遗传的分子基础ppt课件
合集下载
第三章遗传的分子基础PPT课件
A. 2.5%
B. 5%
C. 20%
D. 80%
DNA分子半保留复制的相关计算
一个DNA分子不论复制几代,产生的 DNA分子中含母链的DNA分子总是2 个,含母链也总是2个。
一个DNA分子复制n次后,产生的 DNA分子总数为2n,产生的DNA分子 单链 (脱氧核苷酸链)为2n×2
被标记的DNA分子连续复制n代后,子 代含有标记的DNA量为:(1/2)n
诺贝尔奖牌
2020/10/4
克里克的 夫人美术家奥 迪勒设计的DNA 双螺旋结构图
1 5
DNA分子的结构模式图
DNA分子X衍射照片
2020/10/4
16
一、DNA分子的结构
1. DNA分子的基本单位:脱氧核苷 酸
脱氧核 糖+磷酸+碱基 A腺嘌呤= T胸腺嘧啶 G鸟嘌呤≡ C胞嘧啶
2020/10/4 DNA分子是核苷酸的多聚1体7
标记的DNA分子连续复制n代后,含有 被标记的DNA分子数= (1/2)n-1
一个32P标记的噬菌体侵染细菌后经过 n次复制后,子代中不含标记物的噬菌体 为(2n-2)
后代中所含标记物的分子占全部后代 分子的比例为:2/2n
有m个某种碱基的DNA分子,连续复 制n次后所需游离的该碱基数为:m(2
8.具有100个碱基对的一个DNA分子片段, 内含40个胸腺嘧啶,如果连续复制两次,需 要游离的胞嘧啶脱氧核苷酸为:
2.衣藻细胞DNA分布和含量的百分比为:染色体 84%,叶绿体14%,线粒体0.3%~10%,游离 0.9%~1.0%,该实例说明( )
A. DNA是主要的遗传物质 B.DNA只存在于细胞核内 C. 染色体是DNA的主要载体 D.染色体是DNA的唯一载
第六章遗传的分子基础[可修改版ppt]
3.肺炎双球菌的转化
S型(光滑型):多糖组成荚膜,分SI, SII, SIII,有毒性; R型(粗糙型):无荚膜,分RI, RII, RIII,无毒性。加热杀死 的SIII能使不致病的RII变成能致病的SIII,这种现象叫转化 (transformation);把SIII死菌中能转化RII的物质叫转化因 子,分别用RNA酶、DNA酶和蛋白酶处理加热杀死的SIII的提取物, 发现只有经DNA酶处理的才无转能力,证明转化因子是DNA。
(3) tRNA的二级结构: 三叶草形状可分为:氨基酸接受区、 反密码区、二氢尿嘧啶(DHU)区、假尿苷 TΨC区和可变区。 除氨基酸接受区外,其余每个区都含有一个突环和一个臂。
3.tRNA的三级结构:倒“L”形,所有的tRNA折叠后形成大小 相似及三维构象相似的三级结构,这有利于携带的氨基酸的 tRNA进入核糖体的特定部位。在翻译过程中转运各种氨基酸至 核糖体,按mRNA的密码顺序合成蛋白质的作用。
rRNA二级结构
tRNA的二级结构(三叶草形状)
tRNA的三级结构
第二节 遗传物质体内的复制
一、DNA在活体中的自我复制 (一)DNA复制学说
2.烟草花叶病毒拆合试验
烟草花叶病毒(TMV)是由RNA与蛋白质构成的管状微粒, 中心是单链螺旋RNA、外部是蛋白质外壳。拆分感染试 验:将TMV的RNA与蛋白质分离、提纯;分别接种烟叶, 发现RNA能使烟叶致病,而蛋白质不能;用RNA酶处理 RNA后接种烟叶也不能致病,表明RNA可能就是TMV的遗 传物质。
第六章遗传的分子基础
1
(二)DNA是遗传物质的直接证据 1.噬菌体侵染与繁殖试验
P是DNA的组成部分,但不存在于蛋白质中;S存在于蛋 白质中,但DNA中没有。Hershey和Chase分别用放射性 同位系P32和S35标记,发现主要是由于DNA进入细胞内才 产生完整的噬菌体,可见DNA才是(噬菌体的)遗传物质。
遗传的分子基础PPT课件
– 基因和多肽成线性对应的一个可能的理由:DNA核 苷酸顺序规定该基因编码蛋白质的氨基酸顺序; DNA中的遗传信息就是碱基序列;并存在某种遗传 密码(genetic code),将核苷酸序列译成蛋白质氨基 酸顺序。
在其后的几十年中,科学家们沿着这两条途径前进, 探明了DNA复制、遗传信息表达与中心法则等内容。
RNA二级结构 : 单链RNA自行盘绕形成局部双螺旋的多“茎”多“环” 结构,螺旋部分称为“茎”或“臂”非螺旋部分称为“ 环”,在螺旋区,A与U配对,G与C配对。
