专题01 集合与简易逻辑 (解析版)
数学(理)知识清单-专题01 集合与简单逻辑(考点解读)(原卷+解析版)
B. {–1,0,1}
C. {–2,0,1,2} D. {–1,0,1,2}
5. (2018 年全国 I 卷)已知集合
,则
()
A.
B.
C.
D.
6 .(2018 年全国Ⅱ卷)已知集合
,则 中元素的个数为( )
A. 9 B. 8 C. 5 D. 4
7.(2018 年全国Ⅲ卷)已知集合
,
,则
()
A.
B.
C.
D.既不充分也不必要条件
【举一反三】(2018 年天津卷)设 ,则“
”是“ ”的
A. 充分而不必要条件
B. 必要而不重复条件
C. 充要条件
D. 既不充分也不必要条件
【变式探究】【2017
天津,理
4】设
R
,则“ |
π 12
|
π 12
”是“
sin
1 2
”的
(A)充分而不必要条件 (B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件
C. A B {x | x 1}
D. A B
2.【2017 课标 II,理】设集合 1, 2, 4 , x x2 4x m 0 。若 1 ,则 ( )
A.1, 3
B. 1, 0
C. 1, 3
D. 1ห้องสมุดไป่ตู้ 5
3.【2017 课标 3,理 1】已知集合 A= (x, y│) x2 y2 1 ,B= (x, y│) y x ,则 A B 中元素的个
,
,则
A.
B.
C.
D.
3. (2018 年北京卷)设集合
则( )
A. 对任意实数 a,
B. 对任意实数 a,(2,1)
专题一 集合与简易逻辑
专题一 集合与简易逻辑【考试要求】理解集合、子集、补集交集、并集的概念。
了解空集和全集的意义,了解属于、包含、相等关系的意义,能熟练使用有关的术语和符号,能正确地表示一些较简单的集合。
了解逻辑联结词“或”、“且”、“非”的含义。
了解命题及命题的逆命题、否命题、逆否命题的有关概念,会分析四种命题的相互关系。
理解充分条件、必要条件和充要条件的意义,掌握命题条件的充分性、必要性和充要性的判断。
【命题导向】集合是每年高考必考的知识点之一,考查方式可以是集合本身的性质与运算,也可以是以集合为载体而考查其它数学知识,特别考查集合语言和集合思想的运用。
集合在命题时,会以基本题型为主,大多数是选择题、填空题,多为学科内的小型综合题,从涉及知识上讲,常与映射、函数、方程、不等式等结合命题,还可能出小型应用题。
简易逻辑在命题时,可分为两大类,一类是条件、命题本身的基本题,多为选择题、填空题;另一类是简易逻辑与其他知识的综合题,主要是与几何知识、函数知识结合的充要条件的论证、复合命题真假的判断问题。
【试题精选】题型1 集合的基本概念与运算1.设I 为全集,321S S S 、、是I 的三个非空子集,且123S S S I = ,则下面论断正确的是( )A .C I Φ=)(321S S SB.⊆1S (C I S 2 C I S 3)C.C I S 1 C I S 2 C I S 3=∅D.⊆1S ( C I S 2 C I S 3)答案:C解析:本题主要考查了全集、子集的概念,以及交集、并集、补集几种集合的运算。
要求考生能借助图形或利用等价转化的方法将复杂问题转化为简单问题。
法一:利用文氏图求解由图可知A 、B 、D 均不成立法二:利用摩根法则C I A C I B=C I (A B ) C I A C I B= C I (A B ) 可知C I S 1 C I S 2 C I S 3=C I (S 1 S 2 S 3)=C I I =∅。
专题一-集合-与简易逻辑
专题一集合与简易逻辑一、考点回顾1、集合的含义及其表示法,子集,全集与补集,子集与并集的定义;2、集合与其它知识的联系,如一元二次不等式、函数的定义域、值域等;3、逻辑联结词的含义,四种命题之间的转化,了解反证法;4、含全称量词与存在量词的命题的转化,并会判断真假,能写出一个命题的否定;5、充分条件,必要条件及充要条件的意义,能判断两个命题的充要关系;6、学会用定义解题,理解数形结合,分类讨论及等价变换等思想方法。
二、经典例题剖析考点1、集合的概念1、集合的概念:(1)集合中元素特征,确定性,互异性,无序性;(2)集合的分类:①按元素个数分:有限集,无限集;②按元素特征分;数集,点集。
如数集{y|y=x2},表示非负实数集,点集{(x,y)|y=x2}表示开口向上,以y轴为对称轴的抛物线;(3)集合的表示法:①列举法:用来表示有限集或具有显著规律的无限集,如N+={0,1,2,3,…};②描述法。
2、两类关系:(1)元素与集合的关系,用∈或∉表示;(2)集合与集合的关系,用⊆,≠⊂,=表示,当A⊆B时,称A是B的子集;当A≠⊂B时,称A是B的真子集。
3、解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x|x∈P},要紧紧抓住竖线前面的代表元素x以及它所具有的性质P;要重视发挥图示法的作用,通过数形结合直观地解决问题4、注意空集∅的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如A⊆B,则有A=∅或A≠∅两种可能,此时应分类讨论例1、下面四个命题正确的是(A)10以内的质数集合是{1,3,5,7} (B)方程x2-4x+4=0的解集是{2,2} (C)0与{0}表示同一个集合(D)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}m}.若B⊆A,则实数m=.例2、已知集合A={-1,3,2m-1},集合B={3,2考点2、集合的运算1、交,并,补,定义:A ∩B={x|x ∈A 且x ∈B},A ∪B={x|x ∈A ,或x ∈B},C U A={x|x ∈U ,且x ∉A },集合U 表示全集;2、运算律,如A ∩(B ∪C )=(A ∩B )∪(A ∩C ),C U (A ∩B )=(C U A )∪(C U B ), C U (A ∪B )=(C U A )∩(C U B )等。
易学通-重难点一本过高三数学一轮复习-集合与简易逻辑:第一章 集合 含解析
重点列表:重点名称重要指数重点1集合的概念★★★重点2集合间的基本关系★★★★重点3集合的运算★★★★★重点1:集合的概念【要点解读】1、集合的含义:某些指定的对象集在一起就成为一个总体,这个总体就叫集合,其中每一个对象叫元素。
2、集合中元素的三个特性:确定性、互异性、无序性.(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素,这叫集合元素的确定性;(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素,这叫集合元素的互异性;(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样,这叫集合元素的无序性.3、元素与集合之间只能用“∈”或“∉”符号连接.4、集合的表示常见的有四种方法.(1)自然语言描述法:用自然的文字语言描述.如:英才的所有团员组成一个集合.(2)列举法:把集合中的元素一一列举出来,元素之间用逗号隔开,然后用一个花括号全部括上。
如:{0,1,2,3}(3)描述法:将集合中的元素的公共属性描述出来,写在花括号内表示集合的方法。
它的一般格式为)}(|{x P x ,“|”前是集合元素的一般形式,“|”后是集合元素的公共属性。
如2{|230}x x x --=、 2{|23}x y x x =--、2{|23}y y x x =--、2{(,)|23}x y y x x =--。
(4)Venn 图法:如:75315、常见的特殊集合:(1)非负整数集(即自然数集)N (包括零)(2)正整数集N*或+N (3)整数集Z (包括负整数、零和正整数) (4)有理数集Q (5)实数集R6、集合的分类: (1)有限集:含有有限个元素的集合.(2)无限集:含有无限个元素的集合。
(3)空集 :不含任何元素的集合【考向】集合的含义【例题】【2017届山东潍坊临朐县高三10月月考数学】已知集合{(,)|()}M x y y f x==,若对于任意11(,)x y M∈,存在22(,)x y M∈,使得12120x x y y+=成立,则称集合M是“理想集合”。
专题一 集合与简易逻辑
专题1集合与简易逻辑一.知识网络以“集合”为基础,由“运算”分枝杈.二.高考考点1.对于集合概念的认识与理解,重点是对集合的识别与表达.2.对集合知识的综合应用,重点考查准确使用数学语言的能力以及运用数形结合思想解决问题的能力.3.理解逻辑联结词“或”“且”“非”的含义;命题的四种形式;相关命题的等价转换,重点考查逻辑推理和分析问题的能力.4.充分条件与必要条件的判定与应用.三.知识要点(一)集合1.集合的基本概念(1)集合的描述性定义:某些指定的对象集在一起就成为一个集合.认知:集合由一组指定的(或确定的)对象的全体组成,整体性是其重要特征之一.集合的元素须具备以下三个特性:(I)确定性:对于一个给定的集合,任何一个对象是否为这个集合的元素是明确的,只有“是”与“否”两种情况.(II)互异性:集合中的任何两个元素都不相同.(III)无序性:集合中的元素无前后顺序之分.(2)集合的表示方法集合的一般表示方法主要有(I)列举法:把集合中的元素一一列举出来的方法.提醒:用列举法表示集合时,须注意集合中元素的“互异性”与“无序性”,以防自己表示有误或被他人迷惑.(II)描述法:用确定的条件表示某些对象是否属于这个集合的方法.①描述法的规范格式:{x|p(x),x∈A}其中,大括号内的竖线之前的文字是“集合的代表元素”,竖线后面是借助代表元素描述的集合中元素的属性及范围(即判断对象是否属于集合的确定的条件).②认知集合的过程:认清竖线前的代表元素;考察竖线后面代表元素的属性及范围结合前面的考察与集合的意义认知集合本来面目.例:认知以下集合:;;;,其中M={0,1}.分析:对于A,其代表元素是有序数对(x,y),即点(x,y)点(x,y)坐标满足函数式y=x2-1(x ∈R) 点(x,y)在抛物线y=x2-1上集合A是抛物线y=x2-1(x∈R)上的点所组成的集合.对于B,其代表元素为y y是x的二次函数:y=x2-1(x∈R),再注意到集合的意义是范围集合B是二次函数y=x2-1(x∈R)的取值范围集合B是二次函数y=x2-1(x∈R)的值域,故B={y|y≥-1}.对于C,其代表元素是x x是二次函数y=x2-1的自变量集合C是二次函数y=x2-1的自变量的取值范围集合C是二次函数y=x2-1(x∈R)的定义域,即C=R.对于D,其代表元素是x x是集合M的子集集合D由M的(全部)子集组成,故D={φ,{0},{1},{0,1}}.(III)数轴法和文氏图法:文氏图法是指用一条封闭曲线围成的区域(内部)表示集合的方法.此为运用数形结合方法解决集合问题的原始依据.评注:集合的符号语言与文字语言的相互转化,是师生研究集合的基本功.为了今后的继续性发展,这一软性作业必须高质量完成.2.集合间的关系(1)子集(I)子集的定义(符号语言):若x∈A x∈B,则A B(注意:符号的方向性)规定:空集是任何集合的子集,即:对任何一个集合A,都有φ A显然:任何一个集合都是自身的子集, 即A A.(II)集合的相等:若A B且B A,则A=B.(III)真子集定义:若A B且A≠B;则A B(即A是B的真子集).特例:空集是任何非空集合的真子集.(2)全集,补集(I)定义设I是一个集合,A I,由I中所有不属于A的元素组成的集合,叫做I中子集A的补集(或余集),记作A,即A={x|x∈I,且x A}.在这里,如果集合I含有我们所要研究的各个集合的全部元素,则将I称为全集,全集通常用U表示.(II)性质:φ=U;U=φ;(A)=A(III)认知:补集思想为我们运用“间接法”解题提供理论支持.对于代数中的探求范围等问题,当正面入手头绪繁多或较为困难时,要想到运用“间接法”进行转化求解.(3)交集,并集(I)定义:①由所有属于集合A且属于B的元素所组成的集合,叫做A与B的交集,记作A∩B,即A∩B={x|x∈A,且x∈B};②由所有属于集合A或属于集合B的元素所组成的集合,叫做A与B的并集,记作A∪B,即A∪B={x|x∈A,或x∈B}.(II)认知:上面定义①、②中的一字之差(“且”与“或”之差),既凸显交集与并集的个性,又展示二者之间的关系.在这里,要特别注意的是,并集概念中的“或”与生活用语中的“或”含义不同,并集概念中的“或”源于生活,但又高于生活中的“或”:生活用语中的“或”是“或此”.“或彼”.二者只取其一,并不兼有;而并集概念中的“或”是“或此”.“或彼”“或彼此”,可以兼有.因此,“x∈A或x∈B”包括三种情形:x∈A且x B;x∈B且x A;x∈A且x∈B.(III)基本运算性质①“交”的运算性质A∩A=A;A∩φ=φ;A∩B= B∩A;A∩ A =φ;(A∩B)∩C= C∩(A∩B)= A∩B∩C②“并”的运算性质A∪A=A;A∪φ=A;A∪B= B∪A;A∪A=I;(A∪B)∪C=A∪(B∪C)= A∪B∪C③交.并混合运算性质A∪(B∩C)= (A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A∩C);A∩(A∪C)=AA∪(A∩B)=A(IV )重要性质①A∩B=A A B;A∪B=B A B;②A∩B=(A∪B);A∪B=(A∩B)上述两个性质,是今后解题时认知、转化问题的理论依据.(二)简易逻辑1.命题(1)定义(I)“或”.“且”“非”这些词叫做逻辑联结词.(II)可以判断真假的词句叫做命题.其中,不含逻辑联结词的命题叫做简单命题,由简易命题与逻辑联结词构成的命题叫做复合命题.复合命题的构成形式:①p或q;②p且q;③非p(即命题p的否定).(2)复合命题的真假判断(I)当p、q同时为假时“p或q”为假,其它情况时为真;(II)当p、q同时为真时“p且q”为真,其它情况时为假;(III)“非p”与p的真假相反.(3)认知(I)这里的“或”与集合的“并”密切相关(并集又称为或集):集合的并集是用“或”来定义的:A∪B={x| x∈A或x∈B}.“p或q”成立的含义亦有三种情形:p成立但q不成立;q成立但p不成立,p,q同时成立.它们依次对应于A∪B中的A∩ B;B∩ A;A∩B.不过,A∪B强调的是一个整体,而“p或q”是独立的三种情形的松散联盟.(II)“或”、“且”联结的命题的否定形式:“p或q”的否定p且q;“p且q” p或q.它们类似于集合中的(A∪B)=(A)∩(B),(A∩B)=(A)∪(B)(4)四种命题(I)四种命题的形式:用p和q分别表示原命题的条件和结论,用p和q分别表示p和q的否定,则四种命题的形式为原命题:若p则q;逆命题:若q则p;否命题:若p则q逆否命题:若q则p.(II)四种命题的关系①原命题逆否命题.它们具有相同的真假性,是命题转化的依据和途径之一.②逆命题否命题,它们之间互为逆否关系,具有相同的真假性,是命题转化的另一依据和途径.除①、②之外,四种命题中其它两个命题的真伪无必然联系.2.充分条件与必要条件(I)定义:若p q则说p是q的充分条件,q是p的必要条件;若p q则说p 是q的充分必要条件(充要条件).(II)认知:①关注前后顺序:若p q则前者为后者的充分条件;同时后者为前者的必要条件.②辨析条件、结论注意到条件与结论的相对性.若条件结论,则这一条件为结论的充分条件;若结论条件,则这一条件为结论的必要条件.③充要条件即等价条件,也是完成命题转化的理论依据.“当且仅当”.“有且仅有”.“必须且只须”.“等价于”“…反过来也成立”等均为充要条件的同义词语.四.经典例题例1.判断下列命题是否正确.(1)方程组的解集为{(x,y)|x=-1或y=2};(2)设P={x|y=x2},Q={(x,y)|y=x2},则p Q;(3)设,则M N;(4)设,,则集合等于M∪N;分析:(1)不正确.事实上,方程组的解为有序实数对(-1,2),而-1或2不是有序实数对,故命题为假.正确解题:方程组解集应为(初始形式)=={(-1,2)}(2)不正确.在这里,P为数集,Q为点集,二者无公共元素,应为P∩Q=φ.(3)为认知集合中的元素的属性,考察代表元素的特征与联系:对两集合的代表元素表达式实施通分,对于集合M,其代表元素,2k+1为任意奇数;对于集合N,其代表元素,k+2为任意整数.由此便知M N,故命题正确.(4)不正确.反例:注意到这里f(x),g(x)的定义域未定,取,,则f(x)·g(x)=1(x≠-3且x≠1),此时f(x)g(x)=0无解.揭示:一般地,设函数f(x),g(x)的定义域依次为P、Q,且,,则有例2.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}(1)若A∩B=B,求a的值;(2)若A∪B=B,求a的值.解:集合A={-4,0}(1)A∩B=B B A即B{-4,0}由有关元素与B的从属关系,引入(第一级)讨论.(I)若0∈B,则有a2-1=0a=1(以下由a的可能取值引入第2级讨论).又当a=-1时,方程x2+2(a+1)x+a2-1=0x2=0x=0此时B={0}符合条件;当a=1时,方程x2+2(a+1)x+a2-1=0x2+4x=0x(x+4)=0此时B=A符合条件.(II)若-4∈B,则有16+2(a+1)(-4)+a2-1=0a2-8a+7=0(a-1)(a-7)=0 a=1或a=7当a=1时,由(I)知B=A符合条件;当a=7时,方程x2+2(a+1)x+a2-1=0x2+16x+48=0(x+12)(x+4)=0x=-12或x=-4此时B={-12,-4} A.(III)注意到B A,考察B=φ的特殊情形:B=φ=4(a+1)2-4(a2-1)<0 a<-1,此时集合B显然满足条件.于是综合(I)、(II)、(III)得所求a的取值集合为{a|a=1或a≤-1}.