等腰三角形精选有难度修改习题

合集下载

等腰三角形练习题

等腰三角形练习题

等腰三角形练习题班级 姓名 学号一.填空题1.等腰三角形的腰长是底边的43,底边等于12cm,那么三角形的周长为 cm 2.等腰三角形顶角为80°,那么一腰上的高与底边所夹的角的度数为____度3.等腰三角形的底角是65°,顶角为________.4.等腰三角形的一个内角为100°,那么它的其余各角的度数分别为_______.5. P 为等边△ABC 所在平面上一点,且△PAB,△PBC,△PCA 都是等腰三角形,这样的点P 有_______个.6. 等腰三角形的顶角等于一个底角的4倍时, 那么顶角为_________度.7. 如图,A 、D 、C 在一条直线上AB =BD =CD, ∠C =40°,那么∠ABD =_第7题 第9题 第10题8. 在等腰△ABC 中, AB =AC, AD ⊥BC 于D, 且AB +AC +BC =50cm,而AB +BD +AD =40cm, 那么AD =___________cm.9. 如图, ∠P =25°, 又PA =AB =BC =CD, 那么∠DCM =_______度.10. 如图∠ACB =90°, BD =BC, AE =AC, 那么∠DCE =__________度.二.单项选择题1. 等腰三角形一底角为30°,底边上的高为9cm,那么腰长为___cm .[ ]3D.9C.9B .18A.32. 不满足△ABC 是等腰三角形的条件是[ ]A.∠A :∠B :∠C=2:2:1B.∠A :∠B :∠C=1:2:5C.∠A :∠B :∠C=1:1:2D.∠A :∠B :∠C=1:2:23. 等腰三角形的一个角等于20°, 那么它的另外两个角等于:[ ]A.20°、140°B.20°、140°或80°、80°C.80°、80°D.20°、80°4. 以下命题正确的选项是[ ]A.等腰三角形只有一条对称轴B.直线不是轴对称图形C.直角三角形都不是轴对称图形D.任何一角都是轴对称图形5. 等腰三角形一腰上的高与底所夹的角等于 [ ]A.顶角B.顶角的21C.顶角的2倍 D 底角的217. 如图, 在△ABC 中, AB =AC, CD ⊥AB 于D, 那么以下判断正确的选项是[] A.∠A =∠B B.∠A =∠ACD C.∠A =∠DCB D.∠A =2∠BCD第7题 第10题8. 等腰三角形两边分别为35厘米和22厘米, 那么它的第三边长为[ ]A.35cmB.22cmC.35cm 或22cmD.15cm9. 等腰三角形中, AB长是BC长2倍, 三角形的周长是40, 那么AB的长为[]A.20B.16C.20或16D.1810. 如图: AB=AC=BD, 那么∠1与∠2之间的关系满足[]A.∠1=2∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°三.证实题1. 如图, :点D,E在△ABC的边BC上,AB=AC,AD=AE.求证:BD=CE2. 如图:△ABC中,AB=AC,PB=PC.求证:AD⊥BC3. :如图,BE和CF是△ABC的高线,BE=CF,H是CF、BE的交点.求证:HB=HC4. 如图,在△ABC中,AB=AC,E为CA延长线上一点,ED⊥BC于D交AB于F.求证:△AEF为等腰三角形.5. 如图,△ABC中,D在BC延长线上,且AC=CD,CE是△ACD的中线,CF平分∠ACB,交AB于F,求证:(1)CE⊥CF;(2)CF∥AD.6.如图:Rt△ABC中,∠C=90°,∠A=22.5°,DC=BC, DE⊥AB.求证:AE=BE.7.:如图,△BDE是等边三角形,A在BE延长线上,C在BD的延长线上,且AD=AC.求证:DE+DC=AE.等腰三角形练习题答案一.填空题1. 302. 403. 50°4. 40°40°5. 76. 1207. 208. 159. 100 10. 45二.单项选择题1. B2. B3. B4. D5. B6. A7. D 8. C 9. B 10. D三.证实题1. 证:作AM⊥BC于M∵AD=AE,∴DM=EM∵AB=AC,∴BM=CM∴BM-DM=CM-EM∴BD=CE2. 证实:在△ABP和△ACP中∵AB=AC,BP=PC,AP=AP∴△ABP≌△ACP (SSS)∴∠BAP=∠CAP∴AD⊥BC(等腰三角形顶角平分线又是底边的垂线)3. 证实:∵△ABC是等边三角形∴AB=AC,∠BAC=60°在△ABD和△ACE中∵AB=AC,∠1=∠2,BD=CE ∴△ABD≌△ACE (SAS) ∴AD=AE,∠BAD=∠CAE=60°∴在△ADE中∵AD=AE,∠DAE=60°∴△ADE为等边三角形.4. 证实:连结AC和AD在△ABC和△AED中AB=AE BC=ED ∠B=∠E ∴△ABC≌△AED (SAS)∴∠ACB=∠ADE,AC=AD∴△ACD是等腰三角形∴∠ACD=∠ADC;∠BCA=∠CDE∴∠C=∠D5. 证实:∵BE、CF是△ABC的高线.∴∠1=∠2=90°∴△BCF和△CBE都是Rt△.在Rt△BCF和Rt△CBE中∵CF=BE,BC=CB∴Rt△BCF≌Rt△CBE∴∠3=∠4在△HBC中∵∠3=∠4∴HB=HC(同一三角形中,等角对等边)6. 证实:∵AE=AD,∠1=∠2,∠A公共角∴△AEF≌△ADC (AAS)∴AB=AC,EB=DC∴∠ABC=∠ACB∴∠3=∠4,BF=CF∴DF=EF7. 证实:∵AB=AC∴∠B=∠C∵ED⊥BC∴∠B+∠BFD=∠B+∠EFA=90°∠C+∠E=90°∴∠E=∠EFA∴AE=AF8. 证实:(1)∵AC=CD,CE是△ACD的中线∴∠ACE=∠DCE 又∵CF平分∠ACB∴∠ACF=∠BCF ∴∠AFC=∠AEC=90°∴CE⊥CF(2)∵AC=CD,CE是△ACD的中线∴CE⊥AD ∴CF∥AD四.证实题(此题包括4小题,共24分.)1. 证实:∵△ABC是等边三角形,BD是中线.∴BD⊥AC,∠CBD=30°,∠BCD=60°∵DC=CE ∴∠E=∠CDE=30°∴∠CBD=∠E,∴ DB=DE2. 证实:连结DB∵∠CDB为△ADB外角,∴∠CDB=∠A+∠DBA∵△CDE中,DC=BC,∴∠CDB=∠CBD=∠A+∠DBA∵△ABC中,∠C=90°,∴∠A+∠DBA+∠CBD=90°∴∠A+∠DBA=45°∵∠A=22.5°∴∠DBA=45°-22.5°=22.5°=∠A ∴△DAB中,AD=DB∴△DAB为等腰三角形∵△DAE 中,DE ⊥AB 于E,∴DE 为△ADB 中AB 边中线∴E 为AB 中点,∴AE=EB3. .AC BC ,BC CF ,AE CF ,CFA AE D ,DE //CF C ===∆≅∆进而得到证点作过4. 为等腰三角形、提示证ECO DBO ∆∆-----------------------------------------------试题备注一.填空题(此题包括10小题,共30分.)1.解腰长: =3412=9,⨯周长=9+9+12=30.2.解: 9018080=40--27. 解:∵ BD =CD∴ ∠DBC =∠C =40°∴ ∠BDA =∠DBC + ∠C =80°AB =BD∴ ∠A =∠BDA =80°∴ ∠ABD =180°-80°-80°=20°8. 等腰三角形顶角平分线底边上的中线, 底边上的高互相重合.9. 证实:∵∠MPN=25°, PA=AB=BC=CD∴∠P=∠ABP, ∠BAC=∠CAB, ∠CDB=∠CBD∠DCM=∠MPN+∠CDP=25°+∠CDB=25°+(25°+∠ACB)=50°+∠ACB=50°+∠CAB=50°+(∠MPN+∠PBA)=100°10. 解:∵ ∠ACB =90°,∴ ∠A + ∠B =∠ACB =90°BD =BC, BDC =BCD =180B 2=901B AE =AC,AEC =ACE =180A 2=901A DCE =BCD +ACE ACB =902A +(901B 90∴∴∴∠∠-∠-∠∠∠-∠-∠∠∠∠-∠-∠-∠-2212) =45°.二.单项选择题(此题包括10小题,共30分.)3. 注意两种情况5. : 在△ABC 中, AB =AC, CD ⊥AB 求证:DCB A =∠12证实: 如图: AB =AC, CD ⊥AB 于D,α=90°-∠B, AB =AC ∴ ∠B =∠ACB∴∴∠=-∠=--∠=∠B BAC BAC BAC12180********()() α7. 说明:∵ AB =AC∴∴∠=∠=-∠=-∠∠=-∠∠=∠-∠=∠B BCA 180A 29012A ACD 90ABCD BCA ACD 12A∴∠A =2∠BCD9.解:或AB X BC X X X X X X X ==++=++=,22402240 ∴ X =16 或 X =20当 X =20时, BC =10, AC =10 不能构成三角形∴ AB =1610. 解: ∠1=∠C +∠2∵ AB=AC=BD∴∠B=∠C∴∠1=∠B+∠2∴∠1=∠BAD又∠B+∠BAD+∠1=180°∴∠B+2∠1=180°∠B=∠C, ∠C=∠1-∠2 (∠1-∠2)+2∠1=180°∴ 3∠1-∠2=180°。