tRNA的二级结构: 三叶草形状 RNA三叶草型的二级结构可分为:氨基酸接受区、反密码区 、二氢尿嘧啶区、TΨC区和可变区。除氨基酸接受区外,其余 每个区都含有一个突环和一个臂。如图所示:
tRNA的 三级结构: 倒“L”形,所有的tRNA折叠后形成 大小相似及三 维构象相似的三级结构,这有利于携带 的氨基酸的tRNA进入核糖体的特定部位。 如图所示:
第三节 遗传信息的表达与调控
一、中心法则及其发展
遗传信息从DNA→mRNA→蛋白质的转录和翻译的 过程,以及遗传信息从DNA→DNA的复制过程,这 就是分子生物学的中心法则(central dogma)
现在还发现,某些DNA序列可以以左 手螺旋的形式存在,称为Z- DNA(图)。
当某些DNA序列富含G-C,并且在 嘌呤和嘧啶交替出现时,可形成Z- DNA。Z-DNA除左手螺旋外,其每 个螺圈含有12个碱基对。分子直径为 18Å,并只有一个深沟。现在还不知 道,Z-DNA在体内是否存在。
DNA分子构型的多态性
胞嘧啶(C)
胸腺嘧啶(T)
尿嘧啶(U)
美妙的DNA双螺旋
1、DNA分子是由两条多核苷酸链以右手螺旋的形 式,彼此以一定的空间距离,平行于同一轴上, 很像一个扭曲的梯子。
在其后的几十年中,科学家们沿着这两条途径前进, 探明了DNA复制、遗传信息表达与中心法则等内容。
RNA二级结构 : 单链RNA自行盘绕形成局部双螺旋的多“茎”多“环” 结构,螺旋部分称为“茎”或“臂”非螺旋部分称为“ 环”,在螺旋区,A与U配对,G与C配对。
tRNA的二级结构: 三叶草形状 RNA三叶草型的二级结构可分为:氨基酸接受区、反密码区 、二氢尿嘧啶区、TΨC区和可变区。除氨基酸接受区外,其余 每个区都含有一个突环和一个臂。如图所示:
tRNA的 三级结构: 倒“L”形,所有的tRNA折叠后形成 大小相似及三 维构象相似的三级结构,这有利于携带 的氨基酸的tRNA进入核糖体的特定部位。 如图所示:
第三节 遗传信息的表达与调控
一、中心法则及其发展
遗传信息从DNA→mRNA→蛋白质的转录和翻译的 过程,以及遗传信息从DNA→DNA的复制过程,这 就是分子生物学的中心法则(central dogma)
现在还发现,某些DNA序列可以以左 手螺旋的形式存在,称为Z- DNA(图)。
当某些DNA序列富含G-C,并且在 嘌呤和嘧啶交替出现时,可形成Z- DNA。Z-DNA除左手螺旋外,其每 个螺圈含有12个碱基对。分子直径为 18Å,并只有一个深沟。现在还不知 道,Z-DNA在体内是否存在。
DNA分子构型的多态性
胞嘧啶(C)
胸腺嘧啶(T)
尿嘧啶(U)
美妙的DNA双螺旋
1、DNA分子是由两条多核苷酸链以右手螺旋的形 式,彼此以一定的空间距离,平行于同一轴上, 很像一个扭曲的梯子。
遗传的分子基础-PPT课件.ppt
(1)稀有性 (2)重演性 (3)可逆性 (4)多向性 (5)有害性和有利性 (6)突变的时期
稀有性
突变率(mutation rate):指在特定的条件下一
个细胞的某一基因在一个世代中发生突变的概
率。
表3-1人类中某些遗传病的基因突变频率
遗传病
突变频率
白化病 苯丙酮尿症
血友病 色盲 鱼鳞病 肌肉退化症 小眼球症
三、基因突变的类型和遗传效应
(一)碱基替换
➢ 碱基替换发生在编码区可出现的效应: 同义突变(same sense mutation) 错义突变(missense mutation) 无义突变(nonsense mutation)
例:DNA ——ATG → ATT m RNA——UAC → UAA (酪氨酸)(终止信号)
➢ 短分散序列 ➢ 长分散序列
短分散序列
DNA序列长度300-500bp,拷贝数可达105 以上,但无编码作用,散在分布于人类 基因组中,平均间隔距离约2.2kb。
如:Alu家族(Alu family)
Alu家族
长达300bp,在一个基因组中重复30万~50万次。
长分散序列 DNA序列长5-7kb,拷贝数在102-104之间。 如:KpnⅠ家族(KpnⅠ family)
“基因”概念的发展