(2)集合B中至少有两个元素①而方程x2+2(a+1)x+a2-1=0至多有两个实根集合B中至多有两个元素②∴由①、②得集合B中只含两个元素B=A此时,由(1)知a=1,即所求a的的数值为a=1.点评:(1)在这里,对有关事物进行“特殊”和“一般”的“一分为二”的讨论尤为重要:对集合A.B 的关系,分别考察特殊(相等)和一般(真包含)情形,引出第一级讨论;对集合B的存在方式,又分别考察特殊(B=φ)和一般(B≠φ)的两种情形,引出第二级讨论.“特殊”(特殊关系或特殊取值)是分类讨论的切入点.(2)空集φ作为一个特殊集合,既是解题的切入点,又是设置陷阱的幽灵,注意到“一般”与“特殊”相互依存的辩证关系,解题时应适时考察“特殊”,自觉去构建“特殊”与“一般”的辩证统一.例3.已知A={x|x2-4x+3<0,x∈R},B={x|21-x+a≤0且x2-2(a+7)x+5≤0,x∈R}若A B,试求实数a的取值范围.解:A={x|1<x<3}=(1,3)注意A B,故对任意x∈(1,3),不等式21-x+a≤0与x2-2(a+7)x+5≤0总成立.(1)对任意x∈(1,3),f(x)=x2-2(a+7)x+5≤0总成立,f(x)=0有两实根,且一根不大于1,而另一根不小于3①(2)令g(x)=-21-x, x∈(1,3),则对任意x∈(1,3),21-x+a≤0总成立.a≤g(x)总成立a≤g min(x) a≤-1②∴将①.②联立得-4≤a≤-1.∴所求实数a的取值范围为{a|-4≤a≤-1}.点评与揭示:在某个范围内不等式恒成立的问题,要注意向最值问题的等价转化:(1)当f(x)在给定区间上有最值时a≤f(x)恒成立a≤f min(x)a≥f(x)恒成立a≥f max(x)(2)当f(x)在给定区间上没有最值时a≤f(x)恒成立a≤f(x)的下确界a≥f(x)恒成立a≥f(x)的上确界例4.已知p:-2≤x≤10,q:1-m≤x≤1+m(m>0),若是q的必要而不充分条件,求实数m的取值范围.分析:从认知与q入手,为了化生为熟,将,q分别与集合建立联系.解:由已知得:x<-2或x>10;q:x<1-m或x>1+m(m>0).令A={x|x<-2或x>10},B={x| x<1-m或x>1+m(m>0)},则由是q的必要而不充分条件得B A或m9∴所求实数m的取值范围为[9,+∞).点评:从认知已知条件切入,将四种命题或充要条件问题向集合问题转化,是解决这类问题的又一基本策略.例5.设有两个命题,p:函数f(x)=+2ax+4的图像与x轴没有交点;Q:不等式恒成立,若“P或Q”为真,“P且Q”为假,则实数a的取值范围是()A.(-∞,-2]B.[2,+∞)C.[-2,2]D.(-2,2)分析:(ⅰ)化简或认知P、Q:函数f(x)=+2ax+4的图像与x轴没有交点,△=-2<a<2∴P: -2<a<2①又不等式恒成立a小于的最小值②+≥=2③∴由②、③得a﹤2即Q: a﹤2(ⅱ)分析、转化已知条件“P或Q”为真P、Q中至少有一个为真a﹤2④“P且Q”为假P、Q中至少有一个为假或为真a≤-2或a≥2⑤于是由④⑤得,同时满足上述两个条件的a的取值范围是a≤-2∴实数a的取值范围为(-∞,-2].例6. 若p:-2﹤m﹤0,0﹤n﹤1;q:关于x的方程有两个小于1的正根,试分析p是q的什么条件?分析:在这里,q是关于x的二次方程有两个小于1的正根的条件,为便于表述,设该方程的两个实根为,且.然后根据韦达定理进行推理.解:设,为方程的两个实根,且,则该方程的判别式为:△=又由韦达定理得∴当0﹤﹤1时,由②得-2﹤m﹤0,0﹤n﹤1即q p③另一方面,若在p的条件下取m=-1,n=0.75,则这一关于x的二次方程的判别式△===1-3﹤0,从而方程无实根∴p q④于是由③④得知,p是q的必要但不充分的条件.点评:若令f(x)=,则借助二次函数y=的图像易得关于x的二次方程有两个小于1的正根的充要条件为在这里容易产生错误结论为:方程x2+mx+n=0有两个小于1的正根的充要条件是想一想:错在哪里?你能举出反例吗?注意到这里的p由※式中部分条件构造而成,它关于m、n的限制当然更为宽松.五.高考真题1.设I为全集,S1,S2,S3是I的三个非空子集,且S1∪S2∪S3=I,则下面判断正确的是()A.S1∩(S2∪S3)=φ B. S1(S2∩S3)C.S1∩S2∩S3=φ D. S1(S2∪S3)分析:对于比较复杂的集合运算的问题,一要想到利用有关结论化简,二要想到借助特取法或文氏图筛选.解法一(直接法):注意到A∩B=(A∪B),A∪B=(A∩B)及其延伸,∴S1∩S2∩S3=(S1∪S2∪S3)=I=φ,故选C解法二(特取法):令S1={1,2},S2={2,3},S3={1,3}I={1,2,3}则S1={3}S2={1}S3={2}由此否定A、B;又令S1=S2=S3={a},则I={a},S2=S3=φ,由此否定D.故本题应选C2.已知向量集合,则M∩N等于()A.{(1,1)} B. {(1,1),(-2,-2)} C .{(-2,-2)} D.φ分析:首先考虑化生为熟.由向量的坐标运算法则得,又令=(x,y),则有,消去λ得4x-3y+2=0,∴M={(x,y)|4x-3y+2=0,x,y∈R}.同理={(x,y)|5x-4y+2=0,x,y∈R}∴M∩N=={(-2,-2)},∴本题应选C点评:从认知集合切入,适时化生为熟,乃是解决集合问题的基本方略.3.设集合I={(x,y)|x∈R,y∈R},A={(x,y)|2x-y+m>0},B={(x,y)|x+y-n≤0},那么点P(2,3)∈A∩(B)的充要条件是()A.m>-1,n<5B m<-1,n<5C m>-1,n>5 D m<-1,n>5分析:由题设知P(2,3) ∈A,且P(2,3)∈B(※)又B={(x,y)|x+y-n>0},∴由(※)得,故本题应选A4.设函数,区间M=[a,b](a<b),集合N={y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有()A.0个 B 1个 C 2个 D 无数多个分析:从认知集合切入.这里的集合N为函数f(x),(x∈M)的值域.注意到f(x)的表达式中含有|x|,为求f(x)的值域,先将f(x)化为分段函数的形式,以便于化整为零,逐段分析.∴当x>0时,f(x)<0;当x=0时,f(x)=0;当x<0时,f(x)>0.由此可知,当x≠0时,f(x) (x∈M)的值域与定义域M不可能相等;又当x=0时,f(x)的定义域为{0},故不存在a<b使区间[a,b]仅含元素0,因此,本题应选A.点评:解决分段函数问题的基本策略:分段考察,综合结论.在这里,认知集合N仍是解题成败的关键所在.5.函数,其中P,M为实数集R的两个非空子集,又规定f(P)={y|y=f(x),x∈P}f(M)={y|y=f(x),x∈M},给出下列四个判断:①若P∩M=φ,则f(P)∩f(M)= φ;②若P∩M≠φ,则f(P)∩f(M)≠φ;③若P∪M=R,则f(P)∪f(M)= R;④若P∪M≠R,则f(P)∪f(M)≠ R其中正确判断有()A.1个B2个C3个D4个分析:首先认知f(P),f(M):f(P)为函数y=f(x)(x∈P)的值域;f(M)为函数y=f(x)(x∈M)的值域.进而考虑仿照第1题,从构造反例切入进行筛选.(1)取P={x|x≥0},M={x|x<0},则f(P)={x|x≥0}, f(M)={x|x>0}此时P∩M=φ,P∪M=R,但f(P)∩f(M) ≠φ,f(P) ∪f(M)≠ R由此判断①.③不正确(2)当P∩M≠φ时,则由函数f(x)的定义知P∩M={0}(否则便由f(x)的解析式导出矛盾),所以0∈f(P),0∈f(M),从而f(P)∩f(M)≠φ.由此判断②正确.(3)当P∪M≠R时,若0P∪M,则由函数f(x)的定义知,0f(P) ∪f(M)若存在非零x0P∪M,(※),易知x0f(P)当x0f(M)时,有x0f(P)∪f(M);当x0∈f(M)时,则易知-x0∈M.注意到这里-x0≠0,所以-x0P,从而-x0f(P).又∵x0M,∴-x0f(M),∴-x0f(P)∪f(M)(※※)∴由①.②知当P∪M≠R时,一定有f(P) ∪f(M)≠ R.故判断④正确.点评:认知f(P).f(M)的本质与特殊性,是本题推理和筛选的基础与保障.6.设全集I=R,(1)解关于x的不等式|x-1|+a-1>0(a∈R);(2)设A为(1)中不等式的解集,集合,若(A)∩B恰有3个元素,求a的取值范围.分析:(1)原不等式|x-1|>1-a,运用公式求解须讨论1-a的符号.(2)从确定A与化简B切入,进而考虑由已知条件导出关于a的不等式(组),归结为不等式(组)的求解问题.解:(1)原不等式|x-1|>1-a当1-a<0,即a>1时,原不等式对任意x∈R成立;当1-a=0,即a=1时,原不等式|x-1|>0x≠1;当1-a>0,即a<1时,原不等式x-1<a-1或x-1>1-ax<a或x>2-a于是综合上述讨论可知,当a>1时,原不等式的解集为R;当a≤1时,原不等式的解集为(-∞,a)∪(2-a,+ ∞)(2)由(1)知,当a>1时,A=φ;当a≤1时, A={x|a≤x≤2-a}注意到==∴∴(A)∩B恰有3个元素A恰含三个整数元素.(A有三个元素的必要条件)(对A=[a,2-a]的右端点的限制)(对A=[a,2-a]的左端点的限制)故得-1<a≤0,∴所求a的取值范围为.点评:不被集合B的表象所迷惑,坚定从化简与认知集合B切入.当问题归结为A恰含三个整数时,寻觅等价的不等式组,既要考虑A含有三个整数的必要条件(宏观的范围控制),又要考虑相关区间的左\右端点的限制条件(微观的左右“卡位”),两方结合导出已知条件的等价不等式组.集合与简易逻辑专题练习一.选择题(每题4分,共32分)1.已知全集U,M、N是U的非空子集,且M N,则必有()A. M NB. M NC.M=ND.M=N2.满足{1}A{1,2,3,4,5},且A中所有元素之和为奇数的集合A的个数是()A.5B.6C.7D.83.已知p:A B;q:A B=B ,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件4.设p:x<-1或x>1; q:x<-2或x>1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件5.设,,,并且,,,则()A.x+y∈YB.x+y∈XC.x+y∈MD.x+m∈Y6.已知集合,,,则M,N,P满足关系()A.M=N PB.M N=PC.M N PD.N P M7.若命题p的否命题为r,命题r的逆命题为s,则s是p的逆命题t的()A.逆否命题B.逆命题C.否命题D.原命题8.给出命题:p:3≥3;q:函数在R上是连续函数,则在下列三个复合命题:“p且q”;“p或q”;“非p”中,真命题的个数为()A.0B.1C.2D.3二.填空题(每题5分,共20分)1.已知命题或,,则p是q的条件.2.已知命题且,,则p是q的条件.3.“p或q为真命题”是“p且q为真命题”的条件.4.已知真命题“”和“”,则“”是“”的条件.三.解答题(本大题共有4题,满分48分)1.(本题满分12分)已知非空集合,求函数的值域.2.(本题满分12分)已知集合,且A∩B≠,A∩C= 同时成立,求实数a和集合A.3.(本题满分12分)已知集合,,C=A∩B,当C中仅含两个元素时,求实数m的取值范围.4.(本题满分12分)已知集合,且(A∪B)∩C=,(A∪B)∪C=R,求a,b的值。
专题一 集合与简易逻辑 【解析】
专题一 集合与简易逻辑一、单选题1.(2020·天津高考真题)设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()UAB =( )A .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}---【答案】C 【解析】首先进行补集运算,然后进行交集运算即可求得集合的运算结果. 【详解】由题意结合补集的定义可知:{}U2,1,1B =--,则(){}U1,1AB =-.故选:C.2.(2020·天津高考真题)设a ∈R ,则“1a >”是“2a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】首先求解二次不等式,然后结合不等式的解集即可确定充分性和必要性是否成立即可. 【详解】求解二次不等式2a a >可得:1a >或0a <, 据此可知:1a >是2a a >的充分不必要条件. 故选:A.3.(2020·海南高考真题)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( ) A .{x |2<x ≤3} B .{x |2≤x ≤3} C .{x |1≤x <4} D .{x |1<x <4}【答案】C 【解析】根据集合并集概念求解. 【详解】[1,3](2,4)[1,4)A B ==故选:C4.(2020·北京高考真题)已知,R αβ∈,则“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的( ). A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】根据充分条件,必要条件的定义,以及诱导公式分类讨论即可判断. 【详解】(1)当存在k Z ∈使得(1)k k απβ=+-时, 若k 为偶数,则()sin sin sin k απββ=+=;若k 为奇数,则()()()sin sin sin 1sin sin k k απβππβπββ=-=-+-=-=⎡⎤⎣⎦;(2)当sin sin αβ=时,2m αβπ=+或2m αβππ+=+,m Z ∈,即()()12kk k m απβ=+-=或()()121kk k m απβ=+-=+,亦即存在k Z ∈使得(1)k k απβ=+-.所以,“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的充要条件. 故选:C.5.(2020·浙江高考真题)已知集合P ={|14}<<x x ,{|23}Q x x =<<,则P Q =( ) A .{|12}x x <≤ B .{|23}x x << C .{|34}x x ≤< D .{|14}<<x x【答案】B 【解析】根据集合交集定义求解. 【详解】(1,4)(2,3)(2,3)P Q ==故选:B6.(2020·浙江高考真题)已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】将两个条件相互推导,根据能否推导的结果判断充分必要条件. 【详解】依题意,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件. 故选:B7.(2019·北京高考真题(理))设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“AB AC BC +>”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AB -AC |⇔|AB +AC |2>|AB -AC |2AB ⇔•AC >0AB ⇔与AC的夹角为锐角.故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件,故选C.8.(2012·湖北省高考真题(文))已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A C B ⊆⊆的集合C 的个数为( ) A .1B .2C .3D .4【答案】D 【解析】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ⊆⊆,所以根据子集的定义, 集合C 必须含有元素1,2,且可能含有元素3,4, 原题即求集合{}3,4的子集个数,即有224=个,故选D.9.(2020·全国高考真题(理))已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( ) A .2 B .3C .4D .6【答案】C 【解析】采用列举法列举出A B 中元素的即可.【详解】由题意,A B 中的元素满足8y xx y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4), 故AB 中元素的个数为4.故选:C.10.(2019·北京高考真题(文))设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】b =0 时,f(x)=cosx +bsinx =cosx , f(x)为偶函数; f(x)为偶函数时,f(−x)=f(x)对任意的x 恒成立, f(−x)=cos(−x)+bsin(−x)=cosx −bsinxcosx +bsinx =cosx −bsinx ,得bsinx =0对任意的x 恒成立,从而b =0.从而“b =0”是“f(x)为偶函数”的充分必要条件,故选C.11.(2020·全国高考真题(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D 【解析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<, 又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.12.(2020·全国高考真题(理))设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A .–4 B .