八年级数学等腰三角形练习题(精品)

八年级数学等腰三角形练习题(精品)

等腰三角形练习题姓名:1.如图,已知C是线段AB上的任意一点(端点除外),分别以AC、BC为边并且在AB的同一侧作等边△ACD和等边△BCE,连接AE交CD于M,连接BD交CE于N.给出以下三个结论:①AE=BD②CN=CM③MN∥AB 其中正确结论的个数是()A.0B.1C.2D.32.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于_________ .二.解答题(共15小题)(第1题)(第2题)3.在△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠EAF=180°,求证DE=DF.4.在△ABC中,∠ABC、∠ACB的平分线相交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.请说明DE=BD+EC.5.如图,△ABC是等边三角形,BD是AC边上的高,延长BC至E,使CE=CD.连接DE.(1)∠E等于多少度?(2)△DBE是什么三角形?为什么?6.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠A=30°.求证:AB=4BD .(第7题)(第8题)(第9题)7.如图,△ABC中,AB=AC,点D、E分别在AB、AC的延长线上,且BD=CE,DE与BC相交于点F.求证:DF=EF.(提示:过点D作DG∥AE,交BC于点G)8.如上图,已知等腰直角三角形ABC,BC是斜边.∠B的角平分线交AC于D,过C作CE与BD垂直且交BD延长线于E,求证:BD=2CE.9.(2012•牡丹江)如图①,△ABC中.AB=AC,P为底边BC上一点,PE⊥AB,PF⊥AC,CH⊥AB,垂足分别为E、F、H.易证PE+PF=CH.证明过程如下:证明:如图①,连接AP.∵PE⊥AB,PF⊥AC,CH⊥AB,∴S △ABP=AB•PE,S△ACP=AC•PF,S△ABC=AB•CH.又∵S△ABP+S△ACP=S△ABC ,∴AB•PE+AC•PF=AB•CH.∵AB=AC∴PE+PF=CH.(1)如图②,P为BC延长线上的点时,其它条件不变,PE、PF、CH又有怎样的数量关系?请写出你的猜想,并加以证明:(2)填空:若∠A=30°,△ABC的面积为49,点P在直线BC上,且P到直线AC的距离为PF,当PF=3时,则AB边上的高CH= _________ .点P到AB边的距离PE= _________ .F 10.已知:如图,AF 平分∠BAC ,BC ⊥AF 于点E ,点D 在AF 上,ED=EA ,点P 在CF 上,连接PB 交AF 于点M .若∠BAC=2∠MPC ,请你判断∠F 与∠MCD 的数量关系,并说明理由.11.如图,已知△ABC 是等边三角形,点D 、E 分别在BC 、AC 边上,且AE=CD ,AD 与BE 相交于点F . (1)线段AD 与BE 有什么关系?试证明你的结论. (2)求∠BFD 的度数.12.如图,在△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,BE=BF ,连接AE 、EF 和CF , 求证:AE=CF .13.已知:如图,在△OAB 中,∠AOB=90°,OA=OB ,在△EOF 中,∠EOF=90°,OE=OF ,连接AE 、BF .问线段AE 与BF 之间有什么关系?请说明理由.14.数学课上,李老师出示了如下的题目:“在等边三角形ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED=EC ,如下图,试确定线段AE 与DB 的大小关系,并说明理由”. 小敏与同桌小聪讨论后,进行了如下解答: (1)特殊情况,探索结论当点E 为AB 的中点时,如图1,确定线段AE 与DB 的大小关系,请你直接写出结论:AE_____DB (填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE 与DB 的大小关系是:AE _________ DB (填“>”,“<”或“=”).理由如下:如图2,过点E 作EF ∥BC ,交AC 于点F .(请你补充完整后面的解答过程)(3)拓展结论,设计新题在等边三角形ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED=EC .若△ABC 的边长为1,AE=2,求CD 的长_________(请你画出草图,并直接写出结果).15.如图甲所示,在△ABC 中,AB=AC ,在底边BC 上有任意一点P ,则P 点到两腰的距离之和等于定长(腰上的高),即PD+PE=CF ,若P 点在BC 的延长线上,那么请你猜想PD 、PE 和CF 之间存在怎样的等式关系?写出你的猜想并加以证明.。

