝⎛=-1020B A⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A故(A B)(A B)A 2B 26 举反列说明下列命题是错误的 (1)若A 20 则A 0 解 取⎪⎭⎫ ⎝⎛=0010A 则A 20 但A 0(2)若A 2A 则A 0或A E 解 取⎪⎭⎫ ⎝⎛=0011A 则A 2A 但A 0且A E(3)若AX AY 且A 0 则X Y 解 取⎪⎭⎫ ⎝⎛=0001A⎪⎭⎫ ⎝⎛-=1111X ⎪⎭⎫ ⎝⎛=1011Y则AX AY 且A 0 但X Y7 设⎪⎭⎫ ⎝⎛=101λA 求A 2A 3Ak解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A⎪⎭⎫ ⎝⎛=101λk A k8设⎪⎪⎭⎫ ⎝⎛=λλλ001001A 求A k解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A ⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A⎝⎛=kA k k kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫用数学归纳法证明 当k 2时 显然成立 假设k 时成立,则k 1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ 由数学归纳法原理知⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(1219 设A B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵证明 因为A T A 所以(B T AB)T B T (B T A)T B T A T B B T AB 从而B T AB 是对称矩阵10 设A B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB BA 证明 充分性 因为A T A B T B 且AB BA 所以(AB)T (BA)T A T B T AB 即AB 是对称矩阵必要性 因为A T A B T B 且(AB)T AB 所以 AB (AB)T B T A T BA 11 求下列矩阵的逆矩阵 (1)⎪⎭⎫⎝⎛5221解⎪⎭⎫ ⎝⎛=5221A |A|1 故A 1存在 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225 (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos 解 ⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A |A|10 故A 1存在 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos(3)⎪⎪⎭⎫⎝⎛---145243121解 ⎪⎪⎭⎫⎝⎛---=145243121A |A|20 故A 1存在因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A所以 *||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2a n0)解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 12 解下列矩阵方程 (1)⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛12643152X解⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232(2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311111012112X 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122 (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111 (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=20143101213 利用逆矩阵解下列线性方程组(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x从而有 ⎪⎩⎪⎨⎧===001321x x x(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x故有 ⎪⎩⎪⎨⎧===35321x x x14 设A k O (k 为正整数) 证明(E A)1E A A 2 A k1证明 因为A k O 所以E A k E 又因为E A k (E A)(E A A 2A k 1)所以 (E A)(E A A 2 A k 1)E 由定理2推论知(E A)可逆 且(E A)1E A A 2A k1证明 一方面 有E (E A)1(E A) 另一方面 由A k O 有 E (E A)(A A 2)A 2A k1(A k1A k )(E A A 2 A k 1)(E A)故 (E A)1(E A)(E A A 2 A k 1)(E A) 两端同时右乘(E A)1就有(E A)1(E A)E A A 2A k115 设方阵A 满足A 2A 2E O 证明A 及A 2E 都可逆 并求A 1及(A 2E)1证明 由A 2A 2E O 得A 2A 2E 即A(A E)2E 或E E A A =-⋅)(21由定理2推论知A 可逆 且)(211E A A -=-由A 2A 2E O 得 A 2A 6E 4E 即(A 2E)(A 3E)4E或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A 2E)可逆 且)3(41)2(1A E E A -=+-证明 由A 2A 2E O 得A 2A 2E 两端同时取行列式得 |A 2A|2 即 |A||A E|2 故 |A|0所以A 可逆 而A 2E A 2 |A 2E||A 2||A|20 故A 2E 也可逆 由 A 2A 2E O A(A E)2E A 1A(A E)2A 1E)(211E A A -=-又由 A 2A 2E O (A 2E)A 3(A 2E)4E(A 2E)(A 3E)4 E所以 (A 2E)1(A 2E)(A 3E)4(A 2 E)1)3(41)2(1A E E A -=+- 16 设A 为3阶矩阵 21||=A 求|(2A)15A*|解 因为*||11A A A =- 所以 |||521||*5)2(|111----=-A A A A A |2521|11---=A A|2A 1|(2)3|A 1|8|A|1821617 设矩阵A 可逆 证明其伴随阵A*也可逆 且(A*)1(A 1)*证明 由*||11A A A =- 得A*|A|A 1所以当A 可逆时 有|A*||A|n |A 1||A|n 1从而A*也可逆 因为A*|A|A 1所以(A*)1|A|1A又*)(||)*(||1111---==A