19世纪60年代初,孟德尔提出“遗传因子”(genetic factor) 1909年,Johansen提出了“基因”(gene) 1910年,摩尔根等证明基因位于染色体上,并呈直线排列。基 因既是一个结构单位,又是一个功能单位(重组单位和突变单 位)——遗传的染色体理论 1941年,Beadle和Tatum提出了“一个基因一个酶”的学说 1944年,Avery证明DNA是遗传物质 1953年,Watson和Crick提出了DNA双螺旋结构模型,明确了 DNA在活体内的复制方式 1957年,Crick提出中心法则,并于1961年提出三联遗传密码
稀有性
突变率(mutation rate):指在特定的条件下一
个细胞的某一基因在一个世代中发生突变的概
率。
表3-1人类中某些遗传病的基因突变频率
遗传病
突变频率
白化病 苯丙酮尿症
血友病 色盲 鱼鳞病 肌肉退化症 小眼球症
三、基因突变的类型和遗传效应
(一)碱基替换
➢ 碱基替换发生在编码区可出现的效应: 同义突变(same sense mutation) 错义突变(missense mutation) 无义突变(nonsense mutation)
例:DNA ——ATG → ATT m RNA——UAC → UAA (酪氨酸)(终止信号)
➢ 短分散序列 ➢ 长分散序列
短分散序列
DNA序列长度300-500bp,拷贝数可达105 以上,但无编码作用,散在分布于人类 基因组中,平均间隔距离约2.2kb。
如:Alu家族(Alu family)
Alu家族
长达300bp,在一个基因组中重复30万~50万次。
长分散序列 DNA序列长5-7kb,拷贝数在102-104之间。 如:KpnⅠ家族(KpnⅠ family)
“基因”概念的发展
19世纪60年代初,孟德尔提出“遗传因子”(genetic factor) 1909年,Johansen提出了“基因”(gene) 1910年,摩尔根等证明基因位于染色体上,并呈直线排列。基 因既是一个结构单位,又是一个功能单位(重组单位和突变单 位)——遗传的染色体理论 1941年,Beadle和Tatum提出了“一个基因一个酶”的学说 1944年,Avery证明DNA是遗传物质 1953年,Watson和Crick提出了DNA双螺旋结构模型,明确了 DNA在活体内的复制方式 1957年,Crick提出中心法则,并于1961年提出三联遗传密码
第三章--遗传物质的分子基础(共73张PPT)
第8页,共73页。
结论:
在加热杀死的 ⅢS型肺炎双球菌 中有较耐高温的 转化物质能够进 入ⅡR型-->ⅡR 型转变为ⅢS型-> 无毒转变为有 毒。
16后,Avery等用生物化学方法证明这种引起转化的物质 是DNA,他们将SⅢ型细菌的DNA提取物与RⅡ型细菌混合 在一起,在离体培养条件下,成功的使少数RⅡ型细菌定向 转化为SⅢ型细菌。(如图)
(2)大肠杆菌的染色体结构:
染色体DNA 结合物质:
几种DNA结合蛋白、RNA。
第25页,共73页。
二、真核生物染色体
(一)染色质的基本结构
染色质(chromatin)是染色体在细胞分裂的间期所表现的形 态,呈纤细的丝状结构,故亦称为染色质线(chromatin fiber)。
染色质
DNA 占染色质重量的30~40% 组蛋白:H1、H2A、H2B、H3和H4
烟草花叶病毒(TMV)是由RNA与蛋白质组成的管状微粒, 它的中心是单螺旋的RNA,外部是蛋白质的外壳。(如图)
第13页,共73页。
如果将TMV的RNA与蛋白质分开,把提纯的RNA接种到烟叶上, 可以形成新的TMV而使烟草发病; 单纯利用它的蛋白质接种,就不能形成新的TMV,烟草继续保持 健壮。 如果事先用RNA酶处理提纯的RNA,再接种到烟草上,也不能 产生新的TMV。
第21页,共73页。
(二)DNA构型之变异
近来发现DNA的构型并不是固定不变 的,除主要以瓦特森和克里克提出的右手双 螺旋构型存在外,还有许多变型。
瓦特森和克里克提出的双螺旋构型称为B-DNA。 B-DNA是DNA在生理状态下的构型。
当DNA在高盐浓度下时,则以A-DNA形式存在。A-DNA是
DNA的脱水构型,它也是右手螺旋,但每螺圈含有11个核苷酸对。 A-DNA比较短和密。
结论:
在加热杀死的 ⅢS型肺炎双球菌 中有较耐高温的 转化物质能够进 入ⅡR型-->ⅡR 型转变为ⅢS型-> 无毒转变为有 毒。
16后,Avery等用生物化学方法证明这种引起转化的物质 是DNA,他们将SⅢ型细菌的DNA提取物与RⅡ型细菌混合 在一起,在离体培养条件下,成功的使少数RⅡ型细菌定向 转化为SⅢ型细菌。(如图)