等腰三角形练习题

等腰三角形练习题

ED C A F、§14.3 等腰三角形1.等腰三角形练习题一、选择题1.等腰三角形的对称轴是( )A .顶角的平分线B .底边上的高C .底边上的中线D .底边上的高所在的直线 &2.等腰三角形有两条边长为4cm 和9cm ,则该三角形的周长是( ) A .17cm B .22cm C .17cm 或22cm D .18cm3.等腰三角形的顶角是80°,则一腰上的高与底边的夹角是( ) A .40° B .50° C .60° D .30° 4.等腰三角形的一个外角是80°,则其底角是( )A .100°B .100°或40°C .40°D .80°5.如图,C 、E 和B 、D 、F 分别在∠GAH 的两边上,且AB=BC=CD=DE=EF ,若∠A=18°,则∠GEF 的度数是( )A .80°B .90°C .100°D .108° —EDCABHFG二、填空题6.等腰△ABC 的底角是60°,则顶角是________度. 7.等腰三角形“三线合一”是指___________.8.等腰三角形的顶角是n °,则两个底角的角平分线所夹的钝角是_________. 9.如图,△ABC 中AB=AC ,EB=BD=DC=CF ,∠A=40°,则∠EDF•的度数是_____. 10.△ABC 中,AB=AC .点D 在BC 边上(1)∵AD 平分∠BAC ,∴_______=________;________⊥_________; —(2)∵AD 是中线,∴∠________=∠________;________⊥________; (3)∵AD ⊥BC ,∴∠________=∠_______;_______=_______. 一、选择题1.等腰三角形的周长为26㎝,一边长为6㎝,那么腰长为( ) A.6㎝B.10㎝C.6㎝或10㎝ D.14㎝2.已知△ABC ,AB =AC ,∠B=65°,∠C 度数是( ) A .50° B .65° C .70° D . 75° 3.等腰三角形是轴对称图形,它的对称轴是( ),A .过顶点的直线B .底边的垂线C .顶角的平分线所在的直线D .腰上的高所在的直线二、填空题4.等腰三角形的两个_______相等(简写成“____________”). 5.已知△ABC ,AB =AC ,∠A=80°,∠B 度数是_________.6.等腰三角形的两个内角的比是1:2,则这个等腰三角形的顶角的度数是_______________. 7.等腰三角形的腰长是6,则底边长5,周长为__________.三、解答题¥11.已知△ABC 中AB=AC ,AD ⊥BC 于D ,若△ABC 、△ABD 的周长分别是20cm 和16cm ,•求AD 的长.12.如图,在四边形ABCD 中,AB=AD ,CB=CD ,求证:∠ABC=∠ADC.DCAB13.已知△ABC 中AB=AC ,点P 是底边的中点,PD ⊥AB ,PE ⊥AC ,垂足分别是D 、E ,•求证:PD=PE.《四、探究题14.如图,CD 是△ABC 的中线,且CD=12AB ,你知道∠ACB 的度数是多少吗由此你能得到一个什么结论请叙述出来与你的同伴交流.DCAB 练习题(第二课时)一、选择题、1.如图1,已知OC平分∠AOB,CD∥OB,若OD=3cm,则CD等于()A.3cm B.4cm C. D.2cmD CABEDABFEDCA BHF(1) (2) (3)2.△ABC中AB=AC,∠A=36°,BD平分∠ABC交AC于D,则图中的等腰三角形有()A.1个 B.2个 C.3个 D.4个3.如图2,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC 于点E,那么下列结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;•③△ADE的周长等于AB与AC的和;④BF=CF.其中正确的有()A.①②③ B.①②③④ C.①② D.①}4.如图3,Rt△ABC中,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,则下列结论中不正确的是()A.∠ACD=∠B B.CH=CE=EF C.CH=HD D.AC=AF二、填空题5.△ABC中,∠A=65°,∠B=50°,则AB:BC=_________.6.已知AD是△ABC的外角∠EAC的平分线,要使AD•∥BC,•则△ABC•的边一定满足________.7.△ABC中,∠C=∠B,D、E分别是AB、AC上的点,•AE=•2cm,•且DE•∥BC,•则AD=________.8.一灯塔P在小岛A的北偏西25°,从小岛A沿正北方向前进30海里后到达小岛,•此时测得灯塔P在北偏西50°方向,则P与小岛B相距________.三、解答题)9.如图,已知AB=AC,E、D分别在AB、AC上,BD与CE交于点F,•且∠ABD=•∠ACE,求证:BF=CF.[10.如图,△ABC中BA=BC,点D是AB延长线上一点,DF⊥AC于F交BC于E,•求证:△DBE是等腰三角形.EDCABF}#四、探究题11.如图,AF是△ABC的角平分线,BD⊥AF交AF的延长线于D,DE∥AC•交AB于E,求证:AE=BE.AEDCABF<2.等边三角形、练习题一、选择题1.正△ABC 的两条角平分线BD 和CE 交于点I ,则∠BIC 等于( ) A .60° B .90° C .120° D .150°2.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;•③三个外角(每个顶点处各取一个外角)都相等的三角形;•④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( )A .①②③B .①②④C .①③D .①②③④3.如图,D 、E 、F 分别是等边△ABC 各边上的点,且AD=BE=CF ,则△DEF•的形状是( ) A .等边三角形 B .腰和底边不相等的等腰三角形(C .直角三角形D .不等边三角形ED CABF21EDCA B4.Rt △ABC 中,CD 是斜边AB 上的高,∠B=30°,AD=2cm ,则AB 的长度是( )A .2cmB .4cmC .8cmD .16cm5.如图,E 是等边△ABC 中AC 边上的点,∠1=∠2,BE=CD ,则对△ADE 的形状最准备的判断是( )A .等腰三角形B .等边三角形C .不等边三角形D .不能确定形状 二、填空题6.△ABC 中,AB=AC ,∠A=∠C ,则∠B=_______. .7.已知AD 是等边△ABC 的高,BE 是AC 边的中线,AD 与BE 交于点F ,则∠AFE=______. 8.等边三角形是轴对称图形,它有______条对称轴,分别是_____________. 9.△ABC 中,∠B=∠C=15°,AB=2cm ,CD ⊥AB 交BA 的延长线于点D ,•则CD•的长度是_______. 一、选择题1.△ABC 是等边三角形,D 、E 、F 为各 边中点,则图中共.有正三角形( ) A .2个 B .3个 C .4个 D .5个.2.△ABC 中,∠A :∠B :∠C =1:2:3,则BC :AB 等于 ( )A . 2:1B .1:2C .1:3D .2 :3 二、填空题3.等边三角形的周长为6㎝,则它的边长为 ________. 4.等边三角形的两条高线相交所成钝角的度数是__________. 5.在△ABC 中, ∠A =∠B =∠C ,则△ABC 是_____三角形. 6.△ABC 中,∠AC B=90°∠B=60°,BC=3㎝,则AB=_______.三、解答题 `10.已知D 、E 分别是等边△ABC 中AB 、AC 上的点,且AE=BD ,求BE 与CD•的夹角是多少度&11.如图,△ABC 中,AB=AC ,∠BAC=120°,AD ⊥AC 交BC•于点D ,•求证:•BC=3AD.D CAB、12.如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE•都是等边三角形.BE 交AC 于F ,AD 交CE 于H ,①求证:△BCE ≌△ACD ;②求证:CF=CH ;③判断△CFH•的形状并说明理由.EDCABHF四、探究题/13.如图,点E 是等边△ABC 内一点,且EA=EB ,△ABC 外一点D 满足BD=AC ,且BE 平分∠DBC , 求∠BDE 的度数.(提示:连接CE )EDCAB】7.△ABC 是等边三角形,点D 在边BC 上,DE ∥AC ,△BDE 是等边三角形吗试说明理由.)、8.已知:如图,P ,Q 是△ABC 边上BC 上的两点, 且BP=PQ=QC=AP=AQ ,求∠BAC 的度数.%:AQCPB9.已知:△ABC中,∠ACB=90°,AD=BD,∠A=30°,求证:△BDC 是等边三角形.】!八年级数学(上)轴对称整章测试(A)一、填空题(每题2分,共32分)1.轴对称是指____个图形的位置关系;轴对称图形是指____个具有特殊形状的图形.2.设A、B两点关于直线MN对称,则______垂直平分________.:3.等腰三角形是_______对称图形,它至少有________条对称轴.4.小明上午在理发店理发时,•从镜子内看到背后墙上普通时钟的时针与分针的位置如图所示,此时时间是__________.5.点(1,3)P 关于x轴的对称点的坐标为.6.已知等腰三角形的顶角是30°,则它的一个底角是.7.已知等腰三角形有一个角是50°,则它的另外两个角是.8.等腰三角形两边长为4cm 和 6cm ,则它的周长为.9.已知点P在线段AB的垂直平分线上,PA=6,则PB= .10.如图,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,若BD=10,则CD= .…11.如图,在等边△ABC中,AD⊥BC,AB=5cm ,则DC的长为.12.如图,△ABC中,AB=AC,DE是AB的垂直平分线, AB=8,BC=4,∠A=36°,则∠DBC=,△BDC的周长C△BDC= .13 13.如图,∠1=50°,∠2=80°,DB=AB,CE=CA,则∠D=,∠DAE=.ABCD第10题第11题图第12题图第13题图BA¥DCB CDAE1}2B CAD E<第14题图第15题图第16题图第4题图C AACOBD-AB CDE14.如图,AB=AC,∠A=40o,AB的垂直平分线MN交AC于点D,则∠DBC=_______.15.如图,若P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长是________.16.如图,若B、D、F在MN上,C、E在AM上,且AB=BC=CD,EC=ED=EF,∠A=20o,则∠FEB=________.二、解答题(共68分).17.(7分)已知:如图,△ABC,分别画出与△ABC关于x轴、y轴对称的图形△A1B 1 C1和△A2B2C2,△A1B1C1和△A2B2C2各顶点坐标为:A1(,);B1(,);C1(,);A2(,);B2(,);C2(,).—18.(5分)已知:如图,AC和BD交于点O,ABOCBADPDECAB!23.(5分)如图,△ABD、△AEC都是等边三角形,求证:BE=DC .~DEC.BAOA DE F]BC24.(6分)已知:E 是∠AOB的平分线上一点,EC⊥OA ,ED⊥OB ,垂足分别为C 、D .求证:(1)∠ECD=∠EDC ;(2)OE 是CD 的垂直平分线.;(5分)已知:△ABC 中,∠B、∠C 的角平分线相交于点D ,过D 作EF7.等腰△ABC 中,AB =AC =10,∠A =30°,则腰AB 上的高等于___________.8.如图,△ABC 中,AD 垂直平分边BC ,且△ABC 的周长为24,则AB +BD = ;又若∠CAB =60°,则∠CAD = .9.如图,△ABC 中,EF 垂直平分AB ,GH 垂直平分AC ,设EF 与GH 相交于O ,则点O 与边BC 的关系如何请用一句话表示: .{10.如图:等腰梯形ABCD 中,AD ∥BC ,AB =6,AD =5,BC =8,且AB ∥DE ,则△DEC 的周长是____________.11.请在下面这一组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形.…BE CDA ABC;DB HFAEC<G O第8题图 第9题图 第10题图12.等腰梯形的腰长为2,上、下底之和为10且有一底角为60°,则它的两底长分别为____________.13.等腰三角形的周长是25 cm,一腰上的中线将周长分为3∶2两部分,则此三角形的底边长为__ ___.14.如图,三角形1与_____成轴对称图形,整个图形中共有_____条对称轴.15.如图,将长方形ABCD 沿对角线BD 折叠,使点C 恰好落在如图C 1的位置,若∠DBC =30º,则∠ABC 1=________.16.如图是小明制作的风筝,为了平衡制成了轴对称图形,已知OC 是对称轴,∠A =35º,∠BCO =30º,那么∠AOB =____ ___.二、解答题(共68分)17.(5分)已知点M )5,3(b a -,N )32,9(b a +关于x 轴对称,求ab 的值./18.(5分)已知AB =AC ,BD =DC ,AE 平分∠FAC ,问:AE 与AD 是否垂直为什么;¥19.(5分)如图,已知:△ABC 中,BC <AC ,AB 边上的垂直平分线DE 交AB 于D ,交AC于E ,AC =9 cm ,△BCE 的周长为15 cm ,求BC 的长.\20.(5分)如图所示,已知△ABC 和直线MN .求作:△A ′B ′C ′,使△A ′B ′C ′和△ABC关于直线MN 对称.(不要求写作法,只保留作图痕迹)【第14题图 第15题图 第16题图AEF;21.(5分)如图,A、B两村在一条小河的的同一侧,要在河边建一水厂向两村供水.(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹..B!A .—22.(5分)如图,在ABC中,AB=AC,A=92,延长AB到D,使BD=BC,连结DC.求D的度数,ACD的度数.》、23.(5分)有一本书折了其中一页的一角,如图:测得AD=30cm,BE=20cm,∠BEG=60°,求折痕EF的长.——24.(8分)如图所示,在△ABC中,CD是AB上的中线,且DA=DB=DC.(1)已知∠A=︒30,求∠ACB的度数;(2)已知∠A=︒40,求∠ACB的度数;(3)已知∠A=︒x,求∠ACB的度数;AC(4)请你根据解题结果归纳出一个结论.¥!25.(6分)如图所示,在等边三角形ABC中,∠B、∠C的平分线交于点O,OB和OC的垂直平分线交BC于E、F,试用你所学的知识说明BE=EF=FC的道理.26.(7分)已知AB=AC,D是AB上一点,DE⊥BC于E,ED的延长线交CA的延长线于F,试说明△ADF是等腰三角形的理由.27.(7分)等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形试说明你的结论.28.(5分)如图①是一张画有小方格的等腰直角三角形纸片,将图①按箭头方向折叠成图②,再将图②按箭头方向折叠成图③.ABOE F CAFACBPQ(1)请把上述两次折叠的折痕用实线画在图④中.(2)在折叠后的图形③中,沿直线l剪掉标有A的部分,把剩余部分展开,将所得到的图形在图⑤中用阴影表示出来.。