–2 C .2 D .4【答案】B 【解析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值. 【详解】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤, 求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭. 由于{}|21A B x x ⋂=-≤≤,故:12a-=,解得:2a =-. 故选:B.13.(2020·全国高考真题(文))已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =( ) A .∅ B .{–3,–2,2,3) C .{–2,0,2} D .{–2,2}【答案】D 【解析】解绝对值不等式化简集合,A B 的表示,再根据集合交集的定义进行求解即可. 【详解】因为{}{}3,2,1,0,1,2A x x x Z =<∈=--,{}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2AB =-.故选:D.14.(2020·全国高考真题(理))已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()UA B ⋃=( ) A .{−2,3} B .{−2,2,3} C .{−2,−1,0,3} D .{−2,−1,0,2,3}【答案】A 【解析】首先进行并集运算,然后计算补集即可. 【详解】由题意可得:{}1,0,1,2A B ⋃=-,则(){}U2,3A B =-.故选:A.15.(2021·浙江绍兴市·高三一模)设m R ∈,则“12m ≤≤”是“直线:0l x y m +-=和圆22:2420C x y x y m +--++=有公共点”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】根据条件先求m 的取值范围,再比较集合的包含关系,判断充分必要条件.【详解】圆()()22:123C x y m -+-=-,圆心()1,2,半径r =若直线l 与圆C 有公共点,则圆心()1,2到直线的距离d =≤13m ≤<,{}12m m ≤≤ {}13m m ≤<,所以“12m ≤≤”是“直线:0l x y m +-=和圆22:2420C x y x y m +--++=有公共点”的充分不必要条件.故选:A16.(2021·北京延庆区·高三其他模拟)设x ∈R ,则“2560x x -+<”是“|2|1x -<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】分别解出两个不等式的解集,比较集合的关系,从而得到两命题的逻辑关系. 【详解】2560x x -+<23x ⇒<<;|2|1x -<13x ⇒<<;易知集合()2,3是()1,3的真子集,故是充分不必要条件. 故选:A.17.(2021·辽宁高三二模)已知集合{}0,1,2,4A =,{}2,nB x x n A ==∈,则AB =( )A .{}0,1,2B .{}0,1,4C .{}0,2,4D .{}1,2,4【答案】D 【解析】由题知{}1,2,4,16B =,再根据集合交集运算求解即可. 【详解】 因为{}0,1,2,4A =,{}1,2,4,16B =,所以{}1,2,4AB =,故选:D.18.(2021·北京房山区·高三一模)“21a =”是“直线1x ay +=与1ax y +=平行”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】首先根基两直线平行求出a 的值,再根据小范围推大范围选出答案. 【详解】因为直线1x ay +=与1ax y +=平行, 所以0a ≠ 且两直线的斜率相等即1a a-=解得1a =±; 而当1a =时直线1x ay +=为1x y +=,同时1ax y +=为1x y +=,两直线重合不满足题意;当1a =-时,1x y -=与1x y -+=平行,满足题意;故1a =-,根据小范围推大范围可得:21a =是1a =-的必要不充分条件. 故选:B19.(2021·甘肃兰州市·高三其他模拟(文))已知命题:p “,a b 是两条不同的直线,α是一个平面,若,b a b α⊥⊥,则//a α”,命题:q “函数1,1()23,1x e x f x x x -⎧≤=⎨->⎩,为R 上的增函数”,下列说法正确的是A .“p q ⌝∧”为真命题B .“p q ∧⌝”为真命题C .“p q ∧” 为真命题D .“p q ⌝∧⌝” 为真命题【答案】D 【解析】依题意得p 是假命题;因为312<又()312f f ⎛⎫> ⎪⎝⎭,得q 是假命题,则可判断正确结果. 【详解】若,b a b α⊥⊥,则//a α或a α⊂,所以命题p 是假命题;函数1,1()23,1x e x f x x x -⎧≤=⎨->⎩,当1x =时()011f e ==,当32x =时3323022f ⎛⎫=⨯-= ⎪⎝⎭,因为312<又()312f f ⎛⎫> ⎪⎝⎭,所以()f x 在R 上不是增函数,故q 是假命题; 所以p ⌝与q ⌝是真命题,故“p q ⌝∧⌝” 为真命题 故选:D .20.(2019·全国高考真题(文))记不等式组620x y x y +⎧⎨-≥⎩表示的平面区域为D ,命题:(,),29p x y D x y ∃∈+;命题:(,),212q x y D x y ∀∈+.给出了四个命题:①p q ∨;②p q ⌝∨;③p q ∧⌝;④p q ⌝∧⌝,这四个命题中,所有真命题的编号是( )A .①③B .①②C .②③D .③④【答案】A 【解析】如图,平面区域D 为阴影部分,由2,6y x x y =⎧⎨+=⎩得2,4x y =⎧⎨=⎩即A (2,4),直线29x y +=与直线212x y +=均过区域D , 则p 真q 假,有p ⌝假q ⌝真,所以①③真②④假.故选A .21.(2020·全国高考真题(文))已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( )A .2B .3C .4D .5【答案】B 【解析】采用列举法列举出A B 中元素的即可.【详解】由题意,{5,7,11}A B ⋂=,故A B 中元素的个数为3.故选:B22.(2021·湖南衡阳市·高三一模)已知M 、N 为R 的子集,若RM N =∅,{}1,2,3N =,则满足题意的M 的个数为( ) A .3 B .4C .7D .8【答案】D 【解析】根据交集、补集的运算的意义,利用韦恩图可得出M ,N 关系,根据子集求解. 【详解】因为M 、N 为R 的子集,且RM N =∅,画出韦恩图如图,可知,M N ⊆, 因为{}1,2,3N =, 故N 的子集有32=8个. 故选:D23.(2021·北京怀柔区·高三其他模拟)“0a =”是直线(1)(1)20()a x a y a a R ++-+=∈与圆224x y +=相交的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .即不充分也不必要条件【答案】A 【解析】根据直线与圆相交的判定,充分条件,必要条件即可求解【详解】当0a =时,直线为0x y -=,过圆心(0,0),故直线与圆224x y +=相交,当直线(1)(1)20()a x a y a a R ++-+=∈与圆224x y +=相交时,圆心到直线的距离2d =<,化简得220a +>,显然恒成立,不能推出0a =,所以“0a =”是直线(1)(1)20()a x a y a a R ++-+=∈与圆224x y +=相交的充分不必要条件, 故选:A24.(2021·江西高三其他模拟(理))设集合()222021,2020A x y x y ⎧⎫=+=⎨⎬⎩⎭,(){},2xB x y y ==,则集合A B 中元素的个数为( )A .0B .1C .2D .3 【答案】C【解析】 分别作出2220212020x y +=,2x y =图象,判断交点个数即可. 【详解】 依题意:集合A B 中元素的个数即2220212020x y +=,2x y =图象交点个数 如图所以一共有两个交点,所以集合A B 中元素的个数为2故选:C 25.(2021·湖南岳阳市·高三一模)已知集合{}13A x x =≤<,{}B y y m =≤,且AB =∅,则实数m应满足( )A .1m <B .1mC .3m ≥D .3m >【答案】A【解析】 根据集合交集定义即可求解.【详解】 解:∵集合{}13A x x =≤<,{}B y y m =≤,AB =∅ ∴1m <,故选:A .26.(2021·全国高三其他模拟(文))命题000:,20p x R x lnx ∃∈+<的否定为( )A .000,20x R x lnx ∃∉+≥B .000,20x R x lnx ∃∈+>C .,20x R x lnx ∀∈+>D .,20x R x lnx ∀∈+≥ 【答案】D【解析】根据特称命题的否定是全称命题,直接写出即可.【详解】根据特称命题的否定是全称命题,所以命题p 的否定为,20x R x lnx ∀∈+≥.故选:D.27.(2018·全国高考真题(理))已知集合{}220A x x x =-->,则A =R ( ) A .{}12x x -<<B .{}12x x -≤≤C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥ 【答案】B【解析】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果.详解:解不等式220x x -->得12x x -或,所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.28.(2018·浙江省高考真题)已知两条直线,a b 和平面α,若b α⊂,则//a b 是//a α的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分又不必要条件 【答案】D【解析】当b α⊂时,若//a b 时,a 与α的关系可能是//a α,也可能是a α⊂,即//a α不一定成立,故////a b a α⇒为假命题;若//a α时,a 与b 的关系可能是//a b ,也可能是a 与b 异面,即//a b 不一定成立,故////a a b α⇒也为假命题;故//a b 是//a α的既不充分又不必要条件故选:D29.(2020·浙江高考真题)设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有两个元素,且S ,T 满足: ①对于任意x ,y ∈S ,若x ≠y ,都有xy ∈T②对于任意x ,y ∈T ,若x <y ,则y x ∈S ; 下列命题正确的是( )A .若S 有4个元素,则S ∪T 有7个元素B .若S 有4个元素,则S ∪T 有6个元素C .若S 有3个元素,则S ∪T 有5个元素D .若S 有3个元素,则S ∪T 有4个元素【答案】A【解析】分别给出具体的集合S 和集合T ,利用排除法排除错误选项,然后证明剩余选项的正确性即可.【详解】首先利用排除法:若取{}1,2,4S =,则{}2,4,8T =,此时{}1,2,4,8ST =,包含4个元素,排除选项 C ;若取{}2,4,8S =,则{}8,16,32T =,此时{}2,4,8,16,32S T =,包含5个元素,排除选项D ;若取{}2,4,8,16S =,则{}8,16,32,64,128T =,此时{}2,4,8,16,32,64,128ST =,包含7个元素,排除选项B ;下面来说明选项A 的正确性:设集合{}1234,,,S p p p p =,且1234p p p p <<<,*1234,,,p p p p N ∈,则1224p p p p <,且1224,p p p p T ∈,则41p S p ∈, 同理42p S p ∈,43p S p ∈,32p S p ∈,31p S p ∈,21p S p ∈, 若11p =,则22p ≥,则332p p p <,故322p p p =即232p p =, 又444231p p p p p >>>,故442232p p p p p ==,所以342p p =, 故{}232221,,,S p p p =,此时522,p T p T ∈∈,故42p S ∈,矛盾,舍. 若12p ≥,则32311p p p p p <<,故322111,p p p p p p ==即323121,p p p p ==, 又44441231p p p p p p p >>>>,故441331p p p p p ==,所以441p p =, 故{}2341111,,,S p p p p =,此时{}3456711111,,,,p p p p p T ⊆. 若q T ∈, 则31q S p ∈,故131,1,2,3,4i q p i p ==,故31,1,2,3,4i q p i +==, 即{}3456711111,,,,q p p p p p ∈,故{}3456711111,,,,p p p p p T =,此时{}234456*********,,,,,,,S T p p p p p p p p ⋃=即S T 中有7个元素.故A 正确.故选:A .【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.二、填空题30.(2017·江苏省高考真题)已知集合{}1,2A =,{}2,3B a a =+,若A B={1}⋂则实数a 的值为________ 【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.点睛:(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,A B A B ⋂=∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.31.(2020·全国高考真题(理))设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.32.(2021·北京东城区·高三一模)设A 是非空数集,若对任意,x y A ∈,都有,x y A xy A +∈∈,则称A 具有性质P .给出以下命题:①若A 具有性质P ,则A 可以是有限集;②若12,A A 具有性质P ,且12A A ⋂≠∅,则12A A ⋂具有性质P ;③若12,A A 具有性质P ,则12A A ⋃具有性质P ;④若A 具有性质P ,且A ≠R ,则A R 不具有性质P .其中所有真命题的序号是___________.【答案】①②【解析】举特例判断①;利用性质P 的定义证明②即可;举反例说明③错误;利用反证法,结合举反例判断④.【详解】对于①,取集合{}0,1A =具有性质P ,故A 可以是有限集,故①正确;对于②,取12,x y A A ∈⋂,则1x A ∈,2x A ∈,1y A ∈,2y A ∈,又12,A A 具有性质P ,11,x y A xy A ∴+∈∈,22,x y A xy A +∈∈,1212,x y xy A A A A ∴+∈∈⋂⋂,所以12A A ⋂具有性质P ,故②正确;对于③,取{}1|2,A x x k k Z ==∈,{}2|3,A x x k k Z ==∈,12A∈,23A ∈,但1223A A +∉⋃,故③错误;对于④,假设A R 具有性质P ,即对任意,x y A ∈R ,都有,x y A xy A +∈∈R R ,即对任意,x y A ∉,都有,x y A xy A +∉∉,举反例{}|2,A x x k k Z ==∈,取1A ∉,3A ∉,但134A +=∈,故假设不成立,故④错误;故答案为:①②【点睛】关键点点睛:本题考查集合新定义,解题的关键是对集合新定义的理解,及举反例,特例证明,考查学生的逻辑推理与特殊一般思想,属于基础题.。
专题一 第一讲 集合与简易逻辑
[理](2011· 沈阳模拟)A={1,2,3},B={x∈R|x2-ax+1 =0,a∈A},则A∩B=B时,a的值是 A.2 B.2或3 ( )
C.1或3
D.1或2
解析:验证a=1时B=∅满足条件;验证a=2时B={1}
也满足条件.
答案:D
2. (2011· 全国新课标卷)已知集合M={0,1,2,3,4,},N ={1,3,5,},P=M∩N,则P的子集共有 A.2个 B.4个 ( )
C.充分必要条件
B.必要不充分条件
D.既不充分又不必要条件
[解析] 显然a=1时一定有N⊆M,反之则不一定成立, 如a=-1.故是充分不必要条件. [答案] A
6.(2011•合肥模拟)给定空间中的直线l及平面α.条件“直
线l与平面α内两条相交直线都垂直”是“直线l与平面α
垂直”的 A.充分不必要条件 C.充要条件 B.必要不充分条件 D.既非充分也非必要条件 ( )
的集合共有6个.
[答案] A
[点评] 解决这类试题的关键是透彻理解新定义,抓住新
定义的本质,推出正确结论,有时还可以通过反例推翻
其中的结论.
1 [理]若x∈A,则工团 ∈A,就称A是伙伴关系集合,集 x
合M={-1,0, ,2 ,1,2,3,4}的所有非空子集中具有伙 伴关系的集合的个数为 ( )
[联知识 串点成面] 1.四种命题有两组等价关系,即原命题与其逆否命题等价,否 命题与逆命题等价. 2.含有逻辑联结词的命题的真假判断:命题 p∨q,只要 p,q 至少有一为真,即为真命题,换言之,见真则真;命题 p∧q,只 要 p,q 至少有一为假,即为假命题,换言之,见假则假;綈 p 和 p 为一真一假两个互为对立的命题. 3.“或”命题和“且”命题的否定:命题 p∨q 的否定是綈 p ∧綈 q;命题 p∧q 的否定是綈 p∨綈 q.