A A A A 所以(A*)1|A|1A |A|1|A|(A 1)*(A 1)*18 设n 阶矩阵A 的伴随矩阵为A* 证明 (1)若|A|0 则|A*|0 (2)|A*||A|n 1证明(1)用反证法证明 假设|A*|0 则有A*(A*)1E 由此得A A A*(A*)1|A|E(A*)1O所以A*O 这与|A*|0矛盾,故当|A|0时 有|A*|0 (2)由于*||11A A A =- 则AA*|A|E 取行列式得到|A||A*||A|n 若|A|0 则|A*||A|n 1若|A|0 由(1)知|A*|0 此时命题也成立因此|A*||A|n119设⎪⎪⎭⎫ ⎝⎛-=321011330A AB A 2B 求B解 由AB A 2E 可得(A 2E)B A 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E AB ⎪⎪⎭⎫⎝⎛-=01132133020 设⎪⎪⎭⎫⎝⎛=101020101A 且AB E A 2B 求B解 由AB E A 2B 得 (A E)B A 2E 即 (A E)B (A E)(A E)因为01001010100||≠-==-E A 所以(A E)可逆 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B21 设A diag(1 2 1) A*BA 2BA 8E 求B解 由A*BA 2BA 8E 得(A*2E)BA 8EB 8(A*2E)1A 1 8[A(A*2E)]1 8(AA*2A)1 8(|A|E 2A)18(2E 2A)14(E A)14[diag(2 1 2)]1)21 ,1 ,21(diag 4-=2diag(1 2 1)22已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A且ABA 1BA13E 求B 解 由|A*||A|38 得|A|2 由ABA1BA13E 得AB B 3AB 3(A E)1A 3[A(E A 1)]1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-103006060060000660300101001000016123 设P 1AP 其中⎪⎭⎫ ⎝⎛--=1141P ⎪⎭⎫⎝⎛-=Λ2001求A 11解 由P 1AP得A P P 1所以A 11 A=P 11P 1.|P|3 ⎪⎭⎫⎝⎛-=1141*P ⎪⎭⎫ ⎝⎛--=-1141311P而 ⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=6846832732273124 设AP P 其中⎪⎪⎭⎫⎝⎛--=111201111P ⎪⎪⎭⎫ ⎝⎛-=Λ511 求(A)A 8(5E 6A A 2) 解 ()8(5E 62)diag(1158)[diag(555)diag(6630)diag(1125)]diag(1158)diag(1200)12diag(100) (A)P ()P 1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=111111111425 设矩阵A 、B 及A B 都可逆 证明A 1B 1也可逆 并求其逆阵证明 因为 A 1(A B)B 1B1A1A1B1而A 1(A B)B 1是三个可逆矩阵的乘积 所以A 1(A B)B 1可逆 即A1B 1可逆(A1B 1)1[A 1(A B)B 1]1B(A B)1A26 计算⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121解 设⎪⎭⎫ ⎝⎛=10211A ⎪⎭⎫ ⎝⎛=30122A ⎪⎭⎫ ⎝⎛-=12131B ⎪⎭⎫ ⎝⎛--=30322B则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521 27 取⎪⎭⎫ ⎝⎛==-==1001D C B A 验证|||||||| D C B A D C B A ≠解41001200210100101002000021010010110100101==--=--=D C B A而01111|||||||| ==D C B A故 |||||||| D C B A D C B A ≠28 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A 求|A 8|及A 4解 令⎪⎭⎫ ⎝⎛-=34431A ⎪⎭⎫ ⎝⎛=22022A 则 ⎪⎭⎫ ⎝⎛=21A O O A A故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A 1682818281810||||||||||===A A A A A⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A29 设n 阶矩阵A 及s 阶矩阵B 都可逆 求 (1)1-⎪⎭⎫⎝⎛O B A O解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛-43211C C C C O B A O 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⎪⎩⎪⎨⎧====--121413B C O C O C A C所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111(2)1-⎪⎭⎫ ⎝⎛B C O A解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛-43211D D D D B C O A 则 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A30 求下列矩阵的逆阵(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025 解 设⎪⎭⎫ ⎝⎛=1225A ⎪⎭⎫ ⎝⎛=2538B 则⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A ⎪⎭⎫⎝⎛--=⎪⎭⎫⎝⎛=--8532253811B于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛----850032000052002125003800001200251111B A B A(2)⎪⎪⎪⎭⎫ ⎝⎛4121031200210001解 设⎪⎭⎫ ⎝⎛=2101A ⎪⎭⎫ ⎝⎛=4103B ⎪⎭⎫ ⎝⎛=2112C 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020********* )2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---000000000022********(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r r r --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。