(2)大肠杆菌的染色体结构:
染色体DNA 结合物质:
几种DNA结合蛋白、RNA。
第25页,共73页。
二、真核生物染色体
(一)染色质的基本结构
染色质(chromatin)是染色体在细胞分裂的间期所表现的形 态,呈纤细的丝状结构,故亦称为染色质线(chromatin fiber)。
染色质
DNA 占染色质重量的30~40% 组蛋白:H1、H2A、H2B、H3和H4
烟草花叶病毒(TMV)是由RNA与蛋白质组成的管状微粒, 它的中心是单螺旋的RNA,外部是蛋白质的外壳。(如图)
第13页,共73页。
如果将TMV的RNA与蛋白质分开,把提纯的RNA接种到烟叶上, 可以形成新的TMV而使烟草发病; 单纯利用它的蛋白质接种,就不能形成新的TMV,烟草继续保持 健壮。 如果事先用RNA酶处理提纯的RNA,再接种到烟草上,也不能 产生新的TMV。
第21页,共73页。
(二)DNA构型之变异
近来发现DNA的构型并不是固定不变 的,除主要以瓦特森和克里克提出的右手双 螺旋构型存在外,还有许多变型。
瓦特森和克里克提出的双螺旋构型称为B-DNA。 B-DNA是DNA在生理状态下的构型。
当DNA在高盐浓度下时,则以A-DNA形式存在。A-DNA是
DNA的脱水构型,它也是右手螺旋,但每螺圈含有11个核苷酸对。 A-DNA比较短和密。
遗传的分子基础 PPT课件
基面结构和病毒复制机制
E. W. Sutherland(美) 1971 R. Dulbecco(意) W. Arber(瑞士) H. O. Smith(美) 1975 1978 1978
发现3’,5’-环AMP和激素作用机制 肿瘤病毒和细胞遗传物质之间的相互作用 发现细菌限制性内切酶 发现限制性内切酶作用方式的特点
磷酸、戊糖和碱基
核酸有两类,一类为脱氧核糖核酸 (deoxyribonucleic acid, DNA),另 一类为核糖核酸(ribonuleic acid RNA)。 DNA存在细胞核和线粒体内,携带和 传递遗传信息,决定细胞和个体的基因 型(genetype)。 RNA存在于细胞质和细胞核内,参 入细胞内DNA遗传信息的表达。 病毒中,RNA也可作为遗传信息的 载体。
功能:遗传信息的贮存和携带者
核糖核酸:RNA
(ribonucleic acid)
分布于胞质、核、胞液。 参与遗传信息的表达的各过程。 某些病毒RNA也可作为遗传信息 的载体。
DNA是遗传的物质基础
阿委瑞
Oswald Avery
R型细菌:无毒型肺炎球菌 S型细菌:有毒型肺炎球菌
(1877-1955)
科学证明,一切生物都含有核酸。
核
酸
核酸(nucleic acid)是以核苷酸为 基本组成单位,通过3′,5′-磷酸二酯键 连接而成的生物大分子。 4种三磷酸脱氧核糖核苷以3’、5’磷酸二 酯键相连构成一个没有分枝的绒性大分子,它 们的两个末端分别称5’末端(游离磷酸基) 和3’末端。
核酸的基本组成单位—核苷酸
Ala一级结构测定
合成遗传密码
M. W. Nirenberg(美)1968
生理学、医学
遗传分子基础ppt.ppt
D组:S型细菌的DNA+DNA酶→水解产物+R型细菌→ 注射到小鼠体内
3.观测小鼠的生活状况
实验结果
A组:存活,B组:死亡,C组:存活,D组:存活
只有B组小鼠死亡,说明B组有S型细菌,说明S型细菌的
实验分析 DNA使R型细菌发生转化变成了S型细菌;S型细菌的其
他物质不能使R型细菌发生转化
12
二、 艾弗里确定转化因子的实验
(1)如果“转化因子”是DNA,那么S型细菌的DNA+R 型细菌→注射到小鼠体内,小鼠死亡。
假设
(2)如果“转化因子”是蛋白质,那么S型细菌的蛋白质 +R型细菌→注射到小鼠体内,小鼠死亡。
(3)如果“转化因子”是多糖,那么S型细菌的多糖+11R 型细菌→注射到小鼠体内,小鼠死亡。
实验材料
S型细菌、R型细菌、小鼠
S型菌的DNA R型细菌
S型菌
R型细菌
S型菌的
R型细菌 蛋白质或荚膜多糖 只长R型菌
S型菌的 R型细菌 DNA+DNA酶
只长R型菌
13
实验结 S型细菌体内只有DNA才是“转化因子”,即DNA 论 是遗传物质,蛋白质不是遗传物质
思考: 你认为在证明DNA是遗传物质还是
蛋白质是遗传物质的实验中最关键的设 计思路是什么?