2021年高考真题汇编——理科数学(解析版)1:集合与简易逻辑
2021高|考真题分类汇编:集合与简易逻辑1.【2021高|考真题浙江理1】设集合A ={x|1<x <4} ,集合B ={x|2x -2x -3≤0}, 那么A ∩ (C R B ) =A .(1,4)B .(3,4) C.(1,3) D .(1,2)∪ (3,4 ) 【答案】B【解析】B ={x|2x -2x -3≤0} =}31|{≤≤-x x ,A ∩ (C R B ) ={x|1<x <4} }3,1|{>-<x x x 或 =}43|{<<x x .应选B.2.【2021高|考真题新课标理1】集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,那么B 中所含元素的个数为 ( )()A 3 ()B 6 ()C 8 ()D 10【答案】D【解析】要使A y x ∈-,当5=x 时 ,y 可是1 ,2 ,3 ,4.当4=x 时 ,y 可是 1 ,2 ,3.当3=x 时 ,y 可是1 ,2.当2=x 时 ,y 可是1 ,综上共有10个 ,选D.3.【2021高|考真题陕西理1】集合{|lg 0}M x x => ,2{|4}N x x =≤ ,那么M N =( ) A. (1,2) B. [1,2) C. (1,2] D. [1,2] 【答案】C.【解析】}22|{}4|{},1|{}0lg |{2≤≤-=≤=>=>=x x x x N x x x x M ,]2,1(=∴N M ,应选C.4.【2021高|考真题山东理2】全集{}0,1,2,3,4U = ,集合{}{}1,2,3,2,4A B == ,那么U C A B 为(A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,4 【答案】C【解析】}4,0{=A C U ,所以}42,0{,)(=B A C U ,选C.5.【2021高|考真题辽宁理1】全集U ={0,1,2,3,4,5,6,7,8,9} ,集合A ={0,1,3,5,8} ,集合B ={2,4,5,6,8} ,那么)()(B C A C U U 为(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6} 【答案】B【解析】1.因为全集U ={0,1,2,3,4,5,6,7,8,9} ,集合A ={0,1,3,5,8} ,集合B ={2,4,5,6,8} ,所以{}{}9,7,3,1,0,9,7,6,4,2==B C A C U U ,所以)()(B C A C U U 为{7,9} .应选B2. 集合)()(B C A C U U 为即为在全集U 中去掉集合A 和集合B 中的元素 ,所剩的元素形成的集合 ,由此可快速得到答案 ,选B【点评】此题主要考查集合的交集、补集运算 ,属于容易题 .采用解析二能够更快地得到答案 . 6.【2021高|考真题辽宁理4】命题p :∀x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0 ,那么⌝p 是 (A) ∃x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 (B) ∀x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 (C) ∃x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 (D) ∀x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 【答案】C【解析】命题p 为全称命题 ,所以其否认⌝p 应是特称命题 ,又(f (x 2)-f (x 1))(x 2-x 1)≥0否认为(f (x 2)-f (x 1))(x 2-x 1)<0 ,应选C【点评】此题主要考查含有量词的命题的否认 ,属于容易题 .7.【2021高|考真题江西理1】假设集合A ={ -1 ,1} ,B ={0 ,2} ,那么集合{z ︱z =x +y,x ∈A,y ∈B }中的元素的个数为 A .5 B.4 C 【答案】C【命题立意】此题考查集合的概念和表示 .【解析】因为B y A x ∈∈, ,所以当1-=x 时 ,2,0=y ,此时1,1-=+=y x z .当1=x 时 ,2,0=y ,此时3,1=+=y x z ,所以集合}2,1,1{}2,1,1{-=-=z z 共三个元素 ,选C. 8.【2021高|考真题江西理5】以下命题中 ,假命题为 A .存在四边相等的四边形不.是正方形 B .1212,,z z C z z ∈+为实数的充分必要条件是12,z z 为共轭复数C .假设,x y ∈R ,且2,x y +>那么,x y 至|少有一个大于1D .对于任意01,nn n nn N C C C ∈+++都是偶数 【答案】B【命题立意】此题考查命题的真假判断 .【解析】对于B,假设21,z z 为共轭复数 ,不妨设bi a z bi a z -=+=21, ,那么a z z 221=+ ,为实数 .设di c z bi a z +=+=21, ,那么i d b c a z z )()(21+++=+ ,假设21z z +为实数 ,那么有0=+d b ,当c a ,没有关系 ,所以B 为假命题 ,选B.9.【2021高|考真题湖南理1】设集合M ={ -1,0,1} ,N ={x|x 2≤x} ,那么M ∩N = A.{0} B.{0,1} C.{ -1,1} D.{ -1,0,0} 【答案】B 【解析】{}0,1N = M ={ -1,0,1} ∴M ∩N ={0,1}.【点评】此题考查了{}0,1N =,再利用交集定义得出M ∩N. 10.【2021高|考真题湖南理2】命题 "假设α =4π,那么tan α =1”的逆否命题是 α≠4π ,那么tan α≠1 B. 假设α =4π,那么tan α≠1 C. 假设tan α≠1 ,那么α≠4π D. 假设tan α≠1 ,那么α =4π【答案】C【解析】因为 "假设p ,那么q 〞的逆否命题为 "假设p ⌝ ,那么q ⌝〞 ,所以 "假设α =4π ,那么tan α =1”的逆否命题是 "假设tan α≠1 ,那么α≠4π〞. 【点评】此题考查了 "假设p ,那么q 〞形式的命题的逆命题、否命题与逆否命题 ,考查分析问题的能力.11.【2021高|考真题湖北理2】命题 "0x ∃∈R Q ,30x ∈Q 〞的否认是A .0x ∃∉R Q ,30x ∈QB .0x ∃∈R Q ,30x ∉QC .x ∀∉R Q ,3x ∈QD .x ∀∈R Q ,3x ∉Q【答案】D【解析】根据对命题的否认知 ,是把谓词取否认 ,然后把结论否认 .因此选D 12.【2021高|考真题广东理2】设集合U ={1,2,3,4,5,6} , M ={1,2,4 } ,那么CuM = A .U B . {1,3,5} C .{3,5,6} D . {2,4,6}【答案】C【解析】}6,5,3{=M C U ,应选C.13.【2021高|考真题福建理3】以下命题中 ,真命题是 A. 0,00≤∈∃x eR xB. 22,x R x x >∈∀C.a +b =0的充要条件是ab= -1 D.a>1,b>1是ab>1的充分条件 【答案】D.【解析】此类题目多项选择用筛选法 ,因为0>xe 对任意R x ∈恒成立 ,所以A 选项错误;因为当3=x 时93,8223==且8<9,所以选项B 错误;因为当0==b a 时,0=+b a 而ab无意义 ,所以选项C 错误;应选D.14.【2021高|考真题北京理1】集合A ={x ∈R|3x +2>0} B ={x ∈R| (x +1 )(x -3)>0} 那么A ∩B = A ( -∞ , -1 )B ( -1 , -23 ) C ( -23,3 )D (3, +∞)【答案】D【解析】因为32}023|{->⇒>+∈=x x R x A ,利用二次不等式可得1|{-<=x x B 或}3>x 画出数轴易得:}3|{>=x x B A .应选D .15.【2021高|考真题安徽理6】设平面α与平面β相交于直线m ,直线a 在平面α内 ,直线b 在平面β内 ,且b m ⊥ ,那么 "αβ⊥〞是 "a b ⊥〞的 ( )()A 充分不必要条件 ()B 必要不充分条件 ()C 充要条件 ()D 即不充分不必要条件【答案】A【命题立意】此题借助线面位置关系考查条件的判断【解析】①,b m b b a αβα⊥⊥⇒⊥⇒⊥ ,②如果//a m ,那么a b ⊥与b m ⊥条件相同.16.【2021高|考真题全国卷理2】集合A ={1.3.} ,B ={1 ,m} ,A B =A, 那么m =A 0B 0或3C 1D 1或3 【答案】B【解析】因为A B A = ,所以A B ⊆,所以3=m 或m m =.假设3=m ,那么}3,1{},3,3,1{==B A ,满足A B A = .假设m m = ,解得0=m 或1=m .假设0=m ,那么}0,3,1{},0,3,1{==B A ,满足A B A = .假设1=m ,}1,1{},1,3,1{==B A 显然不成立 ,综上0=m 或3=m ,选B..17【2021高|考真题四川理13】设全集{,,,}U a b c d = ,集合{,}A a b = ,{,,}B b c d = ,那么B C A C U U ___________ .【答案】{},,a c d【命题立意】此题考查集合的根本运算法那么 ,难度较小. 【解析】},{d c A C U = ,}{a B C U = ,},,{d c a B C A C U U =∴18.【2021高|考真题上海理2】假设集合}012|{>+=x x A ,}2|1||{<-=x x B ,那么=B A .【答案】)3,21(-【解析】集合}21{}012{->=>+=x x x x A ,}31{}21{<<-=<-=x x x x B ,所以}321{<<-=x x B A ,即)3,21(- .19.【2021高|考真题天津理11】集合},32|{<+∈=x R x A 集合},0)2)((|{<--∈=x m x R x B 且),,1(n B A -= 那么m =__________ ,n =__________. 【答案】1,1-【解析】由32<+x ,得323<+<-x ,即15<<-x ,所以集合}15{<<-=x x A ,因为)1(n B A ,-= ,所以1-是方程0)2)((=--x m x 的根 ,所以代入得0)1(3=+m ,所以1-=m ,此时不等式0)2)(1(<-+x x 的解为21<<-x ,所以)11(,-=B A ,即1=n .20.【2021高|考江苏1】 (5分 )集合{124}A =,, ,{246}B =,, ,那么A B = ▲ .【答案】{}1,2,4,6 . 【考点】集合的概念和运算 . 【分析】由集合的并集意义得{}1,2,4,6AB = .21.【2021高|考江苏26】 (10分 )设集合{12}n P n =,,,… ,*N n ∈.记()f n 为同时满足以下条件的集合A 的个数:①n A P ⊆;②假设x A ∈ ,那么2x A ∉;③假设A C x n p ∈ ,那么A C x np ∉2 .(1 )求(4)f ;(2 )求()f n 的解析式 (用n 表示 ).【答案】解: (1 )当=4n 时 ,符合条件的集合A 为:{}{}{}{}21,42,31,3,4,,, , ∴ (4)f =4 .( 2 )任取偶数n x P ∈ ,将x 除以2 ,假设商仍为偶数.再除以2 ,··· 经过k 次以后.商必为奇数.此时记商为m .于是=2k x m ,其中m 为奇数*k N ∈ .由条件知.假设m A ∈那么x A k ∈⇔为偶数;假设m A ∉ ,那么x A k ∈⇔为奇数 .于是x 是否属于A ,由m 是否属于A 确定 .设n Q 是n P 中所有奇数的集合.因此()f n 等于n Q 的子集个数 . 当n 为偶数〔 或奇数 )时 ,n P 中奇数的个数是2n (12n + ) . ∴()()2122()=2nn n f n n +⎧⎪⎨⎪⎩为偶数为奇数. 【考点】集合的概念和运算 ,计数原理 .【解析】 (1 )找出=4n 时 ,符合条件的集合个数即可 . (2 )由题设 ,根据计数原理进行求解 .22.【2021高|考真题陕西理18】 (本小题总分值12分 )(1 )如图 ,证明命题 "a 是平面π内的一条直线 ,b 是π外的一条直线 (b 不垂直于π ) ,c 是直线b 在π上的投影 ,假设a b ⊥ ,那么a c ⊥〞为真 . (2 )写出上述命题的逆命题 ,并判断其真假 (不需要证明 )【答案】分析: (1 )证法一:做出辅助线 ,在直线上构造对应的方向向量 ,要证两条直线垂直 ,只要证明两条直线对应的向量的数量积等于0 ,根据向量的运算法那么得到结果.证法二:做出辅助线 ,根据线面垂直的性质 ,得到线线垂直 ,根据线面垂直的判定定理 ,得到线面垂直 ,再根据性质得到结论.(2 )把所给的命题的题设和结论交换位置,得到原命题的逆命题,判断出你命题的正确性.。
集合与简易逻辑典型例题解析
集合与简易逻辑典型例题解析例1以下说法中正确的个数有〔〕①表示同一个集合②与表示同一个集合;③空集是唯一的;④与,则集合。
A﹒3个 B﹒2个 C﹒1个 D﹒0个例2假设集合:,,则M,N,P的关系是〔〕A﹒ B﹒C﹒ D﹒例3设全集,,,判断与之间的关系.例4.如下图,I是全集,M、P、S是I的3个子集,则阴影部分所表示的集合是〔〕A﹒ B﹒C﹒I S D﹒I S例5解不等式.例6 解不等式.例7 解不等式〔为参数〕例8 不等式的解是全体实数,求实数的取值范围。
例9 已知,且,〔〕,求实数P的取值范围。
例10 解关于的不等式:例11 分别指出以下复合命题的形式及构成它的简单命题,并判断它们的真假.〔1〕三个角相等的三角形不是直角三角形;〔2〕的元素既是的元素又是的元素;〔3〕假设是的元素或是的元素,则是的元素;〔4〕两条对角线垂直的平行四边形是菱形或正方形;〔5〕不是方程的解.例12 把以下命题改写成“则”的形式,并写出它们的逆命题、否命题与逆否命题:〔1〕两条平行线不相交.〔2〕正数的算术平方根是正数.例13 判断以下命题的真假,并写出它的逆命题,否命题,逆否命题.同时,也判断这些命题的真假.〔1〕假设,则或.〔2〕假设,则.〔3〕假设在二次函数中,则该二次函数图像与轴有公共点.例14 已知三个关于的方程:,,中至少有一个方程有实数根,求实数的取值范围.例15 已知关于的一元二次方程〔〕①②求方程①和②的根都是整数的充要条件。
例16已知:;:.假设是的必要而不充分条件,求实数的取值范围.1.判断以下命题的真假:〔1〕已知,,,,a b c d R∈假设,,.a cb d a bc d≠≠+≠+或则〔2〕32,x N x x ∀∈>〔3〕假设1,m>则方程220x x m-+=无实数根。
〔4〕存在一个三角形没有外接圆。
2.已知命题2:6,:p x x q x Z-≥∈且“p q且”与“非q”同时为假命题,求x的值。
专题01集合与简易逻辑(解析版)-高三数学(理)百所名校好题分项解析汇编之全国通用专版(2021版)
专题01 集合与简易逻辑1.(2020·全国高三(文)) 命题“∀a ,b >0,a +1b≥2和b +1a ≥2至少有一个成立”的否定为( )A .∀a ,b >0,a +1b<2和b +1a <2至少有一个成立B .∀a ,b >0,a +1b≥2和b +1a ≥2都不成立C .∃a ,b >0,a +1b<2和b +1a <2至少有一个成立D .∃a ,b >0,a +1b≥2和b +1a ≥2都不成立【答案】D 【解析】 “∀a ,b >0,a +1b≥2和b +1a ≥2至少有一个成立”的否定为:∃a ,b >0,a +1b≥2和b +1a ≥2都不成立.故选:D2.(2020·云南曲靖一中其他(理))给出下列两个命题:命题p :空间任意三个向量都是共面向量;命题q :“1122x y⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭”是“ln ln x y <”的充要条件,那么下列命题中为真命题的是( ) A .p q ∧ B .p q ∨ C .()p q ⌝∧ D .()p q ⌝∨【答案】D【解析】平行于同一平面的向量叫共面向量,故空间任意三个向量不一定都是共面向量,例如在三条两两垂直的直线上取向量,则不共面,故命题p 错,为假命题;由1122x y ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭解得x y <,由ln ln x y <解得0x y <<,故“1122x y⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭”不是“ln ln x y <”的充要条件,故命题q 错,为假命题; 所以p ⌝为真命题.故p q ∧,p q ∨,()p q ⌝∧为假命题,()p q ⌝∨为真命题故选:D.3.(2020·广西其他(理)) 已知,a b ∈R ,“a b >”是“a a b b ”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】由题意,若a b >,则0a b >≥,则0a >且a b >,所以2a a a =,则a ab b 成立.当1,2a b ==-时,满足a a b b ,但a b >不一定成立,所以a b >是a a b b 的充分不必要条件.故选:A.4.(2020·海南期中)已知集合()(){}225A x x x =+-<,(){}2log 1,B x x a a N =->∈,若A B =∅,则a 的可能取值组成的集合为( ) A .{}0 B .{}1C .{}0,1D .*N【答案】D【解析】()(){}{}22533A x x x x x =+-<=-<<,(){}{}2log 1,2,B x x a a N x x a a N =->∈=>+∈,因为AB =∅,所以23a +≥,1a ≥.又a N ∈,∴*a N ∈.故选:D .5.(2020·四川成都·月考(理)) “10,3m ⎛⎫∈ ⎪⎝⎭”是“函数()()314,1,1m x m x f x mx x ⎧-+<=⎨-≥⎩是定义在R 上的减函数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B 【解析】因为函数()()314,1,1m x m x f x mx x ⎧-+<=⎨-≥⎩是定义在R 上的减函数,所以()3100314m m m m m⎧-<⎪-<⎨⎪-+≥-⎩,解得11,83m ⎡⎫∈⎪⎢⎣⎭,因为11,83⎡⎫⎪⎢⎣⎭是10,3⎛⎫ ⎪⎝⎭的真子集,所以“10,3m ⎛⎫∈ ⎪⎝⎭”是“函数()()314,1,1m x m x f x mx x ⎧-+<=⎨-≥⎩是定义在R 上的减函数”的必要不充分条件,故选:B .6. (2020·北京二模)已知函数f (x )=sinωx (ω>0),则“函数f (x )在263,ππ⎡⎤⎢⎥⎣⎦上单调递增”是“0<ω≤2”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】∵263x ππ⎡⎤∈⎢⎥⎣⎦,,∴263x ππωωω≤≤, 由于函数f (x )在263,ππ⎡⎤⎢⎥⎣⎦上单调递增,∴26222320k k ππωπππωπω⎧≥-+⎪⎪⎪≤+⎨⎪>⎪⎪⎩(k Z ∈)解得3123340k k ωππωπω≥-+⎧⎪⎪≤+⎨⎪>⎪⎩,(k Z ∈) 故k 只能取0,即304ω<≤, ∴“函数f (x )在263,ππ⎡⎤⎢⎥⎣⎦上单调递增”是“0<ω≤2”的充分不必要条件.故选:A .7.(2020·渝中·重庆巴蜀中学月考)设等比数列{}n a 的公比为q ,前n 项的和为n S ,则“0q >”是“2132S S S ⋅<”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C【解析】11S a =,()211S a q =+,()2311S a q q =++, 故()()222222131111S S S a q q q a q ⎡⎤-⋅=+-++=⎣⎦, 因为在等比数列{}n a 中,10a ≠,故21320S S S q ⋅<⇔>,故“0q >”是“2132S S S ⋅<”的充要条件. 