等腰三角形练习题及答案

等腰三角形练习题及答案

等腰三角形一、选择题1.如图1,已知OC 平分∠AOB ,CD ∥OB ,若OD=3cm ,则CD 等于( )A .3cmB .4cmC .D .2cmD C A 0(1) (3)2.△ABC 中AB=AC ,∠A=36°,BD 平分∠ABC 交AC 于D ,则图中的等腰三角形有( )E D ABF(2)A .1个B .2个C .3个D .4个3.如图2,△ABC 中,∠ABC 与∠ACB 的平分线交于点F ,过点F 作DE ∥BC 交AB 于点D ,交AC 于点E ,那么下列结论:①△BDF 和△CEF 都是等腰三角形;②DE=BD+CE ;•③△ADE 的周长等于AB 与AC 的和;④BF=CF .其中正确的有( )ED C BHFA .①②③B .①②③④C .①②D .①4.如图3,Rt △ABC 中,CD 是斜边AB 上的高,角平分线AE 交CD 于H ,EF ⊥AB 于F ,则下列结论中不正确的是( )A .∠ACD=∠B B .CH=CE=EFC .CH=HD D .AC=AF 二、填空题5.△ABC 中,∠A=65°,∠B=50°,则AB :BC=_________.6.已知AD 是△ABC 的外角∠EAC 的平分线,要使AD•∥BC ,•则△ABC•的边一定满足________. 7.△ABC 中,∠C=∠B ,D 、E 分别是AB 、AC 上的点,•AE=•2cm ,•且DE•∥BC ,•则AD=________. 三、解答题9.如图,已知AB=AC ,E 、D 分别在AB 、AC 上,BD 与CE 交于点F ,•且∠ABD=•∠ACE , 求证:BF=CF .10.如图,△ABC 中BA=BC ,点D 是AB 延长线上一点,DF ⊥AC 于F 交BC 于E ,• 求证:△DBE 是等腰三角形.ED CABF答案:1.A 2.C 3.A 4.C 5.1 6.AB=AC 7.2cm 9.连接BC ,∵AB=AC ,∴∠ABC=∠ACB ,又∵∠ABD=∠ACE ,∴∠FBC=∠FCB ,∴FB=FC 10.证明∠D=∠BED。