第三章 遗传的分子基础
第一节 探索遗传物质的过程
1
生物亲代与子代之间,在形态、结构和生理功能上 常常相似,这就是遗传现象。
生物的遗传特性,使生物界的物种能够保持相对稳 定。
生物的各项生命活动都有 它的物质基础。生物遗传的物 质基础是什么呢?
根据现代细胞学和 遗传学的研究得知,控 制生物性状的主要遗传 物质是脱氧核糖核酸 (DNA)。
《遗传的分子基础》PPT课件
三、烟草花叶病毒的感染和重建实验
1.烟草花叶病毒对烟草叶细胞的感染实验
(1)实验过程及现象:
蛋白质 感染 烟草叶不出现病斑 烟草
烟草花 提 叶病毒 取
RNA 感染 烟草叶出现病斑 烟草
(2)结论:
RNA+RNA酶 感染 烟草叶不出现病斑 烟草
__R_N_A_是烟草花叶病毒的遗传物质,_蛋__白_质__不是遗传物质。
放射性同位素 标记对象
_3_5_S _
噬菌体
被标记物 蛋白质
放射性的出现 位置
_悬__浮__液__中__
_3_2_P_
噬菌体
_D_N_A__
_沉__淀__中___
4.实验结论:__D_N_A_是__遗__传__物__质___ 由于噬菌体营寄生生活,标记噬菌体时不能用含标记物的培养 基直接培养噬菌体,需先标记细菌,然后用不含标记物的噬菌 体去侵染被标记的细菌。
肺炎双球菌转化实验 1.肺炎双球菌活体和离体转化实验的比较
活体转化实验
离体转化实验
培养细菌
用小鼠(体内)
用培养基(体外)
实验结论 联系
S型菌体内有“转化 因子”
S型菌的DNA是遗 传物质
(1)所用材料相同,都是R型和S型肺炎双球菌; (2)两实验都遵循对照原则、单一变量原则
活体转化实验注射R型菌和加热杀死的S型菌后,小鼠体内分离 出的细菌和“离体S型菌DNA+R型活菌”培养基上生存的细菌都 是R型和S型都有,但是R型多。
3.结果及分析
分组
结果
结果分析
含32P噬 悬浮液中无32P,32P主要
菌体+细 分布在宿主细胞内,在
菌
子代噬菌体中检测到32P
第十一章遗传物质的分子基础ppt课件
1、生物科学基础研究的重要手段 2、改良植物 3、改良动物 4、基因工程工业 5、疾病诊断与基因治疗 6、环境保护
生物科学基础研究的重要手段
➢基因结构的重叠现象和不连续性 ➢mRNA的剪辑 ➢转座因子 ➢基因表达的调控 ➢生物与环境信号的识别 ➢癌变机理
改良植物
➢ 抗虫植物 ➢ 抗除草剂植物 ➢ 1996年开始转基因作物投入生产 ➢ 2003年,抗虫作物 1000万hm2
➢ 根据待选基因相关信息 确定筛选方法和条件。
➢ 最常用的方法是利用一段核苷酸序列作探针,用 放射性同位素或非放射性同位素标记探针,筛选 基因库
DNA探针(probe)
➢ 探针是一段能够与待选目的基因互补的核酸序列 ➢ DNA、cDNA、寡聚核苷酸 ➢ 单链、双链 ➢ 同位素标记、荧光标记、颜色标记
测序 自动测序仪 功能分析 预测软件
(二)聚合酶链式反应(PCR)扩增基因
➢ 利用PCR方法可以在数小时内使目的DNA 片段扩增到数百万个拷贝。
➢ 基本原理: 根据待扩增基因的部分序列合成成对引
物,在体外合成两个引物之间的DNA序 列。
聚合酶链式反应 (PCR,polymerase chain reaction)
抗除草剂作物 5000万hm2 ➢ 美国转基因棉花 80%;全球 50% ➢ 我国进口的大豆绝大部分是转基因大豆
改良动物
比转基因植物发展慢 原因:涉及社会伦理和宗教问题 在技术上动物细胞的再生能力 克隆羊Dolly 转基因鱼是比较成功的
将重组DNA导入受体合子细胞核中,借 助于
➢使用与切割载体相同的限制酶,将供体 生物的基因组DNA切割成许多片段
➢将所有片段连接到载体上,构成一个重 组DNA群体
➢这个群 以mRNA为模板,经反转录酶合成互补
生物科学基础研究的重要手段
➢基因结构的重叠现象和不连续性 ➢mRNA的剪辑 ➢转座因子 ➢基因表达的调控 ➢生物与环境信号的识别 ➢癌变机理
改良植物
➢ 抗虫植物 ➢ 抗除草剂植物 ➢ 1996年开始转基因作物投入生产 ➢ 2003年,抗虫作物 1000万hm2
➢ 根据待选基因相关信息 确定筛选方法和条件。
➢ 最常用的方法是利用一段核苷酸序列作探针,用 放射性同位素或非放射性同位素标记探针,筛选 基因库
DNA探针(probe)
➢ 探针是一段能够与待选目的基因互补的核酸序列 ➢ DNA、cDNA、寡聚核苷酸 ➢ 单链、双链 ➢ 同位素标记、荧光标记、颜色标记
测序 自动测序仪 功能分析 预测软件