故选:C .8. (2020·四川其他(文))命题:p 函数2()sin ()f x x ω=的最小正周期为π的充要条件是1ω=;命题:q 定义域为R 的函数()g x 满足(2)()g x g x +=-,则函数()g x 的图象关于直线1x =对称.则下列命题为真命题的是( )A .p q ∧B .()()p q ⌝∧⌝C .()p q ⌝∧D .()p q ∧⌝【答案】C 【解析】 对于命题p :21cos(2)()sin ()2x f x x ωω-==,有最小正周期212T ππωω==⇒=± 当1ω=时,有21cos(2)()sin 2x f x x -==, 则有最小正周期22T ππ== ∴命题p 为假命题 对于命题q :(2)()g x g x +=-⇒函数()g x 的图象关于直线1x =对称函数()g x 的图象关于直线1x =对称即存在点1122(,),(,)x y x y 关于1x =对称,有1212x x +=且1122()()y g x y g x === ,即有(2)()g x g x +=-∴命题q 为真命题故,p ⌝为真命题,q ⌝为假命题 结合选项知:()p q ⌝∧为真命题 故选:C9. 已知集合M ={(x ,y )|y =f (x )},若对于任意(x 1,y 1)∈M ,存在(x 2,y 2)∈M ,使得x 1x 2+y 1y 2=0成立,则称集合M 是“理想集合”.给出下列集合:①M ={(x ,y )|y =};②M ={(x ,y )|y =cos x };③M ={(x ,y )|y =e x ﹣2};④M ={(x ,y )|y =lgx }.其中所有“理想集合”的序号是( ) A .①③ B .②③ C .②④ D .③④【答案】B【解析】解:①y =是以x ,y 轴为渐近线的双曲线,渐近线的夹角为90°, 在同一支上,任意(x 1,y 1)∈M ,不存在(x 2,y 2)∈M ,满足好集合的定义; 对任意(x 1,y 1)∈M ,在另一支上也不存在(x 2,y 2)∈M ,使得x 1x 2+y 1y 2=0成立, 所以不满足理想集合的定义,不是理想集合. ②在函数y =cos x 上存在点(0,1)、(,0),满足x 1x 2+y 1y 2=0成立,满足理想集合的定义,满足条件;③M ={(x ,y )|y =e x ﹣2},如图在曲线上两点构成的直角始终存在, 例如取M (0,﹣1),N (ln 2,0), 满足理想集合的定义,所以正确.④M ={(x ,y )|y =lgx },如图取点(1,0),曲线上不存在另外的点,使得两点与原点的连线互相垂直,所以不是理想集合. 故选:B .10.已知集合A 中有10个元素,B 中有6个元素,全集U 有18个元素,A ∩B ≠∅.设集合(∁U A )∩(∁U B )有x 个元素,则x 的取值范围是( ) A .3≤x ≤8,且x ∈NB .2≤x ≤8,且x ∈NC.8≤x≤12,且x∈N D.10≤x≤15,且x∈N【答案】A【解答】解:因为A∩B≠∅,当集合A∩B中仅有一个元素时,集合(∁U A)∩(∁U B)=∁U(A∪B)中有3个元素,当A∩B中有6个元素时,集合(∁U A)∩(∁U B)=∁U(A∪B)中有8个元素,所以得到3≤x≤8且x为正整数.故选:A.11.【北京市2020届高三】设全集I={1,2,3,4,5,6},集合A,B都是I的子集,若A∩B={1,3,5},则称A,B为“理想配集”,记作(A,B),问这样的“理想配集”(A,B)共有()A.7个B.8个C.27个D.28个【答案】C【解答】解:A,B中都含有元素1,3,5,只要将元素2,4,6投向“篮筐”A、B,“篮球”2可能落入A中、B中或A,B之外,但不可能同时落入A、B中,同样,4和6投出后的入筐方式总数即对应理想配集的个数,有3×3×3=27个.故选:C.12.(2020·河南信阳·高三月考(文))已知a→,b→为非零向量,则“•0a b>”是“a→与b→夹角为锐角”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】根据向量数量积的定义式可知,若0a b⋅>,则a与b夹角为锐角或零角,若a与b夹角为锐角,则一定有a b⋅>,所以“0a b⋅>”是“a与b夹角为锐角”的必要不充分条件,故选B.13.(2020·福建厦门一中月考)已知集合12|162xA x N*⎧⎫=∈<<⎨⎬⎩⎭,{}2|50B x x x m=-+=,若1A B∈,则A B=()A .{}1,2,3B .{}1,2,3,4C .{}0,1,2D .{}0,1,2,3【答案】B 【解析】{}{}**1216141,2,32||x A x N x N x ⎧⎫=∈<<=∈-<<=⎨⎬⎩⎭,因为1A B ∈,所以1B ∈,所以150m -+=,解得:4m = , 解方程2540x x -+=得:1x =或4x =, 所以{}1,4B =, 所以{}1,2,3,4A B =故选:B14.(2020·河南月考(文)) 下列说法中正确的个数为( )①“方程22340x y mx y ++-+=表示的是圆”是“3m >”的充分不必要条件; ②ABC 中,“2222AB AC BC +=”是“ABC 为等边三角形”的充要条件; ③若a 、b 为非零向量,则“0a b ⋅>”是“a 、b 的夹角是锐角”的必要不充分条件. A .0 B .1 C .2 D .3【答案】B【解析】对于命题①,若方程22340x y mx y ++-+=表示的是圆, 则29160m +->,解得7m <7m >,由于{7m m <}7m >{}3m m >,故“方程22340x y mx y ++-+=表示的是圆”是“3m >”的必要不充分条件,①错误; 对于命题②:充分性:若ABC 为等边三角形,则2222AB AC BC +=,充分性成立; 必要性:取1AB =,3AC =2BC =2222AB AC BC +=成立,但ABC 不是等边三角形,即必要性不成立.所以,“2222AB AC BC +=”是“ABC 为等边三角形”充分不必要条件,②错误;对于命题③:由于a 、b 为非零向量,设a 、b 的夹角为θ. 充分性:0a b ⋅>,则cos 0a b a bθ⋅=>⋅,0θπ≤≤,则02πθ≤<,所以,a 、b 的夹角是锐角或a 、b 方向相同,充分性不成立; 必要性:若a 、b 的夹角为锐角,则θ为锐角,所以,cos 0θ>, 则cos 0a b a b θ⋅=⋅>,即必要性成立.所以,“0a b ⋅>”是“a 、b 的夹角是锐角”的必要不充分条件,③正确. 故选:B.15. (2020·河南平顶山·高三月考(文))在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则“cos cos sin a b cA B C==”是“ABC 为等腰三角形”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 在ABC 中,若cos cos sin a b cA B C==, 由正弦定理,sin sin sin a b cA B C==, 所以tan tan 1A B ==, ∴π4A B ==, ABC 为等腰直角三角形;反之,ABC 为等腰三角形,cos cos sin a b cA B C==不一定成立 所以“cos cos sin a b cA B C==是ABC 为等腰三角形”的充分不必要条件.故选:A .16.(2020·上海市新场中学月考)已知ABC 两内角,A B 的对边边长分别为,a b ,则“A B =”是“cos cos a B b A =”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .非充分非必要条件【答案】C 【解析】∵,A B 为ABC 两内角且对应边的边长分别为,a b ,∴当A B =时,有,cos cos a b A B ==,即cos cos a B b A =,当cos cos a B b A =时,有sin cos cos sin sin()0A B A B A B -=-=,又0,A B π<<,有A B ππ-<-<,所以A B =;综上知:“A B =”是“cos cos a B b A =”的充要条件. 故答案为:C17.(2020·北京人大附中三模) “6πϕ=-”是“函数()sin 2()3f x x x R π⎛⎫=+∈ ⎪⎝⎭与函数()cos(2)()g x x x R ϕ=+∈为同一函数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】 若6πϕ=-,则()cos 2sin 2sin 26623g x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫=-=-+=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,即函数()sin 2()3f x x x R π⎛⎫=+∈ ⎪⎝⎭与函数()cos(2)()g x x x R ϕ=+∈为同一函数,充分性成立;若函数()sin 2()3f x x x R π⎛⎫=+∈ ⎪⎝⎭与函数()cos(2)()g x x x R ϕ=+∈为同一函数,ϕ的值可以为116π,即两个函数数为同一函数不能推出6πϕ=-,必要性不成立,所以,“6πϕ=-”是“函数()sin 2()3f x x x R π⎛⎫=+∈ ⎪⎝⎭与函数()cos(2)()g x x x R ϕ=+∈为同一函数”的充分而不必要条件,故选:A.18.【2020届北京市昌平区高三上学期期末数学试题】设,m n 为非零向量,则“λ=m n ,1λ≤-”是“m n m n +=-”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】 证充分性1(1)n n m n n n λλλ+=+=-++= (1)m n n n n n n λλλ-=-=--=-+所以m n m n +=-,即充分性成立 证必要性()2222m n m nm m n n +=+=+⋅+因为m n m n +=- 所以()2222222m m n n m nm m n n +⋅+=-=-⋅+,即cos m n m n m n π⋅=-⋅=⋅则向量,m n 反向,即存在0λ<,使得λ=m n由0n m n m n n n n λλ+=-==---≥,则1λ≤- 所以λ=m n ,1λ≤-,即必要性成立所以 “λ=m n ,1λ≤-”是“m n m n +=-”的充分必要条件 故选:C19. (2020·安徽合肥一中高三月考(文))以下三个命题:①“x >2”是“x 2﹣3x +2≥0”的充分不必要条件;②若p ∧q 为假命题,则p ,q 均为假命题;③对于命题p :∃x ∈R ,使得x 2+x +1<0;则¬p 是:∀x ∈R ,均有x 2+x +1≥0.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个【答案】B①项,当2x >时,则232(1)(2)0x x x x -+=-->,故充分性成立,令232(1)(2)0x x x x -+=--,解得1x 或2x ,故必要性不成立,所以“2x >”是“2320x x -+”的充分不必要条件,故①正确;②项,若p q ∧为假命题,则p ,q 至少有一个为假命题,不一定均为假命题,故②错误; ③项,特称命题的否命题是全称命题,所以命题:R p x ∃∈,使得210x x ++<的否定为:¬:R p x ∀∈,均有210x x ++,故③正确,综上所述,正确的命题为①和③,共2个. 故选:B.20.(2020·云南师大附中高三月考(理))已知平面向量a →,b →,命题“2a b →→=”是“22a b a b →→→→+=-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】D 【解析】222222a b a b a b a b →→→→→→→→⎛⎫⎛⎫+=-⇔+=- ⎪ ⎪⎝⎭⎝⎭80a b a b →→→→⇔⋅=⇔⊥,而a b →→⊥与2a b →→=之间没有必然的联系,所以“2a b →→=”是“22a b a b →→→→+=-”的既不充分也不必要条件, 故选:D . 二、填空题21.(2020·山西太原五中月考(理)) 已知条件:p x m >,条件2:01x q x -≥+.若p 是q 的必要不充分条件,则实数m 的取值范围是_______.【答案】(,1]-∞-由201xx -≥+,得12x -<≤,即:{12}q x x -<≤. 又:{}p x x m >,且p 是q 的必要不充分条件, ∴q p , 则1m ≤-.∴实数m 的取值范围是(,1]-∞-. 故答案为:(,1]-∞-.22.(2020·四川成都七中高三月考)已知集合{}{}012a b c =,,,,,有下列三个关系①2a ≠;②2b =;③0c ≠,若三个关系中有且只有一个正确的,则23a b c ++=_______________. 【答案】5 【解析】若①正确,②③错误,则0c,1b =,2a =,矛盾,不成立;若②正确,①③错误,则2b =,0c,1a =,矛盾,不成立;若③正确,①②错误,则2a =,1c =,0b =,成立,235a b c ++=; 综上所述:235a b c ++=. 故答案为:5.23.2020·福清西山学校期中(理))设A 是由满足下列性质的函数() f x 构成的集合:在函数() f x 的定义域内存在0x ,使得()02f x =02x f ⎛⎫⎪⎝⎭成立.已知下列函数:①()x xf x e e -=+;②21()lnf x x =;③1()f x x=-;④2()f x x -=.其中属于集合A 的函数是________.(写出所有满足要求的函数的序号) 【答案】① 【解析】对于①,对于函数()xxf x e e -=+, 其定义域为R .令()0022x f x f ⎛⎫=⎪⎝⎭, 得0002222x x x x e e e e --+=+, 显然00x =是其一个解,故函数()xxf x e e -=+是属于集合A 的函数; 对于②,对于函数21()ln f x x=, 其定义域为(,0)(0,)-∞+∞.令()0022x f x f ⎛⎫=⎪⎝⎭, 得方程()220011lnln22x x =⎛⎫ ⎪⎝⎭,得2200144x x =, 0x 没有实数解,故函数21()ln f x x ⎛⎫= ⎪⎝⎭是不属于集合A 的函数;对于③,对于函数1()f x x=-, 其定义域为(,0)(0,)-∞+∞,令()0022x f x f ⎛⎫=⎪⎝⎭, 得方程001122x x -=-, 化简得00122x x =, 得001422x x =,显然此方程无实数解, 故函数1()f x x=-是不属于集合A 的函数; 对于④,对于函数2()f x x -=, 其定义域为(,0)(0,)-∞+∞,令()0022x f x f ⎛⎫=⎪⎝⎭, 得方程()220022x x --⎛⎫= ⎪⎝⎭, 得()22001122x x =⎛⎫ ⎪⎝⎭, 得2200144x x =, 显然此方程也无实数解,故函数2()f x x -=是不属于集合A 的函数. 综上,属于集合A 的函数是①. 故答案为:①.24.(2020·辽宁省实验中学东戴河分校高三月考)若集合12,A A 满足12A A A ⋃=,则称()12,A A 为集合A 的一个分拆,并规定:当且仅当12A A =时,()12,A A 与()21,A A 为集合A 的同一种分拆,则集合{}1,0,2A =-的不同分拆种数是_______. 【答案】27 【解析】因为集合A 中有三个元素,所以当1A =∅时必须2A A =,分拆种数为1;当1A 有一个元素时,分拆种数为132C ⋅;当1A 有2个元素时,分拆总数为2232C ⋅;当1A A =时,分拆种数为3332C ⋅.所以总的不同分拆种数为11223333331222(12)27C C C +⋅+⋅+⋅=+=. 故答案为:27.25.(2020·内蒙古赤峰·月考(理)) 设有下列四个命题:1P :若1a >,则21a >;2P :“240b ac -<”是“()200ax bx c a ++<≠的解集为R ”的充要条件;3P :()0,0x ∃∈-∞,使0034x x <成立; 4P :若tan 3α≠3πα≠.则下述命题中所有真命题的序号是______.①21P P ⌝∨ ②23P P ∨ ③14P P ∧ ④34P P ⌝∧ 【答案】③④ 【解析】由不等式的性质可知若1a >,则21a >,1P 为真命题;“0,a >240b ac -<”时“()200ax bx c a ++<≠的解集不是R ”,2P 为假命题;因为()0,0x ∀∈-∞,00031344x x x ⎛⎫>⇒> ⎪⎝⎭, 3P 为假命题;因为若tan 3α≠3πα≠的逆否命题为真命题,所以4P 为真命题,可得1P ⌝为假命题,3P ⌝为真命题,所以①21P P ⌝∨为假命题,②23P P ∨为假命题,③14P P ∧为真命题,④34P P ⌝∧为真命题, 故答案为:③④26.(2020·内蒙古赤峰·月考(理)) 记(){},,0D x y x y a a =+=>,命题():,p x y D ∃∈,24x y -≥,命题():,q x y D ∀∈,221xy +≥.若命题p q ⌝∧是真命题,则a 的取值范围为______. 【答案】)2,2 【解析】D 表示的区域如图所示的正方形边界:():,p x y D ⌝∀∈,24x y -<,若命题p q ⌝∧是真命题,则命题p ⌝和命题q 都是真命题. 由题意作图:图中阴影部分为正方形边界取值范围,由图象得: 当圆221x y +=内切于正方形时a 取最小值, 则212a ⨯=,所以2a =又由图象易得2a <, ∴a 的取值范围为)2,2. 故答案为:)2,2.27.(2020秋•黄浦区校级月考)设数集,,且集合M、N都是集合U={x|0≤x≤1}的子集,如果把b﹣a称为非空集合{x|a≤x≤b}的“长度”,那么集合M∩N的“长度”的取值范围为.【答案】[,].【解答】解:根据题意,,则集合M的“长度”为,N={x|n﹣≤x≤n},则集合N的“长度”为.而M,N都是集合{x|0≤x≤1}的子集,当N⊆M时,M∩N的“长度”最大值为集合N的“长度”,即,当M与N应分别在区间[0,1]的左右两端时,集合M∩N的“长度”最小,为+﹣1=,即集合M∩N的“长度”的取值范围为[,],故答案为:[,].。
2021年高考数学经典例题专题一集合与简易逻辑含解析