等腰三角形综合习题精选

等腰三角形综合习题精选

等腰三角形综合习题精选一、解答题(共23小题)1、如图,三条公路围成的一个三角形区域,要在这个区域中建一个加油站,使它到三条公路的距离都相等,加油站应建在什么位置?请用尺规作图,找出建造加油站的位置.2、在某河流的北岸有A、B两个村子,A村距河北岸的距离为1千米,B村距河北岸的距离为4千米,且两村相距5千米,现以河北岸为x轴,A村在y轴正半轴上(单位:千米).(1)请建立平面直角坐标系,并描出A、B两村的位置,写出其坐标.(2)近几年,由于乱砍滥伐,生态环境受到破坏,A、B两村面临缺水的危险.两村商议,共同在河北岸修一个水泵站,分别向两村各铺一条水管,要使所用水管最短,水泵站应修在什么位置在图中标出水泵站的位置,并求出所用水管的长度.3、作图题:要求尺规作图,不写作法,保留作图痕迹,写出结论.(1)如图所示,104国道OA和327国道OB在曲阜市相交于O点,在∠AOB的内部有工厂C和D,现要建一个货站P,使P到OA和OB的距离相等,且使PC=PD,用尺规作出P点的位置.(2)在图中直线上找到一点M,使它到A、B两点的距离和最小.4、平面是这样,那曲面呢?我们再看一题(如图1),从A到B,怎样走最近呢?与前两题相同,把圆柱体展开(如图2),此时,只有A点位于与长方形的交界处时,才是最短路径,且只有一条最短路径AB.从上面几题可以看出立体图形中的最短路径问题,都可先把立题图形转化成平面图形再思考.而且得出正方体有6条最短路径;长方体有2条最短路径;圆柱有1条最短路径.这短短的八个字还真是奥妙无穷啊!探究问题一:已知,A,B在直线L的两侧,在L上求一点,使得PA+PB最小.(如图所示)探究问题二:已知,A,B在直线L的同一侧,在L上求一点,使得PA+PB最小.(如图所示)探究问题三:A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)探究问题四:AB是锐角MON内部一条线段,在角MON的两边OM,ON上各取一点C,D组成四边形,使四边形周长最小.(如图所示)5、求点P(2,3)关于直线x=1的对称点的坐标.6、如图,分别作点A(﹣3,0),B(﹣2,2)关于直线x=2的对称点A′、B′.(1)A′点坐标为_________,B′点的坐标为_________;(2)四边形ABB′A′的面积为_________.7、如图,在△ABC中,DE⊥BC,交AC于F,交BA的延长线于E,且AE=AF,则△ABC是等腰三角形吗?请说明理由.8、如图,上午8时,一条船从A处出发,以15海里/h的速度向正北航行,10h后到达B处.从B处望灯塔C测得∠NBC=84°,若该船沿着这个方向行驶,12时刚好到达灯塔C,则B点与灯塔C相距多远?9、如图,已知∠EAC是△ABC的外角,∠1=∠2,AD∥BC,请说明AB=AC的理由.10、(2001•海南)如图,在△ABC中,已知∠ABC=46°,∠ACB=80°,延长BC至D,使CD=CA,连接AD,求∠BAD的度数.11、(2009•本溪)在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=_________度;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.12、如图,△ABC中,AB=AC,点D,E,F分别在边BC,AB,AC上,且BD=CF,∠EDF=∠B,图中是否存在和△BDE全等的三角形?并说明理由.13、(2010•贵港)如图所示,在△ABC中,AB=AC,D为AB上一点,E为AC延长线上的一点,且CE=BD,连接DE交BC于点P.(1)求证:PE=PD(2)若CE:AC=1:5,BC=10,求BP的长.14、(2009•河南)如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并给出证明.15、(2006•日照)如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连接AE、BF.求证:(1)AE=BF;(2)AE⊥BF.16、(2005•云南)已知:如图,在等腰△ABC中,AB=AC,O是底边BC上的中点,OD⊥AB于D,OE⊥AC于E.求证:AD=AE.17、(2002•三明)已知:如图△ABC中,AB=AC,CD、BE是△ABC的角平分线;求证:AD=AE.18、(2000•上海)如图,在△ABC中,AB=AC,E是AB的中点.以点E为圆心,EB为半径画弧,交BC于点D,连接ED,井延长ED到点F,使DF=DE,连接FC.求证:∠F=∠A.19、复习“全等三角形”的知识时,老师布置了一道作业题:“如下图①,已知在△ABC中,AB=AC,P是△ABC内部任意一点,将AP绕A顺时针旋转至AQ,使得∠QAP=∠BAC,连接BQ、CP,则BQ=CP.”(1)小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ≌△ACP,从而证得BQ=CP.请你帮小亮完成证明.(2)之后,小亮又将点P移到等腰三角形ABC之外,原题中的条件不变,“BQ=CP”仍然成立吗?若成立,请你就图②给出证明.若不成立,请说明理由.20、如图,四边形ABCD中,CD∥AB,E是AD中点,CE交BA延长线于点F.(1)试说明:CD=AF;(2)若BC=BF,试说明:BE⊥CF.21、如图,在△ABC中,AB=AC,∠BAC=100°,MP、NQ分别垂直平分AB、AC,求∠1,∠2的度数.22、如图,△ABC中,AB=AD=DC,∠BAD=51°,求∠B、∠C的度数.23、如图,已知等腰三角形一腰上的中线把三角形周长分为12cm和15cm两部分,求它的底边BC的长.。

等腰三角形练习题(含答案)

等腰三角形练习题(含答案)

等腰三角形第1课时等腰三角形的性质1.已知等腰三角形的一个底角为50。

,则其顶角为________ ・2.如图,HABC中…13=∕C, BC=6cm, JD 平分ZBAC.则BD= _________________ c m.第3题图3.如图,'ABC中,-lδ=FC, D为EC中点,ZBAD=35。

,则ZC的度数为()A.35oB. 45。

C・ 55。

D・ 60o4.已知等腰三角形的一个内角为50。

,则这个等腰三角形的顶角为()A・ 50o B. 80oC. 50。

或80。

D・ 40。

或65。

5.如图,在Z∖J5C 中,D 是BC 边上一点,^AB=.-ID=DC, ZAW=40°,求ZC 的度数.6.如图,ΔJBCΦ, .IB=AC9 D 是EC 的中点,E, F分别是.1B. JC±的点,且AE=AF. 求证:DE=DF.1. 在 ∕∖ABC 中,ZJ=40% Z5 = 70o ,则 MBC 为()A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形2. 已知ΔJPC 中,Z5=50% ZJ = 80c , -lδ=5cm.则 AC= _________________ ・3. 如图,在ΛABC 中,-Q 丄BC 于点Zh 请你再添加一个条件,使苴可以确定AlSC 为等腰三角形,则添加的条件是 ________ ・第3题图4. 如图,已知NlBC 中,ZJ = 36% AB=AC, BD 为ZABC 的平分线,则图中共有 _______________ 个等腰三角形.5. 如图,D 是ZXJ5C 的BC 边上的中点,DE 丄AC. DFLAB.垂足分别是E, F,且DE=DF 求证:AB=AC.6.如图,肋〃 CZ λ直线/交,松于点E,交CD 于点F, FG 平分ZEFD 交直线曲于点G 求证:ZLEFG 是等腰三角形.第4题图13・3.2等边三角形第1课时等边三角形的性质与判定1. ____________________________________________________________ 如图,a∕∕b.等边MBC的顶点D C在直线b上,则Zl的度数为_______________________第1题图第3题图2.在∕∖ABC中,ZJ=60°,现有下面三个条件:®ZB=ZC;③ZA=ZB.能判定Z∖J5C为等边三角形的有____________________________ .3・如图,在等边AABC中,BD丄AC于D∙若,松=4,则AD= ________________ ・4.如图,ΔJ J9C是等边三角形,ZCBD=90°. BD=BC.连接.10交BC于点求ZBAD 的度数.5・如图,E是等边AABC中JC边上的点,Z1 = Z2, BE=CD.求证: (I)ZUEE 竺ZUS⑵AADE为等边三角形.第2课时含30。

勾股定理等腰三角形练习题

勾股定理等腰三角形练习题

勾股定理,等腰三角形练习题1、如图铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,己知DA=15km,BC=10km,现在要在铁路AB上建立一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建立在离A站多少千米处?2、如图一块四边形草坪ABCD,其中∠B=∠D=90︒,AB=20cm,BC=15cm,C D=7cm 求这块草坪的面积.3、如图在△ABC中,∠C=90︒,∠1=∠2,CD=1.5,BD=2.5求AC的长4、如图正方形ABCD中,E是AD的中点,点F在DC上,且DF=的关系,并说明理由?14DC试判断BE与EF点5、小明的叔叔家承包了一个矩形鱼池,已知其面积为48m 2,其对角线长为 10m ,为建栅栏,要计算这个矩形鱼池的周长,你能帮助小明算一算吗?6、一只蚂蚁如果沿长方体的表面从 A 点爬到 B ’ ,那么沿哪条路最近,最短的路程是多少?已知长方体的长 2cm 、宽为 1cm 、高为 4cm.D ˊ B ˊA ˊC ˊDBAC7、在梯形 ABCD 中,AB ∥CD ,∠A =90°, AB =2,BC =3,CD =1,E 是 AD 中点. 求证:CE ⊥BE .DECAB8、如图,在梯形 ABCD 中,AD∥BC,AB⊥AC,∠B=45°,AD =1,B C =4,求 DC 的长.ADBC9、一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?AA′O B′B第9题图10、.如图5,将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G。

如果M为CD边的中点,求证:DE:DM:EM=3:4:5。

图511、如图,矩形A BCD中,AB=24,BC=32,若将矩形折叠使点C与点A重合,则折痕EF 的长为多少?A F DB E C12、如图,在矩形ABCD中,AB=3,BC=4,如果将该矩形沿对角线BD重叠,那么图中阴影部分的面积是多少?AEC1DB C13、如图,⊿ABC中,∠C=900,D为AB的中点,E、F分别在AC、BC上,且DE⊥DF,求证:EF2=AE2+BF2。