(二)聚合酶链式反应(PCR)扩增基因
➢ 利用PCR方法可以在数小时内使目的DNA 片段扩增到数百万个拷贝。
➢ 基本原理: 根据待扩增基因的部分序列合成成对引
物,在体外合成两个引物之间的DNA序 列。
聚合酶链式反应 (PCR,polymerase chain reaction)
抗除草剂作物 5000万hm2 ➢ 美国转基因棉花 80%;全球 50% ➢ 我国进口的大豆绝大部分是转基因大豆
改良动物
比转基因植物发展慢 原因:涉及社会伦理和宗教问题 在技术上动物细胞的再生能力 克隆羊Dolly 转基因鱼是比较成功的
将重组DNA导入受体合子细胞核中,借 助于
➢使用与切割载体相同的限制酶,将供体 生物的基因组DNA切割成许多片段
➢将所有片段连接到载体上,构成一个重 组DNA群体
➢这个群 以mRNA为模板,经反转录酶合成互补
遗传的分子基础(遗传学基础课件)
转录(transcription):在RNA聚合酶的催化下,以 的反编码链为模板,按照碱基互补配对原则, dNTPs为原料合成RNA的过程。
编码链:5' - ATG AAA CGA GTC TTA TGA -
反编码链: 3'- TAC TTT GCT CAG AAT ACT mRNA: 5'- AUG AAA CGA GUC UUA UGA -
2、侧翼序列与调控序列
每个结构基因的第一个和最后一个外显子的 侧,都有一段不被转录的非编码区,称为侧翼序 (Flanking sequence)。
它是基因的调控序列,对基因的有效表达起调 作用,包括:启动子、增强子、终止子等。
二、基因复制
1. 复制子(replicon) 2. 半保留复制(semiconservative replication) 3. 半不连续复制
的分子机制。
第三节、基因的结构特征和功能
一、基因的结构
enhancer CAAT box TATA box
exon
GC box
intron
HGCAoCgAbnToesxbsobxGoGxGGTTCG—GACTGTAGCAGAlATaAwATATC A
AATA
1、外显子和内含子
• 在结构基因中,编码序列称为外显子(exon), 多肽链部分。非编码序列称为内含子(Intron 称插入序列。
授课提纲
第一节: 基因的概述 概念;类别;一般特性;DNA结构。
第二节:人类基因组DNA 单一序列;重复序列;多基因家族,假基因。
第三节:基因的结构和功能 基因的结构;基因的复制,基因表达。
第四节:基因突变 概念;特性;突变的结构;诱发突变的因素;
突变的分子机制。
编码链:5' - ATG AAA CGA GTC TTA TGA -
反编码链: 3'- TAC TTT GCT CAG AAT ACT mRNA: 5'- AUG AAA CGA GUC UUA UGA -
2、侧翼序列与调控序列
每个结构基因的第一个和最后一个外显子的 侧,都有一段不被转录的非编码区,称为侧翼序 (Flanking sequence)。
它是基因的调控序列,对基因的有效表达起调 作用,包括:启动子、增强子、终止子等。
二、基因复制
1. 复制子(replicon) 2. 半保留复制(semiconservative replication) 3. 半不连续复制
的分子机制。
第三节、基因的结构特征和功能
一、基因的结构
enhancer CAAT box TATA box
exon
GC box
intron
HGCAoCgAbnToesxbsobxGoGxGGTTCG—GACTGTAGCAGAlATaAwATATC A
AATA
1、外显子和内含子
• 在结构基因中,编码序列称为外显子(exon), 多肽链部分。非编码序列称为内含子(Intron 称插入序列。
授课提纲
第一节: 基因的概述 概念;类别;一般特性;DNA结构。
第二节:人类基因组DNA 单一序列;重复序列;多基因家族,假基因。
第三节:基因的结构和功能 基因的结构;基因的复制,基因表达。
第四节:基因突变 概念;特性;突变的结构;诱发突变的因素;
突变的分子机制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
47
.
48
从1857年孟德尔进 行豌豆杂交实验算 起,经过无数科学 家近百年的探索, 蒙在生命遗传奥秘 上的面纱正在一层 层地剥去。
科学探索的道路 是螺旋式的,科学 家们在阶梯上不断 攀登,一个新的螺 旋展现在他们的眼 前,而这将引起一 场生命科学的革命。
.