线性代数 习题 答案详解

线性代数 习题 答案详解

线性代数习题答案详解线性代数习题答案详解线性代数是一门研究向量空间和线性映射的数学学科,是大学数学课程中的重要组成部分。

在学习线性代数的过程中,习题是不可或缺的一部分,通过解答习题可以帮助巩固知识,提高对线性代数的理解。

本文将对一些常见的线性代数习题进行详细解答,帮助读者更好地掌握线性代数的知识。

1. 矩阵的转置矩阵的转置是指将矩阵的行和列互换得到的新矩阵。

对于一个m行n列的矩阵A,其转置记作A^T。

转置矩阵的性质包括:(1) (A^T)^T = A;(2) (AB)^T =B^T A^T。

2. 矩阵的逆对于一个n阶方阵A,如果存在一个n阶方阵B,使得AB=BA=I,其中I为单位矩阵,则称矩阵A可逆,B为A的逆矩阵,记作A^-1。

如果矩阵A可逆,则有以下性质:(1) (A^-1)^-1 = A;(2) (AB)^-1 = B^-1 A^-1。

3. 向量的线性相关性对于n维向量组V={v1, v2, ..., vn},如果存在不全为零的实数c1, c2, ..., cn,使得c1v1 + c2v2 + ... + cnvn = 0,则称向量组V线性相关;如果只有当c1=c2=...=cn=0时,才有c1v1 + c2v2 + ... + cnvn = 0,则称向量组V线性无关。

4. 矩阵的秩矩阵的秩是指矩阵中线性无关的行或列的最大个数。

对于一个m行n列的矩阵A,其秩记作rank(A)。

矩阵的秩具有以下性质:(1) rank(A) ≤ min(m, n);(2) 如果A可逆,则rank(A) = m = n。

5. 特征值和特征向量对于一个n阶方阵A,如果存在一个非零向量x和一个实数λ,使得Ax = λx,则称λ为矩阵A的特征值,x为对应于特征值λ的特征向量。

特征值和特征向量的性质包括:(1) 矩阵A的特征值个数等于其秩rank(A);(2) 矩阵A的特征向量线性无关。

通过以上几个常见的线性代数习题,我们可以看到线性代数的知识体系是相互联系的,各个概念之间有着内在的联系和逻辑。

线性代数B试卷答案

线性代数B试卷答案

《线性代数B 》课程试卷一、填空(本题共6小题,每小题3分,共18分)1. 设A 是四阶方阵,且,1=A 则=2-1-A16 .2.设三阶方阵A 的特征值为1,-1,2,则E A A B 2+5-=2的特征值为 -2,8,-4.3. 已知321ααα,,线性相关,3α不能由21αα,线性表示,则21αα,线性 相关.4. 设矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛2-0151-4-02021=t A 的秩为2,则t = 3 . 5. 设⎪⎪⎪⎭⎫⎝⎛400021032=A ,则1-A =⎪⎪⎪⎪⎭⎫⎝⎛4100021-03-2.6.设4阶矩阵[]321=γγγα,,,A ,[]321=γγγβ,,,B ,且,2=A ,3=B 则=+B A 40.二、单项选择(本题共5小题,每小题3分,共15分)1. 矩阵A 适合条件( D )时,它的秩为r)(A A 中任何1+r 列线性相关;)(B A 中任何r 列线性相关;)(C A 中有r 列线性无关; )(D A 中线性无关的列向量最多有r 个.2. 若n 阶方阵B A , 均可逆,C AXB = ,则=X ( C ) C BAA 1-1-)( ; 1-1-ACBB )(; 1-1-CBAC )(; 1-1-CABD )( .3、设⎪⎪⎪⎭⎫⎝⎛=nn n n a a a a A1111,⎪⎪⎪⎭⎫⎝⎛=nn n n A A A A B1111,其中ij A 是ij a 的 代数余子式(i ,j=1,2,…,n ),则 ( C ))(A A 是B 的伴随矩阵; )(B B 是A 的伴随矩阵;)(C B 是T A 的伴随矩阵; )(D B 不是TA 的伴随矩阵.4. A 与B 均为n 阶矩阵,若A 与B 相似,则下列说法正确的是( C ).)A (A 与B 有相同的特征值和特征向量; )B ( B E A E -=-λλ;)C (对任意常数k ,有 A kE -与B kE -相似; )D (A 与B 都相似于同一对角阵.5. 非齐次线性方程组b Ax =中A 为)(n m n m ≠⨯矩阵,则( B )(A) 若b Ax =有无穷多解,则0=Ax 仅有零解;(B) 若b Ax =有唯一解,则0=Ax 仅有零解; (C) 若0=Ax 有非零解,则b Ax =有无穷多解; (D) 若0=Ax 仅有零解,则b Ax =有唯一解.三、计算.(10分)1-1-1-n 2121n 21a a a a a a a a a n解 )1-=∑1=ni i n a D (1-11-11222n n n a a a a a a分4=)1-∑1=ni i a (1-0101-1001分8 1-1-=n )()1-∑1=ni i a (分10四、(10分)设B A ,满足关系式A B AB +2=,且 ⎪⎪⎪⎭⎫⎝⎛410011103=A , 求矩阵B . 解 A E A B 1-2-=)( 分3 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡4121001101-1103101=2- )(A E A 分5 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡410211-12-1-1-0103101−→−分6 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡322-1002-3-40102-2-5001−→−分9⎥⎥⎦⎤⎢⎢⎢⎣⎡322-2-3-42-2-5=∴X 分10 (分或8⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111-1-2-21-1-2=2-1- )(E A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡322-2-3-42-2-5=∴X 分10 )五、 (14分) 已知非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=----=+++-=+-+=+-+bx x x x x ax x x x x x x x x x x 4321432143214321617231462032,问a 、b 为何值时,方程组有解,并求出所有解。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南农业大学2011—2012学年第二学期 《线性代数》(经济类和农科)参考答案(B 卷)
一、判断题(每小题2分,共20分)
题号 1 2 3 4 5 6 7 8 9 10
对错 √ × √ × √ √ × √ × √
二、填空题(每空2分,共20分)
1. 0
2. 64−
3. 3,8,8−−− 192−
4. 3−
5. 0 1111−⎛⎞⎜
−⎝⎠⎟ 6. 2 正定 7. (1,1,1)T
三、计算题(每小题9分,共54分) 1.解:6666111
11
3111311
611311*********
1
3
D =
= 5LLL 分 11110
200
6
400200
00
2
==8. 9LLL 分2. 解:由于123100(|)221010343001A E ⎛⎞⎜⎟
=⎜⎟⎜⎟⎝⎠
2LLL 分 10013
23
50103
22001111−⎛⎞⎜
⎟⎜⎟
→−
−⎜
⎟⎜⎟−⎝⎠
7LLL 分 则1
13
2353
22111A −−⎛⎞⎜⎟⎜⎟
=−
−⎜⎟⎜⎟−⎝