等腰三角形的练习题

等腰三角形的练习题

等腰三角形的练习题一、选择题1. 等腰三角形的两边相等,这个性质称为()A. 对称性B. 等边性C. 等腰性D. 等角性2. 在等腰三角形中,底角相等的原因是()A. 三角形内角和定理B. 等腰三角形的性质C. 相似三角形的判定D. 直角三角形的性质3. 等腰三角形的底边高等于腰上的高,这是因为()A. 直角三角形的斜边中线性质B. 等腰三角形的三线合一性质C. 勾股定理D. 相似三角形的性质4. 已知等腰三角形的顶角为60°,那么这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定5. 如果等腰三角形的底边长为10厘米,腰长为13厘米,那么其面积是()A. 30平方厘米B. 65平方厘米C. 100平方厘米D. 无法计算二、填空题6. 等腰三角形的两个底角相等,其大小为______。

7. 如果等腰三角形的顶角为120°,那么底角的大小为______。

8. 在等腰三角形ABC中,AB=AC,如果AB边上的高为h,那么AC边上的高也是______。

9. 等腰三角形的三线合一性质指的是______、______和______在同一直线上。

10. 如果等腰三角形的腰长为x,底边长为y,且x>y,那么面积公式为S=______。

三、解答题11. 已知等腰三角形的顶角为40°,求其底角的大小。

12. 一个等腰三角形的底边长为8厘米,腰长为10厘米,求其面积。

13. 证明:等腰三角形的底边上的中线、高线和角平分线重合。

14. 如果一个三角形的两边相等,且这两边所夹的角为70°,求这个三角形的另外两个内角的大小。

15. 已知等腰三角形的周长为32厘米,底边长为10厘米,求其腰长。

四、应用题16. 一个等腰三角形的花园,其底边长为20米,腰长为13米。

如果需要在花园的周围铺设一圈围栏,问需要多少米的围栏?17. 在一个等腰三角形ABC中,AB=AC,AB边上的高为h,求证:AC边上的高也是h。

完整版)等腰三角形专项练习题

完整版)等腰三角形专项练习题

完整版)等腰三角形专项练习题BatchDoc-Word文档批量处理工具BatchDoc是一款方便快捷的Word文档批量处理工具,可以实现多种功能,如批量转换、批量重命名、批量加密、批量解密、批量压缩、批量解压等,提高了工作效率。

1.在等腰三角形ABC中,AB=AC,BD平分∠ABC,已知∠A=36°,求∠1的度数。

解:由BD平分∠XXX可知∠ABD=∠CBD,又因为AB=AC,所以∠BAC=2∠ABD=2∠CBD,即∠1=180°-∠BAC=108°。

2.已知等腰三角形的两边长分别为5和6,求该等腰三角形的周长。

解:设等腰三角形的底边为x,则根据勾股定理可得x²=6²-(5/2)²=31.25,即x=√31.25,所以周长为2x+5+6=2√31.25+11≈17.5.3.在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,求剪下的等腰三角形的面积。

解:如图,设剪下的等腰三角形为△ABC,其中AB=AC=10,BC=x,则根据勾股定理可得x²=16²-10²=196,即x=14.所以△ABC的面积为(1/2)×10×14=70平方厘米。

4.如图,在等腰三角形ABC中,∠B、∠C的平分线相交于F,过点F作DE∥BC,交AB于D,交AC于E,判断下列结论的正确性:①△BDF、△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长为AB+AC;④BD=CE。

解:①正确,因为∠XXX∠XXX∠XXX∠XXX∠BAC/2,所以△BDF、△CEF都是等腰三角形;②正确,因为根据相似三角形可得BD/BC=AD/AC,CE/BC=AE/AC,又因为AD=AE,所以BD=CE,即DE=2BD;③错误,因为AB+AC=2AB≠AD+DE+EA=AD+2BD;④正确,因为根据相似三角形可得BD/BC=AD/AC,CE/BC=AE/AC,又因为AD=AE,所以BD=CE。

等腰三角形习题(含答案)

等腰三角形习题(含答案)

等腰三角形1. 选择题:等腰三角形底边长为5cm ,一腰上的中线把其周长分为两部分的差为3cm ,则腰长为( )A. 2cmB. 8cmC. 2cm 或8cmD. 以上都不对 2. 如图,ABC ∆是等边三角形,BC BD 90CBD ==∠,,则1∠的度数是________。

CA 1DB2 33. ABC ∆中,120A AC AB =∠=,,AB 的中垂线交AB 于D ,交CA 延长线于E ,求证:BC 21DE =。

AE DO BC1 24. 如图,已知在等边三角形ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM ⊥BC ,垂足为M 。

求证:M 是BE 的中点。

A D 1B MC E5. 如图,已知:ABC ∆中,AC AB =,D 是BC 上一点,且CA DC DB AD ==,,求BAC ∠的度数。

AB C D6. 已知:如图,ABC ∆中,AB CD AC AB ⊥=,于D 。

求证:DCB 2BAC ∠=∠。

A 1 2D BCE 37、已知:如图,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,E 、F 分别是垂足。

求证:AE =AF 。

AE FBDC8、如图,ABC ∆中,100=∠=A AC AB ,,BD 平分ABC ∠。

求证:BC BD AD =+。

AD1 B 2E FC等腰三角形答案:1. B2. 分析:结合三角形内角和定理,计算图形中角的度数是等边三角形性质的重要应用。

解:因为ABC ∆是等边三角形 所以60ABC BC AB =∠=,因为BC BD =,所以BD AB = 所以23∠=∠在ABD ∆中,因为 60ABC 90CBD =∠=∠, 所以 150ABD =∠,所以152=∠ 所以75ABC 21=∠+∠=∠3.分析:此题没有给出图形,那么依题意,应先画出图形。

题目中是求线段的倍半关系,观察图形,考虑取BC 的中点。

等腰三角形练习题一(判定之后)

等腰三角形练习题一(判定之后)

12题D A C B 13题D A B 7题M AC B N O 8题D A F C BE 9题D AF C BE等腰三角形练习题一1.等腰三角形的两边长分别为4和9,则周长为 ;若等腰三角形的两边长分别为5和7,则周长为 。

2.等腰三角形的周长为16㎝,底边长为y ㎝,腰长为x ㎝,则y 与x 间存在的函数关系为 ,自变量x 的取值范围为 。

3.等腰三角形的一腰长为6㎝,顶角为30°,则这个三角形的面积为 。

4.等腰三角形的一底角为15°,腰长为8㎝,则这个三角形的面积为 。

5.一个三角形的三边长分别为5,5,8,则它的面积为 ,这个三角形一腰上的高为 。

6.⑴等腰三角形的周长为20cm ,一边长为8cm ,则它的底边长为 。

⑵等腰三角形的周长为16cm ,一边长为6cm ,则它的底边长为 。

7.如图,△ABC 中,O 为△ABC 内一点,且OB 平分∠ABC ,OC 平分∠ACB ,MN 过点O ,MN ∥BC ,若△AMN 的周长为10cm,则AB+AC = ;若△AMN 和△ABC 的周长分别为12cm 和18㎝,你可以得出线段 = 。