49
• 最初由孟德尔提出的遗传因子的概念, 通过摩尔根、艾弗里、赫尔希和沃森、 克里克等几代科学家的研究,已经使生 物遗传机制建立在遗传物质DNA的基础 之上。
• 结果: (1)可以破坏、消化蛋白质的胰蛋白酶和糜蛋白酶不影
响转化活性; (2)分解、消化RNA(而不是消化分解DNA)的RNA酶对
转化活性无影响; (3)在加入分解、消化DNA的DNA酶后,转化活性丧失。
这些实验进一步证明了DNA作为遗传信息载体的功能。
.
32
• 发现遗传物质的化学本质是DNA,这是基 因研究上一个重要的里程碑。但在当时, 这项重要的发现并未引起足够的重视。 艾弗里虽曾被提名为诺贝尔奖的候选人, 但当时评奖委员会认为“最好等到DNA的 转化机理更多地为人们所了解的时候再 说”。可是,当争议平息、诺贝尔奖评 选委员会准备授奖之时,他已经去世了。
36
噬菌体感染实验
• 35S标记蛋白质外壳的噬菌体感染细菌 细菌无放射性
• 32P标记DNA内芯的噬菌体感染细菌细 菌有放射性
• 这一结果确凿无疑地证明,进入寄主细胞内 的是噬菌体DNA,而不是蛋白质外壳。噬菌 体的DNA不但包括噬菌体自我复制的信息, 而且包括合成噬菌体蛋白质所需要的全部信 息。
.
42
富兰克林拍摄的DNA晶体的X射线衍射照片,
这张照片正是发现DNA结构的关键
.
43
.
45
.
46
• DNA分子双螺旋结构模型的发现,是生 物学史上的一座里程碑:
• ●为DNA复制提供了构型上的解释,使 人们对DNA作为基因的物质基础不再怀 疑
• ●奠定了分子遗传学的基础。DNA双螺 旋模型在科学上的影响是深远的
(1908~1997)
当人们为艾弗里的实验而激烈争论时, 研究噬菌体的美国微生物学家赫尔希 等人在考虑,能否将蛋白质和DNA完 全分开,单独观察DNA的作用呢?他 们受赫里奥特思路的启发设计了一个 精巧的噬菌体感染实验。赫尔希与德 尔布吕克和卢里亚一起,获1969年的
诺贝尔生理学医学奖奖。
.
35
.
难道S型致病菌复活了吗?这就是著名的 “格里菲斯之谜”。
.
22
.
23
●这是一个令人困惑的结果
• R型活菌或S型死菌分别注入小鼠体内,都不会 致病,而两者混合注入却致病了。
●解释:
• 加热杀死的S型菌中存在某种导致细菌类型发生 转化的物质。这种物质究竟是什么,人们尚不 知道,暂时叫做“转化因子”(transforming principle)。
.
18
◆认识到基因的化学本质是核酸而不 是蛋白质,经历了一段漫长的历史 过程。
◆发现DNA的遗传功能,始于1928 年格里菲斯(P.Griffith)所做的 用肺炎双球菌感染小鼠的实验。
.
19
1928年,英国科学家格里 菲思在肺炎球菌实验中deric Griffith 1879—1941
R型肺炎球菌转化为S型肺炎球菌的现象,称为 转化(transformation) 。
.
24
• 导致R型细菌发生转化的因子,其化学本 质究竟是什么?这个问题,与遗传学家 提出的“基因的化学本质是什么?”实 质上是同一个问题。
.
25
• 格里菲斯发现的转化现象为以后认识到 DNA是遗传物质奠定了基础。
.
33
• 1951年,赫里奥特(R·Herriott)提出一个十 分富有魅力和启发性的假说:
“病毒的作用可能像一个充满着转化因子 的注射针。这样的病毒本身不会进入细 胞,但它不仅用尾部接触寄生细胞,并 可能通过酶的作用在细胞外膜上钻一小 孔,然后病毒头部的DNA就钻入细胞。”
.
34
Alfred Day Hershey
.
9
1、基因与染色体
• 在孟德尔的成果获得承认后,生物界都 知道是遗传因子(即基因)决定了生物 的遗传。但是,基因究竟在细胞内的什 么地方?摩尔根以果蝇为试验对象回答 了这一问题,基因在染色体上。
.
10
•摩尔根和他的学生利用果 蝇作了大量的研究。1926 年出版《基因论》,建立 了著名的基因学说。
• 细胞化学研究表明,染色体的主要成分 是蛋白质和核酸。那么,基因究竟是蛋 白质还是核酸?
蛋白质作为生命物质的主要成分和生命活 动的体现者,它不仅参与所有的生命过 程,而且它的化学结构也有多样性和可 塑性。
.