专题一 集合与简易逻辑一、单选题1.设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()U A B =( ) A .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}--- 【答案】C【解析】首先进行补集运算,然后进行交集运算即可求得集合的运算结果.【详解】由题意结合补集的定义可知:{}U 2,1,1B =--,则(){}U 1,1A B =-.故选:C.2.设a ∈R ,则“1a >”是“2a a >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A【解析】首先求解二次不等式,然后结合不等式的解集即可确定充分性和必要性是否成立即可.【详解】求解二次不等式2a a >可得:1a >或0a <,据此可知:1a >是2a a >的充分不必要条件.故选:A.3.设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4} 【答案】C【解析】根据集合并集概念求解.【详解】 [1,3](2,4)[1,4)A B ==故选:C4.已知,R αβ∈,则“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】根据充分条件,必要条件的定义,以及诱导公式分类讨论即可判断.【详解】(1)当存在k Z ∈使得(1)k k απβ=+-时,若k 为偶数,则()sin sin sin k απββ=+=;若k 为奇数,则()()()sin sin sin 1sin sin k k απβππβπββ=-=-+-=-=⎡⎤⎣⎦;(2)当sin sin αβ=时,2m αβπ=+或2m αβππ+=+,m Z ∈,即()()12k k k m απβ=+-=或()()121k k k m απβ=+-=+,亦即存在k Z ∈使得(1)k k απβ=+-.所以,“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的充要条件.故选:C.5.已知集合P ={|14}<<x x ,{|23}Q x x =<<,则PQ =( ) A .{|12}x x <≤B .{|23}x x <<C .{|34}x x ≤<D .{|14}<<x x【答案】B【解析】根据集合交集定义求解.【详解】 (1,4)(2,3)(2,3)P Q ==故选:B6.已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】 将两个条件相互推导,根据能否推导的结果判断充分必要条件.【详解】依题意,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件.故选:B7.设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“AB AC BC +>”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】∵A 、B 、C 三点不共线,∴ |AB +AC |>|BC |⇔|AB +AC |>|AB -AC | ⇔|AB +AC |2>|AB -AC |2AB ⇔•AC >0AB ⇔与AC的夹角为锐角.故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件,故选C.8.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A C B ⊆⊆的集合C 的个数为( )A .1B .2C .3D .4【答案】D【解析】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R{}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ⊆⊆,所以根据子集的定义,集合C 必须含有元素1,2,且可能含有元素3,4,原题即求集合{}3,4的子集个数,即有224=个,故选D.9.已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( )A .2B .3C .4D .6【答案】C【解析】采用列举法列举出A B 中元素的即可.【详解】由题意,A B 中的元素满足8y xx y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4),故A B 中元素的个数为4.故选:C.10.设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】b =0 时,b (b )=cos b +b sin b =cos b , b (b )为偶函数;b (b )为偶函数时,b (−b )=b (b )对任意的b 恒成立,b (−b )=cos (−b )+b sin (−b )=cos b −b sin bcos b +b sin b =cos b −b sin b ,得bbbbb =0对任意的b 恒成立,从而b =0.从而“b=0”是“b (b )为偶函数”的充分必要条件,故选C.11.已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则AB =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3} 【答案】D【解析】 首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果. 【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3AB =,故选:D. 12.设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( )A .–4B .–2C .2D .4 【答案】B【解析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值.【详解】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭.由于{}|21A B x x ⋂=-≤≤,故:12a -=,解得:2a =-. 故选:B.13.已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =( )A .∅B .{–3,–2,2,3)C .{–2,0,2}D .{–2,2} 【答案】D【解析】解绝对值不等式化简集合,A B 的表示,再根据集合交集的定义进行求解即可.【详解】 因为{}{}3,2,1,0,1,2A x x x Z =<∈=--, {}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2A B =-.故选:D.14.已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B ⋃=( ) A .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3} 【答案】A【解析】首先进行并集运算,然后计算补集即可.【详解】由题意可得:{}1,0,1,2A B ⋃=-,则(){}U 2,3A B =-. 故选:A.15.设m R ∈,则“12m ≤≤”是“直线:0l x y m +-=和圆22:2420C x y x y m +--++=有公共点”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】根据条件先求m 的取值范围,再比较集合的包含关系,判断充分必要条件.【详解】圆()()22:123C x y m -+-=-,圆心()1,2,半径r = 若直线l 与圆C 有公共点,则圆心()1,2到直线的距离d =≤13m ≤<,{}12m m ≤≤ {}13m m ≤<,所以“12m ≤≤”是“直线:0l x y m +-=和圆22:2420C x y x y m +--++=有公共点”的充分不必要条件.故选:A16.设x ∈R ,则“2560x x -+<”是“|2|1x -<”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】分别解出两个不等式的解集,比较集合的关系,从而得到两命题的逻辑关系.【详解】 2560x x -+<23x ⇒<<;|2|1x -<13x ⇒<<;易知集合()2,3是()1,3的真子集,故是充分不必要条件.故选:A.17.已知集合{}0,1,2,4A =,{}2,n B x x n A ==∈,则A B =( ) A .{}0,1,2B .{}0,1,4C .{}0,2,4D .{}1,2,4 【答案】D【解析】由题知{}1,2,4,16B =,再根据集合交集运算求解即可.【详解】因为{}0,1,2,4A =,{}1,2,4,16B =,所以{}1,2,4A B =,故选:D.18. “21a =”是“直线1x ay +=与1ax y +=平行”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 【答案】B【解析】首先根基两直线平行求出a 的值,再根据小范围推大范围选出答案.【详解】因为直线1x ay +=与1ax y +=平行,所以0a ≠ 且两直线的斜率相等即1a a-=解得1a =±; 而当1a =时直线1x ay +=为1x y +=,同时1ax y +=为1x y +=,两直线重合不满足题意;当1a =-时,1x y -=与1x y -+=平行,满足题意;故1a =-,根据小范围推大范围可得:21a =是1a =-的必要不充分条件.故选:B19.已知命题:p “,a b 是两条不同的直线,α是一个平面,若,b a b α⊥⊥,则//a α”,命题:q “函数1,1()23,1x e x f x x x -⎧≤=⎨->⎩,为R 上的增函数”,下列说法正确的是 A .“p q ⌝∧”为真命题B .“p q ∧⌝”为真命题C .“p q ∧” 为真命题D .“p q ⌝∧⌝” 为真命题 【答案】D【解析】依题意得p 是假命题;因为312<又()312f f ⎛⎫> ⎪⎝⎭,得q 是假命题,则可判断正确结果. 【详解】若,b a b α⊥⊥,则//a α或a α⊂,所以命题p 是假命题; 函数1,1()23,1x e x f x x x -⎧≤=⎨->⎩,当1x =时()011f e ==,当32x =时3323022f ⎛⎫=⨯-= ⎪⎝⎭, 因为312<又()312f f ⎛⎫> ⎪⎝⎭,所以()f x 在R 上不是增函数,故q 是假命题; 所以p ⌝与q ⌝是真命题,故“p q ⌝∧⌝” 为真命题故选:D .20.记不等式组620x y x y +⎧⎨-≥⎩表示的平面区域为D ,命题:(,),29p x y D x y ∃∈+;命题:(,),212q x y D x y ∀∈+.给出了四个命题:①p q ∨;②p q ⌝∨;③p q ∧⌝;④p q ⌝∧⌝,这四个命题中,所有真命题的编号是( )A .①③B .①②C .②③D .③④【答案】A【解析】如图,平面区域D 为阴影部分,由2,6y xx y =⎧⎨+=⎩得2,4x y =⎧⎨=⎩即A (2,4),直线29x y +=与直线212x y +=均过区域D ,则p 真q 假,有p ⌝假q ⌝真,所以①③真②④假.故选A .21.已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( )A .2B .3C .4D .5【答案】B【解析】采用列举法列举出A B 中元素的即可.【详解】由题意,{5,7,11}A B ⋂=,故A B 中元素的个数为3.故选:B22.已知M 、N 为R 的子集,若R M N =∅,{}1,2,3N =,则满足题意的M 的个数为()A .3B .4C .7D .8【答案】D【解析】根据交集、补集的运算的意义,利用韦恩图可得出M ,N 关系,根据子集求解.【详解】因为M 、N 为R 的子集,且R MN =∅,画出韦恩图如图,可知,M N ⊆,因为{}1,2,3N =,故N 的子集有32=8个.故选:D23. “0a =”是直线(1)(1)20()a x a y a a R ++-+=∈与圆224x y +=相交的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件【答案】A【解析】根据直线与圆相交的判定,充分条件,必要条件即可求解【详解】当0a =时,直线为0x y -=,过圆心(0,0),故直线与圆224x y +=相交,当直线(1)(1)20()a x a y a a R ++-+=∈与圆224x y +=相交时,圆心到直线的距离2d =<,化简得220a +>,显然恒成立,不能推出0a =,所以“0a =”是直线(1)(1)20()a x a y a a R ++-+=∈与圆224x y +=相交的充分不必要条件, 故选:A24.设集合()222021,2020A x y x y ⎧⎫=+=⎨⎬⎩⎭,(){},2x B x y y ==,则集合A B 中元素的个数为( ) A .0 B .1 C .2 D .3【答案】C【解析】 分别作出2220212020x y +=,2x y =图象,判断交点个数即可.【详解】依题意:集合A B 中元素的个数即2220212020x y +=,2x y =图象交点个数如图所以一共有两个交点,所以集合A B 中元素的个数为2故选:C25.已知集合{}13A x x =≤<,{}B y y m =≤,且A B =∅,则实数m 应满足()A .1m <B .1mC .3m ≥D .3m >【答案】A【解析】根据集合交集定义即可求解.【详解】 解:∵集合{}13A x x =≤<,{}B y y m =≤,A B =∅∴1m <,故选:A .26.命题000:,20p x R x lnx ∃∈+<的否定为( )A .000,20x R x lnx ∃∉+≥B .000,20x R x lnx ∃∈+>C .,20x R x lnx ∀∈+>D .,20x R x lnx ∀∈+≥【答案】D【解析】 根据特称命题的否定是全称命题,直接写出即可.【详解】根据特称命题的否定是全称命题,所以命题p 的否定为,20x R x lnx ∀∈+≥.故选:D.27.已知集合{}220A x x x =-->,则A =R ( ) A .{}12x x -<<B .{}12x x -≤≤C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥ 【答案】B【解析】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果.详解:解不等式220x x -->得12x x -或,所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.28.已知两条直线,a b 和平面α,若b α⊂,则//a b 是//a α的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分又不必要条件 【答案】D【解析】当b α⊂时,若//a b 时,a 与α的关系可能是//a α,也可能是a α⊂,即//a α不一定成立,故////a b a α⇒为假命题;若//a α时,a 与b 的关系可能是//a b ,也可能是a 与b 异面,即//a b 不一定成立,故////a a b α⇒也为假命题;故//a b 是//a α的既不充分又不必要条件故选:D29.设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有两个元素,且S ,T 满足:①对于任意x ,y ∈S ,若x ≠y ,都有xy ∈T②对于任意x ,y ∈T ,若x <y ,则y x ∈S ; 下列命题正确的是( )A .若S 有4个元素,则S ∪T 有7个元素B .若S 有4个元素,则S ∪T 有6个元素C .若S 有3个元素,则S ∪T 有5个元素D .若S 有3个元素,则S ∪T 有4个元素【答案】A【解析】分别给出具体的集合S 和集合T ,利用排除法排除错误选项,然后证明剩余选项的正确性即可.【详解】首先利用排除法:若取{}1,2,4S =,则{}2,4,8T =,此时{}1,2,4,8ST =,包含4个元素,排除选项 C ; 若取{}2,4,8S =,则{}8,16,32T =,此时{}2,4,8,16,32S T =,包含5个元素,排除选项D ;若取{}2,4,8,16S =,则{}8,16,32,64,128T =,此时{}2,4,8,16,32,64,128ST =,包含7个元素,排除选项B ;下面来说明选项A 的正确性:设集合{}1234,,,S p p p p =,且1234p p p p <<<,*1234,,,p p p p N ∈,则1224p p p p <,且1224,p p p p T ∈,则41p S p ∈, 同理42p S p ∈,43p S p ∈,32p S p ∈,31p S p ∈,21p S p ∈,若11p =,则22p ≥,则332p p p <,故322p p p =即232p p =, 又444231p p p p p >>>,故442232p p p p p ==,所以342p p =, 故{}232221,,,S p p p =,此时522,p T p T ∈∈,故42p S ∈,矛盾,舍. 若12p ≥,则32311p p p p p <<,故322111,p p p p p p ==即323121,p p p p ==, 又44441231p p p p p p p >>>>,故441331p p p p p ==,所以441p p =, 故{}2341111,,,S p p p p =,此时{}3456711111,,,,p p p p p T ⊆. 若q T ∈, 则31q S p ∈,故131,1,2,3,4i q p i p ==,故31,1,2,3,4i q p i +==, 即{}3456711111,,,,q p p p p p ∈,故{}3456711111,,,,p p p p p T =,此时{}234456*********,,,,,,,S T p p p p p p p p ⋃=即S T 中有7个元素.故A 正确.故选:A .【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.二、填空题30.已知集合{}1,2A =,{}2,3B a a =+,若A B={1}⋂则实数a 的值为________ 【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.点睛:(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,A B A B ⋂=∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.31.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.32.设A 是非空数集,若对任意,x y A ∈,都有,x y A xy A +∈∈,则称A 具有性质P .给出以下命题: ①若A 具有性质P ,则A 可以是有限集;②若12,A A 具有性质P ,且12A A ⋂≠∅,则12A A ⋂具有性质P ;③若12,A A 具有性质P ,则12A A ⋃具有性质P ;④若A 具有性质P ,且A ≠R ,则A R 不具有性质P .其中所有真命题的序号是___________.【答案】①②【解析】举特例判断①;利用性质P 的定义证明②即可;举反例说明③错误;利用反证法,结合举反例判断④.【详解】对于①,取集合{}0,1A =具有性质P ,故A 可以是有限集,故①正确;对于②,取12,x y A A ∈⋂,则1x A ∈,2x A ∈,1y A ∈,2y A ∈,又12,A A 具有性质P ,11,x y A xy A ∴+∈∈,22,x y A xy A +∈∈,1212,x y xy A A A A ∴+∈∈⋂⋂,所以12A A ⋂具有性质P ,故②正确;对于③,取{}1|2,A x x k k Z ==∈,{}2|3,A x x k k Z ==∈,12A∈,23A ∈,但1223A A +∉⋃,故③错误;对于④,假设A R 具有性质P ,即对任意,x y A ∈R ,都有,x y A xy A +∈∈R R ,即对任意,x y A ∉,都有,x y A xy A +∉∉,举反例{}|2,A x x k k Z ==∈,取1A ∉,3A ∉,但134A +=∈,故假设不成立,故④错误;故答案为:①②【点睛】关键点点睛:本题考查集合新定义,解题的关键是对集合新定义的理解,及举反例,特例证明,考查学生的逻辑推理与特殊一般思想,属于基础题.。
高考数学分类详解《集合与简易逻辑》专题1