8.如图,△ABC 中,AB=AC=6,D 为BC 上一点,DE ∥AB 交AC 于点E ,DF ∥AC 交AB 于点F ,则四边形DEAF 的周长为 。

9.如图,△ABC 中,AD ⊥BC 于点D,BE ⊥AC 于点E ,AD 交BE 于点F ,若BF=AC ,则∠ABC 的度数为 。

10.如图,P 、Q 为△ABC 边BC 上两点,且BP=PA=AQ=PQ=QC ,则∠BAC 的度数为 。

11.如图,△ABC 中,AB=AC ,D 为AC 上一点,且BD=BC=AD ,则∠A 的度数为 。

12.如图,△ABC 中,AB=AC ,∠A=50°,BD 平分∠ABC ,则∠BDC 的度数为 。

13.如图,△ABC 中,D 为BC 上一点,∠BAD=80°,AB=AD=DC ,则∠C 的度数为 。

等腰三角形典型例题练习含答案

等腰三角形典型例题练习含答案

添加标题
添加标题
性质:两腰相等,底边与两腰之间 的比例为固定值
应用:在几何问题和实际问题中, 利用等腰三角形的边长比例解决问 题
等腰三角形的边长计算
等腰三角形的两 腰相等,底边与 两腰之间的夹角 相等。
等腰三角形的边 长关系可以根据 勾股定理进行计 算。
等腰三角形的高、 中线和角平分线 等性质可用于计 算边长。
等腰三角形的角度关系
第四章
等腰三角形的角度性质
等腰三角形的顶角与底角互 补,即它们的角度之和为 180度。
等腰三角形的两个底角相等, 即两个角大小相等。
等腰三角形的一个角为顶角, 其余两个角为底角,且三个 角度之和为180度。
等腰三角形的一个角为底角, 其余两个角为顶角,且三个 角度之和为180度。
等腰三角形的角度计算
等腰三角形两底角相等,角度和为180度 顶角与底角的角度关系:顶角 = 180度 - 2 × 底角度数 等腰三角形的高、中线和角平分线重合 等腰三角形中的角度计算可以通过三角函数或勾股定理进行求解
等腰三角形的角度证明
等腰三角形两底角相等,证明方法 为取等腰三角形ABC,作底边BC的 中点D,连接AD,则 ∠BAD=∠CAD。
自然界:蜂巢、蜘蛛网等自然现象 中经常出现等腰三角形的形状。
添加标题
添加标题
添加标题
添加标题
建筑学:等腰三角形在建筑设计中 有广泛的应用,如金字塔、塔楼等。
艺术创作:等腰三角形在绘画、雕 塑和图案设计中常被用作基本构图 元素。
等腰三角形在实际问题中的应用
桥梁设计:利用等腰三角形的性质,实现桥梁的稳定和平衡 建筑结构:等腰三角形在建筑设计中用于增强结构的稳定性 机械零件:等腰三角形的特殊性质使其在某些机械零件中具有特殊用途 自然界中的等腰三角形:例如蜂巢、蜘蛛网等自然现象中存在等腰三角形的实际应用

等腰三角形经典练习题(5套)附带详细答案

等腰三角形经典练习题(5套)附带详细答案

练习一一、选择题1.等腰三角形的周长为26㎝,一边长为6㎝,那么腰长为()A.6㎝B.10㎝C.6㎝或10㎝D.14㎝2.已知△ABC,AB =AC,∠B=65°,∠C度数是( )A.50° B.65° C.70° D. 75°3.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边的垂线C.顶角的平分线所在的直线D.腰上的高所在的直线/二、填空题4.等腰三角形的两个_______相等(简写成“____________”).5.已知△ABC,AB =AC,∠A=80°,∠B度数是_________.6.等腰三角形的两个内角的比是1:2,则这个等腰三角形的顶角的度数是_______________.7.等腰三角形的腰长是6,则底边长5,周长为__________.三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.(写出每步证明的重要依据)[9.如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数.一、选择题1.B2.B3.C二、填空题4.底角,等边对等角~5.50°6.36°或90°7.16或17三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.证明:∵AB=AD(已知)∴∠ABD=∠ADB(等边对等角)∵AD∥BC(已知)∴∠ADB=∠CBD(两直线平行,内错角相等)∴∠ABD=∠CBD(等量代换)|∴BD平分∠ABC.(角平分线定义)9.45练习2一、选择题1.△ABC是等边三角形,D、E、F为各@边中点,则图中共.有正三角形( )A.2个 B.3个C.4个 D.5个2.△ABC中,∠A:∠B:∠C=1:2:3,则BC:AB等于 ( )A. 2:1 B.1:2 C.1:3 D.2 :3二、填空题3.等边三角形的周长为6㎝,则它的边长为 ________.4.等边三角形的两条高线相交所成钝角的度数是__________.5.在△ABC中,∠A=∠B=∠C,则△ABC是_____三角形.6.△ABC中,∠AC B=90°∠B=60°,BC=3㎝,则AB=_______.—三、解答题7.△ABC是等边三角形,点D在边BC上,DE∥AC,△BDE是等边三角形吗试说明理由.8.已知:如图,P,Q是△ABC边上BC上的两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.《9.已知:△ABC中,∠ACB=90°,AD=BD,∠A=30°,求证:△BDC是等边三角形.一、选择题[AQ CPB1.D 2.B二、填空题 3.2㎝ 4.120° 5.等边 6.6㎝ 三、解答题7.△ABC 是等边三角形.理由是 ∵△ABC 是等边三角形;∴∠A =∠B =∠C=60° ∵DE ∥AC ,∴∠BED =∠A=60°,∠BDE =∠C =60° ∴∠B =∠BED =∠BDE ∴△ABC 是等边三角形 8.∠BAC=120°9.证明:∵△ABC 中,∠ACB=90°,∠A=30°(已知)∴∠A +∠B=90°(直角三角形两锐角互余)》∴∠B= 90°-∠A= 90°-30°=60°∵△ABC 中,∠ACB=90°,∠A=30°(已知) ∴BC=(在直角三角形中,一个锐角等于30,那么它所对的直角边等于斜边的一半)∴△BDC 是等边三角形(有一个角是60°角的等腰三角形是等边三角形)。

等腰三角形经典练习题(5套)附带详细答案

等腰三角形经典练习题(5套)附带详细答案

练习一一、选择题1.等腰三角形的周长为26㎝,一边长为6㎝,那么腰长为()A.6㎝B.10㎝C.6㎝或10㎝D.14㎝2.已知△ABC,AB =AC,∠B=65°,∠C度数是( )A.50°B.65°C.70°D.75°3.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边的垂线C.顶角的平分线所在的直线D.腰上的高所在的直线二、填空题4.等腰三角形的两个_______相等(简写成“____________”).5.已知△ABC,AB =AC,∠A=80°,∠B度数是_________.6.等腰三角形的两个内角的比是1:2,则这个等腰三角形的顶角的度数是_______________.7.等腰三角形的腰长是6,则底边长5,周长为__________.三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.(写出每步证明的重要依据)9.如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数一、选择题1.B2.B3.C二、填空题4.底角,等边对等角5.50°6.36°或90°7.16或17三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.证明:∵AB=AD(已知)∴∠ABD=∠ADB(等边对等角)∵AD∥BC(已知)∴∠ADB=∠CBD(两直线平行,内错角相等)∴∠ABD=∠CBD(等量代换)∴BD平分∠ABC.(角平分线定义)9.45练习2一、选择题1.△ABC是等边三角形,D、E、F为各边中点,则图中共.有正三角形( )A.2个B.3个C.4个D.5个2.△ABC中,∠A:∠B:∠C=1:2:3,则BC:AB等于( ) A.2:1 B.1:2 C.1:3 D.2 :3二、填空题3.等边三角形的周长为6㎝,则它的边长为________.4.等边三角形的两条高线相交所成钝角的度数是__________.5.在△ABC中,∠A=∠B=∠C,则△ABC是_____三角形.6.△ABC中,∠AC B=90°∠B=60°,BC=3㎝,则AB=_______.三、解答题7.△ABC是等边三角形,点D在边BC上,DE∥AC,△BDE是等边三角形吗?试说明理由.8.已知:如图,P,Q是△ABC边上BC上的两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.9.已知:△ABC中,∠ACB=90°,AD=BD,∠A=30°,求证:△BDC是等边三角形.一、选择题1.D2.B二、填空题3.2㎝4.120°5.等边6.6㎝三、解答题7.△ABC是等边三角形.理由是∵△ABC是等边三角形∴∠A=∠B=∠C=60°∵DE∥AC,∴∠BED=∠A=60°,∠BDE=∠C =60°AQ CPB∴∠B =∠BED =∠BDE ∴△ABC 是等边三角形 8.∠BAC=120°9.证明:∵△ABC 中,∠ACB=90°,∠A=30°(已知)∴∠A +∠B=90°(直角三角形两锐角互余) ∴∠B= 90°-∠A= 90°-30°=60°∵△ABC 中,∠ACB=90°,∠A=30°(已知) ∴BC=BD AB =21(在直角三角形中,一个锐角等于30,那么它所对的直角边等于斜边的一半)∴△BDC 是等边三角形(有一个角是60°角的等腰三角形是等边三角形)。