17
• ◆所以在相当一段时间里,学术 界认为基因是蛋白质,认为只有 像蛋白质这样复杂的大分子才能 决定细胞的特征和遗传
一词来代替孟德尔假定的
“遗传因子”。从此基因便
成为遗传因子的代名词一直
Wilhelm Ludwig Johannsen 沿用至今。 不过此时的基
(1857~1927)
因仍然是一个未经证实的、
仅靠逻辑推理得出的概念。
.
8
(二)基因结构和功能的探索
• 随着遗传学、分子生物学、生物 化学的发展,人们对基因本性的 认识逐渐深入,基因的概念和涵 义也不断地发展和丰富。
.
51
美国生物学家尼伦伯格等
人在1961~1966年期间
成功破译了遗传密码,以
无可辩驳的科学依据证实
了DNA双螺旋结构的正
确性。人们对遗传机制有
了更深刻的认识。1968年
Marshall Warren Nirenberg ( 1927~)
获得诺贝尔生理学医学奖
奖。
.
52
.
53
• DNA只存在于细胞核中,蛋白质的合 成在细胞质中进行,细胞核中的遗传信 息如何转达到细胞质中呢?
.
6
Hugo De Vries (1848~1935)
Carl Erich Correns (1864~1933)
Erich von Tschermak (1871~1962)
重新发现孟德尔的生物学家
.
7
• 1909年,丹麦遗传学家约翰
逊在《精密遗传学原理》一
书中根据希腊语“给予生命”
之义,创造“基因”(gene)
艾弗里等人的试验和结论是对DNA认识史上的一次重 大突破,彻底改变了DNA在生物体内无足轻重的传 统观念。
.
30
但当时的主流观点并不接受艾弗里DNA 是遗传物质的观念,认为提取的DNA 无论如何纯净,仍然可能有残余的蛋 白质,蛋白质才是有活性的转化因子
.
31
针对学术界的否定意见,艾弗里于1946年用蛋白酶、RNA 酶和DNA酶分别处理肺炎球菌的细胞抽提物。
Thomas Hunt Morgan (1866~1945)
.
11
• 摩尔根在《基因论》中绘制了果蝇基因 位置图,首次完成了当时最新的基因概 念的描述:
• 基因是在染色体上呈线性排列的遗传单 位,它不仅是决定性状的功能单位,也 是一个突变单位和交换单位。
• 至此,人们对基因概念的理解更加具体 和丰富了。
.
12
摩尔根果蝇遗传实验具有划时代意义
◆人类第一次把基因与染色体联系起来,认 为基因是一种物质,是染色体上的一个特 定的区段。 ◆确立并发展了染色体的遗传理论。
.
13
Thoman Hunt Morgan
( 1866~1945)
因发现染色体的遗传机制,创立染色体遗传理
论而于1933年获诺贝尔生理学医学奖
.
27
• 艾弗里等人的实验证据:
分离S型死菌的提取液→分别检测各分离 组分(蛋白质、类脂、多糖、RNA和DNA) 的转化活性→只有DNA具有转化因子活性
.
28
.
29
进一步的实验:
用化学法和酶法
↓
去除S型死菌抽提物中的蛋白质、类脂、多糖和RNA
↓
抽提物的剩余物质
↓
R型→转化→S型
1944年,他们确认,“转化因子”就是DNA。
.
4
孟德尔的遗传因子
孟德尔提出:
●生物的遗传性状是通过“遗传因子” (hereditary factor)进行传递的 ●遗传因子是一些独立的遗传单位 孟德尔把可观察的性状和控制它的内在的遗 传因子区分开来
遗传因子作为基因的雏形名词诞生了
.
5
“重新发现”孟德尔
1900年,是遗传学史乃至生物科学史上划时 代的一年,来自三个国家的三位学者独立 地“重新发现”了孟德尔的遗传规律,他 们是荷兰的德弗里斯(Hugo De Vries, 1848~1935)、德国的柯灵斯(Carl Erich Correns,1864~1933)和澳大利亚的契马 克(Erich von Tschermak-Seysenegg, 1871~1962)。从此,遗传学进人了孟德尔 时代。
.
50
• DNA如何储存并表达遗传信息?这个问题引 起了很多物理学家的兴趣,1945年,薛定谔 在《生命是什么》一书中提出了遗传密码的 概念。
• 1954年,物理学家伽莫夫提出三联体密码的 概念。
• 1961年,尼伦伯格和马太利用三联体密码合 成了由笨丙氨酸组成的多肽长链。
• 到1966年,64种遗传密码的含义全部得到了 解答,形成了一部密码辞典。
.
20
肺炎双球菌有两种类型:
• S型 菌体包有多糖类荚膜,菌落光滑
(smooth),有毒性,可以使人患肺炎 或使小鼠患败血症
• R型 不具荚膜, 菌落粗糙(rough),