. 9LLL 分
3. 解:(1)
A B Q 与相似 ()()Tr A Tr B ∴=,即14,亦即22a b ++=++1a b =− 4LLL 分 又6(1)||4a A B −===b )
所以
5,6a b ==8LLL 分 (2)||
24A =9LLL 分4. 解:1234123411131024(,,,)11230101(,,,12460010ααααββββ−⎛⎞⎛⎞
⎜⎟⎜⎟
=−−→=⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠
Q
1234(,,,)3r ββββ∴=
5LLL 分 显然123,,βββ是向量组1234,,,ββββ的一个极大线性无关组,
且412403ββββ=++
故123,,ααα是4321,,,αααα的一个极大线性无关组,
且412430αααα=++.
9LLL 分5. 解:由于1203120347100112(,)011200002
31
40000A b ⎛⎞⎛⎜⎟⎜

⎟−−⎜⎟⎜=→
⎜⎟⎜−⎜⎟⎜
⎝⎠⎝Q ⎟

⎟⎠
<
则()(|)23r A r A b ==
从而原方程组有无穷多解.
5LLL 分 令()()30x =可得特解为:0320η⎛⎞⎜⎟
=−⎜⎜⎟⎝⎠
⎟.
取34,x x 为自由未知量,令()()31x =,可得导出组的基础解系为:

1211ξ−⎛⎞⎜⎟
=⎜⎟⎜⎟⎝⎠
故原方程组的通解为:
0111,()k k R ηηξ=+∈
9LLL 分6.解:(1)特征方程为:
2
1
1
024
1E A λλλλ03
+−−−=−−−. 由得特征值为:2
||(1)(2)E A λλλ−=+−=01231,2λλλ=−==.
3LLL 分 对1231,2λλλ=−==分别求得基础解系为:;
123110,4,010ξξξ⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟
===⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠
14 故,A 的特征值11λ=−的全部特征向量为11
1(0k k )ξ≠;
A 的特征值232λλ==的全部特征向量为1122
12(,0)k k k k ξξ+不全为
6LL 分
(2)由于特征值互不相同,所以可逆矩阵为:
111040104P ⎛⎞
⎜⎟
=⎜⎟⎜⎟⎝⎠
使得.
1
-100=020002P AP −⎛⎞⎜⎟⎜⎜⎟⎝⎠⎟9LLL 分四、证明题(共6分)
证:设123=,,A ααα()
102102124022157000A ⎛⎞⎛⎞
⎟⎟⎟
⎠⎜⎟⎜
=→⎜⎟⎜⎜⎟⎜⎝⎠⎝
2L 分 LL
, 则向量组()2r A =Q 123,,ααα线性相关
6LLL 分。

相关文档
最新文档