小学数学等腰三角形练习题

小学数学等腰三角形练习题

小学数学等腰三角形练习题练习题一:等腰三角形基础知识练习1. 已知一个等腰三角形的底边长为10cm,顶角为60°,求其两边的长度。

2. 等腰三角形的两条等边边长分别为8cm,三角形的底边长为12cm,求三角形的周长。

3. 等腰三角形的两条等边边长为AB=6cm,BC=6cm,BD是等腰三角形BCD的高,求BD的长度。

4. 如果一个等腰三角形的顶角是80°,底边长为12cm,求两边的长度。

5. 若等腰三角形ABC中,角B的度数是40°,且边AC的长度为10cm,则边AB的长度是多少?练习题二:等腰三角形性质练习1. 等腰三角形的两个底角分别是 50°,求其顶角的度数。

2. 具有两个等长边的三角形一定是等腰三角形吗?为什么?3. 对于任意一个等腰三角形,它的顶角一定等于两个底角的和吗?请举例说明。

4. 若一个等腰三角形的两个底角之和为110°,求其顶角的度数。

5. 等腰三角形的两个底角分别是 x°,那么顶角的度数是多少?练习题三:等腰三角形的面积计算1. 一个等腰三角形的底边长为6cm,顶角为60°,求其面积。

2. 若等腰三角形的两边的长度为8cm,底边的长度为10cm,求其面积。

3. 已知等腰三角形的底边长为12cm,顶角为45°,求其面积。

4. 如果一个等腰三角形的两边的长度都是5cm,底边长为4cm,求其面积。

5. 若一个等腰三角形的面积为24cm²,底边长为6cm,求其两边的长度。

练习题四:等腰三角形的性质综合练习1. 一个等腰三角形的底边长为8cm,顶角为30°,求其周长。

2. 若等腰三角形的两边的长度为10cm,底边的长度为6cm,求其顶角的度数。

3. 如果一个等腰三角形的两个底角之和为120°,求其周长。

4. 已知等腰三角形的底边长为16cm,顶角为75°,求其面积。

等腰三角形强化练习(打印)题(含答案)

等腰三角形强化练习(打印)题(含答案)

ED C AF1.等腰三角形练习题(第一课时)一、选择题1.等腰三角形的对称轴是( )A .顶角的平分线B .底边上的高C .底边上的中线D .底边上的高所在的直线 2.等腰三角形有两条边长为4cm 和9cm ,则该三角形的周长是( ) A .17cm B .22cm C .17cm 或22cm D .18cm3.等腰三角形的顶角是80°,则一腰上的高与底边的夹角是( ) A .40° B .50° C .60° D .30° 4.等腰三角形的一个外角是80°,则其底角是( ) A .100° B .100°或40° C .40° D .80° 5.如图,C 、E 和B 、D 、F 分别在∠GAH 的两边上,且AB=BC=CD=DE=EF ,若∠A=18°,则∠GEF 的度数是( )A .80° B .90° C .100° D .108°ECAFG二、填空题 6.等腰△ABC 的底角是60°,则顶角是________度. 7.等腰三角形“三线合一”是指___________.8.等腰三角形的顶角是n °,则两个底角的角平分线所夹的钝角是_________. 9.如图,△ABC 中AB=AC ,EB=BD=DC=CF ,∠A=40°,则∠EDF•的度数是_____.10.△ABC 中,AB=AC .点D 在BC 边上(1)∵AD 平分∠BAC ,∴_______=________;________⊥_________; (2)∵AD 是中线,∴∠________=∠________;________⊥________; (3)∵AD ⊥BC ,∴∠________=∠_______;_______=_______.三、解答题11.已知△ABC 中AB=AC ,AD ⊥BC 于D ,若△ABC 、△ABD 的周长分别是20cm 和16cm ,•求AD 的长.AB C DAB C D练习题(第二课时)一、选择题1.如图1,已知OC 平分∠AOB ,CD ∥OB ,若OD=3cm ,则CD 等于( )A .3cmB .4cmC .1.5cmD .2cmD C AE D ABFEDCBH F(1) (2) (3)2.△ABC 中AB=AC ,∠A=36°,BD 平分∠ABC 交AC 于D ,则图中的等腰三角形有( ) A .1个 B .2个 C .3个 D .4个3.如图2,△ABC 中,∠ABC 与∠ACB 的平分线交于点F ,过点F 作DE ∥BC 交AB 于点D ,交AC 于点E ,那么下列结论:①△BDF 和△CEF 都是等腰三角形;②DE=BD+CE ;•③△ADE 的周长等于AB 与AC 的和;④BF=CF .其中正确的有( )A .①②③ B .①②③④ C .①② D .①4.如图3,Rt △ABC 中,CD 是斜边AB 上的高,角平分线AE 交CD 于H ,EF ⊥AB 于F ,则下列结论中不正确的是( )A .∠ACD=∠B B .CH=CE=EF C .CH=HD D .AC=AF 二、填空题5.△ABC 中,∠A=65°,∠B=50°,则AB :BC=_________.6.已知AD 是△ABC 的外角∠EAC 的平分线,要使AD•∥BC ,•则△ABC•的边一定满足________. 7.△ABC 中,∠C=∠B ,D 、E 分别是AB 、AC 上的点,•AE=•2cm ,•且DE•∥BC ,•则AD=________. 三、解答题9.如图,已知AB=AC ,E 、D 分别在AB 、AC 上,BD 与CE 交于点F ,•且∠ABD=•∠ACE , 求证:BF=CF .四、探究题11.如图,AF 是△ABC 的角平分线,BD ⊥AF 交AF 的延长线于D ,DE ∥AC•交AB 于E , 求证:AE=BE .ECABFE D ABF2.等边三角形练习题一、选择题1.正△ABC 的两条角平分线BD 和CE 交于点I ,则∠BIC 等于( ) A .60° B .90° C .120° D .150°2.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;•③三个外角(每个顶点处各取一个外角)都相等的三角形;•④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( )A .①②③ B .①②④ C .①③ D .①②③④3.如图,D 、E 、F 分别是等边△ABC 各边上的点,且AD=BE=CF ,则△DEF•的形状是( )A .等边三角形B .腰和底边不相等的等腰三角形C .直角三角形D .不等边三角形D ABF21EDCA B4.Rt △ABC 中,CD 是斜边AB 上的高,∠B=30°,AD=2cm ,则AB 的长度是( ) A .2cm B .4cm C .8cm D .16cm5.如图,E 是等边△ABC 中AC 边上的点,∠1=∠2,BE=CD ,则对△ADE 的形状最准备的判断是( )A .等腰三角形B .等边三角形C .不等边三角形D .不能确定形状 二、填空题7.已知AD 是等边△ABC 的高,BE 是AC 边的中线,AD 与BE 交于点F ,则∠AFE=______. 8.等边三角形是轴对称图形,它有______条对称轴,分别是_____________.9.△ABC 中,∠B=∠C=15°,AB=2cm ,CD ⊥AB 交BA 的延长线于点D ,•则CD•的长度是_______. 三、解答题10.如图,△ABC 中,AB=AC ,∠BAC=120°,AD ⊥AC 交BC•于点D ,•求证:•BC=3AD.D CAB11.如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE•都是等边三角形.BE 交AC 于F ,AD 交CE 于H ,①求证:△BCE ≌△ACD ;②求证:CF=CH ;③判断△CFH•的形状并说明理由.EDAH F等腰三角形测试题(1)1、等腰三角形的一边长为2,周长是7,则另外两边的长为________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档