高考数学分类详解《集合与简易逻辑》专题12020.031,已知集合11{11}|242x M N x x +⎧⎫=-=<<∈⎨⎬⎩⎭Z ,,,,则M N =I ( ) A .{11}-, B .{0} C .{1}- D .{10}-,2,设集合{1234}{12}{24}U A B ===,,,,,,,,则()U A B =U ð( ) A .{2} B .{3} C .{124},, D .{14},3,已知集合{|10}M x x =+>,1{|0}1N x x =>-,则M N I =A .{x|-1≤x <1}B .{x |x>1}C .{x|-1<x <1}D .{x |x ≥-1}4,设全集U ={1,3,5,6,8},A ={1,6},B ={5,6,8},则(C U A)∩B =(A){6} (B){5,8} (c){6,8} (D){3,5,6,8}5,“|x|<2”是“x 2-x-6<0”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件6,已知集合{}|1A x x a =-≤,{}2540B x x x =-+≥.若A B =∅I ,则实数a的取值范围是 .7,若集合{}01M =,,{}012345I =,,,,,,则I M ð为( ) A.{}01, B.{}2345,,, C.{}02345,,,, D.{}12345,,,,8,若}}{{032,122=--===x x x B x x A ,则B A ⋂=(A ){}3 (B ){}1 (C )Φ (D) {}1-9,设集合{()||2|},A x y y x =-1,≥2{()|||}B x y y x b =-+,≤,A B ≠∅I . (1)b 的取值范围是 ;(2)若()x y A B ∈I ,,且2x y +的最大值为9,则b 的值是 .10,设p q ,是两个命题:251:||30:066p x q x x ->-+>,,则p 是q 的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件11,设集合(){}(){},||2|,0,,|,A x y y x x B x y y x b A B =≥-≥=≤-+⋂≠∅,(1)b 的取值范围是 .(2)若(),,x y A B ∈⋂且2x y +的最大值为9,则b 的值是 .12,设M N ,是两个集合,则“M N ≠∅U ”是“M N ≠∅I ”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分又不必要条件13,命题“若12<x ,则11<<-x ”的逆否命题是( ) A .若12≥x ,则1≥x 或1-≤x B.若11<<-x ,则12<x C.若1>x 或1-<x ,则12>x D.若1≥x 或1-≤x ,则12≥x14,若集合{13}A =,,{234}B =,,,则A B =I ( ) A .{1} B .{2} C .{3} D .{1234},,,15,已知全集U Z =,2{1,0,1,2},{|}A B x x x =-==,则U A C B I 为(A ) A .{1,2}- B .{1,0}- C .{0,1} D .{1,2}16,设p q ,是两个命题:21251:log (||3)0:066p x q x x ->-+>,,则p 是q 的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件17,已知集合{}12S x x =∈+≥R ,{}21012T =--,,,,,则S T =I ( )A .{}2B .{}12,C .{}012,,D .{}1012-,,,18,已知命题:p x ∀∈R ,sin 1x ≤,则( ) A.:p x ⌝∃∈R ,sin 1x ≥ B.:p x ⌝∀∈R ,sin 1x ≥ C.:p x ⌝∃∈R ,sin 1x > D.:p x ⌝∀∈R ,sin 1x >19,设集合{}{}|1|22A x x B x x =>-=-<<,,则A B =U ( )A.{}|2x x >- B.{}1x x >-|C.{}|21x x -<<- D.{}|12x x -<<20,“-1<x <1”是“x 2<1”的(A )充分必要条件 (B )充分但不必要条件 (C )必要但不充分条件 (D )既不充分也不必要条件21,设2:()e ln 21x p f x x x mx =++++在(0)+∞,内单调递增,:5q m -≥,则p 是q 的( )A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 22,若}{2228x A x -=∈Z ≤<,{2R |log |1}B x x =∈>,则)(C R B A ⋂的元素个数为(A )0 (B )1 (C )2 (D )323,已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,现有下列命题: ①r 是q 的充要条件;②p 是q 的充分条件而不是必要条件; ③r 是q 的必要条件而不是充分条件; ④┐p 是┑s 的必要条件而不是充分条件; ⑤r 是s 的充分条件而不是必要条件. 则正确命题的序号是A.①④⑤B.①②④C.②③⑤D.②④⑤24,下列各小题中,p 是q 的充要条件的是(1):2p m <-或6m >;2:3q y x mx m =+++有两个不同的零点。
北京中国人民大学附中高考数学综合能力题选讲 第01讲 集合与简易逻辑(含详解)
集合与简易逻辑题型预测《考试说明》中,对于集合、充要条件已做出明确的要求 高考中,对于这一部分的考查,主要集中在:(1)集合本身的性质和运算;(2)集合语言和集合思想的运用;(3)充分条件和必要条件的判定范例选讲例1 命题甲:2≠x 或3≠y ;命题乙:5≠+y x ,则( )A 甲是乙的充分非必要条件;B 甲是乙的必要非充分条件;C 甲是乙的充要条件;D 甲既不是乙的充分条件,也不是乙的必要条件讲解 为了进行判断,首先需要构造两个命题:甲=>乙;乙=>甲但是,这两个命题都是否定性的命题,正面入手较为困难 考虑到原命题与逆否命题的等价性,可以转化为判断其逆否命题是否正确“甲=>乙”,即“2≠x 或3≠y ” =>“5≠+y x ”,其逆否命题为:“5=+y x ” =>“2=x 且3=y ”显然不正确 同理,可判断命题“乙=>甲”为真命题故选择B点评 本题虽然看上去是一个基本的不等量关系,但实质逻辑性很强,容易选错,解本题的关键:一是从反面入手,利用原命题与逆否命题的等价性,二是要对逻辑联结词“或”“且”深刻理解与领悟例2 已知集合{}{}R t tx x x t t A =≠--+=03422使,集合=B {}{}∅≠=-+0222t tx x x t t 使,其中t x ,均为实数(1)求B A ⋂;(2)设m 为实数,()32-=m m g ,求(){}B A m g m M ⋂∈= 讲解 (1)集合A 实际上是:使得03422>--+t tx x 恒成立的所有实数t 的集合 故令0)34(4)2(21<---=∆t t ,解得:13-<<-t集合B 实际上是:使得方程0222=-+t tx x 有解的所有实数t 的集合 故令()0)2(4222≥-⋅-=∆t t ,解得:0≥t 或2-≤t所以,()1,3--=A ,(][)+∞⋃-∞-=,02,B ,()2,3--=⋂B A (2)设()u m g =,则问题(2)可转化为:已知函数()m g u =的值域(()2,3--∈u ),求其定义域令2332-<-<-m ,可解得:1001<<<<-m m 或所以,M ={}1001<<<<-m m m 或点评 学习数学,需要全面的理解概念,正确地进行表述、判断和推理,这就离不开对逻辑知识的掌握和运用 而集合作为近、现代数学的重要基础,集合语言、集合思想也已经渗透到数学的方方面面 集合和简易逻辑,是学习、掌握和使用数学语言的基础 本题以集合和逻辑为背景,主要考查对数学符号语言的阅读、理解以及迁移转化的能力。
高考数学真题汇编解析-第一章集合与简易逻辑
.(高考(广东文))(集合)设集合U 1, 2,3, 4,5, 6 , M 1,3,5 ,则 CU M ( )
A.2,4,6 B.1,3,5 C.1,2,4 D.U
.(高考(福建文))已知集合 M 1, 2, 3, 4, N 2, 2 ,下列结论成立的是 ( )
4
A.若 α≠ ,则 tanα≠1 B.若 α= ,则 tanα≠1
4
4
C.若 tanα≠1,则 α≠ D.若 tanα≠1,则 α=
.(高考(北京文))已知集合 A x R 3x 2 0 , B xR (x 1)(x 3) 0 ,则 A B =
()
A. (, 1) B. (1, 2) C. ( 2 ,3) D. (3, )
3
3
.(高考(重庆文))命题“若 p 则 q”的逆命题是 ( )
A.若 q 则 p B.若 p 则 q C.若 q 则 p D.若 p 则 q
一、选择题 .(高考(浙江文))设全集 U={1,2,3,4,5,6} ,设集合 P={1,2,3,4} ,Q{3,4,5},则 P∩(CUQ)=
() A.{1,2,3,4,6} B.{1,2,3,4,5} C.{1,2,5} D.{1,2}
.(高考(四川文))设集合 A {a, b} , B {b, c, d} ,则 A B ( )
A.{1,2,4} B.{2,3,4} C.{0,2,4} D.{0,2,3,4} .(高考(辽宁文))已知全集 U={0,1,2,3,4,5,6,7,8,9},集合 A={0,1,3,5,8},集合 B={2,4,5,6,8},
则 (CU A) (CU B) ( )
A.{5,8}B.{7,9} C.{0,1,3} D.{2,4,6} .(高考(课标文))已知集合 A={x|x2-x-2<0},B={x|-1<x<1},则 ( ) A.AB B.BA C.A=B D.A∩B= .(高考(江西文))若全集 U={x∈R|x2≤4} A={x∈R||x+1|≤1}的补集 CuA 为 ( ) A.|x∈R |0<x<2| B.|x∈R |0≤x<2| C.|x∈R |0<x≤2| D.|x∈R |0≤x≤2|
高考数学二轮复习 专题01 集合与简易逻辑(讲)(含解析)理
专题一 集合与简易逻辑考向一 集合的运算【高考改编☆回顾基础】1.【补集运算】【2017·北京改编】已知U =R ,集合A ={x |x <-2或x >2},则∁U A =________. 【答案】 [-2,2]【解析】因为A ={x |x <-2或x >2},所以∁U A =∁R A ={x |-2≤x ≤2},即∁U A =[-2,2].2. 【集合与不等式相结合】【2017课标1,理1】已知集合A={x|x<1},B={x|31x <},则( ) A .{|0}A B x x =<B .A B =RC .{|1}AB x x =>D .AB =∅【答案】A【解析】由31x <可得033x <,则0x <,即{|0}B x x =<, 所以{|1}{|0}{|0}AB x x x x x x =<<=<,{|1}{|0}{|1}A B x x x x x x =<<=<,故选A.3. 【集合元素的属性】【2017课标3,理1】已知集合A={}22(,)1x y x y +=│,B={}(,)x y y x =│,则A B 中元素的个数为( ) A .3B .2C .1D .0【答案】B4.【集合运算】【2017课标II ,理】设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =,则B =( ) A.{}1,3- B.{}1,0 C.{}1,3 D.{}1,5 【答案】C 【解析】【命题预测☆看准方向】集合在高考中主要考查三方面内容:一是考查集合的概念、集合间的关系;二是考查集合的运算和集合语言的运用,常以集合为载体考查函数、不等式、解析几何等知识;三是以创新题型的形式考查考生分析、解决集合问题的能力.预计2018年的高考将会继续保持稳定,坚持考查集合运算,命题形式会更加灵活、新颖.试题类型一般是一道选择题或填空题,多与函数、方程、不等式、解析几何等综合考查.【典例分析☆提升能力】【例1】设A ={}2430x x x -+≤,B ={}230x x -<,则图中阴影部分表示的集合为( )A .3(3,)2--B .3(3,)2-C .3[1,)2D .3(,3)2【答案】C【趁热打铁】【2017山东,理1】设函数A ,函数y=ln(1-x)的定义域为B ,则A B ⋂=( ) (A )(1,2) (B )⎤⎦(1,2 (C )(-2,1) (D )[-2,1) 【答案】D【解析】由240x -≥得22x -≤≤,由10x ->得1x <,故A B={|22}{|1}{|21}x x x x x x -≤≤⋂<=-≤<,选D.【例2】【2018届湖北省鄂东南联盟期中】对于任意两集合,定义且,记,则__________.【答案】【解析】,,所以【趁热打铁】设R U =,已知集合}1|{≥=x x A ,}|{a x x B >=,且R B A C U = )(,则实数a 的取值范围是( )A .)1,(-∞B .]1,(-∞C .),1(+∞D .),1[+∞ 【答案】A【解析】由}1|{≥=x x A 有{}1U C A x x =<,而R B A C U = )(,所以1a <,故选A.【方法总结☆全面提升】在进行集合的交、并、补运算中可依据元素的不同属性采用不同的方法求解,常用到的技巧有: (1)若已知的集合是不等式的解集,用数轴求解; (2)若已知的集合是点集,用数形结合法求解; (3)若已知的集合是抽象集合,用Venn 图求解;(4)注意转化关系(U C A)∩B=B ⇔B ⊆U C A,A ∪B=B ⇔A ⊆B,U C (A ∩B )=(U C A )∪(U C B ), U C (A ∪B )=(U C A )∩(U C B )等.注意两个问题:(1)对于集合问题,抓住元素的特征是求解的关键,要注意集合中元素的三个特征的应用,要注意检验结果. (2)对于给出已知集合,进行交集、并集与补集运算时,可以直接根据它们的定义求解,也可以借助数轴、韦恩(Venn)图等图形工具,运用分类讨论、数形结合等思想方法,直观求解.【规范示例☆避免陷阱】【典例】已知集合23100,121{|}{|,}A x x x B x m x m A B A =--≤=+≤≤-⋃=若,求实数m 的取值范围. 【规范解答】,.A B A B A ⋃=∴⊆23{|}{10025,|}A x x x x x =--≤=-≤≤【反思提高】造成本题失分的根本原因是易于忽视“空集是任何集合的子集”这一性质.当题目中出现,,A B A B A A B B ⊆⋂=⋃=时,注意对A 进行分类讨论,即分为A φ=和A φ≠两种情况讨论.【误区警示】(1)在进行集合的运算时要尽可能地借助韦恩(Venn)图和数轴使抽象问题直观化.一般地,集合元素离散时用韦恩(Venn)图表示;集合元素连续时用数轴表示,用数轴表示时需注意端点值的取舍.(2) 空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.在解决有关A B ⋂∅=的问题时,往往忽略空集的情况,一定要先考虑()A B ∅或=是否成立,以防漏解.另外要注意分类讨论和数形结合思想的应用. (3)五个关系式U UA B A B A A B B B A ⊆⋂⋃⊆,=,=,痧以及()U A B ⋂∅=ð是两两等价的.对这五个式子的等价转换,常使较复杂的集合运算变得简单.考向二 简易逻辑 【高考改编☆回顾基础】1.【四种命题及其关系】【2017课标1,理3】设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A.13,p pB .14,p pC .23,p pD . 24,p p【答案】B【解析】2. 【三角函数与充要条件相结合】【2017·天津卷改编】设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 条件.(A )充分而不必要条件(B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件 【答案】充分而不必要条件 【解析】πππ||012126θθ-<⇔<< 1sin 2θ⇒< ,但10,sin 2θθ=<,不满足 ππ||1212θ-<,所以是充分不必要条件.3. 【全称命题与复合命题】【2017山东卷改编】已知命题p:()x x ∀+>0,ln 1>0;命题q :若a >b ,则a b 22>,下列命题为真命题的是 .①∧p q ②⌝∧p q ③⌝∧p q ④⌝⌝∧p q 【答案】②故填②.4.【全称命题与特称命题】【2016浙江卷改编】命题“*x n ∀∈∃∈,R N ,使得2n x >”的否定形式是 . A .*x n ∀∈∃∈,R N ,使得2n x < B .*x n ∀∈∀∈,R N ,使得2n x < C .*x n ∃∈∃∈,R N ,使得2n x < D .*x n ∃∈∀∈,R N ,使得2n x < 【答案】*x n ∃∈∀∈,R N ,使得2n x <【解析】∀的否定是∃,∃的否定是∀,2n x ≥的否定是2n x <.故填*x n ∃∈∀∈,R N ,使得2n x <.【命题预测☆看准方向】常用逻辑用语的考查一般以一个选择题或一个填空题的形式出现,以集合、函数、数列、三角函数、不等式、立体几何中的线面关系、平面解析几何中的线线关系、直线与圆的位置关系等为载体,考查充要条件或命题的真假判断等,难度一般不大.预测2018年将对其中的一或二个知识点予以考查.【典例分析☆提升能力】【例1】【2018届河南省漯河市12月模拟】已知l , m 是空间两条不重合的直线, α是一个平面,则“m α⊥,l 与m 无交点”是“//l m , l α⊥”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】B【趁热打铁】设R y x ∈,,则"22"≥≥y x 且是"4"22≥+y x 的( ).A 充分不必要条件 .B 必要不充分条件 .C 充要条件 .D 既不充分又不必要条件【答案】A【解析】由"22"≥≥y x 且可得"4"22≥+y x ,但"4"22≥+y x 不一定能够得到"22"≥≥y x 且 故选A .【例2】命题:“00x ∃>,使002()1xx a ->”,这个命题的否定是( ) A .0x ∀>,使2()1xx a -> B .0x ∀>,使2()1xx a -≤ C .0x ∀≤,使2()1xx a -≤ D .0x ∀≤,使2()1xx a -> 【答案】B【解析】由已知,命题的否定为0x ∀>,2(1xx a ⋅-≤使),故选B. 【例3】【2018届广州市第一次调研】设命题p : 1x ∀<, 21x <,命题q : 00x ∃>, 0012x x >,则下列命题中是真命题的是A. p q ∧B. ()p q ⌝∧C. ()p q ∧⌝D. ()()p q ⌝∧⌝ 【答案】B【解析】当2x =-时, 241x =>,显然命题p 为假命题;当01x =时, 001221xx =>=,显然命题q 为真命题; ∴p ⌝为真命题, q ⌝为假命题 ∴()p q ⌝∧为真命题 故选:B【趁热打铁】已知命题:p 对任意x R ∈,总有20x>;:"1"q x >是"2"x >的充分不必要条件则下列命题为真命题的是( ).A p q ∧ .B p q ⌝∧⌝ .C p q ⌝∧ .D p q ∧⌝【答案】D【解析】由题设可知:p 是真命题,q 是假命题;所以,p ⌝是假命题,q ⌝是真命题; 所以,p q ∧是假命题,p q ⌝∧⌝是假命题,p q ⌝∧是假命题,p q ∧⌝是真命题;故选D.【方法总结☆全面提升】(1)命题真假的判定方法:①一般命题p 的真假由涉及的相关知识进行辨别;②四种命题的真假的判断根据:一个命题和它的逆否命题同真假,它的逆命题跟否命题同真假; ③形如p ∨q ,p ∧q ,⌝p 命题的真假根据真值表判定;④全称命题与特称命题的否定:全称命题():,p x M p x ∀∈,其否定形式是()00,x M p x ∃∈⌝;特称命题()00:,p x M p x ∃∈,其否定形式是(),x M p x ∀∈⌝.(2) 一些常用的正面叙述的词语及它们的否定词语表:(3) 充分条件、必要条件判断的定义法:先判断p q ⇒与q p ⇒是否成立,然后再确定p 是q 的什么条件. (4)用集合的观点看充分条件、必要条件:A ={x|x 满足条件p},B ={x|x 满足条件q},(1)如果A ⊆B ,那么p 是q 的充分不必要条件;(2)如果B ⊆A ,那么p 是q 的必要不充分条件;(3)如果A =B ,那么p 是q 的充要条件;(4)如果A B ⊂≠,且B A ⊂≠,那么p 是q 的既不充分也不必要条件. (5)对于充分条件、必要条件的判断要注意以下几点:①要弄清先后顺序:“A 的充分不必要条件是B”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B不能推出A.②要善于举出反例:如果从正面判断或证明一个命题的正确或错误不易进行时,可以尝试通过举出恰当的反例来说明.③要注意转化:若⌝p 是⌝q 的必要不充分条件,则p 是q 的充分不必要条件;若⌝p 是⌝q 的充要条件,那么p 是q 的充要条件.④要善于利用集合间的包含关系判断:若A B ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件.【规范示例☆避免陷阱】【典例】已知p :“向量a 与向量b 的夹角θ为钝角”是q :“a b ∙<0”的 条件.【反思提高】判断条件与结论之间的关系时要从两个方向判断,解答本题易于判断一个方向就下结论,忽视对“a b ∙<0”成立时能否导出“向量a 与向量b 的夹角为钝角”的判断.充要条件的判断三种常用方法:(1)利用定义判断.如果已知p q ⇒,则p 是q 的充分条件,q 是p 的必要条件;(2)利用等价命题判断;(3) 把充要条件“直观化”,如果p r ⇒,可认为p 是q 的“子集”;如果q p ⇒,可认为p 不是q 的“子集”,由此根据集合的包含关系,可借助韦恩图说明. 【误区警示】(1)区分命题的否定和否命题的不同,否命题是对命题的条件和结论都否定,而命题的否定仅对命题的结论否定.(2)p 或q 的否定:¬p 且¬q ;p 且q 的否定:¬p 或¬q .(3)“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A .。
高考数学专题一+集合与简易逻辑
专题一 集合与简易逻辑【考点聚焦】考点1:集合中元素的基本特征,集合的表示法,元素与集合的关系,集合与集合之间的包含关系,集合的交、并、补运算。
考点2:绝对值不等式、一元二次不等式及分工不等式的解法。
考点3:简单命题与复合命题的相关概念,真假命题的判断,四种命题及其关系,反证法的证题思想。
考点4:充分必要条件的有关概念及充分条件与必要条件的判断。
【自我检测】1、_____________________________,称集合A 是集合B 的子集;2、_____________________________,叫做集合U 中子集A 的补集;3、_____________________________,叫做A 与B 的交集;4、_____________________________,叫做A 与B 的并集;5、如果已知_____________,那么p 是q 的充分条件,q 是p 的必要条件;如果_____________,那么p 是q 的充分且必要条件;【重点∙难点∙热点】 问题1:集合的相关概念1 解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x |x ∈P },要紧紧抓住竖线前面的代表元素x 以及它所具有的性质P ;要重视发挥图示法的作用,通过数形结合直观地解决问题2 注意空集∅的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如A ⊆B ,则有A =∅或A ≠∅两种可能,此时应分类讨论例1:设A ={(x ,y )|y 2-x -1=0},B ={(x ,y )|4x 2+2x -2y +5=0},C ={(x ,y )|y =kx +b },是否存在k 、b ∈N ,使得(A ∪B )∩C =∅,证明此结论思路分析:由集合A 与集合B 中的方程联立构成方程组,用判别式对根的情况进行限制,可得到b 、k 的范围,又因b 、k ∈N ,进而可得b 、k 的值解 ∵(A ∪B )∩C =∅,∴A ∩C =∅且B ∩C =∅∵⎩⎨⎧+=+=bkx y x y 12 ∴k 2x 2+(2bk -1)x +b 2-1=0 ∵A ∩C =∅ ∴Δ1=(2bk -1)2-4k 2(b 2-1)<0 ∴4k 2-4bk +1<0,此不等式有解, 其充要条件是16b 2-16>0, 即 b 2>1①∵⎩⎨⎧+==+-+b kx y y x x 052242∴4x 2+(2-2k )x +(5+2b )=0 ∵B ∩C =∅,∴Δ2=(1-k )2-4(5-2b )<0 ∴k 2-2k +8b -19<0, 从而8b <20, 即 b <2 5 ②由①②及b ∈N ,得b =2代入由Δ1<0和Δ2<0组成的不等式组,得⎪⎩⎪⎨⎧<--<+-032,018422k k k k ∴k =1,故存在自然数k =1,b =2,使得(A ∪B )∩C =∅点评 本题主要考查考生对集合及其符号的分析转化能力,即能从集合符号上分辨出所考查的知识点,进而解决问题 解决此题的关健是将条件(A ∪B )∩C =∅转化为A ∩C =∅且B ∩C =∅,这样难度就降低了演变1:已知集合A ={(x ,y )|x 2+mx -y +2=0},B ={(x ,y )|x -y +1=0,且0≤x ≤2},如果A ∩B ≠∅,求实数m 的取值范围点拨与提示:本题考查学生对集合及其符号的分析转化能力,A ∩B ≠∅即是两集合中方程联立的方程组在[0,2]上有解。
高考数学真题汇编1 集合与简易逻辑 ( 解析版)
高考真题分类汇编:集合与简易逻辑1.设集合A={x|1<x <4},集合B ={x|2x -2x-3≤0}, 则A ∩(C R B )=A .(1,4)B .(3,4) C.(1,3) D .(1,2)∪(3,4) 【答案】B【解析】B ={x|2x -2x-3≤0}=}31|{≤≤-x x ,A ∩(C R B )={x|1<x <4} }3,1|{>-<x x x 或=}43|{<<x x 。
故选B.2.已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 10【答案】D【解析】要使A y x ∈-,当5=x 时,y 可是1,2,3,4.当4=x 时,y 可是1,2,3.当3=x 时,y 可是1,2.当2=x 时,y 可是1,综上共有10个,选D. 3.集合{|lg 0}M x x =>,2{|4}N x x =≤,则MN =( ) A. (1,2) B.[1,2) C. (1,2] D. [1,2]【答案】C.【解析】}22|{}4|{},1|{}0lg |{2≤≤-=≤=>=>=x x x x N x x x x M ,]2,1(=∴N M ,故选C.4.已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则U C AB 为(A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,4 【答案】C【解析】}4,0{=A C U ,所以}42,0{,)(=B A C U ,选C.5.已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则)()(B C A C U U 为(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6} 【答案】B【解析】1.因为全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以{}{}9,7,3,1,0,9,7,6,4,2==B C A C U U ,所以)()(B C A C U U 为{7,9}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学百所名校好题分项解析汇编之上海专版(2020版)专题01 集合与简易逻辑1. 【上海市交通大学附属中学2019-2020学年9月月考数学试题】在等差数列{}n a 中,设*,,,k l p r N ∈,则k l p r +>+是k l p r a a a a +>+的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分非必要条件【答案】D【解析】若等差数列为123455,4,3,2,1..a a a a a =====⋯则当1,5,2,3k l p r ====时,k l p r +>+成立,但k l p r a a a a +>+不成立,所以非充分条件 当1,2,3,4k l p r ====时,k l p r a a a a +>+成立,但k l p r +>+不成立,所以非必要条件 综上可知,k l p r +>+是k l p r a a a a +>+的既非充分非必要条件 所以选D.2. 【上海市奉贤区2019-2020学年高三上学期第一次模拟考试】己知点(),P a b 的,曲线1C 的方程y =2C 的方程221x y +=,则“点(),P a b 在曲线1C 上“是”点(),P a b 在曲线2C 上“的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【答案】A【解析】当点(),P a b 在曲线1C 上时,有221b a b ⇒+==,所以由点(),P a b 在曲线1C 上,可以推出点(),P a b 在曲线2C 上;当点(),P a b 在曲线2C 上时,有221a b b +=⇒=(),P a b 在曲线2C 上不一定能推出点(),P a b 在曲线1C 上,所以“点(),P a b 在曲线1C 上“是”点(),P a b 在曲线2C 上“的充分非必要条件.故选:A 3. 【上海市七校3月联考(理)数学试题】 设a b 、均为非零实数,则“1b a<”是“1ab >”的什么条件?( )A .必要不充分B .充分不必要C .充要条件D .既不充分也不必要条件【答案】A【解析】Q 当1,1b a =-=,满足1b a<,但1ab >不成立∴ 1b a<不能推出1a b >.Q 若1a b >,则0ab >∴01ba << 故1b a <成立∴ 1a b >能推出1b a<∴ “b1a<”是“1a b >”的必要不充分.故选:A.4. 【上海嘉定区2019-2020学年高二上学期期末数学试题】列向量12a a ⎛⎫ ⎪⎝⎭与12b b ⎛⎫⎪⎝⎭平行是二元一次为方程组111222a x b y c a x b y c +=⎧⎨+=⎩无解的( )A .充分非必要条件B .必要非充分条件C .充要条件D .非充分且非必要条件【答案】B 【解析】 设:p “列向量12a a ⎛⎫⎪⎝⎭与12b b ⎛⎫⎪⎝⎭平行”,:q “二元一次为方程组111222a x b y c a x b y c +=⎧⎨+=⎩无解”, 取列向量11⎛⎫ ⎪⎝⎭与11⎛⎫⎪⎝⎭,121c c ==,则两向量平行,对应的二元一次方程组为11x y x y +=⎧⎨+=⎩即10x y +-=,此方程组(方程)有无数解,故“若p 则q ”为假命题. 若二元一次为方程组111222a x b y c a x b y c +=⎧⎨+=⎩无解,则直线111222210,:0:l a x b y c a x b c l y +-+-==平行,所以1221a b a b =,列向量12a a ⎛⎫ ⎪⎝⎭与12b b ⎛⎫⎪⎝⎭平行,故“若q 则p ”为真命题,所以p 是q 的必要非充分条件. 故选:B .5. (2019·上海市行知中学高三月考)下列各式中,正确的个数是( ) (1){0}∅=,(2){0}∅⊆,(3){0}∅∈;(4){}00=;(5){}00∈; (6){}{}11,2,3∈;(7){}{}1,21,2,3⊆;(8){}{},,a b b a ⊆. A .1 B .2C .3D .4【答案】D 【解析】∅表示空集,没有元素,{}0有一个元素,则{}0∅≠,故(1)错误Q 空集是任何集合的子集,故(2)正确∅和{}0都表示集合,故(3)错误0表示元素,{}0表示集合,故(4)错误{}00∈,故(5)正确{}1,{}12,3,都表示集合,故(6)错误 {}1,2中的元素都是{}1,2,3中的元素,故(7)正确由于集合的元素具有无序性,故{}{},,a b b a ⊆,故(8)正确 综上,正确的个数是4个 故选D6.(2019上海卢湾高级中学高三月考(理))设常数a ∈R ,集合A={x|(x ﹣1)(x ﹣a )≥0},B={x|x≥a ﹣1},若A ∪B=R ,则a 的取值范围为( ) A .(﹣∞,2) B .(﹣∞,2]C .(2,+∞)D .[2,+∞)【答案】B 【解析】 试题分析:当时,,此时成立,当时,,当时,,即,当时,,当时,恒成立,所以a 的取值范围为,故选B.7. (2018·上海中学高三月考)已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“α⊥β”是“m ⊥β”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【解析】当α⊥β时,平面α内的直线m 不一定和平面β垂直,但当直线m 垂直于平面β时,根据面面垂直的判定定理,知两个平面一定垂直,故“α⊥β”是“m ⊥β”的必要不充分条件.8.(2018·上海高三期中)设α,β是两个不同的平面,m 是直线且m α⊂.“m βP ”是“αβP ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】B 【解析】,得不到,因为可能相交,只要和的交线平行即可得到;,,∴和没有公共点,∴,即能得到;∴“”是“”的必要不充分条件.故选B .9. (2020·上海高三)己知点(),P a b 的,曲线1C 的方程y =曲线2C 的方程221x y +=,则“点(),P a b 在曲线1C 上“是”点(),P a b 在曲线2C 上“的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件【答案】A 【解析】当点(),P a b 在曲线1C 上时,有221b a b ⇒+==,所以由点(),P a b 在曲线1C 上,可以推出点(),P a b 在曲线2C 上;当点(),P a b 在曲线2C 上时,有221a b b +=⇒=(),P a b 在曲线2C 上不一定能推出点(),P a b 在曲线1C 上,所以“点(),P a b 在曲线1C 上“是”点(),P a b 在曲线2C 上“的充分非必要条件. 故选:A10(2020·上海高三)设z C ∈,则0z z +=是z 为纯虚数的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B 【解析】设z a bi =+,则z a bi =-,2z z a +=若0z z +=,则0a =,z bi =,当0b =,则0z =,不是纯虚数 若z 为纯虚数,则0a =,0b ≠,此时20z z a +==成立 所以0z z +=是z 为纯虚数的必要不充分条件 故选B.11. (2020·上海市金山中学期末)设a b 、均为非零实数,则“1b a<”是“1ab >”的什么条件?( )A .必要不充分B .充分不必要C .充要条件D .既不充分也不必要条件【答案】A【解析】Q 当1,1b a =-=,满足1b a<,但1ab >不成立∴ 1b a<不能推出1a b >.Q 若1a b >,则0ab >∴01ba << 故1b a <成立1a b >能推出1b a<∴ “b1a<”是“1a b >”的必要不充分.故选:A.12. (2019·上海市晋元高级中学月考)已知全集U R =,集合12345{}{|}2A B x x ∈≥R =,,,,,=,则下图中阴影部分所表示的集合为( )A .{0}1,B .{}1C .{1}2,D .{012},, 【答案】B【解析】由韦恩图可知:阴影部分表示的是A 中的元素除去A 与B 的交集的元素所剩下的元素。
因为{2,3,4,5}A B ⋂=,所以阴影部分所表示的集合是{1}。
故选:B 。
13. (2020·上海高三)已知集合{}0,1,2,3A =,{}|02B x x =<…,则A B =I _________.【答案】{}1,2【解析】取集合,A B 的公共部分即可,所以,{1,2}A B ⋂=故答案为:{}1,214. (2019上海市市西中学高三期中)已知集合{}|1A x x =≤,{}|B x x a =≥,且A B R =U ,则实数a 的取值范围是______________________ . 【答案】1a ≤【解析】在数轴上表示出集合A 和集合B ,要使A B R =U ,只有1a ≤.15.(2020·上海市金山中学期末)已知集合A={x|x 2-3x <0,x ∈N *},则用列举法表示集合A= ______ . 【答案】{1,2} 【解析】由集合A ={x|x 2−3x <0,x ∈N ∗},一元二次不等式的解法可得集合A ={x|0<x <3,x ∈N ∗}={1,2},故答案为{1,2}.16. (2019上海市七宝中学高三月考)能够说明“设,,a b c 是任意实数,若a b c >>,则a b c +>”是假命题的一组整数,,a b c 的值依次为__________. 【答案】1,2,3---【解析】()123,1233->->--+-=->-,矛盾,所以−1,−2,−3可验证该命题是假命题. 17. (2020·上海市金山中学高一期末)若集合{}2=10A x ax ax -+==∅,则实数a 的取值范围是__________. 【答案】[)0,4 【解析】当0a =时,原不等式无实解,故符合题意.当0a ≠时, 210ax ax -+=无实数解,故∆<0,可得:240a a -< 解得:04a <<综上所述,实数a 的取值范围是:[)0,4.故答案为:[)0,4.18. (2020·上海市金山中学期末)已知集合[]{}{}2,2,3,()(3)0xA y y xB x x a x a ==-∈=-++>,(1)当4a =时,求A B I ;(2)若B A ⊆,求实数a 的取值范围. 【解析】(1)[8,4]A =--,当4a =时,{}(4)(7)0(,7)(4,)B x x x =-+>=-∞-⋃+∞,[8,7)A B ∴=--I .(2){|()(3)0}B x x a x a =-++>,①当32a =-时,3|,2B x x R x ⎧⎫=∈≠-⎨⎬⎩⎭,A B ∴⊆恒成立;②当32a <-时,{|3}x x a x a <>--或, A B ⊆Q ,4a ∴>-或38a --<-,解得4a >-或5a >(舍去),所以342a -<<-; ③当32a >-时,{|3}B x x a x a =<-->或, A B ⊆Q ,34a ∴-->-或8a <-(舍去),解得312a -<<.综上所述,当A B ⊆,实数a 的取值范围是(4,1)-. 19. (2019上海市杨浦高级中学月考)已知关于x 的方程20x ax b -+=的两根为,p q ,方程20x bx c -+=的两根为,r s ,如果,,,p q r s 互不相等,设集合{,,,}M p q r s =,作集合{|,,,}S x x u v u M v M u v ==+∈∈≠;{|,,,}P x x uv u M v M u v ==∈∈≠;若已知{5,7,8,9,10,12},{6,10,14,15,21,35}S P ==,求实数,,a b c 的值.【解析】{},,,,,,S p q p r p s q r q s r s =++++++ {},,,,,P pq pr ps qr qs rs =b pq r s ==+,因此,b S ∈且b P ∈,所以{}10b S P ∈⋂=,即10b =; 又a p q =+,因此()()()()()()()()33p q p r p s q r q s r s p q r s a b +++++++++++=+++=+ 即,()157891012173a b p q r s +=+++=+++++=,所以7a =; 又c rs =,因此()()pq pr ps qr qs rs pq p q r s rs b ab c +++++=++++=++ 即,61014152135101b ab c ++=+++++=,所以21c =.。